
Computing a k-Route over Uncertain
Geographical Data

Eliyahu Safra1, Yaron Kanza2, Nir Dolev1, Yehoshua Sagiv3,�, and Yerach Doytsher1

1 Department of Transportation and Geo-Information, Technion, Haifa, Israel
{safra,dolev,doytsher}@technion.ac.il

2 Department of Computer Science, University of Toronto, Toronto, Canada
yaron@cs.toronto.edu

3 School of Engineering and Computer Science, The Hebrew University, Jerusalem, Israel
sagiv@cs.huji.ac.il

Abstract. An uncertain geo-spatial dataset is a collection of geo-spatial objects
that do not represent accurately real-world entities. Each object has a confidence
value indicating how likely it is for the object to be correct. Uncertain data can be
the result of operations such as imprecise integration, incorrect update or inexact
querying. A k-route, over an uncertain geo-spatial dataset, is a path that travels
through the geo-spatial objects, starting at a given location and stopping after
visiting k correct objects. A k-route is considered shortest if the expected length
of the route is less than or equal to the expected length of any other k-route that
starts at the given location. This paper introduces the problem of finding a shortest
k-route over an uncertain dataset. Since the problem is a generalization of the
traveling salesman problem, it is unlikely to have an efficient solution, i.e., there
is no polynomial-time algorithm that solves the problem (unless P=NP). Hence,
in this work we consider heuristics for the problem. Three methods for computing
a short k-route are presented. The three methods are compared analytically and
experimentally. For these three methods, experiments on both synthetic and real-
world data show the tradeoff between the quality of the result (i.e., the expected
length of the returned route) and the efficiency of the computation.

1 Introduction

Spatial datasets store objects that represent real-world geographical entities. When such
datasets are uncertain, users who see only the information stored in the dataset cannot
be sure whether objects correctly represent real-world entities. However, we assume
that users can verify the correctness of objects by using additional information or by
visiting the geographical locations of these objects. In such datasets, each object has
a correctness value of either true or false, and a confidence value; yet, users do not
know the correctness values. Thus, when querying uncertain datasets, users consider
the confidence of an object as the probability that the correctness value of the object is
true. Applications over uncertain datasets should be able to utilize confidence values.

Some cases in which uncertain datasets occur are integration of heterogeneous
sources, incorrect updates and inexact querying. We start by describing the first case.

� This author was supported by The Israel Science Foundation (Grant 893/05).

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 276–293, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Computing a k-Route over Uncertain Geographical Data 277

When integrating two geo-spatial sources, the result consists of pairs and singletons. A
pair is correct if it comprises two objects that represent the same real-world entity in
the different sources. A singleton (i.e., a set that contains a single object) is correct if
it represents a real-world entity that does not have a corresponding object in the other
source. In the absence of keys, integration can be done by using object locations [3,4] or
by using locations and additional attributes [17]. However, since locations are inaccu-
rate, it is uncertain whether any given pair of the result is correct, that is, whether its two
objects indeed represent the same real-world entity. Thus, the result of the integration
is an uncertain spatial dataset.

Incorrect data manipulation can also yield uncertain datasets. The following example
illustrates this.

Example 1. Consider a dataset of hotels, and suppose that no key constraint is imposed
on this dataset. An incorrect insertion of data into the dataset may cause some hotel
to appear twice with two different rates. In this case, users cannot know which object
shows the correct rate of the hotel. Updates can cause a similar problem, for instance,
when the name of some hotel is replaced with a name of a different hotel that already
exists in the dataset.

Andritsos et al. [1] showed how to assign confidence values to objects in such cases.
Another important usage of uncertain datasets is representing the result of queries

that contain an imprecise condition, namely, an adjective instead of a comparison be-
tween an attribute and a value. For example, find good restaurants, rather than find
restaurants that have a rating of five stars. Additional examples are find a luxury ho-
tel, find a popular tourist site, etc. The ability to cope with such queries is important
in systems that are designed to answer requests for information, formulated by non-
expert users. Such queries are useful when providing tourist and municipal information
to laymen who send their request through some limited device, such as a cellular phone.
When processing requests that are sent from a mobile device, one should bear in mind
that the answer may depend on the location of the user.

Recently, location-based services have become a growing and important area in both
research and commerce. Location-based services supply information through mobile
devices, and the answer to a particular request depends on the location from which the
request was sent, i.e., the location of the mobile device [21]. For instance, a user who
asks about a nearby restaurant will get different answers when the user location is in
Times Square, Manhattan, and in Piccadilly Circle, London.

In this paper, we consider a specific location-based service of finding the shortest
k-route over an uncertain dataset. In this application, the input consists of an uncertain
geo-spatial dataset, a location and some k. The output is a route that starts at the given
location and goes via objects of the given dataset. The route is such that the expected
distance from the starting point till visiting k correct objects is minimal. The following
examples demonstrate the need for providing this service.

Example 2. Consider a user located in Times Square, Manhattan, that is looking for
an inexpensive and good restaurant nearby. The answer to this query can be a list of
restaurants that presumably satisfy the request. However, it can also be an uncertain
dataset that contains all the restaurants in Manhattan, such that the confidence value of

278 E. Safra et al.

each restaurant is correlated with the likelihood that the user will consider this restau-
rant as inexpensive and good. Suppose that the user wants to compare three good and
inexpensive restaurants before deciding in which one to dine. The user may also want to
walk as little as possible when visiting restaurants until she sees three that she likes. In
this case, the information system should find a 3-route starting at the location of the user
in Times Square and going through restaurants in the dataset in a way that increases the
likelihood to visit three inexpensive, good restaurants after a short walk.

There are many other scenarios in which finding the shortest k-route can be useful. For
instance, before leasing or buying a house, it may be reasonable to visit and compare
several options, and to do that efficiently means to go through a short route. Also, for
planing a tour in some city or in some country, it may be useful to use such an application.

Finding the shortest k-route can be seen as the spatial version of computing top-k
answers to a query. In many information-retrieval systems and also in some database
applications, the result of a query contains only the top-k answers to the query. For
instance, search engines on the World-Wide Web may present to users only the top
1000 results out of the millions of answers to a query. In geographical applications,
answers should not be ranked merely according to how well they match the query.
Objects should be returned with a recommended route to take in order to visit them.
Moreover, choosing such a route may have an influence on how the objects are ranked
in the answer to the user. The shortest k-route that we propose in this paper is one way
of doing it.

The problem of finding the shortest k-route is a generalization of the traveling sales-
man problem (TSP). TSP (in the version where the salesman need not return to the
origin) is the same as finding the shortest k-route in the case where there is no uncer-
tainty (i.e., all the objects have confidence equal to one) and k is equal to the number of
objects in the dataset. Since TSP is known to be NP-hard, we do not expect to find an
efficient polynomial-time algorithm to the shortest k-route problem. Thus, we settle for
heuristics.

In this paper, we introduce three novel algorithms for finding a short k-route and
we explain the differences between them. We also present the results of extensive ex-
perimentation that compares the algorithms on different types of data. Our experiments
were conducted on both synthetic data and real-world data.

The main contributions of this paper are as follows.

– We introduce the problem of finding the shortest k-route over uncertain geo-spatial
datasets.

– We present three algorithms for finding a short k-route and explain the different
behaviors of these algorithms.

– We conducted thorough experiments that show the tradeoff between effectiveness
of the algorithm (i.e., the ability to compute a path with a short expected length)
and its efficiency.

2 Framework

In this section, we formally present our framework and the problem of finding a shortest
k-route over uncertain datasets.

Computing a k-Route over Uncertain Geographical Data 279

Uncertain Geo-Spatial Datasets. A geo-spatial dataset is a collection of geo-spatial
objects. Each object has a location and may have additional spatial and non-spatial
attributes. Height and shape are examples of spatial attributes. Address and name are
examples of non-spatial attributes. We assume that locations are points and objects are
disjoint, i.e.,, different objects have different locations. For objects that are represented
by a polygonal shape and do not have a specified point location, we consider the center
of mass of the polygonal shape to be the point location. The distance between two
objects is the Euclidean distance between their point locations. We denote the distance
between two objects o1 and o2 by distance(o1, o2). Similarly, if o is an object and l is a
location, then distance(o, l) is the distance from o to l.

An uncertain geographical dataset is a pair (D, ϕc), where D is a geo-spatial dataset
and ϕc : D → [0, 1] is a function that maps each object of D to a value between 0 and 1,
called confidence. An instance of (D, ϕc) is a pair (D, τ) where τ : D → {true, false}
is a function that maps each object of D to a correctness value, which is either true
or false. An uncertain dataset (D, ϕc) has 2|D| possible instances, where |D| is the
number of objects in D. We consider the confidence of an objects as an indication of
how likely it is for the object to be correct, i.e., to be mapped to true by τ . To each
instance I = (D, τ), we assign a probability P (I) according to the confidence values
of the objects: P ((D, τ)) = [Π{oi|τ(oi)=true}ϕc(oi)] · [Π{oi|τ(oi)=false}(1 − ϕc(oi))].
When computing a route over an uncertain dataset, the actual instance is not known.
Hence, the probabilities of possible instances should be taken into account.

Usually, users know only D and ϕc when querying or using uncertain data. However,
when developing algorithms for uncertain data, it is important to test them on data for
which τ is known in order to determine the quality of the results of each algorithm.
Thus, the datasets in our experiments included full information about τ .

Shortest k-Route. Consider a dataset D with n objects o1, . . . , on. A complete route
over D is a sequence ρ = oi1 , . . . , oin where i1, . . . , in is some permutation of 1, . . . , n.
The complete route ρ provides an order for traversing the objects of D. Now, suppose
that we are given an instance I = (D, τ), which includes τ in addition to D. Consider a
traversal that starts at some given point s and visits the objects according to ρ. For each
object o, we can count the number of correct objects and the distance until we get to o.
Formally, we denote by correctρ(oij) the number of correct objects among oi1 , . . . , oij .
That is,

correctρ(oij) = |{oil
| 1 ≤ l ≤ j and τ(oil

) = true}|.

Also, we denote by distanceρ(s, oij) the distance of the path that starts at s and leads to
oij according to ρ. That is,

distanceρ(s, oij) = distance(s, oi1) + Σj−1
l=1 distance(oil

, oil+1).

Given an instance I = (D, τ) and a complete route ρ = oi1 , . . . , oin over D, a k-
route is the shortest subsequence oi1 , . . . , oij such that correctρ(oij) = k; however, if
such a subsequence does not exist (i.e., correctρ(oin) < k), then the k-route is ρ itself.
Intuitively, a k-route is a traversal that stops at the k-th correct object. We denote by
k-distance(s, ρ, I) the distance of the k-route oi1 , . . . , oij when starting at s, that is,
k-distance(s, ρ, I) = distanceρ(s, oij).

280 E. Safra et al.

For an uncertain dataset, there can be many possible instances having k-routes with
different lengths. Thus, we consider an expected length rather than an exact length.
Given an uncertain dataset (D, ϕc), a starting point s and a complete route ρ over D,
the expected length of a k-route is

ΣI is an instance of (D,ϕc)
[P (I) · k-distance(s, ρ, I)].

The shortest k-route over an uncertain dataset (D, ϕc) is a complete route ρ that has
an expected length smaller or equal to the expected length of any other k-route over
(D, ϕc). Since computing the shortest k-route is computationally hard, our goal in this
work is to provide polynomial-time algorithms for computing a short k-route.

Assessing the Quality of the Result. In this work, we present three algorithms to the
problem of finding a short k-route. In order to assess the quality of the results of these
algorithms, we compare the expected length of the k-routes that the different algorithms
compute. An algorithm A1 is considered better than algorithm A2 with respect to an
uncertain dataset (D, ϕc) and a starting point s, if the expected length of the k-route
produced by A1 is shorter than the expected length of the k-route produced by A2.
Given a digital map that contains D, algorithm A1 is better than A2 for (D, ϕc) if the
number of points s (of the map) for which A1 is better than A2 is greater than the
number of points s for which A2 is better than A1.

3 Algorithms

In this section, we present three novel algorithms for finding a short k-route. We use
the following notation when presenting the algorithms. We denote by (D, ϕc) the given
uncertain dataset and by o1, . . . , on the objects of D. We denote by s the location where
the traversal should start. The result of the algorithms is a sequence oi1 , . . . , oin that
defines a complete route.

3.1 The Greedy Algorithm

In the greedy algorithm, a route is constructed iteratively. Intuitively, in each iteration,
the algorithm adds (to the sequence) the object that has the best ratio of confidence
to distance among the objects that have not yet been added in previous iterations. The
algorithm is presented in Fig. 1. Note that when choosing which object to add, while
constructing the route, objects with high confidence are preferred over objects with low
confidence and near objects are preferred over far objects.

The greedy algorithm is simple and efficient. No preprocessing is required and it has
O(|D|2) time complexity. It usually performs well (i.e., provides a short k-route) in the
following two cases. First, when k is very small. In particular, this is true for k = 1.
Secondly, when the objects of D are uniformly distributed and there is no correlation
between confidence values and locations. Intuitively, in such cases, there is no preferred
direction for the first leg of the traversal (which starts at s). Hence, the initial direction
chosen by the greedy algorithm is as good as any other direction, and the produced
route will have an expected distance close to the optimal.

Computing a k-Route over Uncertain Geographical Data 281

Greedy (D, ϕc, s)

Input: A dataset D with confidence values ϕc, and a start location s
Output: A route over D

1: let π be an empty sequence
2: CurrentLocation ← s
3: NotVisited ← D
4: while NotVisited �= ∅ do
5: let o be the object in NotVisited such that ϕc(o)

distance(CurrentLocation,o)
=

max{ ϕc(o′)
distance(CurrentLocation,o′)

| o′ ∈ NotVisited}
6: add o to π
7: remove o from NotVisited
8: let CurrentLocation be the location of o
9: return π

Fig. 1. The greedy algorithm

Fig. 2. An example where the greedy algorithm does not perform well. The starting point is
marked by a diamond. Objects are marked by crosses.

When k is large and the distribution of either the objects or their confidences is not
homogeneous, the greedy algorithm is not likely to provide good results. The following
example illustrates a problematic behavior of the greedy algorithm.

Example 3. Fig. 2 shows a dataset that has a cluster of objects on the right side, and
three objects with growing distances between them on the left side. Suppose that all
the objects have the same confidence value. Given the starting location marked by a
diamond, the route computed by the greedy algorithm will first go to the three objects
on the left instead of going to the cluster on the right. For k = 4, for instance, it is better
to start the route by going to objects in the cluster on the right side.

From Example 3, we can learn that the greedy algorithm is not an approximation al-
gorithm to the shortest k-route problem. That is, for any given positive constant c, it is
possible to construct an example in which the greedy algorithm will return a k-route
whose expected length is greater than the expected length of the shortest k-route mul-
tiplied by c. Constructing such an example is done by generating a dataset similar to
the one in Example 3, choosing a large enough k, and appropriately adding more ob-
jects (with growing distances between them) on the left side of the starting location and
adding objects to the cluster on the right side.

282 E. Safra et al.

AAG (D, ϕc, s)

Parameter: An accuracy parameter ε
Input: A dataset D with confidence values ϕc, and a start location s
Output: A route over D

1: generate a weighted graph G from D and ϕc

2: generate a transition matrix P from G
3: create a uniform distribution X1 = (1

n
, . . . , 1

n
)

4: t ← 1
5: while ||P t+1X1 − P tX1|| ≥ ε do
6: t ← t + 1
7: create from P tX1 a function Xs that provides an aa-value to each node
8: π ←Greedy(D, Xs, s)
9: return π

Fig. 3. The Adjacency-Aware Greedy algorithm

While the greedy algorithm is not an approximation algorithm to the shortest k-
route problem, it is an approximation algorithm for TSP [15]. This shows that in some
aspects, the shortest k-route problem is inherently different from TSP.

3.2 The Adjacency-Aware Greedy Algorithm

Dealing with clusters of objects is important in many real-world scenarios. For example,
in many cities, hotels are grouped near airports or tourist sites. Restaurants are usually
located in the city center, near tourist sites and in the business district. Similarly, other
utilities, such as shops or municipal buildings, are usually grouped together rather than
being uniformly dispersed all over the city.

When a given dataset contains clusters of objects, a good heuristic is to give prece-
dence to points that are in a cluster over points that are not in a cluster. This, however,
is not done by the greedy algorithm, as shown in Example 3. The Adjacency-Aware
Greedy Algorithm (AAG) improves the greedy algorithm by preferring objects that are
surrounded by many near objects, especially if the near objects have high confidence
values. This is done by means of assigning adjacency-aware values (abbr. aa-values)
to objects as follows.

The aa-value given to an object should be based not only on the distances of the other
objects and their confidence values, but also on their configuration. For example, we
should prefer an object that has a neighboring cluster of four objects, within a distance
of 100 meters, over an object that has four neighbors, all of them at a distance of 100
meters but in four different directions.

To compute the aa-values, we represent the dataset as a graph with weighted edges.
We use the weighs to compute, for each object, an aa-value that is the probability of
reaching that object in a random walk on the graph. The weight of an edge (o1, o2)
represents the probability of moving from o1 to o2 and is determined by the distance
between the two objects and their confidence values. In a random walk on the graph, an
object with many near neighbors has a higher probability to be visited than an object

Computing a k-Route over Uncertain Geographical Data 283

with fewer near neighbors. Furthermore, an increase in the aa-value of a node raises the
aa-values of its neighbors for the following reason. If a node o has a higher probability
to be visited in a random walk, then there is an increased likelihood of visiting the near
neighbors of o. Hence, the aa-values of objects are affected by the configuration of the
dataset.

Now, we formally define the weighted graph and show how to compute the proba-
bility of reaching a node by a random walk on this graph. Given the uncertain dataset
(D, ϕc), we generate a weighted graph G = (V, E, w), where the set of nodes V con-
sists of all the objects in D, the set of edges E is D × D, i.e., there is an edge in G
between every two nodes, and w is a function that maps each edge e = (o1, o2) of E,
where o1 �= o2, to the weight w(e) = ϕc(o2)

distance(o1,o2)
. For each object o, we define

w((o, o)) = 0. A random walk over G is a stochastic process that chooses the next node
to visit as follows. If we are at some node v, we randomly choose an outgoing edge of
v. The probability of choosing an edge is proportional to its weight. The random walk
creates a sequence v1, v2, . . . , vt, . . . of nodes. Since the walk is random, the node vt

that is visited after t steps can be any node of G—each node with a different probabil-
ity. We denote by Xt the probability distribution over V of being at each node after t
steps. We represent Xt as a vector of probabilities of length |D|. That is, Xt[i] is the
probability to be at node oi after t steps.

The random walk is a memoryless process, that is, each step depends only on the last
state. In other words, the probability of choosing an outgoing edge for making the next
step is independent of the path that led to the current node. Hence, it is a Markov chain,
which means that the random walk can be described using an n × n transition matrix
P , such that Xt+1 = PXt holds for every t (note that n is the number of objects in
D). We denote by Pij the element in the ith column and the jth row of P . The element
Pij is the probability to move from node oi to node oj . Since the choice of edges is
according to their weights, we define P as follows.

Pij =
w(oi, oj)

Σn
j′=1w(oi, oj′)

Note that Σn
i=1Pij = 1 holds for every row j.

The transition matrix P defines an irreducible and aperiodic Markov chain. (Intu-
itively, irreducible means that from each node there is a non-zero probability to reach
any other node, since the graph is connected; aperiodic means that for each node, 1 is
the greatest common divisor of the lengths of all paths from this node to itself, since
the graph is not bipartite.) So, given an initial uniform distribution X1 = (1

n , . . . , 1
n),

we have that P tX1 → Xs as t → ∞, where Xs is a stationary distribution, that is,
PXs = Xs. For each i, the distribution Xs gives the probability to be at oi in a ran-
dom walk on G.

The AAG algorithm of Fig. 3 computes the stationary distribution Xs and then ap-
plies the greedy algorithm where Xs replaces ϕc. Computing Xs can be done as a pre-
processing step. Thus, given a user request with a specific location, the time complexity
of computing a route is the same as the time complexity of the greedy algorithm.

Our experiments show that the AAG algorithm improves the greedy algorithm. How-
ever, AAG has the disadvantage that the probability distribution Xs must be computed

284 E. Safra et al.

k-EG (D, ϕc, s)

Parameter: The number k of correct objects to visit
Input: A dataset D with confidence values ϕc, and a start location s
Output: A route over D

1: K ← ∅
2: S ← {{o} | o ∈ D}
3: while S �= ∅ do
4: for each set S in S do
5: if k ≤ Σo∈Sϕc(o) then
6: add S to K
7: remove S from S
8: else
9: minLength ← ∞

10: for each o ∈ D − S do
11: let lS,o be the length of the route created by a greedy algorithm for the

starting point s and the objects S ∪ {o}, based on merely distances,
without using confidence values (at each iteration the greedy adds to
the path the nearest object to the current location among the objects not
added so far)

12: if lS,o < minLength then
13: objToAdd ← o
14: minLength ← lS,o

15: add objToAdd to S
16: minLength ← ∞
17: chosenSet ← ∅
18: for each S in K do
19: let lS be the length of the route created by a greedy algorithm for the starting

point s and the objects of S, according to distance and without using the confi-
dence values

20: if lS < minLength then
21: chosenSet ← S
22: minLength ← lS
23: let π be the route that starts at s and is generated by a greedy algorithm using only

distances, over the objects of chosenSet
24: complete π to include all the objects of D using the greedy algorithm as in Fig. 1

(when choosing which object to add use the ratio of distance and confidence)
25: return π

Fig. 4. The k-Expectancy Grouping algorithm

before computing a route, and hence AAG is less efficient than the greedy algorithm for
datasets that change frequently. AAG also suffers from the following two problems.

1. AAG ignores k when computing the route. For instance, consider the case that is
depicted in Fig. 5, assuming that all the objects have the same confidence value.
There is a small cluster on the left side of the starting point and a larger cluster on
the right side of the starting point. The smaller cluster is closer to the starting point

Computing a k-Route over Uncertain Geographical Data 285

Fig. 5. An example where the AAG algorithm does not perform well. The starting point is marked
by a diamond. Objects are marked by crosses.

than the larger cluster. For large values of k, it is better to go to the bigger cluster
first. But for small values of k, going to the nearer (and smaller) cluster may be a
better approach. In AAG, however, the same path is returned for all values of k.

2. A second problem is that by going directly to points in a cluster, there may be points
on the way to the cluster, such that visiting them would not increase the distance of
the route and yet, in the AAG method, such points are not always visited.

Our third method solves the above problems.

3.3 The k-Expectancy Grouping Algorithm

We now present the third method, namely, the k-Expectancy Grouping (k-EG) algo-
rithm. Differently from the previous methods, the route generated by this algorithm
depends not only on the dataset and the starting point, but also on the value of k. The
k-EG algorithm consists of two steps. The first creates sets of objects such that the ex-
pected number of correct objects in each one is k. The second step applies the greedy
algorithm to each one of these sets, and chooses the set for which the greedy algorithm
generates the shortest route.

The k-EG algorithm is shown in Fig. 4. In the first part of the algorithm, sets of
objects are generated and inserted into K. The sets in K are constructed so that the sum
of confidence values, of the objects in each set, is greater than k. This means that for
the sets in K, the average number of correct objects is at least k. Initially, K is empty.

The algorithm uses S to store sets that are eventually moved to K. Initially, for each
object o in D, the set {o} is in S. Then, we iteratively extend the sets in S by adding
one object at a time, as described below. When a set has (for the first time) a confidence
sum that is at least k, it is moved to K. In order to extend a set S of S by one object,
we examine all the objects o of D that are not yet in S. For each object o, we compute
a route that starts at s and traverses the objects of S ∪ {o}. This route is computed by a
greedy algorithm that uses ordinary distances (i.e., it is essentially the same algorithm
as in Fig. 1, except that all the confidence values are equal to 1). The object o for which
the constructed route is the shortest is the one that is added to S.

After constructing the sets (Lines 1–15), we choose the one that has the shortest
route (Lines 16–22). Then, a route is created from the chosen set by applying the greedy
algorithm with ordinary distances. After traversing all the objects of the chosen set, we
continue the route by visiting all the remaining objects of D, but now we apply the
greedy algorithm that uses the ratio of the confidence to the distance.

In general, k-EG has O(n5) time complexity, where n is the number of objects in D.
To see why this is true, note that initially there are n sets in S. Since the number of sets

286 E. Safra et al.

in S does not grow, there are at most n sets in S during the entire run of the algorithm.
Also, each set contains at most n objects. Every set can be extended at most n times,
each time by choosing an object from a set of at most n possible objects. So, there are
at most n2 times of considering whether to add a certain object to a certain set, which
means no more than n3 times of computing a route using a greedy algorithm, for all the
n sets. Since for each set S the greedy algorithm has an O(|S|2) running time, the total
time is O(n5).

In practice, the sets in S are expected to have a size that is much smaller than n. It is
reasonable to assume that in practical cases, the sets of S (and hence, also the sets in K)
have an O(k) size. If we consider, for instance, the case where all the objects in D have
confidence values greater than 0.5, then every set in S has at most 2k objects. Under
the assumption that sets in S have an O(k) size, the running time of the algorithm is
O(n2k3). When k is constant, we actually get an O(n2) running time.

4 Experiments

In this section, we describe the results of extensive experiments on both real-world
data and synthetically-generated data. The goal of our experiments was to compare the
three methods presented in Section 3, over data with varying levels of object spread and
different distributions of confidence values.

4.1 Tests on Synthetic Data

We used synthetic datasets to test the differences between our algorithms. One of the
synthetic datasets on which we conducted experiments is depicted in Fig. 6. In this
figure, objects are marked by crosses. Potential starting points are marked by circles
and have a letter (A, B or C) next to the circle. The confidence values were chosen
randomly according to a Gaussian distribution (normal distribution) with mean 0.7 and
standard deviation 0.1. We do not show the confidence values in Fig. 6 because in some
parts of the figure, objects are too dense for writing visible numbers next to them.

For estimating the expected distance of a route ρ over some given dataset (D, ϕc),
when testing the quality of some algorithm, we generated 100 instances of (D, ϕc) and
computed the average distance of a k-route over these instances. That is, for every given
dataset (D, ϕc), we generated 100 instances (D, τ1), . . . , (D, τ100) where each τi was
the result of randomly choosing truth values τi(o1), . . . , τi(on), such that ϕc(oj) and
1 − ϕc(oj) were the probabilities of choosing τi(oj) to be true and false, respectively.
We then computed the distances d1, . . . , d100, where di is the length of the route from
the starting point to the kth correct object when traversing (D, τi) according to ρ. We
consider the average (Σ100

i=1di)/100 as the expected distance of ρ over (D, ϕc).
Fig. 8 shows the results of our algorithms when computing a route over the dataset

of Fig. 6, where A is the starting point. The graph in this figure shows the expected
k-distance, of the routes computed by the algorithms, as a function of k. The results of
the greedy algorithm are presented by diamonds. For AAG, the results are depicted by
squares, and for k-EG, the results are depicted by triangles. The graph shows that for
small k values (k = 1 or k = 2), all three algorithms provide a route with a similar ex-
pected distance. For larger k values, the greedy algorithm is much worse than AAG and

Computing a k-Route over Uncertain Geographical Data 287

Fig. 6. A synthetic dataset Fig. 7. A dataset of hotels in Soho, Manhattan

Fig. 8. Results on the dataset of Fig. 6,
starting at point A

Fig. 9. Results on the dataset of Fig. 6,
starting at point B

k-EG. For instance, when k = 7, the route of greedy algorithm has an expected length
that is greater than 10 kilometers while AAG and k-EG provide routes with expected
lengths of less than 5 kilometers. The differences are because AAG and k-EG generate
a route that goes directly to a near cluster while the route generated by the greedy al-
gorithm does not go directly to a cluster. For the starting point B, the differences in the
quality of the results, between the greedy and the other two algorithms, are even larger,
because it takes longer for the route of the greedy algorithm to get to a cluster.

Fig. 10 shows the results of our algorithms when computing a route over the dataset
of Fig. 6 using C as the starting point. In this case, there is a difference between the
results provided by AAG and those of k-EG. In order to understand the behavior of the
different algorithms in this case, we present the routes that are computed. The greedy

288 E. Safra et al.

Fig. 10. Results on the dataset of Fig. 6, starting at point C

algorithm returns the route that is depicted in Fig. 11. AAG returns the route in Fig. 12.
The route that k-EG returns for k = 7 is presented in Fig. 13. In these figures, it can
be seen that the route computed by the greedy algorithm reaches a cluster after a long
travel. AAG reaches a cluster directly and thus is better than the greedy algorithm for
large k values. The main problems with the route that AAG computes is that it goes
directly to a cluster and skips objects that are on the way to the cluster. Going through
these objects increases the likelihood of reaching k correct object sooner without length-
ening the route. Thus, for this case, k-EG provides a better route than AAG.

Fig. 11. The route by the greedy algorithm
on the dataset of Fig. 6 starting at point C

Fig. 12. The route by AAG on the dataset of
Fig. 6 starting at point C

We conducted several additional tests on synthetic datasets. In these tests, we had
datasets with a few large clusters, datasets with several small clusters and datasets with
no clusters at all. Our experiments confirmed that in the presence of clusters, the greedy

Computing a k-Route over Uncertain Geographical Data 289

Fig. 13. The route by k-EG on the dataset of
Fig. 6 starting at point C, for k = 7

Fig. 14. The route by k-EG on the dataset of
Fig. 7 starting at point B, for k = 7

algorithm is much worse than the other two algorithms, and they showed that k-EG
provides the best results in almost all cases.

4.2 Tests on Real-World Data

We tested our algorithms on several real-world datasets to which we added confidence
values. A dataset of hotels in Soho, Manhattan, is depicted in Fig. 7. The objects were
taken from a map of New-York City and the confidence values were added randomly
according to a Gaussian distribution with mean 0.7 and standard deviation 0.1. The
results of our algorithms on this dataset are depicted in Fig. 15 and Fig. 16 for the
starting points A and B, respectively. In this test, once again, the greedy algorithm
provides the worst route and k-EG provides the best route, for almost all cases. The
routes computed by the greedy, AAG and k-EG algorithms are depicted in Figures 17,
18 and 14, respectively.

In k-EG, a route is chosen from a set of possible routes. Intuitively, this reduces
the number of cases where the algorithm produces an extremely bad route. To show
it, we conducted experiments over three real-world datasets that are very different one
from the other, using two distinct confidence distributions. One dataset that we used
is of embassies in Tel-Aviv. In this dataset, almost all the objects are in two clusters
that are quite far one from the other. A second dataset is of gas stations in the area of
Tel-Aviv. This dataset contains three large clusters (dense urban areas) but also many
objects that do not belong to a cluster. A third dataset that we used is of points of interest
where objects are dispersed without any visible cluster. For each one of these datasets,
we chose confidence values randomly. First, according to a uniform distribution in the
range 0 to 1, and secondly, according to a Gaussian distribution with mean 0.7 and
standard deviation 0.1. For each case, we chose a starting location.

290 E. Safra et al.

Fig. 15. Results on real-world dataset, start-
ing at point A

Fig. 16. Results on real-world dataset, start-
ing at point B

Fig. 17. The route by the greedy algorithm
on the dataset of Fig. 7, starting at point B

Fig. 18. The route by AAG on the dataset of
Fig. 7, starting at point B

Over each dataset, we summarized for AAG and k-EG the quality of the result with
respect to the result of the greedy algorithm. To do so, we computed for k = 2, . . . , 10
the ratio of the distance of the route produced by the tested algorithm (AAG or k-EG)
to the distance of the route produced by the greedy algorithm. We show the minimal
and the maximal ratios for these cases in Fig. 19.

The graph in Fig. 19 shows that AAG sometimes generates a route that is much worse
than that of the greedy algorithm. This is due to the fact that in the presence of clusters,
the route generated by AAG goes directly to a cluster even when all the clusters are far
from the starting point. This approach can be expensive, especially for small k values.
In the presence of clusters, both AAG and k-EG sometimes produce a route that is much
better than the route produced by the greedy algorithm. Not surprisingly, when there are
no clusters, the differences between the algorithms are smaller. Note that we get similar
results for different distributions of confidence values, but an increase in the variance
of confidence values leads to an increase in the difference between the smallest and the
largest ratios.

Computing a k-Route over Uncertain Geographical Data 291

Fig. 19. The results of the algorithms
summed up for several real-world sources

Fig. 20. The runtimes (in seconds) of k-EG as
a function of k, on dataset of different sizes

4.3 Running Times

We now consider the time it takes to compute a route using our algorithms. To give
running-time estimations, we measured the computation of a route on datasets of dif-
ferent sizes. When measuring the times, we used a PC with a Core 2 Duo, 2.13 GHz,
processor (E6400) and 2GB of main memory. In Table 1, we show the time it takes to
compute, using the greedy and AAG algorithms, a route over four datasets with 50, 100,
150 and 200 objects. For AAG, we show both the time it takes to compute adjacency-
aware values, in the preprocessing part of the method, and the time it takes to compute
a route after the preprocessing has been completed. For k-EG, we present in Fig. 20
the time for computing a route as a function of k. Table 1 and Fig. 20 show that the
greedy algorithm is the most efficient among the three algorithms while k-EG is less
efficient than the other two methods. AAG is less efficient than the greedy algorithm
when including the preprocessing time, but without the preprocessing time, AAG is as
efficient as the greedy algorithm.

Table 1. The time for computing a route over datasets of different sizes

50 objects 100 objects 150 objects 200 objects

Greedy <0.01 sec 0.02 sec 0.02 sec 0.02 sec
AAG preprocessing 0.02 sec 0.03 sec 0.08 sec 0.13 sec
AAG compute route <0.01 sec <0.01 sec 0.02 sec 0.02 sec

5 Related Work

With the ongoing advances in the areas of wireless communication and positioning
technologies, it has become possible to provide mobile, location-based services. These
services may track the movements and requests of their customers in multidimensional
data warehouses, and later use this information for answering complex queries [10].
Data models for location-based services have been developed and implemented in re-
cent years. An R-tree-based technique for indexing data about the current positions of
objects in highly dynamic databases has been proposed by Saltenis and Jensen [18]. An

292 E. Safra et al.

efficient search for specific information over multiple collections has been described
by Goodchild and Zhou [9], who have also reported on several conceptual designs
for a searching process that is based on collection-level metadata (CLM). Miller and
Shaw [12] have described the use of GIS-T data models and different aspects of path
finding in geospatial systems for transportation purposes.

Manipulating uncertain and probabilistic data has received a lot of attention recently.
Several papers deal with managing probabilistic and uncertain data, and propose mod-
els for representing the data [2,5,8,11]. In some papers, the problem of querying proba-
bilistic data is considered and various techniques for efficient evaluation of queries over
probabilistic data are proposed [6,7,14,16,23]. The above papers are concerned with
probabilistic data in general, and not with spatial data. For probabilistic spatial data,
the problem of computing a join of spatial polygonal-shaped objects with imprecise
locations is investigated in [13]. Computing nearest-neighbor on probabilistic spatial
databases is discussed in [22]. Probabilistic spatial data has also been considered in
the context of dealing with moving objects [18,19,20]. All these problems are different
from the one discussed in this paper, namely, finding the shortest k-route.

6 Conclusion

In this work, we introduced the problem of finding the shortest k-route over uncer-
tain geo-spatial datasets. Since the problem is computationally hard, we presented three
heuristic algorithms for computing a short k-route, and illustrated the differences be-
tween these algorithms. We compared the algorithms using extensive experiments over
synthetic and real-world data. Our experiments show that in most cases, k-EG provides
the best route (i.e., provides a route that is expected to lead to k correct objects within a
shorter distance) and the greedy algorithm provides the worst route. However, for these
algorithms, there is a tradeoff between the quality of the results and the efficiency of
the algorithm. The greedy algorithm is the most efficient and k-EG is the least effi-
cient among the three. As future work, we intend to develop optimization techniques to
improve the efficiency of k-EG.

References

1. Andritsos, P., Fuxman, A., Miller, R.J.: Clean answers over dirty databases: A probabilistic
approach. In: Proceedings of the 22 International Conference on Data Engineering (2006)

2. Barbara, D., Garcia-Molina, H., Poter, D.: The management of probabilistic data. IEEE
Transaction on Knowledge and Data Engineering 4(5), 487–502 (1992)

3. Beeri, C., Doytsher, Y., Kanza, Y., Safra, E., Sagiv, Y.: Finding corresponding objects when
integrating several geo-spatial datasets. In: ACM-GIS, Bremen, Germany, pp. 87–96. ACM
Press, New York (2005)

4. Beeri, C., Kanza, Y., Safra, E., Sagiv, Y.: Object fusion in geographic information systems.
In: VLDB, pp. 816–827 (2004)

5. Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. In: Proceedings of 13th
International Conference on Very Large Data Bases (1987)

6. Cheng, R., Kalashnikov, D., Parbhakar, S.: Evaluating probabilistic queries over imprecise
data. In: Proc. of ACM SIGMOD International Conference on Management of Data, San
Diego (CA, USA), ACM Press, New York (2003)

Computing a k-Route over Uncertain Geographical Data 293

7. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. In: Proceedings
of the 30th International Conference on Very Large Data Bases (2004)

8. Fuhr, N.: A probabilistic framework for vague queries and imprecise information in
databases. In: Proc. of the 16th International Conference on Very Large Data Bases (1990)

9. Goodchild, M.F., Zhou, J.: Finding geographic information: Collection-level metadata.
Geoinformatica 7(2), 95–112 (2003)

10. Jensen, C.S., Kligys, A., Pedersen, T.B., Timko, I.: Multidimensional data modeling for
location-based services. The VLDB Journal 13(1), 1–21 (2004)

11. Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.S.: Probview: A flexible proba-
bilistic database system. ACM Trans. on Database Systems 22(3), 419–469 (1997)

12. Miller, H.J, Shih-Lung, S.: Geographic Information Systems for Transportation: Principles
and Applications (Spatial Information Systems). Oxford University Press, Oxford (2001)

13. Ni, J., Ravishankar, C.V., Bhanu, B.: Probabilistic spatial database operations. In: Proc. of
the 8th International Symposium on Advances in Spatial and Temporal Databases (2003)

14. Pittarelli, M.: An algebra for probabilistic databases. IEEE Transactions on Knowledge and
Data Engineering 6(2), 293–303 (1994)

15. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the
traveling salesman problem. SIAM Journal on Computing 6, 563–581 (1977)

16. Ross, R., Subrahmanian, V.S., Grant, J.: Aggregate operators in probabilistic databases. Jour-
nal of the ACM 52(1), 54–101 (2005)

17. Safra, E., Kanza, Y., Sagiv, Y., Doytsher, Y.: Integrating data from maps on the world-wide
web. In: Proceedings of the 6th International Symposium on Web and Wireless Geographical
Information Systems, pp. 180–191 (2006)

18. Saltenis, S., Jensen, C.S.: Indexing of moving objects for location-based services. In: Pro-
ceedings of the 18th International Conference on Data Engineering, Washington DC (USA)
(2002)

19. Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing uncertainty in moving
objects databases. ACM Transactions on Database Systems 29(3), 463–507 (2004)

20. Trajcevski, G., Wolfson, O., Zhang, F., Chamberlain, S.: The geometry of uncertainty in
moving objects databases. In: Proceedings of the 8th International Conference on Extending
Database Technology (2002)

21. Virrantaus, K., Markkula, J., Garmash, A., Terziyan, Y.V.: Developing GIS-supported
location-based services. In: Proceedings of the 1st International Conference on Web Geo-
graphical Information Systems, pp. 423–432 (2001)

22. Zhang, S.: A nearest neighborhood algebra for probabilistic databases. Intelligent Data Anal-
ysis 4(1), 29–49 (2000)

23. Zimányi, E.: Query evaluation in probabilistic relational databases. Theoretical Computer
Science 171(1-2), 179–219 (1997)

	Introduction
	Framework
	Algorithms
	The Greedy Algorithm
	The Adjacency-Aware Greedy Algorithm
	The k-Expectancy Grouping Algorithm

	Experiments
	Tests on Synthetic Data
	Tests on Real-World Data
	Running Times

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

