
Generating Relations from XML Documents�

Sara Cohen, Yaron Kanza, and Yehoshua Sagiv

School of Computer Science and Engineering
The Hebrew University of Jerusalem

Jerusalem 91904, Israel
{sarina,yarok,sagiv}@cs.huji.ac.il

Abstract. This paper discusses several mechanisms for creating rela-
tions out of XML documents. A relation generator consists of two parts:
(1) a tuple of path expressions and (2) an index indicating which path
expressions may not be assigned the null value. Evaluating a relation gen-
erator involves finding tuples of nodes that satisfy the path expressions
and are related to one another in a meaningful fashion. Different seman-
tics for evaluation are given that take into account the possible presence
of incomplete information. The complexity of generating relations from
documents is analyzed and evaluation algorithms are described.

1 Introduction

Increasingly large amounts of data are accessible to the public in the form of
XML documents. It is difficult for the naive user to query XML and thus, poten-
tially useful information may not reach its audience. Search engines are currently
the only efficient way to query the Web. These engines do not exploit the struc-
ture of documents and hence, are not well suited for querying XML.

We present several mechanisms for creating relations out of documents. The
relations created can be used in many different ways. One use is to integrate our
mechanisms into SQL in order to allow simultaneous querying of relations and
XML. Another scenario where our mechanisms are useful is to create a universal
relation interface to a set of documents, thereby enabling a simple and powerful
search of the documents. It has been noted that the universal relation [8,11,
12] is a first step towards facilitating natural-language querying of relational
databases. We believe that this also holds for XML documents.

Given a tuple of path expressions, we aim to find tuples of nodes from a given
document that (1) match the path expressions and (2) are meaningfully related.
We first try to decide when a pair of nodes are meaningfully related. In principle,
any pair of nodes are related by virtue of being in the same document. However,
as humans we can often determine that nodes are or are not meaningfully related
by simply looking at a document. Several questions arise in this context:

– How can we automate the decision of whether a pair of nodes are related in
a meaningful fashion? This becomes especially difficult when one considers
the fact that documents may have varied structure.

� This work was supported by The Israel Science Foundation (Grant No. 96/01-1)

D. Calvanese et al. (Eds.): ICDT 2003, LNCS 2572, pp. 285–299, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.2     Für schnelle Web-Anzeige optimieren: Ja     Piktogramme einbetten: Ja     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 600 600 ] dpi     Papierformat: [ 595.276 824.882 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 150 dpi     Downsampling für Bilder über: 225 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Mittel     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 150 dpi     Downsampling für Bilder über: 225 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Mittel     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 600 dpi     Downsampling für Bilder über: 900 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren     Methode: StandardArbeitsbereiche:     Graustufen ICC-Profil:  ¡M     RGB ICC-Profil: sRGB IEC61966-2.1     CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Nein     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: NeinANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ( ¡M)     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 600 600 ]>> setpagedevice



286 S. Cohen, Y. Kanza, and Y. Sagiv

– How can we deal with incompleteness in documents? If a document may
be incomplete, then we may have to discover whether a particular node is
meaningfully related to a node that does not even appear in the document.

Our mechanism for deciding whether a pair of nodes is meaningfully related
attempts to capture our human intuition of relationships in a document.

Once we have determined which pairs of nodes are meaningfully related, we
propose several different mechanisms that allow us to determine when larger
tuples of nodes are meaningfully related. The more precise the mechanism, the
less coverage it tends to have. Therefore, we present several mechanisms in order
to allow the user to choose an appropriate one for a given domain. We also discuss
the complexity of finding meaningfully related tuples, which varies depending on
the mechanism used.

Section 2 presents some definitions and Section 3 presents our relation gener-
ating mechanisms. Some scenarios where our mechanisms are useful are described
in Section 4. In Sections 5 we discuss the complexity of creating relations out of
XML documents and present evaluation algorithms. Section 6 concludes.

2 Framework

Relations. A tuple has the form t = (c1 : a1, . . . , ck : ak) where ci and ai are
a column name and a value, respectively. Tuples can have columns with null
values, denoted ⊥. We also allow tuples to have multiple columns with the same
name. We call (c1, . . . , ck) the signature of t. A relation R is a bag of tuples
with the same signature, also called the signature of R.

Trees. We assume that there is a set L of labels and a set A of constants.
An XML document is a tree T in which each interior node is associated with
a label from L and each leaf node is associated with value from A. We denote
the label of an interior node n by label(n) and the value of a leaf node n′ by
val(n′). We extend the val function to interior nodes n by defining val(n) to
be the concatenation of the values of its leaf descendents. In Figure 1 there are
three examples of such trees. In the sequel we will refer to these trees as Titm ,
Tbk and Tathr . The nodes are numbered to allow easy reference.

Let T be a tree and let n1 and n2 be nodes in T . Let n be the lowest common
ancestor of n1 and n2, and Tn be the subtree of T rooted at n. We denote by
T|n1,n2 the tree obtained by pruning from Tn all nodes other than n1 and n2
that are not ancestors of either n1 or n2. We call this tree the relationship tree
of n1 and n2. For example in Tbk , the lowest common ancestor of 8 and 13 is 7.
The relationship tree of 8 and 13 is comprised of the nodes 7, 8, 10 and 13.

Graphs and Interconnection Graphs. In order to create a relation out of
a tree, we first must be able to decide which pairs of nodes are related in a
meaningful fashion in a given tree. The relationship tree comes to our aid for
this purpose.



Generating Relations from XML Documents 287

itemize (3)

item (4)

itemize (5)

item (6)

Text (7)

item (10)

itemize (11)

item (12)

Text (13)

itemize (9)

section (2)

document (1)

section (8)

bookinfo (1)

book (2)

title (3) price (5)

Brown 
Bear (4) 5.75 (6)

Just Lost (9)

book (7)

title (8)

aname (10) aname (15)

price (20)

5.75 (21)

book (22)

title (23) price (25)

All By 
Myself (24)

5.75 (26)

aname (27)

Merc (29)

fname (28) lname (30)

Meyer (31)

Gina  (17)

fname (16) lname (18)

Meyer (19)Merc (12)

fname (11) lname (13)

Meyer (14)

bookinfo (1)

author (2)

aname (3)
book (5)

M. Brown (4) Goodnight 
Moon (7)

title (6)

author (8)

aname (14)

Dr. Suess (15)

book (9)

title (12)

price (10)

One Fish Two 
Fish (13)

12.50 (11)

book (16)

title (19)price (17)

Cat in the 
Hat (20)

10.95 (18)

Fig. 1. Document Titm : itemize hierarchy (top left), Tbk : bibliography grouped by book
(top right), and Tathr : bibliography grouped by author (bottom)

We start by giving an intuitive understanding of relationships in a document
tree. Intuitively, a node in a tree represents an entity in the world. Two different
nodes with the same label correspond to different entities of the same type. If na
is an ancestor of n, then we may understand that n belongs to the entity that
na represents. Now, suppose that nodes n and n′ have distinct ancestors na and
n′a, respectively, such that na and n′a have the same label. Suppose also that n′a
is not an ancestor of n and na is not an ancestor of n′. We may conclude that n
and n′ are not meaningfully related since they belong to different entities of the
same type. Note that na and n′a must be in the relationship tree of n and n′.
Otherwise, they would be ancestors of both n and n′ and would not imply that
the nodes n and n′ are not related.

We demonstrate and extend this intuition with a few examples. A formal
definition of when nodes are related will be given later. Consider nodes 3 and 5
in Tbk (Figure 1). Their relationship tree does not contain two nodes with the
same label. Therefore, nodes 3 and 5 are related. However, nodes 3 and 20 are
not related since their relationship tree contains different nodes with the label
book. This reflects the intuition that 3 is the title of the book with price node



288 S. Cohen, Y. Kanza, and Y. Sagiv

book (7)
title (8)

aname (10)

aname (15)

price (20

fname (16) lname (1

fname (11) lname (1

Fig. 2. The interconnection graph IG(Tbk , {7, 8, 10, 11, 13, 15, 16, 18, 20})

5 and not the title of the book with price node 20. Now, consider nodes 11 and
15 in Tbk . Node 11 belongs to the aname node numbered 10. However, 15 is a
different aname node. We may conclude that the fname in node 11 belongs to
node 10 and is not related to node 15. Finally, consider nodes 10 and 15. These
nodes share the same label. However, all their ancestors are the same, and thus,
they belong to the same entities. Therefore, we may conclude that nodes 10 and
15 are meaningfully related. In fact, nodes 10 and 15 represent different author
names, but they are related by virtue of belonging to the same book.

We formalize this idea. Let n and n′ be nodes in T . We say that n and n′

are interconnected if one of the following conditions holds:

– the relationship tree of n and n′, i.e., T|n,n′ , does not contain two distinct
nodes with the same label or

– the relationship tree of n and n′, contains exactly one pair of distinct nodes
with the same label and this pair is comprised of n and n′.

Given a tree T , we define the interconnection graph of T , denoted IG(T ).
This undirected graph has the same set of nodes as those in T . There is an edge
between nodes n and n′ if n and n′ are interconnected. Given a tree T and a set
of nodes n1, . . . , nk, we denote the induced subgraph of IG(T ), that contains
the nodes n1, . . . , nk, by IG(T, {n1, . . . , nk}). To illustrate these definitions, the
interconnection graph IG(Tbk , {7, 8, 10, 11, 13, 15, 16, 18, 20}) is presented in
Figure 2. Self loops have been omitted in the illustration.

We will be interested in interconnection graphs that have certain properties.
A graph is complete if it contains an edge between every two nodes. A graph is
connected if there is a path between every two nodes. Finally, a graph is a star
if there is some node n that is connected by an edge to every other node in the
graph. Note that every complete graph is also a star graph and every star graph
is also connected.

3 Creating Relations from Trees

An atomic path expression, denoted α, is either a nonempty disjunction (l1 |
· · · | lk) of labels from L or the wildcard symbol ∗. A path expression, denoted



Generating Relations from XML Documents 289

ω, is either an atomic path expression, or of the form ω′/α or ω′//α where ω′

is a path expression and α is an atomic path expression. We define recursively
when a node n in a tree T matches a path expression ω, denoted n |= ω:

– ω = (l1 | · · · | lk), the root of T is n and label(n) = li for some i ≤ k;
– ω = ∗ and the root of T is n;
– ω = ω′/α, the parent of n matches ω′ and n |= α in the subtree rooted at n;
– ω = ω′//α, there is an ancestor of n that matches ω′ and n |= α in the

subtree rooted at n.

For example, the path expression bookinfo/∗ matches any child of a root that
has the label bookinfo. The path expression ∗//book/(aname | price) matches any
aname or price node in a tree that is a child of a book node, regardless of the
root’s label. Finally, ∗//∗ matches any node in any tree. Note that given a node n
and a path expression ω, it is possible to determine in polynomial time if n |= ω.

The language of path expressions can be extended without affecting complex-
ity results in this paper, as long as the extensions allow polynomial verification.

Let T be a tree and (ω1, . . . , ωm) be a tuple of path expressions. We are
interested in finding tuples of nodes (n1, . . . , nm) from T that satisfy:

1. For all i ≤ m, the node ni matches the path expression ωi and
2. The nodes n1, . . . , nm are meaningfully related.

Requirement 1 is easily verified. On the other hand, Requirement 2 is rather
difficult to determine. In accordance with the intuition presented in Section 2,
we use the interconnection graph of a tree as an aid in deciding whether a
set of nodes are meaningfully related. The interconnection graph only contains
information about pairs of nodes that are related. We present three different
semantics that enable us to decide whether larger tuples of nodes are related.
Later we will compare the semantics in terms of complexity and expressive power.

– Completely-Interconnected: We say that a set of nodes N are completely-
interconnected in a tree T , denoted ≈c{N}, if the interconnection graph of
T , projected on N , i.e., IG(T,N), is a complete graph. Intuitively this states
that a set of nodes is meaningfully related if every pair of nodes in the set
is meaningfully related.

– Reachably-Interconnected: We say that a set of nodes N are reachably-
interconnected in a tree T , denoted ≈r{N}, if IG(T,N) is a connected graph.
The intuition behind this notion is that meaningful relationships are transi-
tive, i.e., if n1 and n2 are meaningfully related and so are n2 and n3, then
n1 and n3 must also be meaningfully related.

– Star-Interconnected: We say that a set of nodes N are star-interconnected
in a tree T , denoted ≈s{N}, if IG(T,N) is a star graph. Intuitively, a set of
nodes are meaningfully related if all the nodes in the set are meaningfully
related to the same node.

Let Ω = (ω1, . . . , ωm) be an m-tuple of path expressions and T be a tree
with a set of nodes N . We say that a function µ : {1, . . . ,m} → N ∪ {⊥} is a



290 S. Cohen, Y. Kanza, and Y. Sagiv

matching of Ω to T if for all i ≤ m, either µ(i) |= ωi or µ(i) = ⊥. We denote
the set of nodes in the image of a matching µ by Image(µ). We use Mat cT (Ω) to
denote the set of matchings µ, such that the nodes in Image(µ) are completely-
interconnected, i.e., ≈c{Image(µ)}. Similarly, Mat rT (Ω) is the set of matchings
µ, such that ≈r{Image(µ)}, and Mat sT (Ω) is the set of matchings µ, such that
≈s{Image(µ)}. It is not difficult to see that for all trees T and tuples of path
expressions Ω,

Mat cT (Ω) ⊆ Mat sT (Ω) ⊆ Mat rT (Ω).

Our matchings can have null values. However, we are interested in matchings
that have maximal information. A matching µ′ subsumes µ, denoted µ � µ′, if
µ′ gives the same value for every index that is assigned a non-null value by µ,
i.e., for all i ≤ m, either µ′(i) = µ(i) or µ(i) = ⊥. Intuitively, if µ′ subsumes µ,
then µ′ contains more information than µ. An interconnection assignment µ is
maximal if for every matching µ′, we have that µ � µ′ implies that µ = µ′.

Even a maximal matching can map some of the path expressions in Ω to
null values. At times we may be interested in deriving only matchings that give
non-null values to specific path expressions in Ω. We call the pair ∆ = (Ω, k),
where Ω is an m-tuple of path expressions and k ≤ m, a relation generator. For
� ∈ {c, r, s}, we use MMat �

T (Ω, k) to denote the set of maximal elements in
Mat �

T (Ω) that do not map any of the first k path expressions to the null value.
A relation generator ∆ can be used in order to create a relation out of parts

of an XML document. Given ∆ = (Ω, k) and a tree T , we compute MMat �
T (Ω, k)

with � chosen as desired. (See Examples 3.1, 3.2 and 3.3 below and complexity
analysis in Section 5 for a comparison of the semantics.) We can create a relation
with signature Ω out of MMat �

T (Ω, k), in the obvious way. Formally, for each
matching µ in the set, our relation contains a tuple tµ with value µ(i) in column
ωi. Depending on the end purpose of the relation, we may sometimes want to
apply the val function to the nodes in the relation in order to derive tuples of
strings instead of tuples of node ids.

Example 3.1. The relation generator ((∗//aname, ∗//title, ∗//price), 1) finds triples
of author names, titles and prices, all belonging to the same book. Only triples
where the author name is non-null will be returned. For all three semantics, the
relations created for Tbk (Tathr ) are the same. The tables for Tbk and Tathr are
depicted in Figure 3(a) and 3(b). In parenthesis we note the value of the tuple
after the val function is applied.

Note that there is no tuple corresponding to the title Brown Bear (node
4 in Tbk ) since it has no interconnected aname node. Observe also that the
correct triples were found for both documents, even though they have different
hierarchies.

Example 3.2. Using the tuple of path expressions Ω = (∗//title, ∗//aname/fname,
∗//aname/fname) we can create a relation generator that finds titles with pairs of
first names of authors that wrote them. The set MMat cT (Ω, 3) will only contain



Generating Relations from XML Documents 291

Fig. 3. Tables for ((∗//aname, ∗//title, ∗//price), 1)

matchings µ for which µ(2) = µ(3), To see this, observe that in the interconnec-
tion graph in Figure 2, there are no two different fname nodes that are intercon-
nected. This reflects the intuition that two fname nodes are not related since they
belong to different authors. However, the sets MMat rT (Ω, 3) and MMat sT (Ω, 3)
will contain matchings for the title Just Lost with the two different first names
Mercy and Gina. Intuitively, this can be understood since the pair of names is
related by virtue of both belonging to authors of the same title.

Consider now the tuple of path expressions Ω′ = (∗//title, ∗//aname/fname,
∗//aname/lname). The set MMat cT (Ω′, 3) will only contain matchings correspond-
ing to first and last names of the same author. The sets MMat rT (Ω′, 3) and
MMat sT (Ω′, 3) will contain in addition matchings with first names and last names
of different authors of the same book. As before, such nodes are related since
they belong to authors who wrote the same book. However, the set MMat cT (Ω′, 3)
may be perceived as a more precise answer. Therefore, we may conclude that
choosing among the different semantics involves a trade-off between precision
and recall (coverage).

Example 3.3. Tree Titm in Figure 1 depicts two list hierarchies, as in a LATEX
document. Consider the tuple Ω = (∗//itemize, ∗//item, ∗//itemize, ∗//item). The
sets MMat cT (Ω, 4) and MMat sT (Ω, 4) do not contain matchings in which all nodes
are different. The set MMat rT (Ω, 4) contains matchings corresponding to the
quadruples (3, 4, 5, 6) and (9, 10, 11, 12). It does not, however, contain any
matching with nodes from both list hierarchies.

4 Example Uses for Relation Generating Mechanism

Our mechanism for creating relations out of trees can be utilized in many differ-
ent ways. We present several examples to illustrate possible uses.

4.1 Querying Trees and Relations Using SQL

Data is generally stored in relations. However, XML has become the standard
for data exchange. Therefore, it is common to have both relations and XML as
data sources. Posing queries against both types of data sources simultaneously is
difficult. Our mechanism for translating trees to relations suggests one possible



292 S. Cohen, Y. Kanza, and Y. Sagiv

solution. We extend the FROM clause of SQL to allow on-the-fly creation of
relations from trees. Specifically, we use the predicates Complete, Reachable and
Star to create tuples of nodes that match the given path expressions and are
completely-, reachably- or star-interconnected, respectively.

For example, suppose that we wish to query the document Tbk and a table
UserRatings(title, user, rating) stored in a relational database. The following query
finds titles of books with a rating of at least 8 and author ‘Smith’.

SELECT Book.title
FROM Complete(Tbk , (‘*//title’,‘*//aname’),0) as Book(title, author),

UserRatings
WHERE Book.title = UserRatings.title and

Book.author like ‘%Smith%’ and rating ≥ 8

The relation Book is created from the set MMat cTbk
((∗//title, ∗//aname), 0) by

creating a tuple tµ out of every matching µ in the computed set, in the obvious
way. Note how we queried both XML and relations seamlessly.

4.2 An XML Search Engine

Currently, search engines cannot be used to query XML. More and more XML
pages are finding their way onto the Web. Thus, it is becoming increasingly
important to be able to query both the data and the meta-data content of the
XML pages on the Web. Using the mechanism that we describe in this paper, a
simple search language can be defined. A search query could have the form

path expression1 : search phrase1 · · · path expressionn : search phrasen

where search phrasei is a word or a quoted phrase. In addition, we allow the plus
symbol to preface a path expression. Such path expressions must be matched to
non-null values. Path expressions without a plus could be matched to null value.

As an example, the following query searches for books with a title containing
the word XML and either the author Smith or no specified author.

+ *//title : XML *//aname : Smith

This query could be evaluated under any one of the three semantics (complete-
interconnection, reachable-interconnection or star-interconnection). Basically, we
would compute MMat cT ((∗//title, ∗//aname), 1), (or MMat rT (. . . ) or MMat sT (. . . )),
on the documents T available. Then, only the created tuples that satisfy the
search conditions, i.e., that contain the specified phrases, would be returned.

5 Complexity of Creating Relations from Trees

In this section, we discuss the complexity of computing the sets MMat �
T (Ω, k)

for some � ∈ {c, r, s}, relation generator (Ω, k) and tree T . The complexity of
evaluation is likely to be one of the factors that influence the decision of which



Generating Relations from XML Documents 293

semantics to employ for a specific purpose. We will use the measure of input-
output complexity , an extension of combined complexity , when analyzing the
complexity of generating relations under the different semantics. In combined
complexity both the document and the query are part of the input. In input-
output complexity, we analyze the complexity of a problem as a function of the
input (i.e., query and document) and the output. The choice of this complexity
measure is justified both because it is of greater theoretical interest and because
queries and query results may be large. In general, we will be interested in the
following questions.

– Non-emptiness: Is MMat �
T (Ω, k) non-empty?

– Evaluation: How can we compute MMat �
T (Ω, k) efficiently?

For � = s, i.e., when star-interconnected nodes are desired, it is not difficult
to see that a relation generator can always be computed in polynomial time.

Theorem 5.1 (Evaluation). Let (Ω, k) be a relation generator and T be a
tree. Then MMat sT (Ω, k) can be computed in polynomial time under input-output
complexity.

We present complexity results for the problems of non-emptiness and of eval-
uation for � = c and � = r below.

5.1 Complete-Interconnections

We solve the problems above for � = c, i.e., when only completely-interconnected
nodes are desired. We first show that given a relation generator (Ω, k) and a tree
T , determining whether MMat cT (Ω, k) is non-empty is an NP-complete problem.

Theorem 5.2 (Non-emptiness). Let T be a tree and let (Ω, k) be a relation
generator. Determining whether MMat cT (Ω, k) 
= ∅ is NP-complete.

Proof. (Sketch) The proof is by a reduction from 3-SAT, and is omitted because
of space limitations. �

Since determining non-emptiness is NP-complete, we do not consider the gen-
eral problem of finding all query results. There are, however, several important
cases in which query evaluation is polynomial under input-output complexity.
The first such case is when every path expression can be assigned the value null,
i.e., for relation generators of the form (Ω, 0).

Theorem 5.3 (Evaluation (Case 1)). Let Ω be a tuple of path expressions
and T be a tree. The set MMat cT (Ω, 0) can be computed in polynomial time under
input-output complexity.

Proof. (Sketch) Basically, we build up matchings in MMat cT (Ω, 0) gradually.
We start with the matching that maps all path expressions to the null value and
then try to extend this matching in all possible ways. This must be done in a



294 S. Cohen, Y. Kanza, and Y. Sagiv

CompleteInterconnections((ω1, . . . , ωm), T )

1. M := {∅}
2. for i := 1 to m do
3. M′ := ∅
4. for each n ∈ T such that n |= ωi do
5. for each µ ∈M do
6. µ′ :=

{
(i, n)

}
∪

{
(j, n′) ∈ µ |n′ and n are interconnected

}

7. M′ :=M′ ∪ {µ′}
8. M :=M∪M′
9. Remove strictly subsumed matchings from M

10. return M

Fig. 4. Polynomial algorithm to compute MMat cT (Ω, 0) (Theorem 5.3)

careful fashion to make sure that we do not create many matchings that will
subsequently be removed, because they are not maximal.

An algorithm for creating MMat cT (Ω, 0) is presented in Figure 4. In this
procedure, we represent matchings as sets of pairs of indices and nodes. For each
matching we only represent explicitly pairs for which the index is not mapped
to the null value.

We collect matchings in the setM. In Line 1, the matching that maps all path
expressions to null is added. Then, we loop over the path expressions (Line 2) and
collect in M′ matchings that map the i-th path expression to a non-null value.
This is done by looping over all nodes n that satisfy the i-th path expression
(Line 4) and over all matchings µ created thus far (Line 5). We try to extend
µ with n; however, nodes that are not interconnected with n must be left out
in order to derive a set of completely-interconnected nodes (Line 6). Subsumed
assignments are removed in Line 9.

A formal proof of correctness is omitted due to lack of space. �

Even when we do not allow some of the path expressions to be mapped to the
null value, it may still be possible to evaluate a relation generator in polynomial
time under input-output complexity. We first present some necessary definitions
and then describe a case in which polynomial evaluation is possible.

We say that a tree T is recursive if T contains nodes n, n′ such that n′ is
a strict descendent of n and label(n) = label(n′). Otherwise, we say that T is
non-recursive.

Given a tree T and a path expression ω, we use MatchingNodes(ω, T ) to
denote the set of nodes in T that match ω and MatchingLabels(ω, T ) to de-
note the set of all labels of nodes in MatchingNodes(ω, T ). We denote by
LabelsAbove(ω, T ) all the labels l, such that there is a node labeled l in T with
a descendent n ∈ MatchingNodes(ω, T ). Note that by definition, if n |= ω, then



Generating Relations from XML Documents 295

label(n) ∈ LabelsAbove(ω, T ). We associate each non-recursive tree T and path
expression ω with a relation Rω,T . This relation has a column for each label in
LabelsAbove(ω, T ). For each node n ∈ MatchingNodes(ω, T ), the relation Rω,T
has a tuple tn. The value of tn in column l is the node id of the ancestor of n
with label l, if such an ancestor exists. Otherwise, the value in column l is null.
Since T is non-recursive, there is at most one ancestor with label l for any given
node n. Thus, the tuples are well-defined. For each tuple tn created from node
n in Rω,T , the originating column of tn, denoted Originating(tn), is the column
in which n appears in tuple tn, i.e., the column label(n).

The notion of creating a hypergraph out of a set of relations has been
studied for query optimization [12]. We review this idea briefly here. Relations
R1, . . . ,Rm give rise to a hypergraph H(R1, . . . ,Rm) in the following fashion:

– H(R1, . . . ,Rm) has a node for each column in R1, . . . ,Rm;
– for each relation Ri, there is a hyperedge in H(R1, . . . ,Rm) containing the

nodes in the signature of Ri, i.e., all the columns appearing in Ri.

A hyperedge e is an ear if (1) e is the only hyperedge in the hypergraph or
(2) there is a hyperedge e′ such that all nodes in e \ e′ are only in edge e. We
call the removal of e from the hypergraph ear removal. The GYO-reduction of
a hypergraph is the result of applying ear removals (combined with the removal
of nodes that do not belong to any hyperedge) until there remains no ear in
the hypergraph. It has been proven that the GYO-reduction of a hypergraph
is unique, i.e., is not dependent on the order in which ears are removed. A
hypergraph is acyclic if its GYO-reduction is an the empty hypergraph (see
also [5,15]). It has been proven [14,1,13] that if H(R1, . . . , Rm) is acyclic, then
the natural join of R1, . . . , Rm can be computed in polynomial time under input-
output complexity.

The natural join of two relations requires equality on shared columns. By
definition, the null value is never equal to any other value. Therefore, if a tu-
ple has the null value in a shared column, this tuple will be lost in the re-
sult of the join. We define the pseudo natural join that differs from the nat-
ural join on exactly this issue, i.e., on how null values are dealt with. When
performing a pseudo natural join, null values are always equal to any other
value. The new value for the shared column, however, will be the non-null value,
if such a value exists. For example, the pseudo natural join of the relations{

(a : 1, b : ⊥, c : 3), (a : 2, b : 3, c : 3)
}

and
{

(a : ⊥, b : 2, d : 4), (a : 1, b : ⊥, d : 5)
}

is
the relation

{
(a : 1, b : 2, c : 3, d : 4), (a : 1, b : ⊥, c : 3, d : 5)

}
. The pseudo natural

join of relations with an acyclic hypergraph can be computed in polynomial time,
in a fashion similar to computing the natural join. Note that the pseudo natural
join, unlike the outer join, does not keep tuples that do not match other tuples
in the way specified above.

Theorem 5.4 (Evaluation (Case 2)). Let ((ω1, . . . , ωm),m) be a relation
generator and T be a tree. Then MMat cT ((ω1, . . . , ωm),m) can be computed in
polynomial time under input-output complexity if the following conditions hold:



296 S. Cohen, Y. Kanza, and Y. Sagiv

1. T is non-recursive,
2. H(Rω1,T , . . . ,Rωm,T ) is acyclic, and
3. for all i, j ≤ m, the sets MatchingLabels(ωi, T ) and MatchingLabels(ωj , T )

are disjoint if i 
= j.

Proof. (Sketch) Let T be a non-recursive tree. We are searching for sets of nodes
that are completely-interconnected. Suppose that n and n′ are interconnected
and that n has an ancestor nl with label l. Then, in the tree T the node n′ must
either not have any ancestor with label l, or have nl as its ancestor. If the tree
is non-recursive, then this condition is sufficient and necessary for two nodes
to be interconnected. Formally, for a non-recursive tree T , nodes n and n′ are
interconnected if and only if the following conditions hold.

– For every ancestor nl of n, either nl is an ancestor of n′ or n′ has no ancestor
with label label(nl).

– For every ancestor n′l of n′, either n′l is an ancestor of n or n has no ancestor
with label label(n′l).

Now, suppose that ω is a path expression for which n |= ω. Similarly, suppose
that n′ |= ω′. It is not difficult to see that the tuples tn in Rω,T and tn′ in Rω′,T
will create a tuple in the pseudo natural join of Rω,T and Rω′,T if and only if n
and n′ are interconnected.

In order to compute the set MMat cT ((ω1, . . . , ωm),m), we first compute
the pseudo natural join R of Rω1,T ,. . . ,Rωm,T . This can be done in polyno-
mial time, since H(Rω1,T , . . . ,Rωm,T ) is acyclic. Now, consider a tuple t in R.
Let t1, . . . , tm be the tuples in R1, . . . ,Rm that joined together to create t.
Then, the projection of t on the columns Originating(t1), . . . ,Originating(tm)
is a tuple containing completely-interconnected nodes. Since the sets
MatchingLabels(ωi, T ) and MatchingLabels(ωj , T ) are disjoint for all i and j,
this tuple contains exactly m different nodes. In this fashion, we can create all
the matchings out of the tuples in the pseudo natural join. �

Building on Theorems 5.3 and 5.4, we can prove the following theorem.

Theorem 5.5 (Evaluation (General)). Let ((ω1, . . . , ωm), k) be a relation
generator and T be a tree. Then MMat cT ((ω1, . . . , ωm), k) can be computed in
polynomial time under input-output complexity if the following conditions hold:

1. either k = 0 or T is non-recursive,
2. H(Rω1,T , . . . , Rωk,T ) is acyclic, and
3. for all i, j ≤ k, either

– MatchingLabels(ωi, T ) and MatchingLabels(ωj , T ) are disjoint, or
– MatchingNodes(ωi, T ) = MatchingNodes(ωj , T ).

5.2 Reachable-Interconnections

We solve the problems of non-emptiness and evaluation for � = r, i.e., when only
reachably-interconnected nodes are desired. We first show that given a relation



Generating Relations from XML Documents 297

Fig. 5. Polynomial algorithm to compute MMat rT (Ω, 1) (Theorem 5.7)

generator Ω, an integer k and a tree T , determining whether MMat rT (Ω, k) is
non-empty is an NP-complete problem. This is rather surprising since finding
reachably-interconnected nodes only requires finding connected subgraphs in an
interconnection graph.
Theorem 5.6 (Non-emptiness). Let T be a tree and let (Ω, k) be a relation
generator. Determining whether MMat rT (Ω, k) 
= ∅ is NP-complete.

Proof. (Sketch) The proof is by a reduction from 3-SAT and is omitted because
of space limitations. �

As in Section 5.1, we present an important case in which query evaluation
is polynomial. If all path expressions can be assigned the null value, then the
evaluation can be performed in polynomial time.

Theorem 5.7 (Evaluation). Let Ω be a tuple of path expressions and T be a
tree. Then MMat rT (Ω, 0) can be computed in polynomial time under input-output
complexity.

Proof. (Sketch) Conceptually, creating matchings in MMat rT (Ω, 0) is more dif-
ficult than creating matchings in MMat cT (Ω, 0). The difficulty stems from the
fact that nodes may be together in the image of a matching even if they are
not directly interconnected, but rather connected by a path of nodes also in the
image of the matching.

As in the proof of Theorem 5.3, we represent matchings as sets of pairs of
indexes and nodes. We introduce some notation used in the algorithm. Given
a matching µ and a set of nodes N contained in the image of µ, we define
ConnectedSubMatching(µ,N) as the set of pairs (i, n) in µ, such that n is con-
nected to all nodes in N in the graph IG(T, Image(µ)). Clearly, if ≈r{Image(µ)},
then ConnectedSubMatching(µ,N) = µ.

The operator � replaces the value for an index in a matching. The operator
� performs an exchange and then removes non-connected nodes. Formally,

µ � (i, n) def=
{

(j, n′) ∈ µ | j 
= i
}
∪
{

(i, n)
}

µ � (i, n) def= ConnectedSubMatching(µ � (i, n), {n}).



298 S. Cohen, Y. Kanza, and Y. Sagiv

In Figure 5 we present a polynomial algorithm for finding all matchings in
MMat rT (Ω, 0) that do not assign ω1 the null value, i.e., the set MMat rT (Ω, 1).
A complete proof of correctness is not given due to space limitations. In Line 1
of ReachableInterconnections, we create a matching for each node that
matches ω1. While we succeed in extending a matching (Lines 3 and 7), we call
the procedure AddLayer. There we loop over all the rest of the path expressions
(Line 2). For each path expression, each matching µ created thus far, and each
node n matching the current path expression, we try to extend the µ with n
(Line 5). Only if the matching created still gives a non-null value to ω1, do we
add this matching to the set of matchings created (Line 6). Since it is possible
to find all matchings that do not assign ω1 a null value in polynomial time, we
can repeat this process for each of the path expressions ωi and thus, derive a
polynomial algorithm for computing MMat rT (Ω,m). �

6 Conclusion

Relation generators, used for producing relations from XML documents were
defined. Our relation generators allow naive users to retrieve interesting and
naturally related portions of a document. Thus, they can be used for integrating
relations and XML and as a foundation for XML search engines.

We presented the notion of an interconnection graph which describes connec-
tions between pairs of nodes. Several different semantics for finding larger tuples
of related nodes from the interconnection graph were described. These semantics
take into consideration that documents may not contain complete information,
a situation that arises frequently in the context of the Web. Note that almost
all our complexity results still hold even if the interconnection graph is created
differently. For example, it is likely that the interconnection graph would be de-
fined differently in the presence of either a schema or IDs and IDREFs. Once the
interconnection graph was defined in this context, our mechanisms for creating
tuples of meaningfully related nodes could be used.

This work extends [3]. Generating relations from semistructured data has
been considered in the context of wrapper generation and inferring schemas
from documents [4,6,9]. In [10], relations are created from semistructured data
by schema generation. However, their approach is different as they attempt to
“reverse-engineer” a website, while we simply look for semantic relationships
between entities. Hence, the work in [10] is most applicable when the data has
been constructed in a systematic manner, whereas our approach can be used even
when the data does not conform to any schema. Interestingly, for many important
special cases our complete answers coincide with their relations that are created
using compact skeletons. In [2,7] a query language that uses a flexible semantics
which can deal with variations in the data structure was presented. However,
their approach was more restricted and their focus was on query equivalence.

One important open problem is how to define indices over an XML document
that will allow relation generators to be quickly evaluated. Since some of the
tuples produced by a relation generator may be more relevant than others, a



Generating Relations from XML Documents 299

ranking system for such tuples should be defined. We intend to implement the
mechanisms described here and to perform extensive experimentation in order
to discover which semantics perform best and return the best results in practice.

References

[1] U. Chakravarthy and J. Minker. Multiple query processing in deductive databases
using query graphs. In Proceedings of International Conference on Very Large
Data Bases, pages 384–391. Morgan Kaufmann, 1986.

[2] S. Cohen, Y. Kanza, and Y. Sagiv. SQL4X: A flexible query language for XML and
relational databases. In Proc. of the 8th International Workshop on Database and
Programming Languages (DBPL), pages 263–280, Marino, (Rome, Italy), Septem-
ber 2001. Springer-Verlag.

[3] S. Cohen, Y. Kanza, and Y. Sagiv. Select project queries over xml documents. In
Proc. 5th Workshop on Next Generation Information Technologies and Systems,
pages 2–13, Caesarea (Israel), June 2002. Springer-Verlag.

[4] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT: A
system for extracting document type descriptors from xml documents. In Proc.
2000 ACM SIGMOD International Conference on Management of Data, pages
165–176, Dallas (Texas, USA), May 2000. ACM Press.

[5] M. Graham. On the universal relation. Technical report, University of Toronto,
Toronto (Canada), 1979.

[6] A. Gupta, V. Harinarayan, and A. Rajaraman. Virtual database technology. In
Proc. 14th International Conference on Data Engineering, pages 297–301, Orlando
(Florida, USA), Feb. 1998. IEEE Computer Society.

[7] Y. Kanza and S. Sagiv. Flexible queries over semistructured data. In Proc.
20th Symposium on Principles of Database Systems, pages 40–51, Santa Barbara
(California, USA), May 2001. ACM Press.

[8] D. Maier, J. D. Ullman, and M. Y. Vardi. On the foundation of the universal
relation model. ACM Trans. on Database System (TODS), 9(2):283–308, 1984.

[9] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting schema from semistruc-
tured data. In Proc. 1998 ACM SIGMOD International Conference on Man-
agement of Data, pages 295–306, Seattle (Washington, USA), June 1998. ACM
Press.

[10] A. Rajaraman and J. D. Ullmann. Querying websites using compact skeletons.
In Proc. 20th Symposium on Principles of Database Systems, pages 16–27, Santa
Barbara (California, USA), May 2001. ACM Press.

[11] J. D. Ullman. The U. R. strikes back. In Proc. of the ACM Symposium on
Principles of Database Systems (PODS), pages 10–22, Los Angeles, (California),
March 1982. ACM Press.

[12] J. D. Ullman. Principles of Database and Kowledge Base Systems, volume II.
Computer Science Press, 1989.

[13] E. Wong and K. Youssefi. Decomposition-a strategy for query processing. ACM
Trans. on Database Systems, 1(3):223–241, 1976.

[14] M. Yannakakis. Algorithms for acyclic database schemes. In Proceedings of Inter-
national Conference on Very Large Data Bases, pages 82–94. Morgan Kaufmann,
1981.

[15] C. Yu and M. Özsoyoglu. An algorithm for tree-query membership of a distributed
query. In Proceedings of IEEE COMPSAC, pages 306–312, 1979.


	Introduction
	Framework
	Creating Relations from Trees
	Example Uses for Relation Generating Mechanism
	Querying Trees and Relations Using SQL
	An XML Search Engine

	Complexity of Creating Relations from Trees
	Complete-Interconnections
	Reachable-Interconnections

	Conclusion

