Querying Geo-social Data by Bridging
Spatial Networks and Social Networks

Yerach Doytsher Ben Galon* Yaron Kanza*
Technion Technion Technion
Haifa, Israel Haifa, Israel Haifa, Israel

doytsher@technion.ac.il

ABSTRACT

Recording the location of people using location-acquisition
technologies, such as GPS, allows generating life patterns,
which associate people to places they frequently visit. Con-
sidering life patterns as edges that connect users of a so-
cial network to geographical entities on a spatial network,
enriches the social network, providing an integrated socio-
spatial graph. Queries over such graph extract information
on users, in correspondence with their location history, and
extract information on geographical entities in correspon-
dence with users who frequently visit these entities.

In this paper we present the concept of a socio-spatial
graph that is based on life patterns, where users are con-
nected to geographical entities using life-pattern edges. We
provide a set of operators that form a query language suit-
able for the integrated data. We consider two implementa-
tions of a socio-spatial graph storage—one implementation
uses a relational database system as the underline data stor-
age, and the other employs a graph database system. The
two implementations are compared, experimentally, for var-
ious queries and data. An important contribution of this
work is in illustrating the usefulness and the feasibility of
maintaining and querying integrated socio-spatial graphs.

Categories and Subject Descriptors

H.2.8 [Database Management|: Database Applications—
Spatial databases and GIS

General Terms

Experimentation, Performance

Keywords

Geographic information systems, social networks, Spatio-
social applications, geosocial networking, spatial query lan-
guage, graph database

*The work of these authors was partially supported by the
Israeli Ministry of Science and Technology, Grant 3/6472.

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ACM LBSN '10, November 2, 2010. San Jose, CA, USA

Copyright 2010 ACM ISBN 978-1-4503-0434-4/10/11 ...$10.0

bgalon@technion.ac.il

kanza@cs.technion.ac.il

1. INTRODUCTION

Location-acquisition technologies allow tracing the loca-
tion history of individuals. Such data can be collected and
analyzed to discover frequently visited locations. For in-
stance, when mobile phones are connected to a GSM (Global
System for Mobile Communications), positioning that dis-
closes the actual coordinates of the mobile phone can be
stored in a log along with the time stamps of the position-
ing events. In other scenarios, users may activate a GPS-
based location-tracing application and record their location
history as a sequence of location-time events.

Given a log of location-time events, the data can be an-
alyzed to extract life patterns. Essentially, a life pattern
synopsizes the frequency of a visit in a certain location or
in a geographical entity, where both the frequency and the
location can be at different granularities. For example, a
life pattern P of a user Alice may specify that Alice visits
Westminster Cathedral every Sunday. Another life pattern
may specify that Alice stays in 49 Piccadilly every workday
from 9 AM to 5 PM.

However, in real life users do not tend to strictly act ac-
cording to behavioral patterns. Thus, it should be possible
that patterns will reflect behaviors whose regularity is some-
what flexible. In such cases, we specify the level of flexibility
by a confidence value that is attached to each pattern. Intu-
itively, the confidence value of a pattern indicates the like-
lihood of the pattern to hold in the times it relates to. For
instance, suppose that when analyzing the recordings of the
locations of Alice it is revealed that Alice visited Westmin-
ster Cathedral only in 80 Sundays out of the 100 Sundays
on which her locations were recorded. In such case, the con-
fidence of the pattern P, mentioned above, is 0.8.

Extracting life patters of users from location loggings has
been studied by Ye et al. [8]. Thus, we assume in this paper
that their techniques are being employed for the generation
of the life patterns.

Life patterns can enrich a social network by connecting
it to a spatial network. A social network is essentially a
large graph where the nodes represent users and the edges
represent relationships between users. The spatial network
is essentially a large graph where the nodes represent ge-
ographical entities and the edges represent roads that con-
nect adjacent entities. A joined socio-spatial graph is created
by combining a social network with a spatial network, con-
necting their nodes by life-pattern edges, where each user is
connected to the places she frequently visits.

In order to exploit joined socio-spatial graphs, it should be
possible to easily and efficiently query the data. A suitable

query language should be designed to cope with the struc-
ture of the data being a graph, and it should be adapted
to graphs in which the nodes are divided into groups—some
nodes represent users while other nodes represent geograph-
ical entities. Moreover, there are three types of edges in
such graphs—edges that represent friendship relationships
between users, edges that represent adjacency between geo-
graphical entities and life-pattern edges that represent fre-
quent visits of users in geographical entities. The query
language should be able to discern between them and use
the appropriate edges according to the query.

In this paper we present a set of operators that serve as
the building blocks of a socio-spatial query language over
a joined socio-spatial graph. We illustrate the effectiveness
and the expressiveness of these operators, to extract valu-
able information from such graph. Finally, we describe two
implementations of a system that provides a storage of a
socio-spatial graph and supports the operators. In one im-
plementation, a relational database system serves as the un-
derline data storage. In the other implementation, a graph
database is being used. Our experiments demonstrate the
efficiency of the two implementations for different operators.

The paper is organized as follows. In Section 2 we for-
mally present our framework. The operators of the query
language are presented in Section 3. Two implementations
of our approach are described in Section 4. In Section 5 we
provide an experimental comparison of the two implemen-
tations. Finally, in Section 6 we discuss related work and in
Section 7 we conclude.

2. FRAMEWORK

In this section we present our framework and provide the
formal definitions of our model. We formally define two
types of networks—social network and spatial network—and
we define the joint spatio-social graph that combines the two
networks by connecting their nodes using life-pattern edges.

Social Network. A social network is a graph whose nodes
(also called wusers) represent real-world people and whose
edges represent relationships (typically, friendship relation-
ships) between people. Each user has attributes specifying
personal properties of the person it represents. Name and
hobbies are examples of personal properties.

Formally, a social network is an undirected graph Nsociar =
(U, F), where U is a set of nodes (users) and F C U x U is
a set of edges. An edge (u1,u2) € F is called a friendship
edge between u; and us.

Geographical Hierarchy. In this paper we consider a set-
ting where geographical entities at different scales are mixed.
Consequently, a geographical entity may contain another ge-
ographical entity. For example, a city contains its neighbor-
hoods and a neighborhood contains its buildings.

Each geographical entity has an area that is represented
as a polygonal shape. Given a set F of geographical entities,
we say that for two entities e, ¢’ € E holds that e is contained
in €' if the area of e is contained in the area of /. We say
that e is a sub-entity of €’ if (1) e is contained in ¢’, and
(2) there is no entity z € E such that e is contained in z
and z is contained in €’.

A geographical hierarchy with respect to a set E of geo-
graphical entities is a directed graph Gy = (F, H) where
H = {(e,€') | e is a sub-entity of €'}, i.e., there is an edge
in H for every pair of an entity and its sub-entity. We say

that two entities e1 and eq, in E, are adjacent, if (1) both
e1 and ez are siblings in Gy, i.e., there is ¢’ € E such that
both e; and ez are sub-entities of ¢”; and (2) there is a road
that connects e; and ez, and this road does not go via any
other of their siblings.*

Spatial Network. A spatial network is a graph whose
nodes represent geographic entities and whose edges rep-
resent roads that connect adjacent entities.

Formally, a spatial network is a graph Ngpariat = (O, R),
where O is a collection of geo-spatial objects, representing
real-world geographical entities, and R C O x O is a set
of edges, connecting objects that represent adjacent enti-
ties. Objects of O have spatial attributes such as location
or shape, and they may have non-spatial attributes such as
name or address.

Time Hierarchy. A time hierarchy is a tree whose nodes
are time units (e.g., week), and whose edges represent con-
tainment relationships between the time units. We denote a
time hierarchy as (T, Hr), where T is a set of time units and
Hr is a tree over T, defining a hierarchy. For example, in the
hierarchy there may be a year as a parent of month, month
as a parent of week, week as a parent of day. A time pattern
is being used to represent a list of days that specify a part of
a time unit (e.g., workdays or Sundays are parts of a week),
and hours that specify the relevant part of the day. A time
pattern has the form TP = (tr, [d1, . .., dk], st, et) where tr is
a time unit being referred to as the time reference of the pat-
tern (e.g., year, month, week, day), [d1, ..., dk] is an array of
integers specifying the relevant days with respect to the time
reference, st and et are start and end times, in hours, during
the day. For example, (week, [2,3,4,5,6], 9, 17) is a patterns
that specifies the hours 9AM to 5PM in the workdays Mon-
day to Friday, (day, [1], 22, 5) represents nighttime, and
(month, [1], 10, 14) represents the hours 10AM to 2PM in
the first day of the month. Typically, we will use aliases for
time patters, e.g., ‘Sundays’ for (week, [1], 1, 24).

We can use the time hierarchy and the time patterns to
infer visit patterns. If a certain event often occurs, at a fre-
quency that refers to a certain time unit, then it also occurs
with respect to time units that are higher in the hierarchy.
For instance, if Alice visits Westminster Cathedral every
Sunday then she visits the Cathedral every week and also
does so every month (because the ‘Sundays’ time pattern
has a time reference of a week and a week appears below
month in the hierarchy).

Life Pattern. Associations between users and geographic
entities are expressed by life patterns. A life pattern specifies
that a certain individual visits a certain geographical entity
at a specified frequency.

Consider a geographical hierarchy G = (E, Hg) and a
time hierarchy (7', Hr). Given a set of users U, a life pat-
tern is a 4-tuple P = (u,e,t,¢), where u € U is the user
of P, e € E is the geographical entity of P, t is the time
pattern of P, and 0 < ¢ < 1 is the confidence of P. In-
tuitively, the confidence c is according to the percentage of
cases where the log of positioning events supported the life
pattern. To explain that more precisely, we briefly describe
the generation of life patterns.

LA different definition of adjacency can be used here without
affecting the rest of the paper, however, this definition is
intuitive for the operators that we will present in Section 3
and it simplifies the implementation of our approach.

For generating life patterns, initially the signals of a po-
sitioning device are identified and stored. We refer to each
such signal as a sigprint. Each sigprint contains the iden-
tity of the user, the location and the time of the positioning
event. A life pattern is generated from a set of sigprints that
are all related to the same user, and all of them are located
in the area of the same geographic entity. A life pattern is
generated for a given user u and geographic entity e. We
consider the set sigprint,(e) to be the set of all sigprints
that are associated to the user u and that were measured in
a location inside the area of e. Then, given a time pattern
t, we divide the measuring period to time slots, according
to the time reference of t, and we consider ¢ as the percent-
age of slots for which there exists a sigprint in sigprint,, (e).
For instance, if u is Alice, e is Westminster Cathedral, ¢ is a
week, and the data comprises sigprints that were recorded in
a time period of 50 weeks, then c is the percentage of weeks
(during the time period where sigprints were recorded) for
which there is a sigprint that positions Alice in Westminster
Cathedral, i.e., in how many weeks, out of the 50 relevant
weeks, Alice visited the Cathedral.

Typically, only life patterns whose confidence exceeds a
given threshold are of interest. In contrast, life patterns
should be as specific as possible. For instance, it may be pos-
sible to connect Alice both to Westminster Cathedral and to
London, for the Sundays time pattern, because Westminster
Cathedral is in London. In such case, if the frequency of vis-
its of Alice in Westminster Cathedral exceeds the required
confidence value, we add a life-pattern edge from Alice to
Westminster Cathedral, and not to London, and we assume
that the relationship to London can be inferred from the geo-
graphical hierarchy. Finding the most specific life patterns,
for a given threshold, can be done naively by considering
for each user all the pairs of geographical entity and time
pattern. More efficient methods employ techniques that are
similar to those being used in data mining. For details, see
the work of Ye et al. [8].

Spatio-social Network (SSN). A joint spatio-social net-
work (SSN) is a graph that integrates a social network and
a spatial network by connecting the users to geographic lo-
cations using life-pattern edges.

Let Nsociar = (U, F') be a social network and Npatiar =
(O, R) be a spatial network. Consider a geographical hierar-
chy G = (O, Hg), a time hierarchy (7, Hr) and a confidence
threshold 0 < 7 < 1. Then the joint spatio-social network
of Nociat and Nspatial is a graph Njoi = (U, F), (O, R), B),
where (U, F') is the given social network, (O, R) is the given
spatial network, and B C U x O x T X [r1,1] is a set of life
patterns for the users U with respect to the geographic ob-
jects O and the time units 7. Note that only life patterns
whose confidence exceeds the threshold 7 can be used for
the connection. We refer to the set B of life patterns as the
bridge between Nyocial and Ngpatial-

A 4-tuple of a user, geographic object, time pattern and
confidence value can serve as a constraint, and accordingly,
can be used to select life-pattern edges, in the following way.
We say that a life-pattern edge (u, o,t,c) satisfies a 4-tuple
(u',0',t',), considered as a bridge constraint, if (1) v’ = u
(i.e., it is the same user), (2) o’ = o or o is an ancestor of o
in the geographical hierarchy G, (3) t’ satisfies ¢ according
to the time hierarchy (T, Hr), and (4) ¢ > ¢. For example,
(‘John Smith’, ‘Westminster Cathedral’, Sundays, 0.7) sat-
isfies the bridge constraint (‘John Smith’, ‘London’, once a

week, 0.7). That is, if our recordings show that John visits
Westminster Cathedral in at least 7 out of 10 Sundays, then
we know he is in London in at least 7 out of 10 weeks. This
is because Westminster Cathedral is in London (according
to the geographical hierarchy) and ‘every Sunday’ is a time
pattern that satisfies ‘every week’ (according to the time
hierarchy).

3. QUERY LANGUAGE

To easily and effectively query an integrated socio-spatial
network, a suitable query language should be used. In this
section we present a set of operators that are the building
blocks of such language, and we provide examples that illus-
trate the effectiveness of the proposed operators.

Throughout this section we assume that the SSN has the
form Njoin = (Nsocial, Nspatial, B), and we use the notations
of the previous section, i.e., Njoin = (U, F), (O, R), B).

3.1 Operators

The query language has the form of an algebra with six
operators (seven, if considering bridge and multi-bridge as
two different operators). We refer to it by the name SSNA
(Socio-Spatial Network Algebra).

Select. The select operator receives a set of nodes and a
condition, and it returns all the nodes, in the set, that satisfy
the condition. It may receive a network, instead of a set,
and then the condition is applied over all the nodes of the
network. It is written Select (S, C), where S CU or S C
O is a set of nodes of some network, and C' is a condition.
The condition C' is with respect to the attributes of the
nodes, and it may include and, or, not and like, with syntax
and semantics similar to those of SQL. For example, in a
social network Ngociqi Where users have an address attribute,
the following query

Select (Ngocial, address like ‘YDowning Street’’)

will return all the people in the social network whose address
is in Downing Street.

Extend. The extend operator receives a set of nodes, of
some network, and a length limit. It returns all the nodes
that are reachable by a path whose length does not exceed
the given limit (including the nodes of the given set). We
write it as Extend (S, n), where S C U or S C O is the set
of nodes and n is the length limit.

Formally, a path in a graph G = (V, E) is a sequence of
nodes v1, ..., vk, in V such that every two adjacent nodes in
the sequence are connected by an edge in G (i.e., for every
v;, V41 where 1 <14 < k — 1, exists an edge (v, vi41) € E).
The length of a path with k& nodes is k — 1 (because we
count the number of edges that connect adjacent nodes). We
say that the length from node v’ to node v" is k, denoted
length(v',v") = k, if the length of the shortest path in G
from v’ to v is k, and for each node v, length(v,v) = 0.
Now, given a set of nodes S C V in G, Extend(S,n) =
{v | € G (length(v,v") < n)}.

For example, consider the following query over Nyocial:

Extend(Select (Nsociai, address like ‘%10 Downing
Street?’), 2)

It will returns people who live in 10 Downing Street, people
who are connected in the social network to those who live in

10 Downing Street, and those who are connected by a path
of length two to people who live in 10 Downing Street.

Union, Intersect, Difference. The set operators union,
intersect and difference are applied over sets of nodes in an
ordinary fashion, under set semantics, i.e., without repeti-
tions of nodes.

Union(Sy, S2) ={v|v€S: orve S}

Intersect(Si, S2) = {v|v € S1 and v € Sa};
Difference(Si, S2) ={v|v € S andv & Sa}.

For example, the following query over Nsocial

Difference(Select (Nypciai, occupation=‘Politician’),
Extend(Select(Nsocials address like ‘%10 Downing
Street’’), 1))

returns politicians who are not directly connected, according
to Nsocial, t0 people who live in 10 Downing Street.

Bridge. In the operators we presented so far, the input
set and the output set belong to the same network. The
bridge operation is a novel operation that receives nodes of
one network and returns nodes of the other network. It does
so by moving from one set of nodes, of one network, to the
set of nodes, of the other network, that are connected to the
nodes of the first set by life-pattern edges.

We denote the bridge operator by Bridge(S, TP, c),
where S is a set of nodes such that S C U or S C O, TP
is a time pattern, and ¢ specifies the minimal confidence of
the life patterns being used for the bridging.

For a set S C U of users in Ngpciar, the result of the oper-
ation Bridge(S, TP, ¢) is {o € O | I(u,0,t,c') € B (u €
S and (t satisfies TP) and ¢’ > c}. That is, the result con-
sists of the geographical objects of Npasia that are connected
by a life-pattern edge b € B, to a node of S such that the
time pattern TP is satisfied and such that the confidence of
b is not less than c.

Similarly, for a set S C O of geographic objects in Ngpatiai,
the result of the operation Bridge(S, TP, ¢) is {u € U |
A(u,0,t,c') € B (0 € S and (¢ satisfies TP) and ¢’ > c}.
That is, the result consists of the users of Ngociqr that are
connected by a life-pattern edge b € B, to a node of S
such that the time pattern TP is satisfied and such that
the confidence of b is not less than c.

For example, the following query over Nsocial

Bridge (Select(Nsocia, address like ‘%10 Downing
Street’,’), ‘every week’, 0.8)

returns the places (geographic entities) that people who live
in 10 Downing Street visit in 80% of the weeks. Here ‘every
week’ is an alias of a time pattern that specifies a visit per
week, i.e., (week, [1,2,3,4,5,6,7], 1, 24).

The previous example applied a bridge from the social
network to the geographical network. The following example
shows how a bridge can be applied from the geographical
network to the social network.

Bridge(Select (Ngpatial, address like ‘%10 Downing
Street’,’), ‘every week’, 0.8)

It returns the people who visit 10 Downing Street almost
every week (i.e., every week with confidence 0.8).

We can also apply the bridge operation back and forth.
For example,

Joggers = Select(Nsocial, hobby=‘Jogging’)

Parks = Select(Bridge(Joggers, ‘every day’, 0.8),
type="‘park’)

LikelyJoggers = Bridge(Parks, ‘every week’, 0.9)

will find people who almost every week visit a park that
people whose hobby is jogging visit almost every day. Note
that to simplify the presentation of the expression, we di-
vided it into subexpressions and assigned the subexpressions
to node-set variables, e.g., the variable Joggers. We used a
variable in expressions that follow the assignment to it. An
unfolding, where each variable is replaced by the expression
it represents, recursively, can eliminate the variables and
produce a single expression that answers the query.

Consider two objects o € O and u € U. Because the edges
of B are undirected, we have the following symmetry. The
object o satisfies o €Bridge({u}, TP, ¢) if and only if u
satisfies u €Bridge ({o}, TP, ¢). In such case we say that
o is (TP, c)-bridged to u, and wu is (TP, c)-bridged to o.

Multi Bridge. In the bridge operation, a node is in the
result if it is connected to a node of the other network by an
edge that satisfies the time pattern and the confidence re-
quirement. The multi-bridge operator generalizes the bridge
operation by requiring from a node in the result to be con-
nected to a certain percentage of the nodes in the given set.

We denote the operation by MBridge(S, TP, c, per),
where S is the given set of nodes (S C O or S C U), TP
is the specified time pattern, c¢ is the required confidence
and per is the percentage of objects of S that an object in
the result should be connected to. That is, given S C U,
the answer to MBridge (S, TP, c, per) consists of all the
objects o such that for at least per percentage of the objects
u € S, 0is (TP, c)-bridged to u. Similarly, when S C O,
the answer is the set of users u such that the percentage of
objects of S that u is (TP, ¢)-bridged to is at least per.

The multi bridge operation can be used to discover groups
of people who have socio-spatial similarity in the sense that
they all visit similar locations. It can, as well, be used to
discover social similarity among locations in the sense that
two locations are socially similar when many people who
frequently visit the first location also frequently visit the
second location, and vice versa.

For example, suppose we want to search for potential new
friends for John Smith. We start by finding his friends.

FriendsOfJohn = Extend(Select(N,ociai, name=°‘John
Smith’), 1)

Then, we use the multi-bridge operator to find the geograph-
ical entities that are defined as ‘entertainment’ sites and that
many of John’s friends (60 percent of them) visit nearly ev-
ery week.

Entertainment = Select(MBridge(Friends0fJohn,
‘every week’, 0.8, 60%), category=‘entertainment’)

Finally, we find people who frequently visit 80% of the en-
tertainment venues that John’s friends frequently visit.

PotentialNewFriends = MBridge(Entertainment,
‘every week’, 0.8, 80%)

This example illustrates the use of the multi-bridge opera-
tor as a way to find socio-spatial similarity among people.
Finding social similarity among geographical entities can be

done in the same fashion. For instance, we can find loca-
tions that are defined as theaters, discover the people who
frequently visit a theater, and find other types of places that
many theater lovers frequently visit.

Theaters = Select (Nypatiar, type=‘theater’)
T-Lovers = Bridge(Theaters, ‘every month’, 0.8)
SimilarToTheater = MBridge(T-Lovers, ‘every
month’, 0.8, 60%)

3.2 Comparison to Relational Algebra

SSNA has some similarity to relational algebra. Mainly,
the select, union, set difference and intersect opera-
tors are shared by both algebras. However, there are inher-
ent differences between the two languages.

First, expressing the extend and bridge operations in re-
lational algebra is cumbersome because algebra is not de-
signed for graph traversal. Moreover, expressing the multi
bridge operation requires the use of aggregation functions
which are not in the core of relational algebra.

Second, SSNA does not include Cartesian product and
projection. The essence of the algebra is to have in the
result of each expression a set of nodes and not a set of
tuples. Thus, there is no need for Cartesian product to
generate tuples. Similarly, using projection to disassemble
tuples is superfluous.

Dealing merely with sets of nodes, and not with tuples, re-
duces the expressiveness of the algebra, however, it prevents
the exponential blowup that can be caused by a Cartesian
product. This is necessary to handle large networks.

Third, relational algebra is not designed for using a time
hierarchy and a geographical hierarchy to infer satisfaction
of time patterns and of bridge constraints. In SSNA such
inference is performed transparently.

4. IMPLEMENTATION

We implemented the proposed model and SSNA query
language in two different manners. One implementation uses
a graph database as the underlying data storage. The other
implementation uses a relational database to store the data.
Our goals were to experimentally compare these two ap-
proaches, to demonstrate the feasibility of the model, and
to show that a socio-spatial network can be built effectively
upon common data-storage tools.

4.1 Building on a Graph Database

A graph database management system is a system that is
designed to store and manage data whose model is a graph.
Consequently, such system provides a natural storage for
socio-spatial networks. The system provides an interface to
store the nodes of the graphs, along with their attributes,
and storing labeled edges, either as directed or as undirected
edges. In our setting, the labeled edges are needed to store
life-pattern edges where the time patterns and the confi-
dence values are encoded in the labels.

In our implementation, we used Neo4j [7]—an open source
graph database management system, written in Java. It is a
transactional system that provides persistence by managing
data on the disk. An indexing mechanism is used for efficient
retrieval of the nodes.

The spatial network is stored as a graph whose nodes have
different attributes (e.g., address and type). Appropriate in-
dexes where created for these attributes. The time hierarchy

and the location hierarchy are stored as tree graphs. The
social network was also stored as a graph whose nodes have
attributes (e.g., name, occupation and hobbies) and are in-
dexed. The edges are the friendship relationships.

4.2 Building on a Relational Database

The graph database management system, we discussed
earlier, provides a natural data storage for socio-spatial net-
works, because it was designed to store networks. In compar-
ison, when using a relational database-management system
to store the data, a model translation should be applied,
exchanging graphs for relations.

In the model translation, for each basic network, two or
three relations are created. One relation is created to store
the nodes, and one or two relations to store the edges.

For the spatial network, one table stores the geographic
objects, a second table stores the hierarchical relationship,
and a third table stores the adjacency relationship. An iden-
tifier is created for the objects, and indexes are constructed
for these identifier columns, in order to efficiently retrieve
the edges of each node, and the nodes of each edge.

Each row in the adjacency-relationship table represents
an edge in the spatial network. For reducing disk space, one
may store each pair of adjacent objects 01 and 02 as a single
tuple and write the queries that retrieve data as a union of
two queries, where each query searches in a different column.
For example, in a search for the neighbors of 02, one query
will return the nodes o’ that have a tuple (02, 0') in the table,
the other query will return the nodes o’ that have a tuple
(0”,02) in the table, and the answers to these queries will
be combined using union. The problem with this approach
is that it is not designed for efficient use of indexes and that
union is an expensive operation.

Thus, we chose a different approach. We store for each
pair of adjacent objects 01 and o2 the two tuples (01, 02) and
(02,01). The cost of maintaining such table is a bit higher
that the approach above, however, retrieval of neighbor ob-
jects is efficient when using an index on the first column.

Storing the geographic hierarchy raised a difficulty simi-
lar to the one described for the adjacency-relationship ta-
ble. If the storage is simply a collection of parent-child
pairs, finding ancestors or descendants of a node is ineffi-
cient in SQL because many joins are involved. Furthermore,
if the hight of the hierarchy is unknown, recursion should be
used, so SQL cannot handle such tasks. Our solution to this
was, again, adding redundant edges to the tables—scarifying
management efficiency (i.e., the efficiency of insertions, up-
dates and deletions) for efficient retrieval. We stored for
each pair o, and o4, of ancestor and descendant objects, a
3-tuple (04, 04, d), where d is the distance between the nodes.
For instance, if o, is a parent of o4 then d is 1. If o, is a
parent of a parent of o4 then d is 2, and so on. Because the
hierarchy is a tree, at the worst case, we store each object h
times, where h is the height of the hierarchy.?

The storage of the social network is similar to that of
the spatial network, using two tables—one table to store
the nodes, and a second table to store the friendship edges,
with the redundancy described above. The time hierarchy
is stored in a table using the same approach as the one we
used to store the geographic hierarchy.

In practice, h is expected to be about 4, and in typical
scenarios, the increase in the size of the storage worths the
improvement in the efficiency of query evaluation.

Our implementation was built on top of the MySQL re-
lational database management system [5], using the Inn-
oDB transactional storage engine. MySQL is an open source
database management system that employs state-of-the-art
storage and indexing techniques.

4.3 Implementing SSNA

We implemented the socio-spatial network algebra over
both the graph database and the relational database. We
now briefly discuss the implementation of the operators over
the different databases.

For the graph database, Select was implemented as a
direct retrieval of nodes using the index. Extend was im-
plemented as a BFS (breadth-first search) traversal. Bridge
was implemented as a scan over all the bridge edges and
their labels, checking whether the bridge condition is satis-
fied (while considering the hierarchies of time and location).
The multi-bridge operation is based on the bridge opera-
tion. It employs the bridge operation, aggregates the results
and checks satisfaction of the multi bridge condition, ac-
cording to the specified percentage. Union, Intersect, and
Difference are implemented using standard methods Neo4j
provides. These methods are similar to the methods of the
package java.util.List.

In the relational model, each SSNA expression is trans-
lated to an SQL query and the SQL query is evaluated over
the tables of the database. Initially, each operator is written
as an SQL query, and the operators are combined by nesting
them in the FROM clause.

For example, consider the following query:

Select (Njoin, name=‘John Smith’)
The system translates it to the following SQL query.

Select user_id
From Friends
Where name = ‘John Smith’;

If the above query is embedded in another expression then
it will appear in the FROM clause of the embedding gener-
ated SQL query. For example, for the following expression

Extend(Select (Njoin, name=*‘John Smith’),2)
the system translates it to the following SQL query.

Select f2.friend_id
From Friends f2, (Select user_id

From Friends

Where name = ‘John Smith’) f1
Where f1.friend_id=f2.user_id;

Note that for Extends(..., 2) the answer should com-
prise nodes reachable by paths of length 0, 1 and 2. This
can be computed as a union of three different queries. Our
solution is simpler and more efficient. We include in the
Friends table self loops, i.e., a tuple (u,u) for each user u.
It is easy to see how self loops solve the problem efficiently.
Since the translation of the SSNA operators to SQL is tech-
nical, we do not elaborate on that further.

5. EXPERIMENTS

In this section we present our experiments with the two
implementations of SSNA, and we compare the two ap-
proaches. The experiments were conducted on a Dell Lati-
tude with Intel Core 2 Duo P8400 processor and with 4 GB

of RAM. We used MySQL 5.1 and Neo4j 1.1 as the under-
line database-management systems, both running locally on
the computer that was used for the tests.

5.1 Datasets

In our experiments, we used data that is partially real and
partially synthetic. For the geographic network, we took real
data of the city Haifa. We generated a geographic hierarchy
of depth four: City — Neighborhood — Street — House.
A type attribute was added to each geographic object (e.g.,
house, restaurant, hotel, etc), according to a given distri-
bution that simulates real scenarios. Adjacent objects were
connected by an edge, e.g., house number 3 in some street
was connected to house Number 1 and to house Number 5 in
that street. For the social network, we generated users with
attributes occupation and hobbies. The values of these at-
tributes and friendship relationships were added randomly.

The life patterns were also generated synthetically. We
used several types of typical patterns: every morning in ev-
ery day, as a daily pattern; every morning in Monday and
Thursday, as a weekly pattern; and every night in work-
days, as a weekly pattern. The patterns were generated
using the following parameters. (1) Each user has 10 to 30
life patterns. (2) For 97% of the users we generated a ‘home’
pattern—a pattern that associates the user to some house,
for every night of the week. (3) For 80% of the users, a
‘workplace’ pattern was created—a pattern that indicates
being in some location, for several hours on every workday.
(3) The locations of patterns were chosen randomly, choos-
ing from all the levels of the geographic hierarchy.

For the tests, we built four socio-spatial networks of dif-
ferent sizes. Their parameters are depicted in Table 1.

Network || Geographic | Users | Friends Life
number Objects per user | patterns
I 23493 1931 15 50605
11 47043 3862 30 197425
11T 70222 5793 45 441375
v 92403 13517 60 786502

Table 1: Sizes of the networks.

5.2 Results

The first set of experiments we present examines the op-
erators Extend and Bridge. We compared the evaluation
times, for these two operators, in the two different imple-
mentations. For each operation, we examined applying it 1,
2 or 3 times. The expressions are presented in Table 2.

Since both Neo4j and MySQL have a caching mechanism,
we tested each query for two cases. In the first case, the
cache is empty at the beginning of the test (the systems
was shutdown and restarted before the test). In the second
experiment, the results are measured after the system has
run for a while and the queries were executed several times.
In Table 3, the evaluation times are presented. Since Net-
work I is very small, we only present the results for networks
II, III, IV. The row for E1 and Network II refers to apply-
ing Extend(..., 1) over Network II of Table 1. The row for
B2 and Network II refers to applying Bridge (Bridge(...),

..) (i.e., the second expression of Table 2) over Network II
of Table 1. The meaning of the other rows is similar. Each
case was tested for several different initial sets of nodes, in

[1 Bridge

| Extend |

1 || Bridge(Select (N,name=*John’),*,0.8)

Extend(Select (N,name=‘John’),1)

Bridge (Bridge(Select (N,name=‘John’),*,0.8),%,0.8)

Extend(Select (N,name=‘John’),2)

3 || Bridge (Bridge (Bridge (Select (N,name=‘John’),*,0.8),%,0.8),*,0.8)

Extend(Select (N,name=‘John’),3)

Table 2: The tested expressions: Bridge (B1, B2, B3), and Extend (E1, E2, E3).

different runs.

In the results, we can see the dramatic effect of the cache
on the evaluation time. In the evaluation of Bridge, Neo4j
outperforms MySQL for large networks. The cache increases
the efficiency over both platforms. In the evaluation of Ex-
tend, the two implementations are efficient when caches are
being used, however, MySQL is highly inefficient without a
cache. This is because Extend is translated to a sequence of
joins, and join is an expensive relational operation.

Net- || Result Neodj MySQL
work || size W/O | With | W/O | With
Cache | Cache | Cache | Cache
1I 13 766 0 313 0
Bl | III 25 641 0 578 0
v 42 484 0 515 0
1I 344 23766 | 32 1234 0

B2 | III 5553 30360 | 1546 3547 750
I\Y 7157 29406 | 3766 4563 546

11 209 5031 0 125 0
B3 | III 34359 | 8218 3453 27359 | 19171
v 52235 | 19782 | 13672 | 66328 | 48016

II 74 0 0 219 0
E1| III 43 0 0 344 0

I\Y 130 0 0 328 0

II 2593 172 78 1625 0
E2 | III 2633 94 109 875 16

I\Y 6465 609 859 3422 31

11 3862 1312 515 9047 735
E3 | III 5793 1297 1156 26578 | 782
v 7724 4735 4610 65719 | 5031

Table 3: The evaluation time (in milliseconds) of
Bridge (B1, B2, B3) and Extend (E1, E2, E3).

- Run time

" (milisec) Bridge 3
—e— Neodj
60000 w/o
Cache
50000
—® - Neodj
40000 with
Cache
30000
MysQL
20000 w/o
Cache
- -n
10000 -
.- MysQL
0 ﬂ""""'73:-:. el with
- Cache
[200000 400000 600000 800000
Number of life patterns

Figure 1: Evaluation time of Bridge 3 as a function
of the number of life-pattern edges.

Figure 1 illustrates the effect of the number of life-pattern
edges on the Bridge operator. Up to a certain limit, the

evaluation can be done from the cache of the system (mem-
ory) and we do not see any significant increase in evaluation
time when the number of life-pattern edges increases. How-
ever, when the number of edges exceeds the limit, we see an
increase in the evaluation time. The increase is more sig-
nificant for a relational database than for a graph database
because the graph database utilizes better the graph struc-
ture of the data.

Figure 2 shows the increase in the evaluation time of Ex-
tend as a function of the number of users in the social net-
work. Note that the effect on a relational database is more
significant than the effect on a graph database.

Run time

(milisec) Extend 3
—e— Neodj

60000 w/o
cache
50000
—B -Neodj
40000 with
Cache
30000
MysQL
20000 w/o
Cache
10000
Py MysaL
e with
0 : = Cache
o 5000 10000 15000
Number of users

Figure 2: Evaluation time of Extend 3 as a function
of the number of users in the network.

In the following experiments, we compare the evaluation
of two complex queries. The first query (Query 1) finds
locations where it is likely that a paramedics lives there.

Paramedics = Select (Nsocial»
occupation=‘Paramedics’)

Query_1 = Bridge(Paramedics,
‘some_night_of_the_week’,0.85)

The second query (Query 2) finds people that are related
to John in the following way. They frequently visit in 20%,
or more, of the places that John frequently visits. In the
query, we use the time pattern all as the union of all the
time patterns in the SSN.

John = Select (Ngpeial, name=‘John’)
Places = Bridge(John, all, 0.5)
Query_2 = MBridge(Places, all, 0.5, 20%)

The execution times of these queries are presented in Ta-
ble 4 and in figures 3 and 4. We can see that caching has a
significant effect on both Neo4j and MySQL, especially for
Query 1. For Query 2, the Multi Bridge operator requires
the computation of aggregate functions, and this is being
done effectively by MySQL. Thus, for Query 2, over large
networks MySQL is more efficient than Neo4j.

6. RELATED WORK

Recently, the importance of a synergy between social ser-
vices and GIS tools has been recognized [1]. Huang and

Net- || Result Neodj MySQL
work | size W/O | With | W/O [With
Cache | Cache | Cache | Cache
I 11 94 0 281 0
Q1 1I 16 235 0 454 0
111 26 438 0 843 0
v 69 922 31 1344 0
I 1 125 0 109 0
Q2 1I 1 453 0 109 0
111 367 1734 188 938 406
v 1 2641 1516 1547 625

Table 4: Evaluation times of Query 1 (Q1) and
Query-2 (Q2), in milliseconds.

Run time

(milisec) Query1
—o— Neod|
1400 Wio
Cache
1200
1000 = B = Neodj
with
800 Cache
600 Mysat
w/0
00 Cache
200 wysaL
0 =» T PR - S -B Wwith
. o - Cache
0 200000 400000 600000 800000 1000000
Networksize

Figure 3: Evaluation time of Query 1 (in millisec-
onds) as a function of the network size.

Liu [3] introduced the concept of geo-social network services.
They showed how social networks could benefit from relat-
ing them to spatial applications, and they suggested appli-
cations for geo-social network services. Li and Chen [2] an-
alyzed location-based social networks (LBSN). They exper-
imented with Brightkite—a location-based social network-
ing website that is accessible via mobile devices. Users can
”check in” to the site and see nearby friends, according to
the friendship relations in the social network. They analyzed
user behavior in such network and studied the problem of
predicting user location based on logged location history. Li
and Chen [6] provided a three-layer friendship model for an-
alyzing Brightkite. One layer is based on the location of
users, the second is based on the network connections and
the third is based on the tags of their profiles. They tested
different types of correlations between users, based on the
three types of layers, and compared these correlation types.

Zheng et al. [9] presented Geo-life 2.0—a location-based
social network service that is based on a GPS log. Liet al. [4]
showed how to mine a GPS log and find locations that are
point-of-interest. They also studied the problem of finding
similarity among users based on points where users stayed
for a relatively long time, according to their GPS logs [10].
Zheng et al. [8] showed how to find meaningful life patterns
form GPS logs.

7. CONCLUSIONS

The ability to combine social information with spatial in-
formation can be useful in different scenarios, such as for
research, for social purposes and as part of a statistical or
economical analysis. Our main contributions are (1) show-

Run time

(milisec) Query 2

2500

—e— Neodj
w/o
cache

2000 — B - Neodj

with

1500 Cache

MysaL
w/o
cache

1000

500
MysQL
With
cache

[}

0 200000 400000 600000 800000 1000000
Network size

Figure 4: Evaluation time of Query 2 (in millisec-
onds) as a function of the network size.

ing how to combine social information, from a social net-
work, with spatial information, by using life-pattern edges
to associate the two networks; (2) presenting a socio-spatial
network model and an algebra to effectively query the in-
tegrated data; and (3) demonstrating the feasibility of our
approach by implementing the model.

Future work includes the development of a declarative lan-
guage over the proposed algebra, and strengthening the lan-
guage by including in it aggregation functions and the ability
to apply selection based on complex time constraints.

8. REFERENCES

[1] M. F. Goodchild. Social Sciences: Interest in GIS
Grows. http://www.esri.com/news/arcnews/
springO4articles/social-sciences.html, 2004.

[2] Q. Huang and Y. Liu. Analysis of a location-based
social network. In International Conference on
Computational Science and Engineering, pages
263-270, Washington, DC, USA, 2009.

[3] Q. Huang and Y. Liu. On geo-social network services.
In 17th International Conference on Geoinformatics,
pages 1-6, 2009.

[4] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and
W. Ma. Mining user similarity based on location
history. In 16th International Conference on Advances
in Geographic Information Systems. ACM, 2008.

[5] MySQL. http://www.mysql.com/.

[6] L. Nan and C. Guanling. Multi-layered friendship
modeling for location-based mobile social networks. In
6th International Conference on Mobile and
Ubiquitous Systems: Networking and Services
(MobiQuitous), pages 1-10, 2009.

[7] Neodj. http://neodj.org/.

[8] Y. Ye, Y. Zheng, Y. Chen, J. Feng, and X. Xie.
Mining individual life pattern based on location
history. In 10th International Conference on Mobile
Data Management, pages 1-10, Taipei, Taiwan, 2009.
IEEE Computer Society.

[9] Y. Zheng, Y. Chen, X. Xie, and W. Ma. GeoLife2.0: A
location-based social networking service. In 10th
International Conference on Mobile Data
Management: Systems, Services and Middleware,
pages 357-358, 2009.

[10] Y. Zheng, L. Zhang, X. Xie, and W. Ma. Mining
interesting locations and travel sequences from gps
trajectories. In 18th International Conference on
World Wide Web, pages 791-800. ACM, 2009.

