
TARSIUS: A System for Traffic-Aware Route Search under
Conditions of Uncertainty

(Demo Paper)

Itsik Hefez
Technion, Israel Institute of

Technology
itsikhefez@gmail.com

Yaron Kanza
Technion, Israel Institute of

Technology
kanza@cs.technion.ac.il

Roy Levin
Technion, Israel Institute of

Technology
royl@cs.technion.ac.il

ABSTRACT
This demo presents TARSIUS—a system for traffic-aware
route search. In a traffic-aware route search (TARS), the
user provides start location, target location and search terms,
which specify types of geographical entities that should be
visited along the route. A TARS query may include ad-
ditional temporal constraints and limitations on the order
by which entities are visited. The goal is to find the fastest
route from the start location to the target, via entities of the
specified types, while taking into account variations in the
travel speed, due to changes in traffic conditions. Planning
a route under conditions of uncertainty requires the system
to also take into account the possibility that some visited
entities will not satisfy the user requirements so that the
route may need to go via several entities of the same type.
In the demonstration we present the system. We demon-
strate a web-based user interface that facilitates the formu-
lation of TARS queries. We show how queries are posed and
evaluated over a database that contains real traffic data.
Since answering a TARS query is NP-hard, we present three
heuristics to the problem. Using the system, we illustrate
the routes that are computed by these heuristics.

Keywords
Route search, traffic, temporal, probabilistic data

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Geographical Services such as presenting a map, searching

for an address (local search) or finding a route between two

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’11, November 1-4, 2011. Chicago, IL, USA
Copyright (c) 2011 ACM ISBN 978-1-4503-1031-4/11/11 ...$10.00.

locations, have become an inseparable part of the World-
Wide Web (see, for example, Bing Maps, Google Maps and
Yahoo! Local1). Such services are useful for finding geo-
graphical locations on a map. However, when initiating a
geographical search, users frequently need not only to find
the relevant geographical entities, but also to actually arrive
at the discovered locations. In such cases, the result of a
search should be a route. There are applications that can
provide driving directions to a specific address. Yet, these
tools are rather restricted because they are not designed
to deal with complex route planning tasks where the route
should go via several types of entities. Such complex task is
illustrated in the following example.

Example 1.1. A tourist in a foreign city, say San Fran-
cisco, wants to plan a route from her current location to
some destination, via four types of entities: (1) a coffee
shop, (2) an ATM, (3) a shoe store, and (4) a vegetarian
restaurant. She may perform four separate local searches on
some geographical search engine—a different search for each
type of entities. Each local search will result in a ranked
list of entities, with their locations depicted on four separate
maps. Yet, joining the results of the four different searches,
and constructing an effective route via relevant entities, is a
complex task. On the one hand, going via the entities with
the highest rank is likely to increase the probability of satis-
fying the search requirements, however, such route may be
ineffective and may travel back and forth in the city. On
the other hand, choosing entities with a low rank to create
a short route may reduce the chances of satisfying the user.
Furthermore, taking into account traffic conditions and tem-
poral constraints, such as a requirement to reach the restau-
rant at lunch time, or the need to visit an ATM before going
to a coffee shop, increases the intricacy of the problem even
further. Also note that a route which only goes via a single
shoe store has a smaller probability to satisfy the user than
a route that goes via several shoe stores, because not every
shoe store has shoes that comply with the requirements (style
and taste in shoes) of the user.

Several papers have shown how to formulate route-search
queries and how to answer them (e.g., [1, 5, 2, 4]), however,
they did not consider traffic or time constraints. Thus, they
focus on finding the shortest route.

In a Traffic-Aware Route Search (TARS) the goal is to
find the fastest route along with the best departure time

1http://www.bing.com/maps/, http://maps.google.com/,
http://local.yahoo.com/

in tasks such as the one in Example 1.1, while taking into
account traffic conditions. That is, the user provides a start
location, a target location, terms to specify types of entities
that should be visited, and constraints. There are two types
of constraints. Temporal constraints and order constraints.
Temporal constraints specify limitations on the time during
the day when entities should be arrived at. They may also
specify an estimated stay duration at the entities. An order
constraint specifies that entities of some type should only be
visited after visiting an entity of some other type.

Usually, finding the fastest route is more difficult than
finding the shortest route because distances between enti-
ties are constants whereas travel times vary. In many cities,
the travel speed on major arteries during rush hours is signif-
icantly slower than during other hours, yet, it is difficult to
calculate the effect of the traffic load, because road networks
are unevenly affected by congestion [3]. The need to take
into account varying traffic conditions increases the intricacy
of computing a route via several types of entities more than
it does for computing a route between two locations.

In a route search, the system should take into account
the inherent uncertainty regarding real-world entities. Some
entities may not satisfy the user. For example, the user
may not find appropriate shoes in some of the visited shoe
stores, a visited restaurant may not have any available table
at the time of the visit, etc. To cope with this, the setting is
modeled as a probabilistic database. The success probability
of an entity (probability, for short) specifies the likelihood
that a visit at the entity will satisfy the search requirements,
regarding its type. For example, the probability of a shoe
store is the likeliness that the user will find appropriate shoes
in this store. Such probabilities can be generated based on
statistics and information-retrieval methods. The generated
route should go via several entities of the same type such
that the probability of success (i.e., the probability that at
least one of the visited entities of this type will satisfy the
user) will be greater than a given threshold.

TARSIUS is a system for answering TARS queries over
probabilistic data. The system works as a Web application.
It has a Web-based graphical user interface that facilitates
the formulation of queries. It also presents the results on
real-world maps using a Web browser. The system can serve
both as a complete route search service for end users and as
a set of independent services that can aid in generating and
displaying data using an XML API.

2. DATA MODEL AND QUERIES
In this section we present the data model used by the

system. We also discuss TARS queries, their formulation in
TARSIUS and the presentation of their results.

2.1 Data
The dataset consists of entities and a road network that

connects the entities. Each entity is associated with key-
words that specify its type. For example, some entities are
associated with the keyword “ATM”, other entities are asso-
ciated with the keywords “shoe store”, etc. In addition, each
entity has a location, thus, an entity is presented on a map
by an appropriate symbol depicted in its location.

The road network is a directed graph where the nodes rep-
resent road junctions (including intersections, traffic circles,
etc.) and the edges represent roads. Roads are presented
on a map as polygonal lines. Each edge has a travel-time

Figure 1: The query of Example 1.1 issued using the
query builder component.

Figure 2: The routes produced by the GS and MILP
algorithms when processing the query that is pre-
sented in Figure 1.

function that for each hour during the day returns the time
it takes to travel along the road from the junction where it
starts to the junction where it ends.

2.2 Queries
A TARS query is formulated using a graphical user inter-

face, as depicted in Figure 1. The start location s, namely
source, and the target locations t, namely destination, of
the query are indicated by clicking the map or by providing
appropriate addresses. The types of entities to be visited
are referred to as stops. Each stop is defined by inserting
keywords (e.g., “shoe store”) with their constraints. The
constraints include start time and end time to specify the
earliest and latest arrival time at entities of that type, the es-
timated stay duration at an entity and a probability thresh-
old P . The probability threshold provides flexibility to the
level of uncertainty in satisfying the user. The threshold of a
stop S is near 1 when it is crucial to visit a satisfying entity
of the type related to S, and it is closer to 0 when visiting a

satisfying entity has a low importance. Note that increasing
the threshold P may cause an increase in the number of vis-
ited entities to increase the probability of success, and vice
versa. Order constraints appear as pairs of types, so that
entities of the second type in the pair should only be visited
after visiting an entity of the first type.

An answer to a TARS query is a sequence s, e1, . . . , en, t,
and a pair of functions fa and fd, where s is the source,
t is the target location, e1, . . . , en are entities that refer to
the specified stops, fa and fd assign to each entity an arrival
time and departure time, respectively (except for s that only
has departure time and t that only has arrival time), and
such that the following conditions hold.

1. The probability of success for each stop (type) exceeds
the threshold. That is, let ei1 , . . . , eik be the entities in
the sequence that refer to stop S, let pi1 , . . . , pik be the
success probabilities of these entities and let P be the
probability threshold of S, then, the probability that
at least one of the entities ei1 , . . . , eik will satisfy the

user should exceed P , that is, P ≤ 1−(
∏k
j=1(1−pij)).

2. Time constraints are satisfied. For each entity ei in the
sequence, given that ei refers to stop S and the time
limits of S are t1 and t2, the arrival time at ei should
be between t1 and t2. The arrival time at an entity ei is
the sum TT(s, e1) +

∑i−1
j=1 TT(ej , ej+1) +

∑i−1
j=1 sd(ej),

where TT(ej , ej+1) is the travel time from ej to ej+1

at the time of departure from ej (the departure from
ej is the arrival at ej plus the stay duration at ej) and
sd(ej) is the stay duration at ej . That is, the travel
time to ej is the time it takes to go from s to e1, stay
for the stay duration at e1, travel from e1 to e2, stay
at e2 according to the stay duration, and so on.

3. Order constraints are satisfied. The order of the en-
tities in the sequence should comply with the partial
order defined by the order constraints. That is, given
stops S1 and S2 as the first and second stops of an
order constraint, the entities that refer to S2 should
appear in the sequence only after the entities of S1.

2.3 Query Evaluation
There can be many answers to a TARS query. Our goal

is to find the fastest one, that is, the route for which the
difference between the departure time from s and the ar-
rival time at t is the smallest. This problem is, however, a
generalization of the Traveling Salesperson Problem (TSP),
and hence, it is NP-hard. Thus, we developed and imple-
mented heuristics for it. There are currently three heuristics
supported by the query processor.

GS (Greedy Search). This heuristics begins with a path
that goes directly from the source s to the target t. Ini-
tially, it finds the relevant entity that can be added between
s and t while causing the smallest increase to the travel time.
An entity is considered relevant if it (1) complies with the
search terms of one of the stops whose success probability
is still below the threshold, (2) satisfies the order and time
constraints with respect to the place in the route where it
is inserted, and (3) it has not been visited yet. Iteratively,
relevant entities are added to the partial route while min-
imizing in each addition the increase in travel time. This
process continues until either the route satisfies the query
or there are no more entities that can be added. An optimal

departure time from s, according to the time limits on s, is
also calculated using a greedy approach.

1-PGS (1-Pinned Greedy Search). 1-PGS is based on
GS. It forces GS to consider each relevant entity as part of
the answer. It does so by calling GS with an initial partial
route of the form s, e, t, instead of applying GS with an
initial route s, t. We refer to the entity e as the pinned
entity. Iteratively, 1-PGS examines all the possible relevant
entities as the pinned entity, and it returns the route with the
minimal overall travel time among all the routes it generated
for the pinned entities.

MILP (Mixed Integer Linear Programming). This
algorithm uses heuristics to formulate the TARS query as
a Mixed-Integer Linear-Programming problem whose solu-
tion is an answer to the query. The solution is computed
using a solver, however, since solving a mixed-integer linear-
programming problem is NP-Hard, the running time of the
solver is limited. Even with the time limit, MILP usually
provides a better answer than the previous two heuristics.

Note that a more thorough formulation and analysis of
the algorithms is beyond the scope of this paper.

3. SYSTEM DESIGN
The design of TARSIUS is based on a SOA architecture

in which each component is an interoperable Web service
with a rigorously defined functionality. The architecture
is depicted in Figure 3. We refer to the services that op-
erate within a Web browser as the front-end-tier compo-
nents and to those that operate outside the browser as back-
end-tier components. The front-end services, which are in
charge of handling the user interface, are mostly written in
Javascript. The back-end services are implemented using
the .NET Framework and are deployed on a Windows IIS
Web server. Next, we provide more details on these tiers.

3.1 Front end
The front end is deployed within the Google cloud frame-

work, (i.e, Google App Engine2). It is composed of two main
components—query builder and route displayer.

The query builder provides an easy-to-use user interface
for constructing queries. This component uses the Google
Maps API3 to present a map and provide interaction with
it. Inserted queries can be saved, in XML format, and saved
queries can be uploaded. The queries can be submitted to
the server for processing. When a query should be submit-
ted, the query builder sends to the server a list of algorithm
names to apply, and a URL to indicate where the server
should redirect the browser to upon completion.

The route displayer receives a query, a submap and a set of
routes, in XML format. It depicts the received routes on the
map using the Google Maps API. Each route is presented in
a different color along with representative symbols of all the
relevant entities via which it traverses. Symbols of specific
entities that are visited by a route are enlarged, given the
same color as the route and have their arrival time displayed.

3.2 Back end
The back end contains two components that are provided

as Web services. The first is the query processor and the
second is a traffic repository.
2
http://code.google.com/appengine/

3
http://code.google.com/apis/maps/documentation/javascript/

Query Builder

Route Displayer

Frontend
Query Processor

(web service)

Backend

Traffic Repository

(web service)

send query + submap

Send origin,

endpoint and

departure time,

get arrival time

at endpoint

redirect browser

to route displayer

Generate

query+submap

in XML format

Feed XML

query, submap

and routes for

display

Generate set of

routes from

query+submap

in XML format

Output arrival

time at endpoint

given an origin,

endpoint and a

departure time

Figure 3: System architecture

The query processor computes a set of resulting routes.
It receives as the input (1) a list of algorithm names, (2) a
query, and (3) a submap. Each resulting route is anno-
tated with the name of the algorithm that was used to pro-
duce it. The result can either be returned in the form of
XML or HTML document, where the latter also includes the
given query and the submap. The HTML document redi-
rects the browser to the route-displayer component sending
it the query, submap and a list of routes, each associated to
the algorithm that generated it.

The traffic repository manages information on historical
traffic data and provides the travel time on each road, for
each departure time. This web service receives triplets of
origin, target and the time of departure from the origin.
It returns an estimated arrival time at the target location
based on the historical traffic data. In a naive solution, the
server holds for each pair of relevant entities a list of pairs,
of departure and arrival times (ascending according to the
departure time). The problem with such solution is that the
size of the data is quadratic in the number of entities, while
the number of entities is expected to be large. Hence, to
improve the scalability and significantly reduce the size of
the repository, we apply the following solution.

The area for which data is stored in the repository is di-
vided into cells. The repository stores the travel times, for
different times during the day, between every pair of cells.
Ideally, the cells are chosen in such a way that within them
the travel speed is homogeneous—that is, there is the same
traffic congestion on all the roads of the cell. Now, given
origin, end location and departure time, the travel time is
computed by combining the travel time within the cell of the
origin, the travel time within the cell of the target and the
travel time between the cells. The travel time within cells
is estimated based on sampled travel times in that cell, and
linear interpolation (we compute the ratio of the distance
between the entities to the distance between the endpoints
of a nearby sampled road segment, and then we multiply the
ratio by the travel time on that segment.)

4. DEMONSTRATION
The demonstration presents TARSIUS by showing the for-

mulation of TARS queries, query evaluation and the presen-
tation of the results for queries over a repository of traffic
data, for the city of San Francisco.

To generate the data for the traffic repository, we used
actual live traffic data. We used the Bing Maps API4 to

4
http://msdn.microsoft.com/en-us/library/cc966826.aspx

get real travel times. This API receives the locations of a
source and a destination, and it returns the fastest travel
time from the source to the target at the time of the search,
taking into account live traffic data. We used this API to
collect historical traffic data. For each pair from an arbi-
trarily selected chosen list of 50 entities within the city of
San Fransisco, we sampled the travel time between them for
different departure times. The measures were conducted in
intervals of approximately 10 minutes for 24 hours.

The entities were retrieved using the Yahoo! Local Search
tool. This tool not only retrieved the entities, it also ordered
them according to their rank. We assigned success proba-
bilities to the entities based on their ranking order in the
search results. So, if an entity e1 precedes an entity e2 in
the search result then e1 is assigned a higher probability than
e2. The assigned probabilities are constructed in the range
[0.4, 0.9] using the distribution function e−γ·(i−1) − (1− ph),

where γ = − ln(1+ph−pl)
nr−1

, ph = 0.9, pl = 0.4, nr = 10, and
1 ≤ i ≤ 10 is the position of the entity in the search result.
This represents a behavior that is similar to the well known
“long tail” phenomenon in search.

Our demonstration illustrates typical system usages.5 One
example that can be viewed online6 is of a simple query, con-
taining start and end locations and a request to visit a gas
station on the route between them. Such query illustrates
an example of a TARS query for driving via a gas station
on the way to work and spending 10 minutes there. A more
intricate example is based on Example 1.1 from Section 1.7

We also show how to select the algorithms to be run on
the server. Figure 1 illustrates the state of the query builder
before redirecting the request to the query processor. Fig-
ure 2 shows the results obtained by the query processor when
issuing the GS and MILP algorithms.

Finally, we show how the different SOA components can
be used as standalone components: (1) when creating a col-
lection of queries with their relevant submaps, using the
query builder; (2) when comparing between different TARS
heuristics, by examining the routes each heuristic produced
when applied on a collection of stored queries and submaps;
and (3) when using the query processor as a standalone com-
ponent that generates an XML document representing an
answer to a TARS query.

5. REFERENCES
[1] L. Feifei, C. Dihan, H. Marios, K. George, and

T. Shang-Hua. On trip planning queries in spatial
databases. In SSTD, volume 3633, pages 923–923, 2005.

[2] C. Haiquan, K. Wei-Shinn, S. Min-Te, and Z. Roger.
The partial sequenced route query with traveling rules
in road networks. GeoInformatica, 15:541–569, 2011.

[3] A. Hill and W. Benton. Modelling intra-city
time-dependent travel speeds for vehicle scheduling
problems. JORS, pages 343–351, 1992.

[4] Y. Kanza, R. Levin, E. Safra, and Y. Sagiv. Interactive
route search in the presence of order constraints.
VLDB, 2010.

[5] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi. The
optimal sequenced route query. The VLDB journal,
pages 765–787, 2008.

5See http://db64.cs.technion.ac.il/tars/ for an online demo.
6
http://www.youtube.com/watch?v=j88qsPFiT-4

7
http://www.youtube.com/watch?v=ZcA0xr-huSc

