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P – property of graphs (e.g. 3-col)

Pn – the set of graphs with vertex set [n] 
satisfying P

fP(n) = |Pn| - the speed of P



Example 1:
P: G in P iff G is a clique
for all n: |Pn| = 1

Example 2:
P: G in P iff G is a disjoint union of at most 2 

cliques
for all n: |Pn| = ?



Example 1:
P: G in P iff G is a clique
for all n: |Pn| = 1

Example 2:
P: G in P iff G is a disjoint union of at most 2 

cliques
for all n: |Pn| = 2n-1



P is monotone if it is closed under taking 
subgraphs.

P is hereditary if it is closed under taking induced 
subgraphs.

Being acyclic or planar are monotone properties 
(hence hereditary).

Being a clique is hereditary (but not monotone).



Every hereditary property can be defined by a family 
(possibly infinite) of forbidden induced subgraphs.

For example, being an empty graph is defined by a 
forbidden family:

???

Note: if G is in Pn, then all graphs isomorphic to G are also 
in Pn.

So the size of Pn is at least as the number of non 
isomorphic labelings of G.



Every hereditary property can be defined by a family 
(possibly infinite) of forbidden induced subgraphs.

For example, being an empty graph is defined by a 
forbidden family:

{K2}

Note: if G is in Pn, then all graphs isomorphic to G are also 
in Pn.

So the size of Pn is at least as the number of non 
isomorphic labelings of G.



Amazingly, for hereditary properties,            
if Pn < nn, then P is well determined by its 
speed |Pn|. 



Theorem [Scheinerman and Zito 1994]:
let P be hereditary. Then one of the 

following holds:
(i) For all large enough n, |Pn| is identically 

0,1 or 2.
(ii) |Pn|=Θ(nk) for some positive integer k.
(iii) For some positive c1, c2, c1

n < |Pn| < c2
n.

(iv) For some c > 0, ncn<|Pn|.



Main result:
There is a much finer hierarchy of speeds.

In fact, for properties with |Pn| < n(1+o(1))n, we 
almost precisely determine the functions allowed 
to appear.

Surprisingly, we can describe the types of 
properties which occur at each level.



A slight abuse of growth terms:

Exponential growth:
we write f(n) = O(kn) even if

f(n) = O(ntkn) for some constant t.

Factorial growth:
f(n) is factorial whenever

f(n) > ncn for some constant c.



Canonical property 1:

let G be an infinite graph, define P(G) := {H: H ≤ G}

clearly P(G) is hereditary.

for example, if G = K1,∞, P(G) = {H: H is a star or 
an empty graph}, and |Pn(G)| = ???.



Canonical property 1:

let G be an infinite graph, define P(G) := {H: H ≤ G}

clearly P(G) is hereditary.

for example, if G = K1,∞, P(G) = {H: H is a star or 
an empty graph}, and |Pn(G)| = n+1.



Canonical property 2 (“template” prop.):

Let H be a simple graph with loops allowed, 
over V(H) := {1,…,k}.

Let b,c be functions:
b: V(H) → {1,2,…} U ∞
c: (V

2
(H)) → {1,2,…} U ∞



then P(H,b,c) contains all graphs G, 
s.t. V(G) can be partitioned into {V1,…,Vk} and the following 

holds:

(1) |Vi| ≤ b(i)

(2) G[Vi] is clique if {i,i} is a loop in H and it is an empty 
graph otherwise.

(3) If {i,j} in E(H), then the order of G[Vi,Vj] ≤ c({i,j}). 
Otherwise, the order of the bipartite complement of 
G[Vi,Vj] ≤ c({i,j}). 



For example, P(K2,∞,∞) is the collection of 
bipartite graphs.

What is P(H,1,1) ???

In general, P(H,b,c) is hereditary.



For example, P(K2,∞,∞) is the collection of 
bipartite graphs.

What is P(H,1,1) : subgraphs of H

In general, P(H,b,c) is hereditary.



Lemma:
Let H be a graph on k+1 vertices and x be
one of them. If c≡1, b(v)=1 for all vertices
except x, and b(x)=∞, then 

|Pn(H,b,c)|=O(nk)
Proof:
Let G be a graph in Pn(H,b,c). G is completely
defined by the labels that appear on vertices other
than v=b-1(∞). There are at most (n

k)k! ways to
label those vertices.



Why canonical properties are important?

Minimal properties with |Pn|<nn, can be 
expressed as canonical properties with 
appropriate H,b, and c.

(Minimal property: every its sub-property has 
a smaller order of growth).



Polynomial growth:

If |Pn| is bounded then |Pn|≤2 and P is one of: {}, 
{Kn}, {En}, {Kn,En} [Scheinerman and Zito].

If |Pn|≥3, then there is G in Pn which is neither 
empty nor complete.

There is v with d(v),đ(v)≥1. Hence there are ≥n-1 
ways to choose v’s neighborhood.

Lemma: if |Pn| ≥3 then |Pn| ≥n-1



We write x~y when Γ(x)\{y} = Γ(y)\{x}.

We call the equivalence classes of ~ the 
homogeneous sets.

Note: if x~y then x and y are in the same 
orbit of the automorphism group. In 
addition, the homogeneous sets span 
either a clique or an empty graph.



Note: if x~y in G, then G-x and G-y are 
isomorphic.

How about the converse?



Note: if x~y in G, then G-x and G-y are isomorphic.

How about the converse?

G

G-x

G-y



Suppose V(G)=A U B, and B is a homogeneous set (note, every v in
A…). 

If A is of minimal order, then A is called the head and B the body of G 
(if |A|=0…)

Lemma 5: If G has a head with <V(G)/2 vertices, then G has a unique 
head.

Proof: assume two heads H1,H2<V(G)/2. 
(V(G)\H1)∩(V(G)\H2)=V(G)\(H1UH2)≠Φ. 

Let B=(V(G)\H1)U(V(G)\H2)=V(G)\(H1∩H2). 

For all x1 in V(G)\H1, x2 in V(G)\H2 and x in V(G)\(H1UH2), we have 
x1~x~x2 and by transitivity, B is a head (contradicting the minimality
of H1).



Our purpose: 

prove that if |Pn|=Θ(nk) 
then every G (large enough) that satisfies P
has an unique head of size k.



Lemma 6: 

If |Pn| has O(nk) growth, then for large 
enough n, if G is in Pn then every vertex of 
G has a degree or a codegree at most k.

Proof: (n
d(

-
x)

1)>cnk



Lemma: Given a graph G, either G or its complement has ≤2k vertices 
with degree ≤k.

Proof:Suppose that the graph G is a counterexample. Clearly then
|V(G)|≥4k+2. 
Let A be a subset of [x in V(G) : d(x)≥k] 
and B subset of [x in V(G) : dc(x)≥k]
such that |A|=|B|=2k+1.
By the definition of A, between A and B there are at most |A|k edges.
By the definition of B, between A and B there are at most |B|k non-
edges.
Between A and B there are |A||B| places for edges, so |A||B|≤(|A|+|B|)k
and 2k+1=|A|≤2k.



Without loss of generality, suppose G
contains at most 2k vertices with codegree at most k. 

Let T denote that vertex set, and let G* denote the graph
that we get from G by deletion of T.

By Lemma 6 we could choose N sufficiently large that each
vertex in G* has degree at most k. 

Let Mt=tK2 , the graph consisting of t disjoint edges.

The next two lemmas constrain the edges of G*. 



Lemma 8: If G* has at least f(k, t)=(2(k-1)2+1)(t-1)+1 edges,
then it contains an induced Mt .

Proof: Suppose G* contains more than f(k, t) edges. Pick an arbitrary
edge (u1,v1) from E(G*). Then choose another edge (u2,v2) from E(G*)
such that both u2,v2 are not in Γ(u1)U Γ(v1). Continue choosing edges; 
Because for each vertex x we have |Γ(x)|≤k, we remove at each step at
most |Γ(uj)UΓ(vj)|(k-1)+1≤(2k-2)(k-1)+1 edges from the set of
edges we can choose, and after t-1 steps there is still at least one edge
left.

So we have independent edges (u1,v1)…(ut, vt) which span an Mt.



Lemma 9: There exists an m, independent from n 
and G, such that the number of edges in G* is at 
most m.

Proof: Assume that there is no such m. There is an N and a 
constant c such that for each n>N, we have |Pn|<cnk<(n/2)!. 
Since the number of edges in G* is unbounded, there is a
G in P such that G* has at least f(k,N) edges. 
By the previous lemma G contains an induced MN. Since P
is hereditary, MN is in P2N, but there are >N! ways to
label a graph MN, so |P2N|>c(2N)k. 
Hence m=f(k, N) will work as a bound on number of edges.



Theorem 10: If |Pn| has O(nk) order growth, then there is 
an integer N such that, if n>N and G is in Pn, then G has 
a unique head A. Furthermore, |V(A)|≤k.

Proof. Let G be in Pn and define G* and T as before. We 
partition the vertices of G into two sets. 

Let A=[x in V(G) : x in T, x is not an isolated vertex in G*, 
or T\Γ(x)≠Φ]. 

Let B=V(G)\A. Then B is a homogeneous set, because it is 
an independent set and each x in B is adjacent to every 
element of T and to no element of G\T. 

So if n is big enough, then, by Lemma 5, A is the unique 
head of G. Hence |A|≤k since there are at least O(n|A|) 
ways to label G. 



Note: If we initially assumed that G contains 
at most 2k vertices with degree (rather 
then codegree) k, then B would be a 
complete subgraph of G, but the rest of 
the argument remains the same.



We shall need the following lemma to establish a lower bound on the 
polynomials.

Lemma 11: If |Pn|=0(nk), then for each sufficiently large n, there is G in Pn

with a head of order k.

Proof: If for every n there is an N>n such that PN has a graph with a head
of order k, then since P is hereditary Pn contains such a graph as well.
So assume not. Then for n large enough each G in Pn has head of size
at most k-1. 
To maximize |Pn|, we allow every graph with a head of order at most k-1.
There are at most (nk-1)2k-12k(k-1) different graphs for a head of order k-1,
two choices for the homogeneous set (independent or clique), and each
vertex of the head is either adjacent or not adjacent to every vertex of
the homogeneous set. 

So, summing for all head sizes 0<i<k,  |Pn|=O(nk-1).
Corollary: 

if |Pn| has a smaller speed than O(nk), then it has speed O(nk-1).



Theorem 13. For k>1, let Lk and Uk be properties defined 
as follows:
Lk={G : G contains a clique with order at most k and the 
remaining vertices are isolated}
and Uk={G : in G all but at most k vertices are G-equivalent}

If P is a property with |Pn|=Θ(nk), then, for sufficiently large 
values of n, |Ln

k| ≤ |Pn| ≤ |Un
k|,

where |Ln
k|=(n

k)+…+(n
2)+1 

and |Un
k| ≤ 1/k! (2k(k+1)+1) nk.



We can now describe, using the canonical 
properties P(H,b,c),  exactly what properties with 
polynomial growth look like.

Let A be a simple graph. Any graph H which has 
one more vertex than A and has a vertex 
identified so that removing that vertex leaves a 
graph isomorphic to A will be said to be of the 
form A*{x}.

We allow a loop at x but at no other vertex.



Consider a graph G in a property P with growth |Pn|=Θ(nk). 

We are going to build a canonical property P(H, b, c) containing G.

By Theorem 10, G has a unique head of order at most k. We define the 
type graph of G as a graph A*{x}, where A is the head, and we let xy be 
an edge in  E(A*{x}) iff y is adjacent to the homogeneous set of G.

Hence the type graph A*{x} of G has a loop at x if and only if the 
homogeneous set of G is a clique in G.

Clearly the type graph is well-defined and captures the structure of G. 
Further,with b(a)=1 for all vertices a of the head A and b(x)=∞, and with 
c≡1, thecanonical property P(A*{x}, b, c) contains G. 

Thus we call (A*{x}, b, c) the type of G.



Recall that |Pn(A*{x}, b, c)| has polynomial 
order growth. 

These properties, in fact, form the basis for 
all properties with polynomial order growth.



Theorem 14: If |Pn|=O(nk), then there exist graphs 
A1*{x1}, ..., Ar*{xr} such that, for n sufficiently large, 

Ui
r
=1 Pn(Ai*{xi}, bi, 1)=Pn

where bi(Ai)≡1 and bi(xi)=∞ for all i.

Proof: By Theorem 10, for sufficiently large n, every G in Pn has a
unique head of order at most k. Since there are a finite number of 
graphs of order at most k, 2k choices for how the body is connected to 
the head, and two choices for the loop at x, there are a finite number of 
types in P.
Each of these types are of the form (A*{x}, b, 1), where b(A)≡1 and
b(x)=∞.



Two properties P and Q are equivalent if 
their symmetric difference is finite.

That implies that there exists an N such that 
Pn=Qn for all n>N.

Corollary: For each k > 0, there are only a 
finite number of non-equivalent hereditary 
properties with polynomial order growth 
Θ(nk).



The minimal properties with polynomial growth turn out to 
be exactly the canonical properties with proper order
growth. 
For the polynomial order, since we have shown that all
properties have polynomial growth, a minimal property shall 
be one in which all proper subproperties have a lower order 
polynomial growth.

Lemma 17. The minimal properties for speed Θ(nk) are 
those which consist of exactly one type, i.e., P(A*{x}, b, 1) 
where (A*{x}, b, 1) is a polynomial order type.



Lemma 17. The minimal properties for speed Θ(nk) are 
those which consist of exactly one type, i.e., P(A*{x}, b, 1) 
where (A*{x}, b, 1) is a polynomial order type.

Proof. It is clear that a property which contains more than one type (of
order nk) can not be minimal. So we only need to show that given a
type (A*{x}, b, 1), the property P=P(A*{x}, b, 1) is minimal. 
Suppose |Pn|=O(nk) and let P’<P. 
We need to prove |P’n|=O(nk-1).
By Theorem 14, for large n, there are types {(Ai*{xi}, bi, 1)} such that 
define  P’n.

Since P’<P, Ai ≠A for all i. 
Hence Ai<A for each i. That is, |Ai|<k, so |P’n|=O(nk-1).


