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Overview

We want to combine

• Second Order Logic and

• BSS-computations

to define a general class of graph polynomials.

1



Graph polynomials, 238900-05/6 Lecture 11, SOL-polynomials

SOL-formulas, I: Variables and Interpretations

We have variables

• vi for each i ∈ N.

These are individual variables.

• Ur,i for ech r, i ∈ N, r ≥ 1.

These are relation variables. r is the arity of Ur,i.

We denote the set of variables by VAR.

Given a non-empty but finite set A, an A-interpretation is a map

IA : VAR → A ∪
⋃

r

P(Ar)

such that IA(vi) ∈ A and IA(Ur,i) ⊆ Ar.
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SOL-formulas, II: Atomic Formulas and their meaning

Atomic formulas are of the form

• (vi ' vj) with set of free variables {vi, vj}.

• Ur,j(vi1, vi2, . . . , vir) with set free variables {Ur,j} ∪ {vim : 1 ≤ m ≤ r}.

The meaning function M is a function which assigns to a formula and an
A-interpretation its truth value, i.e.

M : Formulas × Interpretations → {0,1}

M is defined inductively. For atomic formulas we put

• M((vi ' vj), IA) = 1 iff IA(vi) = IA(vj).

• M(Ur,j(vi1, vi2, . . . , vir), IA) = 1 iff (IA(vi1), IA(vi2), . . . , IA(vir)) ∈ IA(Ur,j).
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SOL-formulas, III: Formulas

We define now inductively the set of SOL-formulas SOL.
If φ ∈ SOL we denote by free(φ) its set of free variables.

• Atomic formulas φ are in SOL with free(φ) as defined before.

• If φ1 and φ2 are in SOL then φ of the form
(φ1 ∨ φ2),
(φ1 ∧ φ2) or
(φ1 → φ2)
is in SOL with free(φ) = free(φ1) ∪ free(φ2).

• If φ1 is in SOL then φ = ¬φ1 is in SOL with free(φ) = free(φ1).

• If φ1 is in SOL then φ of the form
∃vjφ, ∀vjφ,
is in SOL with free(φ) = free(φ1) − {vj}.

• If φ1 is in SOL then φ of the form
∃Ur,jφ or ∀Ur,jφ
is in SOL with free(φ) = free(φ1) − {Ur,j}.
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SOL-formulas, IV: Formulas and their meaning

The meaning function for formulas is defined as usual.

• For φ = ¬φ1 we put M(¬φ1, IA) = 1 −M(φ1, IA).

• For each of the binary boolean connectives • ∈ {∧,∨,→, } we have the
corresponding truth table T•.
We put M((φ1 • φ2), IA) = T•(M(φ1, IA),M(φ2, IA)).

• Let V ∈ VAR. For φ = ∃V φ1 we put M(φ, IA) = 1 iff there is an A-
Interpretation JA such that for all variables different from V
the interpretations IA and JA coincide, and such that M(φ1, JA) = 1.

• Let V ∈ VAR. For φ = ∀V φ1 we put M(φ, IA) = 1 iff for every A-
Interpretation JA such that for all variables different from V
the interpretations IA and JA coincide, we have M(φ1, JA) = 1.
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Satisfiability and SOL-consequence

The standard notions of logic apply here as well.
Note we have restricted our interpretations of SOL to finite sets.

• A set of formulas Σ is f-satisfiable if there is an A-interpretation IA with
A finite such that for all φ ∈ Σ we have M(φ, IA) = 1.

• A formula ψ f-follows from a set of formulas Σ, denoted by Σ |=f ψ, if
for every A-interpretation IA with A finite such that for all φ ∈ Σ we have
M(φ, IA) = 1 we have also M(ψ, IA) = 1.

• If τ ⊂ VAR, we call A-interpretations restricted to τ also τ-structures or
τ-models.
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SOL-polynomials SOL(R), I: Indeterminates

Let R be a commutative ring
with addition, multiplication,
and neutral elements 0 for addition and 1 for multiplication.

We first define the set of indeterminates X.
Our indeterminates depend on variables in VAR.

• For each i ∈ N

Xi is an indeterminate in X.

• For each finite sequence of variables V̄ = (V1, V2, . . . , Vk) ∈ VAR
k

and i ∈ N XV̄ ,i is an indeterminate in X.

• free(Xi) = ∅.
free(XV̄ ,i) = {V1, V2, . . . , Vk}
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SOL-polynomials SOL(R), II: Terms T(R)

• Each a ∈ R is a term of T(R) with free(a) = ∅.

• Each indeterminate Xi and XV̄ ,i ∈ X is a term of T(R) with free(Xi) = ∅
and free(XV̄ ,i) = {V1, V2, . . . , Vk}

• If t1 and t2 are in T(R) so are t1 + t2 and t1 · t2.
free(t1 + t2) = free(t1 · t2) = free(t1) ∪ free(t2).

• If φ is a SOL-formula, tv(φ) is a term in T(R)
and free(tv(φ)) = free(φ).
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SOL-polynomials SOL(R), III: Terms T(R)

Let φ, ψ be SOL-formulas and s, t, be terms of T(R).

• If v̄ = (vi1, vi2, . . . vim) is a vector of individual variables, then
∑

v̄:φ

s(v̄) and
∏

v̄:φ

s(v̄)

are terms with set of free variables free(s) ∪ free(φ) − {vi1, vi2, . . . vim}

• If V̄ = (V1, V2, . . . Vm) is a vector of individual and relation variables, then
∑

V̄ :ψ

t(V̄ )

is a term with set of free variables free(t) ∪ free(φ) − {V1, V2, . . . Vm}.

Here summation and multiplication act like quantifiers.

We do not allow products over the range of relation variables.
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SOL-polynomials SOL(R), IV: Substitution of free variables.

Let θ(v1, . . . , vr) be a formula with vk ∈ free(θ) for 1 ≤ k ≤ r.
Let Ur,j be an r-ary relation variable, and vi be an individual variable.
Furthermore, let t be a term in T(R).

• Let t1 be the term
∑

vi:vi=vk

t

is a term with free(t1) = (free(t) − {vi}) ∪ {vk}.

• If Ur,j 6∈ free(θ), then the term t1 given by

t1 =
∑

Ur,j:∀v̄(Ur,j(v̄)↔θ(v̄))

(t)

is a term with free(t1) = (free(t) ∪ free(θ)) − {Ur,j, v1, . . . , vr}.

The sum has only one term in each case, so the sum has only the effect of

changing the free variables in t.
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Evaluation of SOL-polynomials SOL(R)

If an A-interpretation IA is given, each term t ∈ T(R) has a natural interpre-
tation as a polynomial in R[X].

• If φ has no free variables and φ is a tautology,
i.e. ¬φ is not satisfiable,
then

∑

v:φ t =
∏

v:φ t = t.

• If φ has no free variables and φ is a contradiction, i.e. φ is not satisfiable,
then

∑

v:φ t = 0 and
∏

v:φ t = 1.

• If for t ∈ T(R) we have τ = free(t) then we speak of a τ-polynomial,
which is an invariant of τ-structures.

• If for t ∈ T(R), τ just contains one binary relation symbol,
t is a graph polynomial.

We denote this interpretation by P(t, IA).
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Equivalence of terms of T(R)

Let t1, t2 ∈ T(R) be two terms.

• t1 and t2 are equivalent over R if
for every A-interpretation IA we have P(t1, IA) = P(t2, IA).

We write t1 ∼R t2.

• φ and ψ are logically equivalent iff tv(φ) and tv(ψ) are equivalent over R
for every ring R.

• t1 induces t2 over R if for any two interpretations IA and IB such that
P(t1, IA) = P(t1, IB) we also have P(t2, IA) = P(t2, IB).

We write t1 |=R t2.
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Undecidability of equivalence

We have seen in the second lecture:

Theorem:

• Equivalence between terms t1 ∼R t2 is undecidable over every ring R.

• The induction relation t1 |=R t2 is undecidable over every ring R.

• The same holds even when terms are restricted to those with one free
binary relation variable.
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SOL-monomials

We define inductively the SOL-monomials.

• Ring elements a and indeterminates XV̄ are SOL-monomials.

• For every SOL-formula φ the term tv(φ) is an SOL-monomial.

• The product of two SOL-monomials t1 and t2 is an SOL-monomial.

• If t1 is a SOL-monomial, φ is an SOL-formula and v̄ is a sequence of
individual variables then

∏

v̄:φ

t

is an SOL-monomial.
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Summation Normal Form (SNF)

We define inductively the the terms in Summation Normal Form SNF.

• SOL-monomials are in SNF.

• If y1 and t2 are in SNF, so is t1 + t2.

• If t1 is in SNF, φ is an SOL-formula and v̄ is a sequence of individual
variables, then so is

∑

v̄:φ

t

• If t1 is in SNF, ψ is an SOL-formula and V̄ is a sequence of individual or
relation variables, then so is

∑

V̄ :ψ

t
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SNF-Theorem for terms in T(R)

Theorem:

For every term t in T(R) there is a term t1 in T(R) in SNF such that

• t ∼R t1 for every ring R.

• free(t) = free(t1)
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Proof of the SNF-Theorem, I

Recall that JI denotes the set of function f : I → J.

We first observe the following:

Lemma 1: Let ti,j be terms with i ∈ I and j ∈ J. Then
∏

i∈I

∑

j∈J

ti,j =
∑

F∈J I

∏

i∈I

ti,F (i)

Q.E.D.

We want to analize this for J = P(I).

Lemma 2: There is a one-one correspondence between P(I)I and P(I × I).

Proof:

If R ⊆ I × I we define a function FR : I → P(I) by

FR(i) = {j ∈ I : (i, j) ∈ R}

In the other direction, if F : I → P(I), we define RF ⊆ I × I by

RF = {(i, j) ∈ I2 : i ∈ I, j ∈ F(i)}

Q.E.D.
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Proof of the SNF-Theorem, II

It is enough to prove it for products of terms in SNF.

We spell out the details for v̄ = (v) and Ū = (U1,1) = (U).

Lemma 3: Let

tv =
∑

U :ψ(v,U)

s(v, U).

and W2,1 = W 6∈ free(tv). Then

∏

v:φ(v)

tv =
∏

v:φ(v)





∑

U :ψ(v,U)

s(v, U)



 =
∑

W :





∑

U :∀u(U(u)↔∃wW (u,w))





∏

v:φ(v)∧ψ(v,U)

s(v, U)









Proof: Use Lemma 2 with J = P(I) and the fact that the innermost sum ist
just there to change the arity of the variable of summation.

Q.E.D.
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Proof of the SNF-Theorem, III

The general case looks as follows.

Lemma 4: Let

Ū = (Ur1,1, . . . , Urm,m), v̄ = (v1, . . . , vk), W̄ = (Wr1+k,1, . . . ,Wrm+k,m)

and

tv̄ =
∑

Ū :ψ(v̄,Ū)

s(v̄, Ū).

Then

∏

v̄:φ(v̄)

t(v̄) =
∏

v̄:φ(v̄)





∑

Ū:ψ(v̄,Ū)

s(v̄, Ū)



 =

∑

W̄ :







∑

Ū:
∧m

i=1
(∀ū(Uri,i

(ū)↔∃w̄Wri+k,i(ū,w̄)))





∏

v̄:φ(v̄)∧ψ(v̄,Ū)

s(v̄, Ū)











Q.E.D.
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Coding finite structures in the ring, I: ring assignments.

Let z : X → R be a function which gives each indeterminate in X a value in
the ring R.

If z additionally satisfies

• For all but finitely many Xvi ∈ X we have z(X) = 0.

• For all i ∈ N, if z(Xvi) = 0 then also z(Xvi+1
) = 0.

• The set {(i, j) ∈ N2 : z(Xvi,vj) 6= 0} is the graph of a unary function with
domain {vi : i ∈ N}.

• For all individual variables v̄ = (v1, v2, . . . , vr) and all Ur,j we have that if
z(Xv̄, Ur,j) 6= 0 then for all 1 ≤ i ≤ r, z(Xvi) 6= 0.

then z is called a ring assignment wra.

If z : X → {0,1} ⊂ R then it is called discrete ring assignment dra.
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Coding finite structures in the ring, II: The structure A(z)

We define an A-interpretation IA(z) : VAR → A ∪
⋃

r P(Ar) as follows:

• The universe is the set

A(z) = A = {i ∈ N : z(Xvi) 6= 0}

• Each individual variable vi is interpreted by

IA(z)(vi) = j iff z(Xvi,vj) 6= 0

• Each relation variable Ur,j is interpreted by

IA(Ur,j) = {(i1, i2, . . . , ir) ∈ N
r : z(Xvi1,vi2 ,...,vir ,Ur,j

) 6= 0}
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SOL-polynomials and BSS-programs.

Given a ring assignment z and its corresponding IA(z)-interpretation, and an
SOL-polynomial t ∈ T(R),

•

22



Graph polynomials, 238900-05/6 Lecture 11, SOL-polynomials

Complexity classes for SOL-polynomials.

TEXT

•
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