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Overview

We want to combine
e Second Order Logic and

e BSS-computations

to define a general class of graph polynomials.
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SOL-formulas, I: Variables and Interpretations

We have variables

e v; for each 7 € N.

These are individual variables.

e U,;, forech r,i e Njr > 1.

These are relation variables. r is the arity of U,.;.

We denote the set of variables by VAR.
Given a non-empty but finite set A, an A-interpretation is a map
I, : VAR — Au| P(A7)

such that I4(v;) € A and I4(U,;) C A".
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SOL-formulas, II: Atomic Formulas and their meaning

Atomic formulas are of the form
e (v; ~ v;) with set of free variables {v;,v;}.
o U, ;(vi,vi,...,v;) with set free variables {U, ;} U{v; 11 <m <r}.

The meaning function M is a function which assigns to a formula and an
A-interpretation its truth value, i.e.

M : Formulas x Interpretations — {0, 1}

M is defined inductively. For atomic formulas we put
] M((’UZ ~ ’Uj),IA) = 1 iff IA(’UZ') = IA(’U]').

o MU ;j(viy,vis, .-, 0i), L) = 1 IfF (La(wi,), La(vir), - -, Ta(vi)) € Ta(Ury).
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SOL-formulas, III: Formulas

We define now inductively the set of SOL-formulas SOL.
If ¢ € SOL we denote by free(¢) its set of free variables.

e Atomic formulas ¢ are in SOL with free(¢) as defined before.

e If »1 and ¢- are in SOL then ¢ of the form
(41 V 92),
(¢1 A ¢2) or

(¢1 — ¢2)
is in SOL with free(¢) = free(¢1) U free(¢pr).

o If ¢1 is in SOL then ¢ = —¢1 is in SOL with free(¢) = free(¢1).

o If ¢1 is in SOL then ¢ of the form
E|Uj¢, \V/’qub,
is in SOL with free(¢) = free(¢1) — {v;}.

e If ¢1 is in SOL then ¢ of the form
U, j¢ or VU, ;j¢
is in SOL with free(¢) = free(¢1) — {U,;}.
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SOL-formulas, IV: Formulas and their meaning

The meaning function for formulas is defined as usual.
o For ¢ = —¢1 we put M(=¢1,14) =1 — M(¢1,14).

e For each of the binary boolean connectives o € {A,V,—,} we have the

corresponding truth table T,.
We put M((¢1 e ¢2),14) = Te(M(¢1,14), M(¢2,14)).

e Let V € VAR. For ¢ = IV¢p; we put M(¢p,I1,) = 1 iff there is an A-
Interpretation J4 such that for all variables different from V
the interpretations I4 and J4 coincide, and such that M (¢1,J4) = 1.

e Let V € VAR. For ¢ = VV¢1 we put M(¢,I,) = 1 iff for every A-
Interpretation J4 such that for all variables different from V
the interpretations I4 and J4 coincide, we have M(¢1,J4) = 1.
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Satisfiability and SOL-consequence

The standard notions of logic apply here as well.
Note we have restricted our interpretations of SOL to finite sets.

e A set of formulas X is f-satisfiable if there is an A-interpretation I, with
A finite such that for all ¢ € > we have M(¢,1,) = 1.

e A formula ¢ f-follows from a set of formulas X, denoted by > |=¢ v, if
for every A-interpretation I4 with A finite such that for all ¢ € > we have
M(¢p,14) =1 we have also M (¢, 14) = 1.

o If 7 C VAR, we call A-interpretations restricted to = also r-structures or
T-models.
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SOL-polynomials SOL(R), I: Indeterminates

Let R be a commutative ring
with addition, multiplication,
and neutral elements O for addition and 1 for multiplication.

We first define the set of indeterminates X.
Our indeterminates depend on variables in VAR.

e For each 7 &€ N
X; is an indeterminate in X.

e For each finite sequence of variables V = (V1,V5,..., V) € VARF
and ¢ € N Xy, is an indeterminate in X.

o free(X;) = 0.
free(Xy ;) = {V1,V2,..., Vi}
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SOL-polynomials SOL(R), II: Terms T(R)

e Each a e R is a term of T(R) with free(a) = 0.

e Each indeterminate X; and Xy, € X is a term of T(R) with free(X;) =0
and free(Xy,;) = {V1,V2,..., Vi}

e If t1 and tp are in T(R) so are t1 + t> and ¢1 - to.
free(t1 + t2) = free(ty - t2) = free(t1) U free(tz).

e If ¢ is a SOL-formula, tv(¢) is a term in T(R)
and free(tv(¢)) = free(o).
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SOL-polynomials SOL(R), III: Terms T(R)

Let ¢,¢ be SOL-formulas and s,t, be terms of T(R).

o If v = (v;,v;,...v; ) IS a vector of individual variables, then
Y s(®)  and IE®
R vig
are terms with set of free variables free(s) U free(¢) — {vi,, vi,, ... vi, }

o If V=_»1,Vo,...V,) is a vector of individual and relation variables, then
> t7)
Vi
is a term with set of free variables free(t) U free(¢) — {Vi, Va,... Vi }.

Here summation and multiplication act like quantifiers.

We do not allow products over the range of relation variables.
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SOL-polynomials SOL(R), IV: Substitution of free variables.

Let 6(v1,...,v,) be a formula with v, € free(8) for 1 <k <r.
Let U,,; be an r-ary relation variable, and v; be an individual variable.
Furthermore, let ¢t be a term in T(R).

e Let t1 be the term

>t

V; V=V

is a term with free(t1) = (free(t) — {v;}) U {vx}.

o If U,; & free(8), then the term ¢; given by
t1 = > (t)
U, V5(U,,;(5)—0(7))
is a term with free(t1) = (free(t) U free(8)) — {Ur; ,v1,...,0r}.

The sum has only one term in each case, so the sum has only the effect of
changing the free variables in t.

10
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Evaluation of SOL-polynomials SOL(R)

If an A-interpretation I4 is given, each term t € T(R) has a natural interpre-
tation as a polynomial in R[X].

e If ¢ has no free variables and ¢ is a tautology,
i.e. ¢ is not satisfiable,

then > ,t=1[4t=t.

e If ¢ has no free variables and ¢ is a contradiction, i.e. ¢ is not satisfiable,
then > ,t=0and [] ,t=1.

o If for t € T(R) we have 7 = free(t) then we speak of a r-polynomial,
which is an invariant of r-structures.

o If for t € T(R), 7 just contains one binary relation symbol,

t is a graph polynomial.

We denote this interpretation by P(¢, 14).

11
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Equivalence of terms of T(R)

Let t1,to € T(R) be two terms.

e t1 and t, are equivalent over R if
for every A-interpretation I, we have PB(t1,14) = P(t2,14).

We write t1 ~g to.

e ¢ and 1 are logically equivalent iff tv(¢) and tv(y) are equivalent over R
for every ring R.

e {1 induces t> over R if for any two interpretations I4 and Ig such that
V(t1,14) = P(t1,Ig) we also have P(to2, [4) = P(to, IB).
We write t; |:R to.

12
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Undecidability of equivalence

We have seen in the second lecture:

Theorem:

e Equivalence between terms t1 ~x to IS undecidable over every ring R.
e The induction relation t; = t> is undecidable over every ring R.

e T he same holds even when terms are restricted to those with one free
binary relation variable.

13
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SOL-monomials

We define inductively the SOL-monomials.
e Ring elements a and indeterminates X; are SOL-monomials.
e For every SOL-formula ¢ the term tv(¢) is an SOL-monomial.
e T he product of two SOL-monomials ¢t; and ¢> is an SOL-monomial.

o If t1 is a SOL-monomial, ¢ is an SOL-formula and v is a sequence of
individual variables then
11
v

is an SOL-monomial.

14
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Summation Normal Form (SNF)

We define inductively the the terms in Summation Normal Form SNF.
e SOL-monomials are in SNF.
e If y1 and t> are in SNF, so is t; + to.

e If t1 is in SNF, ¢ is an SOL-formula and v is a sequence of individual
variables, then so is
L
IR0

e If t1 isin SNF, v is an SOL-formula and V is a sequence of individual or
relation variables, then so is
2t
Vi

15
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SNF-Theorem for terms in T(R)

Theorem:

For every term ¢ in T(R) there is a term ¢; in T(R) in SNF such that
o t ~p t1 fOr every ring K.

o free(t) = free(t1)

16
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Proof of the SNF-Theorem, 1

Recall that J! denotes the set of function f: 1 — J.
We first observe the following:
Lemma 1: Let ¢;; be terms with 2 € I and 5 € J. Then

11> ti=> Iltire

i€l jeJ FeJ'iel
Q.E.D.

We want to analize this for J = P(I).

Lemma 2: There is a one-one correspondence between P(I)! and P(I x I).

Proof:

If RC I x I we define a function Fr: I — P(I) by

Fr(i) ={j €1:(ij) € R}
In the other direction, if F: I — P(I), we define Rp C I x I by
Rr={(@,j) €I?:iecl, jec F@G)}
Q.E.D.
17
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Proof of the SNF-Theorem, II

It is enough to prove it for products of terms in SNF.
We spell out the details for v = (v) and U = (U11) = (U).

Lemma 3: Let

ty = Z s(v,U).

U:b(v,U)
and Wy 1 =W & free(t,). Then

H ty = H Z s(v,U) :Z Z H s(v,U)

v:p(v) vip(v) \U:y(v,U) W U:NVu(U(u)—=TJwW (u,w)) \v:i¢g(v)AY(v,U)

Proof: Use Lemma 2 with J = P(I) and the fact that the innermost sum ist
just there to change the arity of the variable of summation.

Q.E.D.
18
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Proof of the SNF-Theorem, III

The general case looks as follows.
Lemma 4: Let

U — (Ur1,17 c ooy Urm,m)y v = (’Ul, “ e ,’Uk), V_V — (er—l—k,b c ooy Wrm#—k,m)
and

Then

1] t@® = ]] Y s@0) | =

v:6(0) vip(v) \U:(9,0)

> > M +co

W \T: N\ (Va(U,, (@) = 3W,,11:(1,)))  \D:@(0)AP([@,0)

Q.E.D.
19
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Coding finite structures in the ring, I. ring assignments.

Let 3 : X — R be a function which gives each indeterminate in X a value in
the ring R.

If 3 additionally satisfies
e For all but finitely many X,, € X we have 3(X) = 0.
e For all i e N, if 3(X,,) = 0 then also 3(X,,,) = 0.

e The set {(i,75) € N2 : 3(X,,0,) 7 0} is the graph of a unary function with
domain {v; : i € N},

e For all individual variables v = (v1,v2,...,v,) and all U,; we have that if
5(X5,U.;) # 0 then for all 1 <i<r, 3(X,,) # 0.

then 3 is called a ring assignment wra.

If 3: X — {0,1} C R then it is called discrete ring assighment dra.
20
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Coding finite structures in the ring, II: The structure 2A(3)

We define an A-interpretation 14(3) : VAR — AU/, P(A") as follows:

e [ he universe is the set

AG) = A={ieN:3(X,) # 0}

e Each individual variable v; is interpreted by

I4(3)(vi) = j iff 3(Xy0,) =0

e Each relation variable U, ; is interpreted by

IA(UT,j) — {(7:17?:27 s 72:7‘) S NT : 3(Xvilavizr"vvimUT,j) # O}

21
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SOL-polynomials and BSS-programs.

Given a ring assignment 3 and its corresponding I4(3)-interpretation, and an
SOL-polynomial t € T(R),

22
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Complexity classes for SOL-polynomials.

TEXT

23
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