Overview

We want to combine

- Second Order Logic and
- BSS-computations

to define a general class of graph polynomials.

SOL-formulas, I: Variables and Interpretations

We have variables

• v_i for each $i \in \mathbb{N}$.

These are **individual variables**.

• $U_{r,i}$ for ech $r, i \in \mathbb{N}, r \geq 1$.

These are **relation variables**. r is the arity of $U_{r,i}$.

We denote the set of variables by VAR.

Given a **non-empty** but **finite** set A, an A-interpretation is a map

$$I_A: \mathbf{VAR} \to A \cup \bigcup_r P(A^r)$$

such that $I_A(v_i) \in A$ and $I_A(U_{r,i}) \subseteq A^r$.

SOL-formulas, II: Atomic Formulas and their meaning

Atomic formulas are of the form

- $(v_i \simeq v_j)$ with set of free variables $\{v_i, v_j\}$.
- $U_{r,j}(v_{i_1}, v_{i_2}, ..., v_{i_r})$ with set free variables $\{U_{r,j}\} \cup \{v_{i_m} : 1 \le m \le r\}$.

The **meaning function** M is a function which assigns to a formula and an A-interpretation its truth value, i.e.

M: Formulas × Interpretations \rightarrow {0, 1}

 ${\cal M}$ is defined inductively. For atomic formulas we put

• $M((v_i \simeq v_j), I_A) = 1$ iff $I_A(v_i) = I_A(v_j)$.

• $M(U_{r,j}(v_{i_1}, v_{i_2}, \ldots, v_{i_r}), I_A) = 1$ iff $(I_A(v_{i_1}), I_A(v_{i_2}), \ldots, I_A(v_{i_r})) \in I_A(U_{r,j}).$

SOL-formulas, III: Formulas

We define now inductively the set of *SOL*-formulas **SOL**. If $\phi \in$ **SOL** we denote by $free(\phi)$ its set of free variables.

• Atomic formulas ϕ are in **SOL** with $free(\phi)$ as defined before.

• If
$$\phi_1$$
 and ϕ_2 are in SOL then ϕ of the form
 $(\phi_1 \lor \phi_2)$,
 $(\phi_1 \land \phi_2)$ or
 $(\phi_1 \to \phi_2)$
is in SOL with $free(\phi) = free(\phi_1) \cup free(\phi_2)$.

- If ϕ_1 is in SOL then $\phi = \neg \phi_1$ is in SOL with $free(\phi) = free(\phi_1)$.
- If ϕ_1 is in SOL then ϕ of the form $\exists v_j \phi, \forall v_j \phi,$ is in SOL with $free(\phi) = free(\phi_1) - \{v_j\}.$
- If ϕ_1 is in SOL then ϕ of the form $\exists U_{r,j}\phi$ or $\forall U_{r,j}\phi$ is in SOL with $free(\phi) = free(\phi_1) - \{U_{r,j}\}.$

SOL-formulas, IV: Formulas and their meaning

The meaning function for formulas is defined as usual.

- For $\phi = \neg \phi_1$ we put $M(\neg \phi_1, I_A) = 1 M(\phi_1, I_A)$.
- For each of the binary boolean connectives ∈ {∧, ∨, →, } we have the corresponding truth table T_•.
 We put M((φ₁ φ₂), I_A) = T_•(M(φ₁, I_A), M(φ₂, I_A)).
- Let $V \in VAR$. For $\phi = \exists V \phi_1$ we put $M(\phi, I_A) = 1$ iff there is an A-Interpretation J_A such that for all variables different from Vthe interpretations I_A and J_A coincide, and such that $M(\phi_1, J_A) = 1$.
- Let $V \in VAR$. For $\phi = \forall V \phi_1$ we put $M(\phi, I_A) = 1$ iff for every A-Interpretation J_A such that for all variables different from V the interpretations I_A and J_A coincide, we have $M(\phi_1, J_A) = 1$.

Satisfiability and SOL-consequence

The standard notions of logic apply here as well. Note we have restricted our interpretations of SOL to **finite sets**.

- A set of formulas Σ is *f*-satisfiable if there is an *A*-interpretation I_A with *A* finite such that for all $\phi \in \Sigma$ we have $M(\phi, I_A) = 1$.
- A formula ψ *f*-follows from a set of formulas Σ , denoted by $\Sigma \models_f \psi$, if for every *A*-interpretation I_A with *A* finite such that for all $\phi \in \Sigma$ we have $M(\phi, I_A) = 1$ we have also $M(\psi, I_A) = 1$.
- If $\tau \subset VAR$, we call A-interpretations restricted to τ also τ -structures or τ -models.

SOL-polynomials $SOL(\mathcal{R})$, I: Indeterminates

Let \mathcal{R} be a commutative ring with addition, multiplication, and neutral elements 0 for addition and 1 for multiplication.

We first define the set of **indeterminates** X. Our indeterminates depend on variables in VAR.

- For each $i \in \mathbb{N}$ X_i is an indeterminate in \mathbb{X} .
- For each finite sequence of variables $\overline{V} = (V_1, V_2, \dots, V_k) \in \mathbf{VAR}^k$ and $i \in \mathbb{N}$ $X_{\overline{V},i}$ is an indeterminate in \mathbb{X} .
- $free(X_i) = \emptyset$. $free(X_{\overline{V},i}) = \{V_1, V_2, \dots, V_k\}$

SOL-polynomials SOL(\mathcal{R}), II: Terms $\mathbb{T}(\mathcal{R})$

- Each $a \in \mathcal{R}$ is a term of $\mathbb{T}(\mathcal{R})$ with $free(a) = \emptyset$.
- Each indeterminate X_i and $X_{\bar{V},i} \in \mathbb{X}$ is a term of $\mathbb{T}(\mathcal{R})$ with $free(X_i) = \emptyset$ and $free(X_{\bar{V},i}) = \{V_1, V_2, \dots, V_k\}$
- If t_1 and t_2 are in $\mathbb{T}(\mathcal{R})$ so are $t_1 + t_2$ and $t_1 \cdot t_2$. $free(t_1 + t_2) = free(t_1 \cdot t_2) = free(t_1) \cup free(t_2)$.
- If ϕ is a SOL-formula, $tv(\phi)$ is a term in $\mathbb{T}(\mathcal{R})$ and $free(tv(\phi)) = free(\phi)$.

SOL-polynomials SOL(\mathcal{R}), III: Terms $\mathbb{T}(\mathcal{R})$

Let ϕ, ψ be SOL-formulas and s, t, be terms of $\mathbb{T}(\mathcal{R})$.

• If $\bar{v} = (v_{i_1}, v_{i_2}, \dots v_{i_m})$ is a vector of individual variables, then

 $\sum_{ar{v}:\phi} s(ar{v})$ and $\prod_{ar{v}:\phi} s(ar{v})$

are terms with set of free variables $free(s) \cup free(\phi) - \{v_{i_1}, v_{i_2}, \dots v_{i_m}\}$

• If $\overline{V} = (V_1, V_2, \dots, V_m)$ is a vector of individual and relation variables, then

$$\sum_{\bar{V}:\psi} t(\bar{V})$$

is a term with set of free variables $free(t) \cup free(\phi) - \{V_1, V_2, \ldots V_m\}$.

Here summation and multiplication act like quantifiers.

We do not allow products over the range of relation variables.

SOL-polynomials $SOL(\mathcal{R})$, IV: Substitution of free variables.

Let $\theta(v_1, \ldots, v_r)$ be a formula with $v_k \in free(\theta)$ for $1 \le k \le r$. Let $U_{r,j}$ be an *r*-ary relation variable, and v_i be an individual variable. Furthermore, let *t* be a term in $\mathbb{T}(\mathcal{R})$.

• Let t_1 be the term

 $\sum_{v_i:v_i=v_k} t$

is a term with $free(t_1) = (free(t) - \{v_i\}) \cup \{v_k\}.$

• If $U_{r,j} \not\in free(\theta)$, then the term t_1 given by

$$t_{1} = \sum_{U_{r,j}:\forall \overline{v}(U_{r,j}(\overline{v}) \leftrightarrow \theta(\overline{v}))} (t)$$

is a term with $free(t_1) = (free(t) \cup free(\theta)) - \{U_{r,j}, v_1, \ldots, v_r\}.$

The sum has only one term in each case, so the sum has only the effect of changing the free variables in t.

Evaluation of SOL-polynomials $SOL(\mathcal{R})$

If an A-interpretation I_A is given, each term $t \in \mathbb{T}(\mathcal{R})$ has a natural interpretation as a **polynomial** in $\mathcal{R}[\mathbb{X}]$.

- If ϕ has no free variables and ϕ is a tautology, i.e. $\neg \phi$ is not satisfiable, then $\sum_{v:\phi} t = \prod_{v:\phi} t = t$.
- If ϕ has no free variables and ϕ is a contradiction, i.e. ϕ is not satisfiable, then $\sum_{v:\phi} t = 0$ and $\prod_{v:\phi} t = 1$.
- If for $t \in \mathbb{T}(\mathcal{R})$ we have $\tau = free(t)$ then we speak of a τ -polynomial, which is an invariant of τ -structures.
- If for $t \in \mathbb{T}(\mathcal{R})$, τ just contains one binary relation symbol, t is a **graph polynomial**.

We denote this interpretation by $\mathfrak{P}(t, I_A)$.

Equivalence of terms of $\mathbb{T}(\mathcal{R})$

Let $t_1, t_2 \in \mathbb{T}(\mathcal{R})$ be two terms.

- t₁ and t₂ are equivalent over R if for every A-interpretation I_A we have 𝔅(t₁, I_A) = 𝔅(t₂, I_A).
 We write t₁ ∼_R t₂.
- ϕ and ψ are logically equivalent iff $tv(\phi)$ and $tv(\psi)$ are equivalent over \mathcal{R} for every ring \mathcal{R} .
- t₁ induces t₂ over R if for any two interpretations I_A and I_B such that \$\mathcal{P}(t_1, I_A) = \$\mathcal{P}(t_1, I_B)\$ we also have \$\mathcal{P}(t_2, I_A) = \$\mathcal{P}(t_2, I_B)\$.
 We write t₁ |=_R t₂.

Undecidability of equivalence

We have seen in the second lecture:

Theorem:

- Equivalence between terms $t_1 \sim_{\mathcal{R}} t_2$ is undecidable over every ring \mathcal{R} .
- The induction relation $t_1 \models_{\mathcal{R}} t_2$ is undecidable over every ring \mathcal{R} .
- The same holds even when terms are restricted to those with one free binary relation variable.

$\mathbf{SOL} ext{-monomials}$

We define inductively the SOL-monomials.

- Ring elements a and indeterminates $X_{\bar{V}}$ are SOL-monomials.
- For every SOL-formula ϕ the term $tv(\phi)$ is an SOL-monomial.
- The product of two SOL-monomials t_1 and t_2 is an SOL-monomial.
- If t_1 is a SOL-monomial, ϕ is an SOL-formula and \overline{v} is a sequence of individual variables then

 $\prod_{\bar{v}:\phi} t$

is an SOL-monomial.

Summation Normal Form (SNF)

We define inductively the the terms in Summation Normal Form **SNF**.

- SOL-monomials are in **SNF**.
- If y_1 and t_2 are in **SNF**, so is $t_1 + t_2$.
- If t_1 is in **SNF**, ϕ is an **SOL**-formula and \overline{v} is a sequence of individual variables, then so is

 $\sum_{\overline{v}:\phi} t$

• If t_1 is in **SNF**, ψ is an **SOL**-formula and \bar{V} is a sequence of individual or relation variables, then so is

 $\sum_{\bar{V}:\psi} t$

SNF-Theorem for terms in $\mathbb{T}(\mathcal{R})$

Theorem:

For every term t in $\mathbb{T}(\mathcal{R})$ there is a term t_1 in $\mathbb{T}(\mathcal{R})$ in **SNF** such that

- $t \sim_{\mathcal{R}} t_1$ for every ring \mathcal{R} .
- $free(t) = free(t_1)$

Proof of the **SNF**-Theorem, I

Recall that J^I denotes the set of function $f: I \to J$.

We first observe the following:

Lemma 1: Let $t_{i,j}$ be terms with $i \in I$ and $j \in J$. Then

$$\prod_{i\in I}\sum_{j\in J}t_{i,j}=\sum_{F\in J^{I}}\prod_{i\in I}t_{i,F(i)}$$

Q.E.D.

We want to analize this for J = P(I).

Lemma 2: There is a one-one correspondence between $P(I)^I$ and $P(I \times I)$. **Proof:**

If $R \subseteq I \times I$ we define a function $F_R : I \to P(I)$ by

$$F_R(i) = \{j \in I : (i, j) \in R\}$$

In the other direction, if $F : I \to P(I)$, we define $R_F \subseteq I \times I$ by
 $R_F = \{(i, j) \in I^2 : i \in I, j \in F(i)\}$

Q.E.D.

Proof of the **SNF**-Theorem, II

It is enough to prove it for products of terms in **SNF**.

We spell out the details for $\bar{v} = (v)$ and $\bar{U} = (U_{1,1}) = (U)$.

Lemma 3: Let

$$t_v = \sum_{U:\psi(v,U)} s(v,U).$$

and $W_{2,1} = W \not\in free(t_v)$. Then

$$\prod_{v:\phi(v)} t_v = \prod_{v:\phi(v)} \left(\sum_{U:\psi(v,U)} s(v,U) \right) = \sum_{W:} \left(\sum_{U:\forall u(U(u)\leftrightarrow \exists wW(u,w))} \left(\prod_{v:\phi(v)\land\psi(v,U)} s(v,U) \right) \right)$$

Proof: Use Lemma 2 with J = P(I) and the fact that the innermost sum ist just there to change the arity of the variable of summation.

Q.E.D.

Proof of the **SNF**-Theorem, III

The general case looks as follows.

Lemma 4: Let

 $\bar{U} = (U_{r_1,1}, \dots, U_{r_m,m}), \quad \bar{v} = (v_1, \dots, v_k), \quad \bar{W} = (W_{r_1+k,1}, \dots, W_{r_m+k,m})$ and

$$t_{\bar{v}} = \sum_{\bar{U}:\psi(\bar{v},\bar{U})} s(\bar{v},\bar{U}).$$

Then

$$\prod_{\overline{v}:\phi(\overline{v})} t(\overline{v}) = \prod_{\overline{v}:\phi(\overline{v})} \left(\sum_{\overline{U}:\psi(\overline{v},\overline{U})} s(\overline{v},\overline{U}) \right) =$$
$$\sum_{\overline{W}:} \left(\sum_{\overline{U}:\bigwedge_{i=1}^{m} (\forall \overline{u}(U_{r_{i},i}(\overline{u}) \leftrightarrow \exists \overline{w}W_{r_{i}+k,i}(\overline{u},\overline{w})))} \left(\prod_{\overline{v}:\phi(\overline{v}) \land \psi(\overline{v},\overline{U})} s(\overline{v},\overline{U}) \right) \right)$$

Q.E.D.

Coding finite structures in the ring, I: ring assignments.

Let $\mathfrak{z}:\mathbb{X}\to\mathcal{R}$ be a function which gives each indeterminate in \mathbb{X} a value in the ring $\mathcal{R}.$

If \mathfrak{z} additionally satisfies

- For all but finitely many $X_{v_i} \in \mathbb{X}$ we have $\mathfrak{z}(X) = 0$.
- For all $i \in \mathbb{N}$, if $\mathfrak{z}(X_{v_i}) = 0$ then also $\mathfrak{z}(X_{v_{i+1}}) = 0$.
- The set $\{(i, j) \in \mathbb{N}^2 : \mathfrak{z}(X_{v_i, v_j}) \neq 0\}$ is the graph of a unary function with domain $\{v_i : i \in \mathbb{N}\}$.
- For all individual variables $\bar{v} = (v_1, v_2, \dots, v_r)$ and all $U_{r,j}$ we have that if $\mathfrak{z}(X_{\bar{v}}, U_{r,j}) \neq 0$ then for all $1 \leq i \leq r$, $\mathfrak{z}(X_{v_i}) \neq 0$.

then \mathfrak{z} is called a **ring assignment** wra.

If $\mathfrak{z} : \mathbb{X} \to \{0,1\} \subset \mathcal{R}$ then it is called **discrete ring assignment** dra.

Coding finite structures in the ring, II: The structure $\mathfrak{A}(\mathfrak{z})$

We define an A-interpretation $I_A(\mathfrak{z})$: VAR $\rightarrow A \cup \bigcup_r P(A^r)$ as follows:

• The universe is the set

 $A(\mathfrak{z}) = A = \{i \in \mathbb{N} : \mathfrak{z}(X_{v_i}) \neq 0\}$

• Each individual variable v_i is interpreted by

 $I_A(\mathfrak{z})(v_i) = j \text{ iff } \mathfrak{z}(X_{v_i,v_j}) \neq 0$

• Each relation variable $U_{r,j}$ is interpreted by

$$I_A(U_{r,j}) = \{(i_1, i_2, \dots, i_r) \in \mathbb{N}^r : \mathfrak{z}(X_{v_{i_1}, v_{i_2}, \dots, v_{i_r}, U_{r,j}}) \neq 0\}$$

SOL-polynomials and BSS-programs.

Given a ring assignment \mathfrak{z} and its corresponding $I_A(\mathfrak{z})$ -interpretation, and an **SOL**-polynomial $t \in \mathbb{T}(\mathcal{R})$,

ullet

Lecture 11, SOL-polynomials

Complexity classes for SOL-polynomials.

TEXT

Lecture 11, SOL-polynomials

TITLE

TEXT

۲

Lecture 11, SOL-polynomials

TITLE

TEXT

۲

Lecture 11, SOL-polynomials

TITLE

TEXT

۲

Lecture 11, SOL-polynomials

TITLE

TEXT

۲