Overview

We want to combine

- Second Order Logic and
- BSS-computations
to define a general class of graph polynomials.

SOL-formulas, I: Variables and Interpretations

We have variables

- v_{i} for each $i \in \mathbb{N}$.

These are individual variables.

- $U_{r, i}$ for ech $r, i \in \mathbb{N}, r \geq 1$.

These are relation variables. r is the arity of $U_{r, i}$.

We denote the set of variables by VAR.
Given a non-empty but finite set A, an A-interpretation is a map

$$
I_{A}: \mathbf{V A R} \rightarrow A \cup \bigcup_{r} P\left(A^{r}\right)
$$

such that $I_{A}\left(v_{i}\right) \in A$ and $I_{A}\left(U_{r, i}\right) \subseteq A^{r}$.

SOL-formulas, II: Atomic Formulas and their meaning

Atomic formulas are of the form

- $\left(v_{i} \simeq v_{j}\right)$ with set of free variables $\left\{v_{i}, v_{j}\right\}$.
- $U_{r, j}\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{r}}\right)$ with set free variables $\left\{U_{r, j}\right\} \cup\left\{v_{i_{m}}: 1 \leq m \leq r\right\}$.

The meaning function M is a function which assigns to a formula and an A-interpretation its truth value, i.e.

$$
M: \text { Formulas } \times \text { Interpretations } \rightarrow\{0,1\}
$$

M is defined inductively. For atomic formulas we put

- $M\left(\left(v_{i} \simeq v_{j}\right), I_{A}\right)=1 \operatorname{iff} I_{A}\left(v_{i}\right)=I_{A}\left(v_{j}\right)$.
- $M\left(U_{r, j}\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{r}}\right), I_{A}\right)=1 \operatorname{iff}\left(I_{A}\left(v_{i_{1}}\right), I_{A}\left(v_{i_{2}}\right), \ldots, I_{A}\left(v_{i_{r}}\right)\right) \in I_{A}\left(U_{r, j}\right)$.

SOL-formulas, III: Formulas

We define now inductively the set of $S O L$-formulas SOL.
If $\phi \in$ SOL we denote by free (ϕ) its set of free variables.

- Atomic formulas ϕ are in SOL with $\operatorname{free}(\phi)$ as defined before.
- If ϕ_{1} and ϕ_{2} are in SOL then ϕ of the form
$\left(\phi_{1} \vee \phi_{2}\right)$,
($\phi_{1} \wedge \phi_{2}$) or
$\left(\phi_{1} \rightarrow \phi_{2}\right)$
is in SOL with free $(\phi)=$ free $\left(\phi_{1}\right) \cup$ free $\left(\phi_{2}\right)$.
- If ϕ_{1} is in SOL then $\phi=\neg \phi_{1}$ is in SOL with $\operatorname{free}(\phi)=\operatorname{free}\left(\phi_{1}\right)$.
- If ϕ_{1} is in SOL then ϕ of the form
$\exists v_{j} \phi, \forall v_{j} \phi$,
is in SOL with $\operatorname{free}(\phi)=\operatorname{free}\left(\phi_{1}\right)-\left\{v_{j}\right\}$.
- If ϕ_{1} is in SOL then ϕ of the form
$\exists U_{r, j} \phi$ or $\forall U_{r, j} \phi$
is in SOL with $\operatorname{free}(\phi)=\operatorname{free}\left(\phi_{1}\right)-\left\{U_{r, j}\right\}$.

SOL-formulas, IV: Formulas and their meaning

The meaning function for formulas is defined as usual.

- For $\phi=\neg \phi_{1}$ we put $M\left(\neg \phi_{1}, I_{A}\right)=1-M\left(\phi_{1}, I_{A}\right)$.
- For each of the binary boolean connectives $\bullet \in\{\wedge, \vee, \rightarrow$,$\} we have the$ corresponding truth table T_{\bullet}.
We put $M\left(\left(\phi_{1} \bullet \phi_{2}\right), I_{A}\right)=T_{\bullet}\left(M\left(\phi_{1}, I_{A}\right), M\left(\phi_{2}, I_{A}\right)\right)$.
- Let $V \in$ VAR. For $\phi=\exists V \phi_{1}$ we put $M\left(\phi, I_{A}\right)=1$ iff there is an A Interpretation J_{A} such that for all variables different from V the interpretations I_{A} and J_{A} coincide, and such that $M\left(\phi_{1}, J_{A}\right)=1$.
- Let $V \in$ VAR. For $\phi=\forall V \phi_{1}$ we put $M\left(\phi, I_{A}\right)=1$ iff for every A Interpretation J_{A} such that for all variables different from V the interpretations I_{A} and J_{A} coincide, we have $M\left(\phi_{1}, J_{A}\right)=1$.

Satisfiability and SOL-consequence

The standard notions of logic apply here as well.
Note we have restricted our interpretations of SOL to finite sets.

- A set of formulas Σ is f-satisfiable if there is an A-interpretation I_{A} with A finite such that for all $\phi \in \Sigma$ we have $M\left(\phi, I_{A}\right)=1$.
- A formula ψf-follows from a set of formulas Σ, denoted by $\Sigma=_{f} \psi$, if for every A-interpretation I_{A} with A finite such that for all $\phi \in \Sigma$ we have $M\left(\phi, I_{A}\right)=1$ we have also $M\left(\psi, I_{A}\right)=1$.
- If $\tau \subset$ VAR, we call A-interpretations restricted to τ also τ-structures or τ-models.

SOL-polynomials $\operatorname{SOL}(\mathcal{R})$, I: Indeterminates

Let \mathcal{R} be a commutative ring
with addition, multiplication,
and neutral elements 0 for addition and 1 for multiplication.
We first define the set of indeterminates \mathbb{X}.
Our indeterminates depend on variables in VAR.

- For each $i \in \mathbb{N}$
X_{i} is an indeterminate in \mathbb{X}.
- For each finite sequence of variables $\bar{V}=\left(V_{1}, V_{2}, \ldots, V_{k}\right) \in \mathbf{V A R}^{k}$ and $i \in \mathbb{N} X_{\bar{V}, i}$ is an indeterminate in \mathbb{X}.
- $\operatorname{free}\left(X_{i}\right)=\emptyset$.
$\operatorname{free}\left(X_{\bar{V}, i}\right)=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$

SOL-polynomials $\operatorname{SOL}(\mathcal{R})$, II: Terms $\mathbb{T}(\mathcal{R})$

- Each $a \in \mathcal{R}$ is a term of $\mathbb{T}(\mathcal{R})$ with $\operatorname{free}(a)=\emptyset$.
- Each indeterminate X_{i} and $X_{\bar{V}, i} \in \mathbb{X}$ is a term of $\mathbb{T}(\mathcal{R})$ with $\operatorname{free}\left(X_{i}\right)=\emptyset$ and $\operatorname{free}\left(X_{\bar{V}, i}\right)=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$
- If t_{1} and t_{2} are in $\mathbb{T}(\mathcal{R})$ so are $t_{1}+t_{2}$ and $t_{1} \cdot t_{2}$. $\operatorname{free}\left(t_{1}+t_{2}\right)=\operatorname{free}\left(t_{1} \cdot t_{2}\right)=\operatorname{free}\left(t_{1}\right) \cup \operatorname{free}\left(t_{2}\right)$.
- If ϕ is a SOL-formula, $t v(\phi)$ is a term in $\mathbb{T}(\mathcal{R})$ and $\operatorname{free}(t v(\phi))=\operatorname{free}(\phi)$.

SOL-polynomials $\operatorname{SOL}(\mathcal{R})$, III: Terms $\mathbb{T}(\mathcal{R})$

Let ϕ, ψ be SOL-formulas and s, t, be terms of $\mathbb{T}(\mathcal{R})$.

- If $\bar{v}=\left(v_{i_{1}}, v_{i_{2}}, \ldots v_{i_{m}}\right)$ is a vector of individual variables, then

$$
\sum_{\bar{v}: \phi} s(\bar{v}) \quad \text { and } \quad \prod_{\bar{v}: \phi} s(\bar{v})
$$

are terms with set of free variables $\operatorname{free}(s) \cup \operatorname{free}(\phi)-\left\{v_{i_{1}}, v_{i_{2}}, \ldots v_{i_{m}}\right\}$

- If $\bar{V}=\left(V_{1}, V_{2}, \ldots V_{m}\right)$ is a vector of individual and relation variables, then

$$
\sum_{\bar{V}: \psi} t(\bar{V})
$$

is a term with set of free variables free $(t) \cup$ free $(\phi)-\left\{V_{1}, V_{2}, \ldots V_{m}\right\}$.

Here summation and multiplication act like quantifiers.
We do not allow products over the range of relation variables.

SOL-polynomials SOL($\mathcal{R})$, IV: Substitution of free variables.

Let $\theta\left(v_{1}, \ldots, v_{r}\right)$ be a formula with $v_{k} \in \operatorname{free}(\theta)$ for $1 \leq k \leq r$. Let $U_{r, j}$ be an r-ary relation variable, and v_{i} be an individual variable. Furthermore, let t be a term in $\mathbb{T}(\mathcal{R})$.

- Let t_{1} be the term

$$
\sum_{v_{i}: v_{i}=v_{k}} t
$$

is a term with $\operatorname{free}\left(t_{1}\right)=\left(\operatorname{free}(t)-\left\{v_{i}\right\}\right) \cup\left\{v_{k}\right\}$.

- If $U_{r, j} \notin$ free (θ), then the term t_{1} given by

$$
t_{1}=\sum_{U_{r, j}: \forall \bar{v}\left(U_{r, j}(\bar{v})_{\leftrightarrow} \leftrightarrow \theta(\bar{v})\right)}
$$

is a term with $\operatorname{free}\left(t_{1}\right)=($ free $(t) \cup$ free $(\theta))-\left\{U_{r, j}, v_{1}, \ldots, v_{r}\right\}$.
The sum has only one term in each case, so the sum has only the effect of changing the free variables in t.

Evaluation of SOL-polynomials $\operatorname{SOL}(\mathcal{R})$

If an A-interpretation I_{A} is given, each term $t \in \mathbb{T}(\mathcal{R})$ has a natural interpretation as a polynomial in $\mathcal{R}[\mathbb{X}]$.

- If ϕ has no free variables and ϕ is a tautology, i.e. $\neg \phi$ is not satisfiable, then $\sum_{v: \phi} t=\prod_{v: \phi} t=t$.
- If ϕ has no free variables and ϕ is a contradiction, i.e. ϕ is not satisfiable, then $\sum_{v: \phi} t=0$ and $\prod_{v: \phi} t=1$.
- If for $t \in \mathbb{T}(\mathcal{R})$ we have $\tau=$ free (t) then we speak of a τ-polynomial, which is an invariant of τ-structures.
- If for $t \in \mathbb{T}(\mathcal{R}), \tau$ just contains one binary relation symbol, t is a graph polynomial.

We denote this interpretation by $\mathfrak{P}\left(t, I_{A}\right)$.

Equivalence of terms of $\mathbb{T}(\mathcal{R})$

Let $t_{1}, t_{2} \in \mathbb{T}(\mathcal{R})$ be two terms.

- t_{1} and t_{2} are equivalent over \mathcal{R} if for every A-interpretation I_{A} we have $\mathfrak{P}\left(t_{1}, I_{A}\right)=\mathfrak{P}\left(t_{2}, I_{A}\right)$.
We write $t_{1} \sim_{\mathcal{R}} t_{2}$.
- ϕ and ψ are logically equivalent iff $t v(\phi)$ and $t v(\psi)$ are equivalent over \mathcal{R} for every ring \mathcal{R}.
- t_{1} induces t_{2} over \mathcal{R} if for any two interpretations I_{A} and I_{B} such that $\mathfrak{P}\left(t_{1}, I_{A}\right)=\mathfrak{P}\left(t_{1}, I_{B}\right)$ we also have $\mathfrak{P}\left(t_{2}, I_{A}\right)=\mathfrak{P}\left(t_{2}, I_{B}\right)$.
We write $t_{1}=_{\mathcal{R}} t_{2}$.

Undecidability of equivalence

We have seen in the second lecture:

Theorem:

- Equivalence between terms $t_{1} \sim_{\mathcal{R}} t_{2}$ is undecidable over every ring \mathcal{R}.
- The induction relation $t_{1}=_{\mathcal{R}} t_{2}$ is undecidable over every ring \mathcal{R}.
- The same holds even when terms are restricted to those with one free binary relation variable.

SOL-monomials

We define inductively the SOL-monomials.

- Ring elements a and indeterminates $X_{\bar{V}}$ are SOL-monomials.
- For every SOL-formula ϕ the term $t v(\phi)$ is an SOL-monomial.
- The product of two SOL-monomials t_{1} and t_{2} is an SOL-monomial.
- If t_{1} is a SOL-monomial, ϕ is an SOL-formula and \bar{v} is a sequence of individual variables then

$$
\prod_{\bar{v}: \phi} t
$$

is an SOL-monomial.

Summation Normal Form (SNF)

We define inductively the the terms in Summation Normal Form SNF.

- SOL-monomials are in SNF.
- If y_{1} and t_{2} are in SNF, so is $t_{1}+t_{2}$.
- If t_{1} is in SNF, ϕ is an SOL-formula and \bar{v} is a sequence of individual variables, then so is

$$
\sum_{\bar{v}: \phi} t
$$

- If t_{1} is in SNF, ψ is an SOL-formula and \bar{V} is a sequence of individual or relation variables, then so is

$$
\sum_{\bar{V}: \psi} t
$$

SNF-Theorem for terms in $\mathbb{T}(\mathcal{R})$

Theorem:

For every term t in $\mathbb{T}(\mathcal{R})$ there is a term t_{1} in $\mathbb{T}(\mathcal{R})$ in SNF such that

- $t \sim_{\mathcal{R}} t_{1}$ for every ring \mathcal{R}.
- $\operatorname{free}(t)=$ free $\left(t_{1}\right)$

Proof of the SNF-Theorem, I

Recall that J^{I} denotes the set of function $f: I \rightarrow J$.
We first observe the following:
Lemma 1: Let $t_{i, j}$ be terms with $i \in I$ and $j \in J$. Then

$$
\prod_{i \in I} \sum_{j \in J} t_{i, j}=\sum_{F \in J^{I}} \prod_{i \in I} t_{i, F(i)}
$$

Q.E.D.

We want to analize this for $J=P(I)$.
Lemma 2: There is a one-one correspondence between $P(I)^{I}$ and $P(I \times I)$. Proof:
If $R \subseteq I \times I$ we define a function $F_{R}: I \rightarrow P(I)$ by

$$
F_{R}(i)=\{j \in I:(i, j) \in R\}
$$

In the other direction, if $F: I \rightarrow P(I)$, we define $R_{F} \subseteq I \times I$ by

$$
R_{F}=\left\{(i, j) \in I^{2}: i \in I, j \in F(i)\right\}
$$

Q.E.D.

Proof of the SNF-Theorem, II

It is enough to prove it for products of terms in SNF.
We spell out the details for $\bar{v}=(v)$ and $\bar{U}=\left(U_{1,1}\right)=(U)$.
Lemma 3: Let

$$
t_{v}=\sum_{U: \psi(v, U)} s(v, U)
$$

and $W_{2,1}=W \notin \operatorname{free}\left(t_{v}\right)$. Then

$$
\prod_{v: \phi(v)} t_{v}=\prod_{v: \phi(v)}\left(\sum_{U: \psi(v, U)} s(v, U)\right)=\sum_{W:}\left(\sum_{U: \forall u(U(u) \leftrightarrow \exists w W(u, w))}\left(\prod_{v: \phi(v) \wedge \psi(v, U)} s(v, U)\right)\right.
$$

Proof: Use Lemma 2 with $J=P(I)$ and the fact that the innermost sum ist just there to change the arity of the variable of summation.
Q.E.D.

Proof of the SNF-Theorem, III

The general case looks as follows.
Lemma 4: Let

$$
\begin{aligned}
\bar{U}=\left(U_{r_{1}, 1}, \ldots, U_{r_{m}, m}\right), \quad \bar{v} & =\left(v_{1}, \ldots, v_{k}\right), \quad \bar{W}=\left(W_{r_{1}+k, 1}, \ldots, W_{r_{m}+k, m}\right) \\
t_{\bar{v}} & =\sum_{\bar{U}: \psi(\bar{v}, \bar{U})} s(\bar{v}, \bar{U}) .
\end{aligned}
$$

and

Then

$$
\begin{gathered}
\prod_{\bar{v}: \phi(\bar{v})} t(\bar{v})=\prod_{\bar{v}: \phi(\bar{v})}\left(\sum_{\bar{U}: \psi(\bar{v}, \bar{U})} s(\bar{v}, \bar{U})\right)= \\
\sum_{\bar{W}:}\left(\bar{U}: \bigwedge_{i=1}^{m}\left(\forall \bar{u}\left(U_{r_{i}, i}(\bar{u}) \leftrightarrow \exists \bar{w} W_{r_{i}+k, i}(\bar{u}, \bar{w})\right)\right)\left(\begin{array}{l}
\left.\prod_{\bar{v}: \phi(\bar{v}) \wedge \psi(\bar{v}, \bar{U})} s(\bar{v}, \bar{U})\right)
\end{array}, ~\right.\right.
\end{gathered}
$$

Q.E.D.

Coding finite structures in the ring, I: ring assignments.

Let $\mathfrak{z}: \mathbb{X} \rightarrow \mathcal{R}$ be a function which gives each indeterminate in \mathbb{X} a value in the ring \mathcal{R}.

If \mathfrak{z} additionally satisfies

- For all but finitely many $X_{v_{i}} \in \mathbb{X}$ we have $\mathfrak{z}(X)=0$.
- For all $i \in \mathbb{N}$, if $\mathfrak{z}\left(X_{v_{i}}\right)=0$ then also $\mathfrak{z}\left(X_{v_{i+1}}\right)=0$.
- The set $\left\{(i, j) \in \mathbb{N}^{2}: \mathfrak{z}\left(X_{v_{i}, v_{j}}\right) \neq 0\right\}$ is the graph of a unary function with domain $\left\{v_{i}: i \in \mathbb{N}\right\}$.
- For all individual variables $\bar{v}=\left(v_{1}, v_{2}, \ldots, v_{r}\right)$ and all $U_{r, j}$ we have that if $\mathfrak{z}\left(X_{\bar{v}}, U_{r, j}\right) \neq 0$ then for all $1 \leq i \leq r, \mathfrak{z}\left(X_{v_{i}}\right) \neq 0$.
then \mathfrak{z} is called a ring assignment wra.
If $\mathfrak{z}: \mathbb{X} \rightarrow\{0,1\} \subset \mathcal{R}$ then it is called discrete ring assignment dra.

Coding finite structures in the ring, II: The structure $\mathfrak{A}(\mathfrak{z})$

We define an A-interpretation $I_{A}(\mathfrak{z}):$ VAR $\rightarrow A \cup \bigcup_{r} P\left(A^{r}\right)$ as follows:

- The universe is the set

$$
A(\mathfrak{z})=A=\left\{i \in \mathbb{N}: \mathfrak{z}\left(X_{v_{i}}\right) \neq 0\right\}
$$

- Each individual variable v_{i} is interpreted by

$$
I_{A}(\mathfrak{z})\left(v_{i}\right)=j \text { iff } \mathfrak{z}\left(X_{v_{i}, v_{j}}\right) \neq 0
$$

- Each relation variable $U_{r, j}$ is interpreted by

$$
I_{A}\left(U_{r, j}\right)=\left\{\left(i_{1}, i_{2}, \ldots, i_{r}\right) \in \mathbb{N}^{r}: \mathfrak{z}\left(X_{v_{1}, v_{i}, \ldots, v_{i}, U_{r, j}}\right) \neq 0\right\}
$$

SOL-polynomials and BSS-programs.

Given a ring assignment \mathfrak{z} and its corresponding $I_{A}(\mathfrak{z})$-interpretation, and an SOL-polynomial $t \in \mathbb{T}(\mathcal{R})$,

Complexity classes for SOL-polynomials.

TEXT

TITLE

TEXT

