## Characteristic polynomial and Matching Polynomial

Lecturer: Ilia Averbouch

e-mail: ailia@cs.technion.ac.il

#### Outline of Lectures 3-4

- Characteristic polynomial: definition and interpretation of the coefficients
- Acyclic polynomials vs. generating matching polynomials
- Relationship between acyclic and characteristic polynomials
- Roots of the characteristic and acyclic polynomials

#### **Definition 1** Characteristic polynomial of a graph

Let G(V, E) be a simple undirected graph with |V| = n, and Let  $A_G$  be the (symmetric) adjacency matrix of G

with  $(A_G)_{j,i} = (A_G)_{i,j} = 1$  if  $(v_i v_j) \in E$  and  $(A_G)_{j,i} = (A_G)_{i,j} = 0$  otherwise

• The characteristic polynomial of G is defined as

$$P(G,\lambda) = \det(\lambda \cdot 1 - A_G)$$

• The roots of  $P(G, \lambda)$  are the eigenvalues of  $A_G$ . We will call them also the eigenvalues of G.

Identities and features

#### **Proposition 1**

The characteristic polynomial is multiplicative:

Let  $G \sqcup H$  denote the disjoint union of graphs G and H. Then:

$$P(G \sqcup H, \lambda) = P(G, \lambda) \cdot P(H, \lambda)$$

Proof:

$$\det \left(\begin{array}{cc} A & 0\\ 0 & B \end{array}\right) = \det(A) \det(B)$$

for any square matrices A and B, not necessarily of the same order. The claim follows at once from this.

#### Coefficients of the characteristic polynomial

Let us suppose that the characteristic polynomial of graph G is:

$$P(G,\lambda) = \sum_{i=0}^{n} c_i(G)\lambda^{n-i}$$

We have seen on the 1-st lecture:

(i)  $c_0 = 1$ 

(ii)  $c_1 = 0$ 

(iii)  $-c_2 = |E(G)|$  is the number of edges of G.

(iv)  $-c_3$  is twice the number of triangles of G.

We will find general interpretation of the coefficients of  $P(G, \lambda)$ 

#### Eigenvalues of graph G

The following features of the eigenvalues can be derived from the matrix theory:

- (i) Since  $A_G$  is a symmetric matrix, all the eigenvalues of G are real
- (ii) Since  $A_G$  is non-negative matrix, its largest eigenvalue is non-negative and it has the largest absolute value. (corollary of Frobenius' theorem) (Gantmacher F.R. Theory of Matrices I,II (2 vol.) Chelsea, New York 1960 vol.2 p.66)
- (iii) Since  $A_G$  is non-negative matrix, the largest eigenvalue of every principal minor of  $A_G$  doesn't exceed the largest eigenvalue of  $A_G$  (Gantmacher F.R. Theory of Matrices I,II (2 vol.) Chelsea, New York 1960 vol.2 p.69)

We will also use those theorems when analyzing the matching polynomial roots.

#### **Definition 2** Acyclic (matching defect) polynomial of a graph

Let G(V, E) be a simple graph (no multiple edges) with |V| = n

We denote by  $m_k(G)$  the number of k-matchings of a graph G, with  $m_0(G) = 1$  by convention.

We are concerned with properties of the sequence  $\{m_0, m_1, m_2...\}$ 

• The matching defect polynomial (or acyclic polynomial)

$$m(G,\lambda) = \sum_{k}^{\frac{n}{2}} (-1)^{k} m_{k}(G) \lambda^{n-2k}$$

#### **Definition 3** Matching generating polynomial of a graph

Another (maybe more natural) polynomial to study is **matching generating polynomial** 

$$g(G,\lambda) = \sum_{k}^{n} m_k(G)\lambda^k$$

- For every  $k > \lfloor \frac{n}{2} \rfloor$  number of matchings  $m_k(G) = 0$
- Relationship between two the forms:

$$m(G,\lambda) = \sum_{k}^{\frac{n}{2}} (-1)^{k} m_{k}(G) \lambda^{n-2k} = \lambda^{n} \sum_{k}^{\frac{n}{2}} (-1)^{k} m_{k}(G) \lambda^{-2k} =$$

$$=\lambda^{n}\sum_{k}^{\frac{n}{2}}m_{k}(G)((-1)\cdot\lambda^{-2})^{k}=\lambda^{n}\sum_{k}^{\frac{n}{2}}m_{k}(G)(-\lambda^{-2})^{k}=\lambda^{n}g(G,(-\lambda^{-2}))$$

8

#### Coefficients of the acyclic polynomial

Let us suppose that the acyclic polynomial of graph G is:

$$m(G,\lambda) = \sum_{i=0}^{n} a_i(G)\lambda^{n-i}$$

According to the definition we see:

(i) 
$$a_0 = 1$$

- (ii)  $a_i = 0$  for every odd i
- (iii) For every *i*,  $a_{2i} = (-1)^i m_i(G)$

(iv) In particular,  $(-1)^{\frac{n}{2}}a_n$  is a number of perfect matchings of G

#### Relationship between acyclic and characteristic polynomials

We want to explore

- Does characteristic polynomial induce acyclic polynomial (NO)
- Does acyclic polynomial induce characteristic polynomial (NO)
- When nevertheless there is a connection and what is that connection?
- How can we use it?

Lecture 3-4, Matching Polynomial

#### Counter-example 1

The graphs  $G_1$  and  $G_2$  have the same characteristic polynomial but different acyclic polynomials.



 $P(G_1,\lambda) = P(G_2,\lambda) = \lambda^6 - 7\lambda^4 - 4\lambda^3 + 7\lambda^2 + 4\lambda - 1$ 

On the other hand, we can see that  $m_2(G_1) = 9$  but  $m_2(G_2) = 7$ 

Conclusion: Characteristic polynomial doesn't induce acyclic polynomial.

#### Counter-example 2

The graphs  $G_3$  and  $G_4$  have the same acyclic polynomial but different characteristic polynomials.



 $m(G_1,\lambda) = m(G_2,\lambda) = \lambda^5 - 4\lambda^3 + 3\lambda$ 

On the other hand, we can see that  $G_1$  has a triangle, and  $G_2$  has not.

Thus, they definitely have different characteristic polynomials.

Conclusion: Acyclic polynomial doesn't induce characteristic polynomial.

### Example 4 $G = P_2$

Adjacency matrix:

$$A_{P_2} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Characteristic polynomial:

$$P(P_2, \lambda) = \det(\lambda \cdot 1 - A_{P_2}) =$$
  
=  $\det\begin{pmatrix}\lambda & -1\\-1 & \lambda\end{pmatrix} =$   
=  $\lambda^2 - 1$ 

$$G = P_2$$

Acyclic polynomial:

$$m_0(P_2) = 1$$
  

$$m_1(P_2) = 1$$
  

$$m(P_2, \lambda) = \sum_{k=1}^{\frac{n}{2}} (-1)^k m_k(G) \lambda^{n-2k} = \lambda^2 - 1 = P(P_2, \lambda)$$

The acyclic polynomial of  $P_2$  is equal to its characteristic polynomial,

in contrast for its matching generating polynomial, which is

$$g(P_2,\lambda)=1+\lambda$$

## Example 5 $G = P_3$

Adjacency matrix:

$$A_{P_3} = \left(\begin{array}{rrr} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

Characteristic polynomial:

$$P(P_3, \lambda) = \det(\lambda \cdot 1 - A_{P_3}) =$$
$$= \det\begin{pmatrix}\lambda & -1 & 0\\ -1 & \lambda & -1\\ 0 & -1 & \lambda\end{pmatrix} =$$
$$= \lambda^3 - 2\lambda$$

$$G = P_3$$

Acyclic polynomial:

$$m_0(P_3) = 1$$
$$m_1(P_3) = 2$$
$$m(P_3, \lambda) = \sum_{k}^{\frac{n}{2}} (-1)^k m_k(G) \lambda^{n-2k} = \lambda^3 - 2\lambda = P(P_3, \lambda)$$

## Example 6 $G = C_3$

Adjacency matrix:

$$A_{C_3} = \left(\begin{array}{rrr} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

Characteristic polynomial:

$$P(C_3, \lambda) = \det(\lambda \cdot 1 - A_{C_3}) =$$
$$= \det\begin{pmatrix}\lambda & -1 & -1\\ -1 & \lambda & -1\\ -1 & -1 & \lambda\end{pmatrix} =$$
$$= \lambda^3 - 3\lambda - 2$$

$$G = C_3$$

Acyclic polynomial:

$$m_0(C_3) = 1$$
$$m_1(C_3) = 3$$
$$m(C_3, \lambda) = \sum_{k}^{\frac{n}{2}} (-1)^k m_k(G) \lambda^{n-2k} = \lambda^3 - 3\lambda$$
$$P(C_3, \lambda) = \lambda^3 - 3\lambda - 2 \neq m(C_3, \lambda)$$

Note that 2 is twice the number of triangles in G.

# Relationship between **acyclic** and **characteristic** polynomials - continued

Let us generalize:

- Can we interpret the coefficients of characteristic polynomial?
- Can we interpret the coefficients of acyclic polynomial?
- Which recurrence relations do they satisfy?
- Theorem (I.Gutman, C.Godsil 1981)

#### Definitions

- An elementary graph is a simple graph, each component of which is regular and has degree 1 or 2.
   In other words, it is disjoint union of single edges (K<sub>2</sub>) or cycles (C<sub>k</sub>)
- A spanning elementary subgraph of G is an elementary subgraph which contains all the vertices of G.
- We will denote spanning elementary subgraph of G as γ comp(γ) is the number of connected components in γ cyc(γ) is the number of cycles in γ
- Note that cycle free spanning elementary subgraph of  ${\cal G}$  is actually a perfect matching of  ${\cal G}$

#### Example: Spanning elementary subgraphs



Lemma 1 (Harary, 1962)

Let A be the adjacency matrix of some graph G(V, E) with |V| = n. Then

$$\det(A) = (-1)^n \sum_{\gamma} (-1)^{comp(\gamma)} 2^{cyc(\gamma)}$$

where summation is over all the spanning elementary subgraphs  $\gamma$  of G

#### Lemma 1: proof

Let us look at the det(A) and interpret its components. Use the definition of a determinant: if  $A_{n \times n} = (a_{ij})$ , then

$$\det(A) = \sum_{\pi} sgn(\pi) \prod_{i=1}^{n} a_{i,\pi(i)}$$

where summation is over all permutations  $\pi$  of the set  $\{1, 2, ..., n\}$ 

Consider the term

$$\prod_{i=1}^{n} a_{i,\pi(i)}$$

Its value is 0 or 1. This term vanishes if for any  $i \in \{1, 2, ...n\}$ ,  $a_{i,\pi(i)} = 0$ ; that is, if  $(v_i, v_{\pi(i)})$  is not an edge of G.

Each non-vanishing term corresponds to a disjoint union of directed cycles.

#### Lemma 1: proof - continued

Therefore, every such term corresponds to a **composition of disjoint cycles of length at least 2**, which is actually a **spanning elementary subgraph**  $\gamma$  of the graph G

Let  $\Gamma : \pi \to \gamma$  define uniquely, which  $\gamma$  corresponds to certain  $\pi$ .

Let  $\Gamma^{-1}(\gamma) = \{\pi : \Gamma(\pi) = \gamma\}$  define the set of  $\pi$  that correspond to certain  $\gamma$ 

If  $\Gamma(\pi) = \Gamma(\pi')$  then  $\pi$  and  $\pi'$  are different only by the direction of their cycles (of length greater than 2).

Hence,  $|\Gamma^{-1}(\gamma)| = 2^{cyc(\gamma)}$ 

#### Lemma 1: proof - continued

We can now split the non-vanishing permutations according to the  $\gamma$  they correspond.

$$\det(A) = \sum_{\pi} sgn(\pi) \prod_{i=1}^{n} a_{i,\pi(i)} = \sum_{\gamma} \sum_{\pi \in \Gamma^{-1}(\gamma)} sgn(\pi) \cdot 1$$

The sign of a permutation  $\pi$  is defined as  $(-1)^{N_e}$ , where  $N_e$  is the number of even cycles in  $\pi$ . If  $\Gamma(\pi) = \Gamma(\pi')$  then  $sgn(\pi) = sgn(\pi')$ , we'll denote it as  $sgn(\gamma)$ 

Now we can write:

$$\det(A) = \sum_{\gamma} sgn(\gamma) \sum_{\pi \in \Gamma^{-1}(\gamma)} 1 = \sum_{\gamma} sgn(\gamma) 2^{cyc(\gamma)}$$

#### Lemma 1: proof - end

The sign of spanning elementary subgraph  $\gamma$  is  $(-1)^{N_e}$ , where  $N_e$  is the number of even cycles in  $\gamma$ .

The number of odd cycles in  $\gamma$  is congruent to *n* modulo 2:  $n \equiv N_o(mod2)$ 

Having  $comp(\gamma) = N_e + N_o$  we obtain:

$$sgn(\gamma) = (-1)_e^N = (-1)^{n+N_e+N_e} = (-1)^{n+comp(\gamma)}$$

From here, every  $\gamma$  contributes  $(-1)^{n+comp(\gamma)}2^{cyc(\gamma)}$  to the determinant, and finally

$$\det(A) = (-1)^n \sum_{\gamma} (-1)^{comp(\gamma)} 2^{cyc(\gamma)}$$

Q.E.D.

#### Lemma 2

Let A be the adjacency matrix of graph G:  $A_{n \times n} = (a_{ij})$  and

 $P(G,\lambda) = \det(\lambda \cdot 1 - A) = \sum_{i=0}^{n} c_i \lambda^{n-i}$  - its characteristic polynomial.

Then

$$(-1)^i c_i = \sum M_{Di}$$

where  $M_{Di}$  are the principal minors of A with order i (Minors, whose diagonal elements belong to the main diagonal of A)

#### Lemma 2 - end

Proof:

$$(\lambda \cdot 1 - A) = \begin{pmatrix} \lambda & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda & \cdots & -a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda \end{pmatrix}$$

Let's analyze the permutations contributing to  $c_i$ :

They have exactly n-i members of the main diagonal  $a_{kk} = \lambda$ 

The permutations in the rest rows and columns (which don't include the main diagonal) will give exactly the determinant of some principal minor of A.

The sign  $(-1)^i$  compensates the fact that all the values in  $(\lambda \cdot 1 - A)$  are  $-a_{ij}$ 

Hence,  $(-1)^i c_i = \sum M_{Di}$ 

Q.E.D.

#### General interpretation of the coefficients of $P(G, \lambda)$

Let G be a graph with adjacency matrix  $A_G$ , and

$$P(G,\lambda) = \det(\lambda \cdot 1 - A_G) = \sum_{i=0}^{n} c_i \lambda^{n-i}$$

be a characteristic polynomial of graph G. Then  $c_i$  are given by:

$$c_i = \sum_{\gamma_i} (-1)^{comp(\gamma_i)} 2^{cyc(\gamma_i)}$$

where the summation is over the elementary subgraphs of G with i vertices. Corollary: we can derive now the identities for  $c_0, c_1, c_2, c_3$ 

Coefficients of  $P(G, \lambda)$  - continued

Proof:

According to Lemma 2 we have:  $(-1)^i c_i = \sum M_{Di}$  is the sum of all the principal minors of  $A_G$  with order *i*;

Each such minor is the determinant of adjacency matrix  $A_{H_i}$  of some graph  $H_i$  which is an induced subgraph of G with i vertices;

Let  $\gamma_{H_i}$  denote a spanning elementary subgraph of  $H_i$ 

Then, by Lemma 1,

$$(-1)^{i}c_{i} = \sum M_{Di} = \sum_{H_{i}} \sum_{\gamma_{H_{i}}} (-1)^{comp(\gamma_{H_{i}})} 2^{cyc(\gamma_{H_{i}})}$$

Every elementary subgraph with *i* vertices  $\gamma_i$  of *G* is contained in exactly one  $H_i$ . Thus, summarizing over all the  $\gamma_i$  we obtain:

$$c_i = \sum_{\gamma_i} (-1)^{comp(\gamma_i)} 2^{cyc(\gamma_i)}$$

Q.E.D.

Theorem 1 - (C.Godsil, I.Gutman, 1981)

Let G be a simple graph with n vertices and adjacency matrix A,

 $m(G,\lambda) = \sum_{i=0}^{\frac{n}{2}} (-1)^{i} m_{i}(G) \lambda^{n-2i}$  be its acyclic polynomial,

 $P(G,\lambda) = \det(\lambda \cdot 1 - A) = \sum_{i=0}^{n} c_i \lambda^{n-i}$  be its characteristic polynomial.

Let C denote an elementary subgraph of G, which contains only cycles;

Let comp(C) denote the number of components in C;

Let G - C denote the induced subgraph of G obtained from G by removing all the vertices of C.

Then the following holds:

$$P(G,\lambda) = m(G,\lambda) + \sum_{C} (-2)^{comp(C)} m(G-C,\lambda)$$

where the summation is over all non-empty C.

#### Theorem 1 - continued

In the case of a forest we have:

 $P(F,\lambda) = m(F,\lambda)$ 

Moreover, the coefficients satisfy the following identities:

(i) Even coefficients:

 $c_{2i} = m_i$ 

(ii) Odd coefficients:

$$c_{2i+1} = 0$$

#### Theorem 1 - continued

Proof:

Let us look on the coefficients of  $P(G, \lambda)$ :

$$P(G,\lambda) = \sum_{i=0}^{n} c_i \lambda^{n-i} = \sum_{i=0}^{n} \sum_{\gamma_i} (-1)^{comp(\gamma_i)} 2^{cyc(\gamma_i)} \lambda^{n-i}$$

Let's split the internal sum by the  $\gamma$ 's having the same set of cycles (including, in particular, empty set).

Let C denote such a common set of cycles.

Let  $\delta = \gamma_i - C$  denote the rest of  $\gamma_i$ , which is a set of disjoint edges.

Then  $cyc(\gamma_i) = comp(C)$  and  $comp(\gamma_i) = comp(\delta) + comp(C)$ 

Thus we can write:

$$P(G,\lambda) = \sum_{i=0}^{n} \sum_{C} \sum_{\delta} (-1)^{comp(\delta) + comp(C)} 2^{comp(C)} \lambda^{n-i}$$

33

#### Theorem 1 - continued

Let |C| denote the number of vertices in C.

Then we can express *i* via |C| and  $comp(\delta)$ :  $i = 2comp(\delta) + |C|$ 

Since C is independent of i and  $\delta$ , we can write now:

$$P(G,\lambda) = \sum_{C} (-2)^{comp(C)} \sum_{comp(\delta)=0}^{n-|C|} \sum_{\delta} (-1)^{comp(\delta)} \lambda^{n-|C|-2comp(\delta)} =$$

$$=\sum_{C} (-2)^{comp(C)} \sum_{j=0}^{n-|C|} m_j (G-C) \lambda^{n-|C|-j} = \sum_{C} (-2)^{comp(C)} m(G-C,\lambda)$$

Now we should distinguish between the case, when  $C = \emptyset$ , and the rest of the cases.

$$P(G,\lambda) = m(G,\lambda) + \sum_{C \neq \emptyset} (-2)^{comp(C)} m(G-C,\lambda)$$

Q.E.D.

Corollary 1.1 (C.Godsil, I.Gutman, 1981)

The acyclic polynomial of a graph coincides with the characteristic polynomial if and only if the graph is a forest.

$$m(G,\lambda) = P(G,\lambda) \Leftrightarrow Forest(G)$$

Proof:

" $\Leftarrow$ " follows trivially from the theorem 1.

"⇒"∶

Suppose G is not a forest, and proof that  $m(G,\lambda) \neq P(G,\lambda)$ . Let q be the smallest cycle in G and |q| is its length. Without loss of generality we can state that there are exactly  $k \geq 1$  cycles of such a length, denoted as  $\{q_1, ..., q_k\}$  in the graph G.

Let  $a_i$  and  $c_i$  be the coefficients of  $\lambda^{n-i}$  in respectively acyclic and characteristic polynomials.

#### Corollary 1.1 - continued

We shall prove that the second part of the equation in Theorem 1

 $\sum_{C \neq \emptyset} (-2)^{comp(C)} m(G-C,\lambda)$ 

makes the difference between the coefficients  $a_{|q|}$  and  $c_{|q|}$ .

First, only the summation over  $C \in \{q_1, ..., q_k\}$  contribute to the coefficient of  $\lambda^{n-|q|}$ , because all the other cycles or combinations of cycles are bigger, and then the degree of  $m(G - C, \lambda)$  will be less than  $\lambda^{n-|q|}$ .

Second, every single cycle contributes exactly (-2), because the graph G - C has exactly one 0-matching.

Thus,  $a_i - c_i = 2k > 0$ , hence the proposition " $\Rightarrow$ " holds. Q.E.D.

Corollary 1.2

We can state now: For every forest F, all the roots of its acyclic polynomial are real. They are equal to the eigenvalues of F.

#### Identities and Recurrences

**Proposition 2** *The acyclic polynomial is multiplicative:* 

Let  $G \sqcup H$  denote the disjoint union of graphs G and H. Then:

 $m(G \sqcup H, \lambda) = m(G, \lambda) \cdot m(H, \lambda)$ 

#### Identities and Recurrences - continued

Proof:

Each k-matching of  $G \sqcup H$  consists of l-matching of G and (k - l)-matching of H.

 $m_k(G \sqcup H) = \sum_{l=0}^k m_l(G)m_{k-l}(H)$ 

The coefficient of  $\lambda^{n-2k}$  in  $m(G,\lambda) \cdot m(H,\lambda)$  is equal to

$$\sum_{l=0}^{k} (-1)^{l} m_{l}(G) (-1)^{k-l} m_{k-l}(H) =$$
  
=  $(-1)^{k} \sum_{l=0}^{k} m_{l}(G) m_{k-l}(H) = (-1)^{k} m_{k}(G \sqcup H)$ 

which is equal to the corresponding coefficient of  $m(G \sqcup H, \lambda)$ 

Q.E.D.

#### Identities and Recurrences - continued

#### Proposition 3

Edge recurrence:

Let G - e denote the graph obtained by removing edge  $e = (u, v) \in E$  from the graph G(V, E)

Let G - u - v denote the induced subgraph of G(V, E) obtained from G by removing two vertices  $u, v \in V$ 

Then:

$$m(G,\lambda) = m(G-e,\lambda) - m(G-u-v,\lambda)$$

#### Identities and Recurrences - continued

Proof:

All the *k*-matchings of *G* are of 2 disjoint kinds: those that use the edge *e* and those that do not. Every matching that uses the edge *e* determines uniquely a (k-1)-matching in G - u - v. Every matching that don't use *e* is actually a matching in G - e. Therefore:

$$m_k(G) = m_k(G - e) + m_{k-1}(G - u - v)$$

Hence

$$m(G,\lambda) = \sum_{k \ge 0} (-1)^k m_k (G-e) \lambda^{n-2k} + \sum_{k \ge 1} (-1)^k m_{k-1} (G-u-v) \lambda^{n-2k} =$$

$$= \sum_{k\geq 0} (-1)^k m_k (G-e)\lambda^{n-2k} + (-1) \sum_{k-1\geq 0} (-1)^{(k-1)} m_{k-1} (G-u-v)\lambda^{n-2-2(k-1)} = m(G-e,\lambda) - m(G-u-v,\lambda)$$

Q.E.D.

41

#### Identities and Recurrences - continued

#### **Proposition 4**

*Vertex recurrence:* 

Let  $u \in V$  be a vertex of degree d.

Let G-u denote the induced subgraph of G(V, E) obtained from G by removing vertex u

Let  $v_i \in V, 1 \leq i \leq d$  denote all the vertices such that  $(u, v_i) \in E$  and

Let  $G - u - v_i$  denote the induced subgraph of G(V, E) obtained from G by removing two vertices  $u, v_i$ 

Then:

$$m(G,\lambda) = \lambda \cdot m(G-u,\lambda) - \sum_{i=1}^{d} m(G-u-v_i,\lambda)$$

#### Identities and Recurrences - continued

Proof:

All the *k*-matchings of *G* are of 2 disjoint kinds: those that use the vertex u and those that do not. The number of *k*-matchings that do not use the vertex u is equal to  $m_k(G - u, \lambda)$ . The number which do use u is equal to  $m_{k-1}(G - u - v_i)$ , summed over the vertices  $v_i$  adjacent to u. Thus,

$$m_k(G) = m_k(G-u) + \sum_{i=1}^d m_{k-1}(G-u-v_i)$$

Hence,

$$m(G,\lambda) = \sum_{k\geq 0} (-1)^k m_k (G-u)\lambda^{n-2k} + \sum_{k\geq 1} (-1)^k \sum_{i=1}^d m_{k-1} (G-u-v_i)\lambda^{n-2k} =$$

=

#### Identities and Recurrences - continued

Having G - u is a graph of n - 1 vertices, and i is independent of k, we can write

$$m(G,\lambda) = \lambda \cdot \sum_{k\geq 0} (-1)^k m_k (G-u) \lambda^{(n-1)-2k} + (-1) \sum_{i=1}^d \sum_{k-1\geq 0} (-1)^{(k-1)} m_{k-1} (G-u-v_i) \lambda^{(n-2)-2(k-1)}$$

$$\lambda \cdot m(G-u,\lambda) - \sum_{i=1}^d m(G-u-v_i,\lambda)$$

Q.E.D.

#### Theorem 2

Let G be a connected graph,  $v \in V(G)$  be a vertex of degree d, and  $H_1$  its induced subgraph without the vertex v.

Let  $w_i (i = 1, ..., d)$  be the vertices adjacent to v.

Let  $H_i$  (i = 2, ..., d) be graphs which are all isomorphic to  $H_1$ .

Let  $w_i(H_i)$  denote the vertex of  $H_i$  corresponding to the vertex  $w_i$  in  $H_1$ .

Let  $F_1 = G \sqcup H_2 \sqcup \ldots \sqcup H_d$ 

Let  $F_2$  be obtained from  $F_1$  by replacing the edges  $e_i = \{v, w_i\}$  by  $e'_i = \{v, w_i(H_i)\}$ 

Then  $m(F_1) = m(F_2)$ 

Lecture 3-4, Matching Polynomial

#### Theorem 2 - continued



46

#### Theorem 2 - continued

Proof:

For  $m(F_1)$ , we will apply vertex recurrence on G and v,

$$m(F_1) = m(G)m(H_2)...m(H_d) = m(H_2)...m(H_d)[\lambda m(H_1) - \sum_{i=1}^d m(H_1 - w_i)]$$

For  $m(F_2)$ , we will apply vertex recurrence on  $F_2$  and v,

$$m(F_2) = \lambda m(H_1)...m(H_d) - m(H_1)...m(H_d) \sum_{i=1}^d \frac{m(H_i - w_i(H_i))}{m(H_i)}$$

Having  $H_1...H_d$  isomorphic we obtain:

$$m(F_1) = (m(H_1))^{d-1} [\lambda m(H_1) - d \cdot m(H_1 - w_i)] =$$
$$= \lambda (m(H_1))^d - d(m(H_1))^{d-1} \cdot m(H_1 - w_i) = m(F_2)$$

Q.E.D.

Theorem 2 - continued

#### Corollary 2.1

For every simple connected graph G and vertex  $v \in V(G)$ there is a tree T(G, v) such that  $m(G, \lambda)$  divides  $m(T(G, v), \lambda)$ and maximum degree of T is not more than maximum degree of G. Proof: By multiple application of Theorem 2.

#### Corollary 2.2

For every simple graph G there is a forest F such that  $m(G, \lambda)$  divides  $m(F, \lambda)$ , and maximum degree of F is not more than maximum degree of G. Proof: straightforward from proposition 2 and corollary 2.1.

#### Corollary 2.3

The zeros (roots) of  $m(G, \lambda)$ , are real. Proof: straightforward from (2.2), (1.1) and the fact that the roots of the characteristic polynomial of a simple graph are all real.

#### Roots of the acyclic polynomial

**Corollary 2.4:** The roots of acyclic polynomial are symmetrically placed around zero. In other words,

$$m(G,\lambda) = 0 \Leftrightarrow m(G,-\lambda) = 0$$

Proof:

According to the definition,

$$m(G,\lambda) = \sum_{k}^{\frac{n}{2}} (-1)^{k} m_{k}(G) \lambda^{n-2k}$$

Hence, either all the degrees of  $\lambda$ 's are even or all the degrees of  $\lambda$ 's are odd.

In the first case,  $m(G, -\lambda) = m(G, \lambda)$ 

In the second case,  $m(G, -\lambda) = -m(G, \lambda)$ 

In both the cases,

$$m(G,\lambda) = 0 \Leftrightarrow m(G,-\lambda) = 0$$

Q.E.D.

Roots of the matching generating polynomial

**Corollary 2.5:** All the roots of generating matching polynomial are real and negative.

Proof:

The coefficient of  $\lambda^0$  in  $g(G,\lambda)$  is always 1 (number of zero-matchings by convention). Thus,  $\lambda = 0$  cannot be a root of  $g(G,\lambda)$ 

On the other hand, we know that  $m(G,\lambda) = \lambda^n g(G,(-\lambda^{-2}))$ 

Let t be a root of  $g(G, \lambda)$ . We know that  $t \neq 0$ 

Let  $s = (-t)^{-\frac{1}{2}}$ , and then  $t = -s^{-2}$ 

Hence,  $m(G,s) = s^n g(G, -s^{-2}) = s^n g(G,t) = 0$ , so s is a root of  $m(G,\lambda)$ 

But we know that all the roots of  $m(G, \lambda)$  are real.

Thus,  $t = -s^{-2}$  is real and negative.

Q.E.D.

Theorem 3 - (Heilman and Lieb, 1972)

(L.Lovasz and M.D.Plummer, Matching Theory - Theorem 8.5.8)

Let G be a simple graph with degree  $\Delta(G) > 1$  and let t be any root of  $m(G, \lambda)$ .

Then

$$t \leq 2\sqrt{\Delta(G) - 1}$$

#### Theorem 3 - proof

Let's prove it first for trees:

Let T be a tree of maximum degree  $\Delta$ .

By theorem 1, the roots of acyclic polynomial are actually the eigenvalues of the tree.

On the other hand, the tree T is an induced subgraph of a full  $(\Delta - 1)$ -ary tree T'.

The adjacency matrix of T is a principal minor of the adjacency matrix of T'. But the largest eigenvalue of a principal minor doesn't exceed the largest eigenvalue of the matrix.

The eigenvalues of a complete d-ary tree of depth k are:

 $\lambda = 2\sqrt{d}\cos(m\pi/(k+1)), m = 1, ..., k$ , hence the largest eigenvalue of T is less than  $2\sqrt{\Delta - 1}$  as claimed.

(L.Lovasz Combinatorial problems and Exercises (Exercise 11.5)

2-nd ed. Elsevier S.P., Amsterdam and Akademiai Kiado, Budapest 1993)

#### Theorem 3 - continued

The general case now follows using Corollary 2.1:

Let G be a graph, and let H be any of its connected components with the maximum degree  $\Delta$ .

By the Corollary 2.1, there is a tree T such that  $m(H,\lambda)|m(T,\lambda)$ , and the maximum degree of T doesn't exceed  $\Delta$ .

Since any root of  $m(H,\lambda)$  is also a root of  $m(T,\lambda)$ , it follows that every root of  $m(H,\lambda)$  doesn't exceed  $2\sqrt{\Delta-1}$ .

By Proposition 2,  $m(G,\lambda) = \prod_H m(H,\lambda)$ , so any t root of  $m(G,\lambda)$  is also a root of some  $m(H,\lambda)$ . Hence the equation  $t \leq 2\sqrt{\Delta - 1}$  holds for any graph.

Q.E.D.