Characteristic polynomial and Matching Polynomial

Lecturer: Ilia Averbouch
e-mail: ailia@cs.technion.ac.il

Outline of Lectures 3-4

- Characteristic polynomial: definition and interpretation of the coefficients
- Acyclic polynomials vs. generating matching polynomials
- Relationship between acyclic and characteristic polynomials
- Roots of the characteristic and acyclic polynomials

Definition 1 Characteristic polynomial of a graph

Let $G(V, E)$ be a simple undirected graph with $|V|=n$, and Let A_{G} be the (symmetric) adjacency matrix of G
with
$\left(A_{G}\right)_{j, i}=\left(A_{G}\right)_{i, j}=1$ if $\left(v_{i} v_{j}\right) \in E$ and
$\left(A_{G}\right)_{j, i}=\left(A_{G}\right)_{i, j}=0$ otherwise

- The characteristic polynomial of G is defined as

$$
P(G, \lambda)=\operatorname{det}\left(\lambda \cdot 1-A_{G}\right)
$$

- The roots of $P(G, \lambda)$ are the eigenvalues of A_{G}. We will call them also the eigenvalues of G.

Identities and features

Proposition 1

The characteristic polynomial is multiplicative:
Let $G \sqcup H$ denote the disjoint union of graphs G and H. Then:

$$
P(G \sqcup H, \lambda)=P(G, \lambda) \cdot P(H, \lambda)
$$

Proof:

$$
\operatorname{det}\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)=\operatorname{det}(A) \operatorname{det}(B)
$$

for any square matrices A and B, not necessarily of the same order. The claim follows at once from this.

Coefficients of the characteristic polynomial

Let us suppose that the characteristic polynomial of graph G is:

$$
P(G, \lambda)=\sum_{i=0}^{n} c_{i}(G) \lambda^{n-i}
$$

We have seen on the 1-st lecture:
(i) $c_{0}=1$
(ii) $c_{1}=0$
(iii) $-c_{2}=|E(G)|$ is the number of edges of G.
(iv) $-c_{3}$ is twice the number of triangles of G.

We will find general interpretation of the coefficients of $P(G, \lambda)$

Eigenvalues of graph G

The following features of the eigenvalues can be derived from the matrix theory:
(i) Since A_{G} is a symmetric matrix, all the eigenvalues of G are real
(ii) Since A_{G} is non-negative matrix, its largest eigenvalue is non-negative and it has the largest absolute value. (corollary of Frobenius' theorem) (Gantmacher F.R. Theory of Matrices I,II (2 vol.) Chelsea, New York 1960 vol. 2 p.66)
(iii) Since A_{G} is non-negative matrix, the largest eigenvalue of every principal minor of A_{G} doesn't exceed the largest eigenvalue of A_{G} (Gantmacher F.R. Theory of Matrices I,II (2 vol.) Chelsea, New York 1960 vol. 2 p.69)

We will also use those theorems when analyzing the matching polynomial roots.

Definition 2 Acyclic (matching defect) polynomial of a graph

Let $G(V, E)$ be a simple graph (no multiple edges) with $|V|=n$
We denote by $m_{k}(G)$ the number of k-matchings of a graph G, with $m_{0}(G)=1$ by convention.

We are concerned with properties of the sequence $\left\{m_{0}, m_{1}, m_{2} \ldots\right\}$

- The matching defect polynomial (or acyclic polynomial)

$$
m(G, \lambda)=\sum_{k}^{\frac{n}{2}}(-1)^{k} m_{k}(G) \lambda^{n-2 k}
$$

Definition 3 Matching generating polynomial of a graph

Another (maybe more natural) polynomial to study is matching generating polynomial

$$
g(G, \lambda)=\sum_{k}^{n} m_{k}(G) \lambda^{k}
$$

- For every $k>\left\lfloor\frac{n}{2}\right\rfloor$ number of matchings $m_{k}(G)=0$
- Relationship between two the forms:

$$
\begin{gathered}
m(G, \lambda)=\sum_{k}^{\frac{n}{2}}(-1)^{k} m_{k}(G) \lambda^{n-2 k}=\lambda^{n} \sum_{k}^{\frac{n}{2}}(-1)^{k} m_{k}(G) \lambda^{-2 k}= \\
=\lambda^{n} \sum_{k}^{\frac{n}{2}} m_{k}(G)\left((-1) \cdot \lambda^{-2}\right)^{k}=\lambda^{n} \sum_{k}^{\frac{n}{2}} m_{k}(G)\left(-\lambda^{-2}\right)^{k}=\lambda^{n} g\left(G,\left(-\lambda^{-2}\right)\right)
\end{gathered}
$$

Coefficients of the acyclic polynomial

Let us suppose that the acyclic polynomial of graph G is:

$$
m(G, \lambda)=\sum_{i=0}^{n} a_{i}(G) \lambda^{n-i}
$$

According to the definition we see:
(i) $a_{0}=1$
(ii) $a_{i}=0$ for every odd i
(iii) For every $i, a_{2 i}=(-1)^{i} m_{i}(G)$
(iv) In particular, $(-1)^{\frac{n}{2}} a_{n}$ is a number of perfect matchings of G

Relationship between acyclic and characteristic polynomials

We want to explore

- Does characteristic polynomial induce acyclic polynomial (NO)
- Does acyclic polynomial induce characteristic polynomial (NO)
- When nevertheless there is a connection and what is that connection?
- How can we use it?

Counter-example 1

The graphs G_{1} and G_{2} have the same characteristic polynomial but different acyclic polynomials.

$P\left(G_{1}, \lambda\right)=P\left(G_{2}, \lambda\right)=\lambda^{6}-7 \lambda^{4}-4 \lambda^{3}+7 \lambda^{2}+4 \lambda-1$
On the other hand, we can see that $m_{2}\left(G_{1}\right)=9$ but $m_{2}\left(G_{2}\right)=7$
Conclusion: Characteristic polynomial doesn't induce acyclic polynomial.

Counter-example 2

The graphs G_{3} and G_{4} have the same acyclic polynomial but different characteristic polynomials.

$$
\mathrm{G}_{3}=\mathrm{C}_{3} \sqcup \mathrm{P}_{2} \quad \mathrm{G}_{4}=\mathrm{P}_{5}
$$

$m\left(G_{1}, \lambda\right)=m\left(G_{2}, \lambda\right)=\lambda^{5}-4 \lambda^{3}+3 \lambda$
On the other hand, we can see that G_{1} has a triangle, and G_{2} has not.
Thus, they definitely have different characteristic polynomials.
Conclusion: Acyclic polynomial doesn't induce characteristic polynomial.

Example $4 G=P_{2}$

Adjacency matrix:

$$
A_{P_{2}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Characteristic polynomial:

$$
\begin{gathered}
P\left(P_{2}, \lambda\right)=\operatorname{det}\left(\lambda \cdot 1-A_{P_{2}}\right)= \\
=\operatorname{det}\left(\begin{array}{cc}
\lambda & -1 \\
-1 & \lambda
\end{array}\right)= \\
=\lambda^{2}-1
\end{gathered}
$$

$$
G=P_{2}
$$

Acyclic polynomial:

$$
\begin{gathered}
m_{0}\left(P_{2}\right)=1 \\
m_{1}\left(P_{2}\right)=1 \\
m\left(P_{2}, \lambda\right)=\sum_{k}^{\frac{n}{2}}(-1)^{k} m_{k}(G) \lambda^{n-2 k}=\lambda^{2}-1=P\left(P_{2}, \lambda\right)
\end{gathered}
$$

The acyclic polynomial of P_{2} is equal to its characteristic polynomial, in contrast for its matching generating polynomial, which is

$$
g\left(P_{2}, \lambda\right)=1+\lambda
$$

Example $5 G=P_{3}$

Adjacency matrix:

$$
A_{P_{3}}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Characteristic polynomial:

$$
\begin{gathered}
P\left(P_{3}, \lambda\right)=\operatorname{det}\left(\lambda \cdot 1-A_{P_{3}}\right)= \\
=\operatorname{det}\left(\begin{array}{ccc}
\lambda & -1 & 0 \\
-1 & \lambda & -1 \\
0 & -1 & \lambda
\end{array}\right)= \\
=\lambda^{3}-2 \lambda
\end{gathered}
$$

Lecture 3-4, Matching Polynomial

$$
G=P_{3}
$$

Acyclic polynomial:

$$
\begin{gathered}
m_{0}\left(P_{3}\right)=1 \\
m_{1}\left(P_{3}\right)=2 \\
m\left(P_{3}, \lambda\right)=\sum_{k}^{\frac{n}{2}}(-1)^{k} m_{k}(G) \lambda^{n-2 k}=\lambda^{3}-2 \lambda=P\left(P_{3}, \lambda\right)
\end{gathered}
$$

Example $6 G=C_{3}$

Adjacency matrix:

$$
A_{C_{3}}=\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Characteristic polynomial:

$$
\begin{gathered}
P\left(C_{3}, \lambda\right)=\operatorname{det}\left(\lambda \cdot 1-A_{C_{3}}\right)= \\
=\operatorname{det}\left(\begin{array}{ccc}
\lambda & -1 & -1 \\
-1 & \lambda & -1 \\
-1 & -1 & \lambda
\end{array}\right)= \\
=\lambda^{3}-3 \lambda-2
\end{gathered}
$$

$$
G=C_{3}
$$

Acyclic polynomial:

$$
\begin{gathered}
m_{0}\left(C_{3}\right)=1 \\
m_{1}\left(C_{3}\right)=3 \\
m\left(C_{3}, \lambda\right)=\sum_{k}^{\frac{n}{2}}(-1)^{k} m_{k}(G) \lambda^{n-2 k}=\lambda^{3}-3 \lambda \\
P\left(C_{3}, \lambda\right)=\lambda^{3}-3 \lambda-2 \neq m\left(C_{3}, \lambda\right)
\end{gathered}
$$

Note that 2 is twice the number of triangles in G.

Relationship between acyclic and characteristic polynomials continued

Let us generalize:

- Can we interpret the coefficients of characteristic polynomial?
- Can we interpret the coefficients of acyclic polynomial?
- Which recurrence relations do they satisfy?
- Theorem (I.Gutman, C.Godsil 1981)

Definitions

- An elementary graph is a simple graph, each component of which is regular and has degree 1 or 2.
In other words, it is disjoint union of single edges $\left(K_{2}\right)$ or cycles $\left(C_{k}\right)$
- A spanning elementary subgraph of G is an elementary subgraph which contains all the vertices of G.
- We will denote spanning elementary subgraph of G as γ $\operatorname{comp}(\gamma)$ is the number of connected components in γ $\operatorname{cyc}(\gamma)$ is the number of cycles in γ
- Note that cycle free spanning elementary subgraph of G is actually a perfect matching of G

Example: Spanning elementary subgraphs

Lemma 1 (Harary,1962)

Let A be the adjacency matrix of some graph $G(V, E)$ with $|V|=n$. Then

$$
\operatorname{det}(A)=(-1)^{n} \sum_{\gamma}(-1)^{\operatorname{comp}(\gamma)} 2^{c y c(\gamma)}
$$

where summation is over all the spanning elementary subgraphs γ of G

Lemma 1: proof

Let us look at the $\operatorname{det}(A)$ and interpret its components. Use the definition of a determinant:
if $A_{n \times n}=\left(a_{i j}\right)$, then

$$
\operatorname{det}(A)=\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} a_{i, \pi(i)}
$$

where summation is over all permutations π of the set $\{1,2, \ldots, n\}$
Consider the term

$$
\prod_{i=1}^{n} a_{i, \pi(i)}
$$

Its value is 0 or 1 . This term vanishes if for any $i \in\{1,2, \ldots n\}, a_{i, \pi(i)}=0$; that is, if $\left(v_{i}, v_{\pi(i)}\right)$ is not an edge of G.

Each non-vanishing term corresponds to a disjoint union of directed cycles.

Lemma 1: proof - continued

Therefore, every such term corresponds to a composition of disjoint cycles of length at least 2, which is actually a spanning elementary subgraph γ of the graph G

Let $\Gamma: \pi \rightarrow \gamma$ define uniquely, which γ corresponds to certain π.
Let $\Gamma^{-1}(\gamma)=\{\pi: \Gamma(\pi)=\gamma\}$ define the set of π that correspond to certain γ

If $\Gamma(\pi)=\Gamma\left(\pi^{\prime}\right)$ then π and π^{\prime} are different only by the direction of their cycles (of length greater than 2).

Hence, $\left|\Gamma^{-1}(\gamma)\right|=2^{c y c(\gamma)}$

Lemma 1: proof - continued

We can now split the non-vanishing permutations according to the γ they correspond.

$$
\operatorname{det}(A)=\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} a_{i, \pi(i)}=\sum_{\gamma} \sum_{\pi \in \Gamma^{-1}(\gamma)} \operatorname{sgn}(\pi) \cdot 1
$$

The sign of a permutation π is defined as $(-1)^{N_{e}}$, where N_{e} is the number of even cycles in π. If $\Gamma(\pi)=\Gamma\left(\pi^{\prime}\right)$ then $\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\pi^{\prime}\right)$, we'll denote it as $\operatorname{sgn}(\gamma)$

Now we can write:

$$
\operatorname{det}(A)=\sum_{\gamma} \operatorname{sgn}(\gamma) \sum_{\pi \in \Gamma^{-1}(\gamma)} 1=\sum_{\gamma} \operatorname{sgn}(\gamma) 2^{c y c(\gamma)}
$$

Lemma 1: proof - end

The sign of spanning elementary subgraph γ is $(-1)^{N_{e}}$, where N_{e} is the number of even cycles in γ.

The number of odd cycles in γ is congruent to n modulo 2: $n \equiv N_{o}(\bmod 2)$
Having $\operatorname{comp}(\gamma)=N_{e}+N_{o}$ we obtain:

$$
\operatorname{sgn}(\gamma)=(-1)_{e}^{N}=(-1)^{n+N_{o}+N_{e}}=(-1)^{n+\operatorname{comp}(\gamma)}
$$

From here, every γ contributes $(-1)^{n+\operatorname{comp}(\gamma)} 2^{\operatorname{cyc}(\gamma)}$ to the determinant, and finally

$$
\operatorname{det}(A)=(-1)^{n} \sum_{\gamma}(-1)^{\operatorname{comp}(\gamma)} 2^{\operatorname{cyc}(\gamma)}
$$

Q.E.D.

Lemma 2

Let A be the adjacency matrix of graph $\mathrm{G}: A_{n \times n}=\left(a_{i j}\right)$ and $P(G, \lambda)=\operatorname{det}(\lambda \cdot 1-A)=\sum_{i=0}^{n} c_{i} \lambda^{n-i}$ - its characteristic polynomial.

Then

$$
(-1)^{i} c_{i}=\sum M_{D i}
$$

where $M_{D i}$ are the principal minors of A with order i (Minors, whose diagonal elements belong to the main diagonal of A)

Lemma 2 - end

Proof:

$$
(\lambda \cdot 1-A)=\left(\begin{array}{cccc}
\lambda & -a_{12} & \cdots & -a_{1 n} \\
-a_{21} & \lambda & \cdots & -a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
-a_{n 1} & -a_{n 2} & \cdots & \lambda
\end{array}\right)
$$

Let's analyze the permutations contributing to c_{i} :
They have exactly $n-i$ members of the main diagonal $a_{k k}=\lambda$
The permutations in the rest rows and columns (which don't include the main diagonal) will give exactly the determinant of some principal minor of A.

The sign $(-1)^{i}$ compensates the fact that all the values in $(\lambda \cdot 1-A)$ are $-a_{i j}$

Hence, $(-1)^{i} c_{i}=\sum M_{D i}$
Q.E.D.

General interpretation of the coefficients of $P(G, \lambda)$

Let G be a graph with adjacency matrix A_{G}, and

$$
P(G, \lambda)=\operatorname{det}\left(\lambda \cdot 1-A_{G}\right)=\sum_{i=0}^{n} c_{i} \lambda^{n-i}
$$

be a characteristic polynomial of graph G.
Then c_{i} are given by:

$$
c_{i}=\sum_{\gamma_{i}}(-1)^{\operatorname{comp}\left(\gamma_{i}\right)} 2^{c y c\left(\gamma_{i}\right)}
$$

where the summation is over the elementary subgraphs of G with i vertices. Corollary: we can derive now the identities for $c_{0}, c_{1}, c_{2}, c_{3}$

Coefficients of $P(G, \lambda)$ - continued

Proof:
According to Lemma 2 we have: $(-1)^{i} c_{i}=\sum M_{D i}$ is the sum of all the principal minors of A_{G} with order i;

Each such minor is the determinant of adjacency matrix $A_{H_{i}}$ of some graph H_{i} which is an induced subgraph of G with i vertices;

Let $\gamma_{H_{i}}$ denote a spanning elementary subgraph of H_{i}
Then, by Lemma 1,

$$
(-1)^{i} c_{i}=\sum M_{D i}=\sum_{H_{i}} \sum_{\gamma_{H_{i}}}(-1)^{\operatorname{comp}\left(\gamma_{H_{i}}\right)} 2^{c y c\left(\gamma_{H_{i}}\right)}
$$

Every elementary subgraph with i vertices γ_{i} of G is contained in exactly one H_{i}. Thus, summarizing over all the γ_{i} we obtain:

$$
c_{i}=\sum_{\gamma_{i}}(-1)^{\operatorname{comp}\left(\gamma_{i}\right)} 2^{c y c\left(\gamma_{i}\right)}
$$

Q.E.D.

Theorem 1 - (C.Godsil, I.Gutman, 1981)

Let G be a simple graph with n vertices and adjacency matrix A, $m(G, \lambda)=\sum_{i=0}^{\frac{n}{2}}(-1)^{i} m_{i}(G) \lambda^{n-2 i}$ be its acyclic polynomial, $P(G, \lambda)=\operatorname{det}(\lambda \cdot 1-A)=\sum_{i=0}^{n} c_{i} \lambda^{n-i}$ be its characteristic polynomial.

Let C denote an elementary subgraph of G, which contains only cycles;
Let $\operatorname{comp}(C)$ denote the number of components in C;
Let $G-C$ denote the induced subgraph of G obtained from G by removing all the vertices of C.

Then the following holds:

$$
P(G, \lambda)=m(G, \lambda)+\sum_{C}(-2)^{\operatorname{comp}(C)} m(G-C, \lambda)
$$

where the summation is over all non-empty C.

Theorem 1 - continued

In the case of a forest we have:

$$
P(F, \lambda)=m(F, \lambda)
$$

Moreover, the coefficients satisfy the following identities:
(i) Even coefficients:

$$
c_{2 i}=m_{i}
$$

(ii) Odd coefficients:

$$
c_{2 i+1}=0
$$

Theorem 1-continued

Proof:
Let us look on the coefficients of $P(G, \lambda)$:

$$
P(G, \lambda)=\sum_{i=0}^{n} c_{i} \lambda^{n-i}=\sum_{i=0}^{n} \sum_{\gamma_{i}}(-1)^{\operatorname{comp}\left(\gamma_{i}\right)} 2^{c y c\left(\gamma_{i}\right)} \lambda^{n-i}
$$

Let's split the internal sum by the γ 's having the same set of cycles (including, in particular, empty set).
Let C denote such a common set of cycles.
Let $\delta=\gamma_{i}-C$ denote the rest of γ_{i}, which is a set of disjoint edges.
Then $\operatorname{cyc}\left(\gamma_{i}\right)=\operatorname{comp}(C)$ and $\operatorname{comp}\left(\gamma_{i}\right)=\operatorname{comp}(\delta)+\operatorname{comp}(C)$
Thus we can write:

$$
P(G, \lambda)=\sum_{i=0}^{n} \sum_{C} \sum_{\delta}(-1)^{\operatorname{comp}(\delta)+\operatorname{comp}(C)} 2^{\operatorname{comp}(C)} \lambda^{n-i}
$$

Theorem 1 - continued

Let $|C|$ denote the number of vertices in C.
Then we can express i via $|C|$ and $\operatorname{comp}(\delta): i=2 \operatorname{comp}(\delta)+|C|$
Since C is independent of i and δ, we can write now:

$$
\begin{gathered}
P(G, \lambda)=\sum_{C}(-2)^{\operatorname{comp}(C)} \sum_{\operatorname{comp}(\delta)=0}^{n-|C|} \sum_{\delta}(-1)^{\operatorname{comp}(\delta)} \lambda^{n-|C|-2 \operatorname{comp}(\delta)}= \\
=\sum_{C}(-2)^{\operatorname{comp}(C)} \sum_{j=0}^{n-|C|} m_{j}(G-C) \lambda^{n-|C|-j}=\sum_{C}(-2)^{\operatorname{comp}(C)} m(G-C, \lambda)
\end{gathered}
$$

Now we should distinguish between the case, when $C=\emptyset$, and the rest of the cases.

$$
P(G, \lambda)=m(G, \lambda)+\sum_{C \neq \emptyset}(-2)^{\operatorname{comp}(C)} m(G-C, \lambda)
$$

Q.E.D.

Corollary 1.1 (C.Godsil, I.Gutman, 1981)

The acyclic polynomial of a graph coincides with the characteristic polynomial if and only if the graph is a forest.

$$
m(G, \lambda)=P(G, \lambda) \Leftrightarrow \operatorname{Forest}(G)
$$

Proof:
$" \Leftarrow "$ follows trivially from the theorem 1 .
" \Rightarrow ":
Suppose G is not a forest, and proof that $m(G, \lambda) \neq P(G, \lambda)$.
Let q be the smallest cycle in G and $|q|$ is its length.
Without loss of generality we can state that there are exactly $k \geq 1$ cycles of such a length, denoted as $\left\{q_{1}, \ldots, q_{k}\right\}$ in the graph G.

Let a_{i} and c_{i} be the the coefficients of λ^{n-i} in respectively acyclic and characteristic polynomials.

Corollary 1.1 - continued

We shall prove that the second part of the equation in Theorem 1
$\sum_{C \neq \emptyset}(-2)^{\operatorname{comp}(C)} m(G-C, \lambda)$
makes the difference between the coefficients $a_{|q|}$ and $c_{|q|}$.
First, only the summation over $C \in\left\{q_{1}, \ldots, q_{k}\right\}$ contribute to the coefficient of $\lambda^{n-|q|}$, because all the other cycles or combinations of cycles are bigger, and then the degree of $m(G-C, \lambda)$ will be less than $\lambda^{n-|q|}$.

Second, every single cycle contributes exactly (-2), because the graph $G-C$ has exactly one 0 -matching.

Thus, $a_{i}-c_{i}=2 k>0$, hence the proposition " \Rightarrow " holds.
Q.E.D.

Corollary 1.2

We can state now:
For every forest F, all the roots of its acyclic polynomial are real. They are equal to the eigenvalues of F.

Identities and Recurrences

Proposition 2

The acyclic polynomial is multiplicative:
Let $G \sqcup H$ denote the disjoint union of graphs G and H. Then:

$$
m(G \sqcup H, \lambda)=m(G, \lambda) \cdot m(H, \lambda)
$$

Identities and Recurrences - continued

Proof:
Each k-matching of $G \sqcup H$ consists of l-matching of G and $(k-l)$-matching of H.
$m_{k}(G \sqcup H)=\sum_{l=0}^{k} m_{l}(G) m_{k-l}(H)$
The coefficient of $\lambda^{n-2 k}$ in $m(G, \lambda) \cdot m(H, \lambda)$ is equal to
$\sum_{l=0}^{k}(-1)^{l} m_{l}(G)(-1)^{k-l} m_{k-l}(H)=$
$=(-1)^{k} \sum_{l=0}^{k} m_{l}(G) m_{k-l}(H)=(-1)^{k} m_{k}(G \sqcup H)$
which is equal to the corresponding coefficient of $m(G \sqcup H, \lambda)$
Q.E.D.

Identities and Recurrences - continued

Proposition 3

Edge recurrence:
Let $G-e$ denote the graph obtained by removing edge $e=(u, v) \in E$ from the graph $G(V, E)$

Let $G-u-v$ denote the induced subgraph of $G(V, E)$ obtained from G by removing two vertices $u, v \in V$

Then:

$$
m(G, \lambda)=m(G-e, \lambda)-m(G-u-v, \lambda)
$$

Identities and Recurrences - continued

Proof:

All the k-matchings of G are of 2 disjoint kinds: those that use the edge e and those that do not. Every matching that uses the edge e determines uniquely a ($k-1$)-matching in $G-u-v$. Every matching that don't use e is actually a matching in $G-e$.
Therefore:

$$
m_{k}(G)=m_{k}(G-e)+m_{k-1}(G-u-v)
$$

Hence

$$
\begin{gathered}
m(G, \lambda)=\sum_{k \geq 0}(-1)^{k} m_{k}(G-e) \lambda^{n-2 k}+\sum_{k \geq 1}(-1)^{k} m_{k-1}(G-u-v) \lambda^{n-2 k}= \\
=\sum_{k \geq 0}(-1)^{k} m_{k}(G-e) \lambda^{n-2 k}+(-1) \sum_{k-1 \geq 0}(-1)^{(k-1)} m_{k-1}(G-u-v) \lambda^{n-2-2(k-1)}= \\
=m(G-e, \lambda)-m(G-u-v, \lambda)
\end{gathered}
$$

Q.E.D.

Identities and Recurrences - continued

Proposition 4

Vertex recurrence:
Let $u \in V$ be a vertex of degree d.
Let $G-u$ denote the induced subgraph of $G(V, E)$ obtained from G by removing vertex u

Let $v_{i} \in V, 1 \leq i \leq d$ denote all the vertices such that $\left(u, v_{i}\right) \in E$ and
Let $G-u-v_{i}$ denote the induced subgraph of $G(V, E)$ obtained from G by removing two vertices u, v_{i}

Then:

$$
m(G, \lambda)=\lambda \cdot m(G-u, \lambda)-\sum_{i=1}^{d} m\left(G-u-v_{i}, \lambda\right)
$$

Identities and Recurrences - continued

Proof:
All the k-matchings of G are of 2 disjoint kinds: those that use the vertex u and those that do not. The number of k-matchings that do not use the vertex u is equal to $m_{k}(G-u, \lambda)$. The number which do use u is equal to $m_{k-1}\left(G-u-v_{i}\right)$, summed over the vertices v_{i} adjacent to u. Thus,

$$
m_{k}(G)=m_{k}(G-u)+\sum_{i=1}^{d} m_{k-1}\left(G-u-v_{i}\right)
$$

Hence,

$$
m(G, \lambda)=\sum_{k \geq 0}(-1)^{k} m_{k}(G-u) \lambda^{n-2 k}+\sum_{k \geq 1}(-1)^{k} \sum_{i=1}^{d} m_{k-1}\left(G-u-v_{i}\right) \lambda^{n-2 k}=
$$

Identities and Recurrences - continued

Having $G-u$ is a graph of $n-1$ vertices, and i is independent of k, we can write

$$
\begin{gathered}
m(G, \lambda)=\lambda \cdot \sum_{k \geq 0}(-1)^{k} m_{k}(G-u) \lambda^{(n-1)-2 k}+ \\
+(-1) \sum_{i=1}^{d} \sum_{k-1 \geq 0}(-1)^{(k-1)} m_{k-1}\left(G-u-v_{i}\right) \lambda^{(n-2)-2(k-1)}= \\
\lambda \cdot m(G-u, \lambda)-\sum_{i=1}^{d} m\left(G-u-v_{i}, \lambda\right)
\end{gathered}
$$

Q.E.D.

Theorem 2

Let G be a connected graph, $v \in V(G)$ be a vertex of degree d, and H_{1} its induced subgraph without the vertex v.

Let $w_{i}(i=1, \ldots, d)$ be the vertices adjacent to v.
Let $H_{i}(i=2, \ldots, d)$ be graphs which are all isomorphic to H_{1}.
Let $w_{i}\left(H_{i}\right)$ denote the vertex of H_{i} corresponding to the vertex w_{i} in H_{1}.
Let $F_{1}=G \sqcup H_{2} \sqcup \ldots \sqcup H_{d}$
Let F_{2} be obtained from F_{1} by replacing the edges
$e_{i}=\left\{v, w_{i}\right\}$ by $e_{i}^{\prime}=\left\{v, w_{i}\left(H_{i}\right)\right\}$
Then $m\left(F_{1}\right)=m\left(F_{2}\right)$

Theorem 2 - continued

Theorem 2 - continued

Proof:

For $m\left(F_{1}\right)$, we will apply vertex recurrence on G and v,

$$
m\left(F_{1}\right)=m(G) m\left(H_{2}\right) \ldots m\left(H_{d}\right)=m\left(H_{2}\right) \ldots m\left(H_{d}\right)\left[\lambda m\left(H_{1}\right)-\sum_{i=1}^{d} m\left(H_{1}-w_{i}\right)\right]
$$

For $m\left(F_{2}\right)$, we will apply vertex recurrence on F_{2} and v,

$$
m\left(F_{2}\right)=\lambda m\left(H_{1}\right) \ldots m\left(H_{d}\right)-m\left(H_{1}\right) \ldots m\left(H_{d}\right) \sum_{i=1}^{d} \frac{m\left(H_{i}-w_{i}\left(H_{i}\right)\right)}{m\left(H_{i}\right)}
$$

Having $H_{1} \ldots H_{d}$ isomorphic we obtain:

$$
\begin{aligned}
& m\left(F_{1}\right)=\left(m\left(H_{1}\right)\right)^{d-1}\left[\lambda m\left(H_{1}\right)-d \cdot m\left(H_{1}-w_{i}\right)\right]= \\
& =\lambda\left(m\left(H_{1}\right)\right)^{d}-d\left(m\left(H_{1}\right)\right)^{d-1} \cdot m\left(H_{1}-w_{i}\right)=m\left(F_{2}\right)
\end{aligned}
$$

Q.E.D.

Theorem 2 - continued

Corollary 2.1

For every simple connected graph G and vertex $v \in V(G)$
there is a tree $T(G, v)$ such that $m(G, \lambda)$ divides $m(T(G, v), \lambda)$
and maximum degree of T is not more than maximum degree of G.
Proof: By multiple application of Theorem 2.

Corollary 2.2

For every simple graph G there is a forest F such that $m(G, \lambda)$ divides $m(F, \lambda)$, and maximum degree of F is not more than maximum degree of G.
Proof: straightforward from proposition 2 and corollary 2.1.

Corollary 2.3

The zeros (roots) of $m(G, \lambda)$, are real.
Proof: straightforward from (2.2), (1.1) and the fact that the roots of the characteristic polynomial of a simple graph are all real.

Roots of the acyclic polynomial

Corollary 2.4: The roots of acyclic polynomial are symmetrically placed around zero. In other words,

$$
m(G, \lambda)=0 \Leftrightarrow m(G,-\lambda)=0
$$

Proof:
According to the definition,

$$
m(G, \lambda)=\sum_{k}^{\frac{n}{2}}(-1)^{k} m_{k}(G) \lambda^{n-2 k}
$$

Hence, either all the degrees of λ 's are even or all the degrees of λ 's are odd.
In the first case, $m(G,-\lambda)=m(G, \lambda)$
In the second case, $m(G,-\lambda)=-m(G, \lambda)$
In both the cases,

$$
m(G, \lambda)=0 \Leftrightarrow m(G,-\lambda)=0
$$

Q.E.D.

Roots of the matching generating polynomial

Corollary 2.5: All the roots of generating matching polynomial are real and negative.

Proof:
The coefficient of λ^{0} in $g(G, \lambda)$ is always 1 (number of zero-matchings by convention). Thus, $\lambda=0$ cannot be a root of $g(G, \lambda)$

On the other hand, we know that $m(G, \lambda)=\lambda^{n} g\left(G,\left(-\lambda^{-2}\right)\right)$
Let t be a root of $g(G, \lambda)$. We know that $t \neq 0$
Let $s=(-t)^{-\frac{1}{2}}$, and then $t=-s^{-2}$
Hence, $m(G, s)=s^{n} g\left(G,-s^{-2}\right)=s^{n} g(G, t)=0$, so s is a root of $m(G, \lambda)$
But we know that all the roots of $m(G, \lambda)$ are real.
Thus, $t=-s^{-2}$ is real and negative.
Q.E.D.

Theorem 3-(Heilman and Lieb, 1972)
(L.Lovasz and M.D.Plummer, Matching Theory - Theorem 8.5.8)

Let G be a simple graph with degree $\Delta(G)>1$ and let t be any root of $m(G, \lambda)$.

Then

$$
t \leq 2 \sqrt{\Delta(G)-1}
$$

Theorem 3 - proof

Let's prove it first for trees:
Let T be a tree of maximum degree Δ.
By theorem 1, the roots of acyclic polynomial are actually the eigenvalues of the tree.

On the other hand, the tree T is an induced subgraph of a full $(\Delta-1)$ ary tree T^{\prime}.
The adjacency matrix of T is a principal minor of the adjacency matrix of T^{\prime}. But the largest eigenvalue of a principal minor doesn't exceed the largest eigenvalue of the matrix.

The eigenvalues of a complete d-ary tree of depth k are:
$\lambda=2 \sqrt{d} \cos (m \pi /(k+1)), m=1, \ldots, k$, hence the largest eigenvalue of T is less than $2 \sqrt{\Delta-1}$ as claimed.
(L.Lovasz Combinatorial problems and Exercises (Exercise 11.5)

2-nd ed. Elsevier S.P., Amsterdam and Akademiai Kiado, Budapest 1993)

Theorem 3-continued

The general case now follows using Corollary 2.1:
Let G be a graph, and let H be any of its connected components with the maximum degree Δ.

By the Corollary 2.1, there is a tree T such that $m(H, \lambda) \mid m(T, \lambda)$, and the maximum degree of T doesn't exceed Δ.

Since any root of $m(H, \lambda)$ is also a root of $m(T, \lambda)$, it follows that every root of $m(H, \lambda)$ doesn't exceed $2 \sqrt{\Delta-1}$.

By Proposition 2, $m(G, \lambda)=\prod_{H} m(H, \lambda)$, so any t root of $m(G, \lambda)$ is also a root of some $m(H, \lambda)$.
Hence the equation $t \leq 2 \sqrt{\Delta-1}$ holds for any graph.
Q.E.D.

