The Tutte Polynomial

Graph Polynomials
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The Rank Generation Polynomial

Reminder

S(G;x,y)= Zx

FCE

Kk F> = Number of connected components in G(V,F)

<
n(F) =|F|-N|+k(F)
r(F)=N|-k(F)



The Rank Generation Polynomial

Theorem 2
(x+1)S(G—g;x,y) eisa bridge)
S(G;x,y)=4(y+1)S(G—¢e;x, y) eisaloop |
S(G-g;x,y)+S(G/e;x, y)else )

In addition, S(E,;;x,y) = 1 for G(V,E) where |V|=n and |E|=0
G—e Isthe graph obtained by omitting edge e
G/e Is the graph obtained by contracting edge e



The Rank Generation Polynomial

Theorem 2 — Proof

Let us define :

G’ = G-e
G” = Gle
r<G> = r<G’>
n'<G> = n<G’>
r'<G> = r<G"™>
n"'<G> = n<G’>



The Rank Generation Polynomial

Theorem 2 — Proof

Let us denote :

(F ue): (F u{e})
(E-e)=(E-ie))



The Rank Generation Polynomial

Observations
VecE, (FcE-e)-

o(F)=r(F)
(F)=n(F
r(E)-r(Fue)=r"(E-e)—r"(F)=




The Rank Generation Polynomial

Observations
VecE, (FcE-e)-

r(F)=r'(F
n(F)=n'(F
r(E)-r(Fue)=r"(E-e)—r"(F)=

=r{G")-

>\ egF
o




The Rank Generation Polynomial

Observations

VecE, (FcE-e)-

r(F)=r(F)
n(F)=ni(F)
< E Fue =
=V Ioop
= V|-1 else

k(E)=k(E—¢)
k<F ue)=k(F)

r<G">—

—e)—r"(F)=

"(F)




The Rank Generation Polynomial
Observations

r(F)=r(F)
In(F)=n{F}
() |E)-r(Fue)=r"(E—e)-r"(F)=
G'=(G)—=rG")-r"(F)




The Rank Generation Polynomial
Observations

r'(E—e)+1 eisabridge
E)=
@ rE) ir'(E—e] else

n"(F)+1 eisaloop

@) n(Fue)=
n( ue) <n"<F> else\ >‘
E|l= |E|-1 ) E|l= |E|-1
v:>v\—1/ V|= V]|
K = k K = k




The Rank Generation Polynomial

Reminder

S(G;x,y)= Zx

FCE

Zx

F



The Rank Generation Polynomial

Let us define
S(G; %, y)=S,(G; x,y)+ Sl(G; X, y)

S,(G;x,y)= Zx
eezF

S.(G;x,y)= Z X
FCE eeF



The Rank Generation Polynomial
So(G; %, y) = ZX
Fc egF

E
@\ 2"
FcE-e

x"(EeTFI T E) aisa bridge’
FCE(G)
< r'(E—e)-r'(F)  n(F) (
).( y otherwise
(F<E(G) /




The Rank Generation Polynomial

S,(G;x,y)=
ZX Eremn By eis a bridge
FCE
< > —
ZX (E—e)- (F) _
otherwise
FCE J

xS(G —e;X,y) eisabridge
S(G-g;x,y) otherwise

/



The Rank Generation Polynomial

S,(Gix,y)= D x"®
Fc eeF
n(Fue)

E
@\ y -
FCE e
x'(C |saloop
FcE(G' ) &
3 -

otherwise)

r{E)-r(Fue)




The Rank Generation Polynomial

S (G'x y)—
Z X FI eisaloop
< FCE > | _
FC; X otherwise

yS(G/e;x,y) eisaloop
S(G/e;x,y) otherwise




The Rank Generation Polynomial

S(G; X, ¥)=5,(Gi %, y)+S,(Gix, y)=

XS(G —¢e;x,y) eisabridge
S(G-e;x,y) otherwise
+
yS(G/e;x,y) eisaloop
S(G/e;x,y) otherwise

< >




The Rank Generation Polynomial

S(G; X, ¥)=5,(Gi %, y)+S,(Gix, y)=

S
S

(XS(G—e;x,y)+S(G/e;x,y) eisabridge’

G-e;x,y)+YS(G/e;x,y) eisaloop

&

G-e;xy)+S(G/e;x,y) otherwise



The Rank Generation Polynomial

S(G; X, ¥)=5,(Gi %, y)+S,(Gix, y)=

\

S
S

(XS(G —e;x,y)+S(G/e;x, y)

eisa bridge’

G-e;x,y)+YS(G—e;x,y) eisaloop

G-e;x,y)+S(G/e;x,y)

Obvious

otherwise )



The Rank Generation Polynomial

S(G; X, ¥)=5,(Gi %, y)+S,(Gix, y)=

XS(G—e;x,y)+S(G/e;x,y) eisabridge
Hy+1)S(G-g;x,y) eisa loop
S(G-e;x,y)+S(G/e;x,y) otherwise

Obvious




The Rank Generation Polynomial

S(G; X, ¥)=5,(Gi %, y)+S,(Gix, y)=

/\L

'XS(G —¢€;x,y)

S(G-e;x,y) eisabridge

(y+1)S(G—6;x,y) eisa loop

S(G-e;x,y)+S(G/e;x,y)  otherwise

VFcE-e n"(F)=n'(F),

(F)=r(E-e)-r

r'(E—e)—r

I
\/

‘G':> G" N=V-1 k+l= <‘




The Rank Generation Polynomial

S(G; X, ¥)=5,(Gi %, y)+S,(Gix, y)=

(x

-

1)S(G-e;x,y)

(y+1)s(G-e;x,y)
S(G-ex,Yy)+S(G/e;x,y) otherwise

Obvious

Q.E.D

eisa bridge’
elisaloop




‘ The Tutte Polynomial
To(z,y) = T(Giz,y) = S(Giz— 1,y — 1) =

Z [:.T _ ljlf-l:E}—j-{F:I [:I.I' . 1}”.::;_.1'. —

FCE

1

1)IV(G)) Z ((x — 1)(y — 1))*¥F(y — 1)

— k{E) .




‘ The Tutte Polynomial

Reminder
z-T(G —e;z.,y) if e is a bridge
T(G,z.y) =4{vyv-T(G—e,x,y) if e is a loop
T(G—ex.y)+T(G/e;,xz,y) else

@

T(E, z,y) =1 (s)




The Universal Tutte Polynomial

U(G;X, y,a,a,r):

n(G)_ (G /G' ax y

. T O




The Universal Tutte Polynomial

Theorem 6
U(G;X, y,a,a,f):
x-U(G—-¢g;x,Y) eisa bridge
<y-U[G—e;X, Y) elsaloop
o-U(G-exYy)+7-U(G/e;x,y)otherwise

n

U(En;x,y,a,a,r):a




The Universal Tutte Polynomial

Theorem 6 - Proof

U(En;x,y,a,a,f)z

(Zvaovwfva(E ax YJ _

n’

T O
a"-1-11=a" g



The Universal Tutte Polynomial
If e is a bridge

k(G -e)=k(G)+1

(eisa bridge) - <n(G —e)=n(G)

U(G;x,y,a,0,7)=
k(G—e)-1 n(G—e)Z_r(G—e)+1% (G _e: X yj

94 O



The Universal Tutte Polynomial

If e Is a bridge
U(G;X, y,a,a,r):
ak(G—e)—lgn(G—e)Tr(G—e)+1 % (G _e 22 | yj
T T O

_ ak(Ge)Gn(Ge)Tr(Ge)XT(G _e 22 | yj _
T O

xU(G-e;x,y,a,0,7)



The Universal Tutte Polynomial

If eis aloop
k(G—e)=k(G)
(eisaloop)— in(G—-e)=n(G)-1
r(G-e)=r(G)
U(G;x,y,a,0,7)=
OZK(G_e)G n(G- e)+1z_r l (G e: O[X, yj
@/G T O



The Universal Tutte Polynomial

If e is a bridge
U(G;X, y,a,a,r)z
- K(G=¢) sn(G-e}1_r(G—e) XT(G _e oxX | YJ
O T O

_ gk(Ge)Gn(Ge)Tr(Ge)yT(G _e oX yj _
T O

yU(G-e;x,y,a,0,7)



The Universal Tutte Polynomial
If e Is neither a loop nor a bridge

K /
((eisabridge)) |n(G-e)=n(G)-1
v —{n
((eisaloop) ) |r(G-e)=r(G)




The Universal Tutte Polynomial

If e Is neither a loop nor a bridge

U(G;X, y,ac,a,f)z

ol

94

k(G)G

T(G—e;

n(G)Z_r(G) .

ax Y

T O

s

ax 'y

T O

)




The Universal Tutte Polynomial
If e Is neither a loop nor a bridge

U(G;x, Y,a,0,7)=

o K(6=¢) ;n(G-e)1_r(G- e)—r(G e 00(, YJ :

T O

-/ K(G1e) n(Gle)_r(GlekiT (G /e X | YJ
T O



The Universal Tutte Polynomial
If e Is neither a loop nor a bridge

U(G;X, y,a,a,r)z
oU(G-e;X,Y,a,0,7)+
J(G/ex y,a 0,7



The Universal Tutte Polynomial

Theorem 6 - Proof

U(G;x, Y,a,0,7)=

x-U(G-¢g;x,y) eisa bridge
1y-U(G-g;x,y) eisa loop
o-U(G-exYy)+7-U(G/e;x,y)otherwise

Q.E.D




%

The Universal Tutte Polynomial

X-V(G—¢g;X,y

Theorem 7
wW(G:x,Y,a,0,7) SstV(G;x Y, 0,7)=

)
y-V(G-g;x,y)

V(E;x,y,a,0,7)=a

o V(G-gXx,Yy

)+

T

eisa bridge
eisaloop

>

V(G /e;x, y)otherwise

n

then V(G;x,y,a,a,r)=U(G;X,y,0!,U,T)



The Universal Tutte Polynomial

Theorem 7 — proof

V(G;x,y,a,0,7)=

x-V(G-g;x,Y) eisa bridge
1y-V(G-g;x,y) eisaloop |
o-V(G-ex,y)+7-V(G/ex,y)otherwise

J

V(G) Is dependant entirely on V(G-e) and V(Gle).
In addition — V(E,; X, y,a,0,7)=U(E.; X, y,a,0,7)

Q.E.D



Evaluations of the Tutte Polynomial
Proposition 8

Let G be a connected graph.

T(G ,1,1) is the number of spanning trees of G

Shown in the previous lecture



Evaluations of the Tutte Polynomial
Proposition 8

Let G be a connected graph.

T(G ,1,2) is the number of connected
spanning sub-graphs of G
T(GiL2)=5(G;01)= Zo

FCE

= Zl = 21

(FCE(G E)) (FcE(G =k(E))



Evaluations of the Tutte Polynomial
Proposition 8

Let G be a connected graph.

T(G ,1,2) is the number of connected

spanning sub-graphs of G

T(G1,2)= 1
(FE(EIK(FLH(E)

sub-graphs of G connected




Evaluations of the Tutte Polynomial
Proposition 8

Let G be a connected graph.

T(G,Z,l) is the number of (edge sets forming)

spanning forests of G
T(G;2,1)=5(G1,0)= 21

FCE
— 21

(FE(G)A(n(F)=0

)- Spanning forests




Evaluations of the Tutte Polynomial
Proposition 8

Let G be a connected graph.

T(G,2,2) is the number of spanning

sub-graphs of G
T(G;2,2)=5(G;11)= 21

FCE
21

FCE



The Universal Tutte Polynomial

Theorem 9

The chromatic polynomial and the Tutte
polynomial are related by the equation :

7(G;x)=(=1)"®'x €T (G1-x,0)



The Universal Tutte Polynomial

Theorem 9 — proof

Claim :

7(G;x)=U (GXT_l 0, x,l,—lj



The Universal Tutte Polynomial

Theorem 9 — proof

We must show that :

7(E.;x)=U (En | XT_l 0, x,l,—lj



The Universal Tutte Polynomial

Theorem 9 — proof

e is a bridge |
<0 eisaloop

_ otherwise
;((G —e;—x 1)—;{(6 /e: - 1)

X




The Universal Tutte Polynomial

Theorem 9 — proof

;((En, X) = X" <« Obvious. (empty graphs)
o 0,x,1,— 1) a" =X

U(En
X
X—1

Z(En;x)zu(E = =.0,%x1- 1)

X



The Universal Tutte Polynomial

Theorem 9 — proof

V(eloop) x(G;x)=0 - Obvious

V(e —(bridge v loop)) #(G;x)= 7(G—e;x)— y(G/e;x)
1
Chromatic polynomial property

v(ebridge) #(G:x)= XT‘l 2(G—ex)

T

Chromatic polynomial property




The Universal Tutte Polynomial

Theorem 9 — proof

e is a bridge |
<0 eisaloop

_ otherwise
;((G —e;—x 1)—;{(6 /e: - 1)

X




The Universal Tutte Polynomial
Theorem 9 — proof

And so, due to the uniqueness we shown
In Theorem 7

7(G;x)=U (GXT_l 0, x,l,—lj



The Universal Tutte Polynomial

Theorem 9 — proof

Remembering that :
U(G;X,y,a,a,r)z
K(G) _n(G) r(G)—I-/G.aX y

. T O




The Universal Tutte Polynomial

Theorem 9 — proof

Remembering that :

X
Xk(G)ln(G)(_ 1)r(G)T (G ,—(X _1),0) _
X“©)(-1)°'7(G,1-x,0)

7(G:x)=U (G,X—_l,O, x,1,—1j —

Q.E.D



Evaluations of the Tutte Polynomial

Let G be a connected graph.

T(G,2,0) is the number of acyclic orientations
of G.

We know that (Theorem 9) —
7(G;x)=(=1)"®'xCT(G;1- x,0)



Evaluations of the Tutte Polynomial

1(6.20)-T(G1- (100

And thus —

1(620)=_2CX _ (G-

(—1) ()X CT (g leikiei
()" /G- =(-1)" #(G:i-1)




Acyclic Orientations of Graphs
Let G be a connected graph without loops or
multiple edges.

An orientation of a graph is received after
assigning a direction to each edge.

An orientation of a graph is acyclic if it does
not contain any directed cycles.



Acyclic Orientations of Graphs

Proposition 1.1

;((G,X) is the number of pairs (a,u) where
o isamap o:V »{,23..,x} and p is
an orientation of G, subject to the following :

* The orientation Is acyclic
*(u>v)ev)=o(u)>o(v)



Acyclic Orientations of Graphs

Proof

he second condition forces the map to be a
proper coloring.

The second condition is iImmediately implied
from the first one.



Acyclic Orientations of Graphs

Proof

Conversely, If the map Is proper, than the
second condition defines a unique acyclic
orientation of G.

Hence, the number of allowed mappings is
simply the number of proper coloring with x
colors, which is by definition ;((G, X?



Acyclic Orientations of Graphs

;'Z(G,X) be the number of pairs(a,u) where
o isamap o:V »{,23..,x} and p is
an orientation of G, subject to the following :

* The orientation Is acyclic
* ((u —> V)e U):> G(U)Z G(V)



Acyclic Orientations of Graphs

Theorem 1.2

vxeN  7(G,x)=(-1)" #(G,~x)

=T(G,2,0)




Acyclic Orientations of Graphs

Proof

he chromatic polynomial is uniquely
determined by the following :

;((GO, X) = X G, Is the one vertex graph
;((G +H, X): ;((G, X);((H : X) Disjoint union
7(G,x)=2(G~ex)-2(G/e x)



Acyclic Orientations of Graphs

Proof

We now have to show for the new polynomial :
Obvious

- l
7(G,,x)=X G, is the one vertex graph
7(G+H,x)=7(G,x)7(H,x) Disjoint union

76.x)=7(G-ex)-7Glex) o L




Acyclic Orientations of Graphs

Proof

We need to show that :
7(G,x)= 7(G—e,x)- 7(G/e,x)

Let :
c:V(G-e)—>1{1,23,...,x}



Acyclic Orientations of Graphs

Proof
Let :

o:V(G-e)—>1{1,23,...,x}

Let v be an acyclic orientation of G-e
compatible with o

Let: €= {u,v}



Acyclic Orientations of Graphs

Proof

Let v, be an orientation of G after adding
{u-=vito v

Let v, be an orientation of G after adding
{v2u}to v



Acyclic Orientations of Graphs

Proof

We will show that for each pair (0', U) exactly
one of the orientations (ul, 02) IS acyclic and
compatible with & ,expect for %(G/e, x)

of them, in which case both (01,02) are
acyclic orientations compatible with o



Acyclic Orientations of Graphs

Proof

Once this is done, we will know that —

7(G.x)= 7(G-e,x)-7(G/e,x)
due to the definition of 7(G, x)



Acyclic Orientations of Graphs

Proof

For each pair (o-, U) where -
o:V(G-e)>1{1,23...,x}
and v Is an acyclic orientation compatible

with o one of these three scenarios must
hold :



Acyclic Orientations of Graphs

Proof
Case 1 -

o(u)> o(v)

Clearly v, 1s not compatible with © while v,
Is compatible. Moreover, v, Is acyclic :

U—>V—o>W, —>W, —...—>U

!

0(u)> CT(V)Z J(Wl)z 0(W2)2 . G(U)

Impossible cicle




Acyclic Orientations of Graphs

Proof
Case 2 —

o(u)<o(v)

Clearly v, 1s not compatible with © while v,
Is compatible. Moreover, v, Is acyclic :

VoUW, D> W, >...—>V

!

G(V) > G(U)Z J(Wl)z 0(W2)2 . G(V)

Impossible cicle




Acyclic Orientations of Graphs

Proof
Case 3 —

o(u)=o(v)

Both are compatible with o
At least one Is also acyclic. Suppose not, then:

v, contains U—>V->W, —>W, >...—>U

v, contains V—>U—>W, >W,, >...>V



Acyclic Orientations of Graphs

Proof
v, contains U—>V->W, —>W, >...—>U

v, contains Vv—->U—>W, > W, —>...>V

U contains l
Uu—->w, >...>Vv-ow —...—>U

Impossible cicle




Acyclic Orientations of Graphs

Proof

We now have to show that both v, and v,
are acyclic for exactly ;3(6/6 'X) * pairs of
(v

(o,0) with o(u)=0

Let z denote the vertex identifying {u,v} In
Gle



Acyclic Orientations of Graphs

Proof

some acyeclic orientation
compatible with o

& o (o !

I iImpossible to add

@ t p a circle by the

WO acyclic new edge {u,v}
orientations,

compatible
with o

Gl/e



Acyclic Orientations of Graphs
Proof
exactly one, necessarily
acyclic, compatible with &
G < > Some two acyclic
@ @ orientations,
compatible with &

All other vertices of G remains the same

Gl/e



Acyclic Orientations of Graphs

Proof
And so both v, and v, are acyclic for

_~

exactly y(G/e,x) pairs of o,0)
with &)= o)

And so —
7(G,x)= 7(G—e,x)- 7(G /e, x)



Acyclic Orientations of Graphs

Proof

It Is obvious that for x = 1 every orientation
is compatible with o :V — {1}

And so the expression count the number of
acyclic orientations in G

Q.E.D



