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The Rank Generation Polynomial
Theorem 2 – Proof

Let us define :
G’ = G – e 
G’’ = G / e

r’<G> = r<G’>
n’<G> = n<G’>
r’’<G> = r<G’’>
n’’<G> = n<G’’>
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Theorem 6 - Proof
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If e is neither a loop nor a bridge
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If e is neither a loop nor a bridge
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Evaluations of the Tutte Polynomial
Proposition 8

Let G be a connected graph.

( )1,1,GT is the number of spanning trees of G

Shown in the previous lecture



Evaluations of the Tutte Polynomial
Proposition 8

Let G be a connected graph.

( )2,1,GT is the number of connected

spanning sub-graphs of G
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Evaluations of the Tutte Polynomial
Proposition 8

Let G be a connected graph.

( )2,1,GT is the number of connected

spanning sub-graphs of G
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Evaluations of the Tutte Polynomial
Proposition 8

Let G be a connected graph.

( )1,2,GT is the number of (edge sets forming)
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Evaluations of the Tutte Polynomial
Proposition 8

Let G be a connected graph.

( )2,2,GT is the number of spanning
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The Universal Tutte Polynomial
Theorem 9

The chromatic polynomial and the Tutte
polynomial are related by the equation :

( ) ( ) ( ) ( ) ( )0,1;1; xGTxxG GkGr −−=χ
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Theorem 9 – proof

Claim :
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We must show that :
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Theorem 9 – proof

and :
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Theorem 9 – proof
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Theorem 9 – proof

( ) ( ) 0;loop =∀ xGe χ Obvious
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Chromatic polynomial property
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Theorem 9 – proof

Thus :
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Theorem 9 – proof

And so, due to the uniqueness we shown
in Theorem 7 :
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Theorem 9 – proof

Remembering that :
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Evaluations of the Tutte Polynomial

Let G be a connected graph.

( )0,2,GT is the number of acyclic orientations

of G.

We know that (Theorem 9) –

( ) ( ) ( ) ( ) ( )0,1;1; xGTxxG GkGr −−=χ



Evaluations of the Tutte Polynomial

( ) ( )( )0,11,0,2, −−= GTGT
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Acyclic Orientations of Graphs

Let G be a connected graph without loops or 
multiple edges.

An orientation of a graph is received after
assigning a direction to each edge.

An orientation of a graph is acyclic if it does
not contain any directed cycles.



Acyclic Orientations of Graphs

Proposition 1.1

( )xG,χ is the number of pairs where

is a map

( )υσ ,
σ { }xV ,...,3,2,1: →σ and      isυ
an orientation of G, subject to the following :
• The orientation is acyclic
• ( )( ) ( ) ( )vuvu σσυ >⇒∈→



Acyclic Orientations of Graphs

Proof
The second condition forces the map to be a
proper coloring.

The second condition is immediately implied
from the first one.



Acyclic Orientations of Graphs

Proof
Conversely, if the map is proper, than the
second condition defines a unique acyclic
orientation of G.

Hence, the number of allowed mappings is
simply the number of proper coloring with x
colors, which is by definition ( )xG,χ



Acyclic Orientations of Graphs

( )xG,~χ be the number of pairs where

is a map

( )υσ ,
σ { }xV ,...,3,2,1: →σ and      isυ
an orientation of G, subject to the following :
• The orientation is acyclic
• ( )( ) ( ) ( )vuvu σσυ ≥⇒∈→



Acyclic Orientations of Graphs

Theorem 1.2

( ) ( ) ( )xGxGNx V −−=∈∀ ,1,~ χχ

( )0,2,GT=



Acyclic Orientations of Graphs

Proof
The chromatic polynomial is uniquely
determined by the following :

( ) xxG =,0χ G0 is the one vertex graph

( ) ( ) ( )xHxGxHG ,,, χχχ =+ Disjoint union

( ) ( ) ( )xeGxeGxG ,/,, χχχ −−=



Acyclic Orientations of Graphs

Proof
We now have to show for the new polynomial :

( ) xxG =,~
0χ G0 is the one vertex graph

Obvious

( ) ( ) ( )xHxGxHG ,~,~,~ χχχ =+ Disjoint union

( ) ( ) ( )xeGxeGxG ,/~,~,~ χχχ −−= Obvious



Acyclic Orientations of Graphs

Proof
We need to show that :

( ) ( ) ( )xeGxeGxG ,/~,~,~ χχχ −−=

( ) { }xeGV ,...,3,2,1: →−σ
Let :



Acyclic Orientations of Graphs

Proof

( ) { }xeGV ,...,3,2,1: →−σ
Let :

Let      be an acyclic orientation of G-e
compatible with

υ
σ

{ }vue ,=Let :



Acyclic Orientations of Graphs

Proof

Let      be an orientation of G after adding
{u v} to

1υ
υ

Let      be an orientation of G after adding
{v u} to

2υ
υ



Acyclic Orientations of Graphs

Proof
We will show that for each pair exactly 
one of the orientations             is acyclic and 
compatible with      ,expect for
of them, in which case both              are 
acyclic orientations compatible with

( )υσ ,
( )21,υυ

σ
( )21,υυ

σ

( )xeG ,/~χ



Acyclic Orientations of Graphs

Proof
Once this is done, we will know that –

due to the definition of 

( ) ( ) ( )xeGxeGxG ,/~,~,~ χχχ −−=
( )xG,~χ



Acyclic Orientations of Graphs

Proof
For each pair             where -

and      is an acyclic orientation compatible
with        one of these three scenarios must
hold :

( )υσ ,

σ

( ) { }xeGV ,...,3,2,1: →−σ

υ



Acyclic Orientations of Graphs

Proof

( ) ( )vu σσ >
Case 1 –

Clearly       is not compatible with      while
is compatible.   Moreover,       is acyclic :

σ
2υ 1υ

1υ
uwwvu →→→→→ K21

( ) ( ) ( ) ( ) ( )uwwvu σσσσσ ≥≥≥≥> K21

Impossible cicle



Acyclic Orientations of Graphs

Proof

( ) ( )vu σσ <
Case 2 –

Clearly       is not compatible with      while
is compatible.   Moreover,       is acyclic :

σ
1υ 2υ

2υ
vwwuv →→→→→ K21

( ) ( ) ( ) ( ) ( )vwwuv σσσσσ ≥≥≥≥> K21

Impossible cicle



Acyclic Orientations of Graphs

Proof

( ) ( )vu σσ =
Case 3 –

Both are compatible with      
At least one is also acyclic. Suppose not, then:

σ

vwwuv →→→→→ K'2'1

uwwvu →→→→→ K21

2υ
1υ contains

contains



Acyclic Orientations of Graphs

Proof

vwwuv →→→→→ K'2'1

uwwvu →→→→→ K21

2υ
1υ contains

contains

υ contains
uwvwu →→→→→→ KK 1'1

Impossible cicle



Acyclic Orientations of Graphs

Proof
We now have to show that both      and
are acyclic for exactly                     pairs of

with ( ) ( )vu σσ =

2υ1υ( )xeG ,/~χ
( )υσ ,

Let z denote the vertex identifying {u,v} in
eG /



Acyclic Orientations of Graphs

Proof
ZeG /

some acyclic orientation 
compatible with

uv
impossible to add 
a circle by the 
new edge {u,v}

G

two acyclic 
orientations, 
compatible 
with σ

σ



Acyclic Orientations of Graphs

Proof
ZeG /

exactly one, necessarily 
acyclic, compatible with

uv
Some two acyclic 
orientations, 
compatible with 

G

σ

σ

All other vertices of G remains the same



Acyclic Orientations of Graphs

Proof
And so both      and      are acyclic for 
exactly                     pairs of   
with

And so –

( ) ( )vu σσ =

2υ1υ
( )xeG ,/~χ ( )υσ ,

( ) ( ) ( )xeGxeGxG ,/~,~,~ χχχ −−=



Acyclic Orientations of Graphs

Proof
It is obvious that for x = 1 every orientation
is compatible with

And so the expression count the number of
acyclic orientations in G

{ }1: →Vσ

Q.E.D


