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ABSTRACT 

Using formal logic, many iproblems from the general area of  linear inequalities co~ be expressed 
in the elementary theory o f  addition on the real numbers (EAR). We describe a method for 
eliminatit~ quantiflers in EAR which has been programmed arm demonstrate its usefulness 
in solving some problems related to linear programming. 
In the area o f  mechanical mathematics this kind o f  approach has been neglected in favor o f  
more generalized method r based on Herbrand expansion. However, in a restricted area, such 
as linear inequalities, the use o f  these ~pecialized methods can increaye e.O~cieney by several 
orders of  maonitud~ over an axiomatic Herbrand approach, aJut make practical problems 
accessible. 

As is common in a~ificial intelligence, the work reported here is of an inter- 
disciplinary nature. It involves mathematical logic, linear inequalities, and 
symbolic mathematics on a computer. 

For the sake of a~gument, let us distinguish two kinds of workers in the 
area of linear inequalities. There is the theoretician, who is developing new 
methods and discovering new theorems. Then there is the user, who is faced 
with a practical problem which can be expressed in sorae way at least piecewise 
linearly. As a simple-minded distinction between the theoretician and the 
user we can say that the latter is interested in questions involving a fixed 
number of variables,, while the former is concerned with questions involving 
an arbitrary number of variables. Using terminology from iogie to be made 
more precise below ~this means that the ,•ser is generally working within the 
elementary J~eory of additi<m on the reals while the ~Lheoretician is generally 
working on a higher level. 

* This is a revised version of a paper pres+;nted at the Inter~mional Joint Confe]x'm-e on 
Artificial Intelligence, London, September 1971. 
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In this paper we are concerned mainly with the user at the st~Lge where he 
has formulated his problem in symbolic terms. This may or may nc~t be the 
first stage in formulating the problem. For example, he may fi~st have 
developed a model as a mal~hematical idealization of his problem. Indeed, 
if he is very lucky, the model may be of a standard type, for e~:am]~le, flow 
networks, for which there are known efficient solution methods. In 1hat case 
he would bypass a symbolic formulation. 

Suppose, now, in one way or another the user has arrived at: a .,,ymbolic 
formulation of the problem. We assume that the size of the pro131em is such 
that he would want to use a computer. Again, he may have a perfectly ~,tandard 
problem such as to find a solution to a set of simultaneous inea:tualities. 
Then he can use the relaxation method or another numerical appro~ich. Or, 
if he can formulate his problem as an optimization problem, tLe rrJay con- 
veniently be able to express it in linear programming format and use the 
famous simplex algorithm. 

Problems can arise, however, which do not fit too easily into the :~tandard 
molds. Furthermore, one may require a solution in symbolic fo~m. For 
example in n-person game theory the set of solutions can be desc:~ibed as 
a union of convex polyhedra, these polyhedra as an intersect,on of half- 
spaces, each of which is represented by a linear inequality. 

Using k.rmal logic one can often represent one's problem ,ort~/eniently 
in the lower predicate calculus under the interpretation of add]tior~ on the 
real numbers. In that case, there are simple me.:hods for eliminatinj; ouantifiers 
and simplifying expressions, often resulting in the solution of v~.rio~J~ prob- 
lems. Such methods were first progcammed by the author at IBlvl in 1962 [4] 
ap.d further elaborated with a game theory application [5]. Since then some 
modifications and improvements have been made. The con~lc, te metho~ 
are described here since the earlier papers were never formally l;,ubl~shed. 

Although the author has been addressing himself to wG,:kers iJ~ linear 
inequalities, the work reported here may also be categorized as mechanical 
mathematics or equivalently applied logic on computers. In this field such 
work has been neglected in favor ot: more generalized metho~!s b:~tsed on 
Herbrand expansion. The effort on these general, methods is, of' course, 
worthwhile and productive, but the neglect is unfortunate since re.stricted 
specific theories (like addition on the real numbers) often allow the: use of 
direct, specialized methods which increase efficiency by several orders of 
magnitude over an axiomatic Herbrand approach. 

We now describe the elementary theory of addition on the reals (EAR), 
or, more precisely, the elementary theory of ordered dense Abeliart groups 
without endpoints. "Elementary" means that all formulas in. EAR belong 
to the lower predicate calculus, i.e., quantification occurs only over v~xriables 
for elements of the ~oup  and not, t~3r example, over variables for sets of 
Artificial Intelligence 3 (1972), 165-174 
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elements. The formulas in EAR, to be defined more precisely below, are just 
those formulas of  1:he lower predicate calculus with two binary predicates, 
< and = ,  the operator + ,  and at least two constant symbols, 0 and 1. 

We refer the un~initlated reader to Rogers' [7] expository paper which, 
without presupposing any knowledge of  formal logic, develops the elementary 
theory of  dense linear order together with a method due to Langford for 
deciding sentences within that theory. This method extends to EAR, as 
pointed out to me by A. Robinson, and is described below. EAR has an 
unlimited set of  variable symbols, x, y, z, xl ,  Y l, z l , . . . ,  and real numbers as 
constant symbols, of  which we will need only 0 and 1. 

A term in EAR i.~ either a constant symbol or a variable symbol or of the 
form tl + .- • + tn, where the ti, 1 ~< i ~< n, are terms. These are the only 
t e r m s .  

We write x + • • • + x, n times, as n.,c and 1 + • • • + 1, n times, as n, so 
the following are examples of terms. 

( l)  2x + 3y + x 
(2) 4 + x 9  

Using the commutativity of addition we see that l here is a canonical form 
for terms where each variable symbol appears once. Thus, example (1) above 
could be written 3x + 3y. 

An atomic formula, or atom, is any expression o[' the form t~ = t~ or of  
the form t~ < tz, where t~ and t2 are terms. There is a canoni~l  forin for 
atoms where each ~ariable symbol appears on at most one side of any atom. 
For example 3x + 3y < 2x would be written x + 3)' < 0. ~ 'e  also allow 
two constant atoms: TRUE and FALSE. 

Atoms are the simplest formulas. Non-atomic formulas are built f :om 
atoms by means c.f the propositional connective.,;; negation, ~ ,  "and":  
&, "or" ,  v ,  "implies", --% "if  and only if", ~--~, as well as the universal and 
existential quantifiers, "for  all x",  (¥x), and "there is an x such that," (3x), 
where x is any variable symbol. 

Examples of formulas are: 

(I) x < y v x = y v y < x  
{2) (3x)(x < y & :!y < x + 5) 
(3) (¥x)Oy) -12x + y < 0 

Formally, we say that an atom is a formula and Jiff~ and f2 are formulas 
then ~ f l ,  ( f l  &f2), ( f l  ' / f2) ,  (fl  --' f2), (fl  *-'f;;), (¥x)f~, (3x)fx are all 
formulas. Every fo:rmula ~s so derived. We delete parentheses to improve 
readability, behlg careful not to introduce undesirable ambiguities. Example 
(1) above illustrates desirable ambiguity. 

For convenience, we use t t />  t2 as an abbreviation of  -1 tt < t 2. 

As a further example of a formula in EAR we represent the statement 
Artificial J~ntelligence 3 (1972), 165-174 
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that the real numbers x~ , . . . ,  xn minimize the sum ~f  c,xs sttbject to the 
conditions 

n 

a l j x i = b j  for j = l , . . . , m  
i ffi l 

x~>~0 for i = l , . . . , n  

This is a statement of the linear progran~ming problem, and ~ys that 
x t , . . . , X ,  yield an optimal solution. We assume, for simplicity, that the 
a~j, ~j and c~ are all integers. 

We allow the use of the minus sign by considering any occurrence o~' - t  
in an atom as a convenient nctation for + t on the opposite side of ~he atom. 

The iinear programming problem is stated in EAR as follow;" 
m n 

j • t  ~ aoxl - bj 
i= 

R 

& & x, O 4 

& ( V y l ) ' ' "  (Vy aUy i = bj • & Yi >I 0 
= 1 = 1  i = l  

- "  Z csy, >f c,x (1) 
t = 1  i l l  

From the point of view of people working in linear inequalities the most 
novel feature of EAR is tl',~ formal use of quantifiers. In fact, the elimination 
of quantifiers, together with their bound variables, is the main ,:ontent of 
the algorithm described below. 

Suppose F(xl, . . . .  x,) is a formula in EAR in which x~ , . . . ,  :~, are the 
only free (not quantified) variables. Then the following algorithm yields 
a quantifier-free formula G ( x , . . . ,  xn) in which x l , . . . ,  x, are the only 
variables, with the following property. Let a l , . . . ,  an be any n real[ numbers. 
Then F(a~,. . . ,  an) and G(a t , . . . ,  an) are equivalent in the sense that they 
are both true or are both false. For example, if F(x) is the forJ~ula (3y) 
(y < x + 4 & 2x < y + 5) then G(x) would be the formula x < 9~ 

Since EAR is a subset of elementary algebra, Tarski's alg<~rithm [8] 
provides a method for eliminating quantifiers. When applied to formulas 
in EAR, however, Tarski's method is exceedingly cumbersome. Furthermore, 
no one has reported a computer program for any algorithm to eliminate 
quantifiers in elementary algebra except for some beginnings in thai, direction 
by Collins [2]. On the other hand, EAR has a simple method attd sa:ems to be 
in the unique position of having such a simple algorithm alowg wiith a wide 
range of application. 

The elimination of quantifiers is ac~:.ved by systematically replacing 
Arti~ciai Intelligence 3 (1972), 165-174 
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selected subformulas by equivalent formulas. The equivalence inay be 
purely lo6,ical or xmay be a property of + ,  =,  < in the reals, as we used, for 
example, in establishing a canonical form for atoms. 

Step 1. If F(xl, . . . ,  x~) is quantifier-free, let (; = F. Otherwise~ choose 
a subformula of the form (3y)f(xl , . . . ,  x~, y) where f is quantifier-free, 
i.e., (3y) is an i~nermost existential quantifier. If all innermost quantifiers 
are universal quantifiers then use the identity (Vx)g 4 , -n (3x) - lg ,  so that 
(3x) -ng yields ti~e re4uired subformula (3x)f, with f -  .ng. 

Step 2. We use steps 3-8 to find a quantifierJYee formula g(x l , . . . ,  x~) 
equivalent to (3y)f(x~,.. . ,  x~, y). We replace (~y)f by g in F,  then return 
to Step 1. 

Step 3. Eliminate all occurrences of equivalence, (~ ) ,  and implication, (- ,)  
in the formula (37)fby the use of identities 

f ,  ~"~ f2 - (f ,  -" fz) &(f2 "+ f l )  
f t  ~ . / ' 2 -  7 f l  v f2 

Step 4. The only connectives in f a r e  &, v ,  7 .  Use the identities 
&A) E (Tfx v 

- - I ( f  1 V A )  --~ ( - - I l l  & "7 f2 )  

- A  
to eliminate all c,ccurrenees of negation save those appearing directly before 
atoms. 

Step 5. The remaining negations are eliminated by using the mathematical 
identities: 

- l t l  -"  t2 ------- t l  < t2 V t 2 < t l  

" l t t  < 1z - -  t l  - -  t2 v t2 < I t  

Call the new formula (3y)f. 
Step 6. Now f has connectives &, v only. Use the distributive law 

./'1 &(J'2 v fs)  = (f~ &f2) v (fl &A)  to exapand f ieto disjunctive normal 
form 

f - f t  v f 2 " ' "  v f n  
where eachf~ is a conjunction of atoms. 

Step 7. The e~istential quantifier distributes over disjunction. So 
(3y)f =- (~y)(ft v . . .  v f~) -~ (3y)f~ v . . .  v (3y)f, 

Eachf~ can be ,~rittenf~ &fi'  wheref~ is a (possibly empty) conjunction of 
all the atoms which contain y. Sincef~' does not contain y, we have 

(3y)(f; & fk') -- f i '  ~; (3})f; 

or (3y)f~ --f~ iff~ is empty. 
Step 8. We must now eliminate the quantifier from each formula (3y)fb 

Each such formula must be of the form 
(3yXt  t, 4" &""  & o,O & <: rio & . . .  & < 
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For 1 ~< i ~< n, Ji 1> 0 is the number of  atoms of  the type i~ =: t2 and kl is 
the number of atom~ of the type tl < tz. We can assume j'j + k i > 0, i.e., 
f '  is non-empty. In ea~h atom y appears on the right or on the left, but not 
both. 

We now consider the case .h > 0, i.e., there is at ,~east ore; equality. I f  
Jt = 1 and ki = 0 then we replace (3y)(t| i~ = s~ i~) by the coastant atom 
TRUE.  Otherwise, we solve t[ i) --- s[ ~) for y and substitt, te this expression 
for y in the remainingj~ + ki - i atoms. Let gl be the conjure:don of these 
j~ + ki - 1 atoms, restored to canonical form. We replace (3y)fl by gj, 
thereby eliminating the quantifier. 

Now we consider the case, A = 0. We have (3y)fl of the foria 

(3yXq[ ~ < r[" 8 £ ' "  8£ q~ < rff h kr ] 

Suppose y appears always on the right, i.e., in every r~rl~ , 1 ~< p ~< kj. Then 
we replace (3y)fl by TRUE. Similarly, if y appears algays on the left, 
i.e. in every q[~, 1 ~< p ~< k~, we replace (3y)f~ by TRUE. 

In the remaining case, for each m, p such that y occurs on opposite sides 
in the atoms q~) < r~ ) and q~i) < r~i~ we eliminate y from the- pair of  in- 
equalities by forming the weighted sum, ~ .  Each such m, p paii~ forms a new 
inequality and finally we got 

( : ly)f[  --= d~ q ~  < r m < _p 
m,p  

Note: Let C~ be the coefficient of  y in the ith inequality, i = 1, 2, Then 
the weighted sum is Cz times the first inequality added to C~ times the second 
inequality. In the resultant inequality y has coefficient C~'.S,. on both sides 
and thus vanishes. 

F.~om Step 8 we return to Step 2 to complete the algorithr~. 
We can make two observations before giving some examples of the 

algorithm. 

1. If  the original formula were closed, i.e., all its variables w~.~re quantified 
then the algorithm produces a quantifier-free formula with :no variables. 
In that case the only atoms are of the form 0 < 0, 0 = 0, f~ < n, n < 0, 
0 = n, n - 0. rhese can be replaced by the constant atoms FALSE; TRUE, 
TRUE,  FALSE, FALSE, FALSE, respectively. Then the propositional 
identities TRUE & FALSE - FALSE~ etc., can be re~eateoly used as the 
last step of the algorithm to complete the reduction of the fiwmula to a single 
atom, either TRUE or FALSE. Such an extended algol'ith~n provides a 
decision procedure for EAR, i.e., a method for determining the truth or 
falsity of any sentence expressible in EAR. 

2~ With slight modifications of the algorithm we can co11~sider t~ >t t2 
and even t, # t2 as atoms instead of  as abbreviations of  "lt~ < t2 and 
7t~ = re. In this case the only steps of  the algorithm which can increase the 
Art,.'.,~,.:'~,! Intelligence 3 (1972), 165-174 
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length of a forraula are expansion into disjunctive normal form (Steps 3 and 
6) and Step 8 as we wiU see from further ct.a~;ideration of the linear pro- 
gramming example. 

Let us now s'.:e how one may apply the algorithm to linear programming. 
W¢ rewrite a portion of the formula (1) but instead of the cost Y~ c~x~ we use 
the variable z. 

( Y Y l ) " "  ('~'1'.) aiff i -~ bj • ~ Yi ;3 --* ciy i >I z (2) 
"--- 1~-1 1 

The algorithm can be used on formula (2), eliminating all the variables 
y~, 1 ~< i ~< n. The formula equivalent to (2), with z as the only variables 
must express the same mathematical statemen,t expressed in (2), namely 
that z is less titan or equal to the minimum cost, c, if it exists. If no solution 
exists there are 2 possibilities: The constraints may be inconsistent, or else 
they may include such values ofy~ so that the smut Y~ ctYi is unbounded below. 
In the former case, formula (2) will reduce to TRUE and in the latter case 
to FALSE. 

Let us perfc,rm some of the algorithm on :formula (2). Eliminating --,, 
we get 

0). (Vy l ) ' " -  (Vy~)-1 ~; aOy , = b~ &. & y, >I v E c,y, >f z 
j ~ - I  [ - -1  1[ l 

Changing universal quantifiers to existential quantifiers and eliminating 
negations we then get 

. (y , . )  - & & y, >1 0 & c,y, < z (3) 
"--- i ~ l  1 1 

Formula (3) has the form" negation followed, by a string of n existential 
quantifiers followed by a kernel consisting of a conjunction of m equalities 
and n + 1 inequalities. Allowing y~ >I 0 as an atom according to observation 
(2) above, we me that the kernel is trivially in disjunctive n~rma! form as a 
pure conjunction. Also, when one quantifier, (]y,) is eliminated ac.r.~ding 
to the modified algorithm, the resulting formula is still a pure conj,a'~tion. 
Thus, there is never any need to expand into disjunctive normal form, as 
each quantifier is eliminated in turn. 

We give an example, which is given as an exercise on the simplex algorithm 
in Gass [31. 

A. Minimize: 2xx - 3xz + 6x3 subject to the constraints 

3x~ - 4 x 2  - 6x3 ~<.: 2 
2 x . +  x 2 + 2 x 3 " "  ~.11 
x l + 3 x z - 2 x z ~ 5  

x j ~ O  j =  1 ,2 ,3  
Art~cial Intelligence 3 (1972), 16~-174 
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To zct up this example for the simplex algorithm, according to the reason- 
ably standard version giwn in Gass, we convert A to the fcllo~/ing equivalent 
problem. 

B. Minimize 2xt - 3x2 + 6x3 + wxe subject to the constr~'dnts 
3x~ - 4 X z -  6x3 + x ,  = 2 

2xx + xz + 2xs - xs + xe : 11 
xt + 3xz - 2xs + x7 = 5 

x i~>0  j :  1 , 2 , 3 , 4 , 5 , 6 , 7 .  

Here we require two slack variables, x ,  and xT, an exce:ss variable, Xs, 
and a~ auxiliary variable, x6. Also, the weight w in the abj~:ctive function, 
2x:  - 3Xz + 6xa + wxt, ,  must be larger than any fixed ~mn'ber so that x6 
will vanish in the so-called phase 1 of the simplex algorith:~a. We observe 
here that it is unnecessary to go from statement A of the ,:xaJrLlple to form B 
when using our algorithm to determine the minimum cosL. Statement A 
can be used directly in formula (3) as follows: 

~(3y t ) (3y2)OYs) (3) ' t  --  4.1,= - 6Ya ~< 2 &2Yl + Yz -I-2Ya ) 11 & 
Yl + 3Yz - 2)'3 ~< 5 & y l  >I 0 & y z  >I 0 & y s  i;~ 0 &  

2j,,  - 3y2 + < z)  

Note that the order of the three quantifiers is irrelevant so any of the 
variables yt, 3'2, Ya can be eliminated first. We can therefc,re choose a y~ that 
will lead to the minimum number of resulting atoras. We do tY3is by counting 
the number of times each y~ appears positively on either si,k of an inequality. 
We thus get Table 1. 

T ~ L E I  

LEFT RIGHT 

yt  3 2 

Yz 1 4 

Y3 i 4 

We see that the choice of Yt will yield 3 × 2 = 6 atoras fi'om 3 + 2 ffi 5 
atoms. Either Y2 or Ys will yield only 4 atoms from 5 at,)ms.. So, at least at 
the first elimination, the formula will expand lessif we choose Y2 or Y3. 

Let us pick Yz. The only inequality in which Yz appea]~ 1~ ,~itively on the 
left is yt + 3yz - 2y3 ~< 5. We eh.ninate y:, between this inequality and the 
others containing Y2 to obtain the new formula: 

~ ( 3 y t ) O y s ) ( y t  - 2ys ~< 2 & 5yt + 8y.~ t> 28 & yt ;,. 0 & 
Y l - 2 Y s ~ < 5 & Y a I > 0 & 3 y l  +4y3  < z + 5 )  
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The same considerations as above lead to the choice of  y3 to be eliminated 
next:  

~(3.',h)(Sy~ < z ~ 9 &Yl < 2z - 18 &y~ >i 0 & 
5y, < z +  15 &3yl  < z +  5 )  

Finally, eliminating y~, we get 
- a ( 0 <  z + 9 & 0  < 2 z -  1 8 & 0 < : : +  1 5 & 0  < z +  5) 

which reduces to 
"a(z > - 9 & z  > 9 & z  > - 1 5 & z  > - 5 )  

or -I (z > 9) or z ~< 9. Tberefor~ the minimum cost exists and is equal to 9. 
We emphasize here that the linear programming example is used as a 

familiar probiem for illustrative purposes. There are two drawbacks in using 
this method en typical linear programming problems. 

1. The formulation given above is used to determine the minimum cost 
but not the complete solution. Of course, the minimum cost can be used to 
verify an opt:real solution or to determine exactly how far from optimal any 
fea:ible solution is. 

2. The main drawback is the lack of  efficiency especially compared to the 
high efficiency of the simplex algorithm. The low efficiency of our algorithm 
is due to the expansion of the formula upon eliminating quantifiers. 

Let us consider formula (3) above. The kernel is a conjunction c~" m 
equalities an,t n + 1 inequalities. As seen in s~tep 8 of the algorithm, when 
a quantifier i:s eliminated such that one of  the conjuncts is an equality con- 
taining the quantified variable, there is no i'~creas¢ in the number of cc:~- 
juncts. On the contrary there is a decrease of one. So, in general, m qv, antifiers 
can be ©limirated using the equalities and resulting in a formula with n -- m 
quanLtifiers and n + 1 inequalities. Now each successive elimination of a 
quantifier from a formula with k inequalitie,~ can lead to a formula with 
(k/2)(k/2)  = k2/4 inequalities in the worst case, when the occurrences on the 
left and righ'.t are balanced. It appears that the worst case is also the most 
likely case arid deviations of a few inequalities do not help much. 

So, i fn  ffi 8 and m -- 4 then we could end up with 1,562,500 inequalities. 
This seems the largest size that can be h~,.ndled with this method in its present 
form. 

We tried the algorithm on a dairy-feed diet problem due to Waugh [9] and 
prese, nted in Gass [3]. Here there were 10 variables and four inequolities; 
i.e. 10 feeds were combined to meet 4 minimum requirements at a minimum 
cost. The problem as initially stated proved to() big for the program. However, 
conversion t<) the dual problem, which had 4 variables and 14 inequalities, 
allowed determination of the minimum cost. Even so, it took 12 hours on the 
PDP-10 under a LISP compiled version of the algorithm. 

The use of 'a  linear programming example, thus, is not to adv~a te  use of 
14 Artificial Intelligence 3 (1972), 165-174 
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this algorithm for linear programming, but to show that it can be used on 
practical problems. 

The point we would like to emphasize to skeptical readers i,; that  although 
the EAR algorithm me, y not be efficient in given areas, its generality allows 
application to various problems with no programs specific for each problem 
area. 

For example, we can do non-linear programming whenew.~r it is actually 
piecewise linear. Let us take the case of a piecewise !inear objective functions 
These problems are not direct applications of  the simplex ~.~lgorithm The 
optimal solutions may not even occur at the extreme poivts of  the con- 
straints. For example, suppose we wish to minimize the maxilnmm of x~ and 
x2 under the constaints xz + Xz = I, x~ t> 0, xz I> 0. I-[ere~ the optimum 
value of the objective function is ½ as opposed to a value of I at the extreme 
points. 

Piecewise linear functions can not only be expressed in ternls of maximum 
and minimum as above, but also, equivalently, in terms of t~ and v .  The 
above example can be stated in EAR as follows: 

(¥yl)(Vy2)(yt + y~ = 1 &Yi >1 0 & y z  i> 0 ~ y l  ~< z \, y ,  ~< z) 
This is of course equivalent to z t> ½ which can be verifie~: by the algorithm. 

General non-linear programming can also be approximaled it:,y using Chang 
[1]. He shows how to do piecewise :~near curve-fitting in n-din~ensions. After 
using Chang's method to determine piecewise linear approximations, one can 
express the problem in EAR. 
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