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ABSTRACT

Using formal logic, many problems from the general area of linear inequalities can be expressed
in the elementary theory of addition on the real numbers (EAR). We describe a method for
eliminating quantifiers in EAR which has been programmed and demonstrate its usefulness
in solving some problems related o linear programming.

In the arec of mechanicc! mathematics this kind of approach Im‘ been neglected in favor of
more generalized methods based on Herbrand expansion. However, in a restricted area, such
as linear inequalities, the use of these specialized methods can increase efficiency by several
orders of magnitude over an axiomatic Herbrand approach, aitd make practical problems
accessible.

As is common in artificial intelligence, the work reported here is of an inter-
disciplinary nature. It involves mathematical logic, linear inequalities, and
symbolic mathematics on a computer.

For the sake of argument, let us distinguish two kinds of workers in the
area of linear ineaualities. There is the theoretician, who is developing new
methods and discovering new theorems. Then there is the user, who is faced
with a practical problem which can be expressed in sorne way at least piecewise
linearly. As a simple-minded distinction between the theoretician and the
user we can say that the latter is interested in questions involving a fixed
number of variables, while the former is concerned with questions involving
an arbitrary number of variables. Using terminology from Iogic to be made
more precise below this means that the user is generally working within the
elementary theory of addition on the reals whiie the theoretician is generally
working on a higher level.

* This is a revised version of a paper pres.nted at the Interrational Joint Conference on
Artificial Intelligence, London, September 1971.
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166 LOU/S HODES

In this paper we are concerned mainly with the user at the stage where he
has formulated his problem in symbolic terms. This may or may not be the
first stage in formulating the problem. For example, he may first have
developed a model as a mathematical idealization of his problcm. Indeed,
if he is very lucky, the model may be of a standard type, for example, flow
networks, for which there are known efficient solution methods. In that case
he would bypass a symbolic formulation.

Suppose, now, in one way or another the user has arrived at a symbolic
formulation of the problem. We assume that the size of the problem is such
that he would want to use a computer. Again, he may have a perfectly standard
problem such as to find a solution to a set of simultaneous inecualities.
Then he can use the relaxation method or another numerical approach. Or,
if he can formulate his problem as an optimization problem, ke may con-
veniently be able to express it in linear programming format and use the
famous simplex algorithm.

Problems can arise, however, which do not fit too easily into the standard
molds. Furthermore, one may require a solution in symbolic form. For
example in r-person game theory the set of solutions can be described as
a union of convex polyhedra, these polyhedra as an intersect:on of half-
spaces, each of which is represented by a linear inequality.

Using formal logic one can often represent one’s problem &onvcmently
in the lower predicate calculus under the interpretation of additior: on the
real numbers. In that casc, there are simple me-hods for climinatingg quantifiers
and simplifving expressions, often resulting in the solution of various prob-
lems. Such methods were first programmed by the author at IBM in 1962 [4]
and further elaborated with a game theory applicaticn [5]. Since then some
modifications and improvements have been made. The coniplete methods
are described here since the earlier papers were never formally publ:shed.

Although the author has been addressing himself to wc.kers in linear
inequalities, the work reported here may also be categorized as mechanicai
mathematics or equivalently applied logic on computers. In this ficld such
work has been neglected in favor of more generalized methoc's biased on
Herbrand expansion. The effort on these general methods is, of course,
worthwhile and productive, but the neglect is unfortunate since restricied
specific theories (like addition on the real numbers) often allow th¢: use of
direct, specialized methods which increase efficiency by several orders of
magnitude over an axiomatic Herbrand approach.

We now describe the elementary theory of addition on the reals (EAR),
or, more precisely, the elementary theory of ordered dense Abelian groups
without endpoints. “Elementary”’ means that all formulas in EAR. belong
to the lower predicate caiculus, i.e., quantification occurs only over variables
for elements of the Zroup and not, for example, over variables for sets of
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elements. The formulas in EAR, to be defined more precisely below, are just
those formalas of the lower predicate calculus with two binary predicates,
< and =, the operator +, and at least two constant symbols, 0 and 1.

We refer the uninitiated reader to Rogers’ [7] expository paper which,
without presupposing any knowledge of formal logic, develops the elementary
theory of dense linear order together with a method due to Langford for
deciding sentences within that theory. This method extends to EAR, as
pointed out to me by A. Robinson, and is described below. EAR has an
unlimited set of variable symbols, x, y, z, X, ¥4, 235 . . ., and real numbers as
constant symbols, of which we will need only O and 1. ‘

A rerm in EAR is either a constant symbol or a variable symbol or of the
form t, + --- + t,. where the 1;,, 1 < i < n, are terms. These are the only
terms.

We write x + - + x,ntimes, asnx and 1 4+ -+ + 1, n times, as n, so
the following are examples of terms.

(1) 2x+3y+x
2) 4+ x

Using the commutativity of addition we sce that there is a canonical form
for terms where each variable symbol appears once. Thus, example (1) above
could be written 3x + 3y.

An atomic formula, or atom, is any expression of the form #, = 7, or of
the form ¢, < t,, where ¢, and ¢, are terms. There is a canoniczl form for
atoms where each variable symbol appears on at most one side of any atom.
For example 3x + 3y < Zx would be written x + 3y < 0. Vie also allow
two constant atoms: TRUE and FALSE.

Atoms are the simplest formulas. Non-atomic formulas are built iTom
atoms by means cf the propositional connectives; negation, -1, “and”.
&, “or”, v, “implies”, —, “if and only if’, «, as well as the universal and
existential quantifiers, “for all x”, (¥x), and “‘there is an x such thay,” (3x),
where x is any variable symbol.

Examples of formiulas are:

() x<yvx=ypyvy<x
2 G)x<y&ly<x+5)
3 WOE2x +y<0

Formally, we say that an atom is a formula and if f; and f, are formulas
then fy, (/1 &12), (/i v f2), (i = 1), (fi of), (Vx)fy, (Gx)f; are ali
formulas. Every formula is so derived. We delete parentheses to improve
readability, being careful not to introduce undesirable ambiguities. Example
(1) above illustrates desirable ambiguity.

For convenience, we use t; > £, as an abbreviation of 11, < 1,.

As a further example of a formula in EAR we represeat the statement
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that the real nuinbers x,, ..., x, minimize the sum £} ¢,x; subject to the
conditions

n
agx;=b; for j=1,..,m
i=1

x;20 for i=1,..,n

This is a statement of the linear programming problem, and says that
X1, . . - X, yield an optimal solution. We assume, for simplicity, that the
a;;, d; and c; are all integers.

We allow the use of the minus sign by considering any occurrence of —¢
in an atom as a convenient nctation for +7 on the opposite side of the atom.

The iinear programming problem is stated in EAR as follow::

& z a1;X; = bj

j=1i=1

& &xj>0 §

i<t +

& (Vy,)---(Vyn)(&”z S ayi=b, & & y,>0

j=1ié=1 i=1

n ”n
- Yz Z; cixi) 4y
i=1 i=

From the point of view of people working in linear inequalities the most
novel feature of EAR is tkz formal use of quantifiers. In fact, the elimination
of quantifiers, together with their bound variables, is the main content of
the algorithm described below.

Suppose F(x,, ..., X,) is a formula in EAR in which x,, ..., x, are the
only free (not quantified) variables. Then the following algorithm yields
a quantifier-free formula G(x,, ..., x,) in which x,,..., x, are the only
variables, with the following property. Let a,, . . ., a, be any # real numbers.
Then F(a,, ..., a,) and G(a,, ..., a,) are equivalent in the sense that they
are both true or are both false. For example, if F(x) is the formula (3y)
(y <x+4&2x < y + 5) then G(x) would be the formula x < 9.

Since EAR is a subset of elcinentary algebra, Tarski’s algorithm ([8]
vrovides 2 méthod for eliminating quantifiers. When applied to formulas
in EAR, however, Tarski’s method is exceedingly cumbersome. Furthermore,
no one has reported a computer program for any algorithm to eliminate
quantifiers in elementary algebra except for some beginnings in tha: direction
by Collins [2]. On the other hand, EAR has a simple method and scems to be
in the unique position of having such a simple algorithm alorg with a wide
range of application.

The elimination of quantifiers is ach.::ved by systematically replacing
Artificial Intelligence 3 (1972), 165-174
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selected subformulas by equivalent formulas. The equivalence imay be
purely logical or may be a property of +, =, < in the reals, as we used, for
example, in establishing a canonical form for atorns.

Step 1. If F(x,,...,x,) is quantifier-free, let ¢ = F. Otherwise, choose
a subformula of the form (3y)f(x,, ..., x,, ¥) where f is quantifier-free,
i.e., (3y) is an innermost existential quantifier. If all innermost quantifiers
are universal quantifiers then use the identity (Yx)g <> —1(3x) g, so that
(3x) g vields the required subformula (3x)f, with f = —g.

Step 2. We use steps 3-8 to find a quantifier-iree formula g(x,, .. ., x,)
equivalent to (3y)/ (xy, ..., x,, ¥). We replace (3y)f by g in F, then return
to Step 1. :

Step 3. Eliminate all occurrences of equivalence, (<), and implication, (—)
in the formula (37)f by the use of identities

Siefaizs(h =) &+ 1)
H=f=fVv],
Step 4. The only connectives in fare &, v, 1. Use the identities
S &) =0V )
(i v f2) = (Ofi &)
i =/
to eliminate ali cccurrences of negation save those appearing directly before
atoms. ‘

Step 5. The remaining negations are eliminated by using the mathematical
identities:

A=t =<tV <t
M <L ==LV <
Call the new formula (3y)f.

Step 6. Now f has connectives &, v only. Use the distributive law
L&, v )= &12) v (fy &13) to exapand f irto disjunctive normal
form

f=hvlh-vh

where each f; is 2 conjunction of atoms.

Step 7. The existential quantifier distributes over disjunction. So

Gf=@Nfiv v =LY v @
Each f; can be written f; & f{ where f is a (possibly empty) conjunction of
all the atoms which contain y. Since £} does not contain y, we have
AN & f) =11 &S]

or y)f; = f; if [} is empty.

Step 8. We must now eliminate the quantifier from each formula (3y)f:.
Each such formula must be of the form

AP =& &1 =sP &g < & &g < 1)
Artificiai Intelligence 3 (1972), 165-174
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For 1 < i < n, j; > 0 is the number of atoms of the type 7, = 7, and k;is
the number of atoms of the type 7, < ¢,. We can assume i+ k;>0,ie,
/i is non-empty. In each atom y appears on the right or on the left, but not
both.

We now consider the case j; > 0, i.e., there is at least one equality. If
Ji=1 and k; = 0 then we replace (Iy)(r{? = s{’) by the censtant atom
TRUE. Otherwise, we solve 7 = 5 for y and substitvte this expression
for y in the remaining j; + &; — 1 atoms. Let g, be the conjunction of these
Ji + k; — 1 atoms, restored to canorical form. We replace (I)f; by g,
thereby eliminating the quantifier.

Now we consider the casz j; = 0. We have 3y)f; of ike form

@)g? <1 & - & afd < rf))

Suppose y appears always on the right, i.e., in every i’ 1 < p < k,. Then
we replace (3y)f; by TRUE. Similarly, if y appears always on the left,
i.e. inevery i, 1 < p < k;, we replace (3y)f} by TRUE.

In the remaining case, for each m, p such that y occurs on opposite sides
in the atoms g < r¥ and ¢ < r® we eliminate y from the pair of in-
equalities by forming the weighted sum, @. Each such m, p pair forms a new
inequality and finally we get

=&l <D gP <1
mp

Note: Let C; be the coefficient of ¥ in the ith inequality, i = 1, 2, Then
the weighted sum is C, times the first inequality added to C, times the second
inequality. In the resultant inequality y has coeflicient C,, on both sides
and thus vanishes.

From Step 8 we return to Step 2 to complete the algovithm.

We can make two observations before giving some examples of the
aigorithm.

1. If the original formula were closed, i.e., all its variables were quantified
then the algorithm produces a quantifier-free formula with no variables.
In that case the only atoms are of the form 0 < 0,0=0,0<nn<0,
0 = #, n = 0. These can be replaced by the constant atoms FALSE, TRUE,
TRUE, FALSE, FALSE, FALSE, respectively. Then the propositional
identities TRUE & FALSE = FALSE, etc., can be repeatedly used as the
last step of the algorithm to complete the reduction of the formula to a single
atcin, either TRUE or FALSE. Such an extended algorithin provides a
decision procedure for EAR, i.e., a method for determining the truth or
falsity of any sentence expressible in EAR.

2. With slight modifications of the algorithm we can consider ¢, > t,
and even t, # t, as atoms instead of as abbreviations of "1ty < ¢, and
T1¢; == 1,. In this case the only steps of the algorithm which can increase the
Artifs: il Imelligence 3 (1972), 165-174
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length of a forraula are expansion into disjunctive normal form (Steps 3 and
6) and Step 8 as we will see from further cuasideration of the linear pro-
gramming example.

Let us now sze how one may apply the algorithm to linear programming.
We rewrite a portion of the formula (1) but instead of the cost Z ¢;x; we use

the variable z. |
m n n R .
) & S o=t &&nz0)-Tanz: @

The algorithm can be used on formula (2), eliminating all the variables
¥i» 1 € i< n. The formula equivalent to (2), with z as the only variables
must express the same mathematical statement expressed in (2), namely
that z is less than or equal to the minimum cost, ¢, if it exists. If no solution
exists there are 2 possibilities: The constraints may be inconsistent, or else
they may include such values of y, so that the sumn Z ¢,y; is unbounded below.
In the former case, formula (2) will reduce to TRUE and in the latter case

to FALSE.
Let us perform some of the algorithm on formula (2). Eliminating —,

we get
J= =

Changing universal quantifiers to existentiai quantifiers and eliminating
negations we then get

“1(3y,) " '(Hy;.)(‘_éc =Z 19 = b; & &y 0& z:: ey < Z) 3)

Formula (3) has the form- 1egation followed by a string of » existential
quantifiers followed by a kernel consisting of a conjunction of m equalities
and n + 1 inequalities. Allowing y; > 0 as an atom according to observation
(2) above, we see that the kernel is trivially in disjunctive nerma! form as a
pure conjunction. Also, when one quantifier, (3p,) is eliminated ac.-.+ding
to the modificd algorithm, the resulting formula is still a purc conjunction,
Thus, there is never any need to expand into disjunctive normal form, as
each quantifier is eliminated in turn.

We give an example, whici is given as an exercise on the simplex algorithm
in Gass [3].

A. Minimiz: 2x; — 3x, + 6x; subject to the constraints

3x; — 4x; — 6x5 € 2
2x; + x5+ 2x3 2 11
X3+ 3x, — 2x; £ 8
x;20 j=1,23
Artificial Intefligence 3 (1972), 165-174
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To set up this example for the simplex algorithm, according to the reason-
ably standard version given in Gass, we convert A to the fcllowing equivalent
problem.

B. Minimize 2x, — 3x, + 6x3 + wx,s subject to the construints

3x; —4x, — 6x3 + x4 =2
le+x;+2x;;—x5+x‘=ll
x1+3x2-2x3+x1=5
x;20 j=1,2,34,561

Here we require two slack variables, x, and x,, an excess variable, xs,
and an auxiliary variable, x¢. Also, the weight w in the obj:ctive function,
2x, — 3x, + 6x3 + wxe, must be larger than any fixed aun:ber so that x,
will vanish in the so-called phase 1 of the simplex algorithin. We observe
here that it is unnecessary to go from statement A of the ¢xarapie to form B
when using our algorithm to determine the minimum cost. Statement A
can be used directly in formula (3) as follows:

@) Ey)Eys)By — 4y, — 3 K 2& 29, +y, + 2y 2 11 &
2y; — 3y, + 6y; < 2)

Note that the order of the three quantifiers is irrelevant so any of the
variables y,, ¥,, ¥s can be eliminated first. We can therefcre choose a y, that
will lead to the minimum number of resulting atoms. We do this by counting
the number of times each y; appears positively on either side of an inequality.
We thus get Table 1.

TABLE 1
LEFT RIGHT
8 41 3 2
Y2 1 4
Vs 1 4

We see that the choice of y, will yield 3 x 2 =6 atoms from3 +2 =135
atoms. Either y, or p; will yield only 4 atoms from § atoms. So, at least at
the first elimination, the formula will expand less if we choose y, or y;.

Let us pick y,. The only inequality in which y, appears g<itively on the
left is y, + 3y, — 2y; < 5. We eluninate y, between this inequality and the
others containing y, to obtain the new formula:

@) —2s < 2&5p, + 8y, > 28&y, 20 &
V1= 23 <5&y; 20&3p, +dy; <2+ 5)
Artificial Intelligence 3 (1972), 165-174
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The same considerations as above lead to the choice of v, to be eliminated

next:
@5 <:+9&y, <2z2—18&y, >0&
Syi<z+15&3y, <z +5)
Finally, eliminating y,, we get
1M0<z+9&0<22-18&0<:2+i5&0<2z+5)
which reduces to
Az> -9&z2>9&z> —-15&2> =5)
or —1(z > 9) or z < 9. Therefore the minimum: cost exists and is equal to 9.

We emphasize here that the linear programming example is used as a
familiar probiem for illustrative purposes. There are two drawbacks in using
this method cn typical linear programming problems.

1. The formulation given above is used to determine the minimum cost
but not the complete solution. Of course, the minimum cost can be used to
verify an opt:mal sofution or to determine exactly how far from optimal any
feac:ible solution is. ,

2. The main drawback is the lack of efficiency especially compared to the
high efficiency of the simplex algorithm. The low efficiency of our algorithm
is due to the expansion of the formula upon ¢liminating quantifiers.

Let us consider formula (3) above. The kernel is a conjunction ¢i m
equaiities and n + 1 inequalities. As seen in step 8 of the aigorith, when
a quantifier is eliminated such that one of the conjuncts is an equality con-
taining the quantified variable, there is no increase in the number of cci-
juncts. On thz contrary there is a decrease of one. So, in general, m quantifiers
can be elimirated using the equalities and resulting in a formula with n — m
quantifiers and #n + 1 inequalities. Now each successive elimination of a
quantifier from a formula with k inequalities can lead to a formula with
(k/2)(k/2) = k3/4 inequalities in the worst case, when the occurrences on the
left and right are balanced. It appears that the worst case is also the most
iikely case ard deviations of a few inequalities do not help much.

So, if n = 8 and m = 4 then we could end up with 1,562,500 inequalities.
This seems the largest size that can be hendled with this method in its present
formi.

We tried the algorithm on a dairy-feed diet problem due to Waugh [%j and
presented in Gass [3]. Here there were 10 variables and four inequslities;
i.e. 10 feeds were combined to meet 4 minimum requirements at a minimum
cost. The problem as initially stated proved too big for the program. However,
conversion to the dual problem, which had 4 variables and 14 inequalities,
allowed determination of the minimum cost. Even so, it took 12 hours on the
PDP-10 undzr a LISP compiled version of the algonthm.

The use of a linear programming example, thus, is not to advocate use of
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this algorithm for linear programming, but to show that it can be used on
practical problems.

The point we would like to emphasize to skeptical readers i that although
the EAR algorithm may not be efficient in given areas, its generality allows
application to various problems with no programs specific for each problem
area.

For example, we can do non-linear programming whenever it is actLa‘ly
piecewise linear. Let us take the case of a piecewise linear objective function.
These problemis are not direct applications of the simplzx zlgorithm. The
optimal solutions may not even occur at the extreme points of the con-
straints. For example, suppose we wish to minimize the maxiranum of x; and
x, under the constaints x; + x; = I, x; > 0, x, 2> 0. Here. the ontimum
value of the objective function is 4 as opposed to a value of 1 at the extreme
points.

Piecewise linear functions can not enly be expressed in terms of maximuin
and minimum as above, but also, equivalently, in terms of & and v. The
above example can be stated in EAR as follows:

M)Wy +y:=1&y,20&y, 20>y, <zv y,<2)
This is of course equivalent to z > 1 which can be verified by the algorithm.

General non-linear programming can also be approximated bty using Chang
[1]. He shows how to do piecewise i:near curve-fitting in n-din:ensions. After
using Chang’s method to determine piecewise linear appro:<imations, one can
express the problem in EAR.
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