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Abstract 

In this paper we compare recursively enumerable subsets of R” in two computing models over 

real numbers: the Blum-Shub-Smale machine and the oracle Turing machine. We prove that 
any Turing RE open subset of RY is a BSS RE set, while a Turing RE closed set may not 
be a BSS RE set. As an application we show that the Julia set of any computable hyperbolic 
polynomial is decidable in the Turing computing model. @ 1998-Elsevier Science B.V. All 

rights reserved 

1. Introduction 

In this paper we compare recursively enumerable subsets of Rq, or RE subsets for 

abbreviation, defined in two computing models over real numbers. One model is the 

classical oracle Turing machine, the other is the model introduced by Blum et al. 

1989 [2]. 

The work of Turing, Godel, Church and others in the 30s forms the core of classical 

computation theory. Although much of the classical theory of computation deals with 

computing over the natural numbers, certain approaches have considered other underly- 

ing domains. One such approach is recursive analysis, which studies the computability 

of reals and continuous functions of real variables. The subject is a natural development 

of computability theory for functions from natural numbers to natural numbers, and has 

been well studied, e.g. [6, lo]. Let R be the set of real numbers. In recursive analysis 

the standard definition for “computable open sets” of Rq, now commonly known as 

recursively enumerable open sets, or RE open sets, goes as follows: an open set U of 

R4 is RE open if it is the union of a sequence of q-balls, {x : Ix -ail <r;}, where (7;) 

’ The author thanks Professor Marian B. Pour-El for introducing her to the area of recursive analysis 
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and {aj] are computable sequences of real numbers and q-vectors of Rq, respectively 

[9]. This de~nition is in accordance with the notion of classical RE sets of the natural 

numbers, i.e. when the set N of the natural numbers is considered as a subspace of 

Rq, RE open sets of N are the same as the ordinary RE sets in the classical recursion 

theory. The computing model adopted here is oracle Turing machines where, roughly, 

an oracle Turing machine is a classical Turing machine equipped with an oracle which 

can supply rational approximations of real numbers on demand. 

On the other hand, Blum et al. [2] developed a model for computation over ordered 

rings in 1989. This model provides an interplay between algebra, analysis, scientific 

computation, and topology. In this computational model, a set Y c Rq is RE if it is the 

halting set of some machine over R. Y is said to be decidable (recursive) if Y and 

its complement are both RE sets. This theory, as the recursive analysis approach, also 

reflects the classical computation theory over Z (e.g. in the case where R is the ring 

of integers Z, the computable functions are ordinary recursive functions, RE sets are 

ordinary RE sets of Z). By contrast with oracle Turing machines, a real number in this 

model is viewed as a mathematical entity, not as its decimal or binary expansion. Thus, 

for example, rather than feed rational approximations of a real number into a machine, 

one can input real numbers directly into the machine. 

Both the Blum-ShubSmale model (BSS model) and the Turing model bring the 

theory of computation into the domain of topology and make it possible to investigate 

the effectiveness of const~~tions in topology. To begin the study, it is natural to ask: 

Do these two computational models give the same objects? The answer to this question 

is No, for while the Cantor middle-third set is a ‘Turing RE closed set (Proposition 3.1 

below), it is not a BSS RE set as shown in [2]. Furthermore, it is shown in [Z] that 

most Julia sets are not BSS RE over the reals and therefore are not decidable in the 

BSS computing model. In contrast, we will show that this is not the case in the Turing 

computing model. More precisely, we show in Section 4 that the Julia set of any 

computable hyperbolic polynomial is decidable in the Turing model. 

The Julia set example demonstrates how different BSS and Turing RE closed sets 

can be. On the other hand, there are certain connections between the two models since 

both of them reflect the classical theory of computation over integers. It is shown that, 

for example, every Turing RE open set is a BSS RE set (Theorem 3.1 below). Several 

other connections between BSS RE sets and Turing RE sets are also given in the paper. 

The paper is organized as follows. Section 2 contains the definitions for Turing RE 

open sets, Turing RE closed sets, and BSS RE sets. Al1 sets here are subsets of Rq. 

In Section 3, we compare BSS RE sets with Turing RE sets. Proposition 3.1, coupled 

with an example in [2], shows that a Turing RE! closed set may not be a BSS RE 

closed set, while Theorem 3.1 asserts that every Turing RE open set is a BSS RE 

set. Theorem 3.2 gives a partial answer to the question when a BSS RE open set is 

Turing RE open. In Section 4, we investigate which of the Julia sets of polynomials are 

Turing RE closed sets. We first show that the Julia set of any computable hyperbolic 

polynomial is a Turing RE closed set. Combining this result with the proposition [2]: 

The basin of attraction of a polynomial is a BSS RE set over R, we further prove 
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that the Julia set of any computable hyperbolic polynomial is in fact decidable in the 

Turing computing model. 

2. Preliminary 

We first review the definitions of computable reals, computable functions of real 

variable, RE (recursively enumerable) open sets, and RE closed sets of R‘f in the 

Turing computing model. 

Let N,Z, and R be the sets of natural numbers, integers, and real numbers respec- 

tively. We take as known the idea of a recursive function from Np to Nq and a Turing 

machine over N. A sequence of rationals {r,,} is computuble if there exist three re- 

cursive functions s, 6, and c from N to N such that 

r,,+,pm, 
where c(n) # 0. A computable double or triple sequence of rationals is defined similarly. 

Definition 2.1. A real number x is said to be computable if there exist both a com- 

putable sequence {vn} of rationals and a recursive function e from N to N such that 

k >e(n) implies Ix - rkl< k. 

A point (XI ,x2,. . ,x,) E Rq is computable if xl, x2,. . . ,xq are computable real numbers. 

Definition 2.2. A sequence {xn} of real numbers is computable (as a sequence) if 

there is a computable double sequence {auk} of rationals and a recursive function e 

from N2 to N such that 

/xn - r,,k 1 d f whenever k 3 e(n, N). 

According to the definition, there are only countably many computable reals and 

computable sequences of reals. Therefore there exists a real number such that no com- 

putable sequence converges to it. Later we will use the following variant of a com- 

putable sequence of reals. A sequence {xn} of real numbers is computable if there is 

a computable double sequence {y,k} of rational numbers such that for all k,n EN, 

lr,,x -x,1 <2-“. 

We now introduce the definition of RE and recursive open/closed subsets of Rq. 

Definition 2.3. (1) An open set U in Rq is called recursively enumerable (or RE in 

short) [9] if there exist computable sequences {x,~} and {m}, x, E R4 and r,, E (0, oo), 

such that 
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A closed set K is called recursively enumerable [1 1] if there exists a computable 

sequence {xn} in K such that the closure of {x,} is K. 

(2) An open (respectively closed) set C’ in Rq is called recursive (or computable, 

or decidable) if both U and its complement are RE sets [1 11. 

The empty set is accepted as a RE open set as well as a RE closed set. The RE 

(resp. recursive) sets defined above will be called Turing RE (resp. Turing recursive) 

sets from now on. Observe that if CY is a noncomputable real, then the singleton set 

{u} is not a Turing RE closed set. 

In classical recursion theory a recursive set is defined as a set with a computable 

characteristic function. An alternative description for a recursive set there is that a set 

is recursive if and only if both the set and its complement are ICE. Since computable 

functions of real variables must be continuous, only trivial characteristic functions are 

computable. Thus, the alternative approach is used in Definition 2.3(2) to define non- 

trivial recursive subsets of Rq which is also in accordance with the classical definition. 

Then in the case where the set N of natural numbers is considered as a subspace of 

R, we have the same RE sets and recursive sets in N as the classical ones. 

We turn now to the definition of computable functions, which is due to Grzegorczyk 

[71. 

Definition 2.4. A function f’ from RP to Rq is said to be computable if: 

l f is sequentially computable, that is, ,f carries computable sequences {x,} to com- 

putable sequences {.f(x,,)}; and 

l f is efictioely unifi)rmly continuous, that is, there is a recursive function e from 

N x N to N such that for all points x, y E RP, 

IX-Yl&j and x,_vE[--li,k] implies If(x)- f(y)l<k. 

As is well known a function .f’ of real variables is determined if we know the values 

of f on a dense set of points and that f is continuous. The above definition simply 

effectivizes these notions. For there are only countably many computable sequences of 

real vectors, the sequential computability implies that there are only countably many 

computable functions of real variables. 

A computable sequence of functions is defined in a similar way just as that was done 

for computable sequences of reals. According to the definition, it is easy to see that 

most of the elementary continuous functions, e.g. eX, sinx, cosx, etc., are computable. 

In particular, a polynomial is computable if and only if all of its coefficients are 

computable numbers. 

We now pass from the Turing model to the Blum et al. computing model, which will 

be called BSS model or BSS machine throughout the paper. We restrict our attention 

to machines over real numbers with finite dimensions. The reader is referred to [2] for 

oo-dimensional machines over an arbitrary ordered ring. 
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Definition 2.5 (Blum et al. [2]). A machine M over R consists of an input space 7, 

output space 6 and state space .?, together with a connected directed graph whose 

nodes labeled 1,. . . , N are of certain types and with associated functions. Here f, 6, 

and s are each R’, R”’ and R”, respectively, with 1, m, n <co. The directed graph of the 

machine M has 4 types of nodes as follows: 

(a> 

(b) 

(cl 

Cd) 

Exactly one input node, characterized as having no incoming edge, and one out- 

going edge. Associated with this input node is a linear injective map I : f--a 3 

(which just takes the input and puts it into the machine), and p( 1) the next node. 

Output nodes, characterized by having no outgoing edges. To each such node, n, 
_ _ 

is associated a linear map 0, : S --+ 0. 

Computing nodes. Each such node has a single outgoing edge, so that a next 

node p(n) is defined. To n is associated a polynomial map gn : 3 + 3. 

A branch node n has two outgoing edges, giving us next nodes p-(n) and B’(n). 

To n is associated a polynomial 

h,(x) ~0, /P(n) to h,!(x) 20: 

h,, : 3 -+ R with P-(n) associated to the condition 

1. input y E I IOI IY 

(node 1) 

3. (node n) q 

2. 

output 0, (Lr) 1 O,(z) 1 (node n) 

Fig. 1. 

Definition 2.6. If we denote QM 2 i as the set of y where the computation halts. 

Then M defines an input-output map cp~ : QM -+ 6. A function f : R’ + Rm is called 

computable over R if there is a machine M over R such that the domain of f is QM 

and f(x) = CPM(X) for all x E QM. A set Y c R’ is called BSS RE over R if Y = Q,,,, for 

some BSS machine M over R. It is said to be decidable if both Y and its complement 

are BSS RE over R. 

Definition 2.7. If a BSS RE set in R’ is an open (respectively closed) set, then it is 

called a BSS RE open (respectively closed) set. 

According to the definition, every interval is a BSS RE set. It has been proved 

in [2] that computable functions over Z in the BSS model are the classical Turing 
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computable functions over Z. This implies that the BSS machine is equivalent to the 

Turing machine over Z. Therefore, both models define the same RE sets over Z. At 

this point it is natural to ask whether these two computing models over R give rise 

the same objects in Rq’? We study this problem in the following sections. 

3. BSS RE sets and Turing RE sets in R‘J 

We concentrate on working with subsets of R for simplicity. All results in this 

section can be easily generalized to subsets of Rq. 
Let c[ be a noncomputable real. Then the singleton set {x} is not a Turing RE closed 

set. It is however a RE closed set in the BSS model, as we have mentioned in the last 

section. On the other hand, it has been proved in [2] that any BSS RE set over R is a 

countable union of basic semialgebraic sets. Here a basic semialgebraic set is a subset 

of R” defined by a set of polynomial inequalities of the form 

h,(x)<& i= 1,...,1. 

hi(n) j=l+ I,..., m. 

Since a basic semialgebraic set only has a finite number of connected components, it 

follows that the Cantor middle-third set is not a BSS RE closed set as shown in [2]. 

But the Cantor middle-third set is a Turing RE closed set. 

Proposition 3.1. The Cuntor middle-third set C is u Turing RE closed set. 

Proof. Let 

S,=AsoU{32-a::aE~}, 

s,l=ls,l_, U(3”f’ --a:aES,_I}, 

and for 12 = 2,3,. , we arrange S,, = {a;, . . . , c$,,} with j(n) = 2”+‘. Define e : N --f N 

as 

e(O)=2, e(n)=e(n - l)+.j(n). 

Thus, e is a recursive function on N. For each i = 1,. . ,j(n), let x,(,,_l)+i = 4/3”+‘. 
Then {xn} is a computable sequence of rationals because this procedure is effective. 

Since {x,,} is the set of end points of removed middle third intervals, it is dense in C. 

We therefore conclude that C is a Turing RE closed set. 0 

The above example demonstrates that Turing RE closed sets and BSS RE closed sets 

behave quite differently. One reason for such difference is that a Turing RE closed set 
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is defined as the closure of a computable sequence. The closure operator often involves 

“too much” limit process which is difficult to deal with effectively. 

A Turing RE open set U = U,“=, {x : /x - x,/ <rn} behaves more “machine-like”. 

Here, roughly, one might imagine a real number x fed to the machine which computes 

Ix-_X,I,Ix-x~/ ,...; if for some i, Ix - xi1 <ri, then the computation halts and the 

machine outputs X. Otherwise the machine does not halt. The following result thus 

comes with no surprise. 

Theorem 3.1. Every Turing RE open set is a BSS RE open set. 

Before the proof we recall that an open subset U of Rq is Turing RE open if there 

exist computable sequences {x,,} and {a,}, x,, E Rq and a, E (0, oo), such that 

I/= E {xERq:Ix-xJ<a,,}. 
n=o 

Without loss of generality, x, (resp. a,) can be assumed to be rational vector (resp. 

rational). We state and prove this fact in the Lemma 3.1 below. 

Lemma 3.1. An open subset U of’ Rq is Turing RE open [f and only if there exist 

computable sequences {y,,} of rational vectors and {r,,} of’ rationals, y, E Rq and 

r,, E (0, CX), such that 

U=; {x~R~:Ix-y~I<r,}. 
t7=0 

Proof. Only necessity need to be proved. Let 

U= c {x:1x-xJ<a,} 
n=O 

be a Turing RE open set, where {xn} and {a,} are computable sequences of real 

vectors and positive real numbers, respectively. Thus, there are two computable double 

sequences {xmn} of rational vectors and {a,,} of rationals such that for all n EN, 

lh, - ’ lamn -.,,I<&. xflI< 2”” 

We now write each disk {x : Ix - x, I <a,,} as the countable union of the disks 

{x:1x-xX,,I<a,, - l/2m-‘} for m EN. (For each n EN, since a, is a positive real 

number, there is an no E N such that for all m 2 no, am,, - l/2”-’ > 0. Moreover, since 

{a,,} is a computable sequence, the procedure of determining no on input n is effective. 

Thus, without loss of generality, we can assume that amn - l/2”-’ >0 for all m EN.) 

This can be done because for each x, if Ix - x, I <a,, then there exists an m such 

that Ix - x,l<a, - 1/2”-2. It follows that Ix - x,,,l < /x - x,, + Ix,, - x,,I <a, - 

l/2”-* + ( 1/2m)<a,, + (l/2”) - ( 1/2”-2) + l/2” = amn - ( l/2m-‘). On the other 

hand, if Ix - x,,I <a,,,,, - l/2”-‘, we have Ix - x,j < Ix - x,,/ + IX,, - x,1 <umn - 

(l/2”-‘) + l/2” = umn - l/2” <a,,. 
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Let 4 : N + N x N be a recursive ordering on N x N. Then 

are computable sequences of rational vectors and rationals, where Proj,4 is the pro- 

jection of 4 on its first coordinate, which is a recursive function, and as we have just 

shown that 

lJ=; {xERq:IX-yy,l<rn}. 
n=O 

The proof is complete. 0 

We now come to the proof of Theorem 3.1. Let 

u= 6 {xER:Ix-y,l<r,} 
t?=O 

be a Turing RE open set, where {y,*} and {m} are computable sequences of rationals. 

Let f and g be two recursive functions defined on N such that f(n) = y, and g(n) = r,. 

In [2] it is proved that the classical recursive functions are BSS computable. Thus both 

f and g are BSS computable functions. 

The following machine halts on an input x if and only if x E U, which proves that 

U is a BSS RE set. The computation proceeds as follows. Input x E R as the fourth 

coordinate of a point in R4 with the other coordinates being 1. Then compute f(k) 

and g(k). Replace YR__I =(k,f(k- l),g(k- 1),x) by yk =(k+ l,f(k),g(k),x). Output 

x if Iyi - yi] < y,‘, where yk = ith coordinate of yX_. 0 

Iv2 - Yil < Yi! I 1 YhYil 2Y3 

output /A 

Fig. 2 

While every Turing RE open set is also a BSS RE open set, the converse is not true. 

For example, for any two real numbers tl and p with c( < b, one can construct a BSS 

machine A4 such that its halting set QM is the open interval (a, p). However, if either 
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LY or /3 is not Turing computable, the open interval may not necessarily be a Turing 

RE open set. For instance, let x be a positive real number such that no computable 

sequence converges to it. Then (0,~) is not a Turing RE open set. For if it is, then 

(O,x)=U~,{x: IX--. xn < v,~}, where {x,} and {m} are two computable sequences of / 

real numbers. Let Cn =xn + r,, and c, = max(& . . . , i;,,). Then {cn} is a computable 

sequence which converges to X. This is a contradiction. The further question is under 

what conditions a BSS RE open set is Turing RE open? The following theorem provides 

a partial answer. 

Theorem 3.2. For N BSS RE open set Qb!, if computing nodes 111,. . . , gm and brunch 

nodes h I,. . . , h, ure Turing computable polynomials, and QM is defined by inequalities 

of’ the type 

h~(gk,(...gk2(gk,(~)))) >O or h~(gli,,,(...ga(gx-,(x)))) ~0, 

then QM is (I Turing RE open set. 

Proof. We prove the case where M can be described by the following flow chart. The 

other cases can be proved similarly: 

input x lzl 

compute g(s) 1 

and replace wz 

2 by 42) 

output 2 

Fig. 3 

The halting set of A4 is 

QM = ~CO(hog”)~‘(O,~l. 

By the hypothesis both g and h are Turing computable polynomials. Therefore, the 

sequence {h o g”} is a Turing computable sequence of polynomials. Thus, there exists 

a recursive function e : N x N x N --+ N such that for all k, m, n E N, 

IX -- yl < -L- 2e(k,m,n) and X, y E [-k, k] 

imply 

Ihog’%) - hog”(y)1 < &. 
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Let (~1) be the computable sequence of rationals of R. We construct a computable 

double sequence of rationals in the following way: 

0 otherwise. 

For each (m, n) EN x N, let {~k~,~,~} be a subsequence of {r/k} such that 

Then {~kl,~~} is a quadruple computable sequence, since {h(gn(Ykl))} is a computable 

sequence of rationals and h(g”(rkj)) > l/2” can be determined effectively. Let 

1 
Sk’,mn = ,-p(k,m,n) 

and Xkl,mn = rkl,mn. 

Then 

V = I_{xE(-kk): /~--kl,,,,~l <Skl,nrnr k,Lm, and nEN} 

is a Turing RE open set. We next show that V = Q M, which will complete the proof. 

Suppose x E QM. Then there exist positive integers m and n such that h@“(x)) > l/2+‘. 

Assume x E (-k, k). Select a ?“kl from the dense sequence {Yk[} satisfying \Ykl - XI < 
1/2&m+ A s a result we have Ih(g”(rk,)) - h(g”(x))l < l/2’n. This last inequality im- 

plies that h(g”(?“kl)) > h(g”(x))- l/Zm > (l/2+‘)-( 1/2m) = 1/2m. Therefore rk[ =xkl,mn 

and xE(-k,k)n{Y:(Y-xkl,mnI<Skl.mn}C~ On the other hand, ifxEV, then xE 

(-k, k) f’ {y : ly - xk[,mnI < skl,mn} for certain k, 1, m, and n. Consequently I&“(x)) - 

‘%f(xkbm)>l < 1/2mt which in turn implies that h@“(x)) > h(gn(xk,,mn)) - l/Z”’ > 

(1/2”)-(1/2m)=0. Therefore x~hog”(O,co)cQ~. 0 

Problem 3.1. Now if a BSS RE open set is generated by the flow chart below: 

input x 

compute g(z) 

and replace 

z by g(z) 

h(x) > 0 h(x) < 0 

output 2 I4 A! 
Fig. 4. 

Is QM a Turing RE open set? 
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4. Decidable Julia sets 

First we give a brief review on the definition of the Julia set of a polynomial in 

the complex plane. The reader is referred to [5] for more details. For a polynomial g, 

we say a point zs E C is periodic (of period n) if g”(z0) =ZO for some positive inte- 

ger n. It is attracting (respectively repelling) if in addition, /(g”)‘(zo)J < I (respectively 

Ks"Y(z~)l > 1 h where W)'(ZO) is the derivative of the nth iterate of g at ZO. If -70 is 

attracting of period n, then there is a neighborhood U of zo that is attracted into itself 

under 9, that is, gn(U) c U; and so if the orbit z, g(z), g’(z), . . of a point z eventually 

enters U, it will asymptotically approach ZO. Such points are said to be in the basin 

(of attraction) of ZO. The basin of y is the union of all such basins. For a polynomial 

y with degree g > 2, the Julia set of g is the closure of the repelling periodic points 

of (4. If a Julia set J is disconnected, then it has uncountably many components. Thus 

it cannot be a BSS RE closed set, for a BSS RE set can only have countably many 

components. Moreover it has been shown in [2] that a BSS RE Julia set of a rational 

map g : C, -+ C, is either 

(a) empty; and g is a rotation, or a constant; or 

(b) a point; and g is fractional linear but not a rotation; or 

(c) a real analytic arc; or 

(d) a real analytic Jordan curve; or 

(e) the whole sphere C,. 

Thus, most Julia sets are not BSS RE over R and therefore not decidable in the 

BSS model. In contrast, we prove in this section that the Julia set of any computable 

hyperbolic polynomial is decidable in the Turing model. A polynomial is hyperbolic if 

all of its periodic points are hyperbolic, where a periodic point p of period n is hyper- 

bolic if I(P)‘(p)1 # 1. (Computable polynomials are dense in the set of polynomials 

and hyperbolic polynomials are open and nonempty in the set of polynomials of each 

degree.) A polynomial root finding algorithm proposed by Kim [S] will be used. 

Let 

P(z) = adzd +ad_~z~-’ +...+aiz +a0 

be a computable complex polynomial (i.e. all coefficients of P are computable numbers) 

of degree at least two with ad # 0. Let Pk be the kth iteration of P, then Pk is a 

polynomial of degree dk. Since P is computable, the sequence {Pk} is computable. As 

a consequence the sequence {(Pk)‘} of derivatives of Pk’s is computable as well. Since 

the algorithm proposed in [S] applies only to polynomials with coefficients satisfying 

ad = 1 and lajJ < 1 for 0 <j <d - 1, the following lemma is needed in our later work. 

Lemma 4.1. Lef 

&(I)= f(z)= ka,zj,ad= l,lajldl . 

i j=O i 
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Then, for the computable sequence (Pk) of iterates of P, there are two computable 
sequences {?$} and {&} of complex numbers such that 

F(z) = cQPQ@) E P&(l), 

and {Pk(z)} is a computable sequence of polynomials. 

Proof. Assume that 

Pk(z) = adL(k)zd’ + adi_,(k)zdi-’ + ... + al(k)z + ao(k). 

Let 

and 

ak = 
adAcik,‘l’ 

Then 

pk(z) = &Pk(&) E Pd” (1). 

It is obvious that {c(k) and {/ic} are two computable sequences of complex numbers, 

and {pk(z)} is a computable sequence of polynomials. The proof is complete. 0 

We turn now to the main theorem of this section. 

Theorem 4.1. The Julia set of a computable hyperbolic polynomial g is a Turing RE 

closed set. 

Proof. If the degree of g is at most 1, the Julia set of g is either empty or a round 

circle with computable center and radius, and is therefore a Turing RE closed set. Thus 

we can assume that the degree, d, of g is at least two. In this case, the Julia set of 

g is the same as the closure of the repelling periodic points of g. Recall that a subset 

of c, is Turing RE closed if it is the closure of a computable sequence of complex 

numbers. Therefore, it suffices to prove that the sequence of the repelling periodic 

points of y is computable. Accordingly, our plan for the proof goes as follows. We 

first show that the sequence of the periodic points of g is computable. This is Lemma A 

below. Then we prove that the set of the repelling periodic points is computable. We 

remark that Lemma A holds not only for computable hyperbolic polynomials, but for 

all computable polynomials. 

Lemma A. Ij’g is a computable polynomial, then the sequence of the periodic points 
of’ y is computable. 
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Proof. For k E N, let 

P&z) = gk(z) - z. 

Then the sequence {Pk} is a computable sequence of polynomials, and the degree of 

Pk is dk. It is obvious that the set of the periodic points of g is the same as the set of 

the roots of {Pk}. Let 

pkk(z) = ~kPk@kzh 

where @,k and /$ are defined as in Lemma 4.1. Then ,$.Z iS a root of Pk if z iS a root 

of &. Let 

be the set of the roots of &. We use {&} to denote the sequence 

Our objective is to prove that the sequence {gk} is a computable sequence. To do this 

we construct in the following a computable double sequence { xkH : n EN, 1 <k <n} 
such that for all n EN, 1 <k<n, and 1 <j<dk, 

and 

It is easy to see that the sequence { .k& : n E N, 1 <k <n} converges to {&} uniformly 

and effectively, which implies in turn that {&} IS a computable sequence of complex 

numbers. Then the sequence {/&<X_} of the periodic points of g is computable as well 

(recall that /jk 3 1 for all k EN). Now the construction. 

Construction of {x kn : n EN, 1 <k Gn}: We use the algorithm proposed in [8] to con- 

struct the sequence. For n, k E N with 1 d k 6 n, we compute 

(1) /&=(l/4dk X 2n)d 
i 
; 

(2) hk,, = 1/16(dk)3 x l/(2 + 3 log2dk + 2n log2); 

(3) &,,=4(dk)4[9(logdk)2 +4n2(log2)2 +23nlog210gdk]. 
Then begin with t = 1, 16 t < dk, we compute 

(4) Zknt = (Zkntl,. . . ,Zknt(d”)), 
where zkntj = 5dkeWt+jdk )l(d” ?. 

c5 ) Xkntj = yqi,,r,hl,, 
“” (z&j) where 

N ye,,,, hr,, (znktj) = znktJ - hkn 
gkdznktj > 

i&,t(zkntj > ’ 

g!mt(Zkntj) = pk(zkntj) - pkne2nit’d”, 

and Ni”::, , hk,, zW ( ) denotes the Sknth iteration of Nyk,,,,hk,,(Z”ktj). 
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(6) Finally, we compute Ipk(z) - n,“f=, (Z -xknl,)l, where ( Et=, aizi - cfz, b$I = cf=, 

(gi - bi/2’, and test whether 

Fk(Z) - n (z - %fnfj) < Pkn. 
j=l 

If I&(z) - rr,“=,(z - X&j)1 < &, then outputs xk,, = (&,, . . . ,X/&(&)). Otherwise 

return to the computations (4) (5) and (6) for t + 1. 

It is proved in [8] that there is at least one t with 1 <t<dk such that I&(z) - 

kn, and if the inequality is satisfied, then for all 1 <j <dk, 

In other words, for every input n, k EN with 1 <k <n, the computation halts and 

outputs Xkn=(Xlp,...,X~)=(~k~tl,...,Xknt(d”)) with Ix:,I-[y’l < l/2”. The construction 

of { xh} is thus completed. It is obvious from the construction that the sequence { xk,,} 

has the properties we asked for. The proof of the lemma is complete. q 

In Lemma B below, we prove that the set of the repelling periodic points of g is 

a computable sequence. Thus, as the closure of it, the Julia set of g is a Turing RE 

closed set. 

Lemma B. Let g be a computable hyperbolic polynomial and let 

{bk$’ : I(gk)‘(8rjk’)l > 1) (*) 

be the set of the repelling periodic points of g. Then (*) is a computable subsequence 

of @ktkh here @ktk) is the set of the periodic points of g. 

Proof. Since the sequence {gk} of the iterates of g is computable, the sequence 

{(Sk)‘} of the derivative of gk is computable. Thus, there exists a recursive function 

e:N xN+N such that for all k,nEN, 

IQ -z2l < & implies Ksk>‘h) - (sk>‘h)l < &. (**I 

Let a(k,n) = /$ +e(k,n). Since {&} is a computable sequence, a is a recursive function 

from N x N to N, and Izi -zzl < Bk/2a(k’n) would imply ]zi -zz] < 1/2e(k3”). In Lemma 

A, we have shown that the computable double sequence {/&irk” : n EN, 1 <k <n} con- 

verges uniformly and effectively to {Pk<k}, and for all neN,l<k<n, and l<j<dk, 

Combining (**) and (* * *), we have 

(* * *> 

I(CIk )‘(PkXj ka(k’n)) - (gk)‘(bk$k’)l < $ 
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which implies 

I(C7”)‘(Pk5jk’)l < I(,# )‘(hxj WA)/ + $ 

and 

I(CYk)‘(lZG;I~X))l ’ I(tJk)‘(hxj kO(kJ))l _ &. 

We now compute 

IKd )‘Wj ka(k3n))l - $ and I(#)‘(/?~x~(~~“‘)/ + &. 

If I(tIk )‘<Pkxj ka(k3n))l - l/2” > 1 for some n EN, then /&c$!’ is a repelling periodic point; 

on the other hand, if I(gk)‘(/$xj ka(k3n))l + l/2” < 1 for some n EN, then /$rjk) is an 

attracting periodic point. Since y is a hyperbolic polynomial, this determining process 

will halt on some n EN. For if it is not, we then have, for all n EN, 

IKS” )‘Wj kQ(kJ))l _ & < 1 

and 

IKsk )‘VkXj ka(k,n))l + ; 2 1, 

which would imply that lim, _ Dc, I(LJ~)‘(/$x~(~~‘) )I = I(yk)‘(ljk5jk))l = 1. This contra- 

dicts to the assumption that g is a hyperbolic polynomial. Therefore, the subsequence 

caE)“’ : IKY”mk~~9 > 1) 

is computable. The proof is complete. 0 

input z El 

compute g(z) 1 

and replace w; 

z by g(z) 

1 

[Branch1 

h(z) < 0 

output t El 

Fig. 5. 
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For a polynomial g, the set of its attracting periodic points is finite. In [2], it is 

proved that the basin of attraction of g is a BSS RE set over R (Proposition 3), 

which is the halting set QM of the following machine M (see Fig. 5) where h is 

a real polynomial (of two real variables) with the property that h(z) < 0 if and only 

if z belongs to a finite union of discs around the attracting periodic points which is 

contracted into itself by g. 

If g is a computable polynomial, then attracting points of g are computable, and the 

polynomial h can be constructed as a computable real polynomial. This implies, by 

Theorem 3.2, that the basin of g is a Turing RE open set. 

If, in addition, g is a hyperbolic polynomial, then the Julia set of g is the complement 

of the basin of attraction of g. Proposition 3 of [2] together with Theorem 3.2 imply 

that the basin of g is a Turing RE open set, while Theorem 4.1 says the Julia set of 

g is a Turing RE closed set. Accordingly the following result follows. 

Theorem 4.2. The Julia set of any computable hyperbolic polynomial is decidable in 

the Turing computing model. 
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