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Lecture 13

What we have done in Lecture 12:

• We computed graph polynomials of recursively defined families of graphs

• We introduced the notion of definability of graph polynomials.

• We made the notion of recursively defined families of graphs precise.

• We stated a general theorem.

• We sketched its proof using the
bilinear form of the Feferman-Vaught Theorem for graph polynomials.

1



Logical Methods in Combinatorics, 236605-2009/13 Lecture 13

Outline of Lecture 13

• The History of the Feferman-Vaught Theorem

• Proofs using Pebble Games

• Proofs using reduction sequences

• Tree-width of graphs

• Courcelle’s Theorem

• Generalization of the Feferman-Vaught Theorem to graph polynomials
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Vocabularies, structures and theories

A reminder

• Let τ vocabulary (or a similarity type as Tarski used to call it) given by
a set of relation symbols, but no function symbols nor constants.

• FOL(τ) denotes the set of τ-formulas in First Order Logic.

• SOL(τ) and MSOL(τ) denote the set of τ-formulas in Second Order and
Monadic Second Order Logic.

• For a class of τ-structures K ThFOL(K) is the set of
sentences of FOL(τ) true in all A ∈ K.

• We write ThFOL(A) for K = {A}.

Similarly, ThSOL(K) and ThMSOL(K) for SOL and MSOL.

4



Logical Methods in Combinatorics, 236605-2009/13 Lecture 13

A. Tarski and E.W. Beth

Tarski published four short abstracts on model theory in 1949 (Bulletin of
the AMS, vol. 55) and had sent his manuscript for

Contribution to the theory of models, I

to E.W. Beth for publication.

Inspired by these, E.W. Beth published two papers on model theory.
In one of them he showed that

Theorem 1 (Beth 1952)

Let A,B be linear orders, C = A⊔<B their ordered disjoint union.

Then ThFOL(C) is uniquely determined by ThFOL(A) and ThFOL(B).

We know how to prove this using Pebble Games.
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In Tarski’s school it was asked in early 1950

Let A,B be two τ-structures,
A × B their cartesian product and A ⊔ B their disjoint union.

Assume we are given ThFOL(A) and ThFOL(B).

What can we say about ThFOL(A × B) and ThFOL(A ⊔ B) ?

What happens in the case of infinite sums and products?

This triggered many landmark papers.

It also lead to the study of ultraproducts.
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Tarski’s pupils dealing with this question

1938 Andrzei Mostowski
A. Mostowski, On direct product theories, JSL 17 (1952), pp. 1-31

1952 Anne Morel
T.E. Frayne, A.C. Morel and D.S. Scott, Reduced direct products, Fun-
damenta Mathematicae 51 (1962), pp.195-228

1954 Robert Vaught

1957 Solomon Feferman
S. Feferman and R.L. Vaught, The first order properties of algebraic
systems, Fundamenta Mathematicae 47 (1959), pp. 57-103

1961 Jerome Keisler
Many papers exploiting ultraproducts
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Feferman and Vaught answered

but Tarski did not really appreciate it

Theorem 2 (Feferman and Vaught, 1959)
Let A and B be two τ-structures.

ThFOL(A × B) and ThFOL(A ⊔ B) are uniquely determined by

ThFOL(A) and ThFOL(B).

• For MSOL still true for A ⊔ B.
Ehrenfeucht, Läuchli, Shelah, Gurevich

• Not true for SOL

• By combining it with transductions and
interpretations true for a wide variety of generalized products.

• Also true for infinite generalized sums and products provided the index
structures are sufficiently MSOL indistinguishable.
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Ehrenfeucht’s proof Theorem 2

Use Ehrenfeucht-Fräıssé Games !

This gives actually more: Let q ∈ N and FOLq(τ) denote
the set sentences of FOL(τ) of quantifier rank at most q.
Put Th

q
FOL(A) = ThFOL(A) ∩ FOLq(τ).

Theorem 3 (Feferman and Vaught, 1959)

Th
q
FOL(A × B) and Th

q
FOL(A ⊔ B)

are uniquely determined by Th
q
FOL(A) and Th

q
FOL(B).

For MSOL still true for A ⊔ B.
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Feferman and Vaught’s proof

Use Reduction Sequences !
Here one proves by induction, say for disjoint union

Theorem 4 (Feferman and Vaught, 1959)
For every formula φ ∈ FOLq(τ)

(i) one can compute a sequence of formulas

〈ψA1 , . . . ψ
A
m, ψ

B
1 , . . . ψ

B
m〉 ∈ FOLq(τ)2m

(ii) and a boolean function Bφ : {0,1}2m → {0,1} such that

A ⊔ B |= φ

iff

Bφ(b
A
1 , . . . b

A
m, b

B
1 , . . . b

B
m) = 1

where bAj = 1 iff A |= ψAj and bBj = 1 iff B |= ψBj

Similarly for MSOL
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Proof of Theorem 4, I

We exemplify the construction of such a reduction sequence in the case of
ordered graphs G = 〈V,E,<〉 with V the set of vertices, E a binary, not
necessarily symmetric, edge relation and < a linear ordering of the vertices.

We are given

G1 = 〈V1, E1, <1〉 and G2 = 〈V2, E2, <2〉

and their ordered sum

G = G1 ⊕< G2

with V = V1 ⊔ V2, E = E1 ⊔ E2 and the order is defined by

<=<1 ⊔ <2 ⊔(V1 × V2)

We construct reduction sequences and boolean functions by induction.

As we have free variables in the inductive construction, we assume that

z : V ariables→ V = V1 ⊔ V2

is an assignment of the variables.
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Proof of Theorem 4, II

There are three types of atomic formulas:

E(u, v)

u < v

≈ v

Using the defintion of ordered sum we get

For E(u, v)
Reduction sequence: 〈E1(u, v), E2(u, v)〉
Boolean function: b11 ∨ b21.

Here only the cases where z(u) and z(v) are both in V1 or both in V2 are
relevant.
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Proof of Theorem 4, III

Recall that the upper index in b
j
i refers to the structure in which we check

and the lower index to the reduction formula.

For u ≈ v
Reduction sequence: 〈u ≈1 v, u ≈2 v〉
Boolean function: b11 ∨ b21.

Again, only the cases where z(u) and z(v) are both in V1 or both in V2

are relevant.

For u < v
Reduction sequence: 〈u <1 v, u ≈1 u, u <2 v, v ≈2 v〉.
Boolean function: b11 ∨ b21 ∨ (b12 ∧ b22).

Here, the relevant cases are z(u) and z(v) are both in V1 or both in V2,
or z(u) is in V1 and z(v) is in V2.
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Proof of Theorem 4, IV

Let

Φ = 〈φA1 , . . . φ
A
m, φ

B
1 , . . . φ

B
m〉

and

Ψ = 〈ψA1 , . . . ψ
A
n , ψ

B
1 , . . . ψ

B
n 〉

be reduction sequences for φ and ψ and Bφ(̄b) and Bψ(b̄′) the corresponding
boolean functions with disjoint variables.

(φ ∧ ψ)
Reduction sequence: 〈Φ,Ψ〉.
Boolean function: Bφ(̄b) ∧Bψ(b̄′).

¬φ
reduction sequences: Φ.
Boolean function: ¬Bφ(̄b).

Each application of a propositional connectives results in linear growth of the
reduction sequence. The case of quantifcation is considerably more compli-
cated.
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Proof of Theorem 4, V

Let B1 be the disjunctive normal form of Bφ(̄b) with B1 =
∨

j∈J
Cj with

Cj =

(

∧

i∈J(i,A,pos)

bAi ∧
∧

i∈J(i,A,neg)

¬bAi ∧
∧

i∈J(i,B,pos)

bBi ∧
∧

i∈J(i,B,neg)

¬bBi

)

Now let

θAj = ∃x

(

∧

i∈J(i,A,pos)

φAi (x) ∧
∧

i∈J(i,A,neg)

¬φAi (x)

)

and θBj = ∃y

(

∧

i∈J(i,B,pos)

φAi (y) ∧
∧

i∈J(i,B,neg)

¬φAi (y)

)

Finally we put

B∃(c̄) =
∨

j∈J

(cAj ∨ cBj )

where cAj = 1 iff A |= θAj and cBj = 1 iff B |= θBj .

With this notation, and m(J) =| J |, it is easy to verify that for

∃xφ
Reduction sequence: 〈θA1 , . . . θ

A
m(J)

, θB1 , . . . θ
B
m(J)

〉.

Boolean function: B∃(c̄).
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Proof of Theorem 4, VII

For MSOL the proof is similar. Again, we need that every X ⊆ V has a unique
decomposition X = X1 ⊔X2 with Xi ⊆ Vi.

The additional clauses in the induction are:

u ∈ X
Reduction sequence: 〈u ∈ X1, u ∈ X2〉.
Boolean function: b11,∨b

1
2.
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Proof of Theorem 4, VIII

∃Xφ
With the same notation is in the case of first order existential quantifi-
cation we first put

θAj = ∃X1





∧

i∈J(i,A,pos)

φAi (X1) ∧
∧

i∈J(i,A,neg)

¬φAi (X1)





and

θBj = ∃X2





∧

i∈J(i,B,pos)

φAi (X2) ∧
∧

i∈J(i,B,neg)

¬φAi (X2)





and we get:
Reduction sequence:

〈θA1 , . . . θ
A
m(J)

, θB1 , . . . θ
B
m(J)

〉.

Boolean function: B∃(c̄).

Q.E.D.
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Proof of Theorem 4, Comments

• The quantification step can be simultaneously performed for a

block of existential quantifiers.

• Hence, if we have a formula φ in prenex normal form, the time complexity
of computing the reduction sequence, and its length, is an

iterated exponential of the number of quantifier alternations,

rather than of the quantifier rank.
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Research problems

• Find, if possible, a

better algorithms

for computing the reduction sequences of quantified formulas, which
avoids the computation of the disjunctive normal forms.

• Find

sharp upper and lower bounds

for the complexity of computing the reduction sequences.

There was some progress in these questions.

Papers by J. Flum, M. Grohe, S. Kreutzer and more.
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Beyond disjoint unions and ordered sums:

Operations on coloured, (un)-directed graphs.

We look at possibly coloured, (un)-directed graphs.

Instead for the disjoint union we can prove Theorem 3 and 4 for the following
operations:

• Concatenation of words, v ◦ w.

• Joining two trees at a new common root, T1 • T2.

• H-sums of graphs:

For i = 1,2, let Gi = 〈V (Gi), E(Gi)〉
and V (G1)∩V (G2) = V (H) and E(H) = E(G1)∩V (H)2 = E(G2)∩V (H)2.

Then G = G1 ⊕H G2 is given by V (G) = V (G1) ∪ V (G2) and E(G) =
E(G1) ∪ E(G2).

and similarly for edge and vertex coloured graphs
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MSOL-smooth operations

We generalize the previous operations
to operations satisfying Theorem 3 or 4:

Definition 5
(i) A n-ary operation O on τ-structures is MSOL-smooth if

for every q ∈ N and every A1,A2, . . . ,An

Th
q
MSOL (O(A1, . . . ,An))

depends only on Th
q
MSOL(Ai) for 1 ≤ i ≤ n.

Note: Same q in condition and conclusion!

(ii) O is effectively MSOL-smooth if there is an algorithm which computes
for every φ ∈ MSOL(τ) a reduction sequence, i.e. a sequence of for-
mulas as described in theorem C.
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Examples of MSOL-smooth operations

• The disjoint union is effectively MSOL-smooth.

• Quantifier free MSOL-transductions are effectively MSOL-smooth.
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The Fuse operation, I

Let A be a τ-structure with universe A. We denote the interpretations of the
symbols in τ by PA

1 , . . . , P
A
m, R

A
1 , . . . , R

A
n respectively.

Definition 6
Let ρ be the maximal arity of the relation symbols in τ , and A be a τ-structure.

Assume PA
i 6= ∅. The structure Fusei(A) = B is defined as follows

(i) B = (A− PA
i ) ∪ {pi} where pi is an element not in A.

(ii) PB
i = {pi}

(iii) For j 6= i PB
j = (PA

j ∩B) ∪ {pi} if PA
i ∩ PA

j 6= ∅.

Otherwise, PB
j = PA

j ∩B = PA
j .

(iv) For binary relation symbols Rj,
RB
j = (RA

j ∩ B2) ∪ {(b, pi) : b ∈ B ∧ ∃x ∈ PA
i with (b, x) ∈ RA

j }

∪{(pi, b) : b ∈ B ∧ ∃x ∈ PA
i with (x, b) ∈ RA

j }

∪{(pi, b) : b ∈ B ∧ ∃x ∈ PA
i with (x, b) ∈ RA

j }
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The Fuse operation, II

Definition 6 continued:

For relations of arity ≥ 3 we have:

(iv) For r-ary relation symbols Rj,
RB
j = (RA

j ∩ Br) ∪
⋃

I⊆{1,...,r}
XI, where

XI = {vecI (̄b, p̄i) : b̄ ∈ Br−|I| ∧ ∃x̄ ∈ (PA
i )|I| with vecI (̄b, x̄) ∈ RA

j }.

Here vecI(c̄, d̄) ∈ Cr is the shuffling of c̄ ∈ Cr−|I| and d̄ ∈ C |I|, without changing the order
of the coordinates of c̄ respectively d̄.

If PA
i = ∅, Fusei(A) = A.

We note that this definition is of the form Φ⋆
Fusei

for a many-sorted translation
scheme of quantifier rank ρ− 1. Hence we have

Proposition 7
ThmMSOL(FusePi(A)) depends only on Th

m+ρ−1
MSOL (A).

Furthermore, θ ∈ ThmMSOL(FusePi(A)) can be computed by checking whether

Φ♯
Fusei

(θ) ∈ Th
m+ρ−1
MSOL (A).
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The Fuse operation, III

It is a somewhat surprising fact that Proposition 7 can be improved if we
have only unary and binary relation symbols.

Proposition 8
Assume τ contains only unary and binary relation symbols.

Then for every τ-structure A the theory ThmMSOL(FusePi(A)) depends only on
the theory ThmMSOL(A).
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Proof of Proposition 8

Assume we have a winning strategy W of the Ehrenfeucht-Fräıssé games for Thm
MSOL

(A) for
m moves.

We define a winning strategy W ′ for Thm
MSOL

(FusePi(A)). Assume k moves for W ′ have been
defined.

(i) Assume pi, respectively p′i was not yet chosen. If in the move (k+ 1) player I chooses

an element, say a ∈ A − PA
i , player II answers with the same element as prescribed by

W for move (k+ 1).

(ii) If I chooses pi or p′i then II replies always with p′i respectively pi, independently of the
previous choices.

(iii) Assume pi, respectively p′i was already chosen in a previous move and now it is move

(k+ 1). If in the move (k+ 1) player I chooses an element, say a ∈ A − PA
i , player II

answers with the same element as prescribed by W for move k, disregarding the choice
of pi and p′i.

(iv) For set moves U ⊆ A− PA
i we again use W .

(v) For set moves U containing pi, respectively p′i we split accordingly.
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Proof of Proposition 8, continued

We have to show that W ′ is indeed a winning strategy.

• W.l.o.g. we can assume that pi and p′i were chosen only once and in fact
in the last move.

This is so, as W ′ is not affected by the choice of pi and p′i.

• The only way, W ′ could not be a partial isomorphism is that for some
Rj, ak, a

′
k chosen in move k we have (ak, pi) ∈ RA

j but (a′k, p
′
i) 6∈ RA

j

′
.

But then we can show that W is not a winning strategy by chosing as the last move
some am such that (ak, am) ∈ RA

j for which II has no reply, as no such a′m exists.

Q.E.D
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MSOL-inductive classes

(graph grammars)

Definition 9
(i) A class K of τ-structures is MSOL-inductiv if it is defined inductively

using a finite set of MSOL-smooth operations.

(ii) K is effectively MSOL-inductiv if it is defined inductively using a finite
set of effectively MSOL-smooth operations.
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Effectively MSOL-inductive classes of structures

Examples

• Words Σ⋆ are defined inductively by
(i) the empty word is a word
(ii) one letter words are words
(iii) words are closed under concatenation

• Coloured trees (forests) are defined
similary:
(i) one leave trees are trees
(ii) trees are closed under root joining
(iii) forests are closed under disjoint unions

• Series-parallel (SP) graphs are defined by
(i) one edge graphs are SP.
(ii) SP graphs are closed under disjoint unions
(iii) SP graphs are closed under H-sums for

all H with at most two vertices.
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More effectively MSOL-inductive classes

• Graphs of tree width at most k TWk can be defined inductively by
looking at vertex coloured graphs with at most k+ 1 colours:
(i) All graphs with at most k+ 1 vertices are in TWk.
(ii) TWk is closed under disjoint union.
(iii) TWk is closed under renaming of colours.
(iv) TWk is closed under fusion, i.e. contraction of

all vertices of a specific colour into one vertex.

• Similarly, for graphs of clique width at most k CWk

(i) All graphs with at most 1 vertex are in CWk.
(ii) CWk is closed under disjoint union.
(iii) CWk is closed under renaming of colours.
(iv) CWk is closed under adding all possible edges

between to sets of differently coloured edes.
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Open problem:

• Are there more examples of MSOL-smooth operations?

• Are there MSOL-smooth operations which are not effectively MSOL-
smooth ?

• Are there MSOL-inductive classes K which are not effectively MSOL-
inductive ?
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Decidable theories, I

The following were shown to be decidable by Büchi and Rabin respectively:

• The MSOL theory of words

• The MSOL theory of trees

We can use theorem C to show that the
following MSOL theories are decidable.

• The MSOL-theory SP-graphs

• The MSOL-theory graphs of bounded tree width
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Decidable theories, II

We can generalize this to

Theorem 10 (Courcelle and Makowsky, 2001)
Let K be MSOL-inductiv using disjoint unions, fusions and quantifier free
MSOL-transductions.
Then ThMSOL(K) is decidable.

Proof idea:

One shows that an MSOL-inductive class K is always an MSOL-transduction
of a class of trees.

Then one applies Rabin’s theorem for trees.

Seese 1991 showed it for K of bounded tree width.
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Model checking, I

Model checking is the problem to check

A |= φ

for A a finite τ structure and φ ∈ SOL(τ).

We measure the problem in the size of A and φ (combined case) or for specific
φ.

Theorem 11 (M. and Pnueli, 1996)
Even for MSOL there are φ such that the problem is arbitrarily high in the
polynomial hierarchy.

Theorem 12 (Vardi, 1982)
The combined problem is PSpace-complete even for FOL.
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Model checking, II

We want to do model checking on MSOL-inductive classes K.

We can represent the structure A by its relational table

or by a parse term tA which displays why it is in K.

In general, finding tA is NP-hard.

Theorem 13 (Courcelle and Makowsky, 2001)
Let K be an MSOL-inductive class of τ-structures and φ ∈ MSOL(τ).

Given a parse term tA for A, then the problem of deciding

A |= φ

can be decided in linear time (in the size of tA).
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Proof of Theorem 13

MSOLq(τ) is finite for every finite relational τ .

If all the operations are effectively MSOL-smooth, there is an algorithm which
computes for every φ the look-up table (using Theorem 4).

Otherwise, we don’t have such an algorithm, but still for each φ the look-up
table for complete MSOLq(τ)-types is finite (using Theorem 3).

Now we can compute along tA, in the style of dynamic programming.
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