Lecture 12

What we did in Lecture 11

- We studied the distinctive power of graph polynomials and graph parameters
- We studied examples
- We introduced a comparison of graph polynomials via their coefficients
- We showed the equivalence of the two notions of comparability
- We studied more examples

Out line of Lecture 12

- Some computations of graph polynomials
- Discovering linear recurrence relations
- Recursively defined families of graphs
- MSOL-definable graph polynomials
- A general theorem about linear recurrence relations for recursively defined families of graphs and MSOL-definable graph polynomials

Main theme

We deal with a purely graph theoretical problem:
Given a regularly constructed indexed family of graphs G_{n} such as
the paths P_{n}, the circles C_{n}, the wheels W_{n}, the cliques K_{n}, the grids $G_{r i d}^{m, n} 1$
and a graph polynomial P, such as
the matching, Tutte, clique, cover polynomial
compute all the values $P\left(G_{n}\right)$.
Often we have a (linear) recurrence relation, i.e. there is $q \in \mathbb{N}$,
and polynomials $p_{1}, \ldots, p_{q} \in \mathbb{Z}[\bar{X}]$ such that for sufficiently large n

$$
P\left(G_{n+q+1}\right)=\sum_{i=1}^{q} p_{i} \cdot P\left(G_{n+i}\right)
$$

When is this the case?

We shall see that methods from LOGIC help clarifying the situation.

Case study: The chromatic polynomial

For a graph G, the chromatic polynomial $\chi(G, \lambda) \in \mathbb{Z}[\lambda]$ is the polynomial such that for $t \in \mathbb{N}$
the value of $\chi(G, t)$ is the number of t-vertex colorings of G.
Let P_{n} be the path and K_{n} the complete graph on n vertices,
We compute $\chi\left(P_{n}, \lambda\right)$ and $\chi\left(K_{n}, \lambda\right)$.

- $\chi\left(P_{1}, \lambda\right)=\lambda$ and $\chi\left(P_{2}, \lambda\right)=\lambda \cdot(\lambda-1)$.
- $\chi\left(P_{n+1}, \lambda\right)=\chi\left(P_{n}, \lambda\right) \cdot(\lambda-1)$.
- $\chi\left(K_{n+1}, \lambda\right)=\lambda \cdot(\lambda-1) \ldots(\lambda-n)=(\lambda-n) \chi\left(K_{n}-1\right)$

For P_{n} we have a linear recurrence relation independently of n, for K_{n} the recurrence depends on n. Can we find one not depending on n ?

Homework

Compute the chromatic polynomial for the following families of graphs:

- The circles C_{n};
- The wheels W_{n};
- The ladders L_{n};
- The grids Grid $_{n, m}$.

Case study: The clique and independent set polynomial

For a graph G, the clique polynomial $\operatorname{cl}(G, X) \in \mathbb{Z}[X]$ is defined by

$$
c l(G, X)=\sum c l_{k}(G) \cdot X^{k}
$$

where $c l_{k}(G)$ is the number of k-cliques of G.
We compute $\operatorname{cl}\left(P_{n}, \lambda\right)$ and $\operatorname{cl}\left(K_{n}, \lambda\right)$:
$c l\left(P_{n+1}\right)(X)=(1+X)+\operatorname{cl}\left(P_{n}\right)(X)$,
$c l\left(K_{n+1}\right)(X)=\sum_{k}^{n+1}\binom{n}{k} X^{k}=(X+1)^{n+1}=(X+1) \cdot c l\left(K_{n}\right)(X)$
The independent set polynomial $\operatorname{in}(G, X) \in \mathbb{Z}[X]$ is defined by

$$
i n(G, X)=\sum i n_{k}(G) \cdot X^{k}
$$

where $i n_{k}(G)$ is the number of independent sets of G of size k.
Homework: Compute the linear recurrences for $\operatorname{in}\left(P_{n}\right)(X)$ and $i n\left(K_{n}\right)(X)$.

Case Study: The matching polynomial, I

For a graph G, the matching polynomial $\mu(G, X) \in \mathbb{Z}[X]$ is defined by

$$
\mu(G, X)=\sum m_{k}(G) \cdot X^{k}
$$

where $m_{k}(G)$ is the number of k-matchings of G.
We compute $\mu\left(P_{n}, X\right)$:
We use auxiliary polynomials

$$
\mu^{+}\left(P_{n}, X\right)=\sum m_{k}^{+}\left(P_{n}\right) \cdot X^{k}
$$

and

$$
\mu^{-}\left(P_{n}, X\right)=\sum m_{k}^{-}\left(P_{n}\right) \cdot X^{k}
$$

where $m_{k}^{+}\left(P_{n}\right)$ and $m_{k}^{-}\left(P_{n}\right)$ is the number of k-matchings of P_{n} which includes, respectively excludes the last vertex.
Clearly we have $m_{k}\left(P_{n}\right)=m_{k}^{+}\left(P_{n}\right)+m_{k}^{-}\left(P_{n}\right)$ hence

$$
\mu\left(P_{n}, X\right)=\mu^{+}\left(P_{n}, X\right)+\mu^{-}\left(P_{n}, X\right)
$$

Case study: The matching polynomial, II

It is easy to see that

$$
\begin{gathered}
\mu^{-}\left(P_{n+1}\right)=\mu^{-}\left(P_{n}\right)+\mu^{+}\left(P_{n}\right) \\
\mu^{+}\left(P_{n+1}\right)=X \cdot \mu^{-}\left(P_{n}\right)
\end{gathered}
$$

For $\bar{\mu}_{n}=\left(\mu^{-}\left(P_{n}\right), \mu^{+}\left(P_{n}\right)\right)^{t}$ we get

$$
A \bar{\mu}_{n}=\bar{\mu}_{n+1}
$$

with

$$
a_{1,1}=1, a_{1,2}=1, a_{2,1}=X, a_{2,2}=0
$$

The characteristic polynomial of A is

$$
\operatorname{det}(\lambda \mathbf{1}-A)=\lambda^{2}-\lambda-X
$$

so we get the linear recurrence relation (independent of n)

$$
\mu\left(P_{n+2}\right)=\mu\left(P_{n+1}\right)+X \cdot \mu\left(P_{n}\right)
$$

Case study: The vertex-cover polynomial

For a graph G, the vertex-cover polynomial $v c(G, X) \in \mathbb{Z}[X]$ is defined by

$$
v c(G, X)=\sum v c_{k}(G) \cdot X^{k}
$$

where $v c_{k}(G)$ is the number of k-vertex-covers of G.

- $v c\left(P_{n+1}, X\right)=X \cdot v c\left(P_{n}, X\right)+X \cdot v c\left(P_{n-1}, X\right)$
- $v c\left(C_{n+1}, X\right)=X \cdot v c\left(C_{n}, X\right)+X^{2} \cdot v c\left(C_{n-2}, X\right)$
- Let L_{n} be the graph which consists of n isolated loops.
$v c\left(L_{n+1}, X\right)=X \cdot v c\left(L_{n}, X\right)=X^{n}$
- For the wheel graph W_{n} we have
$v c\left(W_{n+1}, X\right)=X \cdot v c\left(W_{n}, X\right)+X^{n}=X \cdot v c\left(W_{n}, X\right)+X \cdot v c\left(L_{n}, X\right)$ hence, using the characteristic polynomial of the matrix, $A=\left(a_{i, j}\right)$ with $a_{1,1}=a_{1,2}=a_{2,2}=X$ and $a_{2,1}=0$ $v c\left(W_{n+1}, X\right)=2 X \cdot v c\left(W_{n}, X\right)-X^{2} \cdot v c\left(W_{n-1}, X\right)$
F.M. Dong, M.D. Hendy, K.L. Teo and C.H.C. Little, The vertex-cover polynomial of a graph, Discrete Mathematics 250 (2002), 71-78

P-recursive families of graphs, I

Definition 1 Let P be a graph polynomial and $\mathcal{G}=\left\{G_{n}: n \in \mathbb{N}\right\}$ be a family of graphs. \mathcal{G} is said to be P-recursive if there is $q \in \mathbb{N}$, and polynomials $p_{1}, \ldots, p_{q} \in \mathbb{Z}[\bar{X}]$ such that for sufficiently large n

$$
P\left(G_{n+q+1}\right)=\sum_{i=1}^{q} p_{i} \cdot P\left(G_{n+i}\right)
$$

Let P_{n} be the path on n vertices. We get, for sufficiently large n,

- for the chromatic polynomials: $c\left(P_{n+1}\right)(\lambda)=c\left(P_{n}, \lambda\right)(\lambda) \cdot(\lambda-1)$.
- for the clique polynomials:
$c l\left(P_{n+1}\right)(X)=(1+X)+c l\left(P_{n}\right)(X)$,
$c l\left(K_{n+1}\right)(X)=\sum_{k}^{n+1}\binom{n}{k} X^{k}=(X+1)^{n+1}=(X+1) \cdot c l\left(K_{n}\right)(X)$
- for the matching polynomials: $\mu\left(P_{n+1}\right)(X)=X \cdot \mu\left(P_{n-1}\right)(X)+\mu\left(P_{n}\right)(X)$,
- for the Tutte polynomials: $T\left(P_{n+1}\right)(X, Y)=Y \cdot T\left(P_{n}\right)(X, Y)$.
- for the vertex-cover polynomials: $v c\left(P_{n+1}, X\right)=X \cdot v c\left(P_{n}, X\right)+X \cdot v c\left(P_{n-1}, X\right)$

P-recursive families of graphs, II

The characteristic series $\sigma_{P}(\mathcal{G})$ of \mathcal{G} is defined as

$$
\sigma_{P}(\mathcal{G})=\sum_{i=1} P\left(G_{i}\right) Z^{i}
$$

Proposition 2 (Folklore) \mathcal{G} is P-recursive iff the characteristic series

$$
\sigma_{P}(\mathcal{G})
$$

is a rational function in \bar{X} and Z.

> T-recursive families, I
> N.L. Biggs, R.M. Damerell and D.A. Sands, 1972

In 1972 N.L. Biggs, R.M. Damerell and D.A. Sands introduced recursive families of graphs.

These are our T-recursive families of graphs where T is the Tutte polynomial.
They show that several families of graphs are recursive (in their sense). Among them there are:
cycles, ladders and wheels
All these families have in common that they can be constructed from an initial graph by the repeated application of a fixed graph operation

[^0]T-recursive families, II
M. Noy and A. Ribó, 2004

In 2004 M. Noy and A. Ribó study which graph families G_{n}, constructed from an initial graph G_{0}, by the repeated application of a fixed graph operation $F(G)$, are T-recursive families of graphs.

They introduce a notion of

recursively constructible families of graphs,

and show that every such family is T-recursive.
Their notion is reminiscent of certain graph grammars.
M. Noy and A. Ribó, Recursively constructible families of graphs, Advances in Applied Mathematics 32 (2004) 350-363.

Using Logic

We use the finite model theory of Monadic Second Order Logic (MSOL) to extend these results in several ways:

- We prove that for every P from a wide class of graph polynomials, the MSOL-definable graph polynomials, every recursively constructible family G_{n} is P-recursive.
- We extend the result to the class of iteration families of graphs which is proper extension of the class of recursively constructible families.
- We extend the result to signed graphs and knot diagrams and to various knot polynomials.
- We extend the result to hypergraphs and relational structures.

Iteration families, I

In the absence of the formalisms of graph grammars Noy and Ribó give an adhoc definition of

> repeated fixed succession of elementary operations
which can be applied to a graph with a context, i.e. a labeled graph.
Definition 3 Let F denote such an operation.
Given a graph (with context) G, we put

$$
G_{0}=G, G_{n+1}=F\left(G_{n}\right)
$$

Then the family

$$
\mathcal{G}=\left\{G_{n}: n \in \mathbb{N}\right\}
$$

is called recursively constructible using F, or an F-iteration family.

Iteration families, II

Given a graph polynomial P,
the question now is to find
a characterization of those operations F,
for which a linear recurrence for the polynomials $P\left(G_{n}\right)$ holds.
M. Noy and A. Ribó give only a suffient condition for the case of the Tutte polynomial.

General strategy

We proceed as outlined in the case of the matching and the vertex-cover polynomial.

To compute $P\left(G_{n+1}\right)$, we try to find,
depending on P and, possibly, on G_{0}, but independently of n

- an $m \in \mathbb{N}$,
- auxiliary polynomials $P_{i}\left(G_{n+1}\right), i \leq m$,
- and a matrix $A=\left(a_{i, j}\right) \in \mathbb{Z}[\bar{X}]^{m \times m}$
such that

$$
P_{j}\left(G_{n+1}\right)(\bar{X})=\sum_{i} a_{i, j}(\bar{X}) \cdot P_{i}\left(G_{n}\right)(\bar{X})
$$

Then we use the characteristic polynomial of the matrix A
to convert this into a linear recurrence relation.

Where logic enters for the graph polynomial P ?

Definition 4 A polynomial P of the form

$$
P(G)=\sum_{\left(V, E^{\prime}\right) \in K_{1}}\left(\prod_{E^{\prime} \subseteq E} t(\bar{X})\right)
$$

or

$$
P(G)=\sum_{\left(V^{\prime}, E \mid V^{\prime}\right) \in K_{2}}\left(\prod_{V^{\prime} \subseteq V} t(\bar{X})\right)
$$

where $t(\bar{X})$ is a fixed term in the indeterminates \bar{X} and K_{1} or K_{2} are definable in Monadic Second Order Logic (MSOL) is called an

MSOL-definable graph polynomials.

There are more general versions of this definition, but here this suffices.

MSOL-definable polynomials, I

The clique and independent set polynomials are of the form

$$
P(G)=\sum_{\left(V^{\prime}, E \mid V^{\prime}\right) \in K_{2}}\left(\prod_{V^{\prime} \subseteq V} X\right)
$$

because saying that the induced subgraph $G\left[V^{\prime}\right]$ is a clique or an independent set is $M S O L$-definable.

Rearranging the terms we get

$$
c l(G)=\sum_{\left(V^{\prime}, E \mid V^{\prime}\right) \in C l i q u e}\left(\prod_{V^{\prime} \subseteq V} X\right)=\sum_{k} c l_{k}(G) \cdot X^{k}
$$

and

$$
\operatorname{in}(G)=\sum_{\left(V^{\prime}, E \mid V^{\prime}\right) \in \text { Indep }}\left(\prod_{V^{\prime} \subseteq V} X\right)=\sum_{k} i n_{k}(G) \cdot X^{k}
$$

Note: The second order variable for V^{\prime} is needed.

MSOL-definable polynomials, II

The vertex-cover polynomials are of the form

$$
P(G)=\sum_{\left(V, E, V^{\prime} \in K_{2}\right.}\left(\prod_{V^{\prime} \subseteq V} X\right)
$$

because saying that V^{\prime} is a vertex-cover of (V, E) is $M S O L$-definable.
Rearranging the terms we get

$$
v c(G)=\sum_{\left(V, E, V^{\prime}\right) \in V C}\left(\prod_{V^{\prime} \subseteq V} X\right)=\sum_{k} v c_{k}(G) \cdot X^{k}
$$

Note: The second order variable for V^{\prime} is again needed.

MSOL-definable polynomials, III

The generating matching polynomials are of the form

$$
g m(G)=\sum_{\left(V, E^{\prime} \in M\right. \text { atching }}\left(\prod_{E^{\prime} \subseteq E} X\right)
$$

However, being a matching is

- NOT MSOL-definable if graphs are represented as $G=(V, E)$.
- but IS $M S O L$-definable, if the graph is represented by its incidence graph $I(G)=(V \cup E, R)$.

For the Tutte polynomial, we have to add a linear order on the edges, to make it MSOL-definable, and note, that the Tutte polynomial is then indepent of the order on the edges.

Where logic enters for the operation F ?

Ehrenfeucht games again

Let \mathfrak{A} and \mathfrak{B} be two τ-structures.
Recall: We write $\mathfrak{A} \equiv{ }_{q}^{M S O L} \mathfrak{B}$, if \mathfrak{A} and \mathfrak{B} cannot be distinguished by $\operatorname{MSOL}(\tau)$-formulas of quantifier rank q.

Definition 5

An operation F on τ-structures is $M S O L$-smooth
if whenever $\mathfrak{A} \equiv{ }_{q}^{M S O L} \mathfrak{B}$, then also $F(\mathfrak{A}) \equiv_{q}^{M S O L} F(\mathfrak{B})$.

The operation F should be $M S O L$-smooth for the presentation of the graphs, for which the polynomial is $M S O L$-definable.

MSOL-smooth operations: Examples

Here graphs are of the form $G=(V(G), E(G))$.
Let $H=(V(H), E(H))$ be a fixed graph.

- The operation $D_{H}(G)=G \sqcup H$ is MSOL-smooth.
- The operation $J_{H}(G)=G \bowtie H$ is MSOL-smooth.
- The cliques K_{n} are an iteration family for the operation $J_{K_{1}}(G)$ with $G_{0}=K_{1}$.
- For forming the cliques K_{n} we need the operation of adding a vertex connected to all previous vertices.
$J_{K_{1}}(G)$ is MSOL-smooth for $G=(V(G), E(G))$ but not for $I(G)=(V(G) \cup E(G), R(G))$.

k-structures

Recall: A vocabulary τ is a set of relation symbols.
A τ-structure \mathfrak{A} is an interpretation of the vocabulary τ over a non-empty universe A.

Definition 6 For $k \in \mathbb{N}$, a k - τ-structure is a τ-structure with k additional unary relations $C_{1}^{A}, \ldots C_{k}^{A}$, called colors.

We denote by τ_{k} the vocabulary $\tau \cup\left\{C_{1}, \ldots, C_{k}\right\}$.

Basic operations on k - τ-structures, I

Definition 7 (Adding a new colored element)

For $i \leq k$, the operation $\operatorname{Add}_{C_{i}}(\mathfrak{A})$ adds a new element to A of color C_{i}.
More precisely, let $b \notin A$ and $\mathfrak{B}=<\{b\}, C_{i}^{B}=\{b\}>$.
Then $\operatorname{Add}_{C_{\mathfrak{i}}}(\mathfrak{A})=\mathfrak{A} \sqcup \mathfrak{B}$
Proposition 8 Add $d_{C_{i}}(\mathfrak{A})$ is MSOL-smooth.

Basic operations on k - τ-structures, II

Definition 9 (Recoloring)

For $i, j \leq k$, the operation $\rho_{i, j}(\mathfrak{A})$ recolors all elements of A of color i with color j.

More precisely, if the colors in \mathfrak{A} are $C_{1}^{A}, \ldots, C_{k}^{A}$ then $\rho_{i, j}(\mathfrak{A})=\mathfrak{B}$ has colors new colors $C_{i}^{B}=\emptyset$ and $C_{j}^{B}=C_{i}^{A} \cup C_{j}^{A}$ and all other colors and relations remain unchanged.

Proposition $10 \rho_{i, j}(\mathfrak{A})$ is MSOL-smooth.

Basic operations on k - τ-structures, III

Definition 11 (Adding tuples to relations)

The operation $\eta_{R, i_{1}, \ldots, i_{m}}(\mathfrak{A})$ is defined as follows:
For $R \in \tau$ an m-ary relation symbol and for each $a_{1} \in C_{i_{1}}^{A}, \ldots, a_{m} \in C_{i_{m}}^{A}$ we add the tuple $\left(a_{1}, \ldots, a_{m}\right)$ to R^{A}.

Proposition $12 \eta_{i, j}(\mathfrak{A})$ is MSOL-smooth.

Basic operations on k - τ-structures, IV

Definition 13 (Deleting tuples from relations)

The operation $\delta_{R, i_{1}, \ldots, i_{m}}(\mathfrak{A})$ is defined as follows:
For $R \in \tau$ an m-ary relation symbol
and for each $a_{1} \in C_{i_{1}}^{A}, \ldots, a_{m} \in C_{i_{m}}^{A}$ we remove the tuple $\left(a_{1}, \ldots, a_{m}\right)$ from R^{A}.

Proposition $14 \delta_{i, j}(\mathfrak{A})$ is MSOL-smooth.

Basic operations on k - τ-structures, V

Definition 15 (Quantifierfree transductions)

For each $R \in \tau_{k}$ of arity $\alpha(R)$ let $\phi_{R}\left(x_{1}, \ldots, x_{\alpha(R)}\right)$ be a quantifierfree τ_{k}-formula with free first order variables as indicated.

Let $\Phi=<\phi_{R}\left(x_{1}, \ldots, x_{\alpha(R)}\right): R \in \tau_{k}>$.
The quantifier free transduction $\Phi^{\star}(\mathfrak{A})$ redefines all the predicates R^{A} in \mathfrak{A} by ϕ_{R}^{A}.

Exercise:
All of the previous operations are special cases of Quantifierfree transductions.
Proposition 16 Quantifier free transductions are MSOL-smooth.

MSOL-elementary and MSOL-smooth operations

Definition 17 An operation F on τ_{k}-structures is $M S O L$-elementary if F is a finite composition of basic operations on τ_{k}-structures.

Proposition 18 Let F be $M S O L$-elementary and \mathfrak{A} and \mathfrak{B} two τ_{k} structures with $\mathfrak{A} \equiv{ }_{q}^{M S O L} \mathfrak{B}$, then $F(\mathfrak{A}) \equiv_{q}^{M S O L} F(\mathfrak{B})$, hence, F is a MSOL-smooth.

Proposition 19 Let F be $M S O L$-elementary and \mathcal{G} be an F-iteration family. Then \mathcal{G} is of bounded clique-width.

Corollary 20 The families $I\left(K_{n}\right)$, Grid $d_{n, n}$ are not of bounded clique-width. Hence they are not F-iteration families for any F which is MSOL-elementary.

The Recurrence Theorem

E. Fischer and M. (2008)

Theorem 21 Let

- F be an MSOL-smooth operation on τ_{k}-structures.
- P be a τ-polynomial which is $\operatorname{MSOL}(\tau)$-definable.
- $\mathcal{A}=\left\{A_{n}: n \in \mathbb{N}\right\}$ be an F-iteration family of τ-structures.

Then \mathcal{A} is P-recursive, i.e. there is $q \in \mathbb{N}$, and polynomials $p_{1}, \ldots, p_{q} \in \mathbb{Z}[\bar{X}]$ such that for sufficiently large n

$$
P\left(G_{n+q+1}\right)=\sum_{i=1}^{q} p_{i} \cdot P\left(G_{n+i}\right)
$$

Proof ingredients

- For fixed q and a fixed number of free variables, there are, up to logical equivalence, only finitely many $M S O L(\tau)$-formulas of quantifier rank q.
Let $\bar{P}=\left(\bar{P}_{1}, \ldots \bar{P}_{\alpha}\right)$ be the vector of all $\operatorname{MSOL}(\tau)^{q}$-definable polynomials.
- Feferman-Vaught Theorem for MSOL-definable graph polynomials
J.A. Makowsky, Algorithmic uses of the Feferman-Vaught Theorem, Annals of Pure and Applied Logic, 126 (2004), 159-213
- Bilinear version of the Feferman-Vaught Theorem for graph polynomials. With an MSOL-elementary operation F and a fixed q there is a matrix M_{F} such that

$$
\bar{P}(F(G))=M_{F} \cdot \bar{P}(G)
$$

- Use the characteristic polynomial of M_{F}.

Lecture 13 (Outline)

- More on transductions (with proofs)
- The Feferman-Vaught Theorem for MSOL-properties (with proofs)
- A Feferman-Vaught-like Theorem for MSOL-definable graph polynomials (with proofs)

[^0]: N.L. Biggs, R.M. Damerell and D.A. Sands, Recursive families of graphs, J. Combin. Theory Ser. B 12 (1972), 123-131

