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Lecture 12

What we did in Lecture 11

• We studied the distinctive power of graph polynomials and graph param-
eters

• We studied examples

• We introduced a comparison of graph polynomials via their coefficients

• We showed the equivalence of the two notions of comparability

• We studied more examples
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Out line of Lecture 12

• Some computations of graph polynomials

• Discovering linear recurrence relations

• Recursively defined families of graphs

• MSOL-definable graph polynomials

• A general theorem about linear recurrence relations for recursively defined
families of graphs and MSOL-definable graph polynomials
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Main theme

We deal with a purely graph theoretical problem:

Given a regularly constructed indexed family of graphs Gn such as
the paths Pn, the circles Cn, the wheels Wn, the cliques Kn, the grids Gridm,n

and a graph polynomial P , such as
the matching , Tutte, clique, cover polynomial

compute all the values P (Gn).

Often we have a (linear) recurrence relation, i.e. there is q ∈ N,
and polynomials p1, . . . , pq ∈ Z[X̄] such that for sufficiently large n

P(Gn+q+1) =

q
∑

i=1

pi · P(Gn+i)

When is this the case?

We shall see that methods from LOGIC help clarifying the situation.
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Case study: The chromatic polynomial

For a graph G, the chromatic polynomial χ(G, λ) ∈ Z[λ]
is the polynomial such that for t ∈ N

the value of χ(G, t) is the number of t-vertex colorings of G.

Let Pn be the path and Kn the complete graph on n vertices,

We compute χ(Pn, λ) and χ(Kn, λ).

• χ(P1, λ) = λ and χ(P2, λ) = λ · (λ − 1).

• χ(Pn+1, λ) = χ(Pn, λ) · (λ − 1).

• χ(Kn+1, λ) = λ · (λ − 1) . . . (λ − n) = (λ − n)χ(Kn − 1)

For Pn we have a linear recurrence relation independently of n,
for Kn the recurrence depends on n. Can we find one not depending on n?
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Homework

Compute the chromatic polynomial for the following families of graphs:

• The circles Cn;

• The wheels Wn;

• The ladders Ln;

• The grids Gridn,m.
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Case study: The clique and independent set polynomial

For a graph G, the clique polynomial cl(G, X) ∈ Z[X] is defined by

cl(G, X) =
∑

clk(G) · Xk

where clk(G) is the number of k-cliques of G.

We compute cl(Pn, λ) and cl(Kn, λ):

cl(Pn+1)(X) = (1 + X) + cl(Pn)(X),

cl(Kn+1)(X) =
∑n+1

k

(

n

k

)

Xk = (X + 1)n+1 = (X + 1) · cl(Kn)(X)

The independent set polynomial in(G, X) ∈ Z[X] is defined by

in(G, X) =
∑

ink(G) · Xk

where ink(G) is the number of independent sets of G of size k.

Homework: Compute the linear recurrences for in(Pn)(X) and in(Kn)(X).
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Case Study: The matching polynomial, I

For a graph G, the matching polynomial µ(G, X) ∈ Z[X] is defined by

µ(G, X) =
∑

mk(G) · Xk

where mk(G) is the number of k-matchings of G.

We compute µ(Pn, X):

We use auxiliary polynomials

µ+(Pn, X) =
∑

m+
k (Pn) · X

k

and

µ−(Pn, X) =
∑

m−
k (Pn) · X

k

where m+
k (Pn) and m−

k (Pn) is the number of k-matchings of Pn

which includes, respectively excludes the last vertex.

Clearly we have mk(Pn) = m+
k (Pn) + m−

k (Pn) hence

µ(Pn, X) = µ+(Pn, X) + µ−(Pn, X)
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Case study: The matching polynomial, II

It is easy to see that

µ−(Pn+1) = µ−(Pn) + µ+(Pn)

µ+(Pn+1) = X · µ−(Pn)

For µ̄n = (µ−(Pn), µ+(Pn))t we get

Aµ̄n = µ̄n+1

with

a1,1 = 1, a1,2 = 1, a2,1 = X, a2,2 = 0

The characteristic polynomial of A is

det(λ1 − A) = λ2 − λ − X

so we get the linear recurrence relation (independent of n)

µ(Pn+2) = µ(Pn+1) + X · µ(Pn)
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Case study: The vertex-cover polynomial

For a graph G, the vertex-cover polynomial vc(G, X) ∈ Z[X] is defined by

vc(G, X) =
∑

vck(G) · Xk

where vck(G) is the number of k-vertex-covers of G.

• vc(Pn+1, X) = X · vc(Pn, X) + X · vc(Pn−1, X)

• vc(Cn+1, X) = X · vc(Cn, X) + X2 · vc(Cn−2, X)

• Let Ln be the graph which consists of n isolated loops.
vc(Ln+1, X) = X · vc(Ln, X) = Xn

• For the wheel graph Wn we have
vc(Wn+1, X) = X · vc(Wn, X) + Xn = X · vc(Wn, X) + X · vc(Ln, X)
hence, using the characteristic polynomial of the matrix, A = (ai,j) with
a1,1 = a1,2 = a2,2 = X and a2,1 = 0
vc(Wn+1, X) = 2X · vc(Wn, X) − X2 · vc(Wn−1, X)

F.M. Dong, M.D. Hendy, K.L. Teo and C.H.C. Little, The vertex-cover polynomial of a
graph, Discrete Mathematics 250 (2002), 71-78
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P -recursive families of graphs, I

Definition 1 Let P be a graph polynomial and G = {Gn : n ∈ N} be a family
of graphs. G is said to be P -recursive if there is q ∈ N,
and polynomials p1, . . . , pq ∈ Z[X̄] such that for sufficiently large n

P (Gn+q+1) =

q
∑

i=1

pi · P (Gn+i)

Let Pn be the path on n vertices. We get, for sufficiently large n,

• for the chromatic polynomials: c(Pn+1)(λ) = c(Pn, λ)(λ) · (λ − 1).

• for the clique polynomials:
cl(Pn+1)(X) = (1 + X) + cl(Pn)(X),

cl(Kn+1)(X) =
∑n+1

k

(

n

k

)

Xk = (X + 1)n+1 = (X + 1) · cl(Kn)(X)

• for the matching polynomials: µ(Pn+1)(X) = X · µ(Pn−1)(X) + µ(Pn)(X),

• for the Tutte polynomials: T (Pn+1)(X, Y ) = Y · T (Pn)(X, Y ).

• for the vertex-cover polynomials: vc(Pn+1, X) = X · vc(Pn, X) + X · vc(Pn−1, X)
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P -recursive families of graphs, II

The characteristic series σP(G) of G is defined as

σP(G) =
∑

i=1

P (Gi)Z
i.

Proposition 2 (Folklore) G is P -recursive iff the characteristic series

σP(G)

is a rational function in X̄ and Z.
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T -recursive families, I

N.L. Biggs, R.M. Damerell and D.A. Sands, 1972

In 1972 N.L. Biggs, R.M. Damerell and D.A. Sands introduced recursive
families of graphs.

These are our T -recursive families of graphs where T is the Tutte polynomial.

They show that several families of graphs are recursive (in their sense).
Among them there are:

cycles, ladders and wheels

All these families have in common that they can be constructed from an initial
graph by the repeated application of a fixed graph operation

N.L. Biggs, R.M. Damerell and D.A. Sands,

Recursive families of graphs, J. Combin. Theory Ser. B 12 (1972), 123-131
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T -recursive families, II

M. Noy and A. Ribó, 2004

In 2004 M. Noy and A. Ribó study which graph families Gn,
constructed from an initial graph G0,
by the repeated application of a fixed graph operation F (G),
are T -recursive families of graphs.

They introduce a notion of

recursively constructible families of graphs,

and show that every such family is T -recursive.

Their notion is reminiscent of certain graph grammars.

M. Noy and A. Ribó, Recursively constructible families of graphs, Advances in Applied Math-

ematics 32 (2004) 350-363.
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Using Logic

We use the finite model theory

of Monadic Second Order Logic (MSOL)

to extend these results in several ways:

• We prove that for every P from a wide class of graph polynomials, the
MSOL-definable graph polynomials, every recursively constructible family
Gn is P -recursive.

• We extend the result to the class of iteration families of graphs which is
proper extension of the class of recursively constructible families.

• We extend the result to signed graphs and knot diagrams and to various
knot polynomials.

• We extend the result to hypergraphs and relational structures.
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Iteration families, I

In the absence of the formalisms of graph grammars Noy and Ribó give an
adhoc definition of

repeated fixed succession
of elementary operations

which can be applied to a graph with a context, i.e. a labeled graph.

Definition 3 Let F denote such an operation.

Given a graph (with context) G, we put

G0 = G, Gn+1 = F (Gn)

Then the family

G = {Gn : n ∈ N}

is called recursively constructible using F , or an F -iteration family.
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Iteration families, II

Given a graph polynomial P ,

the question now is to find

a characterization of those operations F ,

for which a linear recurrence for the polynomials P(Gn) holds.

M. Noy and A. Ribó give only a suffient condition
for the case of the Tutte polynomial.
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General strategy

We proceed as outlined in the case of the matching and the vertex-cover
polynomial.

To compute P (Gn+1), we try to find,

depending on P and, possibly, on G0, but independently of n

• an m ∈ N,

• auxiliary polynomials Pi(Gn+1), i ≤ m,

• and a matrix A = (ai,j) ∈ Z[X̄]m×m

such that

Pj(Gn+1)(X̄) =
∑

i

ai,j(X̄) · Pi(Gn)(X̄)

Then we use the characteristic polynomial of the matrix A

to convert this into a linear recurrence relation.
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Where logic enters for the graph polynomial P?

Definition 4 A polynomial P of the form

P (G) =
∑

(V,E ′)∈K1





∏

E ′⊆E

t(X̄)





or

P (G) =
∑

(V ′,E|V ′)∈K2





∏

V ′⊆V

t(X̄)





where t(X̄) is a fixed term in the indeterminates X̄

and K1 or K2 are definable in Monadic Second Order Logic (MSOL) is

called an

MSOL-definable graph polynomials.

There are more general versions of this definition, but here this suffices.
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MSOL-definable polynomials, I

The clique and independent set polynomials are of the form

P (G) =
∑

(V ′,E|V ′)∈K2





∏

V ′⊆V

X





because saying that the induced subgraph G[V ′] is a clique or an independent
set is MSOL-definable.

Rearranging the terms we get

cl(G) =
∑

(V ′,E|V ′)∈Clique





∏

V ′⊆V

X



 =
∑

k

clk(G) · Xk

and

in(G) =
∑

(V ′,E|V ′)∈Indep





∏

V ′⊆V

X



 =
∑

k

ink(G) · Xk

Note: The second order variable for V ′ is needed.
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MSOL-definable polynomials, II

The vertex-cover polynomials are of the form

P (G) =
∑

(V,E,V ′)∈K2





∏

V ′⊆V

X





because saying that V ′ is a vertex-cover of (V, E) is MSOL-definable.

Rearranging the terms we get

vc(G) =
∑

(V,E,V ′)∈V C





∏

V ′⊆V

X



 =
∑

k

vck(G) · Xk

Note: The second order variable for V ′ is again needed.
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MSOL-definable polynomials, III

The generating matching polynomials are of the form

gm(G) =
∑

(V,E ′)∈Matching





∏

E ′⊆E

X





However, being a matching is

• NOT MSOL-definable if graphs are represented as G = (V, E).

• but IS MSOL-definable, if the graph is represented by its incidence graph
I(G) = (V ∪ E, R).

For the Tutte polynomial, we have to add a linear order on the edges,
to make it MSOL-definable, and note, that the Tutte polynomial is then
indepent of the order on the edges.
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Where logic enters for the operation F?

Ehrenfeucht games again

Let A and B be two τ-structures.

Recall: We write A ≡MSOL
q B, if A and B cannot be distinguished

by MSOL(τ)-formulas of quantifier rank q.

Definition 5
An operation F on τ-structures is MSOL-smooth

if whenever A ≡MSOL
q B, then also F (A) ≡MSOL

q F (B).

The operation F should be MSOL-smooth for the
presentation of the graphs, for which the polynomial is MSOL-definable.
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MSOL-smooth operations: Examples

Here graphs are of the form G = (V (G), E(G)).

Let H = (V (H), E(H)) be a fixed graph.

• The operation DH(G) = G ⊔ H is MSOL-smooth.

• The operation JH(G) = G ⊲⊳ H is MSOL-smooth.

• The cliques Kn are an iteration family for the operation JK1
(G) with

G0 = K1.

• For forming the cliques Kn we need the operation of adding a vertex
connected to all previous vertices.
JK1

(G) is MSOL-smooth for G = (V (G), E(G))
but not for I(G) = (V (G) ∪ E(G), R(G)).
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k-structures

Recall: A vocabulary τ is a set of relation symbols.

A τ-structure A is an interpretation of the vocabulary τ over a non-empty
universe A.

Definition 6 For k ∈ N, a k-τ-structure is a τ-structure with k additional
unary relations CA

1 , . . . CA
k , called colors.

We denote by τk the vocabulary τ ∪ {C1, . . . , Ck}.
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Basic operations on k-τ-structures, I

Definition 7 (Adding a new colored element)

For i ≤ k, the operation AddCi
(A) adds a new element to A of color Ci.

More precisely, let b 6∈ A and B =< {b}, CB
i = {b} >.

Then AddCi
(A) = A ⊔ B

Proposition 8 AddCi
(A) is MSOL-smooth.
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Basic operations on k-τ-structures, II

Definition 9 (Recoloring)

For i, j ≤ k, the operation ρi,j(A) recolors all elements of A of color i with
color j.

More precisely, if the colors in A are CA
1 , . . . , CA

k then ρi,j(A) = B has colors

new colors CB
i = ∅ and CB

j = CA
i ∪CA

j and all other colors and relations remain
unchanged.

Proposition 10 ρi,j(A) is MSOL-smooth.
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Basic operations on k-τ-structures, III

Definition 11 (Adding tuples to relations)

The operation ηR,i1,...,im
(A) is defined as follows:

For R ∈ τ an m-ary relation symbol
and for each a1 ∈ CA

i1
, . . . , am ∈ CA

im

we add the tuple (a1, . . . , am) to RA.

Proposition 12 ηi,j(A) is MSOL-smooth.
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Basic operations on k-τ-structures, IV

Definition 13 (Deleting tuples from relations)

The operation δR,i1,...,im
(A) is defined as follows:

For R ∈ τ an m-ary relation symbol
and for each a1 ∈ CA

i1
, . . . , am ∈ CA

im

we remove the tuple (a1, . . . , am) from RA.

Proposition 14 δi,j(A) is MSOL-smooth.
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Basic operations on k-τ-structures, V

Definition 15 (Quantifierfree transductions)

For each R ∈ τk of arity α(R) let φR(x1, . . . , xα(R)) be a quantifierfree
τk-formula with free first order variables as indicated.

Let Φ =< φR(x1, . . . , xα(R)) : R ∈ τk >.

The quantifier free transduction Φ⋆(A) redefines
all the predicates RA in A by φA

R.

Exercise:
All of the previous operations are special cases of Quantifierfree transductions.

Proposition 16 Quantifier free transductions are MSOL-smooth.
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MSOL-elementary and MSOL-smooth operations

Definition 17 An operation F on τk-structures is MSOL-elementary if F is
a finite composition of basic operations on τk-structures.

Proposition 18 Let F be MSOL-elementary and A and B two τk structures
with A ≡MSOL

q B, then F (A) ≡MSOL
q F (B), hence, F is a MSOL-smooth.

Proposition 19 Let F be MSOL-elementary and G be an F -iteration family.
Then G is of bounded clique-width.

Corollary 20 The families I(Kn), Gridn,n are not of bounded clique-width.
Hence they are not F -iteration families for any F which is MSOL-elementary.
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The Recurrence Theorem

E. Fischer and M. (2008)

Theorem 21 Let

• F be an MSOL-smooth operation on τk-structures.

• P be a τ-polynomial which is MSOL(τ)-definable.

• A = {An : n ∈ N} be an F -iteration family of τ-structures.

Then A is P -recursive, i.e. there is q ∈ N,
and polynomials p1, . . . , pq ∈ Z[X̄] such that for sufficiently large n

P (Gn+q+1) =

q
∑

i=1

pi · P (Gn+i)

31



Logical Methods in Combinatorics, 236605-2009/12 Lecture 12

Proof ingredients

• For fixed q and a fixed number of free variables, there are, up to logical
equivalence, only finitely many MSOL(τ)-formulas of quantifier rank q.

Let P̄ = (P̄1, . . . P̄α) be the vector of all MSOL(τ)q-definable polynomials.

• Feferman-Vaught Theorem for MSOL-definable graph polynomials

J.A. Makowsky, Algorithmic uses of the Feferman-Vaught Theorem,

Annals of Pure and Applied Logic, 126 (2004), 159-213

• Bilinear version of the Feferman-Vaught Theorem for graph polynomials.

With an MSOL-elementary operation F and a fixed q there is a matrix
MF such that

P̄ (F (G)) = MF · P̄ (G)

• Use the characteristic polynomial of MF .
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Lecture 13 (Outline)

• More on transductions (with proofs)

• The Feferman-Vaught Theorem for MSOL-properties (with proofs)

• A Feferman-Vaught-like Theorem for MSOL-definable graph polynomials
(with proofs)
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