Lecture 12

What we did in Lecture 11

- We studied the distinctive power of graph polynomials and graph parameters
- We studied examples
- We introduced a comparison of graph polynomials via their coefficients
- We showed the equivalence of the two notions of comparability
- We studied more examples

Out line of Lecture 12

- Some computations of graph polynomials
- Discovering linear recurrence relations
- Recursively defined families of graphs
- MSOL-definable graph polynomials
- A general theorem about linear recurrence relations for recursively defined families of graphs and \mathbf{MSOL} -definable graph polynomials

Main theme

We deal with a purely graph theoretical problem:

```
Given a regularly constructed indexed family of graphs G_n such as
the paths P_n, the circles C_n, the wheels W_n, the cliques K_n, the grids Grid_{m,n}
```

and a graph polynomial P, such as the matching , Tutte, clique, cover polynomial

compute all the values $P(G_n)$.

Often we have a (linear) recurrence relation, i.e. there is $q \in \mathbb{N}$, and polynomials $p_1, \ldots, p_q \in \mathbb{Z}[\overline{X}]$ such that for sufficiently large n

$$P(G_{n+q+1}) = \sum_{i=1}^{q} p_i \cdot P(G_{n+i})$$

When is this the case?

We shall see that methods from **LOGIC** help clarifying the situation.

Case study: The chromatic polynomial

For a graph G, the chromatic polynomial $\chi(G, \lambda) \in \mathbb{Z}[\lambda]$ is the polynomial such that for $t \in \mathbb{N}$ the value of $\chi(G, t)$ is the number of *t*-vertex colorings of *G*.

Let P_n be the path and K_n the complete graph on n vertices,

We compute $\chi(P_n, \lambda)$ and $\chi(K_n, \lambda)$.

- $\chi(P_1,\lambda) = \lambda$ and $\chi(P_2,\lambda) = \lambda \cdot (\lambda 1)$.
- $\chi(P_{n+1},\lambda) = \chi(P_n,\lambda) \cdot (\lambda-1).$
- $\chi(K_{n+1},\lambda) = \lambda \cdot (\lambda-1) \dots (\lambda-n) = (\lambda-n)\chi(K_n-1)$

For P_n we have a linear recurrence relation independently of n, for K_n the recurrence depends on n. Can we find one **not** depending on n?

Lecture 12

Homework

Compute the chromatic polynomial for the following families of graphs:

- The circles C_n ;
- The wheels W_n ;
- The ladders L_n ;
- The grids $Grid_{n,m}$.

Case study: The clique and independent set polynomial

For a graph G, the clique polynomial $cl(G,X) \in \mathbb{Z}[X]$ is defined by

$$cl(G,X) = \sum cl_k(G) \cdot X^k$$

where $cl_k(G)$ is the number of k-cliques of G.

We compute $cl(P_n, \lambda)$ and $cl(K_n, \lambda)$:

$$cl(P_{n+1})(X) = (1+X) + cl(P_n)(X),$$

$$cl(K_{n+1})(X) = \sum_{k=1}^{n+1} {n \choose k} X^k = (X+1)^{n+1} = (X+1) \cdot cl(K_n)(X)$$

The independent set polynomial $in(G, X) \in \mathbb{Z}[X]$ is defined by

$$in(G,X) = \sum in_k(G) \cdot X^k$$

where $in_k(G)$ is the number of independent sets of G of size k.

Homework: Compute the linear recurrences for $in(P_n)(X)$ and $in(K_n)(X)$.

Case Study: The matching polynomial, I

For a graph G, the matching polynomial $\mu(G, X) \in \mathbb{Z}[X]$ is defined by

$$\mu(G,X) = \sum m_k(G) \cdot X^k$$

where $m_k(G)$ is the number of k-matchings of G.

We compute $\mu(P_n, X)$:

We use auxiliary polynomials

$$\mu^+(P_n,X) = \sum m_k^+(P_n) \cdot X^k$$

and

$$\mu^{-}(P_n, X) = \sum m_k^{-}(P_n) \cdot X^k$$

where $m_k^+(P_n)$ and $m_k^-(P_n)$ is the number of k-matchings of P_n which **includes**, respectively **excludes** the last vertex.

Clearly we have $m_k(P_n) = m_k^+(P_n) + m_k^-(P_n)$ hence

$$\mu(P_n, X) = \mu^+(P_n, X) + \mu^-(P_n, X)$$

Case study: The matching polynomial, II

It is easy to see that

$$\mu^{-}(P_{n+1}) = \mu^{-}(P_n) + \mu^{+}(P_n)$$
$$\mu^{+}(P_{n+1}) = X \cdot \mu^{-}(P_n)$$

For $\bar{\mu}_n = (\mu^-(P_n), \mu^+(P_n))^t$ we get

$$A\bar{\mu}_n = \bar{\mu}_{n+1}$$

with

$$a_{1,1} = 1, a_{1,2} = 1, a_{2,1} = X, a_{2,2} = 0$$

The characteristic polynomial of A is

$$det(\lambda 1 - A) = \lambda^2 - \lambda - X$$

so we get the linear recurrence relation (independent of n)

$$\mu(P_{n+2}) = \mu(P_{n+1}) + X \cdot \mu(P_n)$$

Case study: The vertex-cover polynomial

For a graph G, the vertex-cover polynomial $vc(G, X) \in \mathbb{Z}[X]$ is defined by

$$vc(G,X) = \sum vc_k(G) \cdot X^k$$

where $vc_k(G)$ is the number of k-vertex-covers of G.

- $vc(P_{n+1}, X) = X \cdot vc(P_n, X) + X \cdot vc(P_{n-1}, X)$
- $vc(C_{n+1}, X) = X \cdot vc(C_n, X) + X^2 \cdot vc(C_{n-2}, X)$
- Let L_n be the graph which consists of n isolated loops. $vc(L_{n+1}, X) = X \cdot vc(L_n, X) = X^n$
- For the wheel graph W_n we have $vc(W_{n+1}, X) = X \cdot vc(W_n, X) + X^n = X \cdot vc(W_n, X) + X \cdot vc(L_n, X)$ hence, using the characteristic polynomial of the matrix, $A = (a_{i,j})$ with $a_{1,1} = a_{1,2} = a_{2,2} = X$ and $a_{2,1} = 0$ $vc(W_{n+1}, X) = 2X \cdot vc(W_n, X) - X^2 \cdot vc(W_{n-1}, X)$

F.M. Dong, M.D. Hendy, K.L. Teo and C.H.C. Little, The vertex-cover polynomial of a graph, Discrete Mathematics 250 (2002), 71-78

Lecture 12

P-recursive families of graphs, I

Definition 1 Let P be a graph polynomial and $\mathcal{G} = \{G_n : n \in \mathbb{N}\}$ be a family of graphs. \mathcal{G} is said to be P-recursive if there is $q \in \mathbb{N}$, and polynomials $p_1, \ldots, p_q \in \mathbb{Z}[\overline{X}]$ such that for sufficiently large n

$$P(G_{n+q+1}) = \sum_{i=1}^{q} p_i \cdot P(G_{n+i})$$

Let P_n be the path on n vertices. We get, for sufficiently large n,

- for the chromatic polynomials: $c(P_{n+1})(\lambda) = c(P_n, \lambda)(\lambda) \cdot (\lambda 1)$.
- for the clique polynomials: $cl(P_{n+1})(X) = (1+X) + cl(P_n)(X),$ $cl(K_{n+1})(X) = \sum_{k}^{n+1} {n \choose k} X^k = (X+1)^{n+1} = (X+1) \cdot cl(K_n)(X)$
- for the matching polynomials: $\mu(P_{n+1})(X) = X \cdot \mu(P_{n-1})(X) + \mu(P_n)(X)$,
- for the Tutte polynomials: $T(P_{n+1})(X,Y) = Y \cdot T(P_n)(X,Y)$.
- for the vertex-cover polynomials: $vc(P_{n+1}, X) = X \cdot vc(P_n, X) + X \cdot vc(P_{n-1}, X)$

P-recursive families of graphs, II

The characteristic series $\sigma_P(\mathcal{G})$ of \mathcal{G} is defined as

$$\sigma_P(\mathcal{G}) = \sum_{i=1} P(G_i) Z^i.$$

Proposition 2 (Folklore) *G* is *P*-recursive iff the characteristic series

 $\sigma_P(\mathcal{G})$

is a rational function in \overline{X} and Z.

Lecture 12

T-recursive families, I

N.L. Biggs, R.M. Damerell and D.A. Sands, 1972

In 1972 N.L. Biggs, R.M. Damerell and D.A. Sands introduced recursive families of graphs.

These are our T-recursive families of graphs where T is the Tutte polynomial.

They show that several families of graphs are recursive (in their sense). Among them there are:

cycles, ladders and wheels

All these families have in common that they can be constructed from an initial graph by the repeated application of a fixed graph operation

N.L. Biggs, R.M. Damerell and D.A. Sands, Recursive families of graphs, J. Combin. Theory Ser. B 12 (1972), 123-131

Lecture 12

T-recursive families, II

M. Noy and A. Ribó, 2004

In 2004 M. Noy and A. Ribó study which graph families G_n , constructed from an initial graph G_0 , by the repeated application of a fixed graph operation F(G), are T-recursive families of graphs.

They introduce a notion of

recursively constructible families of graphs,

and show that every such family is T-recursive.

Their notion is reminiscent of certain graph grammars.

M. Noy and A. Ribó, Recursively constructible families of graphs, Advances in Applied Mathematics 32 (2004) 350-363.

Using Logic

We use the finite model theory of Monadic Second Order Logic (MSOL) to extend these results in several ways:

- We prove that for every P from a wide class of graph polynomials, the MSOL-definable graph polynomials, every recursively constructible family G_n is P-recursive.
- We extend the result to the class of iteration families of graphs which is proper extension of the class of recursively constructible families.
- We extend the result to signed graphs and knot diagrams and to various knot polynomials.
- We extend the result to hypergraphs and relational structures.

Iteration families, I

In the absence of the formalisms of graph grammars Noy and Ribó give an adhoc definition of

repeated fixed succession of elementary operations

which can be applied to a graph with a *context*, i.e. a labeled graph.

Definition 3 Let F denote such an operation.

Given a graph (with context) G, we put

$$G_0 = G, G_{n+1} = F(G_n)$$

Then the family

$$\mathcal{G} = \{G_n : n \in \mathbb{N}\}$$

is called recursively constructible using F, or an F-iteration family.

Lecture 12

Iteration families, II

Given a graph polynomial P,

the question now is to find

a characterization of those operations F,

for which a linear recurrence for the polynomials $P(G_n)$ holds.

M. Noy and A. Ribó give only a suffient condition for the case of the Tutte polynomial.

General strategy

We proceed as outlined in the case of the matching and the vertex-cover polynomial.

To compute $P(G_{n+1})$, we try to find,

depending on P and, possibly, on G_0 , but independently of n

- an $m \in \mathbb{N}$,
- auxiliary polynomials $P_i(G_{n+1}), i \leq m$,
- and a matrix $A = (a_{i,j}) \in \mathbb{Z}[\bar{X}]^{m \times m}$

such that

$$P_j(G_{n+1})(\bar{X}) = \sum_i a_{i,j}(\bar{X}) \cdot P_i(G_n)(\bar{X})$$

Then we use the characteristic polynomial of the matrix A to convert this into a linear recurrence relation.

Where logic enters for the graph polynomial P?

Definition 4 A polynomial P of the form

$$P(G) = \sum_{(V,E')\in K_1} \left(\prod_{E'\subseteq E} t(\bar{X})\right)$$

or

$$P(G) = \sum_{(V', E|V') \in K_2} \left(\prod_{V' \subseteq V} t(\bar{X}) \right)$$

where $t(\bar{X})$ is a fixed term in the indeterminates \bar{X}

and K_1 or K_2 are definable in Monadic Second Order Logic (MSOL) is called an

MSOL-definable graph polynomials.

There are **more general** versions of this definition, but **here** this suffices.

MSOL-definable polynomials, I

The clique and independent set polynomials are of the form

$$P(G) = \sum_{(V', E|V') \in K_2} \left(\prod_{V' \subseteq V} X \right)$$

because saying that the induced subgraph G[V'] is a clique or an independent set is MSOL-definable.

Rearranging the terms we get

$$cl(G) = \sum_{(V', E|V') \in Clique} \left(\prod_{V' \subseteq V} X\right) = \sum_k cl_k(G) \cdot X^k$$

and

$$in(G) = \sum_{(V', E|V') \in Indep} \left(\prod_{V' \subseteq V} X \right) = \sum_{k} in_k(G) \cdot X^k$$

Note: The second order variable for V' is needed.

MSOL-definable polynomials, II

The vertex-cover polynomials are of the form

$$P(G) = \sum_{(V,E,V')\in K_2} \left(\prod_{V'\subseteq V} X\right)$$

because saying that V' is a vertex-cover of (V, E) is MSOL-definable.

Rearranging the terms we get

$$vc(G) = \sum_{(V,E,V')\in VC} \left(\prod_{V'\subseteq V} X\right) = \sum_k vc_k(G) \cdot X^k$$

Note: The second order variable for V' is again needed.

MSOL-definable polynomials, III

The generating matching polynomials are of the form

$$gm(G) = \sum_{(V,E')\in Matching} \left(\prod_{E'\subseteq E} X\right)$$

However, being a matching is

- **NOT** *MSOL*-definable if graphs are represented as G = (V, E).
- but **IS** *MSOL*-definable, if the graph is represented by its incidence graph $I(G) = (V \cup E, R)$.

For the **Tutte polynomial**, we have to add a linear order on the edges, to make it MSOL-definable, and note, that the Tutte polynomial is then indepent of the order on the edges.

Where logic enters for the operation F?

Ehrenfeucht games again

Let \mathfrak{A} and \mathfrak{B} be two τ -structures.

Recall: We write $\mathfrak{A} \equiv_q^{MSOL} \mathfrak{B}$, if \mathfrak{A} and \mathfrak{B} cannot be distinguished by $MSOL(\tau)$ -formulas of quantifier rank q.

Definition 5

An operation F on τ -structures is MSOL-smooth if whenever $\mathfrak{A} \equiv_q^{MSOL} \mathfrak{B}$, then also $F(\mathfrak{A}) \equiv_q^{MSOL} F(\mathfrak{B})$.

The operation F should be MSOL-smooth for the **presentation of the graphs**, for which the polynomial is MSOL-definable.

MSOL-smooth operations: Examples

Here graphs are of the form G = (V(G), E(G)).

Let H = (V(H), E(H)) be a fixed graph.

- The operation $D_H(G) = G \sqcup H$ is MSOL-smooth.
- The operation $J_H(G) = G \bowtie H$ is MSOL-smooth.
- The cliques K_n are an iteration family for the operation $J_{K_1}(G)$ with $G_0 = K_1$.
- For forming the cliques K_n we need the operation of adding a vertex connected to all previous vertices. $J_{K_1}(G)$ is MSOL-smooth for G = (V(G), E(G))but not for $I(G) = (V(G) \cup E(G), R(G))$.

Lecture 12

k-structures

Recall: A vocabulary τ is a set of relation symbols.

A τ -structure \mathfrak{A} is an interpretation of the vocabulary τ over a **non-empty** universe A.

Definition 6 For $k \in \mathbb{N}$, a k- τ -structure is a τ -structure with k additional unary relations $C_1^A, \ldots C_k^A$, called colors.

We denote by τ_k the vocabulary $\tau \cup \{C_1, \ldots, C_k\}$.

Basic operations on k- τ -structures, I

Definition 7 (Adding a new colored element)

For $i \leq k$, the operation $Add_{C_i}(\mathfrak{A})$ adds a new element to A of color C_i . More precisely, let $b \notin A$ and $\mathfrak{B} = \langle \{b\}, C_i^B = \{b\} \rangle$. Then $Add_{C_i}(\mathfrak{A}) = \mathfrak{A} \sqcup \mathfrak{B}$

Proposition 8 $Add_{C_i}(\mathfrak{A})$ is MSOL-smooth.

Basic operations on k- τ -structures, II

Definition 9 (Recoloring)

For $i, j \leq k$, the operation $\rho_{i,j}(\mathfrak{A})$ recolors all elements of A of color i with color j.

More precisely, if the colors in \mathfrak{A} are C_1^A, \ldots, C_k^A then $\rho_{i,j}(\mathfrak{A}) = \mathfrak{B}$ has colors new colors $C_i^B = \emptyset$ and $C_j^B = C_i^A \cup C_j^A$ and all other colors and relations remain unchanged.

Proposition 10 $\rho_{i,j}(\mathfrak{A})$ is MSOL-smooth.

Basic operations on k- τ -structures, III

Definition 11 (Adding tuples to relations)

The operation $\eta_{R,i_1,\ldots,i_m}(\mathfrak{A})$ is defined as follows:

For $R \in \tau$ an *m*-ary relation symbol and for each $a_1 \in C_{i_1}^A, \ldots, a_m \in C_{i_m}^A$ we add the tuple (a_1, \ldots, a_m) to R^A .

Proposition 12 $\eta_{i,j}(\mathfrak{A})$ is MSOL-smooth.

Basic operations on k- τ -structures, IV

Definition 13 (Deleting tuples from relations)

The operation $\delta_{R,i_1,...,i_m}(\mathfrak{A})$ is defined as follows:

For $R \in \tau$ an *m*-ary relation symbol and for each $a_1 \in C_{i_1}^A, \ldots, a_m \in C_{i_m}^A$ we remove the tuple (a_1, \ldots, a_m) from R^A .

Proposition 14 $\delta_{i,j}(\mathfrak{A})$ is MSOL-smooth.

Basic operations on k- τ -structures, V

Definition 15 (Quantifierfree transductions)

For each $R \in \tau_k$ of arity $\alpha(R)$ let $\phi_R(x_1, \ldots, x_{\alpha(R)})$ be a quantifierfree τ_k -formula with free first order variables as indicated.

Let $\Phi = \langle \phi_R(x_1, \ldots, x_{\alpha(R)}) : R \in \tau_k \rangle$.

The quantifier free transduction $\Phi^*(\mathfrak{A})$ redefines all the predicates R^A in \mathfrak{A} by ϕ_R^A .

Exercise:

All of the previous operations are special cases of Quantifierfree transductions.

Proposition 16 Quantifier free transductions are MSOL-smooth.

$MSOL\mbox{-}elementary$ and $MSOL\mbox{-}smooth$ operations

Definition 17 An operation F on τ_k -structures is <u>MSOL-elementary</u> if F is a finite composition of basic operations on τ_k -structures.

Proposition 18 Let *F* be *MSOL*-elementary and \mathfrak{A} and \mathfrak{B} two τ_k structures with $\mathfrak{A} \equiv_a^{MSOL} \mathfrak{B}$, then $F(\mathfrak{A}) \equiv_a^{MSOL} F(\mathfrak{B})$, hence, *F* is a *MSOL*-smooth.

Proposition 19 Let F be MSOL-elementary and G be an F-iteration family. Then G is of bounded clique-width.

Corollary 20 The families $I(K_n)$, $Grid_{n,n}$ are not of bounded clique-width. Hence they are **not** *F*-iteration families for any *F* which is MSOL-elementary.

The Recurrence Theorem

E. Fischer and M. (2008)

Theorem 21 Let

- F be an MSOL-smooth operation on τ_k -structures.
- P be a τ -polynomial which is $MSOL(\tau)$ -definable.
- $\mathcal{A} = \{A_n : n \in \mathbb{N}\}$ be an *F*-iteration family of τ -structures.

Then \mathcal{A} is *P*-recursive, i.e. there is $q \in \mathbb{N}$, and polynomials $p_1, \ldots, p_q \in \mathbb{Z}[\overline{X}]$ such that for sufficiently large *n*

$$P(G_{n+q+1}) = \sum_{i=1}^{q} p_i \cdot P(G_{n+i})$$

Proof ingredients

- For fixed q and a fixed number of free variables, there are, up to logical equivalence, only finitely many MSOL(τ)-formulas of quantifier rank q.
 Let P
 = (P
 ₁,...P
 _α) be the vector of all MSOL(τ)^q-definable polynomials.
- Feferman-Vaught Theorem for *MSOL*-definable graph polynomials

J.A. Makowsky, Algorithmic uses of the Feferman-Vaught Theorem, Annals of Pure and Applied Logic, 126 (2004), 159-213

• Bilinear version of the Feferman-Vaught Theorem for graph polynomials. With an MSOL-elementary operation F and a fixed q there is a matrix M_F such that

$$\bar{P}(F(G)) = M_F \cdot \bar{P}(G)$$

• Use the characteristic polynomial of M_F .

Lecture 12

Lecture 13 (Outline)

- More on transductions (with proofs)
- The Feferman-Vaught Theorem for MSOL-properties (with proofs)
- A Feferman-Vaught-like Theorem for MSOL-definable graph polynomials (with proofs)