
Logical Methods in Combinatorics, 236605-2009/10 Lecture 10

Lecture 10

Last lecture

• We showed a combinatorial proof of the Little Fermat Theorem

• We proved Gessel’s Theorem

• We discussed DU-index and the Specker-Blatter Theorem

We did not show all the slides on the Specker-Blatter Theorem

Homework: Read them
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Lecture 10 and 11: Outline

We start a new topic !

Graph Polynomials

It does not yet use material from Lectures 1-9.

• The chromatic polynomial

• More graph polynomials

• The best studied graph polynomials from the literature.
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The Chromatic Polynomial

and

Its Variations
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The (vertex) chromatic polynomial

Let G = (V (G), E(G)) be a graph, and λ ∈ IN.

A λ-vertex-coloring is a map

c : V (G) → [λ]

such that (u, v) ∈ E(G) implies that c(u) 6= c(v).

We define χ(G, λ) to be the number of λ-vertex-colorings

Theorem 1 (G. Birkhoff, 1912) χ(G, λ) is a polynomial in Z[λ].

Proof:

(i) χ(En) = λn where En consists of n isolated vertices.

(ii) For any edge e = E(G) we have χ(G − e, λ) = χ(G, λ) + χ(G/e, λ).
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Interpretation of χ(G, λ) for λ 6∈ IN

What’s the point in considering λ 6∈ IN?

Theorem 2 (Stanely, 1973)
For simple graphs G, | χ(G,−1) | counts the
number of acyclic orientations of G.

There are also combinatorial interpretations of χ(G,−m) for each m ∈ IN,
which are more complicated to state.

Question: What about χ(G, λ) for each m ∈ IR − Z?
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The Four Color Conjecture

Birkhoff wanted to prove the Four Color Conjecture
using techniques from real or complex analysis.

Conjecture:(Birkhoff and Lewis, 1946)
If G is planar then χ(G, λ) 6= 0 for λ ∈ [4,+∞) ⊆ IR.

For real roots of χ we know:

Jackson, 1993 For simple graphs G we have χ(G, λ) 6= 0 for
λ ∈ (−∞,0), λ ∈ (0,1) and λ ∈ (1, 32

27
).

Birkhoff and Lewis, 1946 For planar graphs G we have χ(G, λ) 6= 0 for
λ ∈ [5,+∞).

Still open: Are there planar graphs G such that χ(G, λ) = 0
for some λ ∈ (4,5)?

Thomassen, 1997 and Sokal, 2004 The real roots of all chromatic poly-
nomials are dense in (1, 32

27
); the complex roots are dense in C.
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The edge-chromatic polynomial

Let G = (V (G), E(G)) be a graph, and λ ∈ IN.

A λ-edge-coloring is a map

c : E(G) → [λ]

such that if (e, f) ∈ E(G) have a common vertex then c(e) 6= c(f).

We define χe(G, λ) to be the number of λ- edge-colorings

Fact: χe(G, λ) a polynomial in Z[λ].

Let L(G) be the line graph of G.
V (L(G)) = E(G) and (e, f) ∈ E(L(G)) iff e and f have a common vertex.

Observation: χe(G, λ) = χ(L(G), λ), where L(G) is the line graph of G.

Conclusion: χe(G, λ) is a polynomial in Z[λ].
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Variations on coloring, I

We can count other coloring functions.

• Total colorings

fV : V → [λV ], fE : E → [λE] and f = fV ∪ fE,

with fV a proper vertex coloring and fE a proper edge coloring.

• Connected components

fV : V → [λV ], If (u, v) ∈ E then fV (u) = fV (v).

• Pre-coloring extensions

Given graph G = (V, E) and an equivalence relation R on V and fV : V → [λV ], we

require that if (u, v) ∈ R they have the same color, and if (u, v) ∈ E − R they have

different colors.

Fact: The corresponding counting functions are polynomials in λ.
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Variations on coloring, II

Encountered at CanaDam-07:

Let f : V (G) → [λ] be a function, such that Φ is one of the properties below
and χΦ(G, λ) denotes the number of such colorings with atmost λ colors.

* convex: Every monochromatic set induces a connected graph.

* injective: f is injectiv on the neighborhood of every vertex.

- complete: f is a proper coloring such that every pair of colors occurs along
some edge.

* harmonious: f is a proper coloring such that every pair of colors occurs
at most once along some edge.

- equitable: All color classes have (almost) the same size.

* equitable, modified: All non-empty color classes have the same size.

New fact: For (*), χΦ(G, λ) is a polynomial in λ, for (-), it is not.
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Variations on coloring, III

* path-rainbow: Let f : E → [λ] be an edge-coloring. f is path-rainbow if
between any two vertices u, v ∈ V there as a path where all the edges
have different colors.

New fact: χrainbow(G, λ), the number of path-rainbow colorings of G with λ
colors, is a polynomial in λ

Rainbow colorings of various kinds arise in computational biology

* -monochromatic components: Let f : V → [λ] be an vertex-coloring and
t ∈ IN. f is an mcct-coloring of G with λ colors, if all the connected
components of a monochromatic set have size at most t.

New fact: For fixed t ≥ 1 the function χmcct(G, λ), the number of mcct-

colorings of G with λ colors, is a polynomial in λ. but not in t.

mcct colorings were first studied in:

N. Alon, G. Ding, B. Oporowski, and D. Vertigan. Partitioning into graphs with only small

components. Journal of Combinatorial Theory, Series B, 87:231–243, 2003.
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Variations on coloring, IV

Let P be any graphs property and let n ∈ IN.

We can define coloring functions f : V → [λ] by requiring that the union of
any n color classes induces a graph in P.

• For n = 1 and P the empty graphs G = (V, ∅) we get the proper colorings.

• For n = 1 and P the connected graphs we get the convex colorings.

• For n = 1 and P the graphs which are disjoint unions of graphs of size
at most t, we get the mcct-colorings.

• For n = 2 and P the acyclic graphs and n = 2 we get the acyclic
colorings, studied in XXX-india.

Theorem: Let χP,n(G, λ) be the number of colorings of G with λ colors such
that the union of any n color classes induces a graph in P.

Then Let χP,n(G, λ) is a polynomial in λ.
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Variations on colorings, V: coloring relations

Let G = (V, E). Here we look at an example where the coloring is a relation
R ⊆ V × [k] rather than a function f : V → [k].
We denote by Cv the set {c ∈ [k] : (v, c) ∈ R}.

Let a, b ∈ IN. An (a, b)-coloring relation with k colors is a relation R ⊆ V × [k]
such that

• For each v ∈ V there are at most a-many colors c ∈ [k] such that (v, c) ∈ R.

• If (u, v) ∈ E then Cu 6= Cv and there are at most b-many distinct elements
c1, . . . , cb in Cu ∩ Cv.

Exercise:

• Compute the number of (a, b)-coloring relations of the complete graphs Kn for various
a, b, k ∈ IN.

• Is the number (a, b)-coloring relations with k colors of a graph G a polynomial in a, b or
k?

• Look at the corresponding definitions with ”at most” replaced
by ”at least” or ”exactly”.
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Variations on colorings, VI: Two kinds of colors.

Let G = (V, E).
Here we look at two disjoint color sets A = [k1] and B = [k1 + k2] − [k1].
The colors in A are called proper colorings.
Our coloring is a function f : V → [k1 + k2] = [k] such that

• If (u, v) ∈ E and f(u) ∈ A and f(v) ∈ A then f(u) 6= f(v).

• We count the number of colorings with k = k1 + k2 colors such that k1

colors are in k1 (proper).

Theorem 3 (K. Dohmen, A. Pönitz and P. Tittman, 2003)
This gives us a polynomial P (G, k1, k) in k1 and k.
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Hypergraph colorings, I

Given hypergraph H = (V, E) with E ⊂ ℘(V ), and a set of λ colors [λ]. Let
f : V → [λ].

• f is a weak hypergraph coloring, if for each e ∈ E with at least two
vertices, there are u 6= v and u, v ∈ e with f(u) 6= f(v).

• f is a strong hypergraph coloring, if for each e ∈ E and for all u, v ∈ e
with u 6= v we have f(u) 6= f(v).

• f is a conflict free hypergraph coloring, if f is a weak hypergraph
coloring and for each e ∈ E there is u ∈ e such that for all v ∈ e, v 6= u we
have f(v) 6= f(u).

This was introduced in Even, G., Lotker, Z., Ron, D., and Smorodinsky, S. (2003),

K. Aardal, S. van Hoesel, A. Koster, C. Mannino, and A. Sassano (2003),

cf. also J. Pach, E. Tardos, (2009)
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Hypergraph colorings, II

Let χh−weak(H, λ), χh−strong(H, λ) and χh−cf(H, λ), denote the number of weak,
strong and conflict free hypergraph colorings of G with λ colors, respectively.

Theorem: The counting functions

(i) χh−weak(H, λ),

(ii) χh−strong(H, λ) and

(iii) χh−cf(H, λ),

are hypergraph polynomials in λ.

Proof: For (i) and (ii) one can mimick Birkhoff’s proof for graphs.

We shall give a uniform proof of these statements later on.

15



Logical Methods in Combinatorics, 236605-2009/10 Variations on colorings

Hypergraph colorings, III

Given hypergraph H = (V, D, E) with two kinds of hyperedges, D, E ⊂ ℘(V ),
and a set of λ colors [λ]. Let f : V → [λ].

f is a strong/weak mixed hypergraph coloring, if

• for (V, E) the function f is a strong/weak hypergraph coloring, and

• for every d ∈ D and for every u, v ∈ d we have f(u) = f(v).

Theorem: The number χmixed(H, λ) of mixed hypergraph colorings with λ
colors is a polynomial in λ.

Proof: This was shown in

Vitaly I. Voloshin

Coloring Mixed Hypergraphs: Theory, Algorithms and Applications, AMS 2002

Our uniform proof applies also to this case.
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Digression:

Typical theorems
about the chromatic polynomial

Main reference:

[DKT] F.M. Dong, K.M. Koh and K.L. Teo
Chromatic polynomials and the chromaticity of graphs
World scientific, 2005
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Expressive power of χ(G, λ), I

We denote by k(G) the number of connected components, b(G) the number
of blocks (2-connected components), and χ(G) the chromatic number of G,
respectively.

Theorem 4 (DKT, 3.2.1.)
Let G1, G2 be two graphs with χ(G1, λ) = χ(G2, λ). Then

(i) V (G1) = V (G2) and E(G1) = E(G2).

(ii) χ(G1) = χ(G2).

(iii) k(G1) = k(G2), in particular G1 is connected iff G2 is connected.

(iv) b(G1) = b(G2), in particular G1 is 2-connected iff G2 is 2-connected.

(v) G1 is bipartite iff G2 is bipartite.
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Expressive power of χ(G, λ), II

We denote by nH(G) and iH(G) the number of subgraphs and induced sub-
graphs of G, respectively, which are isomorphic to H.
Kk is the clique (complete graph) on k vertices. Ck is the cycle on k vertices.
The girth g(G) is the smallest k such that nCk

(G) 6= 0.

Theorem 5 (DKT, 3.2.1.)
Let G1, G2 be two graphs with χ(G1, λ) = χ(G2, λ). Then

(i) nC3
(G1) = nC3

(G2)

(ii) g(G1) = g(G2).

(iii) iC4
(G1) − 2nK4

(G1) = iC4
(G2) − 2nK4

(G2)

(iv) nCk
(G1) = nCk

(G2), provided g = g(G1) = g(G2) ≤ k ≤ ⌈3g
2
⌉ − 2
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Normal forms of χ(G, λ), I: Power form

As χ(G, λ) is a polynomial, we can write it as

χ(G, λ) =

|V (G)|
∑

i

ai(G)λi

in power form.

For the disjoint union we note that

Proposition 6

χ(G1 ⊔ G2, λ) = χ(G1, λ) · χ(G2, λ).

Question: Is there a combinatorial interpretation of the ai(G) ?
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Normal forms of χ(G, λ), II: Factorial form

We define λ(i) = λ · (λ − 1) · . . . · (λ − i + 1).

We write χ(G, λ)

χ(G, λ) =

|V (G)|
∑

i

bi(G)λ(i)

There is a combinatorial interpretation of bi(G):

Theorem 7 bi(G) is the number of partitions of V into
i non-empty independent sets.
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Normal forms of χ(G, λ), II: Factorial form (continued)

We define a an operation ◦ on the λ(i) by λ(i) ◦ λ(j) = λ(i+j) and extend it
naturally to polynomials in λ(i).

The join of two graphs G1, G2, G1 ⊲⊳ G2,
is obtained by taking the disjoint union and
adding all the edges between V (G1) and V (G2).

Theorem 8

χ(G1 + G2, λ) =





|V (G)|
∑

i

ci(G1)λ(i) ◦

|V (G)|
∑

i

ci(G2)λ(i)




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Normal forms of χ(G, λ), III: Binomial Form

We note that
λ(i)

i!
=

(

λ
i

)

.

We write χ(G, λ)

χ(G, λ) =

|V (G)|
∑

i

ci(G)
(λ

i

)

There is a combinatorial interpretation of ci(G):

Theorem 9 ci(G) is the number of proper colorings of G with exactly i colors.

Corollary 10 bi(G)
i!

= ci(G)

Exercise: Give a direct proof of the corollary!
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Planar graphs revisited

Theorem 11 (P.J. Heawood, 1890)
Every planar graph is 5-colorable. Hence χ(G,5) 6= 0 for G planar.

Theorem 12 (G. Birkhoff and D. Lewis, 1946)
χ(G, a) 6= 0 for G planar and a ∈ R, a ≥ 5.

Note that this is much stronger than the 5-color theorem.

Theorem 13 (K. Appel and W. Haken, 1977)
Every planar graph is 4-colorable. Hence χ(G,4) 6= 0 for G planar.

Problem 14
Find an analytic proof of the 4-color theorem.

Conjecture 15 (G. Birkhoff and D. Lewis, 1946)
For G planar, there are no real roots of χ(G, a) for 4 ≤ a ≤ 5.
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Real roots of χ(G, λ)

We note that χ(G,0) = 0 always, and χ(G,1) = 0 any graph with at least
one edge.

Theorem 16 (D. Woodall, 1977) Let G be any graph.

• There are no negative real roots of χ(G, λ).

• There are no real roots of χ(G, λ) in the open interval (0,1).

Theorem 17 (B. Jackson, 1993)
• There are no real roots of χ(G, λ) in the semi-open interval (1, 32

27
].

• For any ǫ > 0 there is a graph Gǫ such that χ(Gǫ, λ) has a root in
(32
27

, 32
27

+ ǫ).

Theorem 18 (S. Thomassen, 1997) For any real numbers a1, a2 with
32
27

≤ a1 < a2 there exists a graph G such that χ(G, λ) = 0 for some a ∈ (a1, a2).
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Subgraph expansions

Let G be a graph with k(G) connected components.
Let S ⊂ E(G) and denote by 〈S〉 the subgraph generated by S in G.

• The rank r(G) is defined as r(G) =| V (G) | −k(G).

• The corank s(G) is defined as s(G) =| E(G) | − | V (G) | +k(G).

• The rank polynomial of a graph is defined by

R(G;X, Y ) =
∑

S⊆E(G)

Xr(〈S〉)Y s(〈S〉)

Theorem 19 (H. Whitney, 1932)

(i) χ(G, X) =
∑

S⊆E(G)(−1)|S|X |V (G)|−r(〈S〉)

(ii) χ(G, X) = X |V |R(G,−X−1,−1)
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The complexity of the chromatic polynomial, I

Let us look at the chromatic polynomial χ(G, λ).

• χ(G, λ) has integer coefficients,
and for λ ≥ 0 non-negative values,
hence evaluating it at λ = a, a ∈ N is in ♯P.

• For a = 0,1,2 evaluating χ(G, λ) is in P.

• For integer a ≥ 3 evaluating χ(G, λ) is ♯P-complete.

• What about evaluating χ(G, λ) for λ = b with
b ∈ Z, b ≤ 0?
b ∈ R or b ∈ C?

Given evaluations of χ(G, λ) at | V (G) | +1 many points, we can compute the
coefficients of χ(G, λ) efficiently.
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The complexity of the chromatic polynomial, II

Theorem 20 (N. Linial, 1986)

For any two points a, b ∈ C − IN
there is a polynomial time algebraic reduction
from the evaluation of χ(G, a) to the evaluation of χ(G, b).

Hence they are all equally difficult.

Proof: We note that

χ(G ⊲⊳ Kn, λ + n) = nλ · χ(G, λ).

We use this to compute sufficently many points of χ(G, λ), and then use
Lagrange interpolation. Q.E.D.
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End of digression on typical theorems
about the chromatic polynomial
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Parametrized Numeric Graph Invariants
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Bounded numeric invariants

In graph theory it is often customary to look at numeric invariants which
bounded by a function b : G → IN.

• k(G): the number of connected components of G;
k(G, λ): the number of connected components of G of size λ.

• cl(G): the number of cliques of G;
cl(G, λ): the number of cliques of G of size λ.

• indep(G, λ): the number of independent sets of G of size λ.

• v(G, λ): the number of vertex covers of G of size λ.

• m(G, λ): the number of matchings of G of size λ.

Obviously, these functions are not polynomials in λ,
because they vanish for large enough λ.
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Pngi’s: Parametrized numeric graph invariants

Let K denote a class of finite (colored) graphs
(hypergraphs, or structures over some fixed vocabulary).

A parametrized numeric graph invariant (pngi) is a function α(G, λ)

K × IN → IN

such that, for each λ ∈ IN and G1 isomorphic to G2

we have that α(G1, λ) = α(G2, λ).

Let α(G, λ) and Let β(G, λ) be two pngi’s.
Clearly, we can form new such invariants by forming

• α(G, λ) + β(G, λ), α(G, λ) · β(G, λ), 2α(G,λ)

• If α(G, λ) = 0 for all large enough λ,

β(G, λ) =
∑

n

α(G, n)λn

If α(G, λ) ∈ Z[λ] is a polynomial, we speak of graph polynomials.
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The behaviour of parametrized numeric graph invariants

The pngi’s of the form α(G, λ) we have seen so far show the following be-
haviour:

• For each graph there is bG ∈ N such that α(G, λ) ≤ λbG.

• For each n ∈ IN we have α(G, n) ∈ IN.

• There is nG ∈ IN such that
either α(G, n) = 0 for all n ≥ nG

or α(G, n) is not decreasing for all n ≥ nG.
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Coloring Properties

A Model-Theoretic View
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Enter logic: Model theory

Our framework is as follows:

• Let M be a finite τ-structure with universe M .

• Let k ∈ IN and [k] = {0, . . . , k − 1}.

• Let Mk be the two-sorted τ ′ structure 〈M, [k]〉.

• Let F be an r-ary function symbol with interpretations in Mk of the form
f : M r → [k].
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Coloring properties, I

We denote relation symbols by bold-face letters, and their interpretation by the

corresponding roman-face letter.

Let τR = τ1∪{R}, where is R is a two-sorted relation symbol of arity r = s+ t.

A class of τR- structures P is a coloring property if

Extension Property: Let M be fixed. Then Mk is a substructure of Mn for
each n ≥ k. Let R0 be a fixed relation on Mk. If 〈Mk, R0〉 ∈ P and n ≥ k
then also 〈Mn, R0〉 ∈ P.

Isomorphism Property: P is closed under τR-isomorphisms.

This implies the permutation property:

Permutation Property: Let R ⊆ Ms× [k]t be a fixed relation on Mk. For π is a permutation
of [k], We define Rπ = {(m̄, π(ā)) ∈ M×[k]t : (m̄, ā) ∈ R}.

Then 〈Mk, R〉 ∈ P iff 〈Mk, Rπ〉 ∈ P.

We refer to R and its interpretations R as coloring predicates.
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Coloring properties, II

(i) A coloring property is bounded, if for every M there is a number NM

such that for all k ∈ IN the set of colors

{x ∈ [k] : ∃ȳ ∈ MmR(ȳ, x)}

has size at most NM .

(ii) A coloring property is range bounded, if its range is bounded in the
following sense: There is a number d ∈ IN such that for every M and
ȳ ∈ Mm the set {x ∈ [k] : R(ȳ, x)} has at most d elements.

Clearly, if a coloring property is range bounded, it is also bounded.
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Coloring properties, III

Let φ be a sentence of some logic L.

L could be first order logic, second order logic, infinitary logic, or some fragment thereof.

(i) φ(R) is a coloring formula, if the class of its models, which are of the
form of the form 〈M, [k], R〉, is a coloring property.

(ii) Let P be a bounded coloring property. A relation RM ⊂ Mm × [k] is a
generalised k − P-coloring if 〈Mk, R〉 ∈ P.

(iii) We denote by

χP(M, k)

the number of generalised k −P-coloring R on M.

If P is defined by φ(R) we also write

χφ(R)(M, k).
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Generalized multi-colorings, I

To construct also graph polynomials in several variables,
we extend the definition to deal with several color-sets,
and also call them generalized chromatic polynomials.

Let M be a τ-structure with universe M .

We say an (α + 1)-sorted structure

〈M, [k1], . . . , [kα], R〉

for the vocabulary τα,R with

R ⊂ Mm × [k1]
m1 × . . . × [kα]

mα

is a generalized coloring of M for colors k̄α = (k1, . . . , kα).

By abuse of notation,

mi = 0 is taken to mean the color-set ki is not used in R.
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Generalized multi-colorings, II

A class of generalized multi-colorings P is a coloring property if it satisfies
the following conditions:

Isomorphism property : P is closed under τα,R-isomorphisms.

Extension property : For every M, k1 ≤ k′
1, . . . , kα ≤ k′

α, and R,

if 〈M, [k1], . . . , [kα], R〉 ∈ P then 〈M, [k′
1], . . . , [k

′
α], R〉 ∈ P.

Non-occurrence property : Assume

R ⊂ Mm × [k1]
m1 × . . . × [kα]

mα

with mi = 0, and

〈M, [k1], . . . , [kα], R〉 ∈ P,

then for every k′
i ∈ IN,

〈M, [k1], . . . , [k
′
i], . . . , [kα], R〉 ∈ P.

The boundedness conditions are the obvious adaptions.
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Main result, A

Generalized chromatic polynomials
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Main result, A

THEOREM A: If φ(R) is an L-sentence and defines a bounded

coloring propert then

χφ(M, k1, . . . kα) ∈ Z[k1, . . . kα]

is indeed a polynomial in k1, . . . kα.

We shall call polynomials obtained like this L−MG-polynomials.

MG-polynomial for model theoretic growth polynomial

(as studied by B. Zilber in his work on categoricity).

Corollary: Taking L to be (monadic) second order logic,

this covers all the previous examples,

and allows us to construct infinitely many more MG-polynomials.
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A theorem with an elementary generic proof

suggested simplification by A. Blass

We prove something a bit stronger (for the case of α = 1, i.e., one color set):

THEOREM A’: For every M the number χφ(R)(M, k) is a polynomial in k
of the form

d·|M |m
∑

j=0

cφ(R)(M, j)
(k

j

)

where cφ(R)(M, j) is the number of generalised k − φ-colorings R with a fixed
set of j colors.

In the light of this theorem we call χφ(R)(M, k)

also a generalised chromatic polynomial.

43



Logical Methods in Combinatorics, 236605-2009/10 Main result, A

Proof

We first observe that any generalised coloring R uses at most

N = d· | M |m

of the k colors.

For any j ≤ N , let cφ(R)(M, j) be the number of colorings, with a fixed set of
j colors, which are generalised vertex colorings and use all j of the colors.

Next we observe that any permutation of the set of colors used is also a
coloring.

Therefore, given k colors, the number of vertex colorings that use exactly j

of the k colors is the product of cφ(R)(M, j) and the binomial coefficient
(

k
j

)

.

So

χφ(R)(M, k) =
∑

j≤N

cφ(R)(M, j)
(k

j

)

The right side here is a polynomial in k, because each of the binomial coef-

ficients is. We also use that for k ≤ j we have
(

k
j

)

= 0. Q.E.D.
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Does the converse of Theorem A hold?

Let G be a graph with |V (G)| = n, P ⊆ V , and f : V (G) → [k] such that

• P = ∅ or P = V ;

• If P = ∅ then f is onto.

• If P = V then f is not onto.

Let Φ(P, f) be the formula expressing this. χΦ(P,f) counts the pairs (P, f).
χΦ(P,f)(G) = kn counts the pairs (P, f) and is a polynomial in k.

Clearly, if P = ∅, Φ(P, f) does not have the extension property.

Conclusion: There are formulas without the extension

property which have polynomials as their counting functions.

But Φ(P, f) counts all functions f : V → [k], which is the counting function

of a different formula (not equivalent) which has the extension property.
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How to formulate a converse?

• We shall introduce a notion of definability of graph polynomials, where
the domain of summation is definable in some formalism.

• We shall show that every definable graph polynomial is the counting
function of bounded coloring property definable in the corresponding
formalism.
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Graph polynomials
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Prominent graph polynomials

• The chromatic polynomial (G. Birkhoff, 1912)

• The Tutte polynomial and its colored versions
(W.T. Tutte 1954, B. Bollobas and O. Riordan, 1999);

• The characteristic polynomial
(T.H. Wei 1952, L.M. Lihtenbaum 1956, L. Collatz and U. Sinogowitz 1957)

• The various matching polynomials (O.J. Heilman and E.J. Lieb, 1972)

• Various clique and independent set polynomials (I. Gutman and F. Harary 1983)

• The Farrel polynomials (E.J. Farrell, 1979)

• The cover polynomials for digraphs (F.R.K. Chung and R.L. Graham, 1995)

• The interlace-polynomials
(M. Las Vergnas, 1983, R. Arratia, B. Bollobás and G. Sorkin, 2000)

• The various knot polynomials (of signed graphs)
(Alexander polynomial, Jones polynomial, HOMFLY-PT polynomial, etc)

48



Logical Methods in Combinatorics, 236605-2009/10 Graph polynomials

Application of graph polynomials

There are plenty of applications of graph polynomials in

• Graph theory proper

• Knot theory

• Chemistry

• Statistical mechanics

• Quantum physics

• Quantum computing

• Biology
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Using our framework: The matching polynomial

We want to show that the matching polynomial can be obtained in our frame-
work.

• For a graph G = (V, E) we form a 4-sorted structure

M(G) = 〈V, E, ℘(V ), ℘(E),∈, RG〉

where ∈ is the membership relation between elements of V and ℘(V ),
and elements of E and ℘(E) respectively,
and RG is the incidence relation between vertices and edges.

• M(G)k = 〈V, E, ℘(V ), ℘(E),∈, RG, [k]〉

• The formula φmatching(m, f) now says:

(i) m ∈ ℘(E) is a matching.

(ii) f is a function f : m → [k].
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Using our framework: The matching polynomial, contd

We replace k by λ.

Now we put ḡ(G, λ) to be the number of pairs (m, f) such that

〈M(G)λ, m, f〉 |= φmatching(m, f)

• For fixed m there are λ|m| many f ’s satisfying the formula φmatching(m, f).

• For matchings m with | m |= j we get m(G, j)λj many such pairs.

• Hence we get

ḡ(G, λ) =
∑

j

m(G, j)λj =
∑

M :M⊆E
M is a matching

∏

e:e∈M

λ = g(G, λ)
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