
Logical Methods in Combinatorics, 236605-2009/10 Lecture 9

Lecture 9

Last lecture:

• An alternative proof of Schützenberger’s Theorem

• Detailed discussin of DU-index.
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Congruences for density functions

• The Little Fermat Theorem: A combinatorial proof

• Gessel’s Theorem: Bounded degree Gessel classes of (directed) graphs

• Classes of relational structures of bounded degree and finite DU-index
(Fischer-M., 2003).

• The Specker Blatter Theorem: Classes of relational structures with
relations of arity 2 and finite Specker index.
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Fermat’s Theorem: ap = a mod p

A combinatorial proof

• Look at the wheel Wp with p a prime. The edges connecting the center
to the circle are called spikes.

• Let f : Spikes → [a] a coloring of the spikes with a colors.
There are ap such colorings.

• Two colorings f1 and f2 are equivalent of the wheel can be turned from
an f1 coloring to an f2 coloring.

• All monochromatic colorings form singleton equivalence classes. There
a such classes.

• All other equivalence classes have p members.

• Hence ap − a ≡ 0 (mod p). Q.E.D.
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Gessel’s Theorem (1984)

Theorem 1 (I. Gessel 1984)

If C is a Gessel class of directed graphs of degree at most d with density
function dC(n), then

dC(m + n) ≡ dC(m) · dC(n) (mod
m

ℓ
)

where ℓ is the least common multiple of all divisors of m not greater than d.
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Gessel’s Theorem (reformulated as linear modular recurrence)

Theorem 2 (I. Gessel 1984)

If C is a Gessel class of (directed) graphs of degree at most d, then for every
m there is a q = q(d, m) ∈ IN such that

fC(n + q) ≡

q−1
∑

i=0

bi · fC(n + i) (mod m)

with b0 = fC(q) and bi = 0 : 1 ≤ i ≤ q − 1.

Furthemore, q = d!m.

Exercise: Can you make q smaller?
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Orbit of a structure

Let G ⊆ Sn be a subgroup of the full permutation group of [n] = {0, . . . , n−1}.

For a τ-structure A over the universe A = [n]

• the orbit OrbG(A) is the set of different labeled structures σ(A) obtained
using relabelings from G, i.e.

OrbG(A) = {σ(A) : σ ∈ G}

• If G = Sn, we omit it and write Orb(A)

• AutG(A) is the set of τ-automorphisms of A which are in G.

As AutG(A) ⊆ G is a subgroup, we have the fundamental identity

Proposition 3
For a τ-structure A over the universe A = [n] and G a subgroup of Sn we have

| AutG(A) | · | OrbG(A) |=| G |
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Gessel’s Lemma

Here the group is the cyclic group Zm of cyclic permutations of [m].

[m] is the set {1, . . . , m}. m + [n] is the set {m + 1, . . . , m + n}.

Let G = (V (G), E(G)) be a graph and A, B ⊆ V (G).

A is adjacent to B if there is an edge between A and B.

Lemma 4
Let G a graph on [m + n] with degree at most d.
Let ℓ be the least common multiple of all divisors of m not greater than d.

Assume in G the sets [m] and m + [n] are adjacent.
Then OrbZm

(G) is a multiple of m
ℓ
.

Proof: Suppose (i, j) ∈ E(G) with i ∈ [m] and j ∈ m + [n].

Let g ∈ AutZm(G). Then (g(i), g(j)) = (g(i), j) ∈ E(G).

So | AutZm(G) |≤ d, and | AutZm(G) | divides ℓ.

Now the lemma follows from Proposition 3. Q.E.D.
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Proof of Gessel’s Theorem (Theorem 1)

Step 1: As Gessel classes are closed under components,
dC(m) · dC(n) counts the number of graphs G on [m + n]
where there is no edge between [m] and m + [n].

Step 2: dC(m + n) − dC(m) · dC(n) counts the number of graphs
for which Gessel’s Lemma applies.
Therefore dC(m + n) − dC(m) · dC(n) ≡ 0 (mod m

ℓ
) Q.E.D.
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Bounded DU-index and bounded degree

Theorem 5 (E. Fischer and J.A. Makowsky, 2002)
Let P be a property of τ-structures, with finite DU-index and all its members
of bounded degree d. Then

• dP(n) satisfies a modular recurrence relation for every m.

• Furthermore, if additionally all the models in P are connected,
(hence the DU-index is 2,
the function fP satisfies the trivial recurrence relations for every m.

Example EQ2CLIQUES(A) shows that bounded degree cannot be dropped,
even for DU-index 2 (and connected structures).

For structures of unbounded degree one needs a stronger assumption, the
finiteness of the Specker-index, to be discussed later (if time permits).
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Density functions and orbits

Let P be a class of τ-structures and
Pn the class of structures with universe [n] in P.

We denote by Iso(P) the τ-isomorphims classes of P and denote its equiva-
lence classes by [A]P.

The orbits Orb(A) and the density function dP(n) are related by the following
formula:

dP(n) =
∑

[A]P∈Iso(Pn)

Orb(A)

To show that dP(n) = 0 (mod m)
it suffices to show that for each A ∈ Pn

we have Orb(A) = 0 (mod m).

10



Logical Methods in Combinatorics, 236605-2009/10 Lecture 9

Density functions and orbits via a subgroup

Let G be subgroup of Sn.
G induces an equivalence relation on P:

A ∼G A
′ iff there is σ ∈ G with σ(A) = A

′

We denote by P/G the set of these equivalence classes in Pn and denote its
equivalence classes by [A]G.

Lemma 6
The orbits OrbG(A) and the density function dP(n) are related by the following
formula:

dP(n) =
∑

[A]G∈Pn/G

OrbG(A)

To show that dP(n) = 0 (mod m) it suffices to show that for each A ∈ Pn

we have OrbG(A) = 0 (mod m).
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Degrees and orbits

Lemma 7
Let A = [n] and B ⊆ A and a ∈ A − B.

Let NB
a be the set of neighbors of a which are in B.

• Let SB ⊆ Sn be the subgroup of permutations σ such that σ(a) = a for
every a ∈ A − B.

• Let GNa

B ⊆ SB be the subgroup of SB which maps NB
a onto itself.

Then | OrbSB
(A) | is divisible by

(

|B|
|NB

a |

)

.

Proof:

| GNa

B | ·
( | B |

| NB
a |

)

=| SB |=| AutSB
(A) | · | OrbSB

(A) |=

| OrbGNa
B
(A) | · | AutGNa

B
(A) | ·

( | B |

| NB
a |

)

But we have AutGNa
B
(A) = AutSB

(A), hence the result. Q.E.D.
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Choosing special values

We fix m, the modulus, and d, the degree.

We put c = d! · m.

Lemma 8

For every t ∈ N and 0 < d1 ≤ d we have that m divides
(

t·c
d1

)

.

Proof: Write out the definitions.
(t · c

d1

)

=
(t · d! · m

d1

)

=
(t · d! · m)!

(t · d! · m − d1)! · d1!
=

t · m · d! ·

∏d1−1
i=1 (t · m · d! − i)

d1!
=

t · m · d!

d1 · (d1 − 1)!
·

d1−1
∏

i=1

(t · m · d! − i) =
t · m · d!

d1

·

d1−1
∏

i=1

(t · m · d! − i)

i

Q.E.D

13



Logical Methods in Combinatorics, 236605-2009/10 Lecture 9

Connected structures, I

Recall: m is the modulus, and d the degree. c = d! · m.

Lemma 9
For every t ∈ N and every connected A with | A |≥ t ·c+1, and for every B ⊆ A
with | B |= t · c, we have that | OrbSB

(A) | is divisible by m.

Proof: For t, A, B as required, there is a ∈ A − B with at da neighbors in B,
and 1 ≤ da ≤ d.

By Lemma 7 | OrbSB
(A) | is divisible by

(

|B|
da

)

.

Using Lemma 8 with | B |= t · c and 1 ≤ da ≤ d, we get,
it is also divisible by m.
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Connected structures, II

Now we use Lemma 6 with G = SB and | B |= t · c.

But this means that B has to be fixed independently of the
particular structure A in Pn.

However, as all the A ∈ Pn are connected, there is always an a ∈ A−B which
has neighbors in B.

Hence, by Lemma 9, for every A ∈ Pn

| OrbSB
(A) | is divisible by m.

Q.E.D.

Remark: We did not use a particular P of finite DU-index. We only used
connectedness (which implies that the DU-index is 2).
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Disconnected structures, I

Let P be class of structures of bounded degree d and finite D-index α.

Let Di, i ≤ α be the DU-equivalence classes. with respect to P.

• All the structures of degree bigger than d are in one class, say D0.

• P is also one of the classes.
(Allowing B to be empty)

m and d are still fixed and c = m · d!.
We look now at structures with universe [n].

Let t ∈ N and B = [t · c].

• Let D0
i be those structures in Di for which there is a ∈ A − B which is

connected to some b ∈ B, and

• D1
i be those structures in which no such a exists.
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Disconnected structures, II

We want to compute di(n) = dDi
and dj

i(n) = dDj

i
modulo m

for each i ≤ α and j = 0,1.

Clearly, di(n) = d0
i (n) + d1

i (n).

For A ∈ D0
i we apply Lemma 7. Let da be the number of neighbors of a in B.

Hence, OrbSB
(A) is divisible by

(

t·c
da

)

.

By Lemma 8 OrbSB
(A) is divisible by m,

hence Orb(A) and d0
i (n) are divisible by m.

Conclusion:

di(n) = d0
i (n) + d1

i (n) = d1
i (n) (mod m)
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Disconnected structures, III

For A ∈ D1
i we note that A can be uniquely written as

A1 ⊔ A2

with universes A1 = [t · c] and A2 = {t · c + 1, . . . , n}.

Fact: The equivalence class [A1 ⊔ A2] is uniquely determined
by the equivalence classes [A1] and [A2].

Now we put t(n) = ⌊n−1
c
⌋ and n̂ = n (mod c).

Conclusion: We get, summing over all possibilities

di(n) =

α
∑

j=1

µi,j,m,n̂dj(t(n)) (mod m)
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Disconnected structures, IV

This gives us (α × α)-matrices

M(m, n̂) = (µi,j,m,n̂)i,j

Let d̄(n) = (d1(n), . . . , dα(n))tr.

For each n̂ ∈ Zc we get now the relationship

d̄(n) = M(m, n̂) · d̄(t(n)) (mod m)

Using the characteristic polynomials pm,n̂(λ) of all the matrices M(m, n̂),
we can now compute the
required linear recurrence modulo m. Q.E.D.
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Graphs of unbounded degree, I

The case of graphs of unbounded degree has several complications.

• Finite DU-index of P does not suffice.
We have to make a stronger assumtion: Finite Specker index.

• The restriction to relations of arity at most 2 is essential.

• The proof, although similar, is considerably more complicated.
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Specker index, survey

• To define the Specker index of a graph property P one defines a binary
operation subst(H, a, G) where in the pointed graph H = (VH, EH, a) the
vertex a is substituted by G = (VG, EG).

• DU(P)-equivalence is now replaced by subst(P)-equivalence:
G1 ∼P G2 iff for all H and a ∈ VH we have

subst(H, a, G1) ∈ P iff subst(H, a, G2) ∈ P

• The Specker index of P is the number of subst(P)-equivalence classes.

Observation:

• The DU-index of P is always smaller or equal The Specker-index of P.

• MSOL-definability of P implies finite Specker index.
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Pointed structures

A pointed R̄-structure is a pair

(A, a)

with

• A an R̄-structure and

• a an element of the universe A of A or

• a an element not in A.

In (A, a), we speak of the structure A and the context a.
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Substitution of structures, binary case

Given two pointed structures (A, a) and (B, b)
over a vocabulary which contains relation symbols of arity at most 2,

The pointed structure (C, c) = Subst((A, a), (B, b)) is defined by:

• The universe of C is A ∪ B − {a}.

• The context c is given by b, i.e., c = b.

• For R ∈ R̄ of arity 1, RC is defined by RC = (RA ∩ (A − {a})) ∪ RB.

• For R ∈ R̄ of arity 2, RC is defined by RC = (RA ∩ (A − {a})2) ∪ RB ∪ I
where

I = {(a, x) ∈ A × B : (a, b) ∈ RA}

∪{(x, a) ∈ B × A : (b, a) ∈ RA}

∪{(x, x) ∈ B × B : (a, a) ∈ RA}
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Specker index, definition

Let C be a class of τ = R̄-structures, where τ contains only relation symbols
of arity at most 2.

We define an equivalence relation between R̄-structures depending on C.

(i) A1 and A2 are equivalent with respect to C,

A1 ∼Su(C) A2

if for every pointed structure (S, s) we have that

Subst((S, s), A1) ∈ C iff Subst((S, s), A2) ∈ C

(ii) The Specker index of C is the number of equivalence classes of ∼Su(C).
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Specker index, properties

Proposition 10 (Specker)

Let C be a class of τ = R̄-structures, where τ contains only relation symbols
of arity at most 2.

(i) If C is MSOL-definable then C has finite Specker index.

(ii) There are continuum many classes of finite Specker index.

In fact, Cycle(A) has Specker index at most 5.

If we allow additionally modular counting quantifiers (i.e use the logic CMSOL),
definability still implies finite Specker index.

The class of Eulerian graphs is CMSOL-definable but not MSOL-definable.

25



Logical Methods in Combinatorics, 236605-2009/10 Lecture 9

Substitution of structures, general case

We can analyse substitution in a more general contex:

Given two pointed relational τ-structures (A, a) and (B, b) without restrictions
on the arity of the relation symbols in τ .

We form a new pointed structure

(C, c) = Subst((A, a), (B, b))

defined as follows:

• The universe of C is A ∪ B − {a}.

• The context c is given by b, i.e., c = b.

• For R ∈ R̄ of arity r, RC is defined by

RC = (RA ∩ (A − {a})r) ∪ RB ∪ I

where for every tuple in RA which contains a, I contains all possibilities of tuples obtained
by replacing these occurrences of a with (identical or differing) members of of B.

Analize the properties of this new substitution
and its corresponding Specker index.

You can try variations on the definition of I.
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Graphs of unbounded degree, II

Theorem 11 (Specker and Blatter, 1981)

Let C be a class of τ = R̄-structures, such that

(i) τ contains only relation symbols of arity at most 2.

(ii) C has finite Specker index.

Then dC satisfies a linear modular recurrence relation.

********************

The full proof of the Specker-Blatter Theorem is left as project.

So is Fischer’s counterexample of arity 4.
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The Specker-Blatter Theorem

and Hamiltonian graphs

Let HAM be the class of graphs with universe [n] which do have a Hamiltonian
cycle, and let HAM(d) be those graphs in HAM which have degree at most
d.

• Ham has infinte Specker index, hence is not MSOL-definable.

Use Starn with center a and note that Subst(Starm, a, En) = Km,n,
which is hamiltonian iff m = n.

Note for non-definability we used a transduction mapping anbm on words to Km, n, too.

• Is HAM(d) MSOL-definable?

• As HAM(d) is connected its DU-index is 2. What is its Specker index?

• Do dHAM and dHAM(d) satisfy linear modular recurrences?

• Try to compute dHAM and dHAM(d).
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Research problems stemming from

the Specker-Blatter Theorem

There are many unresolved questions here, suitable for research.

• Is the Specker-Blatter Theorem true for arity 3?

• Can we strengthen the assumption on finite Specker index such that
the Specker-Blatter Theorem would work for arbitrary finite relational
vocabularies?

• subst is an MSOL-smooth operation on vocabularies with relation symbols
of arity at most 2. The same holds for fuse.

Explore the relationship between the operation subst and fuse and the
geberal notion of patch-width.

• Analize the relationship between recognizable classes of structures in the
sense of Courcelle, and finite Specker index (and related notions).
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