
Logical Methods in Combinatorics, 236605-2009/10 Lecture 8

Lecture 8

Last lecture:

• We discussed the density function of regular languages with examples.

• We formulated and proved Schützenberger’s Theorem, stating that reg-
ular languages have density functions which satisfy a linear recurrence
relation over Z.

• We discussed density fuctions of relational structures.
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Logical Methods in Combinatorics, 236605-2009/10 Lecture 8

Lecture 8

This lecture:

• We formulate and prove an alternative to Schützenberger’s Theorem,
using MSOL rather than regular languages.

• We continue our discussion of density fuctions of relational structures.
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Logical Methods in Combinatorics, 236605-2009/10 Lecture 8

An alternative proof Schützenberger’s Theorem

using Hintikka sentences:

an Exercise

Theorem: Let L be an MSOL-definable set of words.
Then dL(n) satisfies a linear recurrence relation.

Proof:

• Assume L is defined by φ. Let hα, α ≤ γ be all the Hintikka sentences
with quantifier rank q = qr(φ). φ =

∨

α∈A hα.

• Let Lα be the languages associated with hα, α ≤ γ, and dα the corre-
sponding density functions.

• Define a matrix M with mα,β = 1 if a words satisfying hα has a one letter
extensions satisfying hβ, and mα,β = 0 otherwise.

• Use this matrix to compute all the dα’s simultaneously.
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• Apply Caley’s Theorem. Q.E.D.

Question: What can we say about the recurrence depth?
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Theorem C revisited, I

Let P be a graph property which is MSOL-definable. and let dP(n) be its
density function.

• (Specker and Blatter, 1981)
dP(n) satisfies modular recurrence relations for each m.

• (Specker and Blatter, 1981)
This remains true with several binary edge relations and unary predicates
on the vertices.

• (E. Fischer, 2003) Is false for an FOL-definable class with one quaternary
relation.
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Relations of bounded degree

Let A = 〈A, R̄〉 be a τ-structure.
We define a symmetric relation EA on A, and call 〈A, EA〉 the Gaifman-graph
of A.

• Let a, b ∈ A. (a, b) ∈ EA iff there exists a relation R ∈ R̄ and some ā ∈ R
such that both a and b appear in ā
(possibly with other members of A as well).

• For any element a ∈ A, the degree of a is the number of elements b 6= a
for which (a, b) ∈ EA.

• We say that A is of bounded degree d
if every a ∈ A has degree at most d.

• We say that A is connected
if its Gaifman-graph is connected.

• For a class of structures P we say it is of bounded degree d (resp. con-
nected) iff all its structures are of bounded degree d (resp. connected).

5



Logical Methods in Combinatorics, 236605-2009/10 Lecture 8

Theorem C revisited, II

Theorem 1 (E. Fischer and J.A. Makowsky, 2002)
Let P be a property of τ-structures, which is MSOL-definable.
Let dP(n) be its density function.

• If P is of bounded degree d,
the function dP(n) satisfies a modular recurrence relation for every m.

• Furthermore, if additionally all the models in P are connected,
the function dP satisfies the trivial recurrence relations for every m.

We have no restrictions on τ , besides not allowing function symbols,

Theorem C and Theorem 1 remain true if we extend MSOL and allow modular
counting quantifiers.
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Ingredients of the proof of Theorem C

• The DU-index of a class of structures.

• The Specker-index of a class of structures.

• The DU-index of a class of structures P is always
smaller or equal to the Specker index.

• Finite DU-index of a class of τ-structures of bounded degree implies
modular recurrence relations for all m.

• If τ contains only relation symbols of arity at most 2, finite Specker-index
of a class of τ-structures. implies modular recurrence relations for all m.

• MSOL-definability of P (even CMSOL-definability)
implies finite DU-index.

• If τ contains only relation symbols of arity at most 2,
the definability assumption implies finite Specker index.
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DU-index of P

We denote by A ⊔ B the disjoint union of two τ-structures A and B.

We also count the graph on the empty set of vertices as a graph.

Let P be a class of τ-structures.

(i) We say that A1 is DU(P)-equivalent to A2,
denoted by A1 ∼DU(P) A2,
if for every τ-structure B, A1 ⊔ B ∈ P if and only if A2 ⊔ B ∈ P.

(ii) The DU-index of P is the number of DU(P)-equivalence classes.

(iii) A class of structures P is a Gessel class if for every A and B, A⊔B ∈ P
iff both A ∈ P and B ∈ P.
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Basics on the DU-index

• The class of forests is a Gessel class.

• If P is hereditary and closed under disjoint unions, it is a Gessel class.

• Every Gessel class has DU-index at most 2.

• If P is a class of connected graphs, P has DU-index at most 2, but is
not a Gessel class.

• If P1 and P2 have finite DU-index, so do P1 ∪ P2, P1 ∩ P2, and the
complement P̄1.
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Gessel’s Theorem (1984)

(Proof follows in the sequel)

Theorem 2 (I. Gessel 1984)

If C is a Gessel class of directed graphs of degree at most d with density
function dC(n) then

dC(m + n) ≡ dC(m) · dC(n) (mod
m

ℓ
)

where ℓ is the least common multiple of all divisors of m not greater than d.

In particular, dC(n) satisfies for every m ∈ N the linear recurrence relation

dC(n) ≡ a(m)dC(n − d!m) (mod m)

where a(m) = dC(d!m).
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DU-index and pebble games

We can use pebble games to prove:

Theorem 3

(i) If P is FOL-definable, it has finite DU-index.

(ii) If P is MSOL-definable, it has finite DU-index.

(iii) If P is CMSOL-definable, it has finite DU-index.
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Proof of Theorem 3

The proof uses several steps.
We do it for FOL, but for MSOL it works the same, using the corresponding
pebble game.

• If φ defines P and is of quantifier rank q, we look at the equivalence
classes ∼q

q.

• Using pebble games we show that, if for graphs G1, G2, H1, H2 with G1 ∼q
q

H1 and G2 ∼q
q H2 we also have G1 ⊔ G2 ∼q

q H1 ⊔ H2.

• Next we show that DU(P)-equivalence classes are closed under ∼q
q-equivalence.

• Counting non-equivalent FOL(τ)-formulas of quantifier rank q, we see
that there are only finitely many ∼q

q-equivalence classes.

• We conclude that there are only finitely many DU(P)-equivalence classes.
Hence P has finite DU-index.

Details on the blackboard.
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Many classes of finite DU-index.

Homework

There are only countably many classes of structures
definable by MSOL-formulas.

How many classes are there of finite DU-index?

(How many are there for which µ(P) = 1?)

Proposition 4 (Specker 2002)

There are continuum many classes of structures (closed under isomorphisms)
with finite DU-index.

Can we do this also for Gessel classes?
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Many classes of finite DU-index.

Solution to homework

There are only countably many classes of structures
definable by MSOL-formulas.

How many classes are there of finite DU-index?

Proposition 5 (After an idea of Specker, 2002)

(i) There are continuum many classes of structures (closed under isomor-
phisms) with DU-index ≤ 2.

(ii) There are continuum many Gessel classes.

14



Logical Methods in Combinatorics, 236605-2009/10 Lecture 8 and 9

Solution, I

Let Cn denote the cycle with n vertices.

• Let A ⊆ N, and Cycle(A) = {Cn : n ∈ A}.

• Prove that Cycle(A) has DU-index at most 2.

Hint: Use that all graphs of Cycle(A) are connected.

• There are continuum many sets A, each giving a different class Cycle(A).

We can play with this idea further.......
We can define silimarly Path(A), Clique(A), and even mix them.

Question: Can we do this also for Gessel classes?

Answer: The closure ClDU(Cycle(A)) of Cycle(A) under disjoint unions is a
Gessel class. For A, B ⊆ N, A 6= B we have ClDU(Cycle(A)) 6= ClDU(Cycle(B)).
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Compute dCycle(A)(n).

Questions:

• Compute dCycle(A)(n).

• For which A does it satisfy a recurrence relation?

• How does its recurrence relation modulo m depend on A and m?
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Compute dCycle(A)(n), continued

• For each n dCycle(A)(n) contains, up to (unlabeled) isomorphisms, at most
one graph.

• For Cn there are n! many permutations of the labels.

• A permuation π of the labels produces the same labeled structure Cn iff
π is an automorphism of Cn.

• There 2n such automorphisms (for n ≥ 3).

• Hence there are n!
2n

= (n−1)!
2

many labelings.

• Hence

dCycle(A)(n) =

{

(n−1)!
2

n ∈ A

0 else

which is a trivial modular recurrence, independently of A and for each m.
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Compute dPath(A)(n).

Path(A) is the class of graphs Pn for n ∈ A.

• Path(A) has DU-index 2, as all its members are connected.

• Path(A) is of bounded degree 2.

• We have

dPath(A)(n) =

{

n!
2

n ∈ A

0 else

as there are 2 automorphisms of Pn.

• dPath(A)(n) satisfies a trivial modular recurrence, independently of A.
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Compute dClique(A)(n).

Clique(A) is the class of graphs Kn for n ∈ A.

• Clique(A) has DU-index 2, as all its members are connected.

• Clique(A) is of unbounded degree (for A infinite).

• We have

dClique(A)(n) =

{

1 n ∈ A

0 else

as there are n! many automorphisms of Kn.

• dClique(A)(n) satisfies a trivial modular recurrence,
provided A is finite, co-finite, or the characteristic function of A ultimately
periodic.

If A = N it is constant to 1 which is rather simple, but still not trivial in
our sense.
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Compute dOneEdge(A)(n).

We denote by En the graph with n vertices no edges.
We denote by OEn the graph with n vertices and exactly one edge.
OneEdge(A) is the class of graphs OEn for n ∈ A.

• OneEdge(A) has DU-index 3.

To see this we analyse G1 ⊔ G2 ≃ OEn.
this is the case if either G1 ≃ OEm and G2 ≃ En−m or vice versa. This
gives three DU-classes.

• OneEdge(A) is of bounded degree 1.

• We have

dOneEdge(A)(n) =

{

n(n−1)
2

=
(

n

2

)

n ∈ A

0 else

as there are 2 · (n − 2)! many automorphisms of OEn.

• dOneEdge(A)(n) satisfies a non-trivial modular recurrence, provided the char-
acteristic function of A is ultimately periodic.

20



Logical Methods in Combinatorics, 236605-2009/10 Lecture 8 and 9

Compute dEQ2CLIQUE(A)(n)

We know already that

dEQ2CLIQUE(A)(n) =

{

1
2

(

2m

m

)

n = 2m ∈ A

0 else

We can now interpret it:

1

2

(2m

m

)

=
1

2
·

(2m)!

m! · m!

where m! are the number of automorphisms of the cliques and 2 is the number
of mapping between the cliques.

We note that the graphs in EQ2CLIQUES are

• of unbounded degree,

• there are no modular recurrences for dEQ2CLIQUE(A)(n),

• What is the DU-index of EQ2CLIQUES?
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DU-index of EQ2CLIQUES(A)

We have to analyze the relation

G1 ⊔ G2 ≃ 2Km

This is the case if both G1 ≃ Km and G2 ≃ Km, or one of the graphs is empty.

The DU equivalence classes are

• {2Km : m ∈ A}.

• {Km} for each m ∈ A.

• all the others.

Hence we have infinitely many classes, if A is infinite.
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Passing to the complement graph

For a graph G = (V, E) we denote by Ḡ the complement graph

G = (V, V 2 − E − {(v, v) : v ∈ V })

For a classe of graphs P we denote by P̄ the class

{Ḡ : G ∈ P}

The complement of 2Km is Km,m.

Fact: The number of labelings of G and Ḡ is the same.

For EQ2CLIQUES(A) we get a class of connected graphs,
hence of DU-index 2,
of unbounded degree,
with no modular recurrence relation for its density function.
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Compute dEQ2PATH(A)(n)

EQ2PATH(A) is the class of graphs 2Pn for 2n ∈ A.

• EQ2PATH(A) has infinite DU-index. The argument is the same as with
the cliques.

• EQ2PATH(A) is of bounded degree 2.

• We have

dEQ2PATH(A)(2n) =

{

2n!
4

n ∈ A

0 else

as there are 2 automorphisms of Pn and two automorphisms between the
paths.

• dEQ2PATH(A)(n) satisfies a trivial modular recurrence, independently of A.
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Compute dEQ2CY CLES(A)(n)

EQ2CY CLES(A) is the class of graphs 2Cn for 2n ∈ A.

• EQ2CY CLES(A) has infinite DU-index. The argument is the same as
with the cliques.

• EQ2CY CLES(A) is of bounded degree 2.

• We have

dEQ2CY CLES(A)(2n) =

{

2n!
n2 n ∈ A

0 else

as there are n automorphisms of Pn and two automorphisms between the
paths.

• dEQ2PATH(A)(n) satisfies a trivial modular recurrence, independently of A,
because dEQ2CY CLES(A)(2n) s divbisible by (n − 1)!.
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Regular graphs and grids

Homework

Discuss the following:

• Regular graphs of fixed degree r.

They are not connected, but form a Gessel class.
This class is FOL-definable.

• The class of Grids Gridm,n.

They are connected, hence have DU-index 2
and are of bounded degree 4.
Is the class of grids MSOL-definable? (YES)

Remark: For both cases Theorem 11 below slide applies.
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HOMEWORK

(i) Given d, n ∈ N construct a class of graphs Cn such that

• Cn is MSOL-definable,

• Cn is of degree d,

• Cn has DU-index n.

(or show it does not exist)

(ii) For each n ∈ N construct continuum many classes of graphs Dn(A)
with DU-index n.
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Passing to bounded degree

Let P be a class of τ-structures and denote by Let Pd the class of τ-structures
in P of degree at most d.

Lemma 6
If P has finite DU-index, so does Pd.

Proof:

The class of structures of degree at most d is a Gessel class, hence of DU-
index 2.

But the intersection of two classes of finite DU-index is again a class of finite
DU index. Q.E.D.
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