Lecture 8

Last lecture:

- We discussed the density function of regular languages with examples.
- We formulated and proved Schützenberger's Theorem, stating that regular languages have density functions which satisfy a linear recurrence relation over \mathbb{Z} .
- We discussed density fuctions of relational structures.

Lecture 8

Lecture 8

This lecture:

- \bullet We formulate and prove an alternative to Schützenberger's Theorem, using ${\bf MSOL}$ rather than regular languages.
- We continue our discussion of density fuctions of relational structures.

An alternative proof Schützenberger's Theorem using Hintikka sentences: an Exercise

Theorem: Let *L* be an MSOL-definable set of words. Then $d_L(n)$ satisfies a linear recurrence relation.

Proof:

- Assume L is defined by ϕ . Let $h_{\alpha}, \alpha \leq \gamma$ be all the Hintikka sentences with quantifier rank $q = qr(\phi)$. $\phi = \bigvee_{\alpha \in A} h_{\alpha}$.
- Let L_{α} be the languages associated with $h_{\alpha}, \alpha \leq \gamma$, and d_{α} the corresponding density functions.
- Define a matrix M with $m_{\alpha,\beta} = 1$ if a words satisfying h_{α} has a one letter extensions satisfying h_{β} , and $m_{\alpha,\beta} = 0$ otherwise.
- Use this matrix to compute all the d_{α} 's simultaneously.

• Apply Caley's Theorem.

Q.E.D.

Question: What can we say about the recurrence depth?

Theorem C revisited, I

Let \mathcal{P} be a graph property which is MSOL-definable. and let $d_{\mathcal{P}}(n)$ be its density function.

- (Specker and Blatter, 1981) $d_{\mathcal{P}}(n)$ satisfies modular recurrence relations for each m.
- (Specker and Blatter, 1981) This remains true with several binary edge relations and unary predicates on the vertices.
- (E. Fischer, 2003) Is false for an *FOL*-definable class with one quaternary relation.

Relations of bounded degree

Let $\mathcal{A} = \langle A, \overline{R} \rangle$ be a τ -structure.

We define a symmetric relation E_A on A, and call $\langle A, E_A \rangle$ the **Gaifman-graph** of A.

- Let $a, b \in A$. $(a, b) \in E_A$ iff there exists a relation $R \in \overline{R}$ and some $\overline{a} \in R$ such that both a and b appear in \overline{a} (possibly with other members of A as well).
- For any element a ∈ A, the degree of a is the number of elements b ≠ a for which (a, b) ∈ E_A.
- We say that \mathcal{A} is of **bounded degree** d if every $a \in A$ has degree at most d.
- We say that A is **connected** if its Gaifman-graph is connected.
- For a class of structures \mathcal{P} we say it is of bounded degree d (resp. connected) iff all its structures are of bounded degree d (resp. connected).

Theorem C revisited, II

Theorem 1 (E. Fischer and J.A. Makowsky, 2002) Let \mathcal{P} be a property of τ -structures, which is MSOL-definable. Let $d_{\mathcal{P}}(n)$ be its density function.

- If \mathcal{P} is of bounded degree d, the function $d_{\mathcal{P}}(n)$ satisfies a modular recurrence relation for every m.
- Furthermore, if additionally all the models in \mathcal{P} are connected, the function $d_{\mathcal{P}}$ satisfies the trivial recurrence relations for every m.

We have no restrictions on τ , besides not allowing function symbols,

Theorem C and Theorem 1 remain true if we extend MSOL and allow modular counting quantifiers.

Ingredients of the proof of Theorem C

- The *DU*-index of a class of structures.
- The Specker-index of a class of structures.
- The DU-index of a class of structures \mathcal{P} is always smaller or equal to the Specker index.
- Finite DU-index of a class of τ -structures of bounded degree implies modular recurrence relations for all m.
- If τ contains only relation symbols of arity at most 2, finite Specker-index of a class of τ -structures. implies modular recurrence relations for all m.
- MSOL-definability of \mathcal{P} (even CMSOL-definability) implies finite DU-index.
- If τ contains only relation symbols of arity at most 2, the definability assumption implies finite Specker index.

$\mathit{DU}\text{-index}$ of $\mathcal P$

We denote by $\mathfrak{A} \sqcup \mathfrak{B}$ the disjoint union of two τ -structures \mathfrak{A} and \mathfrak{B} .

We also count the graph on the empty set of vertices as a graph.

Let \mathcal{P} be a class of τ -structures.

- (i) We say that \mathfrak{A}_1 is $DU(\mathcal{P})$ -equivalent to \mathfrak{A}_2 , denoted by $\mathfrak{A}_1 \sim_{DU(\mathcal{P})} \mathfrak{A}_2$, if for every τ -structure \mathfrak{B} , $\mathfrak{A}_1 \sqcup \mathfrak{B} \in \mathcal{P}$ if and only if $\mathfrak{A}_2 \sqcup \mathfrak{B} \in \mathcal{P}$.
- (ii) The *DU*-index of \mathcal{P} is the number of $DU(\mathcal{P})$ -equivalence classes.
- (iii) A class of structures \mathcal{P} is a **Gessel class** if for every \mathfrak{A} and $\mathfrak{B}, \mathfrak{A} \sqcup \mathfrak{B} \in \mathcal{P}$ iff both $\mathfrak{A} \in \mathcal{P}$ and $\mathfrak{B} \in \mathcal{P}$.

Basics on the DU-index

- The class of forests is a Gessel class.
- If \mathcal{P} is hereditary and closed under disjoint unions, it is a Gessel class.
- Every Gessel class has *DU*-index at most 2.
- If \mathcal{P} is a class of connected graphs, \mathcal{P} has DU-index at most 2, but is not a Gessel class.
- If \mathcal{P}_1 and \mathcal{P}_2 have finite *DU*-index, so do $\mathcal{P}_1 \cup \mathcal{P}_2$, $\mathcal{P}_1 \cap \mathcal{P}_2$, and the complement $\overline{\mathcal{P}_1}$.

Gessel's Theorem (1984) (Proof follows in the sequel)

Theorem 2 (I. Gessel 1984)

If C is a Gessel class of directed graphs of degree at most d with density function $d_{\mathcal{C}}(n)$ then

$$d_{\mathcal{C}}(m+n) \equiv d_{\mathcal{C}}(m) \cdot d_{\mathcal{C}}(n) \pmod{\frac{m}{\ell}}$$

where ℓ is the least common multiple of all divisors of m not greater than d. In particular, $d_{\mathcal{C}}(n)$ satisfies for every $m \in \mathbb{N}$ the linear recurrence relation

$$d_{\mathcal{C}}(n) \equiv a^{(m)} d_{\mathcal{C}}(n - d!m) \pmod{m}$$

where $a^{(m)} = d_{\mathcal{C}}(d!m)$.

Lecture 8

$\ensuremath{\textit{DU}}\xspace$ index and pebble games

We can use pebble games to prove:

Theorem 3

(i) If \mathcal{P} is FOL-definable, it has finite DU-index.

(ii) If \mathcal{P} is MSOL-definable, it has finite DU-index.

(iii) If \mathcal{P} is CMSOL-definable, it has finite DU-index.

Proof of Theorem 3

The proof uses several steps.

We do it for FOL, but for MSOL it works the same, using the corresponding pebble game.

- If ϕ defines $\mathcal P$ and is of quantifier rank q, we look at the equivalence classes $\sim^q_q.$
- Using pebble games we show that, if for graphs G_1, G_2, H_1, H_2 with $G_1 \sim_q^q H_1$ and $G_2 \sim_q^q H_2$ we also have $G_1 \sqcup G_2 \sim_q^q H_1 \sqcup H_2$.
- Next we show that $DU(\mathcal{P})$ -equivalence classes are closed under \sim_q^q -equivalence.
- Counting non-equivalent $FOL(\tau)$ -formulas of quantifier rank q, we see that there are only finitely many \sim_q^q -equivalence classes.
- We conclude that there are only finitely many $DU(\mathcal{P})$ -equivalence classes. Hence \mathcal{P} has finite DU-index.

Details on the blackboard.

Many classes of finite *DU*-index. Homework

There are only countably many classes of structures definable by MSOL-formulas.

How many classes are there of finite DU-index?

(How many are there for which $\mu(\mathcal{P}) = 1$?)

Proposition 4 (Specker 2002)

There are continuum many classes of structures (closed under isomorphisms) with finite *DU*-index.

Can we do this also for Gessel classes?

Many classes of finite *DU*-index. Solution to homework

There are only countably many classes of structures definable by MSOL-formulas.

How many classes are there of finite *DU*-index?

Proposition 5 (After an idea of Specker, 2002)

- (i) There are continuum many classes of structures (closed under isomorphisms) with DU-index ≤ 2 .
- (ii) There are continuum many Gessel classes.

Solution, I

Let C_n denote the cycle with n vertices.

- Let $A \subseteq \mathbb{N}$, and $Cycle(A) = \{C_n : n \in A\}.$
- Prove that Cycle(A) has DU-index at most 2.
 Hint: Use that all graphs of Cycle(A) are connected.
- There are continuum many sets A, each giving a different class Cycle(A).

We can play with this idea further...... We can define silimarly Path(A), Clique(A), and even mix them.

Question: Can we do this also for Gessel classes?

Answer: The closure $Cl_{DU}(Cycle(A))$ of Cycle(A) under disjoint unions is a Gessel class. For $A, B \subseteq \mathbb{N}, A \neq B$ we have $Cl_{DU}(Cycle(A)) \neq Cl_{DU}(Cycle(B))$.

Lecture 8 and 9

Compute $d_{Cycle(A)}(n)$.

Questions:

- Compute $d_{Cycle(A)}(n)$.
- For which A does it satisfy a recurrence relation?
- How does its recurrence relation modulo m depend on A and m?

Compute $d_{Cycle(A)}(n)$, continued

- For each $n d_{Cycle(A)}(n)$ contains, up to (unlabeled) isomorphisms, at most one graph.
- For C_n there are n! many permutations of the labels.
- A permutaion π of the labels produces the same labeled structure C_n iff π is an automorphism of C_n .
- There 2n such automorphisms (for $n \ge 3$).
- Hence there are $\frac{n!}{2n} = \frac{(n-1)!}{2}$ many labelings.
- Hence

$$d_{Cycle(A)}(n) = \begin{cases} \frac{(n-1)!}{2} & n \in A\\ 0 & \text{else} \end{cases}$$

which is a trivial modular recurrence, independently of A and for each m.

Compute $d_{Path(A)}(n)$.

Path(A) is the class of graphs P_n for $n \in A$.

- Path(A) has *DU*-index 2, as all its members are connected.
- Path(A) is of bounded degree 2.
- We have

$$d_{Path(A)}(n) = \begin{cases} \frac{n!}{2} & n \in A\\ 0 & \text{else} \end{cases}$$

as there are 2 automorphisms of P_n .

• $d_{Path(A)}(n)$ satisfies a trivial modular recurrence, independently of A.

Compute $d_{Clique(A)}(n)$.

Clique(A) is the class of graphs K_n for $n \in A$.

- Clique(A) has DU-index 2, as all its members are connected.
- Clique(A) is of unbounded degree (for A infinite).
- We have

$$d_{Clique(A)}(n) = \begin{cases} 1 & n \in A \\ 0 & \text{else} \end{cases}$$

as there are n! many automorphisms of K_n .

 d_{Clique(A)}(n) satisfies a trivial modular recurrence, provided A is finite, co-finite, or the characteristic function of A ultimately periodic.

If $A = \mathbb{N}$ it is constant to 1 which is rather simple, but still not trivial in our sense.

Compute $d_{OneEdge(A)}(n)$.

We denote by E_n the graph with n vertices no edges. We denote by OE_n the graph with n vertices and exactly one edge. OneEdge(A) is the class of graphs OE_n for $n \in A$.

• OneEdge(A) has DU-index 3.

To see this we analyse $G_1 \sqcup G_2 \simeq OE_n$. this is the case if either $G_1 \simeq OE_m$ and $G_2 \simeq E_{n-m}$ or vice versa. This gives three *DU*-classes.

- *OneEdge*(*A*) is of bounded degree 1.
- We have

$$d_{OneEdge(A)}(n) = \begin{cases} \frac{n(n-1)}{2} = \binom{n}{2} & n \in A\\ 0 & \text{else} \end{cases}$$

as there are $2 \cdot (n-2)!$ many automorphisms of OE_n .

• $d_{OneEdge(A)}(n)$ satisfies a non-trivial modular recurrence, provided the characteristic function of A is ultimately periodic.

Compute $d_{EQ_2CLIQUE(A)}(n)$

We know already that

$$d_{EQ_2CLIQUE(A)}(n) = \begin{cases} \frac{1}{2} \binom{2m}{m} & n = 2m \in A\\ 0 & \text{else} \end{cases}$$

We can now interpret it:

$$\frac{1}{2}\binom{2m}{m} = \frac{1}{2} \cdot \frac{(2m)!}{m! \cdot m!}$$

where m! are the number of automorphisms of the cliques and 2 is the number of mapping between the cliques.

We note that the graphs in $EQ_2CLIQUES$ are

- of unbounded degree,
- there are no modular recurrences for $d_{EQ_2CLIQUE(A)}(n)$,
- What is the *DU*-index of $EQ_2CLIQUES$?

DU-index of $EQ_2CLIQUES(A)$

We have to analyze the relation

$$G_1 \sqcup G_2 \simeq 2K_m$$

This is the case if both $G_1 \simeq K_m$ and $G_2 \simeq K_m$, or one of the graphs is empty.

The DU equivalence classes are

- $\{2K_m : m \in A\}.$
- $\{K_m\}$ for each $m \in A$.
- all the others.

Hence we have infinitely many classes, if A is infinite.

Passing to the complement graph

For a graph G = (V, E) we denote by \overline{G} the complement graph

$$G = (V, V^2 - E - \{(v, v) : v \in V\})$$

For a classe of graphs $\mathcal P$ we denote by $\bar{\mathcal P}$ the class

 $\{\bar{G}: G \in \mathcal{P}\}$

The complement of $2K_m$ is $K_{m,m}$.

Fact: The number of labelings of G and \overline{G} is the same.

For $\overline{EQ_2CLIQUES(A)}$ we get a class of connected graphs, hence of DU-index 2, of unbounded degree, with no modular recurrence relation for its density function.

Compute $d_{EQ_2PATH(A)}(n)$

 $EQ_2PATH(A)$ is the class of graphs $2P_n$ for $2n \in A$.

- $EQ_2PATH(A)$ has infinite *DU*-index. The argument is the same as with the cliques.
- $EQ_2PATH(A)$ is of bounded degree 2.
- We have

$$d_{EQ_2PATH(A)}(2n) = \begin{cases} \frac{2n!}{4} & n \in A\\ 0 & \text{else} \end{cases}$$

as there are 2 automorphisms of P_n and two automorphisms between the paths.

• $d_{EQ_2PATH(A)}(n)$ satisfies a trivial modular recurrence, independently of A.

Compute $d_{EQ_2CYCLES(A)}(n)$

 $EQ_2CYCLES(A)$ is the class of graphs $2C_n$ for $2n \in A$.

- $EQ_2CYCLES(A)$ has infinite *DU*-index. The argument is the same as with the cliques.
- $EQ_2CYCLES(A)$ is of bounded degree 2.
- We have

$$d_{EQ_2CYCLES(A)}(2n) = \begin{cases} \frac{2n!}{n^2} & n \in A\\ 0 & \text{else} \end{cases}$$

as there are n automorphisms of P_n and two automorphisms between the paths.

• $d_{EQ_2PATH(A)}(n)$ satisfies a trivial modular recurrence, independently of A, because $d_{EQ_2CYCLES(A)}(2n)$ s divbisible by (n-1)!.

Lecture 8 and 9

Regular graphs and grids Homework

Discuss the following:

• Regular graphs of fixed degree r.

They are not connected, but form a Gessel class. This class is FOL-definable.

• The class of Grids $Grid_{m,n}$.

They are connected, hence have DU-index 2 and are of bounded degree 4. Is the class of grids MSOL-definable? (YES)

Remark: For both cases Theorem 11 below slide applies.

HOMEWORK

(i) Given $d, n \in \mathbb{N}$ construct a class of graphs \mathcal{C}_n such that

- C_n is MSOL-definable,
- C_n is of degree d,
- C_n has DU-index n.

(or show it does not exist)

(ii) For each $n \in \mathbb{N}$ construct continuum many classes of graphs $\mathcal{D}_n(A)$ with DU-index n.

Passing to bounded degree

Let \mathcal{P} be a class of τ -structures and denote by Let \mathcal{P}_d the class of τ -structures in \mathcal{P} of degree at most d.

Lemma 6 If \mathcal{P} has finite DU-index, so does \mathcal{P}_d .

Proof:

The class of structures of degree at most d is a Gessel class, hence of DU-index 2.

But the intersection of two classes of finite DU-index is again a class of finite DUindex. Q.E.D.