Lecture 8

Last lecture:

- We discussed the density function of regular languages with examples.
- We formulated and proved Schützenberger's Theorem, stating that regular languages have density functions which satisfy a linear recurrence relation over \mathbb{Z}.
- We discussed density fuctions of relational structures.

Lecture 8

This lecture:

- We formulate and prove an alternative to Schützenberger's Theorem, using MSOL rather than regular languages.
- We continue our discussion of density fuctions of relational structures.

An alternative proof Schützenberger's Theorem using Hintikka sentences: an Exercise

Theorem: Let L be an MSOL-definable set of words.
Then $d_{L}(n)$ satisfies a linear recurrence relation.
Proof:

- Assume L is defined by ϕ. Let $h_{\alpha}, \alpha \leq \gamma$ be all the Hintikka sentences with quantifier rank $q=\operatorname{qr}(\phi) . \phi=\bigvee_{\alpha \in A} h_{\alpha}$.
- Let L_{α} be the languages associated with $h_{\alpha}, \alpha \leq \gamma$, and d_{α} the corresponding density functions.
- Define a matrix M with $m_{\alpha, \beta}=1$ if a words satisfying h_{α} has a one letter extensions satisfying h_{β}, and $m_{\alpha, \beta}=0$ otherwise.
- Use this matrix to compute all the d_{α} 's simultaneously.
- Apply Caley's Theorem.
Q.E.D.

Question: What can we say about the recurrence depth?

Theorem C revisited, I

Let \mathcal{P} be a graph property which is $M S O L$-definable. and let $d_{\mathcal{P}}(n)$ be its density function.

- (Specker and Blatter, 1981)
$d_{\mathcal{P}}(n)$ satisfies modular recurrence relations for each m.
- (Specker and Blatter, 1981)

This remains true with several binary edge relations and unary predicates on the vertices.

- (E. Fischer, 2003) Is false for an FOL-definable class with one quaternary relation.

Relations of bounded degree

Let $\mathcal{A}=\langle A, \bar{R}\rangle$ be a τ-structure.
We define a symmetric relation E_{A} on \mathcal{A}, and call $\left\langle A, E_{A}\right\rangle$ the Gaifman-graph of \mathcal{A}.

- Let $a, b \in A .(a, b) \in E_{A}$ iff there exists a relation $R \in \bar{R}$ and some $\bar{a} \in R$ such that both a and b appear in \bar{a} (possibly with other members of A as well).
- For any element $a \in A$, the degree of a is the number of elements $b \neq a$ for which $(a, b) \in E_{A}$.
- We say that \mathcal{A} is of bounded degree d if every $a \in A$ has degree at most d.
- We say that \mathcal{A} is connected if its Gaifman-graph is connected.
- For a class of structures \mathcal{P} we say it is of bounded degree d (resp. connected) iff all its structures are of bounded degree d (resp. connected).

Theorem C revisited, II

Theorem 1 (E. Fischer and J.A. Makowsky, 2002)

Let \mathcal{P} be a property of τ-structures, which is MSOL-definable. Let $d_{\mathcal{P}}(n)$ be its density function.

- If \mathcal{P} is of bounded degree d, the function $d_{\mathcal{P}}(n)$ satisfies a modular recurrence relation for every m.
- Furthermore, if additionally all the models in \mathcal{P} are connected, the function $d_{\mathcal{P}}$ satisfies the trivial recurrence relations for every m.

We have no restrictions on τ, besides not allowing function symbols,
Theorem C and Theorem 1 remain true if we extend $M S O L$ and allow modular counting quantifiers.

Ingredients of the proof of Theorem C

- The $D U$-index of a class of structures.
- The Specker-index of a class of structures.
- The $D U$-index of a class of structures \mathcal{P} is always smaller or equal to the Specker index.
- Finite $D U$-index of a class of τ-structures of bounded degree implies modular recurrence relations for all m.
- If τ contains only relation symbols of arity at most 2, finite Specker-index of a class of τ-structures. implies modular recurrence relations for all m.
- MSOL-definability of \mathcal{P} (even $C M S O L$-definability) implies finite $D U$-index.
- If τ contains only relation symbols of arity at most 2, the definability assumption implies finite Specker index.

$D U$-index of \mathcal{P}

We denote by $\mathfrak{A} \sqcup \mathfrak{B}$ the disjoint union of two τ-structures \mathfrak{A} and \mathfrak{B}.
We also count the graph on the empty set of vertices as a graph.
Let \mathcal{P} be a class of τ-structures.
(i) We say that \mathfrak{A}_{1} is $D U(\mathcal{P})$-equivalent to \mathfrak{A}_{2}, denoted by $\mathfrak{A}_{1} \sim_{D U(\mathcal{P})} \mathfrak{A}_{2}$, if for every τ-structure $\mathfrak{B}, \mathfrak{A}_{1} \sqcup \mathfrak{B} \in \mathcal{P}$ if and only if $\mathfrak{A}_{2} \sqcup \mathfrak{B} \in \mathcal{P}$.
(ii) The $D U$-index of \mathcal{P} is the number of $D U(\mathcal{P})$-equivalence classes.
(iii) A class of structures \mathcal{P} is a Gessel class if for every \mathfrak{A} and $\mathfrak{B}, \mathfrak{A} \sqcup \mathfrak{B} \in \mathcal{P}$ iff both $\mathfrak{A} \in \mathcal{P}$ and $\mathfrak{B} \in \mathcal{P}$.

Basics on the $D U$-index

- The class of forests is a Gessel class.
- If \mathcal{P} is hereditary and closed under disjoint unions, it is a Gessel class.
- Every Gessel class has $D U$-index at most 2.
- If \mathcal{P} is a class of connected graphs, \mathcal{P} has $D U$-index at most 2 , but is not a Gessel class.
- If \mathcal{P}_{1} and \mathcal{P}_{2} have finite $D U$-index, so do $\mathcal{P}_{1} \cup \mathcal{P}_{2}, \mathcal{P}_{1} \cap \mathcal{P}_{2}$, and the complement $\overline{\mathcal{P}_{1}}$.

Gessel's Theorem (1984)
 (Proof follows in the sequel)

Theorem 2 (I. Gessel 1984)

If \mathcal{C} is a Gessel class of directed graphs of degree at most d with density function $d_{\mathcal{C}}(n)$ then

$$
d_{\mathcal{C}}(m+n) \equiv d_{\mathcal{C}}(m) \cdot d_{\mathcal{C}}(n) \quad\left(\bmod \frac{m}{\ell}\right)
$$

where ℓ is the least common multiple of all divisors of m not greater than d. In particular, $d_{\mathcal{C}}(n)$ satisfies for every $m \in \mathbb{N}$ the linear recurrence relation

$$
d_{\mathcal{C}}(n) \equiv a^{(m)} d_{\mathcal{C}}(n-d!m) \quad(\bmod m)
$$

where $a^{(m)}=d_{\mathcal{C}}(d!m)$.

$D U$-index and pebble games

We can use pebble games to prove:

Theorem 3

(i) If \mathcal{P} is $F O L$-definable, it has finite $D U$-index.
(ii) If \mathcal{P} is $M S O L$-definable, it has finite $D U$-index.
(iii) If \mathcal{P} is CMSOL-definable, it has finite $D U$-index.

Proof of Theorem 3

The proof uses several steps.
We do it for $F O L$, but for $M S O L$ it works the same, using the corresponding pebble game.

- If ϕ defines \mathcal{P} and is of quantifier rank q, we look at the equivalence classes \sim_{q}^{q}.
- Using pebble games we show that, if for graphs $G_{1}, G_{2}, H_{1}, H_{2}$ with $G_{1} \sim_{q}^{q}$ H_{1} and $G_{2} \sim_{q}^{q} H_{2}$ we also have $G_{1} \sqcup G_{2} \sim_{q}^{q} H_{1} \sqcup H_{2}$.
- Next we show that $D U(\mathcal{P})$-equivalence classes are closed under \sim_{q}^{q}-equivalence.
- Counting non-equivalent $F O L(\tau)$-formulas of quantifier rank q, we see that there are only finitely many \sim_{q}^{q}-equivalence classes.
- We conclude that there are only finitely many $D U(\mathcal{P})$-equivalence classes. Hence \mathcal{P} has finite $D U$-index.

Details on the blackboard.

Many classes of finite $D U$-index. Homework

There are only countably many classes of structures definable by $M S O L$-formulas.

How many classes are there of finite $D U$-index?
(How many are there for which $\mu(\mathcal{P})=1$?)

Proposition 4 (Specker 2002)

There are continuum many classes of structures (closed under isomorphisms) with finite $D U$-index.

Can we do this also for Gessel classes?

Many classes of finite $D U$-index. Solution to homework

There are only countably many classes of structures definable by $M S O L$-formulas.

How many classes are there of finite $D U$-index?
Proposition 5 (After an idea of Specker, 2002)
(i) There are continuum many classes of structures (closed under isomorphisms) with $D U$-index ≤ 2.
(ii) There are continuum many Gessel classes.

Solution, I

Let C_{n} denote the cycle with n vertices.

- Let $A \subseteq \mathbb{N}$, and $\operatorname{Cycle}(A)=\left\{C_{n}: n \in A\right\}$.
- Prove that $C y c l e(A)$ has $D U$-index at most 2. Hint: Use that all graphs of $\operatorname{Cycle}(A)$ are connected.
- There are continuum many sets A, each giving a different class Cycle (A).

We can play with this idea further
We can define silimarly $\operatorname{Path}(A), \operatorname{Clique}(A)$, and even mix them.
Question: Can we do this also for Gessel classes?
Answer: The closure $C l_{D U}(C y c l e(A))$ of $C y c l e(A)$ under disjoint unions is a Gessel class. For $A, B \subseteq \mathbb{N}, A \neq B$ we have $C l_{D U}(C y c l e(A)) \neq C l_{D U}(C y c l e(B))$.

Compute $d_{\text {Cycle(A) }}(n)$.

Questions:

- Compute $d_{\text {Cycle(A) }}(n)$.
- For which A does it satisfy a recurrence relation?
- How does its recurrence relation modulo m depend on A and m ?

Compute $d_{C y c l e(A)}(n)$, continued

- For each $n d_{C y c l e(A)}(n)$ contains, up to (unlabeled) isomorphisms, at most one graph.
- For C_{n} there are n ! many permutations of the labels.
- A permuation π of the labels produces the same labeled structure C_{n} iff π is an automorphism of C_{n}.
- There $2 n$ such automorphisms (for $n \geq 3$).
- Hence there are $\frac{n!}{2 n}=\frac{(n-1)!}{2}$ many labelings.
- Hence

$$
d_{\operatorname{Cycle}(A)}(n)= \begin{cases}\frac{(n-1)!}{2} & n \in A \\ 0 & \text { else }\end{cases}
$$

which is a trivial modular recurrence, independently of A and for each m.

Compute $d_{\operatorname{Path}(A)}(n)$.

$\operatorname{Path}(A)$ is the class of graphs P_{n} for $n \in A$.

- Path (A) has $D U$-index 2, as all its members are connected.
- $\operatorname{Path}(A)$ is of bounded degree 2.
- We have

$$
d_{\operatorname{Path}(A)}(n)=\left\{\begin{array}{cc}
\frac{n!}{2} & n \in A \\
0 & \text { else }
\end{array}\right.
$$

as there are 2 automorphisms of P_{n}.

- $d_{\operatorname{Path}(A)}(n)$ satisfies a trivial modular recurrence, independently of A.

Compute $d_{C l i q u e(A)}(n)$.
$\operatorname{Clique}(A)$ is the class of graphs K_{n} for $n \in A$.

- Clique (A) has $D U$-index 2, as all its members are connected.
- Clique (A) is of unbounded degree (for A infinite).
- We have

$$
d_{\text {Clique }(A)}(n)=\left\{\begin{array}{lc}
1 & n \in A \\
0 & \text { else }
\end{array}\right.
$$

as there are n ! many automorphisms of K_{n}.

- $d_{\text {Clique }(A)}(n)$ satisfies a trivial modular recurrence, provided A is finite, co-finite, or the characteristic function of A ultimately periodic.
If $A=\mathbb{N}$ it is constant to 1 which is rather simple, but still not trivial in our sense.

Compute $d_{\text {OneEdge }(A)}(n)$.

We denote by E_{n} the graph with n vertices no edges.
We denote by $O E_{n}$ the graph with n vertices and exactly one edge. One Edge (A) is the class of graphs $O E_{n}$ for $n \in A$.

- OneEdge(A) has $D U$-index 3.

To see this we analyse $G_{1} \sqcup G_{2} \simeq O E_{n}$.
this is the case if either $G_{1} \simeq O E_{m}$ and $G_{2} \simeq E_{n-m}$ or vice versa. This gives three $D U$-classes.

- OneEdge (A) is of bounded degree 1.
- We have

$$
d_{\text {OneEdge }(A)}(n)= \begin{cases}\frac{n(n-1)}{2}=\binom{n}{2} & n \in A \\ 0 & \text { else }\end{cases}
$$

as there are $2 \cdot(n-2)$! many automorphisms of $O E_{n}$.

- $d_{\text {OneEdge }(A)}(n)$ satisfies a non-trivial modular recurrence, provided the characteristic function of A is ultimately periodic.

$$
\text { Compute } d_{E Q_{2} C L I Q U E(A)}(n)
$$

We know already that

$$
d_{E Q_{2} C L I Q U E(A)}(n)= \begin{cases}\frac{1}{2}\binom{2 m}{m} & n=2 m \in A \\ 0 & \text { else }\end{cases}
$$

We can now interpret it:

$$
\frac{1}{2}\binom{2 m}{m}=\frac{1}{2} \cdot \frac{(2 m)!}{m!\cdot m!}
$$

where m ! are the number of automorphisms of the cliques and 2 is the number of mapping between the cliques.

We note that the graphs in $E Q_{2} C L I Q U E S$ are

- of unbounded degree,
- there are no modular recurrences for $d_{E Q_{2} C L I Q U E(A)}(n)$,
- What is the $D U$-index of $E Q_{2} C L I Q U E S$?

$D U$-index of $E Q_{2} C L I Q U E S(A)$

We have to analyze the relation

$$
G_{1} \sqcup G_{2} \simeq 2 K_{m}
$$

This is the case if both $G_{1} \simeq K_{m}$ and $G_{2} \simeq K_{m}$, or one of the graphs is empty. The $D U$ equivalence classes are

- $\left\{2 K_{m}: m \in A\right\}$.
- $\left\{K_{m}\right\}$ for each $m \in A$.
- all the others.

Hence we have infinitely many classes, if A is infinite.

Passing to the complement graph

For a graph $G=(V, E)$ we denote by \bar{G} the complement graph

$$
G=\left(V, V^{2}-E-\{(v, v): v \in V\}\right)
$$

For a classe of graphs \mathcal{P} we denote by $\overline{\mathcal{P}}$ the class

$$
\{\bar{G}: G \in \mathcal{P}\}
$$

The complement of $2 K_{m}$ is $K_{m, m}$.
Fact: The number of labelings of G and \bar{G} is the same.
For $\overline{E Q_{2} C L I Q U E S(A)}$ we get a class of connected graphs, hence of $D U$-index 2 , of unbounded degree, with no modular recurrence relation for its density function.

Compute $d_{E Q_{2} P A T H(A)}(n)$

$E Q_{2} P A T H(A)$ is the class of graphs $2 P_{n}$ for $2 n \in A$.

- $E Q_{2} P A T H(A)$ has infinite $D U$-index. The argument is the same as with the cliques.
- $E Q_{2} \operatorname{PATH}(A)$ is of bounded degree 2 .
- We have

$$
d_{E Q_{2} P A T H(A)}(2 n)=\left\{\begin{array}{lc}
\frac{2 n!}{4} & n \in A \\
0 & \text { else }
\end{array}\right.
$$

as there are 2 automorphisms of P_{n} and two automorphisms between the paths.

- $d_{E Q_{2} \operatorname{PATH}(A)}(n)$ satisfies a trivial modular recurrence, independently of A.

$$
\text { Compute } d_{E Q_{2} C Y C L E S(A)}(n)
$$

$E Q_{2} C Y C L E S(A)$ is the class of graphs $2 C_{n}$ for $2 n \in A$.

- $E Q_{2} C Y C L E S(A)$ has infinite $D U$-index. The argument is the same as with the cliques.
- $E Q_{2} C Y C L E S(A)$ is of bounded degree 2.
- We have

$$
d_{E Q_{2} C Y C L E S(A)}(2 n)=\left\{\begin{array}{lc}
\frac{2 n!}{n^{2}} & n \in A \\
0 & \text { else }
\end{array}\right.
$$

as there are n automorphisms of P_{n} and two automorphisms between the paths.

- $d_{E Q_{2} P A T H(A)}(n)$ satisfies a trivial modular recurrence, independently of A, because $d_{E Q_{2} C Y C L E S(A)}(2 n)$ s divbisible by $(n-1)$!.

Regular graphs and grids Homework

Discuss the following:

- Regular graphs of fixed degree r.

They are not connected, but form a Gessel class.
This class is $F O L$-definable.

- The class of Grids Grid $_{m, n}$.

They are connected, hence have $D U$-index 2
and are of bounded degree 4.
Is the class of grids $M S O L$-definable? (YES)

Remark: For both cases Theorem 11 below slide applies.

HOMEWORK

(i) Given $d, n \in \mathbb{N}$ construct a class of graphs \mathcal{C}_{n} such that

- \mathcal{C}_{n} is MSOL-definable,
- \mathcal{C}_{n} is of degree d,
- \mathcal{C}_{n} has $D U$-index n.
(or show it does not exist)
(ii) For each $n \in \mathbb{N}$ construct continuum many classes of graphs $\mathcal{D}_{n}(A)$ with $D U$-index n.

Passing to bounded degree

Let \mathcal{P} be a class of τ-structures and denote by Let \mathcal{P}_{d} the class of τ-structures in \mathcal{P} of degree at most d.

Lemma 6

If \mathcal{P} has finite $D U$-index, so does \mathcal{P}_{d}.

Proof:

The class of structures of degree at most d is a Gessel class, hence of $D U$ index 2.

But the intersection of two classes of finite $D U$-index is again a class of finite $D U$ index.
Q.E.D.

