
Logical Methods in Combinatorics, 236605-2009/10 Lecture 7

Lecture 7

Last lecture:

• We sketched a proof of difficult direction of Theorem 1 (Lecture 4).

For a detailed proof, consult Libkin’s book.

In this lecture:

• We discuss the density function of regular languages with examples.

• We formulate and proved Schützenberger’s Theorem, stating that regular
languages have density functions which satisfy a linear recurrence relation
over Z.

• We start our discussion of linear recurrence relations for certain density
function.
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Linear recurrence relations for

density functions of regular languages:

Schützenberger’s Theorem
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Recurrence formulas for density functions.

A case study: Regular languages.

Let L be a language, i.e. a set of words over an alphabet Σ. We will use
Σ = {a, b}. Ln denotes the set of words of length exactly n which are in L.

We want to count the number of words aL(n) =| Ln | in Ln.

Examples:

• a∗b∗

• aab∗a

• anbn

• The set of palindroms
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Use auxiliary density functions.

Assume we have density functions

ā(n) = (a1(n), . . . , am(n))tr

and an (m × m)-matrix M such that

ā(n + 1) = Mā(n)

We would like to transform this into a recurrence relation for one of the
density functions.

4



Logical Methods in Combinatorics, 236605-2009/10 Lecture 7

Caley’s Theorem (for matrices)

The characteristic polynomial of an (m × m)-matrix M is

χM(λ) =

m∑

i

ci(M)xi =

m∑

i

cix
i = det(λ · 1 − M)

Caley’s Theorem states that, that in the ring of matrices

χM(M) =

m∑

i

ciM
i = 0

Hence we have, using that M iā(n) = ā(n + i),

cm(M)Mmā(n) = cmā(n + m) = −

m−1∑

i

ciM
iā(n) = −

m−1∑

i

ciā(n + i)

which is the required recurrence relation for each density function ak.
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How to find the auxiliary density functions?

We can use

• Pumping Lemma for regular or context-free languages.

• Ehrenfeucht-Fräıssé Theorem for Monadic Second Order Logic

• Myhill-Nerode Theorem on congruences closed under concatenation.

• Büchi’s Theorem identifying regular languages with Mondaic Second
Order definable languages.

In the case of words, all these theorems are inherently related.

In the case of arbitrary structures the underlying property is the
Feferman-Vaught Theorem for Monadic Second Order Logic.
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Schützenberger’s Theorem

Theorem 1 (Schützenberger, 1961)

For every regular language L, the density function aL(n)

satisfies a linear recurrence relation.

Note: There are non-regular languages which also satisfy a linear recurrence
relation.
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Sketch of proof of Theorem 1.

• Given L, find a non-deterministic automaton AL with states S, with
exactly one accepting state sL, and with transition table δA, which accepts
L.

• For each s ∈ S define As to be the automaton with the same states and
transition functions as AL, but with sole accepting state s.

• Use as auxiliary languages the languages Ls = L(As) with density func-
tions as(n).

• For the transition table δA, let ms,t denote the number of transitions from
state s to state t.

• Define the S × S-matrix M over non-negative integers with entries ms,t.

• Now compute the characteristic polynomial of M to get the linear
recurrence relations between the density functions of all the Ls.
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Sketch of proof of Theorem 1, continued.

Claim: With m = |S| and S = {s1, . . . , sm}, and

ā(n) = (as1
(n), . . . , asm

(n))

we have

ā(n + 1) = M · ā(n)tr = M · (as1
(n), . . . , asm

(n))tr.

Complete the proof !
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Properties of density functions.

Given a density function d(n) of

• a regular language,

• a context-free language,

• a herediatry graph property of labeled graphs,

• a monotone graph property of labeled graphs,

• a FOL-definable graph property of labeled graphs,

• a MSOL-definable (SOL-definable) graph property of labeled graphs.

What can we say about d(n)?

Conversely, given a function d(n), under what conditions is d(n) a density
function of any of the above?
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From linear recurrences to regular languages

If dL(n) is a density function of some regular language L over an alphabet Σ,
then

• All the values of d(n)L are non-negative.

• d(n)L is bounded by | Σ |n.

• d(n)L satisfies a linear recurrence relation.

• The generating function fL(x) =
∑

n d(n)xn is a rational function.

Is every function satisfying the above the density function of some regular
language?

Project: The answer is rather complex.

E. Barcucci, A. Del Lungo, A. Frosini and S. Rinaldi, From rational functions to regular
languages, in Formal Power Series and Algebraic Combinatorics, D. Krob, A.A. Mikhalev and
A.V. Mikhalev eds., Springer, 2000, pp. 633-644.
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Density functions of graph classes

Let P be a graph property, i.e. a class of graphs closed under isomorphisms,
and let dP(n) be its density function for labeled graphs.

• If P = Graphs consists of all simple graphs,

dGraphs(n) = 2(n

2)

In the unlabeled case the function is rather complicated.

• If P = LinOrd consists of all linear orders.

dLinOrd(n) = n!

In the unlabeled case we have the constant function with value 1.

• If P = SqGrids consists of all square grids,

dSqGrids(n) =

{
n!
4

if n = m2

0 else

In the unlabeled case we have 1 instead of n!.
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Growth arguments

Lemma 2
Let f : Z → Z a function which satisfies a linear recurrence relation

f(n + 1) =
∑k

i=0 aif(n − i) over Z with amax = maxi ai.

Then there is a constant c ∈ Z such that f(n) ≤ 2cn.

Sketch of Proof:
One can prove this directly by induction with c = log2(k · amax).
Q.E.D.

Corollary 3
For C ∈ {Graphs, LinOrd, SqGrids},
fC(n) does not satisfy a linear recurrence over Z.

13



Logical Methods in Combinatorics, 236605-2009/10 Lecture 7

A better estimate of the growth in Lemma 2.

To get a better estimate for c, one uses the spectral radius of the (k × k)-
matrix A associated to the recurrence by





f(n + 1)
...

f(n + k))



 =








0 0 . . . 0 0 a1

1 0 . . . 0 0 a2

0 1 . . . 0 0 a3
... ...

0 0 . . . 0 1 ak








︸ ︷︷ ︸
A

·





f(n)
...

f(n + k − 1)





By a classical theorem, the sequence of matrices An converges iff ρ(A) < 0,
where ρ(A) denotes the the spectral radius of A, which is the maximum of
all the absolute values the eigenvalues of A. Hence, the eigenvalues of A
determine the growth rate of the sequence, and from the largest absolute
value one can estimate c in the lemma. Q.E.D.
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Modular linear recurrences, I

However we note:

• For every m ∈ N and for large enough n we have n! = 0 (mod m)

Hence, for n ≥ N(m) we have

dLinOrd(n + 1) = dLinOrd(n) (mod m)

and

dSqGrid(n + 1) = dSqGrid(n) (mod m)

We say that a function f(n) satisfies a trivial modular recurrence
if for every m there exists Nm such that
if n > Nm then g(n) ≡ 0 (mod m).
This is true in particular, and even equivalent to,
if there exist functions g(n), h(n) with g(n) tending to infinity
such that f(n) = g(n)! · h(n).

Clearly, the two examples above are trivial modular recurrences.
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Modular linear recurrences, II

Now we look at

dGraphs(n + 1) = 2(n+1

2 ) = 2(n

2) · 2n

Hence

dGraphs(n + m + 1) = dGraphs(n) ·

m∏

i=0

2n+i = dGraphs(n) · 2nm ·

m∏

i=0

2i

As nm = 0 (mod m) we get

dGraphs(n + m + 1) = dGraphs(n) ·

m∏

i=0

2i (mod m)

This is a non-trivial recurrence.

It is also different for distinct m and m′, in other words, non-uniform in m.
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Two equal-sized cliques, I

Let EQ2CLIQUE the class of graphs which consists of two disjoint unions of
equal-sized cliques.

We want to study its density function dEQ2CLIQUE(n). We have

dEQ2CLIQUE(n) = b2(n) =

{
1
2

(
2m

m

)
for n = 2m

0 else

The factor 1
2

is there because we cannot distinguish the choice of the first
clique from the choice of its complement.

Proposition 4 (Lucas, 1878)
For every n which is not a power of 2, we have b2(n) ≡ 0 (mod 2), and for

every n which is a power of 2 we have b2(n) ≡ 1 (mod 2).
In particular, b2(n) is not ultimately periodic modulo 2.

A proof may be found as Exercise 5.61 in:
R. Graham, D. Knuth and O. Patashnik,
Concrete Mathematics, 2nd ed., Addison-Wesley 1994

There is a generalization of this for p-many equal-sized cliques.
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Two equal-sized cliques, II

• We can prove (using the various version of the pebble games)
that EQ2CLIQUE is not definable in FOL, or Lω

∞,ω.

• One can also prove (using the MSOL-version of the pebble games)
that EQ2CLIQUE is not definable in Monadic Second Order Logic MSOL.

• However, EQ2CLIQUE is definable in Second Order Logic SOL.

• With two binary E, M relations we can express in FOL that E is the edge
relation of a graph in EQ2CLIQUE, and that M is a matching (bijection)
between the two cliques.
Let us call the class so defined M2CLIQUES.

But for the density function of M2CLIQUES we have

dM2CLIQUES(2n) = n! · dEQ2CLIQUES(2n)

which satisfies the trivial modular recurrence relations.
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