Lecture 6

What have done so far?

- We have given a proof of the easy direction of Theorem 1 (Lecture 4).
- We did the case for FOL, MSOL, when there are more pebbles than moves.
- We left it as an exercise, to the case with a fixed number of pebbles, i.e. for the logics $\mathrm{FOL}^{k}, \mathrm{MSOL}^{k}$ and $\mathcal{L}_{\infty, \omega}^{k}$.

Homework for Lecture 5

- Show that the class of 2-colorable graphs is definable in $\mathcal{L}_{\infty, \omega}^{3}$. Hint: Look at the revised slides of Lecture 5!
- Show that, up to logical equivalence, in $\mathcal{L}_{\infty, \omega}^{3}$ contains only finitely many formulas of fixed quantifier rank n.
Moreover, all these formulas are equivalent to formulas of FOL^{k} of the same quantifier rank.
- Prove the easy directions of Theorem 1 (Lecture) for fixed k.

Constructing Game Sentences

- They are called Hintikka sentences or Scott sentences depending on the taste of the authors and the context.
- Intuitively, a Hintikka sentence is a maximally expressive, satisfiable sentence of some fixed quantifier rank q.
- A Scott sentence is a sentence which characterizes a countable or finite structure up to isomorphism.
- If a Scott sentence has quantifier rank q, then it is a Hintikka sentences of quantifier rank q.
- The converse is not true, but Hintikka sentences
- We shall discuss Hintikka sentences and formulas for FOL. The cases for FOL^{k}, MSOL and MSOL ${ }^{k}$ are analoguous.
- The case $\mathcal{L}_{\infty, \omega}^{k}$ needs a bit more care.

Hintikka formulas, I

τ is a finite, relational vocabulary.
We denote by $F m_{k, q}^{\mathrm{MSOL}}(\tau)$ the set of $\operatorname{MSOL}(\tau)$ formulas such that the variables are among

$$
x_{1}, \ldots, x_{k}, U_{1}, \ldots, U_{k}
$$

and each formula has quantifier rank atmost q.
Similarly with $F m_{k, q} \mathrm{FOL}_{(\tau)}$.

Definition:

ϕ and ψ are (finitely) equivalent if the have the same (finite) models. Free variables are uninterpreted constants

Note: There are, up to logical equivalence infinitely many formulas in three variables (use repeated quantification).

The boolean algebra $F m_{k, q}(\tau)$, I

Proposition:

There are, up to (finite) equivalence, only finitely many formulas in $F m_{k, q}(\tau)$.
If ϕ and ψ have only infinite models, they are finitely equivalent (false).
There are fewer formulas for finite equivalence.
The number of equivalence classes is growing very fast.

Proposition:

$F m_{k, q}(\tau)$ is closed under conjunction \wedge, disjunction \vee and negation \neg,
i.e. it forms a finite boolean algebra.

The boolean algebra $F m_{k, q}(\tau)$, II

The formula $\exists x(x \neq x)$ is the minimal element.
The formula $\exists x(x=x)$ is the maximal element.
A formula ϕ is an atom, if

- it is not (finitely) equivalent to $\exists x(x \neq x)$,
- but for each ψ either $\phi \wedge \psi$ is equivalent to ϕ or to $\exists x(x \neq x)$.

Hintikka formulas, II

We denote by $\mathcal{B}_{k, q}(\tau)$ and $\mathcal{B}^{f}{ }_{k, q}(\tau)$ the finite boolean algebra of $\mathrm{Fm}_{k, q}^{M S O L}(\tau)$
up to equivalence and finite equivalence, resp. The elements are denoted by $\bar{\phi}$.

The set of atoms in $\mathcal{B}_{k, q}(\tau)$ and $\mathcal{B}^{f}{ }_{k, q}(\tau)$ is denoted by $\mathcal{H}_{k, q}(\tau)$ and $\mathcal{H}^{f}{ }_{k, q}(\tau)$. The formulas ϕ with $\bar{\phi} \in \mathcal{H}_{k, q}(\tau)\left(\bar{\phi} \in \mathcal{H}_{k, q}^{f}(\tau)\right)$ are called Hintikka formulas.

Hintikkika formulas, III

Proposition:

(i) Every sentence $\phi \in F m_{k, q}(\tau)$ is equivalent to the disjunction of a unique set of
(k, q)- Hintikka sentences $\bigvee_{i} h_{i(\phi)}$,
with $\bar{h}_{i(\phi)} \in \mathcal{H}_{k, q}(\tau)$.
Not computable from k, q, τ and ϕ alone.
(ii) For every k, q, τ and τ-structure \mathcal{A} there is a unique Hintikka sentence $h_{k, q}(\mathcal{A}) \in F m_{k, q}(\tau)$ such that
$\mathcal{A} \mid=h_{k, q}(\mathcal{A})$.
(iii) Furthermore, if \mathcal{A} is finite,
$h_{k, q}(\mathcal{A})$ is computable from k, q, τ and \mathcal{A}.
But only highly ineffective algorithms are known.

Hintikka formulas, IV

Theorem:(Ehrenfeucht-Fraïssé)
For two τ-structures \mathcal{A}_{1} and \mathcal{A}_{2} the following are equivalent:
(i) II has a winning strategy in the game with n moves and k point pebbles and
k set pebbles.
(ii) \mathcal{A}_{1} and \mathcal{A}_{2} satisfy the same sentences of $F m_{k, m}(\tau)$.
(iii) \mathcal{A}_{1} and \mathcal{A}_{2} satisfy the same unique (up to equivalence) (k, m)-Hintikka sentence.

We have shown already $(1) \Rightarrow$ (3).
(2) \Rightarrow (3) is trivial.
(3) \Rightarrow (2) follows from the
properties of Hintikka formulas.
We are left with (3) $\Rightarrow(1)$.

Constructing the Hintikka sentence, I

Assume we have more pebbles than moves.
Let \mathcal{A} be a finite τ-structure and $a_{1}, a_{2}, \ldots, a_{s}$ elements \mathcal{A}.
We define a formula $\phi\left(v_{1}, \ldots, v_{s}\right)_{\bar{a}}^{m}$
such that

$$
\mathcal{A}, \bar{a} \models \phi\left(v_{1}, \ldots, v_{s}\right)_{\bar{a}}^{m}
$$

and whenever

$$
\mathcal{B}, \bar{b} \models \phi\left(v_{1}, \ldots, v_{s}\right)_{\bar{a}}^{m}
$$

then player II has a winning strategy in the game for FOL for m more moves starting with \mathcal{A}, \bar{a} and \mathcal{B}, \bar{b}.
$\phi\left(v_{1}, \ldots, v_{k}\right) \frac{q}{a}$ (i.e. $k=s, q=m$) will be a Hintikka formula for $\mathrm{Fm}_{k, q} \mathrm{FOL}_{(\tau)}$.

Constructing the Hintikka sentence, II

$$
\begin{gathered}
\phi\left(v_{1}, \ldots, v_{k}\right) \bar{a}:= \\
\left(\bigwedge\left\{R\left(v_{j_{1}}, \ldots, v_{j_{s}}\right): R \in \tau, \mathcal{A}, \bar{a} \models R\left(v_{j_{1}}, \ldots, v_{j_{s}}\right)\right\}\right) \\
\wedge \\
\left(\bigwedge\left\{\neg R\left(v_{j_{1}}, \ldots, v_{j_{s}}\right): R \in \tau, \mathcal{A}, \bar{a} \models \neg R\left(v_{j_{1}}, \ldots, v_{j_{s}}\right)\right\}\right) \\
\wedge \\
\left(\bigwedge\left\{v_{j_{1}}=v_{j_{2}}: j_{1}, j_{2} \leq s \text { and } \mathcal{A}, \bar{a} \models v_{j_{1}}=v_{j_{2}}\right\}\right) \\
\wedge \\
\left(\bigwedge\left\{v_{j_{1}} \neq v_{j_{2}}: j_{1}, j_{2} \leq s \text { and } \mathcal{A}, \bar{a} \models v_{j_{1}} \neq v_{j_{2}}\right\}\right)
\end{gathered}
$$

The formula is finite, provided τ is, and has quantifier rank 0 . Exercise: Look at the example of a linear order with $s=3$ and $m=2$.
Assume $a_{2}<a_{1}=a_{3}$ in \mathcal{A}. Compute the formula.

Constructing the Hintikka sentence, III

$$
\begin{gathered}
\phi\left(v_{1}, \ldots, v_{k}\right)_{\bar{a}}^{m}:= \\
\left(\bigwedge_{a \in A} \exists v_{s+1} \phi\left(\bar{v}, v_{s+1}\right)_{\bar{a} \cdot a}^{m-1}\right) \wedge \\
\left(\forall v_{s+1} \bigvee_{a \in A} \phi\left(\bar{v}, v_{s+1}\right)_{\bar{a} \cdot a}^{m-1}\right)
\end{gathered}
$$

This is finite, and has qnuatifier rank m.
Exercise: We look at the example of a linear order with $s=3$ and $m=2$.
Assume $a_{2}<a_{1}=a_{3}$ in \mathcal{A}. Compute the formula.

Constructing the Hintikka sentence, IV

We have to verify:

- $\mathcal{A}, \bar{a} \models \phi\left(v_{1}, \ldots, v_{s}\right) \frac{m}{a}$
- whenever $\mathcal{B}, \bar{b} \models \phi\left(v_{1}, \ldots, v_{s}\right) \frac{m}{a}$ then player II has a winning strategy in the game for FOL for m more moves starting with \mathcal{A}, \bar{a} and \mathcal{B}, \bar{b}.

Constructing the Hintikka sentence, V

- We can do "the same" for MSOL and even for $S O L^{n}$ or $S O L$.
- How do we have to modify the construction of there are fewer pebbles than moves?
- What happens if play infintely long?

We shall return to these questions later.

Project

Determine the complexity of the games.
E. Pezzoli,

Computational complexity of Ehrenfeucht-Fraïssé games on finite structures, CSL'1998, LNCS 1584, pp.159-170.

