Lecture 6

What have done so far?

- We have given a proof of the easy direction of Theorem 1 (Lecture 4).
- \bullet We did the case for FOL, $\mathbf{MSOL},$ when there are more pebbles than moves.
- We left it as an exercise, to the case with a fixed number of pebbles, i.e. for the logics FOL^k, MSOL^k and L^k_{∞,ω}.

Homework for Lecture 5

- Show that the class of 2-colorable graphs is definable in $\mathcal{L}^3_{\infty,\omega}$. Hint: Look at the revised slides of Lecture 5!
- Show that, up to logical equivalence, in $\mathcal{L}^3_{\infty,\omega}$ contains only finitely many formulas of fixed quantifier rank n.

Moreover, all these formulas are equivalent to formulas of \mathbf{FOL}^k of the same quantifier rank.

• Prove the easy directions of Theorem 1 (Lecture) for fixed k.

Logical Methods in Combinatorics, 236605-2009/10

Constructing Game Sentences

- They are called **Hintikka sentences** or **Scott sentences** depending on the taste of the authors and the context.
- Intuitively, a Hintikka sentence is a maximally expressive, satisfiable sentence of some fixed quantifier rank q.
- A Scott sentence is a sentence which characterizes a countable or finite structure up to isomorphism.
- If a Scott sentence has quantifier rank q, then it is a Hintikka sentences of quantifier rank q.
- The converse is not true, but Hintikka sentences
- We shall discuss Hintikka sentences and formulas for FOL. The cases for FOL^k , MSOL and $MSOL^k$ are analoguous.
- The case $\mathcal{L}^k_{\infty,\omega}$ needs a bit more care.

Hintikka formulas, I

au is a finite, relational vocabulary.

We denote by $Fm_{k,q}^{\text{MSOL}}(\tau)$ the set of $\text{MSOL}(\tau)$ formulas such that the variables are among

 $x_1,\ldots,x_k,U_1,\ldots,U_k$

and each formula has quantifier rank atmost q.

Similarly with $Fm_{k,q}^{\textbf{FOL}}(\tau)$.

Definition:

 ϕ and ψ are (finitely) equivalent if the have the same (finite) models. Free variables are uninterpreted constants

Note: There are, up to logical equivalence infinitely many formulas in three variables (use repeated quantification).

The boolean algebra $Fm_{k,q}(\tau)$, I

Proposition:

There are, up to (finite) equivalence, only finitely many formulas in $Fm_{k,q}(\tau)$.

If ϕ and ψ have only infinite models, they are finitely equivalent (false). There are fewer formulas for finite equivalence. The number of equivalence classes is growing very fast.

Proposition:

 $Fm_{k,q}(\tau)$ is closed under conjunction \wedge , disjunction \vee and negation \neg , i.e. it forms a finite *boolean algebra*.

The boolean algebra $Fm_{k,q}(\tau)$, II

The formula $\exists x (x \neq x)$ is the *minimal element*.

The formula $\exists x(x = x)$ is the maximal element.

- A formula ϕ is an *atom*, if
 - it is not (finitely) equivalent to $\exists x (x \neq x)$,
 - but for each ψ either $\phi \wedge \psi$ is equivalent to ϕ or to $\exists x (x \neq x)$.

Hintikka formulas, II

We denote by $\mathcal{B}_{k,q}(\tau)$ and $\mathcal{B}^{f}_{k,q}(\tau)$ the finite boolean algebra of $Fm_{k,q}^{MSOL}(\tau)$ up to equivalence and finite equivalence, resp. The elements are denoted by $\overline{\phi}$.

The set of atoms in $\mathcal{B}_{k,q}(\tau)$ and $\mathcal{B}_{k,q}^{f}(\tau)$ is denoted by $\mathcal{H}_{k,q}(\tau)$ and $\mathcal{H}_{k,q}^{f}(\tau)$.

The formulas ϕ with $\overline{\phi} \in \mathcal{H}_{k,q}(\tau)$ ($\overline{\phi} \in \mathcal{H}^{f}_{k,q}(\tau)$) are called *Hintikka formulas*.

Hintikkika formulas, III

Proposition:

(i) Every sentence $\phi \in Fm_{k,q}(\tau)$ is equivalent to the disjunction of a unique set of (k,q)- Hintikka sentences $\bigvee_i h_{i(\phi)}$, with $\overline{h}_{i(\phi)} \in \mathcal{H}_{k,q}(\tau)$.

Not computable from k, q, τ and ϕ alone.

- (ii) For every k, q, τ and τ -structure \mathcal{A} there is a unique Hintikka sentence $h_{k,q}(\mathcal{A}) \in Fm_{k,q}(\tau)$ such that $\mathcal{A} \models h_{k,q}(\mathcal{A})$.
- (iii) Furthermore, if \mathcal{A} is finite, $h_{k,q}(\mathcal{A})$ is computable from k, q, τ and \mathcal{A} .

But only highly ineffective algorithms are known.

Hintikka formulas, IV

Theorem:(Ehrenfeucht-Fraïssé)

For two τ -structures \mathcal{A}_1 and \mathcal{A}_2 the following are equivalent:

- (i) II has a winning strategy in the game with n moves and k point pebbles and k set pebbles.
- (ii) A_1 and A_2 satisfy the same sentences of $Fm_{k,m}(\tau)$.
- (iii) A_1 and A_2 satisfy the same unique (up to equivalence) (k, m)-Hintikka sentence.

```
We have shown already (1) \Rightarrow (3).
(2) \Rightarrow (3) is trivial.
(3) \Rightarrow (2) follows from the
properties of Hintikka formulas.
We are left with (3) \Rightarrow (1).
```

Logical Methods in Combinatorics, 236605-2009/10

Lecture 6

Constructing the Hintikka sentence, I

Assume we have more pebbles than moves.

Let \mathcal{A} be a finite τ -structure and a_1, a_2, \ldots, a_s elements \mathcal{A} .

```
We define a formula \phi(v_1,\ldots,v_s)^m_{\overline{a}}
```

such that

$$\mathcal{A}, \bar{a} \models \phi(v_1, \dots, v_s)_{\bar{a}}^m$$

and whenever

 $\mathcal{B}, \overline{b} \models \phi(v_1, \ldots, v_s)^m_{\overline{a}}$

then player II has a winning strategy in the game for **FOL** for m more moves starting with \mathcal{A}, \bar{a} and \mathcal{B}, \bar{b} .

 $\phi(v_1, \ldots, v_k)^q_{\overline{a}}$ (i.e. k = s, q = m) will be a Hintikka formula for $Fm_{k,q}^{\text{FOL}}(\tau)$. Constructing the Hintikka sentence, II

 $\phi(v_1,\ldots,v_k)^0_{\bar{a}} :=$

$$\left(\bigwedge \{R(v_{j_1}, \dots, v_{j_s}) : R \in \tau, \mathcal{A}, \overline{a} \models R(v_{j_1}, \dots, v_{j_s})\}\right)$$

$$\land$$

$$\left(\bigwedge \{\neg R(v_{j_1}, \dots, v_{j_s}) : R \in \tau, \mathcal{A}, \overline{a} \models \neg R(v_{j_1}, \dots, v_{j_s})\}\right)$$

$$\land$$

$$\left(\bigwedge \{v_{j_1} = v_{j_2} : j_1, j_2 \le s \text{ and } \mathcal{A}, \overline{a} \models v_{j_1} = v_{j_2}\}\right)$$

$$\land$$

$$\left(\bigwedge \{v_{j_1} \neq v_{j_2} : j_1, j_2 \le s \text{ and } \mathcal{A}, \overline{a} \models v_{j_1} \neq v_{j_2}\}\right)$$

The formula is finite, provided τ is, and has quantifier rank 0. **Exercise:** Look at the example of a linear order with s = 3 and m = 2. Assume $a_2 < a_1 = a_3$ in A. Compute the formula.

Constructing the Hintikka sentence, III

$$\phi(v_1, \dots, v_k)_{\bar{a}}^m := \left(\bigwedge_{a \in A} \exists v_{s+1} \phi(\bar{v}, v_{s+1})_{\bar{a} \cdot a}^{m-1} \right) \land \left(\forall v_{s+1} \bigvee_{a \in A} \phi(\bar{v}, v_{s+1})_{\bar{a} \cdot a}^{m-1} \right)$$

This is finite, and has quatifier rank m.

Exercise: We look at the example of a linear order with s = 3 and m = 2.

Assume $a_2 < a_1 = a_3$ in \mathcal{A} . Compute the formula.

Constructing the Hintikka sentence, IV

We have to verify:

- $\mathcal{A}, \bar{a} \models \phi(v_1, \dots, v_s)^m_{\bar{a}}$
- whenever $\mathcal{B}, \overline{b} \models \phi(v_1, \dots, v_s)_{\overline{a}}^m$ then player II has a winning strategy in the game for **FOL** for *m* more moves starting with $\mathcal{A}, \overline{a}$ and $\mathcal{B}, \overline{b}$.

Constructing the Hintikka sentence, V

- We can do "the same" for MSOL and even for SOL^n or SOL.
- How do we have to modify the construction of there are fewer pebbles than moves?
- What happens if play infintely long?

We shall return to these questions later.

Project

Determine the complexity of the games.

E. Pezzoli,

Computational complexity of Ehrenfeucht-Fraïssé games on finite structures, CSL'1998, LNCS 1584, pp.159-170.