Lecture 5

What have we done so far?
We prepared the grounds to formulate and prove Theorem A: The 0-1 law for $\mathcal{L}_{\infty, \omega}$.

- We defined the logic $\mathcal{L}_{\infty, \omega}$.

It's model theory is discussed in detail in
J. Keisler, Model theory for infinitary logic: Logic with countable conjunctions and finite quantifiers, North Holland, 1971

- We defined the logic $\mathcal{L}_{\infty, \omega}^{\omega}$.

The logic $\mathcal{L}_{\infty, \omega}$ is too expressive for the study of finite structures. So we restricted the overall number of variables.

- We introduced pebble games $P G_{k}^{n}(\mathfrak{A}, \mathfrak{B})$ and $P G_{k}^{\omega}(\mathfrak{A}, \mathfrak{B})$.
- We practiced playing the game on simple graphs and on graphs satisfying the extension axioms $E A_{n, m}$ for all $m \leq n \leq k$.

Pebble games, IV

Let \mathfrak{A}_{0} and \mathfrak{A}_{1} be two τ-structures.
We say $\mathfrak{A}_{0} \sim_{k}^{\infty, \omega} \mathfrak{A}_{1}$ if they agree on all sentences of $\mathcal{L}_{\infty, \omega}^{k}$.
We say $\mathfrak{A}_{0} \sim_{k, n}^{\infty, \omega} \mathfrak{A}_{1}$ if they agree on all sentences of $\mathcal{L}_{\infty, \omega}^{k}$ of quantifier rank n.

Theorem 1 (Theorem 2 of Lecture 4)
(i) $\mathfrak{A}_{0} \equiv_{k}^{n} \mathfrak{A}_{1}$ iff $\mathfrak{A}_{0} \sim_{k, n}^{\infty, \omega} \mathfrak{A}_{1}$
(ii) $\mathfrak{A}_{0} \equiv_{k}^{\infty} \mathfrak{A}_{1}$ iff $\mathfrak{A}_{0} \sim_{k}^{\infty, \omega} \mathfrak{A}_{1}$

Before we prove this theorem, we give some applications.

Disjoint unions of structures

Let \mathfrak{A}_{0} and \mathfrak{A}_{1} be two τ-structures. We denote the disjoint union by $\mathfrak{A}_{0} \sqcup \mathfrak{A}_{1}$.

Theorem 2

Let $\mathfrak{A}_{0}, \mathfrak{A}_{1} \mathfrak{B}_{0}, \mathfrak{B}_{1}$ be τ-structures such that

$$
\mathfrak{A}_{0} \equiv_{k}^{n} \mathfrak{B}_{0}
$$

and

$$
\mathfrak{A}_{1} \equiv_{k}^{n} \mathfrak{B}_{1} .
$$

Then

$$
\mathfrak{A}_{0} \sqcup \mathfrak{A}_{1} \equiv_{k}^{n} \mathfrak{B}_{0} \sqcup \mathfrak{B}_{1}
$$

Proof: Exercise!
Exercise: Prove the analogue theorem for graph complement, for join and cartesian product of two graphs.

What about graphs as two-sorted structures, line graphs?

Proposition 3

$E V E N$ is not definable in $\mathcal{L}_{\infty, \omega}^{k}$ with equality only, for any $k \in \mathbb{N}$.

Proof:

We show that sets of cardinality bigger than k are not distinguishable.

Q.E.D.

Proposition 4

$\exists \geq k+1 x(x=x)$,
$\exists \leq{ }^{k} x(x=x)$ and
$\exists^{=k} x(x=x)$
are not definable in $\mathcal{L}_{\infty, \omega}^{k}$ with equality only.

Proof:

We show that sets of cardinality bigger or equal than k are not distinguishable.
Q.E.D.

Proposition 5

The class of linear orders is not definable in $\mathcal{L}_{\infty, \omega}^{2}$, but is definable in $F O L^{3}$.

Proof:

Let Ord_{n} be a finite linear order with n elements.
Let $C_{n}^{d i r}(s, t)$ be directd graph obtained from $C_{n}^{d i r}$ by adding two vertices s, t (source and target), such that s has edges pointing to all the vertices, and t has edges with all vertices pointing to t.
We show that, for $n \geq 3$, the directed graph $C_{n}^{d i r}(s, t)$ is not distinguishable in $\mathcal{L}_{\infty, \omega}^{2}$ from Ord $_{n}$.

Q.E.D.

Proposition 6

The class of 2-colorable graphs IS definable in $\mathcal{L}_{\infty, \omega}^{k}$, for some k, but the class of 3-colorable graphs IS NOT definable in $\mathcal{L}_{\infty, \omega}^{k}$, for any $k \in \mathbb{N}$.

Proof:

The undirected circle C_{n} on n vertices is 2 -colorable iff n is even.
Now a graph is 2-colorable iff it has no even cycle. But the existence of even cycles is definable in $\mathcal{L}_{\infty, \omega}^{k}$, for some k.

Exercise: Find the smallest k !
The non-definability of 3 -colorability is due to
A. Dawar, A restricted second order logic for finite structures,

Logic and Computational Complexity, Springer LNCS 960 (1994), pp. 393-413. Q.E.D.

Proposition 7

The class of HAM of graphs which have a hamiltonian circuit, is not definable in $\mathcal{L}_{\infty, \omega}^{k}$, for any $k \in \mathbb{N}$.

Proof: Exercise!

Hint: $K_{m, n}$ is in HAM iff $m=n . K_{m, n}=E_{m} \bowtie E_{n}$. But for m, n much larger than k, E_{m} and E_{n} cannot be distinguished in $\mathcal{L}_{\infty, \omega}^{k}$.

Problem:

Is the class PLANAR of planar graphs, definable in $\mathcal{L}_{\infty, \omega}^{k}$, for any $k \in \mathbb{N}$?
Hint: We try a negative answer:
Look at K_{5} and change an edge preserving the degrees but making it planar. The replace each edge by very long paths.

Theorem 8

On ordered $\tau^{<}$-structures, $\tau^{<}=\tau \cup R_{\text {ord }}$, any class of structures $K \in$ PSpace is definable in $\mathcal{L}_{\infty, \omega}^{\omega}$.

This remains without proof.
See Libkin's book.

Exercise:

Pick your favorite PSpace-complete problem, e.g. $H E X$, and write down the formula which defines it, without simulating the proof of the theorem.

Pebble games for SOL

- For $\mathbf{S O L}^{m}$ the players can also pick relations of arity $\leq m$.
- The notions of partial isomorphisms now includes the relations already picked.
- Formulate the analogues of Theorem 1.
- Try to play the game for $\mathrm{SOL}^{1}=\mathrm{MSOL}$.
- Try to play the game for SOL^{2}.

Recall:

0-1 Laws for asymptotic probabilities

Theorem A: (Kolaitis and Vardi, 1992)
(generalizing a long sequence of earlier papers since 1964)
For \mathcal{P} definable in infinitary logic with finitely many variables, $\mathcal{L}_{\infty, \omega}^{\omega}$, either $\mu_{\mathcal{P}}=0$ or $\mu_{\mathcal{P}}=1$.
This works also for any constant probability p and $\mu_{\mathcal{P}}^{p}$.
Theorem B: (Shelah and Spencer, 1988)
For $\alpha \in[0,1]$ irrational, \mathcal{P} definable in $F O L$, either $\mu_{\mathcal{P}}^{n^{-\alpha}}=0$ or $\mu_{\mathcal{P}}^{n^{-\alpha}}=1$.
For all rational α there are counterexamples.

Strategy for the Proof of Theorem A

- Use extension axioms $E A$ and their probabilities.
$\mu\left(E A_{k}\right)=1$ for each $k \in \mathbb{N}$.
- Use winning strategies for extension axioms $E A$.

Assume G_{0}, G_{1} are two graphs in which for all $m \leq n \leq k \in \mathbb{N}$ the exioms $E A_{n, m}$ hold. Then $G_{0} \equiv_{k}^{\infty} G_{1}$.

- Use Theorem 1.

Conclude that $G_{0} \sim_{k}^{\infty, \omega} G_{1}$.

The last steps of the proof of Theorem A

- Let $\Phi \in \mathcal{L}_{\infty, \omega}^{k}(\tau)$.
- We can assume that Φ has arbitrarily large finite models which also satisfy $E A_{k}$, otherwise, $\mu(\Phi) \leq \mu\left(\neg E A_{k}\right)=0$ and we are done.
Let $G_{0} \models\left(E A_{k} \wedge \Phi\right)$ be of size at least $2 k$.
- Assume $G_{1} \models E A_{k}$ and has at least $2 k$ elements.

Then we have $G_{0} \sim_{k}^{\infty, \omega} G_{1}$, and therefore, $G_{1} \models \Phi$.

- Now we conclude that $\mu(\Phi) \geq \mu\left(E A_{k}\right) \geq 1$.

Q.E.D.

Lecture 5 (continued)

Last lecture:

- We showed how to use Theorem 1 linking Pebble Games and Logics.
- We proved various non-definability results.
- We looked briefly at games picking also relations.
- We proved Theorem A.

Strategy for a proof of Theorem 1

Linking logics and games.

- Assume $\phi \in \mathcal{L}_{\infty, \omega}^{k}(\tau)$ and $\mathfrak{A}_{0}=\phi$ but $\mathfrak{A}_{1} \models \neg \phi$.

We build a winning strategy for player I (the spoiler) for the k-pebble game.

- Given a τ-structure \mathfrak{A}, we construct a sentence $\sigma_{\mathfrak{A}} \in \phi \in \mathcal{L}_{\infty, \omega}^{k}(\tau)$, such that, whenever $\mathfrak{B} \models \sigma_{\mathfrak{A}}$, then $\mathfrak{B} \equiv_{k}^{\infty} \mathfrak{A}$.
$\sigma_{\mathfrak{A}}$ is called the Scott sentence of \mathfrak{A}.
- We conclude $\mathfrak{B} \equiv_{k}^{\infty} \mathfrak{A}$ iff $\mathfrak{B} \sim_{k}^{\infty, \omega} \mathfrak{A}$.

We can do the same for the finite versions of the game.

Quantifier rank, I

We write, say, an MSOL-formula ϕ as a tree:

$$
\begin{gathered}
\exists X_{1} \forall x_{2}\left(x_{2} \in X_{1} \rightarrow \exists x_{3} E\left(x_{2}, x_{3}\right)\right) \\
\exists X_{1} \\
\\
\forall x_{2} \\
\\
\rightarrow
\end{gathered}
$$

The quantifier rank is biggest number of quantifiers one can find along a path in this tree.

Here it is 3.

Quantifier rank of a formula, II

- For formulas in prenex normal form
the quantifier rank equals
the number of quantifiers.
- If we reuse variables, the quantifier rank can be smaller than the number of quantifiers used in prenex normal form.

$$
\forall x_{1}\left(\exists x_{2} E\left(x_{1}, x_{2}\right) \wedge \exists x_{2} \neg E\left(x_{1}, x_{2}\right)\right)
$$

Quantifier rank 2

$$
\forall x_{1} \exists x_{2} \exists x_{3}\left(E\left(x_{1}, x_{2}\right) \wedge \neg E\left(x_{1}, x_{3}\right)\right)
$$

Quantifier rank 3

Quantifier rank of a formula, III

- In the FOL-case and MSOL-case the quantifiers of elements and the set quantifiers our counted the same way.
- For SOL-formulas we may want to give the second order quantifiers a different weight, say using the arity.

How many non-equivalent formulas?
 $F O L$ atomic case

Assume we have (first order) variables

$$
x_{1}, x_{2}, \ldots, x_{v}
$$

This gives $\binom{v}{2}+\binom{v}{1}=O\left(v^{2}\right)$ many instances of $x_{i}=x_{j}$ with $i \leq j$.

For a r-ary relation symbol R we get r^{v} many instances of $R\left(x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{r}}\right)$.
If we allow $c_{1}, c_{2}, \ldots, c_{v^{\prime}}$ constants the numbers become $O\left(\left(v+v^{\prime}\right)^{2}\right)$ and $r^{v+v^{\prime}}$ respectively.

Proposition:

For a fixed finite relational vocabulary τ with constants and v first order variables, there are a finite number of atomic formulas $\alpha_{\tau, v}^{F O L}$.

How many non-equivalent formulas?
 MSOL atomic case

Assume we have first and second order variables

$$
x_{1}, x_{2}, \ldots, x_{v_{1}}, U_{1}, U_{2}, \ldots, U_{v_{2}}
$$

This gives
$O\left(v_{1}^{2}\right)$ many instances of $x_{i}=x_{j}$ with $i \leq j$ and $v_{1} \cdot v_{2}$ many instances of $x_{i} \in U_{j}$.

For a r-ary relation symbol R we get r^{v} many instances of $R\left(x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{r}}\right)$. If we allow $c_{1}, c_{2}, \ldots, c_{v_{3}}$ constants the numbers become $\binom{v_{1}+v_{3}}{2},\left(v_{1}+v_{3}\right) v_{2}$ and $r^{v_{1}+v_{3}}$ respectively.

Proposition:

For a fixed finite relational vocabulary τ with constants and v first order variables, there are a finite number of atomic formulas $\alpha_{\tau, v}^{M S O L}$.

How many non-equivalent formulas?
 Quantifierfree case

For quantifierfree formulas we only count formulas in CNF.
There are $2^{\alpha_{\pi, v}^{F O L}}$, resp. $2^{\alpha_{\pi, v}^{U S S L}}$ many disjunctions

$$
\bigvee_{j=1}^{2^{R F, t, L}}(\neg)^{\nu(j)} A_{j}
$$

where A_{j} ranges over atomic formulas.
Hence we have (at most) $2^{2^{a_{F}^{F O L}}}$ many formulas in CNF.

Proposition:

For a fixed finite relational vocabulary τ with constants and v first order variables, there are a finite number of atomic formulas $\beta_{\tau, v}^{F O L}$ and $\beta_{\tau, v}^{M S O L}$, respectively.

How many non-equivalent formulas? Quantifiers I: PNF

Counting quantified formulas is a bit more tricky. We can assume that the formulas are in

Prenex Normal Form

But then variables are NOT reused.
So for each CNF formula with v variables there are $3^{v} \cdot v$! many quantifier prefixes
$(\exists, \forall$, not quantified).
This gives at most

$$
3^{v} \cdot v!\cdot \beta \tau, v^{F O L}
$$

many prenex normal form formulas.

How many formulas are there ?
 Quantifiers II: quantifier rank

Theorem:

For each τ and $v=v_{1}+v_{2}$ many variables

$$
x_{1}, x_{2}, \ldots, x_{v_{1}}, U_{1}, U_{2}, \ldots, U_{v_{2}}
$$

there are only $\gamma_{\tau, v, q}^{M S O L}$ many formulas of quantifier rank q.
Proof: We estimate this number by induction over q for $M S O L$.
For $q=0$ we have at most γ many formulas with $\gamma_{0}=\beta \tau, v^{M S O L}$.
Treating them as atomic formulas we have $2 v$ many ways of adding one quantifier, and hence at most

$$
\gamma_{\tau, v, q+1}^{M S O L}=\gamma_{q+1}=2^{2^{2 v \eta_{q}}}
$$

many formulas of rank $q+1$.

How many formulas are there ?
Quantifiers II: quantifier rank

Exercise:

(i) Count the formulas of SOL.
(ii) Count the non-equivalent formulas of $\mathcal{L}_{\infty, \omega}^{k}(\tau)$.

How many non-equivalent formulas are there really?

Exact estimates to the best of our knowledge unknown.

From distinguishing formulas to winning strategies, I $\phi \in \mathrm{MSOL}^{k}$ in Prenex Normal Form

Ehrenfeucht-Fraïssé Theorem, I

Theorem 1:(Easy part)

Assume there is a $\operatorname{MSOL}(\tau)$-sentence ϕ with k variables and quantifier depth n in Prenex Normal Form such that $\mathcal{A}_{0} \models \phi$ and $\mathcal{A}_{1} \models \neg \phi$.

Then I has a winning strategy for the k-pebble n-moves game on \mathcal{A}_{0} and \mathcal{A}_{1}.

Ehrenfeucht-Fraïssé Theorem, II

We first assume that there infinitely many pebbles.
We write ϕ and $\neg \phi$ in Prenex Normal Form:

$$
\begin{gathered}
\phi=\exists X_{1} \exists x_{2} \forall X_{3} \exists x_{4} \ldots \exists x_{n-1} \exists X_{n} \\
B\left(X_{1}, x_{2}, \ldots, x_{n-1}, X_{n}\right) \\
\neg \phi= \\
\forall X_{1} \forall x_{2} \exists X_{3} \forall x_{4} \ldots \forall x_{n-1} \forall X_{n} \\
\neg B\left(X_{1}, x_{2}, \ldots, x_{n-1}, X_{n}\right)
\end{gathered}
$$

where B is without quantifiers.

We can read from the quantifier prefix a winning strategy.

Assume $\mathcal{A}_{0} \models \phi$ and $\mathcal{A}_{1} \models \neg \phi$.
Player I follows the existential quantifiers.
Player I picks in \mathcal{A}_{0} a set A_{1} such that

$$
\mathcal{A}_{0}, A_{1}^{0} \models \exists x_{2} \forall X_{3} \exists x_{4} \ldots \exists x_{n-1} \exists X_{n} B\left(A_{1}^{0}, x_{2}, \ldots, x_{n-1}, X_{n}\right)
$$

Whatever player II picks as A_{1}^{1}

$$
\mathcal{A}_{1}, A_{1}^{1} \models \forall x_{2} \exists X_{3} \forall x_{4} \ldots \forall x_{n-1} \forall X_{n} \neg B\left(A_{1}^{1}, x_{2}, \ldots, x_{n-1}, X_{n}\right)
$$

Ehrenfeucht-Fraïssé Theorem, III (continued)

Next player I picks an element a_{2}^{0} in \mathcal{A}_{0} such that

$$
\mathcal{A}_{0}, A_{1}^{0}, a_{2}^{0}=\forall X_{3} \exists x_{4} \ldots \exists x_{n-1} \exists X_{n} B\left(A_{1}^{0}, a_{2}^{0}, \ldots, x_{n-1}, X_{n}\right)
$$

Whatever player II picks as a_{2}^{1}

$$
\mathcal{A}_{1}, A_{1}^{1}, a_{2}^{1}=\exists X_{3} \forall x_{4} \ldots \forall x_{n-1} \forall X_{n} \neg B\left(A_{1}^{1}, a_{2}^{1}, \ldots, x_{n-1}, X_{n}\right)
$$

Now player I picks in \mathcal{A}_{1} a set A_{3}^{1} such that

$$
\mathcal{A}_{1}, A_{1}^{1}, a_{2}^{1}, A_{3}^{1}=\forall x_{4} \ldots \forall x_{n-1} \forall X_{n} \neg B\left(A_{1}^{1}, a_{2}^{1}, A_{3}^{1}, \ldots, x_{n-1}, X_{n}\right)
$$

and so on..........

Ehrenfeucht-Fraïssé Theorem, IV

Finally the outcome is from \mathcal{A}_{0}

$$
A_{1}^{0}, a_{2}^{0}, A_{3}^{0}, \ldots, a_{n-1}^{0}, A_{n}^{0}
$$

and from \mathcal{A}_{1}

$$
A_{1}^{1}, a_{2}^{1}, A_{3}^{1}, \ldots, a_{n-1}^{1}, A_{n}^{1}
$$

such that

$$
\mathcal{A}_{0}=B\left(A_{1}^{0}, a_{2}^{0}, A_{3}^{0}, \ldots, a_{n-1}^{0}, A_{n}^{0}\right)
$$

and

$$
\mathcal{A}_{1} \models \neg B\left(A_{1}^{1}, a_{2}^{1}, A_{3}^{1}, \ldots, a_{n-1}^{1}, A_{n}^{1}\right)
$$

which shows that player I wins, as this cannot be a local isomorphism We need a Lemma on local isomorphisms and quantifierfree formulas.

The easy case: What remains?

- We have to discuss what we do if the formulas are not in Prenex Normal Form.
- We have to discuss the case for $\mathcal{L}_{\infty, \omega}$.
- The easy part also works for SOL in all its variations.

