
Logical Methods in Combinatorics, 236605-2009/10 Lecture 5

Lecture 5

What have we done so far?

We prepared the grounds to formulate and prove Theorem A: The 0-1 law
for L∞,ω.

• We defined the logic L∞,ω.
It’s model theory is discussed in detail in

J. Keisler, Model theory for infinitary logic: Logic with countable conjunctions and finite

quantifiers, North Holland, 1971

• We defined the logic Lω
∞,ω.

The logic L∞,ω is too expressive for the study of finite structures. So we restricted the

overall number of variables.

• We introduced pebble games PGn
k(A, B) and PGω

k(A, B).

• We practiced playing the game on simple graphs and on graphs satisfying
the extension axioms EAn,m for all m ≤ n ≤ k.
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Pebble games, IV

Let A0 and A1 be two τ-structures.

We say A0 ∼∞,ω
k A1 if they agree on all sentences of Lk

∞,ω.

We say A0 ∼∞,ω
k,n A1 if they agree on all sentences of Lk

∞,ω of quantifier rank n.

Theorem 1 (Theorem 2 of Lecture 4)

(i) A0 ≡n
k A1 iff A0 ∼∞,ω

k,n A1

(ii) A0 ≡∞
k A1 iff A0 ∼∞,ω

k A1

Before we prove this theorem, we give some applications.
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Disjoint unions of structures

Let A0 and A1 be two τ-structures. We denote the disjoint union by A0 ⊔ A1.

Theorem 2

Let A0, A1 B0, B1 be τ-structures such that

A0 ≡n
k B0

and

A1 ≡n
k B1.

Then

A0 ⊔ A1 ≡n
k B0 ⊔ B1

Proof: Exercise!

Exercise: Prove the analogue theorem for graph complement, for join and
cartesian product of two graphs.

What about graphs as two-sorted structures, line graphs?
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Proposition 3

EV EN is not definable in Lk
∞,ω with equality only, for any k ∈ N.

Proof:

We show that sets of cardinality bigger than k

are not distinguishable. Q.E.D.
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Proposition 4

∃≥k+1x(x = x),

∃≤kx(x = x) and

∃=kx(x = x)

are not definable in Lk
∞,ω with equality only.

Proof:

We show that sets of cardinality bigger or equal than k
are not distinguishable. Q.E.D.
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Proposition 5

The class of linear orders is not definable in L2
∞,ω,

but is definable in FOL3.

Proof:

Let Ordn be a finite linear order with n elements.
Let Cdir

n (s, t) be directd graph obtained from Cdir
n by adding two vertices s, t

(source and target), such that s has edges pointing to all the vertices, and t
has edges with all vertices pointing to t.
We show that, for n ≥ 3, the directed graph Cdir

n (s, t)
is not distinguishable in L2

∞,ω from Ordn. Q.E.D.
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Proposition 6

The class of 2-colorable graphs IS definable in Lk
∞,ω, for some k,

but the class of 3-colorable graphs IS NOT definable in Lk
∞,ω,

for any k ∈ N.

Proof:

The undirected circle Cn on n vertices is 2-colorable iff n is even.
Now a graph is 2-colorable iff it has no even cycle. But the existence of even
cycles is definable in Lk

∞,ω, for some k.

Exercise: Find the smallest k!

The non-definability of 3-colorability is due to

A. Dawar, A restricted second order logic for finite structures,

Logic and Computational Complexity, Springer LNCS 960 (1994), pp. 393-413. Q.E.D.
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Proposition 7

The class of HAM of graphs which have a hamiltonian circuit,

is not definable in Lk
∞,ω, for any k ∈ N.

Proof: Exercise!

Hint: Km,n is in HAM iff m = n. Km,n = Em ⊲⊳ En. But for m, n much larger
than k, Em and En cannot be distinguished in Lk

∞,ω.

Problem:

Is the class PLANAR of planar graphs, definable in Lk
∞,ω, for any k ∈ N?

Hint: We try a negative answer:

Look at K5 and change an edge preserving the degrees but making it planar.
The replace each edge by very long paths.
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Theorem 8

On ordered τ<-structures, τ< = τ ∪ Rord,

any class of structures K ∈ PSpace is definable in Lω
∞,ω.

This remains without proof.

See Libkin’s book.

Exercise:

Pick your favorite PSpace-complete problem, e.g. HEX, and write down the
formula which defines it, without simulating the proof of the theorem.

9



Logical Methods in Combinatorics, 236605-2009/10 Lecture 5

Pebble games for SOL

• For SOLm the players can also pick relations of arity ≤ m.

• The notions of partial isomorphisms now includes the relations already
picked.

• Formulate the analogues of Theorem 1.

• Try to play the game for SOL1 = MSOL.

• Try to play the game for SOL2.
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Recall:

0-1 Laws for asymptotic probabilities

Theorem A: (Kolaitis and Vardi, 1992)
(generalizing a long sequence of earlier papers since 1964)

For P definable in infinitary logic with finitely many variables, Lω
∞,ω,

either µP = 0 or µP = 1.

This works also for any constant probability p and µ
p
P.

Theorem B: (Shelah and Spencer, 1988)

For α ∈ [0,1] irrational, P definable in FOL,
either µn−α

P = 0 or µn−α

P = 1.

For all rational α there are counterexamples.
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Strategy for the Proof of Theorem A

• Use extension axioms EA and their probabilities.

µ(EAk) = 1 for each k ∈ N.

• Use winning strategies for extension axioms EA.

Assume G0, G1 are two graphs in which for all m ≤ n ≤ k ∈ N the exioms EAn,m hold.

Then G0 ≡∞
k

G1.

• Use Theorem 1.

Conclude that G0 ∼∞,ω
k

G1.
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The last steps of the proof of Theorem A

• Let Φ ∈ Lk
∞,ω(τ).

• We can assume that Φ has arbitrarily large finite models which also satisfy
EAk, otherwise, µ(Φ) ≤ µ(¬EAk) = 0 and we are done.

Let G0 |= (EAk ∧ Φ) be of size at least 2k.

• Assume G1 |= EAk and has at least 2k elements.

Then we have G0 ∼∞,ω
k G1,

and therefore, G1 |= Φ.

• Now we conclude that µ(Φ) ≥ µ(EAk) ≥ 1.

Q.E.D.
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Lecture 5 (continued)

Last lecture:

• We showed how to use Theorem 1 linking Pebble Games and Logics.

• We proved various non-definability results.

• We looked briefly at games picking also relations.

• We proved Theorem A.
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Strategy for a proof of Theorem 1

Linking logics and games.

• Assume φ ∈ Lk
∞,ω(τ) and A0 |= φ but A1 |= ¬φ.

We build a winning strategy for player I (the spoiler)
for the k-pebble game.

• Given a τ-structure A, we construct a sentence σA ∈ φ ∈ Lk
∞,ω(τ),

such that, whenever B |= σA, then B ≡∞
k A.

σA is called the Scott sentence of A.

• We conclude B ≡∞
k A iff B ∼∞,ω

k A.

We can do the same for the finite versions of the game.
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Quantifier rank, I

We write, say, an MSOL-formula φ as a tree:

∃X1∀x2 (x2 ∈ X1 → ∃x3E(x2, x3))

∃X1

∀x2

→

x2 ∈ X1 ∃x3

E(x2, x3)

The quantifier rank is biggest number of quantifiers one can find along a path
in this tree.

Here it is 3.
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Quantifier rank of a formula, II

• For formulas in prenex normal form

the quantifier rank equals

the number of quantifiers.

• If we reuse variables, the quantifier rank can be smaller than the number
of quantifiers used in prenex normal form.

∀x1 (∃x2E(x1, x2) ∧ ∃x2¬E(x1, x2))

Quantifier rank 2

∀x1∃x2∃x3 (E(x1, x2) ∧ ¬E(x1, x3))

Quantifier rank 3
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Quantifier rank of a formula, III

• In the FOL-case and MSOL-case the quantifiers of elements and the set
quantifiers our counted the same way.

• For SOL-formulas we may want to give the second order quantifiers a
different weight, say using the arity.

18



Logical Methods in Combinatorics, 236605-2009/10 Lecture 5

How many non-equivalent formulas?

FOL atomic case

Assume we have (first order) variables

x1, x2, . . . , xv

This gives
(

v

2

)

+
(

v

1

)

= O(v2) many instances
of xi = xj with i ≤ j.

For a r-ary relation symbol R we get rv many instances of R(xj1
, xj2

, . . . , xjr
).

If we allow c1, c2, . . . , cv′ constants the numbers become O((v + v′)2) and rv+v′

respectively.

Proposition:

For a fixed finite relational vocabulary τ with constants and v first order
variables, there are a finite number of atomic formulas αFOL

τ,v .
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How many non-equivalent formulas?

MSOL atomic case

Assume we have first and second order variables

x1, x2, . . . , xv1
, U1, U2, . . . , Uv2

This gives
O(v2

1) many instances of xi = xj with i ≤ j
and v1 · v2 many instances of xi ∈ Uj.

For a r-ary relation symbol R we get rv many instances of R(xj1
, xj2

, . . . , xjr
).

If we allow c1, c2, . . . , cv3
constants the numbers become

(

v1+v3

2

)

, (v1+v3)v2 and

rv1+v3 respectively.

Proposition:

For a fixed finite relational vocabulary τ with constants and v first order
variables, there are a finite number of atomic formulas αMSOL

τ,v .
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How many non-equivalent formulas?

Quantifierfree case

For quantifierfree formulas we only count
formulas in CNF.

There are 2αFOL
τ,v , resp. 2αMSOL

τ,v many
disjunctions

2
αFOL

τ,v
∨

j=1

(¬)ν(j)Aj

where Aj ranges over atomic formulas.

Hence we have (at most) 22
αFOL

τ,v

many
formulas in CNF.

Proposition:

For a fixed finite relational vocabulary τ with constants and v first order
variables, there are a finite number of atomic formulas βFOL

τ,v and βMSOL
τ,v ,

respectively.
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How many non-equivalent formulas?

Quantifiers I: PNF

Counting quantified formulas is a bit more tricky.
We can assume that the formulas are in

Prenex Normal Form

But then variables are NOT reused.

So for each CNF formula with v variables there are 3v · v! many quantifier
prefixes
(∃,∀, not quantified).

This gives at most

3v · v! · βτ, vFOL

many prenex normal form formulas.
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How many formulas are there ?

Quantifiers II: quantifier rank

Theorem:

For each τ and v = v1 + v2 many variables

x1, x2, . . . , xv1
, U1, U2, . . . , Uv2

there are only γMSOL
τ,v,q many formulas of quantifier rank q.

Proof: We estimate this number by induction over q for MSOL.

For q = 0 we have at most γ many formulas with γ0 = βτ, vMSOL.

Treating them as atomic formulas we have 2v many ways of adding one
quantifier, and hence at most

γMSOL
τ,v,q+1 = γq+1 = 222v·ηq

many formulas of rank q + 1.
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How many formulas are there ?

Quantifiers II: quantifier rank

Exercise:

(i) Count the formulas of SOL.

(ii) Count the non-equivalent formulas of Lk
∞,ω(τ).

How many non-equivalent formulas

are there really?

Exact estimates to the best of our knowledge unknown.
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From distinguishing formulas to winning strategies, I

φ ∈ MSOLk in Prenex Normal Form
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Ehrenfeucht-Fräıssé Theorem, I

Theorem 1:(Easy part)

Assume there is a MSOL(τ)-sentence φ with k variables and quantifier depth
n in Prenex Normal Form such that A0 |= φ and A1 |= ¬φ.

Then I has a winning strategy for the k-pebble n-moves game on A0 and A1.
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Ehrenfeucht-Fräıssé Theorem, II

We first assume that there infinitely many pebbles.

We write φ and ¬φ in Prenex Normal Form:

φ = ∃X1∃x2∀X3∃x4 . . . ∃xn−1∃Xn

B(X1, x2, . . . , xn−1, Xn)

¬φ = ∀X1∀x2∃X3∀x4 . . . ∀xn−1∀Xn

¬B(X1, x2, . . . , xn−1, Xn)

where B is without quantifiers.

We can read from the quantifier prefix a winning strategy.
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Ehrenfeucht-Fräıssé Theorem, III

Assume A0 |= φ and A1 |= ¬φ.
Player I follows the existential quantifiers.

Player I picks in A0 a set A1 such that

A0, A
0
1 |= ∃x2∀X3∃x4 . . . ∃xn−1∃XnB(A0

1, x2, . . . , xn−1, Xn)

Whatever player II picks as A1
1

A1, A
1
1 |= ∀x2∃X3∀x4 . . . ∀xn−1∀Xn¬B(A1

1, x2, . . . , xn−1, Xn)

28



Logical Methods in Combinatorics, 236605-2009/10 Lecture 5

Ehrenfeucht-Fräıssé Theorem, III (continued)

Next player I picks an element a0
2 in A0 such that

A0, A
0
1, a

0
2 |= ∀X3∃x4 . . . ∃xn−1∃XnB(A0

1, a
0
2, . . . , xn−1, Xn)

Whatever player II picks as a1
2

A1, A
1
1, a

1
2 |= ∃X3∀x4 . . . ∀xn−1∀Xn¬B(A1

1, a
1
2, . . . , xn−1, Xn)

Now player I picks in A1 a set A1
3 such that

A1, A
1
1, a

1
2, A

1
3 |= ∀x4 . . . ∀xn−1∀Xn¬B(A1

1, a
1
2, A

1
3, . . . , xn−1, Xn)

and so on..........
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Ehrenfeucht-Fräıssé Theorem, IV

Finally the outcome is from A0

A0
1, a

0
2, A

0
3, . . . , a

0
n−1, A

0
n

and from A1

A1
1, a

1
2, A

1
3, . . . , a

1
n−1, A

1
n

such that

A0 |= B(A0
1, a

0
2, A

0
3, . . . , a

0
n−1, A

0
n)

and

A1 |= ¬B(A1
1, a

1
2, A

1
3, . . . , a

1
n−1, A

1
n)

which shows that player I wins, as this cannot be a local isomorphism

We need a Lemma on local isomorphisms and quantifierfree formulas.
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The easy case: What remains?

• We have to discuss what we do if the formulas
are not in Prenex Normal Form.

• We have to discuss the case for L∞,ω.

• The easy part also works for SOL in all its variations.
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