Lecture 4

Lecture 4

(Mostly after [Lib04], chapters 11 and 12.)

What did we do so far?

We proved the 0-1 Law for FOL.

This was done in the following steps.

- We defined the extension axioms $EA = \{EA_n : n \in \mathbb{N}\}.$
- We showed that for each n, the probability $\mu_{EA_n} = 1$.
- We showed that EA is an \aleph_0 -categorical theory without finite models.
- We used Vaught's test to show that *EA* is complete and decidable.

The infinitary logic $\mathcal{L}_{\infty,\omega}$

We define the formulas of $\mathcal{L}_{\infty,\omega}(\tau)$ inductively:

- $FOL(\tau)$ -formulas are $\mathcal{L}_{\infty,\omega}(\tau)$ -formulas.
- $\mathcal{L}_{\infty,\omega}(\tau)$ is closed under binary conjunction \wedge , binary disjunction \vee , and unary negation \neg .
- $\mathcal{L}_{\infty,\omega}(\tau)$ is closed under existential (\exists) and universal (\forall) quantification of first order variables.
- If Φ is a set (of any cardinality) of $\mathcal{L}_{\infty,\omega}(\tau)$ -formulas with all free variables from a fixed set $\{v_1, \ldots, v_k\}$ of free variables, then

$$\psi_1(v_1,\ldots,v_k) = \bigwedge_{\phi\in\Phi} \phi \quad \text{and} \quad \psi_1(v_1,\ldots,v_k) = \bigvee_{\phi\in\Phi} \phi$$

are $\mathcal{L}_{\infty,\omega}(\tau)$ -formulas. with all free variables in $\{v_1, \ldots, v_k\}$.

Expressive power of $\mathcal{L}_{\infty,\omega}$ (An exercise, will be discussed on the black board)

Prove the following

- The class of finite sets is $\mathcal{L}_{\infty,\omega}$ -definable for $\tau = \emptyset$.
- The class of finite sets of even cardinality is $\mathcal{L}_{\infty,\omega}$ -definable for $\tau = \emptyset$.
- The class of finite graphs is $\mathcal{L}_{\infty,\omega}$ -definable for $\tau = \{R_{2,0}\}$.
- The class of connected (finite or infinite) graphs is $\mathcal{L}_{\infty,\omega}$ -definable for $\tau = \{R_{2,0}\}$.
- Exercise: None of the above is FOL(τ)-definable. This was shown in 234293 (Logic and Sets).
 The tools for the exercise will be developed in this lecture.

Lecture 4

$\mathcal{L}_{\infty,\omega}$ is too expressive.

Theorem 1

- (i) Let K be any class of finite τ -structures closed under τ -isomorphisms. K is Then $\mathcal{L}_{\infty,\omega}(\tau)$ -definable.
- (ii) Let K be any class of finite or countable τ -structures closed under τ isomorphisms. K is Then $\mathcal{L}_{\infty,\omega}(\tau)$ -definable.

Proof:

We prove (i) by showing that for every finite τ -structure \mathfrak{A} there is a $FOL(\tau)$ -sentence $\phi_{\mathfrak{A}}$ such that $\mathfrak{A} \models \phi_{\mathfrak{A}}$ and if $\mathfrak{B} \models \phi_{\mathfrak{A}}$ then $\mathfrak{B} \cong_{\tau} \mathfrak{A}$.

(ii) follows from the Engeler-Scott theorem:

For every countable structure \mathfrak{A} there is countable $\mathcal{L}_{\infty,\omega}(\tau)$ -sentence, which characterizes it among countable structures up to isomorphisms.

Conclusion: $\mathcal{L}_{\infty,\omega}$ is too expressive.

Restricting the total number of variables.

We fix a set of variables $Var_k = \{v_1, \ldots, v_k\}$.

We denote by

- (i) $FOL^k(\tau)$ the set of $FOL(\tau)$ -formulas where all the variables (free and bound) are in Var_k .
- (ii) $\mathcal{L}_{\infty,\omega}^k$ the set of $\mathcal{L}_{\infty,\omega}$ -formulas where all the variables (free and bound) are in Var_k .

(iii) $\mathcal{L}_{\infty,\omega}^{\omega} = \bigcup_{k}^{\omega} \mathcal{L}_{\infty,\omega}^{k}$.

Exercise:

Discuss the cases k = 0, 1 for various τ . How many variables are there in EA_n ? How many variables do we need to express that "there are at least k different elements"?

Lecture 4

Negational Normal Form (NNF) and Prenex Normal Form (PNF) (An Exercise)

A formula is in **NNF**, if all the **negations** occur only in front of atomic formulas.

A formula is in **PNF** if all the **quantifications** are performed before any other boolean operation.

- Prove: Every formula $\phi \in FOL(\tau)$ is equivalent to a formula $\psi \in FOL(\tau) \cap NNF$.
- Is the same true for $\phi \in FOL^k(\tau)$?
- Prove: Every formula $\phi \in FOL(\tau)$ is equivalent to a formula $\psi \in FOL(\tau) \cap PNF$.
- Is the same true for $\phi \in FOL^k(\tau)$?
- What happens for $\mathcal{L}_{\infty,\omega}$ and $\mathcal{L}^k_{\infty,\omega}$?

Expressive power of $\mathcal{L}_{\infty,\omega}^{\omega}$: Connectedness

We want to say "there is an E-path from x to y.

- We write $\bigvee_{n\geq 1}\phi_n(x,y)$ with
- (i) $\phi_1(x,y) = E(x,y)$
- (ii) $\phi_{n+1}(x,y) = \exists z_n (E(x,z_n) \land \phi_n(z_n,y))$ $\phi_n(x,y)$ has n+1 variables.

Can we do better?

- (i) $\psi_1(x,y) = E(x,y)$
- (ii) $\psi_{n+1}(x,y) = \exists z (E(x,z) \land (\exists x(z = x \land \phi_n(x,y))))$ $\psi_n(x,y)$ has 3 variables.
- (iii) Now we write $\psi = \bigvee_{n \ge 1} \phi_n(x, y)$, hence $\psi \in \mathcal{L}^3_{\infty, \omega}$.

Expressive power of $\mathcal{L}_{\infty,\omega}^{\omega}$: $\exists^{=k} x \phi(x)$

Equality only:

$$\exists^{\geq k} x \phi(x) = \exists x_1 \exists x_2 \dots \exists x_k \left(\bigwedge_{i \neq j} \neg x_i = x_j \right). \\ \exists^{\leq k} x \phi(x) = \forall x_0 \forall x_1 \dots \forall x_k \left(\bigvee_{0 \leq i, j \leq k} x_i = x_j \right). \\ \exists^{=k} x \phi(x) = \left(\exists^{\leq k} x \phi(x) \land \exists^{\geq k} x \phi(x) \right). \\ \text{It is in } \mathcal{L}^{k+1}_{\infty, \omega}. \text{ We would like to prove that this is best possible.}$$

Linear orders:

 $\psi_1(x) = (x = x).$ $\psi_{n+1}(x) = \exists y ((x > y) \land \exists x (x = y \land \psi_n(x))).$ $\psi_n(x)$ is true in linear orders, if x has at least n-1 predecssors. Let $C \subseteq \mathbb{N}$. The sentence

$$\Psi_C = \bigvee_{n \in C} \left(\exists x \psi_n(x) \land \neg \exists x \psi_{n+1} \right)$$

says, for linear orders, that its cardinality is in C. $\Psi_C \in \mathcal{L}^2_{\infty,\omega}$. The axioms of linear order are in FOL^3 .

Lecture 4

The most important tool

Pebble games on τ -structures.

Pebble games, I

- Given two τ -structures \mathfrak{A}_0 and \mathfrak{A}_1 .
- Two players: I (spoiler) and II (duplicator).
- k pairs of pebbles $(p_0^1, p_1^1), \dots (p_0^k, p_1^k)$.
- Length of the game: $n \in \mathbb{N}$ or ∞ .
- Move number *m*:
 - Player I choses $i \in \{0, 1\}$ and places a pebble p_i^j on an element of \mathfrak{A}_i .
 - Player II responds by placing the pebble p_{1-i}^j on an element of \mathfrak{A}_{1-i} .

The game of length n is denoted by $PG_k^n(\mathfrak{A}_0,\mathfrak{A}_1)$.

The game of length that continues for ever is denoted by $PG_k^{\infty}(\mathfrak{A}_0,\mathfrak{A}_1)$.

Pebble games, II

- After each round m of the game the pairs of pebbles placed on the structure define a relation F_m ⊆ A₀ × A₁:
 (a^j₀, a^j₁) ∈ F_m iff p^j₀ is placed on a^j₀ ∈ A₀ and p^j₁ is placed on a^j₁ ∈ A₁.
- Player II (duplicator) wins the game if in each round played F_m is a (partial) τ -isomorphism.
- Player II (duplicator) has a winning strategy for the game if he can ensure that after each round played F_m is a (partial) τ -isomorphism.
- In the case of game length n we write $\mathfrak{A}_0 \equiv_k^n \mathfrak{A}_1$.
- In the case of game length ∞ we write $\mathfrak{A}_0 \equiv_k^\infty \mathfrak{A}_1$.

The classical colorblue Ehrenfeucht-Fraissé Game for FOL of length is $n PG_n^n(\mathfrak{A}_0, \mathfrak{A}_1)$ with $\mathfrak{A}_0 \equiv_n^n \mathfrak{A}_1$.

Lecture 4

Pebble games, III

An exercise in winning strategies

Pure sets $(\tau = \emptyset)$.

What are the cardinalities of sets S_0, S_1 such that $S_0 \equiv_k^n S_1$ or $S_0 \equiv_k^\infty S_1$?

Linear orders.

Let L_0, L_1 be any two linear orders with at least two comparable elements. Let P_m^{dir} the directed path and C_m^{dir} the directed circle of size m. Discuss the two and three pebble games on these structures.

Extension axioms.

Assume G_0, G_1 are two graphs in which for all $m \le n \le k \in \mathbb{N}$ the exioms $EA_{n,m}$ hold. Then $G_0 \equiv_k^{\infty} G_1$.

Pebble games, IV

Let \mathfrak{A}_0 and \mathfrak{A}_1 be two τ -structures.

We say $\mathfrak{A}_0 \sim_k^{\infty,\omega} \mathfrak{A}_1$ if they agree on all sentences of $\mathcal{L}_{\infty,\omega}^k$.

We say $\mathfrak{A}_0 \sim_{k,n}^{\infty,\omega} \mathfrak{A}_1$ if they agree on all sentences of $\mathcal{L}_{\infty,\omega}^k$ of quantifier rank n.

Theorem 2

(i)
$$\mathfrak{A}_0 \equiv_k^n \mathfrak{A}_1$$
 iff $\mathfrak{A}_0 \sim_{k,n}^{\infty,\omega} \mathfrak{A}_1$

(ii) $\mathfrak{A}_0 \equiv^{\infty}_k \mathfrak{A}_1$ iff $\mathfrak{A}_0 \sim^{\infty, \omega}_k \mathfrak{A}_1$

The proof will be given in the next lecture.