Lecture 4

(Mostly after [Lib04], chapters 11 and 12.)

What did we do so far?
We proved the 0-1 Law for $F O L$.
This was done in the following steps.

- We defined the extension axioms $E A=\left\{E A_{n}: n \in \mathbb{N}\right\}$.
- We showed that for each n, the probability $\mu_{E A_{n}}=1$.
- We showed that $E A$ is an \aleph_{0}-categorical theory without finite models.
- We used Vaught's test to show that $E A$ is complete and decidable.

The infinitary logic $\mathcal{L}_{\infty, \omega}$

We define the formulas of $\mathcal{L}_{\infty, \omega}(\tau)$ inductively:

- $\operatorname{FOL}(\tau)$-formulas are $\mathcal{L}_{\infty, \omega}(\tau)$-formulas.
- $\mathcal{L}_{\infty, \omega}(\tau)$ is closed under binary conjunction \wedge, binary disjunction \vee, and unary negation \neg.
- $\mathcal{L}_{\infty, \omega}(\tau)$ is closed under existential (\exists) and universal (\forall) quantification of first order variables.
- If Φ is a set (of any cardinality) of $\mathcal{L}_{\infty, \omega}(\tau)$-formulas with all free variables from a fixed set $\left\{v_{1}, \ldots, v_{k}\right\}$ of free variables, then

$$
\psi_{1}\left(v_{1}, \ldots, v_{k}\right)=\bigwedge_{\phi \in \Phi} \phi \quad \text { and } \quad \psi_{1}\left(v_{1}, \ldots, v_{k}\right)=\bigvee_{\phi \in \Phi} \phi
$$

are $\mathcal{L}_{\infty, \omega}(\tau)$-formulas. with all free variables in $\left\{v_{1}, \ldots, v_{k}\right\}$.

Expressive power of $\mathcal{L}_{\infty, \omega}$

(An exercise, will be discussed on the black board)

Prove the following

- The class of finite sets is $\mathcal{L}_{\infty, \omega}$-definable for $\tau=\emptyset$.
- The class of finite sets of even cardinality is $\mathcal{L}_{\infty, \omega}$-definable for $\tau=\emptyset$.
- The class of finite graphs is $\mathcal{L}_{\infty, \omega}$-definable for $\tau=\left\{R_{2,0}\right\}$.
- The class of connected (finite or infinite) graphs is $\mathcal{L}_{\infty, \omega}$-definable for $\tau=\left\{R_{2,0}\right\}$.
- Exercise: None of the above is $F O L(\tau)$-definable. This was shown in 234293 (Logic and Sets).
The tools for the exercise will be developed in this lecture.

$$
\mathcal{L}_{\infty, \omega} \text { is too expressive. }
$$

Theorem 1

(i) Let K be any class of finite τ-structures closed under τ-isomorphisms. K is Then $\mathcal{L}_{\infty, \omega}(\tau)$-definable.
(ii) Let K be any class of finite or countable τ-structures closed under τ isomorphisms.
K is Then $\mathcal{L}_{\infty, \omega}(\tau)$-definable.

Proof:

We prove (i) by showing that for every finite τ-structure \mathfrak{A} there is a $F O L(\tau)$ sentence $\phi_{\mathfrak{A}}$ such that $\mathfrak{A}=\phi_{\mathfrak{A}}$ and if $\mathfrak{B}=\phi_{\mathfrak{A}}$ then $\mathfrak{B} \cong_{\tau} \mathfrak{A}$.
(ii) follows from the Engeler-Scott theorem:

For every countable structure \mathfrak{A} there is countable $\mathcal{L}_{\infty, \omega}(\tau)$-sentence, which characterizes it among countable structures up to isomorphisms.

Conclusion: $\mathcal{L}_{\infty, \omega}$ is too expressive.

Restricting the total number of variables.

We fix a set of variables $\operatorname{Var}_{k}=\left\{v_{1}, \ldots, v_{k}\right\}$.
We denote by
(i) $F O L^{k}(\tau)$ the set of $F O L(\tau)$-formulas where all the variables (free and bound) are in $V a r_{k}$.
(ii) $\mathcal{L}_{\infty, \omega}^{k}$ the set of $\mathcal{L}_{\infty, \omega}$-formulas where all the variables (free and bound) are in $V a r_{k}$.
(iii) $\mathcal{L}_{\infty, \omega}^{\omega}=\bigcup_{k}^{\omega} \mathcal{L}_{\infty, \omega}^{k}$.

Exercise:

Discuss the cases $k=0,1$ for various τ.
How many variables are there in $E A_{n}$?
How many variables do we need to express that
"there are at least k different elements"?

$$
\begin{gathered}
\text { Negational Normal Form (NNF) and } \\
\text { Prenex Normal Form (PNF) } \\
\text { (An Exercise) }
\end{gathered}
$$

A formula is in NNF, if all the negations occur only in front of atomic formulas.

A formula is in PNF if all the quantifications are performed before any other boolean operation.

- Prove: Every formula $\phi \in F O L(\tau)$ is equivalent to a formula $\psi \in F O L(\tau) \cap N N F$.
- Is the same true for $\phi \in F O L^{k}(\tau)$?
- Prove: Every formula $\phi \in F O L(\tau)$ is equivalent to a formula $\psi \in F O L(\tau) \cap P N F$.
- Is the same true for $\phi \in F O L^{k}(\tau)$?
- What happens for $\mathcal{L}_{\infty, \omega}$ and $\mathcal{L}_{\infty, \omega}^{k}$?

Expressive power of $\mathcal{L}_{\infty, \omega}^{\omega}$: Connectedness

We want to say "there is an E-path from x to y.
We write $\bigvee_{n \geq 1} \phi_{n}(x, y)$ with
(i) $\phi_{1}(x, y)=E(x, y)$
(ii) $\phi_{n+1}(x, y)=\exists z_{n}\left(E\left(x, z_{n}\right) \wedge \phi_{n}\left(z_{n}, y\right)\right)$ $\phi_{n}(x, y)$ has $n+1$ variables.

Can we do better?
(i) $\psi_{1}(x, y)=E(x, y)$
(ii) $\psi_{n+1}(x, y)=\exists z\left(E(x, z) \wedge\left(\exists x\left(z=x \wedge \phi_{n}(x, y)\right)\right.\right.$ $\psi_{n}(x, y)$ has 3 variables.
(iii) Now we write $\psi=\bigvee_{n \geq 1} \phi_{n}(x, y)$, hence $\psi \in \mathcal{L}_{\infty, \omega}^{3}$.

$$
\text { Expressive power of } \mathcal{L}_{\infty, \omega}^{\omega}: \nexists=k x \phi(x)
$$

Equality only:

$$
\begin{aligned}
& \exists \geq k x \phi(x)=\exists x_{1} \exists x_{2} \ldots \exists x_{k}\left(\bigwedge_{i \neq j} \neg x_{i}=x_{j}\right) . \\
& \exists \leq k x \phi(x)=\forall x_{0} \forall x_{1} \ldots \forall x_{k}\left(\bigvee_{0 \leq i, j \leq k} x_{i}=x_{j}\right) . \\
& \exists^{=k} x \phi(x)=(\exists \leq k x \phi(x) \wedge \exists \geq k x \phi(x)) .
\end{aligned}
$$

It is in $\mathcal{L}_{\infty, \omega}^{k+1}$. We would like to prove that this is best possible.

Linear orders:

$\psi_{1}(x)=(x=x)$.
$\psi_{n+1}(x)=\exists y\left((x>y) \wedge \exists x\left(x=y \wedge \psi_{n}(x)\right)\right)$.
$\psi_{n}(x)$ is true in linear orders, if x has at least $n-1$ predecssors.
Let $C \subseteq \mathbb{N}$. The sentence

$$
\Psi_{C}=\bigvee_{n \in C}\left(\exists x \psi_{n}(x) \wedge \neg \exists x \psi_{n+1}\right)
$$

says, for linear orders, that its cardinality is in $C . \Psi_{C} \in \mathcal{L}_{\infty, \omega}^{2}$.
The axioms of linear order are in $F O L^{3}$.

Pebble games on τ-structures.

Pebble games, I

- Given two τ-structures \mathfrak{A}_{0} and \mathfrak{A}_{1}.
- Two players: I (spoiler) and II (duplicator).
- k pairs of pebbles $\left(p_{0}^{1}, p_{1}^{1}\right), \ldots\left(p_{0}^{k}, p_{1}^{k}\right)$.
- Length of the game: $n \in \mathbb{N}$ or ∞.
- Move number m:
- Player I choses $i \in\{0,1\}$ and places a pebble p_{i}^{j} on an element of \mathfrak{A}_{i}.
- Player II responds by placing the pebble p_{1-i}^{j} on an element of \mathfrak{A}_{1-i}.

The game of length n is denoted by $P G_{k}^{n}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$.
The game of length that continues for ever is denoted by $P G_{k}^{\infty}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$.

Pebble games, II

- After each round m of the game the pairs of pebbles placed on the structure define a relation $F_{m} \subseteq A_{0} \times A_{1}$:
$\left(a_{0}^{j}, a_{1}^{j}\right) \in F_{m}$ iff p_{0}^{j} is placed on $a_{0}^{j} \in A_{0}$ and p_{1}^{j} is placed on $a_{1}^{j} \in A_{1}$.
- Player II (duplicator) wins the game if in each round played F_{m} is a (partial) τ-isomorphism.
- Player II (duplicator) has a winning strategy for the game if he can ensure that after each round played F_{m} is a (partial) τ-isomorphism.
- In the case of game length n we write $\mathfrak{A}_{0} \equiv_{k}^{n} \mathfrak{A}_{1}$.
- In the case of game length ∞ we write $\mathfrak{A}_{0} \equiv{ }_{k}^{\infty} \mathfrak{A}_{1}$.

The classical colorblue Ehrenfeucht-Fraïssé Game for FOL
of length is $n P G_{n}^{n}\left(\mathfrak{A}_{0}, \mathfrak{A}_{1}\right)$ with $\mathfrak{A}_{0} \equiv_{n}^{n} \mathfrak{A}_{1}$.

Pebble games, III

An exercise in winning strategies

Pure sets ($\tau=\emptyset$).
What are the cardinalities of sets S_{0}, S_{1} such that $S_{0} \equiv_{k}^{n} S_{1}$ or $S_{0} \equiv_{k}^{\infty} S_{1}$?

Linear orders.

Let L_{0}, L_{1} be any two linear orders with at least two comparable elements.
Let $P_{m}^{d i r}$ the directed path and $C_{m}^{d i r}$ the directed circle of size m.
Discuss the two and three pebble games on these structures.

Extension axioms.

Assume G_{0}, G_{1} are two graphs in which for all $m \leq n \leq k \in \mathbb{N}$ the exioms $E A_{n, m}$ hold. Then $G_{0} \equiv_{k}^{\infty} G_{1}$.

Pebble games, IV

Let \mathfrak{A}_{0} and \mathfrak{A}_{1} be two τ-structures.
We say $\mathfrak{A}_{0} \sim_{k}^{\infty, \omega} \mathfrak{A}_{1}$ if they agree on all sentences of $\mathcal{L}_{\infty, \omega}^{k}$.
We say $\mathfrak{A}_{0} \sim_{k, n}^{\infty, \omega} \mathfrak{A}_{1}$ if they agree on all sentences of $\mathcal{L}_{\infty, \omega}^{k}$ of quantifier rank n.

Theorem 2

(i) $\mathfrak{A}_{0} \equiv{ }_{k}^{n} \mathfrak{A}_{1}$ iff $\mathfrak{A}_{0} \sim_{k, n}^{\infty, \omega} \mathfrak{A}_{1}$
(ii) $\mathfrak{A}_{0} \equiv_{k}^{\infty} \mathfrak{A}_{1}$ iff $\mathfrak{A}_{0} \sim_{k}^{\infty, \omega} \mathfrak{A}_{1}$

The proof will be given in the next lecture.

