Logical Methods in Combinatorics, 236605-2009/10 Lecture 3

Lecture 3

What did we do so far?
e \We defined density function of graph properties.
e \We defined asymptotic probabilities of graph properties.
e We introduced Second Order Logic and some of its fragments.
e \We studied many examples.

We stated two theorems:

A: the 0-1 law (GKLT 1969)
for FOL-definable graph properties and

B: the modular periodicity theorem (Specker-Blatter 1981)
for M SOL-definable graph properties.

In lecture 2 we gave the background in logic.
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O-1 Laws

We want to prove in this lecture

T heorem 1

Let P be a FOL-definable graph property and p = % be constant.
Then the asymptotic probability pp = limp—cc up(n)
always exists and up =0 or up = 1.
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Remarks on Theorem 1

More generally, let K be a class of r-structures closed under isomorphisms.
We say that K has a 0-1-law for FOL(7) if for every ¢ € FOL(7) the fraction
of r-structures in K which satisfy ¢ tends either to O or to 1.

The fraction and probabilities here are computed by dividing by f,C(n) rather
than by gr(n).

Note: In Theorem 1 we consider only graph properties,
i.e. I = Graphs consists of all finite structures with
one symmetric, irreflexive binary relation.

Exercise: Formulate Theorem 1 for any 7
and the K class of all finite r-structures.

Exercise: Show that with respect to all structures with one binary relation
w(Graphs) = 0.

Exercise: Modify the proof of Theorem 1
such that it works for K consisting of all finite r-structures, including, say,
directed graphs.

Exercise: Find a FOL(7)-definable K which has no 0-1-law for FOL(7).
3
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The theory 17 (1)

for KC consisting of all simple graphs

Definition 2

We de note by T7 ., the set T7 = ={¢p € FOL(T) : py = 1}.

p(n)

Proposition 3
Let p(n) be the probability the edge probability between two among n vertices.

(i) T, is closed under logical consequence, i.e. ifT7 = ¢ then ¢ €17, ..
(ii) T3, is deductively closed, i.e. if 15,y @ then ¢ €17, ..

(iii) TT hence satisfiable.

o) is consistent, i.e. FALSE ¢ T"

p(n)’

(iv) i has no finite models.

(v) FOL(1) with probability p(n) satisfies the 0-1 Law /ffT( ) s complete,
i.e. for all ¢ € FOL(T) either ¢ € Ty or —¢peT o(n)
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Useful facts about ug(n).

Proposition 4

Let ¢ and ¢ be FOL(r)-sentences.
(i) n-s(n) =1 — pg(n).

(it) If ¢ k= then pg(n) < py(n).

(i) pove(n) < ps(n) + pp(n).

(iv) More generally, if ® = ¢1V ...V ¢, then pe(n) <> 7 g (n).
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Proof of Proposition 3

More details on the blackboard (and homework).

(i) We use the compactness theorem for FFOL and proposition 4.

(i)

Let ¢ € FOL(7) with T = ¢#. We have to show ¢ € 170y

By compactness there are ¢1,...,¢x € 17, | such that {¢1,...,9} &= ¢.

p(n)
By Proposition 4(ii) pg(n) > pg,a..ng (1).
By Proposition 4(i) pgn..re(n) =1 — piog,v.v-e,(n)

By Proposition 4(iv) pg(n) > 1 — Zle,ua—l@-(n).

Because ¢1,...,¢r € T7 . the limit lim, e S5 a—¢i(n) = 0.

p(n)
Thus puy =1, and ¢ € TpT(n).

To show that TpT(n) is deductively closed

we use the completenss theorem for FOL.
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Proof of Proposition 3 (continued)

(iii) We have to show that T, is consistent.

,uFALSE(n) = 0. Hence UFALSE = 0 and FALSE € TpT(n).

(iv) We have to show that T3,y has no finite models.

Let xr be the sentence "there are at least k distinct elements’ .
ty.(n) =1 for n > k.

So for all £k € N the formula x, € 17,

has no finite models.
p(n)

and TpT(n)

(v) Follows from the definition of Tpf(n), Proposition 4
and the definition of completeness.

This completes the proof. Q.E.D.
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The extension axioms EAnm

Let S be a finite set of cardinality n and T' C S of cardinality m.

The extension axiom EA,, says that there exists a vertex z € S such that
for every x € T there is an edge between z and x and that for every x € S —T
there is no edge between z and =x.

Formally

n

Vri,...,Tn /\:cz;éx] — dz /n\z;ﬁici/\/\E(Z,iCi)/\/\_'E(Z;CBi)
i#] i

i<m 1>m

We denote by F A, the formula Eyy k.
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Useful facts about the extension axioms

Proposition 5

(i) For m'">m,n’ —m/ > n—m we have EA,

— FEAnm.
(ii) For every k ppa, = 1, and hence pga,, = 1, for every n and m < n.
(iii) Each E A, has arbitrarily large finite models.

(iv) For each n,m <n we have EA,,, € TY.
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Proof of Proposition 5.

Details on the blackboard.

(i) Trivial from the definition of EA, .

(ii) Follows from the stronger Proposition 6 below.
(iii) From (ii).

(iv) Also from (ii).
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For which p(n) is up< ) =

Proposition 6 (Bol85, page 40fF.)

Assume p(n) is such that every e > 0 we have
p(n) - n° — oo
and
(1 —p(n)) -n° — oo.

Then for every fixed k we have M%(Z) = 1.

The condition is verified for

e p(n) constant.
but not for p(n) = =
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Proof of Proposition 6

For T'C S we say that
avertex z ¢ S fits S and T

if z has edges to all vertices in T"'and noneto S—T. Let T"and S —T be both of size k, and
let z &€ S.

e The probability that z fits S and T is p*(1 — p)*.
e The probability, that z does not fit S and T is 1 — p¥(1 — p)*.

e There are n — 2k many choices for z, hence the probability that no z fits S and T is
(1—p"(1—p)")2~.
e We estimate this using p(n) - n® — oo and (1 — p(n)) - n® — oo, and get (complete it!)

(1—p* (1 — p)*)"?* < exp{—(n — 2k)p"(1 — p)*} < exp{—n7}.

e There are (Z) (”;’“) < n?k many choices for S and T, hence
2%1)4 (n) < n?fexp{— n2} = o(n1).

Hence up(”) =0 and up(”) =

12
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Homework: Details for Bollobas (Proposition 6)

Completed by Eyal Rozenberg

We want to show that
(1—p" (1 =p)")"2* — 0 for n —
We use that p*(1 — p)* < 1.

We put f = (pk’(l —p)k’)_l and g = n — 2k.

Now

G- @y == (12
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The theory FA

We define FA to be the set {F Ay : k € N}.

Here are some facts about EA, which all follow from
Propositions 3,4, 5 and 6.

Proposition 7

(i) EA C T for every p(n) with p(n) -n¢® — oo and (1 —p(n)) - n® — co.

(ii) EA is satisfiable.

(iii) EA has no finite models.
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FE A is Ng-categorical

We say that a set T' C FOL(71), a theory, is k-categorical if T is satisfiable
and all its models of cardinality x are r7-isomorphic.

Proposition 8

FA is Ng-categorical.

Proof: Details on the blackboard.

Use Cantor’'s method.
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Vaught's Test

R. Vaught noticed the following useful connection between categoricity, com-
pleteness and decidability.

Proposition 9 (R. Vaught, 1954)

Let  be countable and T C FOL(t) w-categorical for some infinite k, and
which has not finite models. Then

(i) T is complete.

(ii) If T is semi-computable, then the relation T |= ¢ is computable.
In other words, T' is decidable.
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Proof of Vaught’s Test

(i) Assume neither T |= ¢ nor T | = —¢.

(i)

So both TU{¢} and TU{—-¢} are satisfiable, and have infinite models, and
using compactness and the Lowenheim-Skolem Theorem, have models
of cardinality k.

Let A =T U {¢} and B =T U{—-¢} of size k.
As T is k-categorical, 2 and B are isomorphic.
This contradicts A =T U{¢} and B =T U {-¢}.

The consequences of a semi-computable theory are semi-computable, by
Godel's Completeness Theorem.

So both {¢ : T = ¢} and {¢ : T = —-¢} are semi-computable.
But {¢: T =¢} =FOL—{¢:T = —¢}, hence they are computable.
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0O-1 Law for FOL

Theorem 10

Assume p(n) -n¢® — oo and (1 —p(n)) -n® — oco. Then we have

(i) EA is complete and EA = T2y

(ii) FOL satisfies the 0-1 Law.

(iii) It is decidable whether jiy =0 or pug = 1.
(No statement on complexity)

E. Grandjean showed that computing p, is PSpace-complete.

PROJECT: E. Grandjean, Complexity of the first—order theory of almost all
structures, Information and Control, vol. 52 (1983), 180-204.
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Homework

e Let £ be with u(K) = 1. Show that £ has a 0 — 1-law for FOL(7).

e Show that the graph property of being connected CONN
has u(CONN) = 1 on graphs.

e Show that the O0-1-law for graph properties restricted to connected graphs
holds.

19



Logical Methods in Combinatorics, 236605-2009/10 Lecture 3

How to prove Theorem A7

e \We have to define the logic L% which has finitely many variables but

oo,w!

infinite conjunctions and disjunctions.
e \We have to define Ehrenfeucht-Fraissé Games with pebbles.

e [ hen we show that

For finite graphs G1 and G> for which EA, , holds for all m <n < k we
have that player II has a k-pebble winning strategy for the infinite game
on G1 and Go.

This replaces completeness of FA.
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