Lecture 3

What did we do so far?

- We defined **density function** of graph properties.
- We defined asymptotic probabilities of graph properties.
- We introduced **Second Order Logic** and some of its fragments.
- We studied many examples.
- We stated **two theorems**:
 - A: the 0-1 law (GKLT 1969) for *FOL*-definable graph properties and
 - **B:** the modular periodicity theorem (Specker-Blatter 1981) for *MSOL*-definable graph properties.

In lecture 2 we gave the background in logic.

0-1 Laws

We want to **prove** in this lecture

Theorem 1

Let \mathcal{P} be a FOL-definable graph property and $p = \frac{1}{2}$ be constant. Then the asymptotic probability $\mu_{\mathcal{P}} = \lim_{n \to \infty} \mu_{\mathcal{P}}(n)$ always exists and $\mu_{\mathcal{P}} = 0$ or $\mu_{\mathcal{P}} = 1$.

Remarks on Theorem 1

More generally, let \mathcal{K} be a class of τ -structures closed under isomorphisms. We say that \mathcal{K} has a 0-1-law for $\mathbf{FOL}(\tau)$ if for every $\phi \in \mathbf{FOL}(\tau)$ the fraction of τ -structures in \mathcal{K} which satisfy ϕ tends either to 0 or to 1.

The fraction and probabilities here are computed by dividing by $f_{\mathcal{K}(n)}$ rather than by gr(n).

Note: In Theorem 1 we consider only graph properties, i.e. $\mathcal{K} = Graphs$ consists of all finite structures with **one symmetric, irreflexive binary relation**.

Exercise: Formulate Theorem 1 for any τ and the \mathcal{K} class of all finite τ -structures.

Exercise: Show that with respect to all structures with one binary relation $\mu(Graphs) = 0$.

Exercise: Modify the proof of Theorem 1 such that it works for \mathcal{K} consisting of all finite τ -structures, including, say, **directed graphs**.

Exercise: Find a **FOL**(τ)-definable \mathcal{K} which has no 0-1-law for **FOL**(τ).

The theory $T^{ au}_{p(n)}$ for ${\mathcal K}$ consisting of all simple graphs

Definition 2 We denote by $T_{p(n)}^{\tau}$ the set $T_{p(n)}^{\tau} = \{\phi \in FOL(\tau) : \mu_{\phi} = 1\}$. **Proposition 3** Let p(n) be the probability the edge probability between two among n vertices. (i) $T_{p(n)}^{\tau}$ is closed under logical consequence, i.e. if $T_{p(n)}^{\tau} \models \phi$ then $\phi \in T_{p(n)}^{\tau}$. (ii) $T_{p(n)}^{\tau}$ is deductively closed, i.e. if $T_{p(n)}^{\tau} \vdash \phi$ then $\phi \in T_{p(n)}^{\tau}$. (iii) $T_{p(n)}^{\tau}$ is consistent, i.e. **FALSE** $\notin T_{p(n)}^{\tau}$, hence satisfiable. (iv) $T_{p(n)}^{\tau}$ has no finite models.

(v) $FOL(\tau)$ with probability p(n) satisfies the 0-1 Law iff $T^{\tau}_{p(n)}$ is complete, i.e. for all $\phi \in FOL(\tau)$ either $\phi \in T^{\tau}_{p(n)}$ or $\neg \phi \in T^{\tau}_{p(n)}$ Useful facts about $\mu_{\phi}(n)$.

Proposition 4

Let ϕ and ψ be $FOL(\tau)$ -sentences.

(*i*) $\mu_{\neg\phi}(n) = 1 - \mu_{\phi}(n)$.

(ii) If
$$\phi \models \psi$$
 then $\mu_{\phi}(n) \leq \mu_{\psi}(n)$.

(iii) $\mu_{\phi \lor \psi}(n) \le \mu_{\phi}(n) + \mu_{\psi}(n)$.

(iv) More generally, if $\Phi = \phi_1 \vee \ldots \vee \phi_n$ then $\mu_{\Phi}(n) \leq \sum_i^n \mu_{\phi_i}(n)$.

Proof of Proposition 3

More details on the blackboard (and homework).

- (i) We use the compactness theorem for FOL and proposition 4. Let $\phi \in FOL(\tau)$ with $T_{p(n)}^{\tau} \models \phi$. We have to show $\phi \in T_{p(n)}^{\tau}$. By compactness there are $\phi_1, \ldots, \phi_k \in T_{p(n)}^{\tau}$ such that $\{\phi_1, \ldots, \phi_k\} \models \phi$. By Proposition 4(ii) $\mu_{\phi}(n) \ge \mu_{\phi_1 \land \ldots \land \phi_k}(n)$. By Proposition 4(i) $\mu_{\phi_1 \land \ldots \land \phi_k}(n) = 1 - \mu_{\neg \phi_1 \lor \ldots \lor \neg \phi_k}(n)$ By Proposition 4(iv) $\mu_{\phi}(n) \ge 1 - \sum_{i=1}^k \mu_a \neg \phi_i(n)$. Because $\phi_1, \ldots, \phi_k \in T_{p(n)}^{\tau}$ the limit $\lim_{n \to \infty} \sum_{i=1}^k \mu_a \neg \phi_i(n) = 0$. Thus $\mu_{\phi} = 1$, and $\phi \in T_{p(n)}^{\tau}$.
- (ii) To show that $T_{p(n)}^{\tau}$ is deductively closed we use the completenss theorem for FOL.

Proof of Proposition 3 (continued)

(iii) We have to show that $T_{p(n)}^{\tau}$ is consistent.

 $\mu_{\text{FALSE}}(n) = 0$. Hence $\mu_{\text{FALSE}} = 0$ and $\text{FALSE} \notin T_{p(n)}^{\tau}$.

(iv) We have to show that $T^{\tau}_{p(n)}$ has no finite models.

Let χ_k be the sentence "there are at least k distinct elements". $\mu_{\chi_k}(n) = 1$ for $n \ge k$.

So for all $k \in \mathbb{N}$ the formula $\chi_k \in T_{p(n)}^{\tau}$ and $T_{p(n)}^{\tau}$ has no finite models.

(v) Follows from the definition of $T_{p(n)}^{\tau}$, Proposition 4 and the definition of completeness.

This completes the proof.

Q.E.D.

The extension axioms $EA_{n,m}$

Let S be a finite set of cardinality n and $T \subseteq S$ of cardinality m. The extension axiom $EA_{n,m}$ says that there exists a vertex $z \notin S$ such that for every $x \in T$ there is an edge between z and x and that for every $x \in S - T$ there is no edge between z and x.

Formally

$$\forall x_1, \dots, x_n \left(\left(\bigwedge_{i \neq j} x_i \neq x_j \right) \to \exists z \left(\bigwedge_{i=1}^n z \neq x_i \land \bigwedge_{i \leq m} E(z, x_i) \land \bigwedge_{i > m}^n \neg E(z, x_i) \right) \right)$$

We denote by EA_k the formula $E_{2k,k}$.

Useful facts about the extension axioms

Proposition 5

- (i) For $m' \ge m, n' m' \ge n m$ we have $EA_{n',m'} \models EA_{n,m}$.
- (ii) For every $k \mu_{EA_k} = 1$, and hence $\mu_{EA_{n,m}} = 1$, for every n and $m \leq n$.
- (iii) Each EA_k has arbitrarily large finite models.
- (iv) For each $n, m \leq n$ we have $EA_{n,m} \in T_{\frac{1}{2}}^{\tau}$.

Proof of Proposition 5.

Details on the blackboard.

- (i) Trivial from the definition of $EA_{n,m}$.
- (ii) Follows from the stronger Proposition 6 below.
- (iii) From (ii).
- (iv) Also from (ii).

Logical Methods in Combinatorics, 236605-2009/10

Lecture 3

For which
$$p(n)$$
 is $\mu_{EA_k}^{p(n)} = 1$?

Proposition 6 (Bol85, page 40ff.)

Assume p(n) is such that every $\epsilon > 0$ we have

$$p(n) \cdot n^{\epsilon} \to \infty$$

and

$$(1-p(n))\cdot n^{\epsilon}\to\infty.$$

Then for every fixed k we have $\mu_{EA_k}^{p(n)} = 1$.

The condition is verified for

- p(n) constant.
- $p(n) = \frac{1}{\log n}$

but not for $p(n) = \frac{1}{n}$

Proof of Proposition 6

For $T \subseteq S$ we say that

a vertex $z \notin S$ fits S and T

if z has edges to all vertices in T and none to S - T. Let T and S - T be both of size k, and let $z \notin S$.

- The probability that z fits S and T is $p^k(1-p)^k$.
- The probability, that z does not fit S and T is $1 p^k (1 p)^k$.
- There are n 2k many choices for z, hence the probability that no z fits S and T is $(1 p^k(1 p)^k)^{n-2k}$.
- We estimate this using $p(n) \cdot n^{\epsilon} \to \infty$ and $(1 p(n)) \cdot n^{\epsilon} \to \infty$, and get (complete it!) $(1 - p^k(1 - p)^k)^{n-2k} \le exp\{-(n - 2k)p^k(1 - p)^k\} \le exp\{-n^{\frac{1}{2}}\}.$
- There are $\binom{n}{k}\binom{n-k}{k} \leq n^{2k}$ many choices for S and T, hence

$$\mu_{\neg EA_k}^{p(n)}(n) \le n^{2k} exp\{-n^{\frac{1}{2}}\} = o(n^{-1}).$$

Hence $\mu^{p(n)}_{\neg EA_k} = 0$ and $\mu^{p(n)}_{EA_k} = 1$.

Homework: Details for Bollobas (Proposition 6)

Completed by Eyal Rozenberg

We want to show that

$$(1-p^k\cdot(1-p)^k)^{n-2k}\longrightarrow 0$$
 for $n\to\infty$

We use that $p^k(1-p)^k < 1$.

We put $f = (p^k(1-p)^k)^{-1}$ and g = n - 2k.

Now

$$(1-p^k \cdot (1-p)^k)^{n-2k} = (1-\frac{1}{f})^g = \left(1-(\frac{1}{f})^f\right)^{\frac{g}{f}}$$

Logical Methods in Combinatorics, 236605-2009/10

Lecture 3

The theory EA

We define EA to be the set $\{EA_k : k \in \mathbb{N}\}$.

Here are some facts about EA, which all follow from Propositions 3,4, 5 and 6.

Proposition 7

(i)
$$EA \subseteq T_{p(n)}^{\tau}$$
 for every $p(n)$ with $p(n) \cdot n^{\epsilon} \to \infty$ and $(1 - p(n)) \cdot n^{\epsilon} \to \infty$.

(*ii*) *EA* is satisfiable.

(iii) EA has no finite models.

Logical Methods in Combinatorics, 236605-2009/10

Lecture 3

EA is \aleph_0 -categorical

We say that a set $T \subseteq FOL(\tau)$, a theory, is κ -categorical if T is satisfiable and all its models of cardinality κ are τ -isomorphic.

Proposition 8

EA is \aleph_0 -categorical.

Proof: Details on the blackboard.

Use Cantor's method.

Vaught's Test

R. Vaught noticed the following useful connection between categoricity, completeness and decidability.

Proposition 9 (R. Vaught, 1954)

Let τ be countable and $T \subseteq FOL(\tau)$ κ -categorical for some infinite κ , and which has not finite models. Then

- (*i*) *T* is complete.
- (ii) If T is semi-computable, then the relation $T \models \phi$ is computable. In other words, T is **decidable**.

Proof of Vaught's Test

(i) Assume neither $T \models \phi$ nor $T \models \neg \phi$. So both $T \cup \{\phi\}$ and $T \cup \{\neg \phi\}$ are satisfiable, and have infinite models, and using compactness and the Löwenheim-Skolem Theorem, have models of cardinality κ .

Let $\mathfrak{A} \models T \cup \{\phi\}$ and $\mathfrak{B} \models T \cup \{\neg\phi\}$ of size κ . As T is κ -categorical, \mathfrak{A} and \mathfrak{B} are isomorphic. This contradicts $\mathfrak{A} \models T \cup \{\phi\}$ and $\mathfrak{B} \models T \cup \{\neg\phi\}$.

(ii) The consequences of a semi-computable theory are semi-computable, by Gödel's Completeness Theorem.

So both $\{\phi : T \models \phi\}$ and $\{\phi : T \models \neg\phi\}$ are semi-computable. But $\{\phi : T \models \phi\} = FOL - \{\phi : T \models \neg\phi\}$, hence they are computable.

0-1 Law for FOL

Theorem 10

Assume $p(n) \cdot n^{\epsilon} \to \infty$ and $(1 - p(n)) \cdot n^{\epsilon} \to \infty$. Then we have

- (i) EA is complete and $EA = T_{p(n)}^{\tau}$.
- (ii) FOL satisfies the 0-1 Law.
- (iii) It is decidable whether $\mu_{\phi} = 0$ or $\mu_{\phi} = 1$. (No statement on complexity)
- E. Grandjean showed that computing μ_{ϕ} is **PSpace-complete**.

PROJECT: E. Grandjean, Complexity of the first–order theory of almost all structures, Information and Control, vol. 52 (1983), 180-204.

Homework

- Let \mathcal{K} be with $\mu(\mathcal{K}) = 1$. Show that \mathcal{K} has a 0 1-law for $FOL(\tau)$.
- Show that the graph property of being connected CONN has $\mu(CONN) = 1$ on graphs.
- Show that the 0-1-law for graph properties restricted to connected graphs holds.

How to prove Theorem A?

- We have to define the logic $\mathcal{L}^{\omega}_{\infty,\omega}$, which has finitely many variables but infinite conjunctions and disjunctions.
- We have to define Ehrenfeucht-Fraïssé Games with pebbles.
- Then we show that

For finite graphs G_1 and G_2 for which $EA_{n,m}$ holds for all $m \le n \le k$ we have that player II has a k-pebble winning strategy for the infinite game on G_1 and G_2 .

This replaces completeness of EA.