
Logical Methods in Combinatorics, 236605-2009/10 Lecture 3

Lecture 3

What did we do so far?

• We defined density function of graph properties.

• We defined asymptotic probabilities of graph properties.

• We introduced Second Order Logic and some of its fragments.

• We studied many examples.

• We stated two theorems:

A: the 0-1 law (GKLT 1969)
for FOL-definable graph properties and

B: the modular periodicity theorem (Specker-Blatter 1981)
for MSOL-definable graph properties.

In lecture 2 we gave the background in logic.
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0-1 Laws

We want to prove in this lecture

Theorem 1

Let P be a FOL-definable graph property and p = 1
2 be constant.

Then the asymptotic probability µP = limn→∞ µP(n)

always exists and µP = 0 or µP = 1.
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Remarks on Theorem 1

More generally, let K be a class of τ-structures closed under isomorphisms.
We say that K has a 0-1-law for FOL(τ) if for every φ ∈ FOL(τ) the fraction
of τ-structures in K which satisfy φ tends either to 0 or to 1.

The fraction and probabilities here are computed by dividing by fK(n) rather
than by gr(n).

Note: In Theorem 1 we consider only graph properties,
i.e. K = Graphs consists of all finite structures with
one symmetric, irreflexive binary relation.

Exercise: Formulate Theorem 1 for any τ
and the K class of all finite τ-structures.

Exercise: Show that with respect to all structures with one binary relation
µ(Graphs) = 0.

Exercise: Modify the proof of Theorem 1
such that it works for K consisting of all finite τ-structures, including, say,
directed graphs.

Exercise: Find a FOL(τ)-definable K which has no 0-1-law for FOL(τ).

3



Logical Methods in Combinatorics, 236605-2009/10 Lecture 3

The theory T τ
p(n)

for K consisting of all simple graphs

Definition 2
We de note by T τ

p(n)
the set T τ

p(n)
= {φ ∈ FOL(τ) : µφ = 1}.

Proposition 3
Let p(n) be the probability the edge probability between two among n vertices.

(i) T τ
p(n)

is closed under logical consequence, i.e. if T τ
p(n)

|= φ then φ ∈ T τ
p(n)

.

(ii) T τ
p(n)

is deductively closed, i.e. if T τ
p(n)

⊢ φ then φ ∈ T τ
p(n)

.

(iii) T τ
p(n)

is consistent, i.e. FALSE 6∈ T τ
p(n)

, hence satisfiable.

(iv) T τ
p(n)

has no finite models.

(v) FOL(τ) with probability p(n) satisfies the 0-1 Law iff T τ
p(n)

is complete,

i.e. for all φ ∈ FOL(τ) either φ ∈ T τ
p(n)

or ¬φ ∈ T τ
p(n)
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Useful facts about µφ(n).

Proposition 4

Let φ and ψ be FOL(τ)-sentences.

(i) µ¬φ(n) = 1 − µφ(n).

(ii) If φ |= ψ then µφ(n) ≤ µψ(n).

(iii) µφ∨ψ(n) ≤ µφ(n) + µψ(n).

(iv) More generally, if Φ = φ1 ∨ . . . ∨ φn then µΦ(n) ≤
∑n

i µφi(n).
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Proof of Proposition 3

More details on the blackboard (and homework).

(i) We use the compactness theorem for FOL and proposition 4.

Let φ ∈ FOL(τ) with T τ
p(n)

|= φ. We have to show φ ∈ T τ
p(n)

.

By compactness there are φ1, . . . , φk ∈ T τ
p(n)

such that {φ1, . . . , φk} |= φ.

By Proposition 4(ii) µφ(n) ≥ µφ1∧...∧φk(n).

By Proposition 4(i) µφ1∧...∧φk(n) = 1 − µ¬φ1∨...∨¬φk(n)

By Proposition 4(iv) µφ(n) ≥ 1 −
∑k

i=1 µa¬φi(n).

Because φ1, . . . , φk ∈ T τ
p(n)

the limit limn→∞
∑k

i=1 µa¬φi(n) = 0.

Thus µφ = 1, and φ ∈ T τ
p(n)

.

(ii) To show that T τ
p(n)

is deductively closed

we use the completenss theorem for FOL.
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Proof of Proposition 3 (continued)

(iii) We have to show that T τ
p(n)

is consistent.

µFALSE(n) = 0. Hence µFALSE = 0 and FALSE 6∈ T τ
p(n)

.

(iv) We have to show that T τ
p(n)

has no finite models.

Let χk be the sentence ”there are at least k distinct elements”.
µχk(n) = 1 for n ≥ k.

So for all k ∈ N the formula χk ∈ T τ
p(n)

and T τ
p(n)

has no finite models.

(v) Follows from the definition of T τ
p(n)

, Proposition 4

and the definition of completeness.

This completes the proof. Q.E.D.
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The extension axioms EAn,m

Let S be a finite set of cardinality n and T ⊆ S of cardinality m.
The extension axiom EAn,m says that there exists a vertex z 6∈ S such that
for every x ∈ T there is an edge between z and x and that for every x ∈ S− T
there is no edge between z and x.

Formally

∀x1, . . . , xn









∧

i6=j

xi 6= xj



 → ∃z





n
∧

i

z 6= xi ∧
∧

i≤m

E(z, xi) ∧

n
∧

i>m

¬E(z, xi)









We denote by EAk the formula E2k,k.
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Useful facts about the extension axioms

Proposition 5

(i) For m′ ≥ m,n′ −m′ ≥ n−m we have EAn′,m′ |= EAn,m.

(ii) For every k µEAk
= 1, and hence µEAn,m

= 1, for every n and m ≤ n.

(iii) Each EAk has arbitrarily large finite models.

(iv) For each n,m ≤ n we have EAn,m ∈ T τ1
2

.
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Proof of Proposition 5.

Details on the blackboard.

(i) Trivial from the definition of EAn,m.

(ii) Follows from the stronger Proposition 6 below.

(iii) From (ii).

(iv) Also from (ii).
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For which p(n) is µ
p(n)
EAk

= 1?

Proposition 6 (Bol85, page 40ff.)

Assume p(n) is such that every ǫ > 0 we have

p(n) · nǫ → ∞

and

(1 − p(n)) · nǫ → ∞.

Then for every fixed k we have µ
p(n)
EAk

= 1.

The condition is verified for

• p(n) constant.

• p(n) = 1
logn

but not for p(n) = 1
n
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Proof of Proposition 6

For T ⊆ S we say that

a vertex z 6∈ S fits S and T

if z has edges to all vertices in T and none to S − T . Let T and S − T be both of size k, and
let z 6∈ S.

• The probability that z fits S and T is pk(1 − p)k.

• The probability, that z does not fit S and T is 1 − pk(1 − p)k.

• There are n− 2k many choices for z, hence the probability that no z fits S and T is

(1 − pk(1 − p)k)n−2k.

• We estimate this using p(n) · nǫ → ∞ and (1 − p(n)) · nǫ → ∞, and get (complete it!)

(1 − pk(1 − p)k)n−2k ≤ exp{−(n− 2k)pk(1 − p)k} ≤ exp{−n
1
2}.

• There are
(

n

k

)(

n−k
k

)

≤ n2k many choices for S and T , hence

µ
p(n)
¬EAk

(n) ≤ n2kexp{−n
1
2} = o(n−1).

Hence µ
p(n)
¬EAk

= 0 and µ
p(n)
EAk

= 1.
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Homework: Details for Bollobas (Proposition 6)

Completed by Eyal Rozenberg

We want to show that

(1 − pk · (1 − p)k)n−2k −→ 0 for n→ ∞

We use that pk(1 − p)k < 1.

We put f =
(

pk(1 − p)k
)−1

and g = n− 2k.

Now

(1 − pk · (1 − p)k)n−2k = (1 −
1

f
)g =

(

1 − (
1

f
)f

)
g

f
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The theory EA

We define EA to be the set {EAk : k ∈ N}.

Here are some facts about EA, which all follow from
Propositions 3,4, 5 and 6.

Proposition 7

(i) EA ⊆ T τ
p(n)

for every p(n) with p(n) · nǫ → ∞ and (1 − p(n)) · nǫ → ∞.

(ii) EA is satisfiable.

(iii) EA has no finite models.
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EA is ℵ0-categorical

We say that a set T ⊆ FOL(τ), a theory, is κ-categorical if T is satisfiable
and all its models of cardinality κ are τ-isomorphic.

Proposition 8

EA is ℵ0-categorical.

Proof: Details on the blackboard.

Use Cantor’s method.
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Vaught’s Test

R. Vaught noticed the following useful connection between categoricity, com-
pleteness and decidability.

Proposition 9 (R. Vaught, 1954)

Let τ be countable and T ⊆ FOL(τ) κ-categorical for some infinite κ, and
which has not finite models. Then

(i) T is complete.

(ii) If T is semi-computable, then the relation T |= φ is computable.
In other words, T is decidable.
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Proof of Vaught’s Test

(i) Assume neither T |= φ nor T |= ¬φ.
So both T ∪{φ} and T ∪{¬φ} are satisfiable, and have infinite models, and
using compactness and the Löwenheim-Skolem Theorem, have models
of cardinality κ.

Let A |= T ∪ {φ} and B |= T ∪ {¬φ} of size κ.
As T is κ-categorical, A and B are isomorphic.
This contradicts A |= T ∪ {φ} and B |= T ∪ {¬φ}.

(ii) The consequences of a semi-computable theory are semi-computable, by
Gödel’s Completeness Theorem.

So both {φ : T |= φ} and {φ : T |= ¬φ} are semi-computable.
But {φ : T |= φ} = FOL− {φ : T |= ¬φ}, hence they are computable.
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0-1 Law for FOL

Theorem 10

Assume p(n) · nǫ → ∞ and (1 − p(n)) · nǫ → ∞. Then we have

(i) EA is complete and EA = T τ
p(n)

.

(ii) FOL satisfies the 0-1 Law.

(iii) It is decidable whether µφ = 0 or µφ = 1.
(No statement on complexity)

E. Grandjean showed that computing µφ is PSpace-complete.

PROJECT: E. Grandjean, Complexity of the first–order theory of almost all
structures, Information and Control, vol. 52 (1983), 180-204.
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Homework

• Let K be with µ(K) = 1. Show that K has a 0 − 1-law for FOL(τ).

• Show that the graph property of being connected CONN
has µ(CONN) = 1 on graphs.

• Show that the 0-1-law for graph properties restricted to connected graphs
holds.
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How to prove Theorem A?

• We have to define the logic Lω∞,ω, which has finitely many variables but
infinite conjunctions and disjunctions.

• We have to define Ehrenfeucht-Fräıssé Games with pebbles.

• Then we show that

For finite graphs G1 and G2 for which EAn,m holds for all m ≤ n ≤ k we
have that player II has a k-pebble winning strategy for the infinite game
on G1 and G2.

This replaces completeness of EA.
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