Lecture 2

Outline of Lecture 2

First Order Logic and Second Order Logic

Basic summary and Toolbox

- Vocabularies and structures
- Isomorphisms and substructures
- First Order Logic **FOL**, a reminder.
- Completeness and Compactness
- Second Order Logic SOL and SOLⁿ and Monadic Second Order Logic MSOL.
- Definability

Vocabularies

We deal with (possibly many-sorted) relational structures.

Sort symbols are

$$U_{\alpha}$$
: $\alpha \in \mathbb{IN}$

Relation symbols are

$$R_{i,\alpha}$$
: $i \in Ar, \alpha \in \mathbb{IN}$

where Ar is a set of *arities*, i.e. of finite sequences of sort symbols.

In the case of one-sorted vocabularies, the arity is just of the form $\langle U, U, \ldots, U \rangle$ which will denoted by n.

A vocabulary is a *finite* set of *finitary* relation symbols, usually denoted by τ , τ_i or σ .

τ -structures

Structures are interpretations of vocabularies, of the form

 $\mathcal{A} = \langle \mathcal{A}(U_{\alpha}), \mathcal{A}(R_{i,\alpha}) : U_{\alpha}, R_{i,\alpha} \in \tau \rangle$

with $\mathcal{A}(U_{\alpha}) = A_{\alpha}$ sets, and, for $i = (U_{j_1}, \ldots, U_{j_r}) \mathcal{A}(R_{i,\alpha}) \subseteq A_{j_1} \times \ldots \times A_{j_r}$.

- **Graphs:** $\langle V; E \rangle$ with vertices as domain and edges as relation. $\langle V \sqcup E, R_G \rangle$ with two sorted domain of vertices and edges and incidence relation.
- Labeled Graphs: As graphs but with unary predicates for vertex labels and edge labels depending whether edges are elements or tuples.

Binary Words: $\langle V; R_{<}, P_{0} \rangle$ with domain lineraly ordered by $R_{<}$ and colored by P_{0} , marking the zero's.

 τ -structures: General relational structures.

τ -Substructures

Let \mathcal{A}, \mathcal{B} be two τ -structures.

 \mathcal{B} is a **substructure** of \mathcal{A} , $\mathcal{B} \subseteq \mathcal{A}$, if

(i) $B \subseteq A$, and

(ii) for all $R_{i,\alpha} \in \tau$ and all $(b_1, \ldots, b_i) \in B^i$ we have $(b_1, \ldots, b_i) \in \mathcal{B}(R_{i,\alpha})$ iff $(b_1, \ldots, b_i) \in \mathcal{A}(R_{i,\alpha})$.

Exercise: Adapt the above definition two many-sorted structures.

Example:

- For graphs of the form $\langle V, E \rangle$ (one-sorted), where E is a binary relation, substructures are **induced subgraphs**.
- For graphs of the form $\langle V, E; R \rangle$ (two-sorted), where $R \subseteq V \times E$ is a binary relation, substructures are **subgraphs**.

Isomorphisms between τ -structures

Let \mathcal{A}, \mathcal{B} be two one sorted τ -structures with universe A, B respectively. A function $f : A \to B$ is an isomorphism if

- (i) f is one-one and onto (a bijection).
- (ii) For every relation symbol $R_{i,\alpha} \in \tau$ and every $\bar{a} = (a_1, \ldots, a_i) \in A^i$ we have $\bar{a} \in \mathcal{A}(R_{i,\alpha})$ iff $f(\bar{a}) = f(a_1, \ldots, f(a_i) \in \mathcal{B}(R_{i,\alpha})$

Exercise: Write down the definition of isomorphism in the many-sorted case.

How to prove that

two countable τ -structures \mathcal{A} and \mathcal{B} are isomorphic?

We play the following infinite game between Player I (spoiler) and II (duplicator):

- (i) In move 2n + 1 Player I picks an element $a_{2n+1} \in A$ and Player II picks an element $b_{2n+1} \in B$.
- (ii) In move 2n Player I picks an element $b_{2n} \in B$ and Player II picks an element $a_{2n} \in A$.
- (iii) Let $A_0 \subseteq A$ and $B_0 \subseteq B$ be the sets of elements chosen by the players. Player II wins if the map $g : A_0 \to B_0$ defined by $g(a_i) = b_i$ is an isomorphism of the induced substructures \mathcal{A}_0 and \mathcal{B}_0 .

Note:

Player I can choose again elements already chosen by any of the players. A_0 and B_0 can be proper subsets of A and B.

Cantor's Theorem

Theorem: Two countable τ -structures \mathcal{A} and \mathcal{B} are isomorphic iff Player II has a winning strategy.

Proof: Assume $f : A \rightarrow B$ is an ismorphism. Then Player II has a winning strategy by answering using f.

- If Player I played as move 2n + 1 the element a_{2n+1} , II answers $f(a_{2n+1})$.
- If Player I played as move 2n the element b_{2n} , II answers $f^{-1}(b_{2n})$.

Conversely, assume Player II has a winning strategy, and let $A = (a_i : i \in \mathbb{N})$ and $B = (b_i : i \in \mathbb{N})$ be enumerations of A and B.

Player I can help building an isomorphisms f by always choosing the smallest element in A and B respectively, which was not yet chosen. Q.E.D.

Properties of a τ -structure

A **property** of τ -structures is a class \mathcal{P} of τ -structures which is **closed under** τ -**isomorphisms**.

- All *finite* τ -structures.
- All $\{R_{2,0}\}$ -structures where $R_{2,0}$ is interpreted as a *linear order*.
- Al finite 3-dimensional matchings 3DM, i.e. all $\{R_{3,0}\}$ -structures with universe A where the interpretation of $R_{3,0}$ contains a subset $M \subseteq A^3$ such that no two triples of M agree in any coordinate.
- All binary words which are palindroms.
- A τ -structure \mathcal{A} has property \mathcal{P} iff $\mathcal{A} \in \mathcal{P}$.

Properties of linear orders

We look at one-sorted structures $\langle A, R \rangle$ with one binary relation R.

Sample properties are:

• *A* is finite, *A* is countable;

The relation R is

- a linear order, with/without first or last element;
- a **discrete** linear order (if $a \in A$ is not a first (last) element, there is a biggest (smallest) element smaller (larger) than a)
- a dense linear order (between any two distinct elements there is a further element);
- a **well-ordering** (every subset of A has a least element);

Lecture 2

Countable isomorphic structures

Theorem: Let \mathcal{A} and \mathcal{B} be two countable or finite linear orders.

- (i) If both are discrete, have a first but no last element, and are well-orderings, then they are isomorphic, and isomorphic to $\langle IN, \langle nat \rangle$.
- (ii) There are no uncountable discrete well-orderings.
- (iii) If both are dense, have no first nor last element, then they are isomorphic, and isomorphic to $\langle \mathbb{Q}, <^{nat} \rangle$.

Exercise:

- (i) Find many non-isomorphic countably infinite well-orderings,
- (ii) Find many non-isomorphic uncountable dense orderings of the same cardinality.

First Order Logic $FOL(\tau)$:

For **one-sorted** structures of the form $\mathcal{A} = \langle V, R_1^V, \dots, R_M^V \rangle$ and $\tau = \{R'_1, \dots, R_M\}$

Variables: $u, v, w, \ldots, u_{\alpha}, v_{\alpha}, w_{\alpha}, \ldots, \alpha \in \mathbb{I}N$ ranging over elements of the domain V.

 R_j a $\rho(j)$ -ary relation symbol whose interpretation is R_j^V .

Atomic formulas: $R_i(\bar{u}), u = v$.

Connectives: \land, \lor, \neg ,

Quantifiers: $\forall v, \exists v$

Exercise: Write down the definition of $FOL(\tau)$ in the many-sorted case.

Exercise: Given two isomorphic τ -structures \mathfrak{A} and \mathfrak{B} , show that for every $\phi \in \mathsf{FOL}(\tau)$ without free variables we have $\mathfrak{A} \models \phi$ iff $\mathfrak{B} \models \phi$.

What we know about FOL (from Sets and Logic, 234293)

Basic Notions

- Σ is a (possibly infinite) set **FOL**(τ) formulas, ϕ, ψ are **FOL**(*tau*) formulas.
- (i) A τ -structure \mathcal{A} satisfies Σ , denoted by $\mathcal{A} \models \Sigma$.
- (ii) Σ is **satisfiable** iff there is a τ -structure \mathcal{A} such that $\mathcal{A} \models \Sigma$.
- (iii) Logical consequence (a semantic notion) $\Sigma \models \phi$. In every τ -straucture \mathcal{A} we have, if $\mathcal{A} \models \Sigma$, then also $\mathcal{A} \models \phi$.
- (iv) Logical equivalence: $\phi \equiv \psi$ iff $\phi \models \psi$ and $\psi \models \phi$.
- (v) **Provability** (a syntactic notion) $\Sigma \vdash \phi$ The details of the proof system are not important here
- (vi) **Soundness** of provability: $\Sigma \vdash \phi$ implies $\Sigma \models \phi$.
- (vii) **Completeness** of provability: $\Sigma \models \phi$ implies $\Sigma \vdash \phi$.

Lecture 2

What we know about **FOL** (from Sets and Logic, 234293)

Completeness and Compactness

Completeness Theorem: $\Sigma \models \phi$ iff $\Sigma \vdash \phi$.

Compactness Theorem: Let Σ be an infinite set of $FOL(\tau)$ formulas. Σ is satisfiable iff every **finite subset** $\Sigma_0 \subset \Sigma$ is satisfiable.

Löwenheim-Skolem Theorem: If Σ is countable or finite and there is an infinite \mathcal{A} with $\mathcal{A} \models \Sigma$, there is a countable \mathcal{B} with $\mathcal{B} \models \Sigma$.

Löwenheim-Skolem-Tarski-Mal'cev Theorem: For any Σ , if there is an **infinite** \mathcal{A} with $\mathcal{A} \models \Sigma$, there are models \mathcal{B} of **any infinite cardinality** with $\mathcal{B} \models \Sigma$.

Lecture 2

What we (should) know about **FOL**

from Sets and Logic (234293), or Logic 2 (23xxxx)

Computability questions

A set Σ of formulas of $FOL(\tau)$ is **complete** if for every $\phi \in FOL(\tau)$ without free variables, either $\Sigma \models \phi$ or $\Sigma \models \neg \phi$.

Let Σ be a recursive (=computable) set of formulas of **FOL**(τ).

- The set of consequences of Σ

$$Con(\Sigma) = \{ \phi \in \mathsf{FOL}(\tau) : \Sigma \models \phi \}$$

is recursively enumerable (= semi-computable).

- If additionally, Σ is complete, $Con(\Sigma)$ is recursive (= computable).
- The Curch-Turing Theorem: $Con(\emptyset)$ is not recursive.

Monadic Second Order Logic $MSOL(\tau)$:

Additionally we have, in the **one-sorted** case

Variables: X, Y, Z, \ldots ranging over subsets of V.

Atomic formulas: $u \in X, v \in Y, \ldots$

Quantifiers: $\forall X, \exists X$.

Second Order Logic $SOL^n(\tau)$ and $SOL(\tau)$:

We extend (one-sorted) $MSOL(\tau)$ by the following features:

Variables: X^m, Y^m, Z^m, \dots for $m \leq n$

Atomic formulas: $(u_1, \ldots, u_m) \in X^m, \ldots$

Quantifiers: $\forall X^m, \exists X^m$.

For fixed m this gives us SOL^m , and $SOL = \bigcup_n SOL^n$

Clearly we have syntactically, and hence in expressing power

 $\operatorname{MSOL}(\tau) \subseteq \operatorname{SOL}^2(\tau) \subseteq \operatorname{SOL}(\tau)$

In SOL^2 we can quantifier over arbitrary sets of pairs of vertices,

Lecture 2

Isomorphic structures are indistinguishable in SOL.

Exercise: Given two isomorphic τ -structures \mathfrak{A} and \mathfrak{B} , show that for every $\phi \in SOL(\tau)$ without free variables we have $\mathfrak{A} \models \phi$ iff $\mathfrak{B} \models \phi$.

Lecture 2

$\mathcal{L}(\tau)$ -Definability

 $\mathcal{L}(\tau)$ stands for a subset of $SOL(\tau)$. Recall that an $\mathcal{L}(\tau)$ -sentence is an $\mathcal{L}(\tau)$ -formula without free variables.

Given a class of τ -structures K, we say that K is $\mathcal{L}(\tau)$ -definable if there is a $\mathcal{L}(\tau)$ -sentence θ such that for every τ -structure \mathcal{A}

 $\mathcal{A} \models \theta$ iff $\mathcal{A} \in K$.

We write $Mod_{\mathcal{L}(\tau)}(\theta)$ for the class of τ -structures \mathcal{A} such that $\mathcal{A} \models \theta$.

Proving definability

The class of τ -structures of finite even cardinality, $EVEN(\tau)$, is definable in Second Order Logic:

- Let $\tau_1 = \{R, S, P\}$ with R, S binary and P unary, none of them in τ .
- We write a $FOL(\tau_1)$ -formula $\phi_{bij}(R, P)$ which says that R is a bijection between P and its complement.
- We write a $FOL(\tau_1)$ -formula $\psi_{inj}(S)$ which says that S is a proper injection of the domain into itself.
- Now the required formula is

 $\exists R \exists P \phi_{bij}(R, P) \land \forall S \neg \psi_{inj}(S)$

Lecture 2

MSOL on words (Homework)

Theorem:[Büchi, Elgot, Trakhtenbrot, 1961]

A class of binary words is: recognizable by a finite (non-deterministic) automaton iff it is MSOL-definable (iff it is regular).

Example: (101 ∨ 1001)* 101 1001 101 101 1001 101......

Exercise: Find the MSOL-formula.

Definability of order properties

We look again at one-sorted structures $\langle A, R \rangle$ with one binary relation R.

The following are **FOL**-definable:

- *R* is a **linear order**, with/without **first** or **last** element;
- R is a **discrete** linear order (if $a \in A$ is not a first (last) element, there is a biggest (smallest) element smaller (larger) than a)
- a **dense** linear order (between any two distinct elements there is a further element);

Using compactness we can prove that following are **not FOL**-definable:

- *A* is **finite**, *A* is **countable**;
- a **well-ordering** (every subset of *A* has a least element);

Problems with (Monadic) Second Order Logic SOL (MSOL)

• MSOL is **not compact**:

The class of infinite discrete well-orderings is \mathbf{MSOL} -definable and has (up to isomorphisms) one one model.

• MSOL has no complete provability system:

The **Peano axioms** are expressible in MSOL and characterize the structure $\langle \mathbb{N}, +, \times, 0, 1 \rangle$ up to isomorphims. If there were a complete provability system, the set of $MSOL(\tau_{arith})$ -sentences true in $\langle \mathbb{N}, +, \times, 0, 1 \rangle$ would be computable. But this contradicts **Gödel's First Incompleteness Theorem**.

• There is a satisfiable sentence of $MSOL(\tau_{arith})$ which has no countable or finite models:

 $\langle \mathbb{R}, +, \times, 0, 1 \rangle$ can be characterized up to isomorphims by saying it is an ordered field which is archimedian and Dedekind complete.

From a mathematical point of view this is good!

But it means we need **other tools**, to be developed in the sequel.

Graph properties

For graph properties you may consult

- B. Bollobas, Modern Graph Theory, Springer, 1998
- R. Diestel, Graph Theory, Springer, 3rd edition, 2005
- A. Brandstädt and V.B. Le and J. Spinrad, Graph Classes: A survey, SIAM Monographs on Discrete Mathematics and Applications, 1999

Most graph properties are SOL-definable.

Many of them are MSOL-definable.

Few are **FOL**-definable.

Forbidden induced subgraphs $Forb_{ind}(H)$.

 P_n is a path on n vertices.

The following graph properties are **FOL**-definable:

- For H any simple graph, let $Forb_{ind}(H)$ class of finite graphs which have no induced copy of H.
- Cographs were first defined inductively: The class of cographs is the smallest class of graphs which contains the single vertex graph E_1 and is closed under disjoint unions and (loopfree) graph complement.

[Corneil, Lerchs and Stewart Burlingham, 1981] A graph G is a **cograph** if and only if there is no induced subgraph of G isomorphic to a P_4 .

• A graph G is P_4 -**sparse** if no set of 5 vertices induces more than one P_4 in G.

Cliques and Cographs are *P*₄-sparse.

There is also a characterization of P_4 -sparse graphs with forbidden induced subgraphs.

Lecture 2

The speed of $Forb_{ind}(H)$

Prömel and Steger, 1992

Theorem: If H is an induced subgraph of P_4 then the speed of the H-free graphs is bounded above by

 $n^{n+o(n)}$.

Otherwise the speed is bounded below by

 $2^{(\frac{1}{4}+o(1))n^2}$.

Corollary: If *H* is an induced subgraph of P_4 then

 $\mu(Forb_{ind}(H)) = 0$

Problem: Can we determine $\mu(Forb_{ind}(H)) = 0$ for the remaining cases?

3-Colorability

The class of 3-colorable graphs 3COL is hereditary and definable by a \mathbf{MSOL} formula

$$\exists X_1, X_2, X_3 \phi_{partition}(X_1, X_2, X_3) \land \bigwedge_{i=1}^3 \phi_{color}(X_i)$$

where

- $\phi_{partition}(X_1, X_2, X_3)$ says that X_1, X_2, X_3 form a partition of the vertices and
- $\phi_{color}(X_i)$ says that there are no edges between two vertices in X_i .

Note that all the second order variables are unary and $\phi_{partition}$ and ϕ_{color} are first order formulas over $\tau = \{E, X_1, X_2, X_3\}$.

Homework

Homework:

- (i) Compute the speed of 3COL.
- (ii) Is 3COL of the form $Forb_{ind}(H)$?
- (iii) Is 3*COL* **FOL**-definable?
- (iv) Define k-colorability and show, that for fixed k, it is MSOL-definable.