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Outline of Lecture 2

First Order Logic and Second Order Logic

Basic summary and Toolbox

• Vocabularies and structures

• Isomorphisms and substructures

• First Order Logic FOL, a reminder.

• Completeness and Compactness

• Second Order Logic SOL and SOL
n

and Monadic Second Order Logic MSOL.

• Definability
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Vocabularies

We deal with (possibly many-sorted) relational structures.

Sort symbols are

Uα : α ∈ IN

Relation symbols are

Ri,α : i ∈ Ar, α ∈ IN

where Ar is a set of arities, i.e. of finite sequences of sort symbols.

In the case of one-sorted vocabularies, the arity is just of the form 〈U,U, . . .n . . . , U〉
which will denoted by n.

A vocabulary is a finite set of finitary relation symbols, usually denoted by
τ , τi or σ.
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τ-structures

Structures are interpretations of vocabularies, of the form

A = 〈A(Uα),A(Ri,α) : Uα, Ri,α ∈ τ〉

with A(Uα) = Aα sets, and, for i = (Uj1, . . . , Ujr) A(Ri,α) ⊆ Aj1 × . . .×Ajr.

Graphs: 〈V ;E〉 with vertices as domain and edges as relation.
〈V ⊔ E,RG〉 with two sorted domain of vertices and edges and incidence
relation.

Labeled Graphs: As graphs but with unary predicates for vertex labels and
edge labels depending whether edges are elements or tuples.

Binary Words: 〈V ;R<, P0〉 with domain
lineraly ordered by R< and colored by P0, marking the zero’s.

τ-structures: General relational structures.
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τ-Substructures

Let A,B be two τ-structures.

B is a substructure of A, B ⊆ A, if

(i) B ⊆ A, and

(ii) for all Ri,α ∈ τ and all (b1, . . . , bi) ∈ Bi we have (b1, . . . , bi) ∈ B(Ri,α) iff
(b1, . . . , bi) ∈ A(Ri,α).

Exercise: Adapt the above definition two many-sorted structures.

Example:

• For graphs of the form 〈V,E〉 (one-sorted), where E is a binary relation,
substructures are induced subgraphs.

• For graphs of the form 〈V,E;R〉 (two-sorted), where R ⊆ V ×E is a binary
relation, substructures are subgraphs.
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Isomorphisms between τ-structures

Let A,B be two one sorted τ-structures with universe A,B respectively. A
function f : A→ B is an isomorphism if

(i) f is one-one and onto (a bijection).

(ii) For every relation symbol Ri,α ∈ τ and every ā = (a1, . . . , ai) ∈ Ai we have
ā ∈ A(Ri,α) iff f(ā) = f(a1, . . . , f(ai) ∈ B(Ri,α)

Exercise: Write down the definition of isomorphism in the many-sorted case.
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How to prove that

two countable τ-structures A and B are isomorphic?

We play the following infinite game between
Player I (spoiler) and II (duplicator):

(i) In move 2n+ 1 Player I picks an element a2n+1 ∈ A and Player II picks
an element b2n+1 ∈ B.

(ii) In move 2n Player I picks an element b2n ∈ B and Player II picks an
element a2n ∈ A.

(iii) Let A0 ⊆ A and B0 ⊆ B be the sets of elements chosen by the play-
ers. Player II wins if the map g : A0 → B0 defined by g(ai) = bi is an
isomorphism of the induced substructures A0 and B0.

Note:

Player I can choose again elements already chosen by any of the players.

A0 and B0 can be proper subsets of A and B.
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Cantor’s Theorem

Theorem: Two countable τ-structures A and B are isomorphic iff Player II
has a winning strategy.

Proof: Assume f : A → B is an ismorphism. Then Player II has a winning
strategy by answering using f .

• If Player I played as move 2n+1 the element a2n+1, II answers f(a2n+1).

• If Player I played as move 2n the element b2n, II answers f−1(b2n).

Conversely, assume Player II has a winning strategy, and let A = (ai : i ∈ IN)
and B = (bi : i ∈ IN) be enumerations of A and B.

Player I can help building an isomorphisms f by always choosing the smallest

element in A and B respectively, which was not yet chosen. Q.E.D.
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Properties of a τ-structure

A property of τ-structures is a class P of τ-structures
which is closed under τ-isomorphisms.

• All finite τ-structures.

• All {R2,0}-structures where R2,0 is interpreted as a linear order.

• Al finite 3-dimensional matchings 3DM , i.e. all {R3,0}-structures with
universe A where the interpretation of R3,0 contains a subset M ⊆ A3

such that no two triples of M agree in any coordinate.

• All binary words which are palindroms.

A τ-structure A has property P iff A ∈ P.
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Properties of linear orders

We look at one-sorted structures 〈A,R〉 with one binary relation R.

Sample properties are:

• A is finite, A is countable;

The relation R is

• a linear order, with/without first or last element;

• a discrete linear order (if a ∈ A is not a first (last) element, there is a
biggest (smallest) element smaller (larger) than a)

• a dense linear order (between any two distinct elements there is a further
element);

• a well-ordering (every subset of A has a least element);
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Countable isomorphic structures

Theorem: Let A and B be two countable or finite linear orders.

(i) If both are discrete, have a first but no last element, and are well-
orderings, then they are isomorphic, and isomorphic to 〈 IN, <nat〉.

(ii) There are no uncountable discrete well-orderings.

(iii) If both are dense, have no first nor last element, then they are isomorphic,
and isomorphic to 〈Q, <nat〉.

Exercise:

(i) Find many non-isomorphic countably infinite well-orderings,

(ii) Find many non-isomorphic uncountable dense orderings of the same car-
dinality.
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First Order Logic FOL(τ):

For one-sorted structures of the form A = 〈V,RV
1 , . . . R

V
M〉 and τ = {R′

1 . . . , RM}

Variables: u, v, w, . . . , uα, vα, wα, . . . , α ∈ IN ranging over elements of the do-
main V .

Rj a ρ(j)-ary relation symbol whose interpretation is RV
j .

Atomic formulas: Rj(ū), u = v.

Connectives: ∧,∨,¬,

Quantifiers: ∀v, ∃v

Exercise: Write down the definition of FOL(τ) in the many-sorted case.

Exercise: Given two isomorphic τ-structures A and B, show that for every
φ ∈ FOL(τ) without free variables we have A |= φ iff B |= φ.
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What we know about FOL (from Sets and Logic, 234293)

Basic Notions

Σ is a (possibly infinite) set FOL(τ) formulas, φ, ψ are FOL(tau) formulas.

(i) A τ-structure A satisfies Σ, denoted by A |= Σ.

(ii) Σ is satisfiable iff there is a τ-structure A such that A |= Σ.

(iii) Logical consequence (a semantic notion) Σ |= φ.

In every τ-straucture A we have, if A |= Σ, then also A |= φ.

(iv) Logical equivalence: φ ≡ ψ iff φ |= ψ and ψ |= φ.

(v) Provability (a syntactic notion) Σ ⊢ φ

The details of the proof system are not important here

(vi) Soundness of provability: Σ ⊢ φ implies Σ |= φ.

(vii) Completeness of provability: Σ |= φ implies Σ ⊢ φ.
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What we know about FOL (from Sets and Logic, 234293)

Completeness and Compactness

Completeness Theorem: Σ |= φ iff Σ ⊢ φ.

Compactness Theorem: Let Σ be an infinite set of FOL(τ) formulas.
Σ is satisfiable iff every finite subset Σ0 ⊂ Σ is satisfiable.

Löwenheim-Skolem Theorem: If Σ is countable or finite and there is an
infinite A with A |= Σ, there is a countable B with B |= Σ.

Löwenheim-Skolem-Tarski-Mal’cev Theorem: For any Σ, if there is an
infinite A with A |= Σ, there are models B of any infinite cardinality

with B |= Σ.
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What we (should) know about FOL

from Sets and Logic (234293), or Logic 2 (23xxxx)

Computability questions

A set Σ of formulas of FOL(τ) is complete if for every φ ∈ FOL(τ) without
free variables, either Σ |= φ or Σ |= ¬φ.

Let Σ be a recursive (=computable) set of formulas of FOL(τ).

• The set of consequences of Σ

Con(Σ) = {φ ∈ FOL(τ) : Σ |= φ}

is recursively enumerable (= semi-computable).

• If additionally, Σ is complete, Con(Σ) is recursive (= computable).

• The Curch-Turing Theorem: Con(∅) is not recursive.
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Monadic Second Order Logic MSOL(τ):

Additionally we have, in the one-sorted case

Variables: X,Y, Z, . . . ranging over subsets of V .

Atomic formulas: u ∈ X, v ∈ Y, . . .

Quantifiers: ∀X,∃X.
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Second Order Logic SOL
n(τ) and SOL(τ):

We extend (one-sorted) MSOL(τ) by the following features:

Variables: Xm, Y m, Zm, . . . for m ≤ n

Atomic formulas: (u1, . . . , um) ∈ Xm, . . .

Quantifiers: ∀Xm,∃Xm.

For fixed m this gives us SOL
m, and SOL =

⋃
n SOL

n

Clearly we have syntactically, and hence in expressing power

MSOL(τ) ⊆ SOL
2(τ) ⊆ SOL(τ)

In SOL
2 we can quantifier over arbitrary sets of pairs of vertices,
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Isomorphic structures are indistinguishable in SOL.

Exercise: Given two isomorphic τ-structures A and B, show that for every

φ ∈ SOL(τ) without free variables we have A |= φ iff B |= φ.
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L(τ)-Definability

L(τ) stands for a subset of SOL(τ). Recall that an L(τ)-sentence is an L(τ)-
formula without free variables.

Given a a class of τ-structures K, we say that K is L(τ)-definable if there
is a L(τ)-sentence θ such that for every τ-structure A

A |= θ iff A ∈ K.

We write ModL(τ)(θ) for the class of τ-structures A such that A |= θ.
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Proving definability

The class of τ-structures of finite even cardinality, EV EN(τ), is definable in
Second Order Logic:

• Let τ1 = {R, S, P} with R,S binary and P unary, none of them in τ .

• We write a FOL(τ1)-formula φbij(R,P ) which says that R is a bijection
between P and its complement.

• We write a FOL(τ1)-formula ψinj(S) which says that S is a proper injec-
tion of the domain into itself.

• Now the required formula is

∃R∃Pφbij(R,P ) ∧ ∀S¬ψinj(S)
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MSOL on words (Homework)

Theorem:[Büchi, Elgot, Trakhtenbrot, 1961]

A class of binary words is:
recognizable by a finite
(non-deterministic) automaton
iff it is MSOL-definable
(iff it is regular).

Example: (101 ∨ 1001)∗

101 1001 101 101 1001 1001 101........

Exercise: Find the MSOL-formula.
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Definability of order properties

We look again at one-sorted structures 〈A,R〉 with one binary relation R.

The following are FOL-definable:

• R is a linear order, with/without first or last element;

• R is a discrete linear order (if a ∈ A is not a first (last) element, there is
a biggest (smallest) element smaller (larger) than a)

• a dense linear order (between any two distinct elements there is a further
element);

Using compactness we can prove that following are not FOL-definable:

• A is finite, A is countable;

• a well-ordering (every subset of A has a least element);
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Problems with (Monadic) Second Order Logic SOL (MSOL)

• MSOL is not compact:

The class of infinite discrete well-orderings is MSOL-definable and has (up to isomor-

phisms) one one model.

• MSOL has no complete provability system:

The Peano axioms are expressible in MSOL and characterize the structure 〈 IN,+,×,0,1〉

up to isomorphims. If there were a complete provability system, the set of MSOL(τarith)-

sentences true in 〈 IN,+,×,0,1〉 would be computable.

But this contradicts Gödel’s First Incompleteness Theorem.

• There is a satisfiable sentence of MSOL(τarith)
which has no countable or finite models:

〈 IR,+,×,0,1〉 can be characterized up to isomorphims by saying it is an ordered field

which is archimedian and Dedekind complete.

From a mathematical point of view this is good!

But it means we need other tools, to be developed in the sequel.
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Graph properties

For graph properties you may consult

• B. Bollobas, Modern Graph Theory, Springer, 1998

• R. Diestel, Graph Theory, Springer, 3rd edition, 2005

• A. Brandstädt and V.B. Le and J. Spinrad, Graph Classes: A survey,

SIAM Monographs on Discrete Mathematics and Applications, 1999

Most graph properties are SOL-definable.

Many of them are MSOL-definable.

Few are FOL-definable.
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Forbidden induced subgraphs Forbind(H).

Pn is a path on n vertices.

The following graph properties are FOL-definable:

• For H any simple graph, let Forbind(H) class of finite graphs which have
no induced copy of H.

• Cographs were first defined inductively: The class of cographs is the
smallest class of graphs which contains the single vertex graph E1 and is
closed under disjoint unions and (loopfree) graph complement.

[Corneil, Lerchs and Stewart Burlingham, 1981]
A graph G is a cograph if and only if there is no induced subgraph of G
isomorphic to a P4.

• A graph G is P4-sparse if no set of 5 vertices induces more than one P4

in G.

Cliques and Cographs are P4-sparse.

There is also a characterization of P4-sparse graphs with forbidden in-
duced subgraphs.
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The speed of Forbind(H)

Prömel and Steger, 1992

Theorem: If H is an induced subgraph of P4 then the speed of the H-free
graphs is bounded above by

nn+o(n).

Otherwise the speed is bounded below by

2(1

4
+o(1))n2

.

Corollary: If H is an induced subgraph of P4 then

µ(Forbind(H)) = 0

Problem: Can we determine µ(Forbind(H)) = 0 for the remaining cases?
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3-Colorability

The class of 3-colorable graphs 3COL is hereditary and definable by a MSOL-
formula

∃X1, X2, X3φpartition(X1, X2, X3) ∧

3∧

i=1

φcolor(Xi)

where

• φpartition(X1, X2, X3) says that X1, X2, X3 form a partition of the vertices
and

• φcolor(Xi) says that there are no edges between two vertices in Xi.

Note that all the second order variables are unary and φpartition and φcolor are
first order formulas over τ = {E,X1, X2, X3}.
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Homework

Homework:

(i) Compute the speed of 3COL.

(ii) Is 3COL of the form Forbind(H)?

(iii) Is 3COL FOL-definable?

(iv) Define k-colorability and show, that for fixed k, it is MSOL-definable.
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