Outline of Lecture 2

First Order Logic and Second Order Logic

Basic summary and Toolbox

- Vocabularies and structures
- Isomorphisms and substructures
- First Order Logic FOL, a reminder.
- Completeness and Compactness
- Second Order Logic SOL and SOL^{n} and Monadic Second Order Logic MSOL.
- Definability

Vocabularies

We deal with (possibly many-sorted) relational structures.
Sort symbols are

$$
U_{\alpha}: \alpha \in \mathbb{I N}
$$

Relation symbols are

$$
R_{i, \alpha}: i \in A r, \alpha \in \mathbb{I N}
$$

where $A r$ is a set of arities, i.e. of finite sequences of sort symbols.
In the case of one-sorted vocabularies, the arity is just of the form $\left\langle U, U, \ldots{ }_{n} \ldots, U\right\rangle$ which will denoted by n.

A vocabulary is a finite set of finitary relation symbols, usually denoted by τ, τ_{i} or σ.

τ-structures

Structures are interpretations of vocabularies, of the form

$$
\mathcal{A}=\left\langle\mathcal{A}\left(U_{\alpha}\right), \mathcal{A}\left(R_{i, \alpha}\right): U_{\alpha}, R_{i, \alpha} \in \tau\right\rangle
$$

with $\mathcal{A}\left(U_{\alpha}\right)=A_{\alpha}$ sets, and, for $i=\left(U_{j_{1}}, \ldots, U_{j_{r}}\right) \mathcal{A}\left(R_{i, \alpha}\right) \subseteq A_{j_{1}} \times \ldots \times A_{j_{r}}$.
Graphs: $\langle V ; E\rangle$ with vertices as domain and edges as relation.
$\left\langle V \sqcup E, R_{G}\right\rangle$ with two sorted domain of vertices and edges and incidence relation.

Labeled Graphs: As graphs but with unary predicates for vertex labels and edge labels depending whether edges are elements or tuples.

Binary Words: $\left\langle V ; R_{<}, P_{0}\right\rangle$ with domain
lineraly ordered by $R_{<}$and colored by P_{0}, marking the zero's.
τ-structures: General relational structures.

τ-Substructures

Let \mathcal{A}, \mathcal{B} be two τ-structures.
\mathcal{B} is a substructure of $\mathcal{A}, \mathcal{B} \subseteq \mathcal{A}$, if
(i) $B \subseteq A$, and
(ii) for all $R_{i, \alpha} \in \tau$ and all $\left(b_{1}, \ldots, b_{i}\right) \in B^{i}$ we have $\left(b_{1}, \ldots, b_{i}\right) \in \mathcal{B}\left(R_{i, \alpha}\right)$ iff $\left(b_{1}, \ldots, b_{i}\right) \in \mathcal{A}\left(R_{i, \alpha}\right)$.

Exercise: Adapt the above definition two many-sorted structures.

Example:

- For graphs of the form $\langle V, E\rangle$ (one-sorted), where E is a binary relation, substructures are induced subgraphs.
- For graphs of the form $\langle V, E$; $R\rangle$ (two-sorted), where $R \subseteq V \times E$ is a binary relation, substructures are subgraphs.

Isomorphisms between τ-structures

Let \mathcal{A}, \mathcal{B} be two one sorted τ-structures with universe A, B respectively. A function $f: A \rightarrow B$ is an isomorphism if
(i) f is one-one and onto (a bijection).
(ii) For every relation symbol $R_{i, \alpha} \in \tau$ and every $\bar{a}=\left(a_{1}, \ldots, a_{i}\right) \in A^{i}$ we have $\bar{a} \in \mathcal{A}\left(R_{i, \alpha}\right)$ iff $f(\bar{a})=f\left(a_{1}, \ldots, f\left(a_{i}\right) \in \mathcal{B}\left(R_{i, \alpha}\right)\right.$

Exercise: Write down the definition of isomorphism in the many-sorted case.

How to prove that

two countable τ-structures \mathcal{A} and \mathcal{B} are isomorphic?

We play the following infinite game between
Player I (spoiler) and II (duplicator):
(i) In move $2 n+1$ Player I picks an element $a_{2 n+1} \in A$ and Player II picks an element $b_{2 n+1} \in B$.
(ii) In move $2 n$ Player I picks an element $b_{2 n} \in B$ and Player II picks an element $a_{2 n} \in A$.
(iii) Let $A_{0} \subseteq A$ and $B_{0} \subseteq B$ be the sets of elements chosen by the players. Player II wins if the map $g: A_{0} \rightarrow B_{0}$ defined by $g\left(a_{i}\right)=b_{i}$ is an isomorphism of the induced substructures \mathcal{A}_{0} and \mathcal{B}_{0}.

Note:

Player I can choose again elements already chosen by any of the players.
A_{0} and B_{0} can be proper subsets of A and B.

Cantor's Theorem

Theorem: Two countable τ-structures \mathcal{A} and \mathcal{B} are isomorphic iff Player II has a winning strategy.

Proof: Assume $f: A \rightarrow B$ is an ismorphism. Then Player II has a winning strategy by answering using f.

- If Player I played as move $2 n+1$ the element $a_{2 n+1}$, II answers $f\left(a_{2 n+1}\right)$.
- If Player I played as move $2 n$ the element $b_{2 n}$, II answers $f^{-1}\left(b_{2 n}\right)$.

Conversely, assume Player II has a winning strategy, and let $A=\left(a_{i}: i \in \mathbb{I N}\right)$ and $B=\left(b_{i}: i \in \mathrm{IN}\right)$ be enumerations of A and B.

Player I can help building an isomorphisms f by always choosing the smallest element in A and B respectively, which was not yet chosen.

Q.E.D.

Properties of a τ-structure

A property of τ-structures is a class \mathcal{P} of τ-structures which is closed under τ-isomorphisms.

- All finite τ-structures.
- All $\left\{R_{2,0}\right\}$-structures where $R_{2,0}$ is interpreted as a linear order.
- Al finite 3-dimensional matchings $3 D M$, i.e. all $\left\{R_{3,0}\right\}$-structures with universe A where the interpretation of $R_{3,0}$ contains a subset $M \subseteq A^{3}$ such that no two triples of M agree in any coordinate.
- All binary words which are palindroms.

A τ-structure \mathcal{A} has property \mathcal{P} iff $\mathcal{A} \in \mathcal{P}$.

Properties of linear orders

We look at one-sorted structures $\langle A, R\rangle$ with one binary relation R.
Sample properties are:

- A is finite, A is countable;

The relation R is

- a linear order, with/without first or last element;
- a discrete linear order (if $a \in A$ is not a first (last) element, there is a biggest (smallest) element smaller (larger) than a)
- a dense linear order (between any two distinct elements there is a further element);
- a well-ordering (every subset of A has a least element);

Countable isomorphic structures

Theorem: Let \mathcal{A} and \mathcal{B} be two countable or finite linear orders.
(i) If both are discrete, have a first but no last element, and are wellorderings, then they are isomorphic, and isomorphic to $\left\langle\mathrm{IN},<^{n a t}\right\rangle$.
(ii) There are no uncountable discrete well-orderings.
(iii) If both are dense, have no first nor last element, then they are isomorphic, and isomorphic to $\left\langle\mathbb{Q},<^{n a t}\right\rangle$.

Exercise:

(i) Find many non-isomorphic countably infinite well-orderings,
(ii) Find many non-isomorphic uncountable dense orderings of the same cardinality.

First Order Logic FOL($\tau)$:

For one-sorted structures of the form $\mathcal{A}=\left\langle V, R_{1}^{V}, \ldots R_{M}^{V}\right\rangle$ and $\tau=\left\{R_{1}^{\prime} \ldots, R_{M}\right\}$
Variables: $u, v, w, \ldots, u_{\alpha}, v_{\alpha}, w_{\alpha}, \ldots, \alpha \in \mathbb{I N}$ ranging over elements of the domain V.
R_{j} a $\rho(j)$-ary relation symbol whose interpretation is R_{j}^{V}.
Atomic formulas: $R_{j}(\bar{u}), u=v$.
Connectives: \wedge, \vee, \neg,
Quantifiers: $\forall v, \exists v$
Exercise: Write down the definition of $\operatorname{FOL}(\tau)$ in the many-sorted case.
Exercise: Given two isomorphic τ-structures \mathfrak{A} and \mathfrak{B}, show that for every $\phi \in \operatorname{FOL}(\tau)$ without free variables we have $\mathfrak{A} \models \phi$ iff $\mathfrak{B} \models \phi$.

What we know about FOL (from Sets and Logic, 234293)

Basic Notions

Σ is a (possibly infinite) set $\operatorname{FOL}(\tau)$ formulas, ϕ, ψ are $\operatorname{FOL}(t a u)$ formulas.
(i) A τ-structure \mathcal{A} satisfies Σ, denoted by $\mathcal{A} \models \Sigma$.
(ii) Σ is satisfiable iff there is a τ-structure \mathcal{A} such that $\mathcal{A} \models \Sigma$.
(iii) Logical consequence (a semantic notion) $\Sigma \| \phi$. In every τ-straucture \mathcal{A} we have, if $\mathcal{A} \models \Sigma$, then also $\mathcal{A} \models \phi$.
(iv) Logical equivalence: $\phi \equiv \psi$ iff $\phi=\psi$ and $\psi \models \phi$.
(v) Provability (a syntactic notion) $\Sigma \vdash \phi$

The details of the proof system are not important here
(vi) Soundness of provability: $\Sigma \vdash \phi$ implies $\Sigma \models \phi$.
(vii) Completeness of provability: $\Sigma \vDash \phi$ implies $\Sigma \vdash \phi$.

What we know about FOL (from Sets and Logic, 234293)

Completeness and Compactness

Completeness Theorem: $\Sigma \models \phi$ iff $\Sigma \vdash \phi$.
Compactness Theorem: Let Σ be an infinite set of $\operatorname{FOL}(\tau)$ formulas.
Σ is satisfiable iff every finite subset $\Sigma_{0} \subset \Sigma$ is satisfiable.
Löwenheim-Skolem Theorem: If Σ is countable or finite and there is an infinite \mathcal{A} with $\mathcal{A} \vDash \Sigma$, there is a countable \mathcal{B} with $\mathcal{B} \vDash \Sigma$.

Löwenheim-Skolem-Tarski-Mal'cev Theorem: For any Σ, if there is an infinite \mathcal{A} with $\mathcal{A} \models \Sigma$, there are models \mathcal{B} of any infinite cardinality with $\mathcal{B}=\Sigma$.

What we (should) know about FOL from Sets and Logic (234293), or Logic 2 (23xxxx)

Computability questions

A set Σ of formulas of $\operatorname{FOL}(\tau)$ is complete if for every $\phi \in \operatorname{FOL}(\tau)$ without free variables, either $\Sigma \models \phi$ or $\Sigma \mid=\neg \phi$.

Let Σ be a recursive (=computable) set of formulas of $\operatorname{FOL}(\tau)$.

- The set of consequences of Σ

$$
\operatorname{Con}(\Sigma)=\{\phi \in \operatorname{FOL}(\tau): \Sigma \mid=\phi\}
$$

is recursively enumerable ($=$ semi-computable).

- If additionally, Σ is complete, $\operatorname{Con}(\Sigma)$ is recursive (= computable).
- The Curch-Turing Theorem: $\operatorname{Con}(\emptyset)$ is not recursive.

Monadic Second Order Logic MSOL(τ):

Additionally we have, in the one-sorted case
Variables: X, Y, Z, \ldots ranging over subsets of V.
Atomic formulas: $u \in X, v \in Y, \ldots$
Quantifiers: $\forall X, \exists X$.

$$
\text { Second Order Logic } \operatorname{SOL}^{n}(\tau) \text { and } \operatorname{SOL}(\tau) \text { : }
$$

We extend (one-sorted) MSOL(τ) by the following features:
Variables: $X^{m}, Y^{m}, Z^{m}, \ldots$ for $m \leq n$
Atomic formulas: $\left(u_{1}, \ldots, u_{m}\right) \in X^{m}, \ldots$
Quantifiers: $\forall X^{m}, \exists X^{m}$.
For fixed m this gives us SOL^{m}, and $\mathrm{SOL}=\bigcup_{n} \mathrm{SOL}^{n}$
Clearly we have syntactically, and hence in expressing power

$$
\operatorname{MSOL}(\tau) \subseteq \operatorname{SOL}^{2}(\tau) \subseteq \operatorname{SOL}(\tau)
$$

In SOL^{2} we can quantifier over arbitrary sets of pairs of vertices,

Isomorphic structures are indistinguishable in SOL.

Exercise: Given two isomorphic τ-structures \mathfrak{A} and \mathfrak{B}, show that for every $\phi \in \operatorname{SOL}(\tau)$ without free variables we have $\mathfrak{A} \models \phi$ iff $\mathfrak{B} \models \phi$.

$\mathcal{L}(\tau)$-Definability

$\mathcal{L}(\tau)$ stands for a subset of $\operatorname{SOL}(\tau)$. Recall that an $\mathcal{L}(\tau)$-sentence is an $\mathcal{L}(\tau)$ formula without free variables.

Given a a class of τ-structures K, we say that K is $\mathcal{L}(\tau)$-definable if there is a $\mathcal{L}(\tau)$-sentence θ such that for every τ-structure \mathcal{A}

$$
\mathcal{A} \models \theta \text { iff } \mathcal{A} \in K
$$

We write $\operatorname{Mod}_{\mathcal{L}(\tau)}(\theta)$ for the class of τ-structures \mathcal{A} such that $\mathcal{A} \equiv \theta$.

Proving definability

The class of τ-structures of finite even cardinality, $\operatorname{EVEN}(\tau)$, is definable in Second Order Logic:

- Let $\tau_{1}=\{R, S, P\}$ with R, S binary and P unary, none of them in τ.
- We write a $F O L\left(\tau_{1}\right)$-formula $\phi_{b i j}(R, P)$ which says that R is a bijection between P and its complement.
- We write a $F O L\left(\tau_{1}\right)$-formula $\psi_{i n j}(S)$ which says that S is a proper injection of the domain into itself.
- Now the required formula is

$$
\exists R \exists P \phi_{b i j}(R, P) \wedge \forall S \neg \psi_{i n j}(S)
$$

MSOL on words (Homework)

Theorem:[Büchi, Elgot, Trakhtenbrot, 1961]
A class of binary words is: recognizable by a finite
(non-deterministic) automaton
iff it is MSOL-definable
(iff it is regular).
Example: (101 v 1001)*
101100110110110011001 101.......
Exercise: Find the MSOL-formula.

Definability of order properties

We look again at one-sorted structures $\langle A, R\rangle$ with one binary relation R.
The following are FOL-definable:

- R is a linear order, with/without first or last element;
- R is a discrete linear order (if $a \in A$ is not a first (last) element, there is a biggest (smallest) element smaller (larger) than a)
- a dense linear order (between any two distinct elements there is a further element);

Using compactness we can prove that following are not FOL-definable:

- A is finite, A is countable;
- a well-ordering (every subset of A has a least element);

Problems with (Monadic) Second Order Logic SOL (MSOL)

- MSOL is not compact:

The class of infinite discrete well-orderings is MSOL-definable and has (up to isomorphisms) one one model.

- MSOL has no complete provability system:

The Peano axioms are expressible in MSOL and characterize the structure $\langle\mathbb{N},+, \times, 0,1\rangle$ up to isomorphims. If there were a complete provability system, the set of $\operatorname{MSOL}\left(\tau_{\text {arith }}\right)$ sentences true in $\langle\mathbb{N},+, \times, 0,1\rangle$ would be computable.
But this contradicts Gödel's First Incompleteness Theorem.

- There is a satisfiable sentence of $\operatorname{MSOL}\left(\tau_{\text {arith }}\right)$ which has no countable or finite models:
$\langle\mathbb{R},+, \times, 0,1\rangle$ can be characterized up to isomorphims by saying it is an ordered field which is archimedian and Dedekind complete.

From a mathematical point of view this is good!
But it means we need other tools, to be developed in the sequel.

Graph properties

For graph properties you may consult

- B. Bollobas, Modern Graph Theory, Springer, 1998
- R. Diestel, Graph Theory, Springer, 3rd edition, 2005
- A. Brandstädt and V.B. Le and J. Spinrad, Graph Classes: A survey, SIAM Monographs on Discrete Mathematics and Applications, 1999

Most graph properties are SOL-definable.

Many of them are MSOL-definable.

Few are FOL-definable.

Forbidden induced subgraphs $\operatorname{Forb}_{i n d}(H)$.

P_{n} is a path on n vertices.
The following graph properties are FOL-definable:

- For H any simple graph, let $\operatorname{Forb}_{i n d}(H)$ class of finite graphs which have no induced copy of H.
- Cographs were first defined inductively: The class of cographs is the smallest class of graphs which contains the single vertex graph E_{1} and is closed under disjoint unions and (loopfree) graph complement.
[Corneil, Lerchs and Stewart Burlingham, 1981]
A graph G is a cograph if and only if there is no induced subgraph of G isomorphic to a P_{4}.
- A graph G is P_{4}-sparse if no set of 5 vertices induces more than one P_{4} in G.
Cliques and Cographs are P_{4}-sparse.
There is also a characterization of P_{4}-sparse graphs with forbidden induced subgraphs.

The speed of Forb $_{\text {ind }}(H)$
Prömel and Steger, 1992

Theorem: If H is an induced subgraph of P_{4} then the speed of the H-free graphs is bounded above by

$$
n^{n+o(n)}
$$

Otherwise the speed is bounded below by

$$
2^{\left(\frac{1}{4}+o(1)\right) n^{2}}
$$

Corollary: If H is an induced subgraph of P_{4} then

$$
\mu\left(\operatorname{Forb}_{i n d}(H)\right)=0
$$

Problem: Can we determine $\mu\left(\operatorname{Forb}_{\text {ind }}(H)\right)=0$ for the remaining cases?

3-Colorability

The class of 3-colorable graphs $3 C O L$ is hereditary and definable by a MSOLformula

$$
\exists X_{1}, X_{2}, X_{3} \phi_{\text {partition }}\left(X_{1}, X_{2}, X_{3}\right) \wedge \bigwedge_{i=1}^{3} \phi_{\text {color }}\left(X_{i}\right)
$$

where

- $\phi_{\text {partition }}\left(X_{1}, X_{2}, X_{3}\right)$ says that X_{1}, X_{2}, X_{3} form a partition of the vertices and
- $\phi_{\text {color }}\left(X_{i}\right)$ says that there are no edges between two vertices in X_{i}.

Note that all the second order variables are unary and $\phi_{\text {partition }}$ and $\phi_{\text {color }}$ are first order formulas over $\tau=\left\{E, X_{1}, X_{2}, X_{3}\right\}$.

Homework

Homework:

(i) Compute the speed of $3 C O L$.
(ii) Is $3 C O L$ of the form $\operatorname{Forb}_{\text {ind }}(H)$?
(iii) Is $3 C O L$ FOL-definable?
(iv) Define k-colorability and show, that for fixed k, it is MSOL-definable.

