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Outline of Lecture 1

Density, speed and probalities

• Organisational matters

• Purpose of the course

• Counting finite structures: Density, speed and probabilities

• 0-1 Law for First Order Logic (outline)
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Course prerequisites and requirements

Lectures:
Weekly two hour lectures.
Topic of the week.

Homework:
Weekly homework assignments.
Complementing material of the course.
No hand-in required.
Connect passive and active knowledge.
Measure your understanding.
Control it yourself or with a partner.
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Purpose of the course

We want to explore theorems in

combinatorial and algorithmic graph theory

the proofs of which use methods from logic.

• 0-1 laws for graph properties.

• Linear recurrence relations for counting graphs on n vertices.

• Linear recurrences for graph polynomials.

• Parametrized complexity of graph polynomials.
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Counting finite topologies

Let Tn be the number of topologies on the set {1, . . . , n}.

T1 = 1, as the underlying set is always open.

T2 = 4, for each singleton, we can decide whether it is open or not.

Tn is bounded by 22n

, hence T5 ≤ 232.
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Two papers

T5 = 7181

A. Shaafat, On the number of topologies definable for a finite, J. Australian Mat. Soc., vol

8 (1968), 194-198.

T5 = 6942

J. Evans, F. Harary and M.S. Lynn, On the computer enumeration of finite toplogies, Com-

munications of the ACM, 10 (1967), 295-297.

In the course we shall prove that T5 = 2 (mod 5).

7181 6= 2 mod 5

6942 = 2 mod 5

This will allow us to conclude that T5 = 7181 is not possible.
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Logic and Combinatorics

• The class of finite topologies is not definable in First Order or even
Second Order Logic.

• But the number of topologies on n points is the same as the number of
reflexive transitive relations on n points.

• The class of reflexive transitive relations on n points
is First order definable.

• Counting First Order definable relations is amenable using techniques
from logic.
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Toplogies and preorders

A preorder R is a
transitive and reflexive binary relation.

If additionally R(a, b) ∧ R(b, a) ⇒ a = b, R is a partial order.

PreOn is the number of preorders on the set {1, . . . , n}.

Theorem:
The number of preorder on a finite set equals the number of topolgies, i.e.,
PreOn = Tn.

Proof: Homework 1
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Graph properties

A simple graph

G =< V, E >=< V (G), E(G) >

has a set V of vertices and E ⊆ V 2 of edges. Simple graphs have no multiple
edges. G is finite if V is finite.

A graph property P is a class of (finite) graphs
closed under graph isomorphisms.

A graph property P is monotone, if it is closed under subgraphs, and
hereditary, if it is closed under induced subgraphs.

A graph property P is FOL(τ)-definable if it consists of all (finite) graphs
satisfying an FOL(τ)-formula φ. (Similarly for SOL, MSOL)

Examples and Exercise:

Check for monotonicity, hereditarity and definability:

Planar graphs, regular graphs, Eulerian graphs, Hamiltonian graphs,

connected graphs, 3-colorable graphs, bipartite graphs
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Density and asymptotic probabilities
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Counting graphs

We want to count the number of finite graphs having a given graph property.

There are various ways of doing this.

• Density functions of a graph property

• Asymptotic probabilities of a graph property

• Given a graph, count the number of induced subgraphs with a given
property

• Turn any of the above into a generating function.

11



Logical Methods in Combinatorics, 236605-2009/10 Lecture 1

Counting graphs: The density function.

• Graphs with n vertices will have V = {0,1, . . . , n − 1} = [n].

• There are gr(n) = 2(n

2) = 2
n(n−1)

2 many graphs with n vertices.

• For a property P denote by Pn the graphs with n vertices in P, and by
fP(n) =| Pn |, the number of graphs G with V (G) = [n] which are in P.
fP(n) is called the density function of P.

If P is hereditary, the density function of P is also called the speed P,
since it is an ultimately monotone increasing function.

• The spectrum sp(P) of P is the set {n ∈ N : fP(n) 6= 0}.

What can we say about fP(n) and sp(P)?
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Density functions and generating functions

• The power series

FP(n) =

∞
∑

n

fP(n) · Xn

is called the generating function of P.

• The power series

FP(n) =

∞
∑

n

fP(n) · Xn

n!

is called the exponential generating function of P.

What can we say about FP(n), and FP(n)?
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Density functions: References

There is rich literature on density functions.

[Rio68 ] J. Riordan,
Combinatorial identities, Robert E. Krieger, New York, 1968

[HP73 ] F. Harary and E. Palmer,
Graphical enumeration, Academic Press, 1973.

[Wil90 ] H.S. Wilf,
generatingfunctionology, Academic Press, 1990 (2nd ed. 1994).
Also: www.math.upenn.edu/∼wilf/DownldGF.html

[BBW02 ] J. Balogh, B. Bollobás and David Weinreich,
Measures on monotone properties of graphs,
Discrete Applied Mathematics 116 (2002), 17-36.

We shall see examples in a moment.
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Counting graphs: Asymptotic probability

With the density function we can also define probabilities:

• We define µn(P) =
|Pn|

gr(n)
, the fraction of graphs in P.

• µ(P) = limn→∞ µn(P) is called the asymptotic probability of P.

• Let G(n, p(n)) be the random graph on n labeled vertices where each
edge is chosen with probability p(n), and µ

p
n(P) and µp(P) the probability,

respectively asymptotic probability that G(n, p(n)) in in P.

For p(n) = 1
2

constant we get µn(P) = µ
1

2
n(P)

What can we say about µn(P) and µ(P)?
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Random graphs: References

There is rich literature on random graphs.

[Bol85 ] B. Bollobás,
Random Graphs, Academic Press, 1985

A new book on the same topic by the same author is in preparation.

[ASE92 ] N. Alon, J. Spencer and P. Erdös,
The Probabilistic Method, John Wiley, 1992

[Spe01 ] J. Spencer,
The Strange Logic of Random Graphs, Springer, 2001
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Some motivating (and confusing) examples

• Trees

• Cliques, stars and disjoint unions of cliques

• Connected graphs

• Regular graphs

• Forbidden subgraphs (homework)
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Trees

Let P be the class of labeled trees.

• P not hereditary hence not monotone.
P is not FOL-definable, but MSOL-definable.

• fP(n) = nn−2 (Caley’s Theorem, 1889).

• sp(P) = N − {0}.

• FP(n) =
∑

n nn−2Xn and FP(n) =
∑

n
nn−2·Xn

n!
.

• µn(P) = nn−2

2(
n
2)

and µ(P) = 0

Exercise: Compute nn−2 modulo m. Show that for fixed m, this gives an
ultimately periodic sequence.

Hint: Use Little Fermat: np−1 = 1 (mod p) if p does not divide n.
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Counting graphs: Cliques

Let P = {Kn : n ∈ N} be the cliques (complete graphs).

• P is hereditary but not monotone.
P is FOL-definable.

• fP(n) = 1 and trivially periodic modulo any m.

• sp(P) = N − {0}.

• FP(n) =
∑

n Xn and FP(n) =
∑

n
Xn

n!
.

• µn(P) = 1

2(
n
2)

and µ(P) = 0
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Counting graphs: Stars

For P = {K1,n : n ∈ N}, the stars
(complete bipartite graphs with 1 and n vertices),

• P is not hereditary.
P is FOL-definable.

• fP(n) = n and trivially periodic modulo any m.

• sp(P) = N − {0,1}.

• FP(n) =
∑

n n · Xn and FP(n) =
∑

n n · Xn

n!
.

• µn(P) = n

2(
n
2)

and µ(P) = 0

If Q is the closure of P under induced substructures, we get either stars or
sets of isolated points, and fQ(n) = n + 1.
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The density function of connected graphs

The class CONN of connected labeled graphs

• is not hereditary,

• is not FOL(R)-definable,

• but it is MSOL(R)-definable using a universal quantifier over set variables.

• It is also definable in Fixed Point Logic (FPL).

Counting labeled connected graphs is treated in [HP74] chapters 1 and 7 and
in [Wil90] chapter 3. [HP74] chapter 1, page 7 gives:

fCONN(n) = 2(n

2) − 1

n

n−1
∑

k=1

k
(n

k

)

2(n−k

2 )fCONN(k).

This does not look vey useful, but we get µ(CONN) = 1.
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The exponential formula for connected graphs

Corollary 1.2.8 in [HP74] and Corollary 3.4.1 in [Wil90].

Let C be a class of graphs and D the set of connected graphs in C.

We note that if C is MSOL-definable so is D.

There is a remarkable theorem due to R.J. Riddell,
which relates the exponential generating functions FC and FD.

With
∑

n
g(x̄)n

n!
= eg(x̄) we have

FC = eFD

For the class of all graphs and connected graphs we get:

Fgraphs =
∑

n

2(n

2) · Xn

n!
= eFCONN
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Counting graphs: Two disjoint cliques

Let P consist of graphs which are a union of two disjoint cliques.

• P is not hereditary hence not monotone.
P is FOL-definable. Homework: Find the formula!

• fP(n) = 2n−1 and and ultimately periodic modulo any m (using Little
Fermat again).

• sp(P) = N − {0,1}.

• FP(n) =
∑

n 2n−1 · Xn and FP(n) =
∑

n 2n−1 · Xn

n!
.

• µn(P) = 2n−1

2(
n
2)

and µ(P) = 0

For arbitrary disjoint unions of cliques (DUCliques) we use Riddell’s formula
and get for the exponential generating function

FDUCliques = eFCliques = eeX

23



Logical Methods in Combinatorics, 236605-2009/10 Lecture 1

Counting graphs: 1-regular graphs

Let P consist of graphs which are 1-regular
(disjoint union of non-connected edges, perfect matchings).

• P is not hereditary.

• P is FOL-definable.

• Exercise: Compute fP(2m) and sp(P).

• Exercise: Compute µm(P) and µ(P).
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2-regular graphs

2-regular graphs are disjoint unions of circles.

fCircle = n!
n

hence the exponential generating function is

FCircle =
∑

n

(n!
n
)n · Xn

n!

We have using Riddel’s formula

FREG2
= eFCircle = e

(
∑

n

(n!
n )n·Xn

n!

)

For 2-regular graphs [Wil90] determines the exponential generating function:

FREG2
=

∑

n=0

fREG2
(n)

xn

n!
=

e−
1

2
x−−1

4
x2

√
1 − x
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The density function for regular graphs

The class REGr of simple regular graphs where every vertex has degree r is
FOL-definable (for fixed r).

The formulas says that every vertex has exactly r different neighbors. The
formula grows with r. Regularity without specifying the degree is not FOL-
definable, actually not even CMSOL-definable.

Counting the number of labeled regular graphs is treated completely in Chap-
ter 7 of [HP74], where an explicit formula is given, essentially due to J.H.
Redfield (1927) and rediscovered by R.C. Read (1959).

However, the formula is very complicated.

For cubic graphs, the function is explicitly given: fR3
(2n + 1) = 0 and

fR3
(2n) =

(2n)!

6n

∑

j,k

(−1)j(6k − 2j)!6j

(3k − j)!(2k − j)!(n − k)!
48k

∑

i

(−1)ij!

(j − 2i)!i!
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Where does logic enter?

0-1 Laws for asymptotic probabilities

Theorem A: (Kolaitis and Vardi, 1992)
(generalizing a long sequence of earlier papers since 1964)

For P definable in infinitary logic with finitely many variables, Lω
∞,ω,

either µP = 0 or µP = 1.

This works also for any constant probability p and µ
p
P.

Theorem B: (Shelah and Spencer, 1988)

For α ∈ [0,1] irrational, P definable in FOL,
either µn−α

P = 0 or µn−α

P = 1.

For all rational α there are counterexamples.
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Where does logic enter?

Density functions modula m

Theorem C: (Blatter and Specker, 1981)

For P definable in MSOL(τ),
where τ is relational and has relation symbols of arity at most 2,
and for every m ∈ N,
the function fP(n) (mod m) on Zm

satisfies a linear recurrence relations, i.e
there are q, n0, a1(m), . . . , aq(m) ∈ N such that for n ≥ n0 we have

fP(n + q) =

q−1
∑

k=0

ak(m) · fP(n + k) (mod m)

and hence is ultimately periodic.

For relations of arity ≥ 4, E. Fischer (2002) found counterexamples.
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When does logic enter? (References)

1964 H. Gaifman,
Concerning measures of first order calculi,
Israel Journal of Mathematics, 2 (1964), pp. 1-17.

1969 Y.V. Glebskii, D.I. Kogan, M.I. Liagonkii and V.A. Talanov,
Range and degree of realizability of formulas in the restricted predicate calculus,
Cybernetics 5 pp. 142-154 (Russian original: Kybernetika 5 (1969), pp. 17-27.

1976 R. Fagin,
Probabilities on finite models, Journal of Symbolic Logic, 41 (1976), pp. 50-58.

1981 C. Blatter and E. Specker,
Le nombre de structures finies d’une th’eorie à charactère fin, Sciences Mathématiques,
Fonds Nationale de la recherche Scientifique, Bruxelles, 1981, pp. 41-44.

1984 C. Blatter and E. Specker,
Recurrence relations for the number of labeled structures on a finite set, In Logic and

Machines: Decision Problems and Complexity, E. Börger and G. Hasenjaeger and D.
Rödding, Springer Lecture Notes in Computer Science, 171 (1984), pp. 43-61.

1988 S. Shelah and J. Spencer,
Zero-One Laws for Sparse Random Graphs,
Journal of the AMS 1 (1988), pp. 97-115.
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