Logical Methods in Combinatorics 236605 (2009/10)

Homework to Lecture 1 and 2

- (i) Topologies and preorders.
- (ii) Counting 1-regular graphs (= perfect matchings).
- (iii) Check monotonicity, hereditarity and definability of selected graph properties.
- (iv) Forbidden (induced) subgraphs
- (v) MSOL-definability of regular languages
- (vi) 3-colorability

Toplogies and preorders, I

A preorder R is a transitive and reflexive binary relation.

If additionally $R(a,b) \wedge R(b,a) \Rightarrow a = b$, R is a partial order.

 $PreO_n$ is the number of preorders on the set $\{1, \ldots, n\}$.

Theorem:

The number of preorder on a finite set equals the number of topolgies, i.e., $PreO_n = T_n$.

Complete and verify the following proof sketch.

Toplogies and preorders, II

Proof: (From topology to preorder)

Let $S = \{1, ..., n\}.$

Let $Cl: P(S) \to P(S)$ be any function. closure operation coming from some topology.

Define $cl: S \to P(S)$ by $cl(a) = Cl(\{a\})$.

Define $R_{Cl}(a, b)$ by $a \in cl(b)$.

Claim: R_{Cl} is a preorder iff Cl is the closure operation from some topolgy.

This uses that S is finite.

Toplogies and preorders, III

Proof: (From preorder to topology)

Let R be a preorder on S.

We define a function $cl_R : S \to P(S)$ by

$$cl_R(b) = \{a \in S : R(a, b).$$

As for finite sets, the topolgy is defined, once we now the closures of the singletons, we define for $X\subseteq S$

$$Cl(X) = \bigcup_{a \in X} cl(a)$$

To verify that this works we use the previous claim .

Counting perfect matchings

Let \mathcal{P} consist of graphs which are 1-regular (disjoint union of non-connected edges, perfect matchings).

- (i) \mathcal{P} is not hereditary. Verify!
- (ii) \mathcal{P} is *FOL*-definable. Write the formula explicitly!
- (iii) Compute and verify the density $f_{\mathcal{P}}(m)$. and $sp(\mathcal{P})$.
- (iv) Compute and verify the fractions and probabilities $\mu_m(\mathcal{P})$ and $\mu(\mathcal{P})$.

Monotonicity and Definability

Check for monotonicity, hereditarity and definability in FOL, MSOL and SOL:

- (i) Connected graphs, graphs of diameter d;
- (ii) regular graphs, *r*-regular graphs;
- (iii) Graphs with an Eulerian or Hamiltonian path (circuit);
- (iv) Planar graphs,
- (v) bipartite graphs, r-colorable graphs.

Forbidden subgraphs

Choose your favorite graph H.

Consider the classes of graphs Forb(H) and iForb(H) of graphs with no subgraph, resp. induced subgraph isomorphic to H.

- For which *H* are these classes monotone, hereditary?
 Try to formulate a general answer based on properties of *H*.
- Show that for each *H* both are *FOL*-definable.
- Try to compute the density function and asymptotic probabilities for various choices of H.
- Find the optimal results in the literature.

Homework 1+2

MSOL on words (Homework)

Theorem:[Büchi, Elgot, Trakhtenbrot, 1961]

A class of binary words is: recognizable by a finite (non-deterministic) automaton iff it is MSOL-definable (iff it is regular).

Example: (101 ∨ 1001)* 101 1001 101 101 1001 101......

Exercise: Find the MSOL-formula.

k-colorability

Homework:

- (i) Compute the speed of 3COL.
- (ii) Is 3COL of the form $Forb_{ind}(H)$?
- (iii) Is 3*COL* **FOL**-definable?
- (iv) Define k-colorability and show, that for fixed k, it is MSOL-definable.