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DESCRIPTIVE COMPLEXITY OF FINITE STRUCTURES: 
SAVING THE QUANTIFIER RANK 

OLEG P1KHURKO AND OLEG VERBITSKY 

Abstract. We say that a first order formula O distinguishes a structure M over a vocabulary L from 

another structure M' over the same vocabulary if <?> is true on M but false on M'. A formula O defines 
an L-structure M if $> distinguishes M from any other non-isomorphic L-structure M'. A formula <t> 

identifies an ?-element L-structure M if <?> distinguishes M from any other non-isomorphic ?-element 

L-structure M'. 

We prove that every ?-element structure M is identifiable by a formula with quantifier rank less than 

(1 
? 

?)? + k2 ? k + 4 and at most one quantifier alternation, where k is the maximum relation arity 
of M. Moreover, if the automorphism group of M contains no transposition of two elements, the same 

result holds for definability rather than identification. 

The Bernays-Sch?nfinkel class consists of prenex formulas in which the existential quantifiers all precede 
the universal quantifiers. We prove that every ?-element structure M is identifiable by a formula in the 

Bernays-Sch?nfinkel class with less than (1 
? 

^-j?)? + k quantifiers. Tf in this class of identifying 

formulas we restrict the number of universal quantifiers to k. then less than ? ? 
y/? + k2 + k quantifiers 

suffice to identify M and. as long as we keep the number of universal quantifiers bounded by a constant, 

at total ? ? 
O(yfn) quantifiers are necessary. 

?1. Introduction. Let M be a structure over a vocabulary L. A closed first order 
formula O with relation symbols in L U {=} is either true or false on M. If M' is 
another L-structure isomorphic with M, then O is equally true or false on M and 

M'. On the other hand, if M is finite and M' is non-isomorphic to M. then there is 
a formula $>mm' that is true on M and false on M'. As it is well known, for infinite 
structures this is not necessary true. In this paper, however, we deal only with finite 
structures. We call the number of elements of a structure M its order. 

If a first order formula O is true on M but false on M/, we say that <?> distinguishes 
M from M'. We say that O defines an L-structure M if O distinguishes M from any 
other non-isomorphic L-structure M'. Furthermore, a formula O identifies a finite 
L-structure M if O distinguishes M from any other non-isomorphic L-structure 

M' of the same order. 

We address the question of how simple a formula identifying (defining) a finite 
structure can be. The complexity measure of a first order formula we use here 
is the quantifier rank, that is. the maximum number of nested quantifiers in a 

formula. Let / (M) (resp. D (M)) denote the minimum quantifier rank of a formula 

identifying (resp. defining) a structure M. We will pay a special attention to 
formulas of restricted logical structure. The alternation number of a formula O 
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420 OLEG PIKHURKO AND OLEG VERBITSKY 

is the maximum number of quantifier alternations over all possible sequences of 

nested quantifiers under the assumption that <?> is reduced to its negation normal 

form. i.e.. all negations are assumed to occur only in front of atomic subformulas. 

By I/(M) and D?(M) we denote the variants of I (M) and D (M) for the class of 

formulas with alternation number at most /. 

We will estimate I(M) and D (M) as functions of the order of M. The latter is 

denoted throughout the paper by n. A simple upper bound for / (M) is 

k(M) < n. 

Indeed, every structure M is identified by formula 

(1) 3x]...3x? ( /\ X??XjAVm(x\.Xn)). 
1 </'</ <? 

where *? m is the conjunction that gives an account of all relations between elements 

of M and negations thereof. For example, if M consists of a single binary relation 

RM on the set {1.n}. then 

xVm= A *(*/ */) A 
/\ ^R(xi.Xj). 

Uj)eR-xl UJ)<?RXI 

It is an easy exercise to show that, if M has only unary relations, then Iq(M) < 

(n + l)/2. In [15] we prove the following results. If M has only unary and binary 
relations, then I\(M) < (n + 3)/2. In the particular case that M is an ordinary 
undirected graph, we are able to improve on the alternation number by showing 
that then h(M) < (n + 5)/2. It is not hard to show that these bounds are tight up 
to a small additive constant. If M is a /:-uniform hypergraph. we have the bound 

IX(M) < (1 
- 

\/k)n + 2k- 1. 

Here we continue the research initiated in [15] and prove a general upper bound 

(2) h(M)< 
U-^jn+tf-k+A. 

where k. here and throughout, denotes the maximum relation arity of the vocabu 

lary L. 

A simple upper bound for D (M) is 

D0(M) < n + 1. 

An appropriate defining formula is the conjunction of (1) and the formula saying 
that there are no n + 1 pairwise distinct elements. The upper bound of n + 1 is 

generally best possible. For example, we have D (Mn) 
= n + 1 if Mn consists of 

the single totally true unary relation or is a complete graph on n vertices. However, 

for a quite representative class of structures we are able to prove a better bound 

making use of one quantifier alternation. We call a structure irredundant if its 

automorphism group contains no transposition of two elements. Similarly to (2). 
for any irredundant structure M we obtain 

(3) DX(M)< 
(1-?)^+^2"^+4 

This is a qualitative extension of a result in [15]. where the bound D\(M) < n/2 + 2 

is proved for any irredundant structure M with maximum relation arity 2. On the 
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other hand, there are simple examples of irredundant structures with D (M) > n/4 
(see Remark 4.4). 

In fact, the bound (3) may not hold only for structures with a simple, easily 

recognizable property. Namely, given elements u and v of M. let us call them 

similar if the transposition of u and v is an automorphism of M. It turns out 

that, either we have the upper bound for D\(M) or otherwise M has more than 

(1 
- 

jj:)n + (k 
- 

l)2 + 3 pairwise similar elements. In the latter case we are able 

to easily compute the value of D (M) up to an additive constant of k. For graphs 
such a dichotomy result was obtained in [15]. 

Furthermore, we address the identification of finite structures by formulas of the 

simplest logical structure, namely, those in the prenex normal form (or prenex formu 

las). In this case the quantifier rank is just the number of quantifiers occurring in a 

formula. Let Xi (resp. IL) consist of the existential (resp. universal) prenex formu 

las. Furthermore, let X/ (resp. II,-) be the extension of X,_i U II/_i with prenex for 

mulas whose quantifier prefix begins with 3 (resp. with V) and has less than / quan 
tifier alternations. In particular. X2 is the well-known Bernays-Sch?nfinkel class of 

formulas (see [1.5] for the role of this class in finite model theory). Define P? (M) to 

be the minimum number of quantifiers in a X, U il/ formula identifying a structure 

M. Similarly, let BS{M) be the minimum number of quantifiers of an identifying 
formula in the Bernays-Sch?nfinkel class X2. We hence have the following hierarchy: 

I{M) <L_i(M) <Pj(M) </>,-_,(Af). / > 1: 

(4) 
P2(M) < BS{M) < P?{M) < n. 

The upper bound of n is here due to the identifying formula (1). The bound 

P\{M) < n is generally best possible. It is attained, for example, if M consists of 

the single unary relation true on all but one elements of the structure. 

Our concern becomes therefore BS{M). the next member at the top of the 

hierarchy (4). We prove that 

(5) BS(M)< 
fl_^l_Wfc. 

Though the multiplicative constant in (5) is worse than that in the bound (2). the 

bound (5) may be regarded as a qualitative strengthening of (2) because the class 

of formulas in the former result is much more limited than that in the latter result. 

If we restrict the number of universal quantifiers to a constant. Bernays-Sch?nfin 
kel formulas become much less powerful. Let BSq(M) denote the minimum total 

number of quantifiers in a Bernays-Sch?nfinkel formula identifying M with at most 

q universal quantifiers. We prove that BSk{M) < n ? 
sfn + k2 + k and that 

BSq(M) 
> n ? 

0(y/n) as long as q is bounded by a constant. 

To prove (2). we use the characterization of the quantifier rank of a formula 

distinguishing structures M and M' as the length of the Ehrenfeucht game on M and 

M! [4] (an essentially equivalent characterization in terms of partial isomorphisms 
between M and M' and extensions thereof is due to Fra?ss? [6]). Unlike (2). our 

proof of (5) uses a direct approach. Nevertheless, both the results share the same 

background which is based on the notion of a base of a structure M. 

Given a set X of elements of M and elements u and v of M. we say that X 

separates it and v if the extension of the identity map of X onto itself taking u to v is 
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not a partial automorphism of M. Clearly, no X can separate similar u and v. On 

the other hand, if X separates every two non-similar elements in the complement 
of X. we call X a base of M. Every M trivially has (n 

- 
1)-element bases. Our 

technical results imply that a considerably smaller base always exists.1 

Related work. Our paper is focused on the descriptive complexity of individual 
structures as opposed to the descriptive complexity of classes of structures. The lat 

ter is the subject of a large research area, which is emphasized much on the monadic 

second order logic (we refer the reader to the survey [5] and textbooks [3. 9]). 
The identification of graphs in first order logic is studied in [10. 11. 2. 7. 8] in 

aspects relevant to computer science. The main focus of this line of research is on 

the minimum number of variables in an identifying formula, where formulas are in 

the first order language enriched by counting quantifiers. This complexity measure 

of a formula corresponds to the dimension of the Weisfeiler-Lehman algorithm that 

succeeds in finding a canonical form of a graph [2]. 
The present paper studies, in a sense, the worst case descriptive complexity of a 

structure. Two other possibilities, the "best" and average structures, are considered 

in [14] and [12] in the case of graphs. 

Organization of the paper. In Section 2 we explain the notation used throughout 
the paper, recall some basic definitions, define the Ehrenfeucht game and state its 

connection to distinguishing non-isomorphic structures in first order logic. In Sec 

tion 3 we introduce some relations, partitions, transformations, and constructions 

over a finite structure and explore their properties. The main task performed in this 

section is construction of a particular base in an arbitrary structure. We will benefit 

from these preliminaries while proving both our main results, bounds (2) and (5). in 

Sections 4 and 5 respectively. In Section 4 we also prove the bound (3) and the other 

definability results. Section 6 is devoted to identification by Bernays-Sch?nfinkel 
formulas with bounded number of universal quantifiers. In Section 7 we focus on 

graphs and improve the bound (5) for this class of structures. We conclude with a 

list of open problems in Section 8. 

?2. Background. 
2.1. Notation. Writing ? G Uk for a set U and a positive integer A:, we mean that 

? = 
(u\...., Uk) with Ui G U for every i < k. If u, v e U, then vS11^ denotes2 the 

result of substituting v in place of every occurrence of u in ? and substituting u in 

place of every occurrence of v in ?. Here (uv) denotes the transposition of u and 

v, that is, the permutation of U interchanging u and v and leaving the remaining 
elements unchanged. Given a function 0 defined on U. we extend it over Uk by 

<j)(?) 
= 

(<j)(u\)._<t>(u-k)) for ? G Uk. 

Notation idu stands for the identity map of a set U onto itself. The domain and 

range of a function / are denoted by dorn / and range f respectively. 

1 In fact, we do not state this explicitly. However, it is easy to derive from the estimate (39) that every 
structure has a base with less than (1 

? 
,.j ,)n elements. On the other hand, there are structures ^ 2?T- + 1 > 

whose all bases have at least \n?2\ elements. A simple example is given by the graph with m pairwise 

non-adjacent edges. 
2The double use of the character u here should not be confusing: We will often use u to denote a 

single element of a sequence w. 
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2.2. Basic definitions. A k-ary relation R on a set V (or a relation R of arity k) 
is a function from Vk to {0.1}. A vocabulary is a finite sequence R\..... Rm of 

relation symbols along with a sequence k\.km of positive integers, where each 

ki is the arity of the respective Rj. If L is a vocabulary, a finite structure A over L 

(or an L-structure A) is a finite set V(A). called the universe, along with relations 

Rf._Rfn. where Rf has arity k?. The order of A is the number of elements in the 

universe V(A). If U ? V(A). then A induces on U the structure A[U] with the 

universe V(A[U]) 
= U and relations Rf[U].Rfn[U] such that Rf[U]? 

= 
Rf? for 

every ? G Uki. Two L-structures A and i? are isomorphic if there is a one-to-one 

map (?) : V(A) ?> V(B). called an isomorphism from A to B. such that Rf? 
= 

Rfc?? 
for every / < m and all ? G V(A)ki. An automorphism of A is an isomorphism from 

A to itself. If ?/ ? K(^4) and W ? K(i?). we call a one-to-one map 0 : U ?? H7 a 

partial isomorphism from A to B if it is an isomorphism from ^4[?/] to B[W]. 
Without loss of generality we assume first order formulas to be over the set of 

connectives {->. A, V}. 

Definition 2.1. A sequence of quantifiers is a finite word over the alphabet {3. V}. 
If S is a set of such sequences, then 3S (resp. \/S) means the set of concatenations 

3s (resp. Vs) for all s G S. If s is a sequence of quantifiers, then s denotes the result 

of replacement of all occurrences of 3 to V and vice versa in s. The set S consists of 

all s for s G S. 

Given a first order formula <D. its set of sequences of nested quantifiers is denoted 

by Nest(O) and defined by induction as follows: 

(1) Nest(O) 
= 

{?} if O is atomic, where / denotes the empty word. 

(2) Nest(-.<D) 
= 

Nest(O). 

(3) Nest(0 A ?) = Nest(0 Vx?)= Nest(O) U Nest(vF). 
(4) Nest(3xO) 

= 
3Nest(0) and Nest(VjcO) 

- 
VNest(O). 

The quantifier rank of a formula O. denoted by qr(O), is the maximum length of 
a string in Nest(O). 

Given a sequence of quantifiers s. let alt(^) denote the number of occurrences of 

dV and V3 in s. The alternation number of a first order formula O is the maximum 

alt(?) over s G Nest (O). 

Given an L-structure A and a closed first order formula O whose relation symbols 
are from L U {=}, we write A |= O if O is true on A and A ^ O otherwise. Given A. 
a formula ^(xi._xm ) with m free variables a"i.xm. and a sequence ci\.am 

of elements in V(A). we write A, ci\.am \= *?(x\.xm) if ̂ (x\.xm) is 

true on A with each xf assigned the respective a?. 
If B is another L-structure, we say that a formula O distinguishes A from B if 

A \= O but B ty= 0. We say that O defines an L-structure A (up to an isomorphism) if 

O distinguishes A from any non-isomorphic L-structure B. We say that O identifies 
an L-structure ^4 of order n (up to an isomorphism in the class of L-structures of 

the same order) if O distinguishes A from any non-isomorphic L-structure B of 

order n. 

By D (A. B) (resp. D?(A. B)) we denote the minimum quantifier rank of a for 

mula (resp. with alternation number at most /) distinguishing a structure A from 
a structure B. By D (A) (resp. D?(A)) we denote the minimum quantifier rank of 
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a formula defining A (resp. with alternation number at most /). By 1(A) (resp. 
11 (A)) we denote the minimum quantifier rank of a formula identifying A (resp. 
with alternation number at most /). 

Lemma 2.2. Let A be a finite structure over vocabulary L. Then the following 

equalities hold true: 

D (A) = max { D (A. B) : B ^ A } . 

Di(A) =max{D?(A.B) : B ^ A} 
. 

1(A) =mcix{D(A.B) : B ^ A. \V(B)\ 
= 

\V(A)\}. 

Ii (A) =max{Dl(A.B) : B ^ A. \V(B)\ = 
\V(A)\}. 

where = denotes the isomorphism relation between L-structures. 

Proof. We prove the first equality: The proof of the others is similar. Given an 

L-structure B non-isomorphic to A. let 0# be a formula of minimum quantifier 
rank distinguishing A from B. that is. qr(05) 

= D (A. B). Let R = max5 qr(<X>#). 
We have D (A) > R because D (A) > D (A. B) for every B. To prove the reverse 

inequality D (A) < R. notice that A is defined by the formula O = 
/\B 0# whose 

quantifier rank is R. The only problem is that O is an infinite conjunction (a FO^co 

formula). However, as it is well known, over a fixed finite vocabulary there are only 

finitely many inequivalent first order formulas of bounded quantifier rank (see. e.g.. 

[2. 3. 9]). We therefore can reduce O to a finite conjunction. H 

2.3. The Ehrenfeucht game. Let A and B be structures over the same vocabulary 
with disjoint universes. The r-round Ehrenfeucht game on A and B. denoted 

by Ehr,.(A. B). is played by two players. Spoiler and Duplicator, with r pairwise 
distinct pebbles p\./?,.. each given in duplicate. Spoiler starts the game. A round 

consists of a move of Spoiler followed by a move of Duplicator. In the s-th round 

Spoiler selects one of the structures A or B and places ps on an element of this 

structure. In response Duplicator should place the other copy of p, on an element 

of the other structure. It is allowed to place more than one pebble on the same 

element. We will use as (resp. bs) to denote the element of A (resp. B) occupied by 
ps. irrespectively of who of the players places the pebble on this element. If 

a i = 
cij if and only if b\ = 

b? for all i. j < r. 

and the component-wise correspondence between (a\.ar) and (b\.br) is a 

partial isomorphism from Ato B. this is a win for Duplicator: Otherwise the winner 

is Spoiler. 
The I-alternation Ehrenfeucht game on A and B is a variant of the game in which 

Spoiler is allowed to switch from one structure to another at most / times during 
the game. i.e.. in at most / rounds he can choose the structure other than that in the 

preceding round. 

The following statement provides us with a robust technical tool. 

Lemma 2.3. Let A and B be non-isomorphic structures over the same vocabulary. 

(1) D(A.B) equals the minimum r such that Spoiler has a winning strategy in 

EHRr(/4.?). 

(2) Di(A.B) equals the minimum r such that Spoiler has a winning strategy in the 

I-alternation Ehr, (v4. B). 
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We refer the reader to [3, Theorem 1.2.8], [9, Theorem 6.10], or [17, Theorem 2.3.1] 
for the proof of the first claim and to [13] for the second claim. 

?3. Exploring structural properties of finite structures. 

3.1. A few useful relations. Throughout this section we are given an arbitrary 
finite structure M over vocabulary L. We abbreviate V = 

V(M). 

Definition 3.1. For a, b G F we write a ~ b if the transposition (ab) is an 

automorphism of M. In other words, a ~ b if, for every /-ary relation R of M, we 

have R? = R?{ab) for all ? G V1. 

Lemma 3.2. ~ is an equivalence relation on V. 

Proof. The relation is obviously reflexive and symmetric. The transitivity follows 
from the facts that the composition of automorphisms is an automorphism and that 
the transposition (ac) is decomposed into a composition of (ab) and (be). H 

Given X c V, we will denote its complement by X = 
V\X. 

Definition 3.3. Let X c V and a,b G X. We write a =x b if id^ extends to 
an isomorphism from M[X U {a}] to M[X U {b}]. In other words, for every /-ary 
relation R of M, we have R? = R?{ab) for all ? e (X U {a})1. 

Furthermore, we write a ^x b if the transposition (a, b) is an automorphism of 

M[XU{a,b}]. In other words, for every /-ary relation R ofM, we have R? = R?^ 
for alla G (lujo,/)}/. 

Clearly, a ^x b implies a =x b. It is also clear that =x is an equivalence relation 
on X. In contrast to this, simple examples show that a ^x b is generally not an 

equivalence relation. 

Definition 3.4. Let f?(X) denote the partition of X into =x-equivalence classes. 

Furthermore, Wm(X) 
= 

{ C G &(X) : \C\ < m }. 

The following lemma points some trivial but important properties of the partition 

Lemma 3.5. 

(1) IfX\ ? X2, then &(X2) is a refinement of%(X\) on ~X~2. 

(2) For any X, the ̂ -equivalence classes restricted to X refine the partition f?(X). 
In the sequel M' denotes another L-structure. 

Definition 3.6. Let c?: X ?> X' be a partial isomorphism from M to M''. Let 
a G X and a' G X'. We write a =?/> a' if 0 extends to an isomorphism from 

M[X U {a}]to M'[Xf U {a'}]. 
Lemma 3.7. Let 4>\ X ?> X' be a partial isomorphism from M to M'. Then the 

following claims are true. 

(1) Assume that a =x b anda' =x> b''. Then a =^ a' if and only ifb =$ b''. 

(2) Assume that a =^ a' andb =<?, b'. Then a =x b if and only if a' =x> b''. 

(3) Let 4> be a partial isomorphism from M to M' which is an extension of(j>. If 
a G dom0 \ X, then a =^ (j)(a). 

(4) Let <j) be a partial isomorphism from M to M' which is an extension ofcf). Let 

a,b G dom</> \ X. Then a =x b if and only if4>(a) =x' 4>(b). 
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The proof is easy. Item 1 of the lemma makes the following definition correct. 

Definition 3.8. Let ?: X ?> X' be a partial isomorphism from M to M'. Let 

C G W(X) and C G %(X'). We write C =? C if a =0 a' for some (equivalently, 
for all) a G C and a' G C". 

3.2. A couple of useful transformations. Let M be a finite structure of order n 

with the maximum relation arity k. Let X ? V(M). We define two transformations 

that, if applicable to X, extend it to a larger set. 

Transformation T\ If there exists a set S ? X with at most k ? 1 elements such that 

\&(X U S)\ > \&(X)\, take the lexicographically first such S and set T(X) 
= 

X U S. Otherwise T is not applicable to X. 

Transformation E: Apply T iteratively as long as it is applicable (note that this is 

possible less than n times). The result is denoted by E(X). If T is not applicable 
at all, setL(X) 

= X. 

Lemma 3.9. Assume that T is not applicable to X. If Ce W(X) \ W2(X), then 
a ~x b for every a, b G C. 

Proof. Let C G ^(X) and \C\ > 3. Given a and b in C, we have to show 

that a ~x b. In other words, our task is, given an /-ary relation R of M and 

? e (X U {a,b})', to show that R? = R?^ab\ If ? contains no occurrence of a or 

no occurrence of b, this equality is true because a =x b. It remains to consider the 
case that ? contains occurrences of both a and b. 

Claim A. Let u,v, and w be pairwise distinct elements in C. Let R be an /-ary 
relation of M and ? G (X U {u,v})1 with occurrences of both u and v. Then 

R? = R?{vw). 

Proof of Claim. If R? ^ R?^vw), then removal of u from C to X splits C into 

at least two 
=xu{M}-subclasses, containing v and w respectively. This contradicts 

the assumption that T is not applicable to X. H 

Let c be an arbitrary element in C \{a,b}. Applying Claim A repeatedly three 

times, we obtain 

R? = R?{bc) - 
R(?{hc)){ah) 

= 
R((?{bc)){ab)){ac) 

= R?^)MM = R?{ab\ 

as required. H 

Lemma 3.10. \E(X) \X\<(k-\) (\&(E(X))\ 
- 

\&(X)\). 
3.3. The many-layered base of a finite structure. 

Definition 3.11. Suppose that a finite structure M with maximum relation arity 
k is given. A set X ? V(M) is called a base of M if the relations =x and ~ coincide 

onl. 

For X c K(M), let Y(X) - 
Ucg^+W C- We set 

Xo 
= 

To 
= 

0, 

X7 = 
L(X,_! U Yi-i) for !</<*:, 

7/ - 
Y(Xi) forl </<*:, 

^Gt+i 
= Xk u y^, 

Z=F(M)\Z,+1. 
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We will call Xk+\ the canonical base of M. 

The terminology introduced by the definition is coherent due to the following 
fact. 

Lemma 3.12. On Z the relations =xk^ =xk+] -. and ~ coincide. Thus, the canonical 

base of any structure M is a base of M. 

Proof. We start with relations =xk and ~. Assume on the contrary that a =xk b 

but a t? b for some a, b G Z. The latter means that, for some /-ary relation R of 

M and ? e V1 with at least one occurrence of a, 

(6) R?{ab) ?Ra. 

Denote A = 
{a\,... ,a{\ \ {a,b}. Since \A\ < k ? 1 and the F/'s are pairwise 

disjoint, there is j < k such that 

(7) AHYj= 0. 

Our goal is now to show that the transformation T is applicable to Xj. making a 

contradiction to the construction ofXj. For this purpose, we will "modify" X? by 

setting X] 
= 

XjUA and show that \%{x))\ 
> \^(Xj)\. By (6), we have 

(8) a ̂ x> b. 

No class in f?(Xj) can disappear completely after extending Xj to 
Xj\ 

The classes 

in f?k+Y (Xj) can only split up because of (7), the classes in f?(Xj) \ (Fk+l (Xj) can 

lose up to k - 1 elements and/or split up. 
Since a =xk b and a,b G Z, both a and b belong to the same =xk -class C* 

containing at least k + 2 elements. Let C be the =x--class such that C* ? C. 

We now show that C is split up after modifying Xj thereby obtaining the desired 

inequality \W(X'j)\ > \&{Xj)\. 
Indeed, if a ^X' b, we have two subclasses containing respectively a and b. If 

a =x' b, it follows by Lemma 3.9 from (8) that the class in 
^(Xj) containing a and 

b is exactly {a,b}. After removing at most k - 1 elements, in C there remain at 

least 3 elements and therefore C must have at least one more =^/-subclass besides 

{a,b}. 
Thus, on Z the relations =xk and ~ are identical. By Item 1 of Lemma 3.5, on 

Z the relation =xk+l refines =xk. By Item 2 of the same lemma the converse is also 

true. It follows that on Z the relations =xkM and =Xk also coincide. H 

Lemma 3.13. Let n be the order of M andk be the maximum relation arity of M. 

We have 

/ = 1 

and 

(10) 
k-\ 

2k 
Y, \&k+ltfi)\ + (k + mk+l(Xk)\ + (k- m(Xk)\ + \Z\ > n + k - 1. 
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Proof. By Lemma 3.10 we have 

(11) lX,|<(^-l)(|g'(Z1)|-l), 

(12) \x? \ (*,-_, u y,-_!)| <(k- i)(|W,-)| 
- 

|^U,_i u y,-_,)|) 

for 2 < / < /c. Note that 

\W(X,)\ = 
\Vk+i(Xt)\ + \nXi)\&k+l(Xi)\ 

and 

\&{Xi)\&k+ltfi)\<\&{XiUYi)\ 

for 1 < / < k. The latter inequality is true because, according to Item 1 of Lemma 

3.5, the partition W(X? U Y?) is a refinement of W(X?) \ %,k+l(Xi). Combining it 

with (11) and (12). we obtain 

(13) \Xi\ <{k- l)(|^+1(JTi)| + \W(Xl U |7,)| 
- 

1) 

(14) 
\X, \ (*,_, U Yi-{)\ < \{k 

- 
\){\Vk+x{Xt)\ + |#U, U Y?)\ 

- 
\&{Xi-\ U (F,-,)!). 

Summing up (13) and (14) over all 2 < i < k, we have 

(15) 
k k 

|*i| + ̂ I** \ (^-_i u r^Oi < (k 
- 

\){^\%M(Xi)\ 
+ |W, u Yk)\ 

- 
i). /=2 i=\ 

According to Lemma 3.12, 

(16) &(Xk U Yk) = 
%(Xk)\%k+l(Xk) 

and, as a consequence, 

(17) \&(XkUYk)\<\Z\/(k + 2). 

From (15) we conclude, using (16), that 

k k-\ 

(is) \X{\ + Y,\Xi \ U--1 u y;--i)| < (* -1)(^|^+1(^)| +|W*)I -1) i=2 i=\ 

and, using (17), that 

(19) |X,| + 
?|Z; \ (*,-_, U Fi-OI <(k- 

1)(?|^+1U)I 
+ 

JfL 
- 

l). /'=2 /=1 

Notice also a trivial inequality 

(20) !F/|<(^ + 1)|^+,(^)|. 

It is easy to see that 

k k 

(21) n = \X{\ + Y, \*i \ (^-i u F-i)l + E I 7< I + lZl 
/=2 /=! 
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Using (18) and (20), we derive from (21) that 

k-\ 

n<2k^ \<gk+\Xi)\ + (?: + \)Wk+X(Xk)\ + (k 
- 

\)\%(Xk)\ + \Z\ 
- 

(k 
- 

1). 
/=i 

which implies (10). Using (19) and (20), we derive from (21) that 

(22) n < 2k 
? \^k+l(Xi)\ +(2- ̂ ) 

\Z\ 
- (* - 1), 

which implies (9) (the inequality in (9) is strict due to the condition that k > 2). H 

?4. Identifying finite structures with smaller quantifier rank. 

Theorem 4.1. Let L be a vocabulary with maximum relation arity k. For every 
L-structure M of order n we have 

h(M)< fl-l-\n+k2-k + 4. 

The proof takes the next two subsections. The case of k = 1 is an easy exercise 

and we will assume that k > 2. According to Lemma 2.2, it suffices to consider 
an arbitrary L-structure M' non-isomorphic with M and of the same order n, and 

estimate the value of D\ (M, M'). We will design a strategy enabling Spoiler to win 

the Ehrenfeucht game on M and M' in less than (\ 
- 

^n + k2 - 
k+ 4 moves with 

at most one alternation between the structures. This will give us the desired bound 

by Lemma 2.3. 

4.1. Spoiler's strategy. The strategy splits play into k + 2 phases. Spoiler will 

play almost all the time in M, possibly with one alternation from M to M' at the 

end of the game. For each vertex v G V(M) selected by Spoiler up to Phase /, 
let <j)*(v) denote the vertex in V(M') selected in response by Duplicator. Thus, 
each subsequent </>*+1 extends </>*. Provided Phase i has been already finished but 

the game not yet, 0* is a partial isomorphism from M to M'. Under the same 

condition, it will be always the case that dom0* ? X?. We will use notation 

Yi-\ = 
dom</>* n Yi-\. Recall that the sets X? and Y? are defined by Definition 

3.11 so that Fz-_i c Xi. 

Phase 1. Spoiler selects all vertices in X\. Let X[ 
= 

4>\(X\). 
End of phase description. 

Phasey' + l, 1 < j < k. Our description of Phasey' + l is based on the assumption 
that Phase j is completed but the game is not finished yet and that the following 
conditions are true for every 1 < i < j. 

Condition 1 : </>* has a unique extension 4>j over the whole X? that is a partial iso 

morphism from M to M'. Let X[ 
= 

(?i(Xi). 
Condition 2: There is a one-to-one correspondence between the partitions 

^+1(Ar/_i) and g*+1(*/_i) such that, if C G %k+x(X[_x) corresponds to 

C G g*+1Ui-i), then C =^_, C and \C\ 
= 

|C'|. 
Condition 3: For every C G Wk+l(Xi-\), <j>* is defined on all but one elements of 

C. Denote C = 
dom^* n C. Then ^(C) c C, where C corresponds to C 
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according to Condition 2. Furthermore. </>/ takes the single element in C \ C to 

the single element in C \ </>f{C). Thus, 0Z(C) 
- C. 

For the further references we denote the set 0Z ( 7z-_i ) 
= 

Y(X{_{) by Y[_x and 

its subset 0* ( Y i-i ) by Y?_v 

Condition 1 is true for i 
? 

1 because </>* is defined on the whole X\. For the sake 

of technical convenience, we set X? 
= Xo = 0. We suppose that n > k + l (otherwise 

Theorem 4.1 is trivially true). This implies that &k+l(X0) 
= 

&k+l(X?) 
= 0 and 

makes Conditions 2 and 3 for i = 1 trivially true. For i > 1 Conditions 1-3 follow 

by induction from Claim C below. 

In the sequel we will intensively exploit the following notion. We say that a pair 

(a, a') G V(M) x V(M') is i-threatening (for Duplicator) if a and a' are selected 

by the players in the same round after Phase i and 

a ? Xi or a' ? X[, 
a 
^, 

a'. 

We now start description of the phase. It consists of two parts. 

Part 1. As long as no /-threatening pair arises for 1 < i < j, Spoiler selects all 

but one elements in each class C G ̂ k+l(Xj). The set of the vertices selected in C 

will be denoted by C. Furthermore, Spoiler selects all vertices in Xj+\ \ (Xj U Yj). 
As soon as an /-threatening pair for some 1 < / < j arises, Spoiler switches to the 

strategy given by Claim B below and wins in at most (/ 
? 

\)(k 
? 

1) moves. 

Part 2. Assume that Part 1 finishes and Duplicator still does not lose. Then, if 

Spoiler is able to win in at most k next moves irrespective of Duplicator's strategy, 
he does so and the game finishes. If he is not able to win but able in at most k + 2 

moves to enforce creating an /-threatening pair for some / < j, he does so and wins 

in at most (/- l)(k- 1) subsequent moves using the strategy of Claim B. Otherwise 

Phase j + 1 is complete and the next Phase j + 2 starts. 

End of phase description. 

Claim A. Let / < k + 1. Suppose that Phase / is finished and Conditions 1-3 are 

met for / and all its preceding values. Assume that a G V(M) and a' G V(M') are 

selected by the players in the same round after Phase i and neither of them has been 

selected before. If 

a G Xi but a' ^ (fii(a) or 

a' G X?hxxla ^ </>rV), 

then the pair (a, a') is m-threatening for some m < i. 

Proof of Claim. Let m, 1 < m < /, be the largest index such that neither 

a G Xm nor a' G X'm. Then a G Xm+\ or a' G 
X^+l. 

We consider the former case 

(the analysis of the latter case is symmetric). By Condition 3, a G Ym\Ym and 

the relation a =^m x with x fi dom</>* holds for the only x ? 
c/)m+\(a). We have 

a' ^ (fri(a) 
? 

(f)m+\(a) (the latter equality is due to the uniqueness of them's ensured 

by Condition 1). Therefore a 
^w a', which means that (a, a') is m-threatening. H 

Claim B. Assume that Phase j, j < k + 1, finishes, Conditions 1-3 for all / < j 
are met, and the game is going on. Let 1 < / < j. As soon as after Phase j an 

/-threatening pair (a, a') arises, Spoiler is able to win in at most (i 
? 

\)(k? 1) moves 

playing all the time, at his own choice, either in M or in M'. 
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Convention. Given a relation R = RM of M, we will denote the respective 
relation RM' by R'. 

Proof of Claim. We proceed by induction on i. For / = 1 the claim easily 
follows from Item 3 of Lemma 3.7. Let / > 2 and assume that the claim is true for 
all preceding values 1,2,..../ 

? 
1. 

We focus on the case that a ? X? (in the case that a' ^ X[ the proof is given by the 

symmetric argument). The non-equivalence a 
^. 

a' can happen in two situations. 

CaseI. a' eX?. Clearly, a 7^ cj)^x(a') and therefore, by Claim A, the pair (a, a') 
is m-threatening for some m < i. By the induction hypothesis, Spoiler is able to 

win in at most (m 
? 

l)(/c 
- 

1) moves. 

Case 2. a' ? X[. Then the non-equivalence a 
^ 

a' means that there is an /-ary 
relation of M and ? G (X? U {a})1 with at least one occurrence of a such that 

(23) R? ^ R'y/?, 

where y/ is the map defined by y/(x) 
= 

fa(x) for all x in A = 
{a\,..., a?} \ {a} 

and by y/(a) 
= a'. Thus, y/ is not a partial isomorphism from M to M1'. Hence, if 

A ? dorn </> *, then Spoiler wins immediately. 
Assume that A = A \ dorn </>* is nonempty. Spoiler selects all unselected elements 

in ?, if he wants to play in M, or in 4>i(A), if he prefers to play in M'. This takes 
at most k - 1 moves. Suppose that Spoiler plays in M (for M' the argument is 

symmetric). If for every b G A its counterpart in V(M') is fa (/?), this is Spoiler's win 

by (23). If some/? G A has the counterpart/?7 suchthat/?7 ^ fa(b). by Claim A there 
arises an m-threatening pair for some m < i. Applying the induction hypothesis 
for the index m, we conclude that Spoiler is able to win in at most (m 

- 
\)(k 

- 
1) 

moves, having made altogether at most (k 
- 

1) + (m 
- 

\)(k 
- 

1) < (i 
- 

\)(k 
- 

1) 
moves. H 

Claim C. Assume that Phase j\ j < k, has been finished and Conditions 1-3 for 
all / < j are met. Assume furthermore that Part 1 of Phase j + 1 finishes and the 

game is still going on. Then either Conditions 1-3 hold true for / = 
j + 1 as well 

or Spoiler is able to win or to create an /-threatening pair for some i < j in at most 
k + 2 moves with at most one alternation from M to M' (and hence he is able to 
win in Part 2 of Phase j + 1 ). 

Proof of Claim. Assuming that Spoiler is unable to win or to create an i 

threatening pair, we check Conditions 1-3. 

Condition 2. The following two facts take place, for else Spoiler would be able to 
enforce creating a j -threatening pair in at most k + 2 moves: 

For every C G &k+l (X?) 
there is C G &k+l (Xj) such that C =h C. (Other 

wise, if some C G 
Wk+l(Xj) 

has no =(p/.-counterpart in &(Xj), then Spoiler 
selects an element in the C. If C has a counterpart C in W(Xj) but not in 

f?k+l(Xj), then Spoiler selects k + 2 elements in the C. A y-threatening pair 
arises whatever Duplicator's response is.) 
For every C G %k+x{Xj) there is C G 

^k+l(X?) 
such that C =0, C and 

\C'\ > \C\ 
- 1. (Otherwise, for some C, 0*+1(C) cannot be included into the 
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respective C. Therefore c 
^ <?>*+l(c) for at least one c G C. providing us 

with a j -threatening pair already in Part 1 of Phase j + 1.) 

Thus, there is a one-to-one correspondence between (Fk+l(Xj) and 
Wk+l(Xj) 

such 

that, for C and C corresponding to one another, C =(?)j C", \C'\ > \C\ 
- 

1, 

and 0*+1(C) 
C C. Moreover, it actually holds \C'\ 

= 
\C\ because, if \C'\ > 

\C\ + 1, Spoiler could select 2 vertices in C \ 0*+1(C) obtaining a j -threatening 

pair whatever Duplicator's response. 

Conditions 1 and 3. By Condition 1 for / = 
j, the partial isomorphism 0*+1 can 

be extended on Xj only to <f>j and then it remains undefined within Xj+\ only on 

Yj \ Yj. Define an extension 07+i of </>*+1 on the whole X/+i so that (?>j+\ 

agrees with <j>j 
on 

Xy-, 

agrees with 0*+1 on Yy, and 

for each C G ̂+1 (X7 ), takes the single element in C \ C to the single element 

in C \ 0*+1(C), where C" corresponds to C according to Condition 2 that 

we have already proved. 

We have to show that (?>j+\ is a partial isomorphism from M to M' and no other 

extension of 
</>*+1 

is such. 

Assume that </>7+i is not a partial isomorphism and get a contradiction to the 

assumption that Spoiler can in the nearest k moves neither win nor create an / 

threatening pair. For some /-ary relation of M and ? G 
Xj+l, 

we should have 

(24) R?^R'<j>j+\?. 

As a consequence, A = 
{a\,... ,a?} is not included into dom^*+1 for else </>*+1 

would not be a partial isomorphism, contradicting the assumption that the game is 

still going on. Let Spoiler select all elements in ?I = A \ dom^*+1. If for b G A 

Duplicator always responds with <fij+\(b), he loses by (24). Otherwise, let b be 

an element in A to which Duplicator responds with b' ^ <f>j+\(b). If b G Xj or 

b' G X-, then we have b' ^ </>j(b) because 07+i extends (?>j. By Claim A, (b,bf) is 

an /-threatening pair for some / < j. If b G Xj+\ \ Xj and b' G V(M') \ Xj, 
then 

b ^0. b' by Condition 2 proved above and the definition of <t>j+\. Thus, (b, b') is 

j -threatening. We have a contradiction in any case and therefore <f)j+\ is a partial 

isomorphism from M to Mr indeed. 

To prove the uniqueness of the extension 07+i (i.e., Condition 1), assume that 

<j>j+\ is another extension of </>*+1 over Xj+\ which is a partial isomorphism and 

differs from 07-+i at? G F/ \ 77-. Let/)7 = 
<?>j+\(b) and??/7 = 

(j)j+\(b). By Condition 
2 proved above, 

(25) ft' ?x, b". 

By Condition 1 for i = 
j, 0/+i on X7 coincides with (pj. Thus, the composition 

<?/+i07+i 
takes ?; to b"', extends id^/, and is a partial isomorphism from A/7 to 

itself. This makes a contradiction to (25). H 

Claim C implies by an easy induction on y from 1 tok + 1 that, for each 1 < j <k, 
unless Spoiler wins in Phase j or earlier, Conditions 1-3 assumed in our description 
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of Phase j + 1 are indeed true. For analysis of the concluding phase, we state simple 
consequences of Claims A-C. 

Claim D. Suppose that Spoiler follows the strategy designed above (Duplicator's 
strategy does not matter). Assume that Duplicator survives up to Phase k -f 1. 

Then the following claims are true. 

(1) Conditions 1-3 hold true for all i < k + 1. 

(2) When in further play Spoiler selects v G V(M) U V(M'), we denote Dupli 
cator's response by y/(v). As long as there arises no /-threatening pair for any 
i < k, it holds 

(26) y/(v)=^kvifv^XkUX^ 

(27) y/(v) = <?k+\(v) if v G Xk+u 

(28) ?(v) = 
^ll(v)ifveX?t+l. 

(The relations in (26) and (27)-(28) are equivalent on (Xk+\ U X'k+l) \ (Xk U 

Proof of Claim. Item 1 follows from Claim C by an easy inductive argument. 

Regarding Item 2, note that, if (26) were false, (v, y/(v)) would be a k-threatening 

pair. If (27) or (28) were false, (v, y/(v)) would be an /-threatening pair for some 

/ < k on the account of Claim A. H 

Concluding Phase (Phase k + 2). We here assume that Phases from 1 up to 

k + 1 have been finished without Spoiler's win and therefore Items 1 and 2 of Claim 

D hold true. As soon as there arises an /-threatening pair for some i < k, Spoiler 
switches to the strategy given by Claim B and wins in at most (k 

- 
l)2 moves. As 

long as there occurs no such pair, Spoiler follows the strategy described below. The 

strategy depends on which of the following three cases takes place. 

Case 1. There is a one-to-one correspondence between W(Xk) and(&(X'k ) such that, 

if C and C correspond to one another, then C =<^ C and, moreover, \C\ 
? 

\C'\. 

By Item 1 of Claim D, such correspondence does exist between ^k+l(Xk) and 

^+1(^c) in any case. 

Let T be the set of maps </> : V(M') -> V(M) such that 

0 is one-to-one, 

(f) extends 
0^, 

for every C" G %(X'k), 
we have </>{C) G &(Xk) and faC) =^ C". 

Claim E. Assume that <fi and y/ are in T. Let R be an /-ary relation of M. Then 

R<t>?' 
= 

Ryj?' for all a' G V(M')1. 

Proof of Claim. The product y/(?~l is a permutation of V(M) that moves only 
elements in Z. Moreover, y/cf)"1 preserves the partition f?(Xk) \ &k+l(Xk) of 

Z and therefore y/cf)'1 is decomposed into the product of permutations nc over 

C G W(Xk) \ %>k+l(Xk), where each nc acts on the respective C. Since every 
nc is decomposable into a product of transpositions, we have y/(?~l 

= 
t\x2 ... xt 

with tz- being a transposition of two elements both in some C. It is easy to see 

that y/?' 
= 

(... ((c??')1')... )Tl. By Lemma 3.12, each application of tz- does not 

change the initial value of Rc??''. Therewith we arrive at the desired equality 

R(j)?' 
= 

Ry/?'. H 
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To specify Spoiler's strategy, we fix 0 G T arbitrarily. Since M and M' are 

non-isomorphic, (?> is not an isomorphism from M' to M, that is, 

(29) R(\>?' ? R'?' 

for some /-ary relation R' of M' and a1 G V(M')1. This inequality implies that 

the set A' = 
{a[,..., a[} is not included into Xk+l. Spoiler selects, one by one, 

elements of A = A' \ range </>k+l. For Spoiler's move v, let y/(v) denote Duplicator's 
response. 

Assume first that 

y/(v) =(f)k v whenever v fi X'k 

(30) and 

y/(v) 
= 

(f>klx(v) 
whenever v G Xk+l. 

Due to (30), we are able to extend y/, initially defined on A, to a map in T. Fix 
a such extension. By Claim E, R</>?f 

? 
Ry/?' and, by (29), Spoiler wins. If (30) 

is violated for some v G A, by Item 2 of Claim D this produces an /-threatening 

pair for / < k and therefore Spoiler wins in at most (k 
- 

l)2 moves, having made 

altogether at most k + (k 
- 

I)2 moves. 

Case 2. There is no one-to-one correspondence between f?(Xk) and ^(X'k) such 

that, if C and C correspond to one another, then C =^k C. Spoiler selects an 

element in C or C that has no counterpart. Whatever Duplicator's response, 
there arises a /?-threatening pair. This allows Spoiler to. win altogether in at most 

1 + (k 
- 

l)2 moves. 

Case 3. There is a one-to-one correspondence between^ (Xk) andc&(X'k ) such that, 

ifC andC correspondi? one another, then C =^,k C. However, there are C G &(Xk) 
andC eW(X^) suchthat C =0jt C but\C\ ^ \C'\. 

Call a class C e^(Xk) useful if C=(f)kC/but \C\ / \C'\. The description of Case 

3 tells us that there is at least one useful class. Actually, since | V(M)\ 
= 

\ V(M')\, 
there are at least two useful classes, C\ andC2. Note that | C\ \ +1C21 < \Z\. Without 

loss of generality, assume that |Ci| < |Z|/2. Let C[ be the counterpart of C\ in 

%(X'k), i.e., C\ =0, C{. In the larger of C\ and C[ Spoiler selects min{|Ci |, |C/|} + 1 

elements. Duplicator is enforced to at least once reply not in the smaller class. This 

produces an /-threatening pair and Spoiler, according to Claim B, wins in at most 

(k 
? 

l)2 subsequent moves, having made altogether at most |Z|/2 + 1 + (k 
? 

l)2 
moves. 

End of description of the conluding phase. 

4.2. Estimation of the length of the game. If Spoiler follows the above strategy 
and Duplicator delays his loss as long as possible, the end of the game is always this: 

Spoiler enforces creating a threatening pair in at most k + 2 moves and then wins 

in at most (k 
- 

l)2 next moves using the strategy of Claim B. Let us calculate the 

smallest possible (optimal for Duplicator) number of elements in M unoccupied 
till such final stage of the game. The minimum is attained if all Phases from 1 up to 

k + 2 are played and Case 3 occurs in Phase k + 2. Then the number of elements 
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unoccupied in Xk+\ is equal to 

i=\ i=\ 

The number of elements unoccupied in Z is at least \Z\ 
? 

(|Z|/2 + 1) 
= 

|Z|/2 
? 1. 

By Lemma 3.13, the total number of unoccupied elements is at least 

Thus, the maximum possible number of occupied elements is less than 

l-2k)n+2 
+ 

2k 

Summing up, we conclude that our strategy allows Spoiler to win in less that 

l-?)? 
+ *>-* + 4 

moves. Theorem 4.1 is proved. 

4.3. Definability results. A natural question is if our approach applies to defining 
rather than identifying formulas. In fact, the proof of Theorem 4.1 implies the 

definability with small quantifier rank for a quite representative class of structures. 

4.3.1. Definability of irredundant structures. 

Definition 4.2. If M is a finite structure, let 

a(M) 
= 

max{ \A\ : A C V(M) such that a\ ~ a2 for every a\, a2 G A } 

be the maximum cardinality of a ^-equivalence class in V(M). 
If g(M) 

? 
1, i.e., no transposition of two elements is an automorphism of M, 

we call M ir redundant. 

Theorem 4.3. Let M be an irredundant structure of order n with maximum relation 

arity k. Then 

Di(M) < 
(1~?)^+^-^ 

+ 3 

Proof. It is not hard to see that the claim is true fork = 1 ; in fact, an irredundant 
structure all whose relations are unary is definable by a formula with quantifier rank 
2. Notice that Spoiler's strategy described in Section 4.1 applies for any pair of L 
structures M and M' of arbitrary orders with the only exception of Case 3 in 
the concluding Phase k + 2, where the equality |F(M)| 

= 
\V(Mf)\ is supposed. 

Since the set Z is partitioned into ^-equivalence classes each consisting of at least 
k + 2 elements, for an irredundant structure M we have Z = 0. Consequently, 
V(M) 

= 
Xk+\. It follows that either Spoiler wins at latest in Phase H 1 or, 

according to Item 1 of Claim D, there is a partial isomorphism (j)k+\ from M to M' 
with dorn<fik+i 

= 
V(M). 

In the latter case, since M and M' are non-isomorphic, there is at least one 

element v G V(M') \ range (?)k+\. In the concluding phase of the game Spoiler 
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selects v and, according to Claim D, there arises a k-threatening pair. Spoiler 
switches to the strategy given by Claim B and wins in at most (k 

? 
l)2 moves. 

It remains to estimate the length of the game. Similarly to Section 4.2, we conclude 

that Spoiler needs at most n ? 
Xw=i \&k+l(Xi)\ +/c + 2 + (k 

- 
l)2 moves to win. By 

estimate (22), where \Z\ 
= 0, this number is less than (1 

- 
^f)n + k2 - k + 3. H 

Remark 4.4. There are simple examples of irredundant structures M showing a 

lower bound D (M) > n/4. For example, let F be a directed graph on two vertices 
u and v consisting of a single (directed) edge (uv). Let G be another directed 

graph on u and v consisting of two edges, (uv) and the loop (uu). Denote the 

disjoint union of a copies of F and b copies of G by aF + bG. It is easy to see 

that aF + bG is irredundant for any a and b. Directed graphs M = m F + mG 

and M' = 
(m 

? 
\)F + (m + \)G are non-isomorphic and both have order Am. An 

obvious strategy for Duplicator in the Ehrenfeucht game on M and M' shows that 

D(M,M') > m. 

Theorem 4.3 will be considerably strengthened in the next subsections. In partic 
ular, it will be surpassed by Theorem 4.11. 

4.3.2. A further refinement. As we observed in the proof of Theorem 4.3, Spoiler's 
strategy designed in Section 4.1 ensures the bound 

(31) DX(M,M') < (l 
-^-jn 

+ k2-k + 4 

for M' of any order under an additional condition imposed on M. We are able to 

describe exceptional pairs of non-isomorphic M and M' for which (31) may not hold 

much more precisely. Assume that M' has order n' > n. As was already mentioned, 
the assumption that n' = n is used only in Case 3 of the concluding Phase k + 2. 

Turning back to this case, we see that what is actually used is the existence of at least 

two useful classes in W(Xk). Thus, (31) may not hold in the only case that there 

is a unique useful class C0 G ̂ (Xk). Since actually C0 G &(Xk) \ &k+l(Xk), we 

have |Co| > k + 2. By Lemma 3.12, the class Co consists of pairwise ^-equivalent 
elements. 

Let C? be the counterpart of Co in &(Xk), i.e., C? =^ Co. Given B ? C? 
with \B\ 

= 
|Cb|, let M'B 

= 
M'[V(Mf) \ (C? \ B)]. Consider an arbitrary map 

(?)\ V(M'B) 
-> V(M) extending 0"^, mapping each C' G ̂ (X'k) \ {C?} onto its 

=^ -counterpart in ̂ (Xk), andmappingi? onto Co. As in Case 1 ofPhase^ + 2, we 

see that Spoiler is able to win within the bound of (31) unless 0 is an isomorphism 
from MB to M. From here we easily arrive at the following conclusion. 

Lemma 4.5. Let L be a vocabulary with maximum relation arity k. Let M and M' 

be non-isomorphic L-structures of orders n andn' respectively and n < n'. Then the 

bound 

DX(M,M') < 
(\--^-]n+k2-k 

+ 4 

may be false only if there is a set Cq ? V(M) with | Co| > k-\-2 consisting of pairwise 

^-equivalent vertices and there is a partial isomorphism y/ from M to M' defined on 

V(M) \ Co whose any injective extension is a partial isomorphism from M to M'. 
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In the next subsection we make a constructive interpretation of the condition 

appearing in the lemma. 

4.3.3. Cloning an element of a structure. 

Notation. Recall that, given a set V and a function n defined on F, we extend 
ti over V1, where I > 1. by n? = 

(n(u\),... ,7i(u?)) for any ? = 
(u\,..., u?) with 

all Ui in V. In particular, this concerns the case that n is a permutation of elements 

of V. Recall also that, if n = 
(v\v2) is a transposition, then we may write ?^V]V2^ in 

place of n?. 

Definition 4.6. Given v G V(M), let [v]M 
= 

{ u G V(M) : u ~ 
v} be the ~ 

equivalence class of the element v. 

We now introduce an operation of expanding a class [v]m, i.e., adding to M new 

elements ^-equivalent to v. This operation was considered in [15] in the particular 
case of uniform hypergraphs. 

Let L be a vocabulary with maximum relation arity k. Below K and M are 

L-structures, v is an element of M, and t is a non-negative integer. 

Definition A. The notation K = M 0 tv means that the following conditions 
are fulfilled. 

(Al) V(M) ? V(K) and \V(K)\ = |V(M)\ + t. 

(A2) a:[f(m)] = M. 

(A3) |MM|>fc. 
(A4) bk = MMU(KW\F(M)). 

Definition B. The notation K = M (Btv means that the following conditions are 

fulfilled. 

(Bl) V(M) ? V(K)tmd\V(K)\ = \V(M)\ + t. 

(B2) There is C ? [v]m with \C\ > k such that every injective extension of 

i?V(M)\c 
1? a maP ,//: ^(^) ?> V(K) is a partial isomorphism from M 

toK. 

Definition C. The notation K = M ?tv means that the following conditions are 

fulfilled. 

(Cl) V(M) ? V(K)tmd\V(K)\ = \V{M)\ + t. 

(C2) \[v]M\>k. 
(C3) Let R be an /-ary relation in L. If ? G F(M)Z, then RK? = RM?. 

(C4) Let 7? be an /-ary relation in L. Assume that ? G V(K)1 and the set 

{u\,... ,ui} \ V(M) 
= 

{w\,..., wp} is nonempty. Then RK? = 1 if and 

only if there are pairwise distinct elements v\,..., vp G [v]m \ {u\,..., u?} 
such that RM7i? ? 1 for n = 

(i^i^i) (wpvp). 
Lemma 4.7. Definitions A, B, and C are equivalent. 

Proof. Conditions AI-A4 imply Conditions B1-B2. Since Bl coincides with Al, 
we only have to derive B2. We are actually able to prove B2 for an arbitrary 
C ? [v]m with \C\ > k (there is at least one such C by A3). Let y/ be as specified 
in B2. For any /-ary relation R in L and ? G V(M)1, we have to check that 

RM? = 
RKy/?. Assume that in {y/(u\),..., y/(u?)} there are p elements from 

V(K) \ V(M) and denote them by w\,..., wp. Take arbitrary pairwise distinct 

v\,... ,vp G C \ {y/(u\),..., y/(u?)}. Let ? ? 
ny/? with n = 

(w\V\) (wpvp). 
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By A4, we have v? ~ Wi in K for all / < p. It follows that RKy/? 
= RK?. Since 

? G V(M)1, by A2 we have RKu = RM?. Notice now that ? and ? coincide at the 

positions occupied by elements in V(M) \ C, while elements in C are permuted 

according to some permutation r, i.e., ? ? t?. Since t is decomposable in a 

product of transpositions and elements of C are pairwise ^-equivalent in M, we 

have RM? = RM?, completing derivation of B2. 

Conditions B1-B2 imply Conditions C1-C4. For Cl and C2 this is trivial. C3 

immediately follows from B2 if we take y/ = 
idF(M). Let us focus on C4. Let ? 

and w\,..., wp be as specified in this condition. Assume first that RK? = 1. Take 

v\,..., vp G C \ {u\,..., ui} being pairwise distinct and define y/ by y/(vt) 
= Wi 

for / < p and y/(x) 
= x for all other x G V(M). Notice that y/~l? 

= n? for 
n ? 

(w\v\) 
- 

(vjpVp). As y/ is a partial isomorphism by B2, we conclude that 

RMn? = RK? = 1. This proves C4 in one direction. Such a way of proving 
RMn? = RK? will be referred to as yj-argument. 

For the other direction, assume that RMn? = 1 for n = 
(w\V\) (wpvp) with 

somet?,... ,vp G [v]m\{u\, 
... 

,u?}. Ifallvz are in C, the equality RK? 
? 1 follows 

from the (//-argument with the same y/ as above. Otherwise, we can replace each v? 

with some v[ G C, where i;{,..., v' are pairwise distinct elements of C \ {u\,..., u?} 
and v? 

= Vi whenever Vi G C. For no / this replacement changes the initial 

value of RM7i? and, after all replacements are done, we have RMn'? = 1 with 

n' = 
(w\v[) (wpv'p). Defining y/' by y/f(v?) 

= Wi and y/'(x) 
= x elsewhere on 

V(M), we obtain RK? = RMn'? = 1 by the ^/^argument. 
Conditions C1-C4 imply Conditions A1-A4. Since A1-A3 are virtually the same 

as C1-C3, our concern is A4. It is easy to see that [v]k n V(M) cannot be 

larger than [v]m> Therefore, it suffices to show that in K we have v ~ vf for any 
v' G [v]M U (V(K) \ V(M)). Given an /-ary relation R in L and ? G F(?')/, we 

have to check that 

RK? = RK?{ '\ 

We do it by routine examination of several cases. Note that, if neither v nor v' 
occurs in ?, then there is nothing to prove. 

To simplify notation, denote 

? = w(w,). 

Furthermore, let U = 
{u\,..., w/} and U \ V(M) 

= 
{w\,..., wp}. Denote the set 

of elements in ? by U. 

CaseI. v' G V(K)\ V(M). 

Subcase 1.1. v e U,vr e U. 

Assuming RK? = 1, we will infer RKu = 1. This will give also the converse 

implication because ? is supposed arbitrary with occurrences of both v and v' 

and we hence can take ? instead of ?. Without loss of generality, assume that 

v' = 
Wp. By C4, there are v\,...,vp G [v]M \ U such that RMn? = 1 with 

n = 
(w\v\) (wp-\Vp-\)(v'vp). As easily seen, n? = 

(n?)^vp\ Since vp 
~ v in 

M, we have RMn? = 1. Note that ? = U and hence ^i,..., vp G [v]m \ ?. By 
C4, we conclude that RK? = 1, as desired. 
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Subcase 1.2. v G U, v' ? U. 

Note that ? \ V(M) 
= 

{w{.... ,wp,v'} and [v]M \ ? = 
([v]M \ U) U {v}. We 

first assume that RK? = 1 and infer from here that RK? = 1. Let v\,..., vp be as 

ensured by Condition C4 for ?, that is, RMn? = 1 with n = 
(w\v\) (wpvp). Let 

n' = 
7i(v'v). As easily seen, n'? = n?. Thus, RMn'? = RMn? = 1 and, by C4, we 

conclude that RKu = 1. 

We now assume that RK? = 1 and have to infer RK? = 1. According to C4, 
there are pairwise distinct v[,..., v'x G [v]m \ U such that RMn'? ? 1 with n' = 

(w\v[) (wpv'p)(v'v'p+l). 
Choose pairwise distinct v\,... ,vp in {v[,... ,v'p+l} \ 

{v} and apply to ? the substitution n ? 
(w\v\) (wpvp). It is not hard to see that 

n? = ttz'u for T being a permutation of the set K = 
{v, v[,..., vp,vp+x} taking v[ 

to Vi for i < p and 
v'p+l 

to v. A such i exists because elements in {v[,..., ^+1} 
and in {^i,..., vp, v} are pairwise distinct (the fact that the two sets may intersect 

does not matter). Since z is decomposable in a product of transpositions of two 

elements from V and elements in V are pairwise ^-equivalent in M, we have 

RM7i? = RM7i'? = 1. By C4, we conclude that RK? = 1, as desired. 

Subcase 1.3. v ^ U, v' G U. This subcase reduces to Subcase 1.2 by considering 
? in place of ?. 

Case 2. v' G [v]m> 
Since in this case v and v' are interchangeable, it suffices to assume that v G U 

and prove that RK? = 1 implies RKu = 1. Note that ? \ V(M) 
= 

{w\,..., wp}. 

Subcase 2.1. v' G U. 

Note that [v]m \ U = 
[v]m \ U. Let v\,... ,vp G [v]m \ U be as ensured by 

Condition C4 for ?, i.e., RMn? ? 1 with 71 = 
(t^i^i) (wpvp). Applying the same 

ti to w, we see that nu = 
(7rw)^w\ As v ~ v' in M, we have RMnu ? RMn? ? 1 

and hence, by C4, we obtain RKu = 1. 

Subcase 2.2. v' ? u. 

Note that [v]m \U 
= 

(([v]m \ U) \ {v'}) U {v}. Let v\,...,vp and n be as 

in Subcase 2.1. The difference is that now the containment v' G {v\,... ,vp] is 

possible. For i < p, set 

, / = / vi ^vi ^ v^ 
1 ~ 

\ 
V ifvi = v' 

and apply to ? the substitution n' = 
(w\v[) (wpvp). 

It is not hard to see that 

n'u. = zn? for r being a permutation of the set {v. v\...., i;^, v7} taking v\ to 
v\ for 

all i < p and v to v'. Similarly to the second part of Subcase 1.2, we conclude that 

RMn'u = RMn? = 1 and. by C4, we obtain RK? = 1. H 

Lemma 4.8. Let L be a vocabulary with maximum relation arity k. Let M be an 

L-structure, v G V(M) with \[v]m\ > k. andt > 0. Then an L-structure K such that 
K = M 0 tv exists and is unique up to an isomorphism. 

Proof. The existence follows from Definition C. To obtain K, we add t new 

elements to V(M). keep all relations of M on V(M), and add new relations 

involving at least one new element, being guided by Condition C4. 
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To prove the uniqueness, we use Definition B. Assume that K\ = M 0 tv and 

K2 = M 0 tv according to this definition. Let </> : V(K\) ?> V(K2) be an arbitrary 
one-to-one map whose restriction on V(M) is idK(M). We claim that <j> is an 

isomorphism from K\ to K2. Given an /-ary relation R in L and ? G V(K\)?, we 

have to check that RK{ ? = 
RKl(f)?. The case that ? G V(M)1 is trivial. Suppose that 

{u\,... .ui}\ V(M) 
= 

{w\,... ,wp} is nonempty. Note that {(f>(u\),..., 0(w/)} \ 

V(M) 
= 

{(p(w{),.... (f)(wp)} and {wi,..., u?} n K(M) 
= 

{<?(wi),..., </>("/)} n 

K(M). Let ^i,..., vp be pairwise distinct elements in C that do not occur in ? and 

hence in (??. Define y/\ by y/\(v?) 
= Wi for / < p and ^i(x) 

= x for all other x 

in V(M). Define y/2 similarly with the difference that y/2(vi) 
= 

(j>(wi) for i < p. 

Obviously, y/2l(f>? 
? 

y/^l?. By B2, y/\ and y/2 are partial isomorphisms from M 

to K\ and K2 respectively. Therefore 

RKx? = 
RMy/~l? 

= 
RMy/-l(j)? 

= 
RKl(j)?. 

The proof is complete. H 

Using Definition B, the following lemma is a direct consequence of Lemma 4.5. 

Lemma 4.9. Let L be a vocabulary with maximum relation arity k. Let M and M1 

be non-isomorphic L-structures of orders n and n' respectively and n < n'. Then the 

bound 

DX(M,M') < (\- 
?)^2+/c2-^ 

+ 4 

may be false only if M' = M* 0 (n' 
? 

n)v for some structure M* isomorphic with 

M andv G V{M*). 

4.3.4. An upper bound for D (M). The following result was obtained in [15] for 

graphs with the proof easily adaptable for any structures (see Lemma 4.2 and 

Remark 4.9 in [15]). 
Lemma 4.10. [15] Let M be a structure of order n with maximum relation arity k, 

v be an element of M with \[v]m\ 
= s > k, and M' = M ? tv with t > 1. Then 

5 + 1 <D(M,M') <DX(M,M') <s +fc- l + ^il. 
s + 1 

Putting Lemmas 4.9 and 4.10 together, we immediately obtain an upper bound 

for D(M). Recall that g(M) 
= 

max,GK(M) |Mm| 

Theorem 4.11. For a structure M of order n with maximum relation arity k, we 

have 

DX(M) 
<max| 

il - ? \n + k2 - k + 4, o{M)+k 

Proof. Given M, let us summarize upper bounds we have for D\(M,M') for 

various M' non-isomorphic with M. Denote 

n + 1 

7TT 
If M' ? M* 0 tv for M* an isomorphic copy of M, then 

(32) Dl(M,M,)< max f(s) 
\<s<o(M) 

uk.n= [\- 
? 

)n + k2-k + 4 and f(s) k-\ 
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by Lemma 4.10. Similarly, if M = M* 0 tv for M* an isomorphic copy of M', 
then 

DX(M.M')< max f(s), 
\<s<a{M') 

which is within the bound (32) because in this case o(M') < a(M). For all other 

M' we have 

by Lemma 4.9. 

Notice now that 

Furthermore, 

DX(M,M') < Uk.n 

max f(s)=m<ix{f(\),f(a(M))}. 
\<s<a{M) 

f(a(M))<( 
/(1) if*(M)<(/i-l)/2, 

na[M))-\ a(M)+k ifa(M)>n/2, 

and f(\)< ukM. Summing up, we conclude that 

maxZ)i(M,M') < max{^?, o(M)+k}. M' 

By Lemma 2.2, the proof is complete. H 

Note that, given M, the number o(M) is efficiently computable in the sense that 

computing o(M) reduces to verification if a transposition is an automorphism of 

the structure. Thus, Theorem 4.11 provides an efficiently computable non-trivial 

upper bound for D\ (M). This is of particular interest in view of a conjecture that the 
exact value of D (M) is uncomputable. Some evidences in favour of this conjecture 
stem from the classical research on the Hubert Entscheidungsproblem [1] where, as 

a common technical tool, a computation of a Turing machine is simulated by a 

first order sentence about a finite structure. Note on the other hand that D0(M) is 

computable (the reader is referred to [14] for this and related facts). 
We also can restate the obtained bounds as a dichotomy result telling us that 

either we have the bound D\(M,M') < (1 
- 

?)? + k2 - k + 4 or else M has a 

simple, easily recognizable property and, moreover, for all such exceptional M we 

are able to easily compute D (M) within an additive constant. Results of this sort 
are obtained in [15] for structures with maximum relation arity 2 and /c-uniform 

hypergraphs. 

Theorem 4.12. Let M be a structure of order n with maximum relation arity k. If 

(33) 
a(M)<(\-^)n 

+ (k-l)2 + 3. 

we have 

(34) DX(M)< (\-?-\n+k2-k + 4. 

Otherwise we have 

(35) o(M) + 1 <D(M) < DX(M) < a(M) + k. 
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Proof. If the condition (33) is met, the bound (34) follows directly from The 
orem 4.11. If (33) does not hold, the upper bound in (35) again follows from 

Theorem 4.11. The lower bound in (35) follows from Lemma 4.10 as D (M) > 

D(M,M 0 Iv) > o(M) + 1, where v G V(M) is such that \[v]M\ 
= 

cr{M) and 

hence \[v]m\ > k. H 

?5. Identifying finite structures by Bernays-Sch?nfinkel formulas. 

Theorem 5.1. Let L be a vocabulary with maximum relation arity k. If M is an 

L-structure of order ?, then 

(36) BS(M)< 
(l-^J-^\n+k. 

Ifk 
? 

1, a stronger bound BS (M) < n/2 + 1 holds true. 

The case of k = 1 is easy and included for the sake of completeness. The upper 
bound of n/2 + 1 matches, up to an additive constant of 1, a simple lower bound 

of n/2 attainable by structures with a single unary relation. The proof of Theorem 

5.1 takes the rest of this section. 

5.1. Notation. In addition to the notation introduced in Section 2.1, we will 

denote [k] 
= 

{1,2,... ,k}. If z = 
(z\,... ,z/) and t is a map from [k] to [/], then 

^ = 
(zr(l)>- 'zx{k)) 

Recall that, given a partial isomorphism <fi : X ?> X' from an L-structure M to 

another L-structure M', we have defined a relation =<?> between elements in X and 

elements in X' (see Definition 3.6). Definition 3.8 extends this relation over classes 

in ̂ (X) and &(X'). We will need yet another extension of =^ over subsets of X 

and Y1. Let U C X and U' ? Y1. We will write U ̂  U' if <?> extends to an 

isomorphism from M[X U U] to M'[Xr U ?/']. 
We define BSq (M) similarly to BS (M) with the only additional requirement that 

an identifying Bernays-Sch?nfinkel formula has at most q universal quantifiers. It 

is clear that BS (M) < 
BSq+x(M) 

< 
BSq(M). 

5.2. A couple of useful formulas. If x = 
(x\,..., x?) is a sequence of variables, let 

Dist(x) = 
/\ Xi / Xj. 

Let M be a finite structure over vocabulary L and ? be a sequence of / pairwise 
distinct elements of V(M). Then it is easy to construct a first order formula 

Isom.^U'i._X[) such that, for every L-structure M' and ?' G V(M')1, we have 

M1,?' \= Isomm(x) if and only if the component-wise correspondence between 

? and a' is a partial isomorphism between M and M'. Specifically, assume that 

L = 
(R\,..., Rm). where R? has arity k?. Then 

/ = ! T 
IsomM) = Dist(x) A 

/\(/\ {*,-(**) I 
t: [^] ̂  [/], ^(flT) = 1 } 

1 T 

A/\{^R,(*T) I t: [k,] ̂  [/]. /if (5r) = 
0}' 
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5.3. The first way of identification. In this section we will exploit the relation ~ on 

V(M) defined in Section 3.1 and the invariant a(M) introduced in Definition 4.2. 

Proposition 5.2. Let L be a vocabulary with maximum relation arity k. For every 
L-structure M of order n, we have 

BSk(M) < n + k-a(M). 

Proof. Suppose that a (M) 
? 

k + d with d > 1 (if a(M) < k, the proposition is 

trivial). Let A be a ̂ -equivalence class of elements of V(M) such that \A\ 
= 

a(M). 
Denote B = A and fix orderings A = 

{a\,... ,ajc+d} and B = 
{b\,... ,bn-k-d} 

Set ? = 
(a.\,..., ak). We suggest the following formula <&m to identify M: 

?m 
= 

3ji ...3yn-k-d Vxi ...Vx^ YmO^x), 

where 

^Afiy,*) 
= 

IsoMh(y)A (Dist(j;,x) 
^ 

l^oML?(y.x)) 
. 

Note that M' \= <?>M if and only if there is a partial isomorphism (p.B^B' from 
M to M' such that every injective extension of (?> over B U {a\,..., ak} is a partial 

isomorphism from M to M'. By Definition B in Section 4.3.3 this means that M' J= 
Q}M ifand only ifM'is isomorphic to M/; such that M/; = 

M[BU{a\,... .ak}]?ta\ 
for some t > 0. Using Definition A, we see that M satisfies the latter condition 
and hence M |= Om- By Lemma 4.8, an M" as above is, for each t, unique up 
to isomorphism. It follows that M' of order n satisfies Om if and only if M' is 

isomorphic to M. H 

5.4. The second way of identification. Recall that the notion of a base is intro 
duced in Definition 3.11. 

Definition 5.3. Let B C V(M) be a base of a structure M. The fineness of 
B is defined by f(B) = max{ \C\ : C G %{B) }. Furthermore, let p(B) = \B\ + 
max{/(?) + l,A:}. 

We define p(M) to be the minimum p(B) over all bases B of M. 

Proposition 5.4. BS(M) < p(M). 
Proof. Given a base B of M, we construct a Bernays-Sch?nfinkel formula <5>M 

with p(B) quantifiers that identifies M. Let p = 
\B\ and q 

= 
max{/(2?) + l,k}. 

Assume that p + q < n for otherwise we are done. Denote A ? B and fix orderings 
A = 

{ai,... ,an-p} 
and i? = 

{b\,... ,bp}. 
We set 

Om = 
3yi ... 

3? Vxi ... 
Vxq T^O^ x), 

where 

^m^,^) = 
IsoMi(j) A 

(DistCy,x) 
-^ 

Y Isom?.^(?^))' 
t: M->[?-/?] 

t is injective 

Claim A. Let M' be another L-structure, b' = 
(?>?,... ,Z?p 

be a sequence of 

elements of V(M'). and A' = 
V(M') \ {b[,.... b'p}. Then 

M7,^ hVxi ...Vx^M(j,x) 

holds if and only if 
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the component-wise correspondence c? between b and b' is a partial isomor 

phism from M to M' and 

for every U' ? A' with at most q elements there is a U ? A such that 11=^ U/. 

The proof is fairly obvious. The claim immediately implies that M \= <S>m 

Claim B. If M' |= $M and M' has order n. then M and M' are isomorphic. 

Proof of Claim. Let b' = 
(b[..... b'p) 

be such that 

M/.?>Vx1...Vx^M(?-x). 

Set B' = 
{b[,... .b'p}. By the definition of ^m- there is a partial isomorphism 

(j)\ B ^ B' from M to M'. By Claim A. for every a' G A' there is ? G ^ such 

that a=^a'. Hence for every C" G ̂ (B') there is C G ̂ (?) such that C =$ C. 

Moreover, for every C G (F(B/) and the respective C G ̂ (2?) it holds \C\> \C'\ 

(if \C'\ > \C\, then for any (\C\ + 1)-element set Uf ? Cf the second condition in 

Claim A fails). Since \A\ 
= 

|^7| or, in other terms. 
J2ce&{B) \C\ 

= 
Ece?(5') l^"l' 

for every C" it actually holds the equality |C| 
= 

\C'\. Thus, we have a one-to-one 

correspondence between ^(?) and %(B') such that, if C G <?{ti) and C G ̂ (5') 

correspond to one another, then C =$ C and \C\ 
= 

\C'\. 
We are now prepared to exhibit an isomorphism from M' to M. Fix an arbitrary 

extension y/ of <p~{ to a one-to-one map from V(M') to V(M) taking each C 

to the respective C. We will show that y/ is an isomorphism. Let R' be an /-ary 
relation of M' and 7? be the respective relation of M. Given an arbitrary /-tuple 
?' G V(M')1, we have to prove that 

(37) i?*////7 
= #V. 

Denote ?/7 = 
{u[_, u?}. Let y/u> be the extension of 0_1 to a partial isomor 

phism from M' to M with U' ? dorn *//?// whose existence is guaranteed by Claim 

A. We have 

Ryju'?' 
= R'?'. 

To prove (37). it suffices to prove that 

(38) Ryju'?' 
= 

Ry/?'. 

We proceed similarly to the proof of Claim E in Section 4.1. By Item 3 of 

Lemma 3.7. the partial map yju> takes an element in a class C to an element in the 

respective class C. Suppose that y/w is extended over the whole V(M') with the 

latter condition obeyed. Since both y/u> and y/ extend 4>~l, the product y/u<yj~x 
moves only elements in A. Since both y/ and y/jj' take an element in a class C 

to an element in the respective class C. the map y/u'W~x preserves the partition 

^(B) of A. It follows that y/u>W~x is decomposed into the product of permutations 
Tic over C G W(B). where each nc acts on the respective C. Since every n? is 

decomposable into a product of transpositions, we have y/u>y/~] 
= 

x\x2... zt with 

T/ being a transposition of two elements both in some C. It is easy to see that 

y/u'?' 
= 

(... ((yj?')x')... )Tl. By Lemma 3.12. each application of t, does not 

change the initial value of Ry/?1. Therewith (38) is proved. H 

Remark 5.5. One can show that p(M) provides us with an upper bound not only 
for BS (M) but also for Dx (M). 
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5.5. The third way of identification. Yet another way of identification that we 

suggest here is actually not new. being a specification of Proposition 5.4 in the 

preceding section. 

Definition 5.6. If M is a finite structure, let 

?(M) 
= max {\A\ : A ? V(M) such that a\ ^? a2 for every ct\. a2 G A } . 

It is not hard to see that, in other terms, 3(M) 
= 

maxZCK(M) \&(X)\. 
Proposition 5.7. Let L be a vocabulary with maximum relation arity k > 2. For 

every L-structure M of order n, we have 

BSk(M) <n + k-?(M). 

Proof. As easily seen, if A ? V(M) is such that a\ ̂  a2 for every a\. a2 G A, 

then A = 
V(M) \ A is a base of M with fineness f(A) 

= 1. Since k > 2. we have 

max{/(^4) + \,k} 
= k and therefore p(M) < n + k ??(M). Thus, the proposition 

directly follows from Proposition 5.4. We only have to note that the identifying 
formula constructed in the proof of Proposition 5.4 has max{f(A) -\- \.k} 

= k 

universal quantifiers. H 

5.6. Putting it together. We now complete the proof of Theorem 5.1. Assume that 

k > 2. We will employ all three possibilities of identifying M given by Propositions 
5.7, 5.2, and 5.4. Using the last possibility, we will use the canonical base of M that 

was constructed in Definition 3.11 and denoted by Xk+\. 

By the bound (10) of Lemma 3.13 and the fact that \&(X)\ < S(M) for every 
X ? V(M), we have 

(39) |*?t+1| = n - \Z\ < 2k2?(M) 
- 

(k 
- 

1). 

We now consider two cases. 

Case 1. Z = 0. 

By (39) we have^(M) > 
n+2kk2~l. By Proposition 5.7, this implies that 

BS(M)< 
U-^n 

+ k. 

Case 2. Z ^ 0. 
In this case for the fineness of the canonical base Xk+\ we have f(Xk+\ ) > k + 2. 

Using (39), we obtain 

p(Xk+l) < 2k2?(M) -(k-l)+ max{ \C\ : C G &{Xk+i) } + 1 

<2k2?(M)+a(M) + 2-k. 

Let ?(M) 
= 

max{?(M), a (M)}. By Propositions 5.7, 5.2. and 5.4. we have 

BS (M) < min{n + k- S(M).n +k- a(M). 2k2S(M) + a(M) + 2 - k} 
< min{n + k- X(M). (2k2 + \)X(M) + 2 - k} 
< max min{^ + k- L (2k2 + 1)/ + 2 - k} 

^{X~2l^2)n 
+ 

k-k^<{X-2W^2)n 
+ k 
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Since the latter bound holds in both the cases, the proof of Theorem 5.1 is for k > 2 

complete. 

In the case of k = 1 we use Propositions 5.2 and 5.4. We use the fact that, for a 

structure M with all relations unary, the empty set is a base and /?(0) 
? 

a(M) + 1. 

We therefore have BS (M) < min{n + 1 -o(M),o(M) + 1} < n/2+ 1. 

?6. Identifying finite structures by Bernays-Schonfinkel formulas with bounded 

number of universal quantifiers. Recall that BSq(M) denotes the minimum total 

number of quantifiers in a Bernays-Sch?nfinkel formula identifying M with at most 

q universal quantifiers. We now address the asymptotics of the maximum value 

of BSq(M) over structures of order n under the condition that q is bounded by a 

constant. We first observe that less than k universal quantifiers are rather useless 

for identification of a structure with maximum relation arity k. 

Proposition 6.1. If M is a structure of order n with maximum relation arity k and 

n > k, then BSk-\(M) 
= n. 

Proof. We have to show that no formula O = 
3y\ ... 

3yp\/x\ 
... 

\/xq^(y, x) with 

m quantifier-free, q < k ? 
1, and p -f q < n ? 1 can identify M. Suppose that 

(40) M,b,?!|=^(j;,jc) 

for some b G V(M)? and all ? G V(M)?. Let A = 
V(M) \ {bu... ,bp}. Since 

?7+1 < k, q + \ < n ? 
p < \A\, and n > k, there is a /c-element U ? V(M) such 

that |U n A\ > q + 1. Let u\,... ,uk be an arbitrary ordering of U. Let R be a 

/c-ary relation of M. Define a relation R' so that R'? / R? and R' coincides with 

R elsewhere. Let M' be the modification of M with R' instead of R. Clearly, M' 

and M are non-isomorphic. It is easy to see that M', b, ? \= ̂ (y, x) for the same 

b as in (40) and all ? G V(M')q. Therefore M' \= O and O fails to identify M. H 

If at least k universal quantifiers are available, some saving on the number of 

quantifiers is possible: It turns out that BSk (M) < n - yfn + k2 + k and this bound 

cannot be improved much if we keep the number of universal quantifiers constant. 

Theorem 6.2. Let BSq(n, k) denote the maximum BSq(M) over structures M of 
order n and maximum relation arity k. Then 

BSk(n,k) < n - ^Jn + k2 + k. 

On the other hand, ifn is a square, then 

BSq(n,k) >n-(q- l)Vn~ + q 

for every q > 2 and k > 2. 

The upper bound of Theorem 6.2 is provable by the techniques from Section 5. 

Let M be a structure of order n with maximum relation arity k. By Propositions 
5.7 and 5.2, 

BSk(M) <n + k- max{<S(M), a(M)}. 

It remains to prove the following bound. 

Lemma 6.3. max{<5(M), a(M)} > ^?n 
- k2. 
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Proof. By the bound (10) of Lemma 3.13, 
k-\ 

n+k-\< 2kYJWk+\Xi)\ + (k + \)\%k+l(Xk)\ + {k- \)W(Xk)\ + |Z|. 
i=\ 

We bound each term \f?(X)\ from above by 3(M). Furthermore, we bound \Z\ 
from above by the number of =xk+i -equivalence classes inside Z multiplied by the 

maximum number of elements in such a class. By Lemma 3.12 it follows that 

\Z\ <S(M)a(M). We therefore conclude that 

n+k-l< ?(M)(2k2 + a (M)). 
This implies 

max{(5(M), cr(M)} > min max < o, ??=-> > v^ 
- 

^2, 1 v J n - 
\<o<n \ 2k2 + a J 

as required. H 

Remark 6.4. The bound of Lemma 6.3 is essentially optimal because, for any 

graph G of order m2 whose vertex set is partitioned into m ^-equivalence classes of 

m element each, it holds o(G) 
= m and ?(G) < m. Such G can be constructed from 

any graph H of order m whose automorphism group contains no transposition by 

replacing each vertex v G V(H) with m pairwise (non-)adjacent vertices -^-related 

to v in H. 

We now prove the lower bound of Theorem 6.2. It suffices to do it for graphs. 
The example of G with large BSq(G) will be the same as in Remark 6.4. This 

example can be lifted to a higher arity k by adding k ? 2 dummy coordinates to the 

adjacency relation with no affect to its truth value. 

Proposition 6.5. Let Gm be a graph of order m2 whose vertex set is partitioned 
into m ^-equivalence classes of m elements each. Let q > 2. Then BSq(Gm) 

> 

m2 ? 
(q 

? 
\)m + q. 

Proof. It is enough to show that, if Gm is identified by a Bernays-Sch?nfinkel 
formula O with q universal quantifiers, then O contains at least m2 - 

(q 
- 

\)m 
existential quantifiers. If q > m + 1, this is trivial. Assume that q < m. 

Suppose on the contrary that Gm is identified by a Bernays-Sch?nfinkel formula 

O = 
3y{ ...3ypWxi ...\/xq ^(y\x) with p < m2 - 

(q 
- 

\)m. Let b G V(Gm)p be 

such that Gm,b \= \/x\ ... 
yxqx?(y, x). Equivalently, 

(41) Gm.b.? \=*?(y,x) fovzlla eV(Gm)q. 

Let A - 
V(Gm) \ {bl....,bp}. We have \A\ > (q 

- 
\)m + 1. The condition 

imposed on Gm implies that there are two ^-equivalence classes, C\ and C2, such 

that \A n C\ | > q and \A H C2\ > 1. Let us modify Gm by removing one vertex from 

A n C2 and adding a new vertex v' to C\ so that v' ~ v for all v G C\. The modified 

graph, G', is clearly non-isomorphic to Gm. We show that, nevertheless, G' \= O. 

It suffices to show that G'\b,?' (= ̂ (y,x) for every ?' G V(G')q. In view of 

(41), we are done if for every ?' G V(G')q we are able to find an ? G V(Gm)q 
such that the component-wise correspondence between b, ? and b, ?' is a partial 

isomorphism between Gm and G'. \f ?' does not contain any occurrence of v', we 

obviously can take ? = ?''. If ?' contains an occurrence of v', let v be a vertex in 
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A n C\ that does not occur in a' and let a be the result of substituting v in place of 

v' everywhere in a7. It is not hard to see that the obtained ? is as required. H 

?7. The case of graphs. For a binary structure M. Theorem 4.1 implies I (M) < 

0.15n + 4 and Theorem 5.1 implies BS (M) < 0.9n + 2. In the case of graphs, 
both these bounds can be improved. In [15] we obtain an almost optimal bound 

1(G) < (n + 3)/2 (there are simple examples of graphs with 1(G) > (n + l)/2). 
Combining the approach from [15] and the techniques from Section 5, we are able 
to prove a better bound for BS (G) as well. We are also interested in knowing 
the smallest n starting from which for G of order n we have the bound at least 

BS ( G ) < n ? 
1, an improvement on the trivial bound of n. 

Theorem 7.1. Let G be a graph of order n. 

(1) We have BS (G) <3n/4 +3/2. 
(2) Ifn > 5, we have BS2(G) < n ? 1 with the only exception of the graph H on S 

vertices with 2 adjacent edges for which, nevertheless, we have BS^(H) < 4. 

Proof. Given a graph G, let X = E (0), where the transformation E is introduced 

in Section 3.2. We state two properties of the X established in [15]: 

Property \\ \%{X)\ > \X\ + 1. 

Property 2: Let Y = Y (X), as in Definition 3.11, and Z = 
V(G)\(XUY). Every 

class in f?(X U Y) consists of pairwise ^-equivalent vertices. 

Note that \%(X)\ < ?(G). By Property 1 we conclude that 

(42) \X\ + | Y\ < \X\ + \&{X)\ < 2\&(X)\ 
- 1 < 25(G) 

- 1. 

Property 2 means that lu Y is a base of G. 

We now consider two cases. 

CaseI. Z = 0. 
In this case n = 

\X\ + | Y\. By (42), 0(G) > (n + l)/2. Using Proposition 5.7, 
we obtain BS2(G) < n/2 + 3/2. 

Case 2. Z ^ 0. 
In this case p(X U Y) < \X\ + \Y\ + o(G) + 1. By (42) we have p(X U Y) < 

23(G) + (t(G). Denote X(G) 
= 

max{S(G), a(G)}. By Propositions 5.7, 5.2, 
and 5.4, we have 

BS(G) <min{n + 2 - ?(G),n + 2 - a(G),2?(G) + a(G)} 
<min{n + 2-X(G),3?(G)} 
< max min{rc + 2 - ?, 3X} 

= 
3rc/4 + 3/2. 

Since this bound holds true in both the cases, Item 1 of the theorem is proved. 

To prove Item 2, we estimate max{<5 (G), g (G)}. Since n = 
\X\ + \Y\ + \Z\ < 

20(G) 
- 1 +S(G)<r(G), we have 

(43) n + \ <?(G)(2 + a(G)). 
It follows that 

max{(5(G), cr(G)} > min max < c,-> = \Jn + 2 - 1 
i<c<? I 2 + c I 
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and hence 

(44) max{?(G).(j(G)} >3 

whenever n > 1. 

Claim A. The bound (44) holds for all G of order 6 or 7. 

Proof of Claim. This claim is proved by the direct brute force analysis. We have 

3(G) 
= 

?(G) and o(G) 
= 

o(G), where G denotes the complement of a graph G. 

Hence, for order 6, it suffices to consider graphs with at most 7 edges. For order 7 

the number of cases is much larger: the complete analysis can be found in [16]. H 

Thus, if G has order at least 6, we have the bound (44) and the theorem follows 
from Propositions 5.7 and 5.2. For graphs of order 5 the estimate (44) holds with 
the only exception for the specified graph H. This graph is identified by formula 

3 3 

3y\ Vx\\/x2\/xi(Dist(y\, x\, x2, xi) 
? 

~^E(x\,x2) A \l E(y\,Xi) A \l ~^E(y\, 
i=\ i=\ 

where E is the adjacency relation. H 

Remark 7.2. Item 2 of Theorem 7.1 does not hold true for graphs of order n = 4: 
It is not hard to prove that BS (F) =4 for the graph F on 4 vertices with 1 edge. 

Remark 7.3. In [12] we address the first order definability of a random graph G 
on n vertices. It is proved that, with probability 1 ? 

o(\), 

log2 n-2 log2 log2 n <I(G) < log2 n - log2 log2 n + O (log2 log2 log2 n ). 

One of the ingredients of the proof is that, with high probability, S(G) > n - (2 + 

o(\))log2n. Since 1(G) < BS2(G) < n + 2 ? 
?(G). we conclude that, with high 

probability, 

\og2n-2\og2\og2n <BS2(G) < (2 + o(l))log2w. 

?8. Open problems. 
1. Let I(n,k) (resp. L(n,k): BS(n,k)) be the maximum I(M) (resp. I?(M); 

BS (M)) over structures of order n with maximum relation arity k. We now know 
that 

\ <l(n,k) < h(n.k) <BS(n.k) < (1 
- 

2k4T2)n + k 

and L(n.k) < (1 
- 

?)? + k2 - k + 4. 

Note that I(n.k) < I(n.k + 1) and that the lower bound of n/2 is actually for 

I(n. 1). Make the gap between the lower and upper bounds in (45) closer. 
The case of k = 2 is essentially solved in [15], where the bounds 

n + 
1<I{n,2)<Il{n,2)<n 

+ 3 
2 

--<'-" <- 
2 

are proved. If k ? 3, we are able to improve on (45) by showing that I\(n, 3) < 

| 
n + 0(1) (in [15] this bound was obtained for 3-uniform hypergraphs). 

2. Can one improve on the trivial upper bound Io(n. k) < nl It is easy to show 

that I0(n, 1) < (n + l)/2. In [15] we prove that I0(G) < (n + 5)/2 for graphs of 

order n. 
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3. What happens if we restrict the number of existential rather than universal 

quantifiers in an identifying Bernays-Sch?nfinkel formula? 

Acknowledgement. We thank an anonymous referee for comments improving the 

exposition. 
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