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thFor any sentence φ of any logic and any n > 0, one may define the n probability of

φ to be the fraction of structure for the vocabulary of φ with universe {0,1,...,n-1}

thwhich satisfy φ. The the limit probability of φ is the limit of the n probability of φ as n

goes to infinity, which may or may not exist.  Fagin [1] and independently Glebskii,

Kogan, Liogon’kii, and Talanov [2] proved that the limit probability of a first-order

sentence is always 0 or 1.  In the paper [3] it was shown that this "0-1 law" fails badly for

monadic second-order logic, i.e. that part of second-order logic in which the only

second-order quantifiers are over unary relations (though a vocabulary may still contain

relation symbols of any finite arity).  In this note we show that this law still fails when one

further restricts the logic to extend first-order logic only by allowing formulas of the form

(∃ P ) ... (∃ P ) φ where φ is first-order, which we will refer to as existential1 n

monadic second-order logic.

Acknowledgements. I thank Phokion Kolaitis for bringing the question for existential

monadic second-order logic to my attention.

Theorem 1. There is a sentence of existential monadic second-order logic which

has no limit probability.

Theorem 2. For every rational number r in the interval [0,1] there is a sentence of

existential monadic second-order logic which has limit probability r.

The main lemma for the proofs of these theorems will be the following, whose proof

we’ll defer for the moment.
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Main Lemma. There is a first-order formula φ(x,y) in a vocabulary which includes

a sequence of unary relation symbols P such that the following sentence has limit

probability 1:

(∃ P) "φ(x,y) defines a linear order of the universe"

Given the Main Lemma, we may prove the theorems as follows.  For the first, we

simply use the following sentence, where φ is as in the Main Lemma.  Notice that it

simply says of a finite structure that its universe has an odd number of elements.

(∃ P) (∃ Q)
[ "φ(x,y) defines a linear order of the universe

such that Q contains every other element, including
the first and last" ]

Now notice that we can get a sentence of limit probability 1/2 simply by modifying this

sentence to say that Q contains every other element of the restriction of this linear order

to an arbitrary set S (here S is a unary relation symbol of the vocabulary), including the

first and last elements of S. The extension of this idea to complete the proof of the

second theorem is simple; given a fraction p/q, simply say that for some Q contained in
thS, Q contains every q element of S starting with the first, and there are exactly p

elements left over at the end.  We omit the details of showing that the limit probability is

indeed p/q.

To prove the Main Lemma we start with some notation and definitions regarding the

notion of coding subsets.

Definitions. Let A and B be subsets of a structure (C;R,...), where R is binary

(and we also use R for the symbol that it interprets).

(i) For b ∈ B, we say that b R-codes {a ∈ A: <a,b> ∈ R} with respect to A.

(We omit the "with respect to" part when it is clear from context, which is always, and

we also say "codes" in place of "R-codes" when R is clear from context or unimportant to

specify.)
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(ii) We say that B codes distinct subsets of A if no two elements of B code the same

subset of A.

(iii) We say that B codes the power set of A if B codes distinct subsets of A and

moreover every subset of A is coded by an element of B.

The following lemma shows that the power set of a small enough set is probably

coded.

Lemma 1. If S ⊆ T ⊆ A, where (A;R,...) is a finite structure, and if |T| ≥ |S|

|S|2 then with limit probability 1, some subset of T codes the power set of S.

Proof. It is enough to show that with probability 1, every subset of S is coded by an

element of T. The probability of failure is less than or equal to the sum over all subsets

S’ of S of the probability that S’ is not coded by an element of T. This individual

probability is the product over all elements t of T of the (independent) probabilities that
|S|t does not code S’, each of which is (1 - 1/2 ). Thus, the probability of failure is

at most

|S||S| |S| |S| ⋅ 22 ⋅ (1 - 1/2 )

|S|But the second factor is asymptotic with 1/e , so the limit is 0.  -|

Lemma 2. Suppose that S and T are subsets of a structure (A;R,S,T,...) in

which which T codes distinct subsets of S and such that there is a first-order definable

total order < on S. Then there is a first-order definable total order on T. In fact, this

definition is constructible from the given definition of < (independently of the particular

choice of S and T).

Proof. One simply uses the lexicographic order on T (viewed as a family of subsets

of S). That is, define a total order << on T as follows: x << y if and only if x ≠ y and

for a equal to the <-least member of the symmetric difference of the sets coded by x

and y, a ∉ x. -|
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Lemma 3. Let R be an arbitrary binary relation on {0,1,...,k-1}, and let n be
2 kan integer greater than k ⋅ 4 . Let p be the probability that some substructure of a

random model of the form ({0,...,n-1};R’) contains an isomorphic copy of

({0,1,...,k-1},R). Then p approaches 1 as k approaches infinity (uniformly over

such n).

Proof. Imagine that one tries to build the requisite isomorphic embedding as
kfollows. Let a = k ⋅ 4 . Partition the universe into k pieces each of size a (plus

possibly one extra piece containing all elements left over, since n may exceed a ⋅ k).

At each stage i < k, attempt to extend the embedding by mapping i to some element
thof the i piece of the partition.  Then the probability of failure is bounded above by the

thsum over i of the probabilities that there is no element of the i piece which lies in the
thappropriate relation to the i-1 elements of the range so far.  The i such probability is

i-1 a(1 -  1/4 ) . Hence the probability of failure is bounded above by
k a kk(1 - 1/4 ) . Recalling that a = k ⋅ 4 , it is easy to see that this bound approaches

0 as k approaches infinity.  -|

Proof of Main Lemma.  Fix a structure (A;R,R ,R ,R ), and pick k greatest such that0 1 2
kk 2|A| ≥ 2 ⋅ 2 . By Lemma 3, we may (with limit probability 1) choose P ⊆ A of0

k2power k such that the restriction of R to P is a total order.  (Notice that 2 exceeds0

2 kk ⋅ 4 for sufficiently large k.) Next, by Lemma 1, we may (with limit probability 1)

choose P ⊆ A which R -codes the power set of P , and then P ⊆ A which1 0 0 2
k+1k+1 2R -codes the power set of P . Since |A| < 2 ⋅ 2 , an easy calculuation shows1 1

that with limit probability 1, A R -codes distinct subsets of P . To summarize: If we let2 2

P be A, then we have that P R -codes distinct subsets of P for i = 0, 1, 2.  Thus3 i+1 i i

by successive application of Lemma 2, there is a formula in the vocabulary

{R,R ,R ,R ,P ,P ,P } (not depending on the particular choices of the sets P )0 1 2 0 1 2 i

which defines a total order of the universe, and this is the desired formula φ(x,y). -|
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