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Abstract. The probability of a property on the collection of all finite relational
structures is the limit asn ! 1 of the fraction of structures withn elements
satisfying the property, provided the limit exists. It is known that the 0-1 law
holds for every property expressible in first-order logic, i.e., the probability of
every such property exists and is either 0 or 1. Moreover, theassociated decision
problem for the probabilities is solvable.
In this survey, we consider fragments of existential second-order logic in which
we restrict the patterns of first-order quantifiers. We focuson fragments in which
the first-order part belongs to a prefix class. We show that theclassifications of
prefix classes of first-order logic with equality according to the solvability of the
finite satisfiability problem and according to the 0-1 law forthe corresponding�11 fragments are identical, but the classifications are different without equality.

1 Introduction

In recent years a considerable amount of research activity has been devoted to the study
of the model theory of finite structures [EF95]. This theory has interesting applica-
tions to several other areas including database theory [AHV95] and complexity theory
[Imm98]. One particular direction of research has focused on the asymptotic probabili-
ties of properties expressible in different languages and the associated decision problem
for the values of the probabilities [Com88].

In general, if C is a class of finite structures over some vocabulary and ifP is
a property of some structures inC, thenthe asymptotic probability�(P ) onC is the
limit asn!1 of the fraction of the structures inC with n elements which satisfyP ,
provided that the limit exists. We say thatP is almost surely trueonC in case�(P )
is equal to 1. Combinatorialists have studied extensively the asymptotic probabilities of
interesting properties on the classG of all finite graphs. It is, for example, well known
and easy to prove that�(connectivity)=1, while�(k-colorabilty)=0, for everyk > 0
[Bol85]. A theorem of Pósa [Pos76] implies that�(Hamiltonicity)=1.

Glebskii et al. [GKLT69] and independently Fagin [Fag76] were the first to estab-
lish a fascinating connection between logical definabilityand asymptotic probabilities.
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relational vocabulary and ifP is an arbitrary property expressible in first-order logic
(with equality), then�(P ) exists and is either 0 or 1. This result is known asthe 0-1
law for first-order logic. The proof of the 0-1 law also implies that the decision prob-
lem for the value of the probabilities of first-order sentences is solvable. This should
be contrasted with Trakhtenbrot’s [Tra50] classical theorem to the effect that the set
of first-order sentences which are true onall finite relational structures is unsolvable,
assuming that the vocabulary contains at least one binary relation symbol.

It is well known that first-order logic has very limited expressive power on finite
structures (cf. [EF95]). For this reason, one may want to investigate asymptotic prob-
abilities for higher-order logics. Unfortunately, it is easy to see that the 0-1 law fails
for second-order logic; for example, parity is definable by an existential second-order
sentence. Moreover, the 0-1 laws fails even for existentialmonadic second-order logic
[KS85,Kau87]. In view of this result, it is natural to ask: are there fragments of second
order-logic for which a 0-1 law holds?

The simplest and most natural fragments of second-order logic are formed by con-
sidering second-order sentences with only existential second-order quantifiers or with
only universal second-order quantifiers. These are the wellknown classes of�11 and�11 sentences respectively. Fagin [Fag74] proved that a property is�11 definable if and
only if it is NP-computable. As we observed, the 0-1 law failsfor �11 in general (and
consequently for�11 as well). Moreover, it is not hard to show that the�11 sentences
having probability 1 form an unsolvable set.

In view of these facts, we concentrate on fragments of�11 sentences in which we
restrict the pattern of the first-order quantifiers that occur in the sentence. IfF is a
class of first-order sentences, then we denote by�11(F) the class of all�11 sentences
whose first-order part is inF . Two remarks are in order now. First, ifF is the class
of all 9�8�9� first-order sentences (that is to say, first-order sentenceswhose quantifier
prefix consists of a string of existential quantifiers, followed by a string of universal
quantifiers, followed by a string of existential quantifiers), then�11(F) has the same
expressive power as the full�11 . In other words, every�11 formula is equivalent to one
of the form9S9x8y9z�(S;x;y; z); where� is a quantifier-free formula,S is a se-
quence of second-order relation variables andx;y; z are sequences of first-order vari-
ables (Skolem normal form). Second, if�(S) is a first-order sentence without equality
over the vocabularyS, then�(9S�(S)) = 1 if and only if �(S) is finitely satisfiable.
Thus, for every first-order classF , the decision problem for�11(F) sentences having
probability 1 is at least as hard as the finite satisfiability problem for sentences inF .
The latter problem is known to be unsolvable [Tra50], even inthe case whereF is the
class of9�8�9� sentences ([BGG97]). As a result, in order to pursue positive solvabil-
ity results one has to consider fragments�11(F), whereF is a class for which the finite
satisfiability problem is solvable. Such classesF of first-order sentences are said to be
docile[DG79].

In first-order logicwithout equality, there are three docileprefix classes, i.e., classes
of first-order sentences defined by their quantifier prefix [BGG97]:

– TheBernays-Scḧonfinkel class, which is the collection of all first-order sentences
with prefixes of the form9�8� (i.e., the existential quantifiers precede the universal
quantifiers).



– TheAckermann class, which is the collection of all first-order sentences with pre-
fixes of the form9�89� (i.e., the prefix contains a single universal quantifier).

– TheGödel class, which is the collection of all first-order sentences with prefixes of
the form9�889� (i.e., the prefix contains two consecutive universal quantifiers).

These three classes are also the only prefix classes that havea solvable satisfiability
problem [BGG97]. In first-order logicwith equality, the Gödel class is not docile and
its satisfiability problem is not solvable [Gol84]. This is the only class where equality
makes a difference.

We focus here on the question whether the 0-1 law holds for the�11 fragments
defined by first-order prefix classes, and whether or not the associated decision prob-
lem for the probabilities is solvable. This can be viewed as aclassification of the prefix
classes according to whether the corresponding�11 fragments have a 0-1 law. This clas-
sification project was launched in [KV87] and was completed only recently in [LeB98].
For first-order logic with equality, the classifications of prefix classes according to their
docility, i.e., according to the solvability of their finitesatisfiability problem, and ac-
cording to the 0-1 law for the corresponding�11 fragment are identical. Moreover,
0-1 laws in this classification are always accompanied by solvability of the decision
problem for the probabilities. This is manifested by the positive results for the classes�11 (Bernays-Schönfinkel) and�11(Ackermann), and the negative results for the other
classes. For first-order logic with equality, the two classification differ, as the 0-1 law
fails for the class�11(Gödel) and the association classification problem is undecidable.

This paper is a survey that focuses on the overall picture rather than on technical
details. The interested reader is referred to the cited papers for further details. Our main
focus here is on positive results involving 0-1 laws. For a survey that focus on negative
results, see [LeB00]. For an earlier overview, which includes a focus on expressiveness
issues, see [KV89]. See [Lac97] for results on 0-1 laws for second-order fragments that
involves alternation of second-order quantifiers.

2 Random Structures

Let R be a vocabulary consisting of relation symbolsonlyand letC be the collection of
all finite relational structures overR whose universes are initial segmentsf1; 2; : : : ; ng
of the integers. IfP is a property of (some) structures inC, then let�n(P ) be the
fraction of structures inC of cardinalityn satisfyingP . The asymptotic probabilty�(P ) onC is defined to be�(P ) = limn!1 �n(P ), provided this limit exists. In this
probability space all structures inC with the same number of elements carry the same
probability. An equivalent description of this space can beobtained by assigning truth
values to tuples independently and with the same probability (cf. [Bol85]).

If L is a logic, we say that the 0-1law holds forL onC in case�(P ) exists and is
equal to 0 or 1 for every propertyP expressible in the logicL. We write�(L) for the
collection of all sentencesP in L with �(P ) = 1. Notice that ifL is first-order logic,
then the existence of the 0-1 law is equivalent to stating that �(L) is a complete theory.

A standard method for establishing 0-1 laws, originating inFagin [Fag76], is to
prove that the followingtransfer theoremholds: there is an infinite structureA over the
vocabularyR such that for every propertyP expressible inL we have:A j= P ()



�(P ) = 1: It turns out that there is a unique (up to isomorphism) countable struc-
tureA that satisfies the above equivalence for first-order logic and for the fragments of
second-order logic considered here. We callA thecountable random structure over the
vocabularyR. The structureA is characterized by an infinite set ofextension axioms,
which, intuitively, assert that everytype can beextended to every other possible type.
More precisely, ifx = (x1; : : : ; xn) is a sequence of variables, then an-R-typet(x) in
the variablesx overR is a maximal consistent set of equality and negated equalityfor-
mulas and atomic and negated atomic formulas from the vocabularyR in the variablesx1; : : : ; xn. We say that a(n+1)-R-types(x; z) extends the typet(x) if t is a subset ofs. Every typet(x) can be also viewed as a quantifier-free formula that is the conjunc-
tion of all members oft(x). With each pair of typess andt such thats extendst we
associate a first-orderextension axiom� which states that(8x)(t(x)! (9z)s(x; z)):

Let T be the set of all extension axioms. The theoryT was studied by Gaifman
[Gai64], who showed, using aback and forthargument, that every two countable mod-
els ofT are isomorphic (i.e.,T is an!-categorical theory). The extension axioms can
also be used to show that the unique (up to isomorphism) countable modelA of T is
universalfor all countable structures overR, i.e., ifB is a countable structure overR,
then there is a substructure ofA that is isomorhic toB.

Fagin [Fag76] realized that the extension axioms are relevant to the study of proba-
bilities on finite structures and proved that on the classC of all finite structures over a
vocabularyR �(�) = 1 for every extension axiom� . The 0-1 law for first-order logic
and the transfer theorem between truth of first-order sentences onA and almost sure
truth of such sentences onC follows from these results by a compactness argument. We
should point out that there are different proofs of the 0-1 law for first-order logic, which
have a more elementary character (cf. [GKLT69,Com88]). These proofs do not deploy
infinite structures or the compactness theorem and they bypass the transfer theorem. In
contrast, the proofs of the 0-1 laws for fragments of second-order logic that we present
here do involve infinitistic methods. Lacoste showed how these infinitistic arguments
can be avoided [Lac96].

Since the setT of extension axioms is recursive, it also follows that�(L) is recur-
sive, whereL is first-order logic. In other words, there is an algorithm todecide the
value (0 or 1) of the asymptotic probability of every first-order sentence. The computa-
tional complexity of this decision problem was investigated by Grandjean [Gra83], who
showed that it is PSPACE-complete, when the underlying vocabularyR is assumed to
bebounded(i.e., there is a some bound on the arity of the relation symbols in �).

3 Existential and Universal Second-Order Sentences

The�11 and�11 formulas form the syntactically simplest fragment of second-order
logic. A�11 formula over a vocabularyR is an expression of the form(9S)�(S), whereS is a sequence of relation symbols not in the vocabularyR and�(S) is a first-order for-
mula over the vocabularyR[S. A �11 formula is an expression of the form(8S)�(S),
whereS and�(S) are as above.

Both the 0-1 law and the transfer theorem fail for arbitrary�11 and�11 sentences.
Consider, for example, the statement “there is relation that is the graph of a permuta-



tion in which every element is of order 2”. On finite structures this statement is true
exactly when the universe of the structure has an even numberof elements and, as a
result, it has no asymptotic probability. This statement, however, is expressible by a�11
sentence, which, moreover, is true on the countable random structureA. Similarly, the
statement “there is a total order with no maximum element” istrue on the countable
random structureA, but is false on every finite structure. Notice that in the twopreced-
ing examples the transfer theorem for�11 sentences fails in the direction from truth on
the countable random structureA to almost sure truth on finite structures. In contrast,
the following simple lemma shows that this direction of the transfer theorem holds for
all �11 sentences.

Lemma 1. [KV87] Let A be the countable random structure overR and let(8S)�(S)
be an arbitrary�11 sentence. IfA j= (8S)�(S), then there is a first order sentence 
over the vocabulary� such that:�( ) = 1 andj=  ! (8S)�(S). In particular, every�11 sentence that is true onA has probability 1 onC.

The proof of Lemma 1 uses the Compactness Theorem. For an approach that avoid the
usage of infinitistic arguments, see [Lac96].

Corollary 1. [KV87] Every�11 sentence that is false on the countable random struc-
tureA has probability 0 onC.

Corollary 2. [KV87] The set of�11 sentences that are true onA is recursively enumer-
able.

Proof: It shown in [KV87] thatA j= (8S)�(S) iff (8S)�(S) is logically implied by the
setT of extension axioms.

We investigate here classes of�11 and�11 sentences that are obtained by restricting
appropriately the pattern of the first-order quantifiers in such sentences. IfF is a class of
first-order formulas, then we write�11(F) for the collection of all�11 sentences whose
first-order part is inF .

The discussion in the introduction suggests that we consider prefix classesF that
are docile, i.e., they have a solvable finite satisfiability problem. Thus, we focus on the
following classes of existential second-order sentences:

– The class�11(9�8�) of�11 sentences whose first-order part is aBernays-Scḧonfinkel
formula.

– The class�11(9�89�) of �11 sentences whose first-order part is anAckermannfor-
mula.

– The class�11(9�889�) of �11 sentences whose first-order part is aGödelformula.

We also refer to the above as the�11 (Bernays-Schönfinkel) class, the�11 (Ackermann)
class, and the�11(Gödel) class, respectively. We consider these classes both with and
without equality.

Fagin [Fag74] showed that a class of finite structures over a vocabularyR is NP
computable if and only if it is definable by a�11 sentence overR. The restricted classes
of �11 sentences introduced above can not express all NP problems on finite structures.
In spite of their syntactic simplicity, however, the classes�11(9�8�), �11(9�89�) and�11(9�889�) can express natural NP-complete problems [KV87,KV90].



4 The Class�11 (Bernays-Scḧonfinkel) with Equality

4.1 0-1 Law

Lemma 1 and Corollary 1 reveal that in order to establish the 0-1 law for a classF of
existential second-order sentences it is enough to show that if 	 is a sentence inF that
is true on the countable random structureA, then�(	) = 1. In this section we prove
this to be the case for the class of�11 (Bernays-Schönfinkel) sentences.

Lemma 2. [KV87] Let (9S)(9x)(8y)�(S;x;y) be a�11(9�8�) sentence that is true
on the countable random structureA. Then there is a first order sentence over� such
that�( ) = 1 and j=fin  ! (9S)(9x)(8y)�(S;x;y), wherej=fin denotes truth in
all finite structures. In particular, if	 is a�11(9�8�) sentence that is true onA, then�(	) = 1.

Proof: Let a = (a1; :::; an) be a sequence of elements ofA that witness the first-order
existential quantifiersx in A. Let A0 be the finite substructure ofA with universefa1; :::; ang. Then there is a first-order sentence , which is the conjunction of a finite
number of the extension axioms, having the property that every model of it contains
a substructure isomorphic toA0. Now assume thatB is a finite model of . Using
the extension axioms we can find a substructureB� of the random structureA that
containsA0 and is isomorphic toB. Since universal statements are preserved under
substructures, we conclude thatB j= (9S)(9x)(8y)�(S;x;y), wherex is interpreted
by a andS is interpreted by the restriction toB of the relations onA that witness the
existential second-order quantifiers.

From Lemmas 1 and 2 we infer immediately the 0-1 law and the transfer theorem
for the class�11(9�8�).
Theorem 1. [KV87] The 0-1 law holds for�11 (Bernays-Scḧonfinkel) sentences on the
classC of all finite structures over a relational vocabularyR. Moreover, ifA is the
countable random structure and	 is a�11 (Bernays-Scḧonfinkel) sentence, thenA j=	 () �(	) = 1.

4.2 Solvability

As mentioned in Section 2, the proof of the 0-1 law for first-order logic showed also
the solvability of the decision problem for the values (0 or 1) of the probabilities of
first-order sentences. The preceding proof of the 0-1 law for�11 (Bernays-Schönfinkel)
sentences does not yield a similar result for the associateddecision problem for the
probabilities of such sentences. Indeed, the only information one can extract from the
proof is that the�11 (Bernays-Schönfinkel) sentences of probability 0 form a recursively
enumerable set. We now show that the decision problem for theprobabilities of sen-
tences in the class�11 (Bernays-Schönfinkel) is solvable. We do this by proving that
satisfiability of such sentences onA is equivalent to the existence of certaincanonical
models. For simplicity we present the argument for�11(8�) sentences, i.e., sentences of
the form 9S1:::9Sl8y1:::8ym�(S1; :::; Sl; y1; :::; ym):



Assume that the vocabulary� consists of a sequenceR = hRi; i 2 Ii of relation
variablesRi. If B is a set and, for eachi 2 I , RBi is a relation onB of the same
arity as that ofRi, then we writeRB for the sequencehRBi ; i 2 Ii. Let < be a new
binary relation symbol and consider structuresB = (B;RB ; <B) in which<B is a
total ordering. Let k be a positive integer. We say thatB is k-rich if for every structureD with k elements overR [ f<g (where< is interpreted by a total ordering) there is a
substructureB� of B that is isomorphic toD. Notice that the isomorphism takes into
accountboththe relationsRDi and the total ordering<D.

Assume thatSB is ann-ary relation onB. We say thatSB is canonical for the
structureB = (B;RB ; <B) if for every sequenceb = (b1; :::; bn) from B the truth
value ofSB(b1; :::; bn) dependsonly on the isomorphism type of the substructure of
B with universefb1; :::; bng. An expanded structureB� = (B;RB ; <B ; SB1 ; :::; SBl )
is canonicalif every relationSBi , 1 � i � l, is canonical onB. The intuition behind
canonical structures is that the relationsSBi are determined completely by the(R; <)-
types.

We can state now the main technical result of this section.

Theorem 2. [KV87] Let A be the countable random structure over the vocabulary�
and let	 be a�11 sentence of the form9S1:::9Sl8y1:::8ym�(S1; :::; Sl; y1; :::; ym).
Then the following are equivalent:

1. A j= 	:
2. There is a finite canonical structureB� = (B;RB ; <B ; SB1 ; :::; SBl ) which is k-

rich for every k� m and such thatB� j= 8y1:::8ym�(S1; :::; Sl; y1; :::; ym).
In showing that(1) =) (2) we will use certain Ramsey-type theorems that were

proved by [NR77,NR83] and independently by [AH78]. We follow here the notation
and terminology of [AH78] in stating these combinatorial results.

If X is a set andj is an integer, then[X ℄j is the collection of all subsets ofX with j
elements and[X ℄�n = Sj�n[X ℄j . A system of colorsis a sequenceK = (K1; :::;Kn)
of finite nonempty sets. AK -colored setconsists of a finite setX , a (total) ordering<X
onX and a functionf : [X ℄�n 7! K1 [ ::: [ Kn such thatf(Z) 2 Kj for everyZ 2 [X ℄j andj � n.

It is clear that everyK -colored set is isomorphic to a uniqueK -pattern, that is a
K -colored set whose underlying set is an integer. Ife;M are integers,K is a system
of colors,P;Q areK -patterns, thenQ ,! (P )�eM means that for everyK -colored set(X; f) of patternQ and every partitionF : (X)�e 7!M there is a subsetY ofX such
that(Y; f jY ) is of patternP , andY is conditionally monochromaticfor F asK -colored
set, i.e. forZ 2 [Y ℄j the valueF (Z) dependsonlyon theK -pattern of(Z; f jZ).

By iterated applications of Theorem 2.2 in [AH78], we can derive the following
generalization of the classical Ramsey theorem [Ram28]:

Theorem 3. [KV87] For arbitrary integerse;M , a system of colorsK , and aK -patternP , there is aK -patternQ such thatQ ,! (P )�eM .

With every finite vocabularyR in which the maximum arity isn we can associate
a system of colorsK such that every finite structureB = (B;RB ; <B), where<B is
a total ordering onB, can becodedby aK -colored set(B;<B ; f) with f : [B℄�n 7!



K1 [ ::: [ Kn. For example, if� consists of a single binary relationR, thenK1 has
2 elements,K2 has 4 elements, andf : [B℄�2 7! K1 [ K2 is such that the valuef(fxg) depends only on the truth value ofRB(x; x), while the valuef(fx; yg) depends
only on the truth values ofRB(min(x; y);max(x; y)) andRB(max(x; y);min(x; y)).
Conversely, from every suchK -pattern we candecodea finite structureB.

We now have all the combinatorial machinery needed to outline the ideas in the
proof of Theorem 2.

Sketch of Proof of Theorem 2.(1) =) (2) Let 	 be the�11 sentence	 such thatA j= 	 and assume for sim-
plicity that 	 has only one ternary second-order existential variableS. We use the
ternary relationSA witnessingS on A to partition[A℄�3 according to thepure S-type
of a setZ 2 [A℄�3. This means thatA is partitioned into two pieces defined by the
truth value ofSA(x; x; x), [A℄2 into 223�2 = 64 pieces defined by the truth values ofSA(min(x; y);max(x; y);max(x; y)), etc., and finally[A℄3 is partitioned into23! =64 pieces defined by the truth values ofSA(min(x; y; z);mid(x; y; z);max(x; y; z)),
etc..

LetB = (B;RB ; <B) be a finite structure which isk-rich for everyk � m and letP be aK -pattern which codesB in the way described above. We apply now Theorem
3 for e = 3,M = 2 + 64 + 64 = 130, and forP codingB. LetQ be aK -pattern such
thatQ ,! (P )�3M and letC be the structure coded byQ. Using the extension axioms for
the countable random structureA we can find inA a substructureC1 isomorphic toC.
But now Theorem 3 guarantees thatC1 contains a substructureB1 which is isomorphic
to B and is conditionally monochromatic as aK -colored pattern. The structureB1 is
k-rich for everyk � m and by taking the restriction ofSA onB1 we can expandB1
to a canonical modelB� of 8y1:::8ym�(S; y1; :::; ym), since universal sentences are
preserved under substructures.(2) =) (1) From every canonical,k-rich model (1 � k � m) of8y1:::8ym�(S; y1; :::; ym)
we can build a relationSA witnessing the second order existential quantifier in	 by
assigning tuples toSA according to their(R; <)-type.

Theorem 2 implies that the set of�11(9�8�) properties having probability 1 is re-
cursively enumerable. On the other hand, Theorem 1 and Corollary 2 together imply
that the complement of this set is also recursively enumerable. Thus, we have estab-
lished that the decision problem for the probabilities of strict �11 properties is solvable.
This proof does not give, however, any complexity bounds forthe problem. In [KV87]
we analyzed the computational complexity of this decision problem and showed that
it is NEXPTIME-complete for bounded vocabularies and 2NEXPTIME for unbounded
vocabularies.

5 The Class�11(Ackermann) with Equality

Our goal here is to establish the following:



Theorem 4. [KV90] Let A be the countable random structure over the vocabularyR
and let	 be a�11(Ackermann) sentence. IfA j= 	 , then�(	) = 1.

This theorem will be obtained by combining three separate lemmas. Since the whole
argument is rather involved, we start with a “high-level” description of the structure of
the proof.

We first isolate a syntactic condition (condition (�) below) for�11(Ackermann) sen-
tences and in Lemma 3 we show that if	 is a�11(Ackermann) sentence which is true on
A, then condition (�) holds for	 . At the end, it will actually turn out that this condition
(�) is also sufficient for truth of�11(Ackermann) sentences on the countable random
structureA. In Lemma 4, we isolate a “richness” propertyEs, s � 1, of (some) finite
structures overR and show that�(Es) = 1 for everys � 1. The proof of this lemma
requires certain asymptotic estimates from probability theory, due to Chernoff [Che52].
Finally, in Lemma 5, we prove that if	 is a�11(Ackermann) sentence for which con-
dition (�) holds, then for appropriately chosens and for all largen the sentence	 is
true on all finite structures of cardinalityn over R that possess propertyEs; conse-
quently,�(	) = 1. In this last lemma, the existence of the predicatesS that witness	 is proved by a probabilistic argument, which in spirit is analogous to the technique
used by Gurevich and Shelah [GS83] for showing the finite satisfiability property of
first-order formulas in the Gödel class without equality.

Let T be a vocabulary, i.e. a set of relational symbols. Recall that, a k-T-typet(x1; :::; xk) is a maximal consistent set of equality, negated equality formulas, atomic
and negated atomic formulas whose variables are amongx1; :::; xk .

– If t(x1; :::; xk) is ak-T-type, then, for everym with 1 � m � k, let t(xi1 ; :::; xim )
be them-T-type obtained by deleting fromt(x1; :::; xk) all formulas in which a
variabley 6= xi1 ; : : : ; xim occurs.

– If S � T, then therestrictionof t to S is thek-S-type obtained by deleting fromt
all formulas in which a predicate symbols inT� S occurs.

– If t(x1; :::; xk; xk+1) is a (k + 1)-T-type, andy is a variable different from all
thexi’s, thent(x1; :::; xk; xk+1=y) is a (k + 1)-T-type obtained by replacing all
occurrences ofxk+1 by y.

– Let t(x1; :::; xk) be ak-T-type, and let�(x1; :::; xk) be a quantifier-free formula
in the variablesx1; :::; xk . We say thatt satisfies� if � is true under the truth
assignment that assigns true to an atomic formula preciselywhen it is a member oft.

Let	 be a�11(Ackermann) sentence of the form(9S)(9x1) : : : (9xk)(8y)(9z1) : : : (9zl)�(x1; : : : ; xk; y; z1; : : : ; zl;R;S);
where� is a quantifier-free formula over the vocabulary (R,S)=R[S.

We say thatcondition (�) holds for	 if there isk-(R,S)-type t0(x1; :::; xk) and
a setP of (k + 1)-(R,S)-typest(x1; :::; xk ; y) extendingt0(x1; :::; xk) such that the
following are true:

1. P contains as a member the(k + 1)-(R;S)-typetxi0 (x1; : : : ; xk; y), for everyi =1 : : : k. Equivalently, for everyi, 1 � i � k, there is a typeti(x1; : : : ; xk; y) in P
such thatti(x1; : : : ; xk; y=xi) = t0(x1; : : : ; xk).



2. P is R-rich overt0(x1; :::; xk), i.e., every(k+1)-R-typet(x1; :::; xk; y) extending
the restriction oft0(x1; :::; xk) toR is itself the restriction of some(k + 1)-(R,S)-
type inP toR.

3. For eacht(x1; :::; xk; y) in P there is a(k + l + 1)-(R,S)-typet0(x1; : : : ; xk; y; z1; : : : ; zl)
such thatt � t0, t0 satisfies�(x1; : : : ; xk; y; z1; : : : ; zl), and for eachzi, 1 � i � l,
the(k + 1)-(R,S)-typet0(x1; :::; xk; zi=y) is inP .

Lemma 3. [KV90] Let A be the countable random structure over the vocabularyR
and let	 be a�11(Ackermann) sentence. IfA j= 	 , then condition (�) holds for	 .

Proof: (Hint) The typet0 and the set of typesP required in condition (�) are obtained
from the relations onA and the elements ofA that witness the existential second-order
quantifiers(9S) and the existential first-order quantifiers(9x1) : : : (9xk) in 	 respec-
tively. To show thatP is R-rich, we use the fact that the countable random structure
A satisfies the extension axioms, which in turn imply that the elements ofA realize all
possibleR-types.

Let D be a structure overR and let
 = (
1; : : : ; 
m) be a sequence of elements
from D. The typet
 of 
 onD is the uniquem-R-type t(z1; : : : ; zm) determined by
the atomic and negated atomic formulas that the sequence
 satisfies onD, under the
assignmentzi ! 
i, 1 � i � m. We say that a sequence
 realizesa typet on a
structureD if t
 = t.

Let s � 1 be fixed. We say that a finite structureD overR with n elementssatisfies
propertyEs if the following holds:

– For every numberm with 1 � m � s, every sequence
 = (
1; : : : ; 
m) fromD and every(m+1)-R-typet(z1; : : : ; zm; zm+1) extending the typet
 of 
 onD,
there are at least

pn different elementsd inD such that each sequence(
1; : : : ; 
m; d)
realizes the typet(z1; : : : ; zm; zm+1).

Lemma 4. [KV90] For everys � 1 there is a positive constant
 and a natural numbern0 such that for everyn � n0 �n(Es) � 1� ns+1e�
n. In particular,�(Es) = 1, i.e.
almost all structures overR satisfy propertyEs, for everys � 1.

Proof: (Sketch) The proof of this lemma uses an asymptotic bound on the probability
in the tail of the binomial distribution, due to Chernoff [Che52] (cf. also [Bol85]). We
first fix a sequence
 from D and a typet that extendst
, and apply this bound to
the binomial distribution obtained by counting the number of elementsd such that the
sequence(
1; : : : ; 
m; d) realizest. We then iterate through all types and all sequences
 = (
1; : : : ; 
m) for 1 � m � s.

The last lemma in this section provides the link between condition (�), propertyEs,s � 1, and satisfiability of�11(Ackermann) sentences on finite structures overR.

Lemma 5. [KV90] Let	 be a�11(Ackermann) sentence of the form(9S)(9x1) : : : (9xk)(8y)(9z1) : : : (9zl)�(x1; : : : ; xk; y; z1; : : : ; zl;R;S)



for which condition (�) holds. There is a natural numbern1 such that for everyn �n1, if D is a finite structure overR with n elements satisfying propertyEk+l+1, thenD j= 	:
Proof: (Sketch) The existence of the relations onD that witness the second-order quan-
tifiers (9S) in 	 is proved with a probabilistic argument similar to the one employed
by Gurevich and Shelah [GS83] for the finite satisfiability property of the Gödel class
without equality. We use condition (�) to impose onD a probability space ofS predi-
cates. The richness propertyEk+l+1 is then used to show that with nonzero probabil-
ity (in this new space) the expansion ofD with these predicates satisfies the sentence(9x1) : : : (9xk)(8y)(9zl) : : : (9zl)�(y; z1; : : : ; zl;S).

This completes the outline of the proof of Theorem 4. Combining now this theorem
with Lemma 1 we derive the main result of this section.

Theorem 5. [KV90] The 0-1 law holds for the�11(Ackermann) class on the collectionC of all finite structures over a vocabularyR. Moreover, ifA is the countable random
structure overR and	 is a�11(Ackermann) sentence, thenA j= 	 () �(	) = 1.

Notice that the preceding results also show that a�11(Ackermann) sentence	 has
probability 1 if and only if condition (�) holds for	 . Since condition (�) is clearly
effective, it follows that the decision problem for the values of the probabilities of�11(Ackermann) sentences is solvable. In [KV90] we analyzed the computational com-
plexity of this decision problem and showed that it is NEXPTIME-complete for bounded
vocabularies and�exp2 -complete1 for unbounded vocabularies.

6 Negative Results and Classifications

The Bernays-Schönfinkel and Ackermann classes are the onlydocile prefix classes with
equality, i.e., they are the only prefix classes of first-order logic with equality for which
the finite satisfiability problem is solvable [BGG97]. A key role in this classification was
played by theGödel classwith equality, which is the class of first-order sentences with
equality and with prefix of the form889�. In fact, the classification was completed only
when Goldfarb [Gol84] showed that theminimal G̈odel class, i.e., the class of first-order
sentences with equality and with prefix of the form889, is not docile (contradicting an
unproven claim in [God32]). We now show that in the presence of equality the same
classification holds for the 0-1 law, namely, the 0-1 law holds for the�11 fragments that
correspond to docile prefix classes.

It is easy to see that the 0-1 law does not hold for the�11 fragments that correspond
to the prefix classes898 and839. For example, the PARITY property, i.e., the property
“there is an even number of elements” can be expressed by the following �11(898)
sentence asserting that “there is a permutation in which every element is of order 2”:(9S)(8x)(9y)(8z)[S(x; y) ^ (S(x; z)! y = z) ^ (S(x; z)$ S(z; x)) ^ :S(x; x)℄:

1 �exp2 is the second-level of the exponential hierarchy. It can be described as the class of lan-
guages accepted by alternating exponential-time Turing machines in two alternations where

the machine start state is existential [CKS81] or as the class NEXPNP of languages accepted
by nondeterministic exponential-time Turing machines with oracles from NP [HIS85].



The statement “there is a permutation in which every elementis of order 2” can also be
expressed by the following�11(8889) sentence(9S)(8x)(8y)(8z)(9w)[S(x;w) ^ (S(x; y) ^ S(x; z)! y = z) ^(S(x; z)$ S(z; x)) ^ :S(x; x)℄:
Dealing with the class�11(Gödel), i.e., the class�11(889�) is much harder.

Theorem 6. [PS91,PS93]The 0-1 law fails for the class�11(889).
Proof: (Sketch): The proof proceed by construting a�11(889) sentence	 (with 43
clauses!) over a certain vocabularyR such that a finite structureD overR satisfies	 if
and only if the cardinality of the universe ofD is of the form(n2+3n+4)=2 for some
integern.

The construction of the above sentence	 uses ideas from Goldfarb’s [Gol84] proof
of the unsolvability of the satisfiability problem for the G¨odel class. The main technical
innovation in that proof was the construction of a889 first-order sentence� that is
satisfiable, but has no finite models. The�11(Gödel) sentence	 that has no asymptotic
probability is obtained by modifying� appropriately.

We can conclude that for first-order logic with equality the classifications of prefix
classes according to their docility and according to the 0-1law for the correspond-
ing �11 fragments are identical. This follows from the positive results for the classes�11 (Bernays-Schönfinkel) and�11(Ackermann), and the negative results for the classes�11(898),�11(83), and�11(889).

Let us now consider the classification for the prefix classes without equality. Clearly,
the 0-1 laws for the classes�11 (Bernays-Schönfinkel) and�11(Ackermann) hold. On the
other hand, the sentences used the demonstrate the failure of the 0-1 laws for�11(898),�11(839), and�11(889) all used equality. To complete the classification without equal-
ity, we need to settle the status of the 0-1 law for the equality-free version of the latter
three classes.

Consider first the class�11(839). We showed earlier that it can express PARITY
using equality. It turns out that without equality it can express PARITY almost surely.
Consider the sentence(9R)(9S)(8x)(8y)(8z)(9w)[S(x;w) ^ (S(x; y) ^ S(x; z)! R(y; z)) ^(S(x; z)$ S(z; x)) ^ :S(x; x) ^ (R(x; y)$ (E(x; z)$ E(y; z)))℄:
It is shown in [KV90] that with asymptotic probability 1 thissentence is equivalent to
the above�11(839) sentence with equality that expresses PARITY, so neither sentence
has an asymptotic probability. Thus, the 0-1 law fails for the class�11(839) without
equality.

A similar argument applies to the class�11(898). Consider the sentence(9U)(9S)8x9y8z[(E(x; z)$ S(y; z)) ^ [(E(y; z)$ S(x; z)) ^ (U(x)$ :U(y)℄:
It is shown in [Ved97] that this sentence expresses PARITY almost surely, so it has
no asymptotic probability. Thus, the 0-1 law fails also for the class�11(898) without
equality. (See also [Ten94].)



So far, the classifications of prefix classes according to their docility and according
to the 0-1 law for the corresponding�11 fragments seem to agree also for prefix classes
without equality. Here also the difficult case was the Gödelclass. Recall that the Gödel
class without equality is docile. Nevertheless, Le Bars showed that the 0-1 law for the
class�11(Gödel) without equality fails [LeB98], confirming a conjecture in [KV90].
This implies that the two classificiation do not coincide without the presence of equality.

The failure of the 0-1 law for�11(889) without equality is demonstrated by showing
that this class can express a certain property that does not have an asymptotic proba-
bility. Recall that a setU of nodes of a directed graphG = (V;E) is independentif
there are no edges between nodes inU anddominatingif there is an edge from each
node inV � U to some node ofU . We say thatU is akernelif it is both independent
and dominating. The KERNEL property says that the graph has at least one kernel. It is
easy to express KERNEL in�11(889) without equality:(9U)(8x)(8y)(9z)[((U(x) ^ U(y))! :E(x; y)) ^ (:U(x)! (U(z) ^ E(x; z)))℄:
The KERNEL property has asymptotic probability 1 [dlV90]. Le Bars [LeB98] defined
a variant of KERNEL, using a vocabulary with 16 binary relation symbols, that is also
expressible in�11(889) without equality. He then showed that this property does not
have an asymptotic probability.

Why do the docility classification and the 0-1 classificationdiffer on the Gödel
class? As has been already established in [Gol84], the “well-behavedness” of the Gödel
class is very fragile. While the Gödel class without equality is docile, the class with
equality is not. Thus, the addition of one built-in relationsuffices to destroy the well-
behavedness of the class. In the context of the 0-1 law, we areeffectively adding a
built-in relation–the random graph. Apparently, adding the random graph as a built-in
relation also suffices to destroy the well-behavedness of the Gödel class.

While there is some intrinsic connection between docilty and 0-1 laws (see discus-
sion in [KV89]), the failure of the 0-1 law for the class�11(889) without equality shows
that the two classifications need not be identical. In fact, Le Bars’s result demonstrates
another instance of such a divergence. Consider fragments of first-order logic defined
according to the number of individual variables used. Thus,FOk is the set of first-order
sentences with at mostk variables. The unsolvability of the prefix class898 shows that
FO3 is unsolvable. On the other hand, it is known that FO2 is solvable [Mor75] (in fact,
satisfiability of FO2 is NEXPTIME-complete [GKV97]). The failure of the 0-1 law for
the class�11(898) implies its failure for the class�11(FO3). Le Bars, however, showed
that his variant of KERNEL can be expressed in�11(FO2) without equality. Thus, FO2
is docile even with equality, but�11(FO2) without equality does not have a 0-1 law.

References

[AHV95] Abiteboul, S, Hull, R., Vianu, V.:Foundations of Databases. Addision-Wesley,
1995.

[AH78] Abramson,F.D., Harrington, L.A.: Models without indiscernibles.J. Symbolic Logic
43(1978),pp. 572–600.
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