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Abstract. The probability of a property on the collection of all finitelational
structures is the limit a& — oo of the fraction of structures with elements
satisfying the property, provided the limit exists. It isdem that the 0-1 law
holds for every property expressible in first-order logie.,i the probability of
every such property exists and is either 0 or 1. Moreoverasaciated decision
problem for the probabilities is solvable.

In this survey, we consider fragments of existential seewmtr logic in which
we restrict the patterns of first-order quantifiers. We foongragments in which
the first-order part belongs to a prefix class. We show thatkhssifications of
prefix classes of first-order logic with equality accordinghe solvability of the
finite satisfiability problem and according to the 0-1 law fbe corresponding
X! fragments are identical, but the classifications are diffewithout equality.

1 Introduction

In recent years a considerable amount of research actigityoben devoted to the study
of the model theory of finite structures [EF95]. This theogslinteresting applica-
tions to several other areas including database theory [28]nd complexity theory
[Imm98]. One particular direction of research has focusethe asymptotic probabili-
ties of properties expressible in different languages heassociated decision problem
for the values of the probabilities [Com88].

In general, if C is a class of finite structures over some vocabulary andl i§
a property of some structures @, thenthe asymptotic probability:(P) on C is the
limit asn — oo of the fraction of the structures ifi with n elements which satisf,
provided that the limit exists. We say thBtis almost surely truen C' in caseu(P)
is equal to 1. Combinatorialists have studied extensiedyasymptotic probabilities of
interesting properties on the claSsof all finite graphs. It is, for example, well known
and easy to prove that(connectivity)=1, whileu(k-colorabilty)=0, for everyk > 0
[Bol85]. A theorem of Posa [Pos76] implies thaHamiltonicity)=1.

Glebskii et al. [GKLT69] and independently Fagin [Fag76]revéhe first to estab-
lish a fascinating connection between logical definabditgl asymptotic probabilities.
More specifically, they showed thatdf is the class of all finite structures over some
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relational vocabulary and iP is an arbitrary property expressible in first-order logic
(with equality), thenu(P) exists and is either 0 or 1. This result is knownthas 0-1
law for first-order logic The proof of the 0-1 law also implies that the decision prob-
lem for the value of the probabilities of first-order sentesés solvable. This should
be contrasted with Trakhtenbrot’s [Tra50] classical tle@orto the effect that the set
of first-order sentences which are true alhfinite relational structures is unsolvable,
assuming that the vocabulary contains at least one binktjae symbol.

It is well known that first-order logic has very limited exgeive power on finite
structures (cf. [EF95]). For this reason, one may want testigate asymptotic prob-
abilities for higher-order logics. Unfortunately, it is®ato see that the 0-1 law fails
for second-order logic; for example, parity is definable byexistential second-order
sentence. Moreover, the 0-1 laws fails even for existentiahadic second-order logic
[KS85,Kau87]. In view of this result, it is natural to askedhere fragments of second
order-logic for which a 0-1 law holds?

The simplest and most natural fragments of second-ordér &g formed by con-
sidering second-order sentences with only existentiadrsg®rder quantifiers or with
only universal second-order quantifiers. These are the kvelivn classes of} and
IT} sentences respectively. Fagin [Fag74] proved that a pipjseE| definable if and
only if it is NP-computable. As we observed, the 0-1 law féils X] in general (and
consequently fod7! as well). Moreover, it is not hard to show that thg sentences
having probability 1 form an unsolvable set.

In view of these facts, we concentrate on fragment&'bfsentences in which we
restrict the pattern of the first-order quantifiers that adeuthe sentence. IfF is a
class of first-order sentences, then we denote&lbyF) the class of all’} sentences
whose first-order part is itF. Two remarks are in order now. First, ff is the class
of all 3*v*3* first-order sentences (that is to say, first-order sentewbese quantifier
prefix consists of a string of existential quantifiers, falked by a string of universal
quantifiers, followed by a string of existential quantifietthen X} (F) has the same
expressive power as the full}. In other words, every! formula is equivalent to one
of the form3S3xVy3z6(S, x,y,z), wheref is a quantifier-free formula§ is a se-
quence of second-order relation variables ang, z are sequences of first-order vari-
ables Skolem normal forin Second, ifp(S) is a first-order sentence without equality
over the vocabular$, thenu(3S¢(S)) = 1 if and only if ¢(S) is finitely satisfiable.
Thus, for every first-order clasg, the decision problem foE] (F) sentences having
probability 1 is at least as hard as the finite satisfiabilityljpem for sentences ift.
The latter problem is known to be unsolvable [Tra50], evethacase wheré is the
class of3*V*3* sentences ([BGG97]). As a result, in order to pursue pesgolvabil-
ity results one has to consider fragme®ts(F), whereF is a class for which the finite
satisfiability problem is solvable. Such classésf first-order sentences are said to be
docile[DG79].

In first-order logicwithout equalitythere are three docilerefix classes.e., classes
of first-order sentences defined by their quantifier prefix (83]:

— The Bernays-Saobnfinkel classwhich is the collection of all first-order sentences
with prefixes of the fornd*v* (i.e., the existential quantifiers precede the universal
quantifiers).



— The Ackermann classvhich is the collection of all first-order sentences witlepr
fixes of the formd*V3* (i.e., the prefix contains a single universal quantifier).

— TheGodel classwhich is the collection of all first-order sentences witkefpres of
the form3*vv3* (i.e., the prefix contains two consecutive universal quigng).

These three classes are also the only prefix classes thaahso@able satisfiability
problem [BGG97]. In first-order logiwvith equality the Godel class is not docile and
its satisfiability problem is not solvable [Gol84]. This Isetonly class where equality
makes a difference.

We focus here on the question whether the 0-1 law holds for’théragments
defined by first-order prefix classes, and whether or not teeaated decision prob-
lem for the probabilities is solvable. This can be viewed akasification of the prefix
classes according to whether the correspondihdragments have a 0-1 law. This clas-
sification project was launched in [KVV87] and was completely cecently in [LeB98].
For first-order logic with equality, the classifications @éfix classes according to their
docility, i.e., according to the solvability of their finitatisfiability problem, and ac-
cording to the 0-1 law for the correspondindg fragment are identical. Moreover,
0-1 laws in this classification are always accompanied byadility of the decision
problem for the probabilities. This is manifested by theifies results for the classes
X1 (Bernays-Schonfinkel) and| (Ackermann, and the negative results for the other
classes. For first-order logic with equality, the two cléisation differ, as the 0-1 law
fails for the class¥] (Gode) and the association classification problem is undecidable.

This paper is a survey that focuses on the overall pictuteerahan on technical
details. The interested reader is referred to the citedngdpefurther details. Our main
focus here is on positive results involving 0-1 laws. For evey that focus on negative
results, see [LeB0O]. For an earlier overview, which inés@ focus on expressiveness
issues, see [KV89]. See [Lac97] for results on 0-1 laws fooad-order fragments that
involves alternation of second-order quantifiers.

2 Random Structures

Let R be a vocabulary consisting of relation symboitdy and letC' be the collection of
all finite relational structures ov& whose universes are initial segmefits2,...,n}
of the integers. IfP is a property of (some) structures @, then letu, (P) be the
fraction of structures irC of cardinality n satisfying P. The asymptotic probabilty
u(P) onC is defined to bei(P) = lim,,_,, p, (P), provided this limit exists. In this
probability space all structures i with the same number of elements carry the same
probability. An equivalent description of this space carob&ined by assigning truth
values to tuples independently and with the same probykdit [Bol85]).

If L is a logic, we say that the Odaw holds forL on C in caseu(P) exists and is
equal to 0 or 1 for every property expressible in the logi&. We write ©(L) for the
collection of all sentence® in L with u(P) = 1. Notice that ifL is first-order logic,
then the existence of the 0-1 law is equivalent to stating@{d) is a complete theory.

A standard method for establishing 0-1 laws, originatind-agin [Fag76], is to
prove that the followingransfer theorenmolds: there is an infinite structure over the
vocabularyR such that for every propert? expressible inL we have:A |= P <



u(P) = 1. It turns out that there is a unique (up to isomorphism) cobletatruc-
ture A that satisfies the above equivalence for first-order logitfanthe fragments of
second-order logic considered here. We dathe countable random structure over the
vocabularyR. The structureA is characterized by an infinite set ettension axioms
which, intuitively, assert that everype can beeztended to every other possible type.
More precisely, itk = (z1,...,z,) is a sequence of variables, then-&-typet(x) in
the variablesk overR is a maximal consistent set of equality and negated equfality
mulas and atomic and negated atomic formulas from the vdaghbR . in the variables
z1,...,%,. We say that &n + 1)-R-types(x, z) extends the typgx) if ¢ is a subset of
s. Every typet(x) can be also viewed as a quantifier-free formula that is thguoen
tion of all members of(x). With each pair of types andt such thats extendst we
associate a first-ordextension axiomr which states thatvx) (t(x) — (3z)s(x, z)).

Let T' be the set of all extension axioms. The the@ryas studied by Gaifman
[Gai64], who showed, usinglzack and fortrargument, that every two countable mod-
els of T are isomorphic (i.e.T is anw-categorical theory. The extension axioms can
also be used to show that the unique (up to isomorphism) abilentnodelA of T is
universalfor all countable structures ovl, i.e., if B is a countable structure ov&,
then there is a substructure Afthat is isomorhic td.

Fagin [Fag76] realized that the extension axioms are ratdeahe study of proba-
bilities on finite structures and proved that on the cl@ssf all finite structures over a
vocabularyR u(7) = 1 for every extension axiom. The 0-1 law for first-order logic
and the transfer theorem between truth of first-order seeeonA and almost sure
truth of such sentences @hfollows from these results by a compactness argument. We
should point out that there are different proofs of the Ovi flar first-order logic, which
have a more elementary character (cf. [GKLT69,Com88]).sEhroofs do not deploy
infinite structures or the compactness theorem and theydsytha transfer theorem. In
contrast, the proofs of the 0-1 laws for fragments of secortt®r logic that we present
here do involve infinitistic methods. Lacoste showed hovs¢hiafinitistic arguments
can be avoided [Lac96].

Since the seT of extension axioms is recursive, it also follows tii4tL) is recur-
sive, whereL is first-order logic. In other words, there is an algorithmdgecide the
value (0 or 1) of the asymptotic probability of every firsder sentence. The computa-
tional complexity of this decision problem was investighty Grandjean [Gra83], who
showed that it is PSPACE-complete, when the underlying lvalealy R is assumed to
beboundedi.e., there is a some bound on the arity of the relation syaibar).

3 Existential and Universal Second-Order Sentences

The X} and I1{ formulas form the syntactically simplest fragment of se:@nder
logic. A X formula over a vocabularR is an expression of the for3S)#(S), where
S is a sequence of relation symbols not in the vocabuRagndé(S) is a first-order for-
mula over the vocabula@R U S. A I7; formula is an expression of the for(WS)é(S),
whereS andf(S) are as above.

Both the 0-1 law and the transfer theorem fail for arbitratyy and I7{ sentences.
Consider, for example, the statement “there is relatiot ihthe graph of a permuta-



tion in which every element is of order 2”. On finite structsithis statement is true
exactly when the universe of the structure has an even nuofledements and, as a
result, it has no asymptotic probability. This statemeatyéver, is expressible by B}
sentence, which, moreover, is true on the countable randmtigre A. Similarly, the
statement “there is a total order with no maximum elementtug on the countable
random structure\, but is false on every finite structure. Notice that in the fweced-
ing examples the transfer theorem 6} sentences fails in the direction from truth on
the countable random structufeto almost sure truth on finite structures. In contrast,
the following simple lemma shows that this direction of trensfer theorem holds for
all I1} sentences.

Lemma 1. [KV87] LetA be the countable random structure o\Rrand let(VS)d(S)
be an arbitraryII] sentence. IA = (VS)#(S), then there is a first order sentenge
over the vocabulary such that:u(y) = 1 and= ¢ — (VS)6#(S). In particular, every
IT} sentence that is true oA has probability 1 orC.

The proof of Lemma 1 uses the Compactness Theorem. For anagipthat avoid the
usage of infinitistic arguments, see [Lac96].

Corollary 1. [KV87] Every X{ sentence that is false on the countable random struc-
ture A has probability O orC.

Corollary 2. [KV87] The set ofI; sentences that are true @énis recursively enumer-
able.

Proof: It shown in [KV87] thatA |= (VS)4(S) iff (VS)6(S) is logically implied by the
setT of extension axiomdl

We investigate here classesBf andI] sentences that are obtained by restricting
appropriately the pattern of the first-order quantifiersiolssentences. If is a class of
first-order formulas, then we writ&1 (F) for the collection of all¥'] sentences whose
first-order part is inF.

The discussion in the introduction suggests that we congiddix classesF that
are docile, i.e., they have a solvable finite satisfiabilitgtgem. Thus, we focus on the
following classes of existential second-order sentences:

— TheclassZ} (3*v*) of X} sentences whose first-order part Bernays-Sabnfinkel
formula.

— The class¥] (3*V3*) of ¥ sentences whose first-order part isfckermanrfor-
mula.

— The class¥] (3*VV3*) of X! sentences whose first-order part i§adelformula.

We also refer to the above as thg (Bernays-Schonfinkel) class, thgl (Ackermann)
class, and ther] (Godel) class, respectively. We consider these classtsvith and
without equality.

Fagin [Fag74] showed that a class of finite structures ovescabularyR. is NP
computable if and only if it is definable by)X! sentence oveR. The restricted classes
of X1 sentences introduced above can not express all NP problefirste structures.
In spite of their syntactic simplicity, however, the classg} (3*v*), 2} (3*v3*) and
X1(3*vVv3*) can express natural NP-complete problems [KV87,KV90].



4 The ClassX] (Bernays-Sctdnfinkel) with Equality

4.1 0-1Law

Lemma 1 and Corollary 1 reveal that in order to establish tiel@w for a classF of
existential second-order sentences it is enough to shaviftias a sentence iff that
is true on the countable random structiethenu(¥) = 1. In this section we prove
this to be the case for the classBf (Bernays-Schonfinkel) sentences.

Lemma 2. [KV87] Let (3S)(3x)(Vy)A(S,x,y) be aX}(3*V*) sentence that is true
on the countable random structufe Then there is a first order sentengevers such
that u(¢) = 1 and =, ¢ — (3S)(3x)(Vy)0(S, x,y), where=;, denotes truth in
all finite structures. In particular, if? is a X{ (3*V*) sentence that is true oA, then
w(@) = 1.

Proof: Leta = (ay, ..., a,) be a sequence of elementsAfthat witness the first-order
existential quantifiersc in A. Let A be the finite substructure c& with universe
{a1,...,a,}. Then there is a first-order sentengewhich is the conjunction of a finite
number of the extension axioms, having the property thatyewedel of it contains

a substructure isomorphic tAg. Now assume thaB is a finite model ofy). Using

the extension axioms we can find a substrucreof the random structurd that
containsA and is isomorphic td. Since universal statements are preserved under
substructures, we conclude tHat= (3S)(3x)(Vy)d(S, x,y), wherex is interpreted

by a andS is interpreted by the restriction #® of the relations orA that witness the
existential second-order quantifiells.

From Lemmas 1 and 2 we infer immediately the 0-1 law and thesfea theorem
for the class¥| (3*Vv*).

Theorem 1. [KV87] The 0-1 law holds for] (Bernays-Sobtinfinkel) sentences on the
classC of all finite structures over a relational vocabulaBg. Moreover, ifA is the
countable random structure antl is a X'} (Bernays-Sobnfinkel) sentence, theA =
U= pu@)=1.

4.2 Solvability

As mentioned in Section 2, the proof of the 0-1 law for firstler logic showed also
the solvability of the decision problem for the values (0 drof the probabilities of
first-order sentences. The preceding proof of the 0-1 lawipBernays-Schonfinkel)
sentences does not yield a similar result for the associ@getsion problem for the
probabilities of such sentences. Indeed, the only infoionatne can extract from the
proof is that theZ] (Bernays-Schonfinkel) sentences of probability 0 formaaursively
enumerable set. We now show that the decision problem foptbleabilities of sen-
tences in the clas&| (Bernays-Schonfinkel) is solvable. We do this by provingtth
satisfiability of such sentences énis equivalent to the existence of certaimnonical
models. For simplicity we present the argument¥r(vV*) sentences, i.e., sentences of
the form

351 ESNy1Vym9(Sl, ceey Sl, Y1y oeny ym)



Assume that the vocabulagy consists of a sequend® = (R;,i € I) of relation
variablesR;. If B is a set and, for each € I, RP is a relation onB of the same
arity as that ofR;, then we writeR? for the sequencéR?.i € I). Let < be a new
binary relation symbol and consider structuids= (B, R?, <?) in which <? is a
total ordering Letk be a positive integer. We say tHBtis k-rich if for every structure
D with k elements oveR U {< } (where< is interpreted by a total ordering) there is a
substructurd3* of B that is isomorphic td. Notice that the isomorphism takes into
accountoththe relations?” and the total ordering:”.

Assume thatS® is ann-ary relation onB. We say thatS? is canonical for the
structureB = (B, RZ, <B) if for every sequenc® = (by,...,b,) from B the truth
value of SB(by, ..., b,) dependsonly on the isomorphism type of the substructure of
B with universe{by, ..., b, }. An expanded structurB* = (B,R”,<B SP .. SP)
is canonicalif every relationS?, 1 < i < [, is canonical orB. The intuition behind

(3

canonical structures is that the relatio#ié are determined completely by thiR, <)-

types.
We can state now the main technical result of this section.

Theorem 2. [KV87] Let A be the countable random structure over the vocabutary
and let¥ be a X! sentence of the foraS;... 35, Vy1..VymB(S1, s St Y1y ooy Ym)-
Then the following are equivalent:

1. AW
2. There is a finite canonical structu®* = (B,RP,<B SP ... SP) which is k-
rich for every kK m and such thaB* |= Vy1...Vym8(S1, ..., Si, Y1y ooy Ym )-

In showing that{1) = (2) we will use certain Ramsey-type theorems that were
proved by [NR77,NR83] and independently by [AH78]. We fallbere the notation
and terminology of [AH78] in stating these combinatoriaduks.

If X is asetand is an integer, thepX |’ is the collection of all subsets of with ;j
elements anfiX]<" = Uj<n[X)7. A system of colorss a sequencK = (K7, ..., Kp)
of finite nonempty sets. K -colored setonsists of a finite seX, a (total) ordering< X
on X and a functionf : [X]S" — K; U...U K, such thatf(Z) € K; for every
Z € [X) andj < n.

It is clear that everK-colored set is isomorphic to a uniqlepattern that is a
K-colored set whose underlying set is an integee, l#/ are integersK is a system
of colors, P, Q areK-patterns, ther) — (P)ﬁe means that for everi(-colored set
(X, f) of patternQ) and every partitior¥” : (X)<¢ — M there is a subsét of X such
that(Y, f |v) is of patternP, andY” is conditionally monochromatior F' asK -colored
set, i.e. forZ € [Y)’ the valueF'(Z) depend®nly on theK -pattern of(Z, f | z).

By iterated applications of Theorem 2.2 in [AH78], we canigethe following
generalization of the classical Ramsey theorem [Ram28]:

Theorem 3. [KV87] For arbitrary integerse, M, a system of color€, and aK -pattern
P, there is aK-pattern@ such thaty) — (P)]%j.

With every finite vocabulanR. in which the maximum arity i& we can associate
a system of color& such that every finite structu®® = (B, RZ, <?), where<?® is
a total ordering o3, can becodedby aK-colored se( B, <Z, f) with f : [B]<"



K, U...U K,. For example, ifr consists of a single binary relatiaR, then K; has
2 elements K, has 4 elements, anfl : [B]<? — K; U K> is such that the value
f({z}) depends only on the truth value Bf (z, z), while the valuef ({z,y}) depends
only onthe truth values @k ® (min(z, y), maz(z, y)) andR? (maz(z, y), min(z,y)).
Conversely, from every sudk-pattern we calecodea finite structureB.

We now have all the combinatorial machinery needed to caitlire ideas in the
proof of Theorem 2.

Sketch of Proof of Theorem 2.

(1) = (2) Let ¥ be theX| sentence’ such thatA = ¥ and assume for sim-
plicity that ¥ has only one ternary second-order existential varighlé\Ve use the
ternary relationS4 witnessingS on A to partition[A]<* according to thepure Stype
of a setZ € [A]=. This means thatl is partitioned into two pieces defined by the
truth value ofS4(z, z, z), [A]? into 22°~2 = 64 pieces defined by the truth values of
SA(min(z,y), maz(x,y), max(z,y)), etc., and finallyA]® is partitioned inte2* =
64 pieces defined by the truth values®ft (min(z, vy, 2), mid(z, y, 2), maz(z,y, 2)),
etc..

LetB = (B, R”, <®) be a finite structure which isrich for everyk < m and let
P be aK-pattern which codeB in the way described above. We apply now Theorem
3fore =3, M =2+ 64 + 64 = 130, and forP codingB. Let () be aK-pattern such
that@) — (P)]%3 and letC be the structure coded lgy. Using the extension axioms for
the countable random structutewe can find inA a substructur€, isomorphic toC.
But now Theorem 3 guarantees tlia contains a substructui®;, which is isomorphic
to B and is conditionally monochromatic askacolored pattern. The structuii®; is
k-rich for everyk < m and by taking the restriction §* on B; we can expand;
to a canonical modeB* of Vyi...Vy,0(S,y1,...,ym), SiNCe universal sentences are
preserved under substructures.

(2) = (1) From every canonicak-rich model ( < k < m) of

vylvyma(s, Y1,y ym)

we can build a relatior5 4 witnessing the second order existential quantifie@iby
assigning tuples t§4 according to theitR, <)-type.ll

Theorem 2 implies that the set &f} (3*V*) properties having probability 1 is re-
cursively enumerable. On the other hand, Theorem 1 and l@oy@& together imply
that the complement of this set is also recursively enumerdthus, we have estab-
lished that the decision problem for the probabilities ofst™] properties is solvable.
This proof does not give, however, any complexity boundgHerproblem. In [KV87]
we analyzed the computational complexity of this decisiosbfem and showed that
it is NEXPTIME-complete for bounded vocabularies and 2NEXW®E for unbounded
vocabularies.

5 The ClassX}(Ackermann) with Equality

Our goal here is to establish the following:



Theorem 4. [KV90] Let A be the countable random structure over the vocabuRry
and let¥ be aX| (Ackermanisentence. IA = ¥, thenu(¥) = 1.

This theorem will be obtained by combining three separataies. Since the whole
argument is rather involved, we start with a “high-level’sdaption of the structure of
the proof.

We first isolate a syntactic condition (conditiop) elow) for ¥+ (Ackermann sen-
tences and in Lemma 3 we show thafifs a ! (Ackermann sentence which is true on
A, then condition ) holds for@. At the end, it will actually turn out that this condition
(x) is also sufficient for truth of] (Ackermann sentences on the countable random
structureA. In Lemma 4, we isolate a “richness” propeiy, s > 1, of (some) finite
structures oveR and show thau(Es) = 1 for everys > 1. The proof of this lemma
requires certain asymptotic estimates from probabiligotty, due to Chernoff [Che52].
Finally, in Lemma 5, we prove that # is a ¥} (Ackermann sentence for which con-
dition (x) holds, then for appropriately choserand for all largen the sentenc# is
true on all finite structures of cardinality over R that possess property,; conse-
quently,u(¥) = 1. In this last lemma, the existence of the predic8dhat witness
¥ is proved by a probabilistic argument, which in spirit is Egmus to the technique
used by Gurevich and Shelah [GS83] for showing the finitesBaliility property of
first-order formulas in the Godel class without equality.

Let T be a vocabulary, i.e. a set of relational symbols. Recal, tha-T-type
t(z1, ..., z1) is @ maximal consistent set of equality, negated equalityfdas, atomic
and negated atomic formulas whose variables are among, zy.

— If t(x1, ..., zx) is ak-T-type, then, for everyn with 1 < m < k, lett(z;,, ..., 24, )
be them-T-type obtained by deleting fror(z1, ..., zx) all formulas in which a
variabley # z;,,...,x;, OCCUrS.

— If S C T, then therestrictionof ¢ to S is thek-S-type obtained by deleting from
all formulas in which a predicate symbolsTh— S occurs.

—If t(z1,....,z5,2p11) is @ (k + 1)-T-type, andy is a variable different from all
the z;’s, thent(zy, ..., xx, 241 /y) is a(k + 1)-T-type obtained by replacing all
occurrences ofy,1 by y.

— Lett(zy,...,x;) be ak-T-type, and letp(z, ..., z;) be a quantifier-free formula
in the variablesey, ..., z;. We say that satisfies¢ if ¢ is true under the truth
assignment that assigns true to an atomic formula precigedn it is a member of
t.

Let¥ be aX| (Ackermann sentence of the form

(3S)(Fz1) ... Cxr)(Vy)3z1) ... Bz)d(x1, . .., Tk, Y, 21,5 - -+, 21, R, S),

whereg is a quantifier-free formula over the vocabulaR;$)=RUS.

We say thatcondition () holds for? if there is k-(R,S)-type to(z1, ..., ¢ ) and
a setP of (k + 1)-(R,9)-typest(zy, ..., zx,y) extendingto(zy, ..., xx) such that the
following are true:

1. P contains as a member tlie + 1)-(R, S)-typetJ (z1, ..., 2k, y), for everyi =
1...k. Equivalently, for every, 1 < i < k, there is a type;(z1,...,2¢,y) In P
such thati(azl, ey Ty y/:ﬂz) = to(:ﬂl, . CUk)



2. PisR-rich overtg(z1, ..., xy), i.e., every(k + 1)-R-typet(z1, ..., z1,y) extending
the restriction ofiy(x1, ..., zx) to R is itself the restriction of somgk + 1)-(R,S)-
type in P to R.

3. Foreach(zy,...,z,y) in Pthereis &k + 1 + 1)-(R,9)-type

such that C t', ¢’ satisfiesp(z1,...,zk,y,21,...,21), and foreach;, 1 <i <1,

3

the (k + 1)-(R,9)-typet' (1, ..., zx, z; /y) isin P.

Lemma 3. [KV90] Let A be the countable random structure over the vocabuRry
and let¥ be aX| (Ackermani sentence. IA = ¥, then condition ) holds for&.

Proof: (Hint) The typet, and the set of typeB required in condition) are obtained
from the relations o\ and the elements & that witness the existential second-order
quantifiers(3S) and the existential first-order quantifigfz, ) . .. (3z) in ¥ respec-
tively. To show thatP is R-rich, we use the fact that the countable random structure
A satisfies the extension axioms, which in turn imply that tleenents ofA realize all
possibleR-typesli

Let D be a structure oveR and leté = (c¢1,...,c¢n) be a sequence of elements
from D. Thetypetz of ¢ on D is the uniquen-R-typet(z1, ..., z,) determined by
the atomic and negated atomic formulas that the sequesatsfies onD, under the
assignment; — ¢;, 1 < i < m. We say that a sequenegeealizesa typet on a
structureD if tz = .

Lets > 1 be fixed. We say that a finite structubeoverR with n elementsatisfies
property E; if the following holds:

— For every number with 1 < m < s, every sequence = (cy,...,c¢y,) from
D and every(m + 1)-R-typet(z1, ..., zm, zm+1) €xtending the typé; of ¢ on D,
there are at leastn differentelementd in D such that each sequengg, . . . , ¢, d)

realizes the typé(z1, .. ., Zm, Zm+1)-

Lemma 4. [KV90] For everys > 1 there is a positive constantand a natural number
no such that for every, > ng p,(Es) > 1 — n®tle=c", In particular, u(E;) = 1, i.e.
almost all structures oveR satisfy propertyF, for everys > 1.

Proof: (Sketch) The proof of this lemma uses an asymptotic boundhemtobability

in the tail of the binomial distribution, due to Chernoff [€52] (cf. also [Bol85]). We
first fix a sequence from D and a typet that extendsz, and apply this bound to
the binomial distribution obtained by counting the numbkeglements] such that the
sequencéc, . .., cn, d) realizest. We then iterate through all types and all sequences

c=(c1y...,cm)forl <m < s.l

The last lemma in this section provides the link between ttand(y), propertyEs,
s > 1, and satisfiability of2] (Ackermann sentences on finite structures oRer

Lemma 5. [KV90] Let?¥ be a ¥} (Ackermanhsentence of the form

(3S)(Fz1) ... Fxr)(Vy)3z1) ... Fz) P15 - ., 2k, Y, 21, - -+, 21, R, S)



for which condition §) holds. There is a natural number such that for every, >
n1, If D is a finite structure oveR with n elements satisfying properfyi,+1, then
DEW.

Proof: (Sketch) The existence of the relationsBrthat witness the second-order quan-
tifiers (3S) in ¥ is proved with a probabilistic argument similar to the onepéoyed

by Gurevich and Shelah [GS83] for the finite satisfiabilitpperty of the Godel class
without equality. We use conditiory} to impose onD a probability space d predi-
cates. The richness propetBy,. ;11 is then used to show that with nonzero probabil-
ity (in this new space) the expansion Bfwith these predicates satisfies the sentence

(Fz1) ... Cze)(Vy)(32) ... 320 (Y, 21, ..., 21,S). 1

This completes the outline of the proof of Theorem 4. Contigniow this theorem
with Lemma 1 we derive the main result of this section.

Theorem 5. [KV90] The 0-1 law holds for the’} (Ackermani class on the collection
C of all finite structures over a vocabulaf. Moreover, ifA is the countable random
structure oveR and¥ is a X'} (Ackermani sentence, theA = ¥ < u(¥) = 1.

Notice that the preceding results also show that/gAckermann sentence’ has
probability 1 if and only if condition ) holds for¥. Since condition X) is clearly
effective, it follows that the decision problem for the veduof the probabilities of
Y1 (Ackermann sentences is solvable. In [KV90] we analyzed the computaticom-
plexity of this decision problem and showed that it is NEX®MB-complete for bounded
vocabularies and’;*”-completé for unbounded vocabularies.

6 Negative Results and Classifications

The Bernays-Schonfinkel and Ackermann classes are thedoulie prefix classes with
equality, i.e., they are the only prefix classes of first-otdgic with equality for which
the finite satisfiability problemis solvable [BGG97]. A keyle in this classification was
played by theGodel classwith equality, which is the class of first-order sentencethiwi
equality and with prefix of the forrdv3*. In fact, the classification was completed only
when Goldfarb [Gol84] showed that th@nimal Gddel classi.e., the class of first-order
sentences with equality and with prefix of the fovivid, is not docile (contradicting an
unproven claim in [God32]). We now show that in the preserfcequality the same
classification holds for the 0-1 law, namely, the 0-1 law Isdtar the X fragments that
correspond to docile prefix classes.

It is easy to see that the 0-1 law does not hold for¥Hefragments that correspond
to the prefix classeg¢3Vv andv33. For example, the PARITY property, i.e., the property
“there is an even number of elements” can be expressed byotlsving X} (V3V)
sentence asserting that “there is a permutation in whichyelement is of order 2”;

(35)(Vz)(Fy) (V2)[S(z,y) A (S(x,2) = y = 2) A (S(x,2) > S(z,2)) A S(z,2)].
1 »5*7 is the second-level of the exponential hierarchy. It canésedbed as the class of lan-
guages accepted by alternating exponential-time Turinghinas in two alternations where

the machine start state is existential [CKS81] or as thesakx PP of languages accepted
by nondeterministic exponential-time Turing machineshvaitacles from NP [HIS85].



The statement “there is a permutation in which every elerisasitorder 2” can also be
expressed by the following| (Vvv3) sentence

(3) (V) (V) (¥2) (3)[S (2, 0) A (S(2,4) A Sz, 2) = 3 = 2) A
(S(z,2) & S(z,2)) A ~S(x,x)].

Dealing with the clas<] (Gode), i.e., the clas<] (YV3*) is much harder.
Theorem 6. [PS91,PS93The 0-1 law fails for the clas&] (VV3).

Proof: (Sketch) The proof proceed by construting 8] (Vv3) sentencel (with 43
clauses!) over a certain vocabuldysuch that a finite structur® overR satisfies? if
and only if the cardinality of the universe &f is of the form(n? + 3n + 4) /2 for some
integern.

The construction of the above senteficases ideas from Goldfarb’s [Gol84] proof
of the unsolvability of the satisfiability problem for theo@€l class. The main technical
innovation in that proof was the construction of/&3 first-order sentencé that is
satisfiable, but has no finite models. Thg(Gode) sentence that has no asymptotic
probability is obtained by modifying appropriatelyll

We can conclude that for first-order logic with equality thassifications of prefix
classes according to their docility and according to the vl for the correspond-
ing ¥{ fragments are identical. This follows from the positiveuks for the classes
X1(Bernays-Schonfinkel) anH; (Ackermann, and the negative results for the classes
YHVAY), D (v?), and X1 (VV3).

Let us now consider the classification for the prefix class#sout equality. Clearly,
the 0-1 laws for the classes (Bernays-Schonfinkel) and! (Ackermann hold. On the
other hand, the sentences used the demonstrate the fdite® 1 laws forX] (V3V),
»1(v*3), andX{ (VV3) all used equality. To complete the classification withouta
ity, we need to settle the status of the 0-1 law for the equéige version of the latter
three classes.

Consider first the clas®] (v33). We showed earlier that it can express PARITY
using equality. It turns out that without equality it can eegs PARITY almost surely.
Consider the sentence

(3R)(3S) (V) (Vy) (V=) (Fu)[S(z, w) A (S(w,y) A S(,2) = R(y,2)) A
(S(a,2) & S(z,2)) A~S(z,2) A (R(z,y) & (E(x,2) & E(y,2)))].

It is shown in [KVV90] that with asymptotic probability 1 théentence is equivalent to
the aboveX| (v33) sentence with equality that expresses PARITY, so neitheesee
has an asymptotic probability. Thus, the 0-1 law fails fog thass¥} (V23) without
equality.

A similar argument applies to the clasg (V3V). Consider the sentence

(BU)(3S)Va3yVz[(E(z,2) < S(y,2)) AN(E(y, 2) © S(z,2)) A(U(z) < -U(y)].

It is shown in [Ved97] that this sentence expresses PARIToal surely, so it has
no asymptotic probability. Thus, the 0-1 law fails also foe tclassY} (V3V) without
equality. (See also [Ten94].)



So far, the classifications of prefix classes according tw tfeeility and according
to the 0-1 law for the corresponding fragments seem to agree also for prefix classes
without equality. Here also the difficult case was the Gatleds. Recall that the Godel
class without equality is docile. Nevertheless, Le Barsasdtbthat the 0-1 law for the
class X} (Gode) without equality fails [LeB98], confirming a conjecture iKY90].
This implies that the two classificiation do not coincidehwitit the presence of equality.

The failure of the 0-1 law fo} (Vv3) without equality is demonstrated by showing
that this class can express a certain property that doesavetdn asymptotic proba-
bility. Recall that a setV of nodes of a directed grapil = (V, E) is independenif
there are no edges between node#ianddominatingif there is an edge from each
node inV — U to some node o/. We say thaU is akernelif it is both independent
and dominating. The KERNEL property says that the graph blgsast one kernel. It is
easy to express KERNEL if] (Vv3) without equality:

3U) (V) (Vy) (32)[((U(2) AU(y)) = —E(z,y)) A (SU(2) = (U(2) A E(x, 2)))].

The KERNEL property has asymptotic probability 1 [dIVO0E Bars [LeB98] defined
a variant of KERNEL, using a vocabulary with 16 binary redatsymbols, that is also
expressible in¥'! (Yv3) without equality. He then showed that this property does not
have an asymptotic probability.

Why do the docility classification and the 0-1 classificatiifier on the Godel
class? As has been already established in [Gol84], the “wedibvedness” of the Godel
class is very fragile. While the Godel class without eqyab docile, the class with
equality is not. Thus, the addition of one built-in relatisuffices to destroy the well-
behavedness of the class. In the context of the 0-1 law, weféeetively adding a
built-in relation—the random graph. Apparently, adding tandom graph as a built-in
relation also suffices to destroy the well-behavednesseoGibdel class.

While there is some intrinsic connection between dociltgt @l laws (see discus-
sion in [KV89]), the failure of the 0-1 law for the clasg' (Vv3) without equality shows
that the two classifications need not be identical. In faetBlars’s result demonstrates
another instance of such a divergence. Consider fragméfitstorder logic defined
according to the number of individual variables used. TR@ is the set of first-order
sentences with at moktvariables. The unsolvability of the prefix clagsV shows that
FO? is unsolvable. On the other hand, it is known thatF©solvable [Mor75] (in fact,
satisfiability of FG is NEXPTIME-complete [GKV97]). The failure of the 0-1 lawrfo
the classZ} (V3V) implies its failure for the clas&} (FO*). Le Bars, however, showed
that his variant of KERNEL can be expressedih(FO?) without equality. Thus, FO
is docile even with equality, buf] (FO?) without equality does not have a 0-1 law.
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