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Abstract

This is a survey of logical results concerning random structures. A class of relational structures
on which a (finitely additive) probability measure has been defined has a 0-1 law for a particular
logic if every sentence of that logic has probability either 0 or 1. The measure may be an asymptotic
probability on finite structures or generated on a class of infinite structures by assigning fixed prob-
abilities to independently occurring properties. Conditions under which all sentences of a logic have
a probability, and under which 0-1 laws occur, are examined. Also, the complexity of computing
probabilities of sentences is considered.

1 Introduction

The study of random structures has become one of the main branches of combinatorics. Logicians, always
eager to undertake a systematic investigation of an established field of mathematics, have recently turned
their attention to this area. In this survey, we will give an account of recent logical results concerning
three general problems:

1. For a given space of random structures, will all the properties expressible in a particular
logic be “measurable”? (I.e., will the notion of probability be defined for all sentences in the
logic?)

2. Can the probabilities of sentences be computed, and, if so, what is the complexity of the
computation?

3. Under what circumstances will all the sentences of a particular logic have probability either
0or 17

In the situation described in the third problem, we say that a (-1 law holds. Establishing a 0-1 law
makes precise the intuition that random structures in a given class look alike: from the point of view of a
particular logic, they share the same properties almost surely. When a 0-1 law holds, the second question
becomes a decision problem; we ask if it can be decided whether or not a property has probability 1.
Let us make these ideas precise. By a structure we always mean a relational structure; this is a tuple
(A, Ro, Ry, ..., Rr_1) where A (the universe of the structure) is a set and Rg, Ry,..., Ry_1 are relations
on A. (Functions and constants are treated as restricted relations. For example, we regard a unary
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functions as binary relations.) The classes of structures we consider will consist of structures of the same
similarity type. That is, they are all of the form (A, Ry, Ry, ..., Rg—1), where k is fixed and the arity of
each relation R;, for ¢ < k, is also fixed.

Our notion of a probability measure on a class C' of structures is much less stringent than the usual
definition from probability theory. A probability measure is a finitely additive function p : F — [0, 1],
where F is a collection of subsets of C' with the following properties: F contains § and C with u(C) = 1;
F is closed under finite disjoint unions; and if A, B € F with A C B, then B— A € F.

There are two general methods in combinatorics for defining a probability measure i on a class C.

The first is to take a limit of uniform measures on sets of structures of fixed finite cardinalities. This
method is closely related to the traditional enumeration problems of combinatorics (see Goulden and
Jackson [32] for a comprehensive account). For example, suppose C is closed under isomorphism, C,,
is the set of structures in C' with universe {0,1,...,n — 1}, and C), is nonempty for all large n. If we
define 1, (S) = |CnNS|/|Cr|, then u(S) = lim, o pn(S) is the labeled asymptotic probability of S (with
respect to C). Notice that taking F to be the collection of sets S for which u(S) is defined satisfies
our definition of probability measure. Take D,, to be a set of representative structures from each of the
isomorphism classes in Cy,. Then v,(S) = |D, N S|/|Dy| and v(S) = limp_oo vn(S) is the unlabeled
asymptotic probability of S.

In certain cases we may use a more general type of limit. For example, if p,,(5) is 0 when n is even
and 1 when n is odd, then lim, .o £, (S) is not defined, but the Cesaro limit

Jim (uo(S) +p1(S) + -+ + pn-1(S))/n

is defined and is, quite reasonably, equal to 1/2. The Ce3aro limit is just one of many summability
methods (so called because they are used to “sum” divergent series) that can be used to define probability
measures. We will present others in §4.

The second method for defining a probability measure is to specify probabilities of independently
occurring properties of structures and then define a product measure. The most well known example
occurs in the theory of random graphs, where a probability p is assigned the event of an edge occurrence
between each pair of distinct vertices from a given set. There are two ways that independent probability
measures (as we will call them) can be assigned on the class of graphs.

The first is to let Cy, be the class of graphs on n = {0,1,...,n — 1}, and C = |J,,5, Cn. We take

p to be a function of n and identify C,, with the product space {0,1}["}°. Here [n]? is the set of all
subsets of {0,1,...,n — 1} of cardinality 2 and each element of {0, 1}["]2 represents a graph with edges
between those pairs where the coordinate values are 1. An edge occurrence event is obtained by fixing a
coordinate position and taking the set of graphs in {0, 1}["’]2 whose coordinate value is 1 at that position.
Let pn be the usual product measure on Cy,, with p = p(n) the probability of each edge occurrence event,
and pn(S) = pn(Cr N'S). As we did with uniform distributions, take pu(S) = lim,—co pn(S). This, of
course, is the approach to random graphs initiated by Erd8s and Rényi [24]. (See Palmer [58] for an up
to date introduction and Bollobés [8] for a comprehensive account of the work in this area.)

The second way to generate an independent probability measure on a class of graphs is to let C be
the class of graphs on some infinite set A and p be constant. As in the preceding paragraph, C' can be
regarded as a product space. Let u be the product measure, and F the Borel sets, on C. In this case
we can also take the usual topology on C and consider the topological analogues of the measure 0 and
measure 1 sets, viz., the meager and comeager sets.

We must still say how logic figures in the study of random structures. Fix a class C of structures
of the same similarity type. A logic L for C' consists of a set objects called sentences and a relation =
holding between structures in C' and sentences from L. When M [= ¢ holds we say “M satisfies ¢” or
“M is a model of ¢.” We require that isomorphic structures in C satisfy precisely the same sentences.
We can now speak of probabilities of sentences, rather than probabilities of subsets of C, by defining

u(p) = p({M e C M ¢}).

In the next section we will describe a number of logics that are appropriate to the study of random
structures. In §3 we make the basic distinction between fast and slow growing classes of structures, and



review a few basic facts about generating series. In §4 we describe techniques used to prove convergence
and 0-1 laws for slow growing structures. In §5 we survey 0-1 laws for fast growing classes and their
associated complexity problems. In §6 we survey basic results about classes of structures with underlying
relations, such as successor relations and linear orders. In §7 we briefly describe results on independent
probability measures, including measures on infinite structures and recent work on 0-1 laws for random
graphs and random partial orders. In §8 will conclude with some open problems and suggestions for new
directions.

We have attempted to include statements of all of the major results in the area. Omissions are
inadvertent and the author would appreciate having them brought to his attention. We will follow the
approach taken by Oberschelp [54] in an earlier survey by emphasizing the intuitive ideas behind the
formal results; detailed proofs of all the theorems cited here would run to many pages. We also note
that Taylor [67] has reviewed several of the major papers in the area.

2 Logics

Much of the material in this section, particularly that related to first-order and second-order logic, will
be familiar to readers with a logical background. We have included just enough material to give a feel
for the area and to understand statements of results. For more details, consult Chang and Keisler [11].

To consider the computational complexity of probabilities, we usually regard sentences as consisting
of finite strings of symbols from a finite alphabet. (The only exception considered here will be sentences
of the logic Ly,,.) In all the logics we describe, we inductively define formulas and at the same time
define the set of free variables in a formula. Sentences are formulas whose set of free variables is empty.
We omit the definition of the satisfaction relation = holding between relational structures and formulas
as it is always straightforward.

The symbols that make up formulas are of two types. There are extralogical symbols Py, P, ..., Py_;
that are interpreted by the relations Ro, Ry, ..., Rr_1 in the structures (A4, Ro, Ry, ..., Rr_1) in C. There
are also logical symbols that are particular to the type of logic.

The most well known and most widely investigated logic is first-order logic, denoted FO here. The
logical symbols of FO include logical connectives A (and), V (or), = (not); the equality symbol =; quan-
tifiers V, 3; delimiters such as parentheses, comma, and space; and element variables ,v, z, £, Z1, . . ..
To be precise, we should point out that subscripts on variables are really strings of symbols—this is
important for complexity considerations. Formulas are either atomic formulas, of the form z = y or
P;(xo,21,...,xj-1) where j is the arity of R;, or built up from simpler formulas by application of con-
nectives and quantifiers. The set of free variables in a formula ¢ and its quantifier rank are defined
inductively. If  is atomic, then free(y) is the set of variables occurring in ¢ and gr(p) = 0. Also,

free(ﬂt/)) = free(y)
Sree(p ANO) = free(yp VO) = free(y) U free(0)
free(Veyp) = free(3xyp) = free(y) — {z}

and
r(—y) = qr(¥)
qgr(p ANO) = qr(¥ VO) = max(gr(), gr(6))
gr(Vzy) = ¢r(Fzy) = ¢r(¥) +1

The other logics we consider extend FO in some way. They fall into three general categories. First,
there is second-order logic, in which relations as well as elements may be quantified, and various re-
strictions of second-order logic. Second, there are logics with relational operators which are applied to
defined relations. These logics arise in characterizations of complexity classes and elsewhere in computer
science. Third, there are infinitary logics which have infinite connectives. We will consider only one
infinitary logic, Ly, ..

Second-order logic contains all the logical symbols of FO as well as relation variables X]'f fori,j € w.
The intention is that Xj ranges over relations of arity ¢ on the universe of a structure. (Whenever the
superscript is clear from context, we will omitit.) Besides the atomic formulas from FO, there are atomic
formulas of the form X]’:(ro, ..., &;—1) whose set of free variables is {X}, Zo, ..., 2i—1}. We must also add



a formula formation rule for quantification of relation variables and accordingly extend the definition of
the set of free variables and the quantifier rank of a formula. Second-order logic is too powerful for our
purposes because every reasonable notion of asymptotic probability will be undefined for some second
order sentence. Therefore, we need to consider various restrictions.

One obvious way to restrict second-order logic is to include just the relation variables of arity 1 (the
monadic variables). This logic, called monadic second-order logic and denoted MSO, has been widely
investigated (particularly its decision problems).

Another obvious way to restrict second-order logic is by restricting the quantifier prefixes of sentences.
For example, the ©1 formulas are those of the form

IXe3IXy - 3Xi 0y (1)
and the II} formulas are those of the form
VXo VX1 VX1, (2)

where Xg, X1,..., X;_1 are relation variables and ¥ is an FO formula (in the logic extended by adding
relation symbols X, Xi,..., Xi—1). E}H_l is the set of second-order formulas of the form (1), where ¢
is a II} formula, and II} +1 1s the set of second-order formulas of the form (2), where ¢ is a £} formula.

%1 is an important fragment of second order logic. Fagin [26] showed that a set of finite structures
(of the same similarity type) is the set satisfying a 1 sentence if and only if it is in the complexity class
NP. Stockmeyer [65] extended this result by showing that the classes ¥} and II} correspond to the levels
of the polynomial time hierarchy.

Kolaitis and Vardi [46] investigated a subset of the ¥{ sentences that they call strict-$1 sentences.

It consists of sentences of the form (1) where ¢ is an FO sentence 3o, ..., 2j-1YYo,...,Yr—10, with 0
a quantifier-free formula. The dual set of strict-II} sentences consists of sentences of the form (2) where
¥ is an FO sentence Vxo,...,2;-13y0,...,yk—10, with 6 a quantifier-free formula.

The theorem of Fagin showing that X! “captures” NP was the first of several results relating logics
and complexity classes. Immerman [39] and Vardi [69] showed that least fized point logic (denoted LFP),
a logic that incorporates inductive definitions, captures the complexity class P when structures have an
underlying linear order (see also Gurevich [34] and Gurevich and Shelah [35]). The first investigation
of inductive definitions for 'O was made by Moschovakis [53]. Aho and Ullman [1] added least fixed
point operators to FO. Gurevich and Shelah [35] showed that this logic has the same expressive power
on finite structures as a more general logic they call inductive logic; inductive logic is more expressive
than least fixed point logic on infinite structures.

Immerman [40] later showed that other familiar complexity classes were captured by logics. We will
describe one of these logics, transitive closure logic (denoted T'C'), as a prelude to our definition of least
fixed point logic. On structures with an underlying linear order TC captures the complexity class formed
by taking a union of the levels of the logspace hierarchy (see Immerman [40]).

The logical symbols of transitive closure logic include those of first-order logic and the relation
variables X! of second-order logic. (In TC we will require only the relation variables of even arity.)
We do not have unlimited quantification of relation variables. Instead, we have a transitive closure
operator that allows us to say that a relation variable should be interpreted as the least transitive
relation extending some defined relation. More specifically, we have, besides the formula formation rules
of first-order logic, a rule that says if ¢ and # are formulas, iji is a relation variable not free in 4, and
Zoy. ..y, Li—1,Y0,.-.,Yi—1 is a sequence of distinct variables, then ¢ given by

[iji(x()’ e Li—1, Y0y ey 3/2'—1) = TC(O)] ¢
is also a formula with

free(p) = ((free(ﬁ) —{@0,.. ., ®i—1, Y0, -, Yi-1})
U free(®)) — {X3)

Let & = zo,..., ;-1 and § = yo, ..., yi~1. For each universe A of a structure, we can regard § = 0(Z, )
as defining a binary relation on A*. Formula ¢ says that X j2’ should be interpreted in ¢ as the least



transitive relation extending the relation §. For example, consider the logic whose only extralogical
symbol is a binary relation symbol E which we take to denote the edge relation on the class of graphs.
The T'C sentence

[X(2,y) = TC(E(z,y))] Ve,y(z # y — X(z,9))

asserts that a graph is connected. X interprets the path relation in each graph: it holds between two
points precisely when there is a path between them.

We now describe how to build formulas of least fixed point logic. The logical symbols include those
of first-order and the relation variables X:. Besides the formula formation rules of first-order logic, we
have a rule that says if ¢ and 6 are formulas, X is a relation variable, and zg,...,z;_; is a sequence of

distinct variables, then ¢ given by
[X(z‘o, ey :I?,'_l) = 9] 1,[}

is also a formula, where we require that X occurs only positively in #. (This means, roughly, that X
occurs only within the scope of an even number of negations; to be rigorous we would have to define
positive and negative occurrences by an induction on formulas.) The part of ¢ within brackets implicitly
defines the interpretation of X in 9. Let us make this idea precise.

Fix a structure M with universe A and assign values in A to the symbols in free(y); i.e., assign
elements of A to element variables and relations on A of the appropriate arity to relation variables. For
every such assignment, § = 6(X,2g,...,z;_1) defines an operator I on the set of i-ary relations on A:

F(R) = {(ao, . ..,ai_l) l M F: Q(R,ao, .. .,ai_l)}

It is easy to show that if X occurs only positively in 6, F' is monotone, i.e., F(R) C F(R') whenever
R C R'. Let F(R) = R, F**(R) = F(F*(R)) and if « is a limit ordinal, F*(R) = Us<a FP(R).
By induction F*(#) C F#(() whenever a < 3. There must be an ordinal & such that F*(@) = F*(()
whenever @ > x. Thus, F*(() is a fixed point for F', in fact, by a well known theorem of Tarski [66], it
is the least least fixed point. Then ¢ is true in M (at the given assignment) just in case % is true in M
when F*(0) interprets X (all other free symbols interpreted as in the assignment). This describes the
semantics for ¢ in least fixed point logic.
We also use the notation
[X(:Co, ey xi—l) = H]m 1/),

where m is a non-negative integer, to indicate that F™ () interprets X in ). As m increases we obtain
better approximations to the fixed-point interpretation. Notice that a sentence which is formed using
only connectives, quantifiers, and these approximations is equivalent to a first-order sentence since F ™(0)
is first-order definable for finite m.

It is easy to see that LFP is at least as powerful as TC. For example, the transitive closure sentence
above asserting connectivity in graph can be rewritten

[X(z,y) = E(z,y) VI=(X(z,2) A X(2,))]
Vo, y(z # y — X(z,y))

in LFP.

Kolaitis and Vardi [46] define another logic which they call iterative logic, denoted here as IT. We
will not give their definition; instead we note that one can obtain an equivalent logic by dropping the
restriction in LFP that X occur only positively in @ in order that [X(xo, ce ®i1) = 0] ¥ be a formula.
Of course, the operator F' defined from # may no longer be monotone, so that the definition makes sense
only on finite structures and even then there may not be a « such that F*() = F~(§) whenever o > «.
If there is no convergence in the evaluation of the truth value of a sentence ¢ on a structure M, then
we will say that it is not the case that M |= ¢. (This convention has the unfortunate consequence that
for some sentences ¢ neither M |= ¢ nor M |= —p holds.) One can show that on structures with an
underlying linear order, IT captures PSPACE.

The infinitary logic L. contains all the symbols of FO and two infinitary connectives, countable
conjunction A, and countable disjunction \/. The rules for forming formulas of L,,, include all those
for FO and a rule that says if ¢; is a formula of L,,, for each i € w, then so are /\iEw 1; and ViEw ;.
The set of free variables for both of these formulas is Ui€w free(y;). Clearly L, is too powerful for
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classes of finite structures since every class of finite structures is the class of finite structures satisfying
some L, sentence. We will see, however, that L, is a natural logic for independent probabilities on
infinite structures.

This concludes our list of logics. One would naturally like to know the expressive powers of these
logics. Write L < L' if for every sentence in the logic L there is an equivalent sentence (a sentence
having precisely the same models) in L'; if L < L’ and there is a sentence of L’ not equivalent to
any sentence in L, write L < L’. It is not difficult to show that FO < MSO, FO < strict-X} < %,
FO < strict-I} < I}, T} UII} < E,IC_H N H,lc_*_l, FO < TC < LFP, and TC < L,,. On classes of
finite structures LFP < IT and LFP < ©1 UL}, This list of comparisons is incomplete. The missing
comparisons (and incomparisons) can probably be resolved without too much difficulty.

The only result about first-order logic we use in the paper that is not found in Chang and Keisler
[11] concerns Ehrenfeucht games, which are used to determine when structures satisfy precisely the same
first-order sentences. These games are particularly useful in the study of finite structures, and one of
the few techniques that generalize to second-order logic. We describe Ehrenfeucht games for first-order
and monadic second-order logic.

Given two structures M and A, write M =, N to indicate that M and N satisfy precisely the
same first-order sentences of quantifier rank at most r. The game used to characterize =, is played for r
moves (numbered 1,2,...,7r) between players I and Il on a pair of structures M and . On each move
player I chooses an element of M (or ') and player II responds by choosing a corresponding element
of N (respectively, M). Player I is not constrained to choose all elements from the same structure; he
may alternate between them as often as he likes. Let a; be the element chosen from M and b; be the
element chosen from M on move 7. Player II wins if the set {(a;,4;) | ¢ < r} is an isomorphism between
substructures of M and N; otherwise, player I wins.

The basic result concerning this game is due to Ehrenfeucht [23]: player IT has a winning strategy if
and only if M =, N.

Write M &, N to indicate that M and A satisfy the same monadic second-order sentences of
quantifier rank at most r. In the game characterizing &, players I and II again play for » moves on
structures M and A. On each move player I picks a subset of M (or A') and player II responds picking
subset of A (respectively M). Whenever player I picks a singleton set, player II must respond with a
singleton set. (Singleton set moves correspond to element quantifiers.) Let R; be the subset chosen from
M and S; be the subset chosen from N on move i. If the set

{(z,y) | for some i, R; = {z} and S; = {y}}

is an isomorphism between substructures of (M, Ry,..., R,) and (N,S1,...,S,), then player II wins;
otherwise, player I wins.

The basic result concerning this game is completely analogous to the first-order case: player II has
a winning strategy if and only if M &, A. (For a nice treatment of monadic second-order Ehrenfeucht
games and some interesting applications, see Ladner [48]).

3 Generating Series and Growth Rates

Labeled and unlabeled probabilities are closely related to enumeration problems in combinatorics. The
most important tool for enumeration is generating series (see, for example, Goulden and Jackson [32]
which approaches enumeration from this point of view), so we begin with definitions of the two kinds of
generating series that arise most frequently in asymptotic combinatorics.

Let C be a class of structures and C,, and D,, be, respectively, the classes of labeled and unlabeled
structures in C on sets of size n, as defined in §1. Put a, = |C,| and b, = |D,|. Then C has as
its ezponential generating series the formal power series a(x) = ) .o (an/n!)z", and as its ordinary
generating series the formal power series b(z) = 5 - bpz”. Let S C C and put ¢, = |Cp N S|,
dn = |Dp N S|. Then ¢(z) = Y o ;(cn/nt)z™ and d(z) = 32 dnz™ are the exponential and ordinary
generating series for S.

Generating series are useful because combinatorial operations on classes of structures correspond to
algebraic operations on their generating series. Let us describe several instances of this correspondence.



(We will omit proofs; see Goulden and Jackson [32] for details). Generating series should be regarded
as formal power series: convergence does not matter. (We will see, however, that convergence does
determine asymptotic techniques that may be used and the kinds of 0-1 laws that may hold.)

For a structure M = (4, Ro, Ry, ..., Rk_1), we say that two elements a and b are directly connected if
there is a tuple in one of the relations R; containing both a and b (so, in particular, the direct connection
relation is reflexive and symmetric). Elements a and b are in the same component if (a, b) belongs to the
transitive closure of the direct connection relation. M is connected if it has just one component.

If Cy and C are classes of structures of the same similarity type, with exponential generating series
ai(z) and aa(z), respectively, and no component of a structure in C} is isomorphic to a component of
structure in Cs, then the exponential generating series for Cy U Cs is a1(z) + aa(z), and for {M U N |
M e Ci,N € Ca} is a1(z)az(z). (Here U denotes disjoint union.) If C consists of connected structures,
then the exponential generating series for the class consisting of structures with & components, all taken
from C, is a(z)¥ /k!, so the exponential generating series for the class obtained by closing C' under disjoint

unions is
o0

Za(m)k/k’! = exp(a(z))
k=0
Similarly, if C; and C5 have ordinary generating series by(z) and by(z), respectively, and no compo-
nent of a structure in €, is isomorphic to a component of structure in Cy, then the ordinary generating
series for Cy U Cy is by (z) + ba(z), and for {M UN | M € C1, N € Ca} is bi(x)ba(z). Define the series
Zy(z1, 22, ..., 25) as follows.
o o0
exp(y Y zi/k) = Zr(xy,z2,...,z2)y"
k=1 k=0
Zy is the Pélya cycle indicator polynomial for the group Sy (see Pélya [59] or Harary and Palmer
[37]). Let Zx(b(z)) = Zi(b(x),b(z?),...,b(z*)). If C consists of connected structures, then the ordinary
generating series for the class consisting of structures with & components, all taken from C, is Zj(b(z)),
so the ordinary generating series for the class obtained by closing C' under disjoint unions is

>~ Zi(b(z)) = exp(Dd_ b(x*)/k)
k=0 k=1

For labeled and unlabeled probabilities there seems to be a fundamental distinction between fast
growing and slow growing classes of structures. We will say that the set of labeled structures in C is
fast growing if C has an exponential generating series with radius of convergence 0; otherwise, it is slow
growing. Similarly, the set of unlabeled structures in C' is fast growing if C' has an ordinary generating
series with radius of convergence 0, and slow growing otherwise. We will consider the slow growing
and fast growing classes in separate sections. Moreover, for the fast growing classes Lynch [50, 51] has
developed techniques for structures with functions and underlying relations such as linear orders. These
techniques will be considered in another section.

4 Slow Growing Classes

In this section we will investigate 0-1 laws and convergence theorems for slow growing classes closed
under disjoint unions and components. That is, the disjoint union of two structures in the class is again
in the class, and each component of a structure in the class is also in the class. Many familiar classes
satisfy these conditions: among them are the classes of unary functions, of one-to-one unary functions,
of equivalence relations, of forests, and of binary forests.

We saw in the last section that if a class C closed under disjoint unions and components has exponen-
tial generating series a(x) and the subclass of connected structures in C has exponential generating series
¢(z), then a(z) = exp(e(z)). If C has ordinary generating series b(z) and the the subclass of connected
structures in C has exponential generating series I(z), then b(z) = exp(3 s, /(z*)/k). These funda-
mental relationships have been used extensively in the enumeration of labeled and unlabeled structures
(see Goulden and Jackson [32]).



We begin by extending the definition of labeled asymptotic probability when a(z), the exponential
generating series for C, has radius of convergence R > 0 and lim,_, g a(z) = co. Suppose that the
subclass of structures in C satisfying some sentence ¢ has exponential generating series ¢(z). It is not
difficult to show that if u(yp) is defined, it is equal to fi(¢) = limy—, g ¢(z)/a(z). This a simple example
of an Abelian theorem—¢“... roughly, one which asserts that if a sequence or function behaves regularly,
then some average of the sequence or function behaves regularly” [38, p. 148]. Now ji(¢) may be defined
in some cases where p(yp) is not. For example, if C is the class of one-to-one unary functions, then the
number of labeled structures with universe n is n!so a(z) = 3 5, 2" = 1/(1 —z). Now if ¢ asserts that
the universe has an even number of elements (we can say this in second order logic, for example), then
the subclass of structures satisfying ¢ is 5,5, 2%¥ = 1/(1 — 2?) so

‘ l—z 1

”(p):ll—»nil-xzz-i

but p(y) is not defined.
Using ordinary generating series rather than exponential generating series, we can define o extending
the unlabeled asymptotic probability v.

Theorem 4.1 (Compton [17]) If C has ezponential generating series a(x) with radius of convergence
R > 0 and limg, g a(x) = oo, then p(y) is defined for every MSO sentence ¢. Similarly, if C has
ordinary generating series with radius of convergence S > 0 and lim,_, 5 b(2) = oo, then () is defined
for every MSO sentence .

Proof: We use Ehrenfeucht games to establish combinatorial properties of classes satisfying MSO
sentences. From these properties we can show that the corresponding generating series will have a form
that insures extended asymptotic probabilities exist.

Two useful facts follow by Ehrenfeucht game arguments.

First, if Mg &, Ny and M; &, Ni, then My U M; &, Ny U N;. This is obvious because player II
can combine the winning strategies for the Ehrenfeucht games of length » on the pair My, My and on
the pair M1, NV to obtain a winning strategy on the disjoint unions.

Second, for every r there is an integer s depending only on the similarity type and r, such that
whenever ¢,j > s and M is a structure, ¢ - M &, j - M. (Here 7 - M is the disjoint union of i copies of
M.) We show by induction on r that player II has a winning strategy on the Ehrenfeucht game of length
r played on these two structures. When player I picks a subset, say of ¢ - M, on the first move, we can
view this as adding a unary relation to the similarity type and expanding each of the copies of M in the
- M to structures in this new similarity type. It is easy to see that the number ¢ of &, _;-classes in this
new similarity type is finite. The induction hypothesis tells us that there is an s’ such that whenever
i, > s’ and M’ is a structure in this new similarity type, i - M’ &,_, j - M'. Let s = s't. It is clear
that player II can choose a subset that expands the j copies of M in the second structure so that in each
&, _1-class, either the same number of expanded copies of M in the class are present in each structure,
or at least s’ are present in each structure. It follows that the expansions of i - M and j - M satisfy the
same MSO sentences of quantifier rank r — 1, so player Il has a winning strategy for the remaining r — 1
moves.

Let Do,...,Di_1 be the N, -classes of connected structures in C' and ¢o(2),...,¢-1(z) be their
exponential generating series so that c(z), the exponential generating series for the class of connected
structures in C, is )_; .; ¢i(z). The first fact shows that the MSO sentences of quantifier rank r holding in
a structure are determined by the number of components in each class D;. The two facts together show
that it only necessary to know the precise number of components in each class D; up to s components;
for more than s, the MSO sentences of quantifier rank » that hold are the same as if there were exactly
5. For each 7 < [ there are s + 1 possibilities: the number of components in D; may be 0,1,...,5s—1, or
> s. We can represent this information in each structure by a sequence of I integers in the interval from
0 to s. The exponential generating series for the class of structures in C associated with a particular
sequence (jo,...,Ji—1) is a product of [ series. The i-th series is ¢;(x)7¢/j;! when 0 < j; < s — 1 and
exp(ci(z)) — EKS ci(z)? /5! when j; = s. Multiplying out this product, we obtain a sum in which each
term is a product of [ factors, the i-th factor being either of the form ¢;(z)/ /;! or exp(ci(z)). Now divide
each term by a(z) = [[;;exp(ci(z)) and let & approach R. Clearly, the limit always exists.O



We would like to be able to show now that if () is defined, then so is p(p). Unfortunately, this is
not true in general. Our task is to find conditions under which we may make this inference. Results of
this kind are Tauberian theorems, or “... corrected forms of false converses of Abelian theorems” [38, p.
149].

Let us define a condition that figures in some of our Tauberian theorems. We will say that the
number of labeled structures in a class C' with exponential generating series a(z) = ), q(an/n!)z"
grows smoothly if -

lim @n=m/ (= ml

n—oo an /n!
for each m > 0. In other words, the radius of convergence R of a(z) is a limit of a ratio of coefficients.
When 0 < R < oo this condition can be simplified to

an-1/(n—1)

!
li - =
e an /n! R’

The following result appears in Compton [16].

Theorem 4.2 Let C' be a class of structures whose exponential generating series a(x) has radius
of convergence R > 0. Suppose that the number of labeled structures in C grows smoothly and
limy_. g a(x) = co. If ¢ is an MSO sentence with fi(p) equal to 0 or 1, then u(p) = fi(yp).

The proof uses the analysis of the exponential generating series for MSO sentences given in the
previous theorem. We can extract a great deal of information from this analysis when fi(¢) = 0 or 1.
This result is used in the proof of the following theorem, which characterizes slow growing classes with

label MSO 0-1 laws.

Theorem 4.3 Let C be a class of structures closed under disjoint unions and components and suppose
that a(z), the exponential generating series for C, has radius of convergence R > 0. Then C has a
labeled MSO 0-1 law of and only if R = co and the number of labeled structures in C' grows smoothly.

Proof: We know that a(z) = exp(c(z)) where c¢(z) is the exponential generating series for subclass of
connected structures'in C.

First we show that if 0 < R < oo, then C does not have a labeled MSO 0-1 law. Let M be a
connected structure in C' of size m and with ¢ automorphisms. Let ¢ be a sentence that says there is
precisely one component isomorphic to M. The exponential generating series for the class of structures

satisfying ¢ is
(2™ /o) exp(c(z) — 2™ /o)

If limy g a(x) = oo, then we compute fi(¢) by dividing by a(z) and letting = approach R. We obtain

f(p) = (R™ /o) exp(—R™ /o)

which is strictly between 0 and 1. If lim,_ g a(z) < co we can give a separate argument to obtain the
same value for fi(y).

To prove the other direction, observe that when R = oo, then fi(p) = 0. That is, the extended
asymptotic probability that precisely one component is isomorphic to M is 0. Similarly, we can show
for every nonnegative integer j that the extended asymptotic probability that precisely j components
are isomorphic to M is 0. Thus, for each j there are almost surely at least j components isomorphic to
M.

Using facts from the proof of Theorem 4.1, we see that there is an s for each r such that structures
with at least s components from each #,-class satisfy the same MSO sentences of quantifier rank ».
When R = oo structures in C' will almost surely have s components from each &, class, so they almost
surely satisfy the same MSO sentences of quantifier rank r. That is, fz(¢) is either 0 or 1 for each MSO
sentence ¢. But by the previous theorem, u(y) = i(y).0



This theorem provides easily verifiable criteria for 0-1 laws. Compton [12, 16] gives a detailed analysis
of the logical properties of the theory of the almost sure first-order sentences in cases where the theorem
applies. This theory may be very complex. Compton [14] gives an example of a finitely axiomatizable
class where this theory is undecidable.

Let us examine some familiar classes to see what this theorem tells us. (For details, see [16, 17].)

The class of equivalence relations has a labeled MS0O 0-1 law. Since there is precisely one connected
equivalence relation of each finite cardinality, this class has exponential generating series

:L‘k
a(z) = exp(Y T7) = exp(e” ~ 1)

k>1

which clearly has radius of convergence co. Well known asymptotic results for this series show that the
number of labeled structures in C' grows smoothly.

If a class C closed under disjoint unions and components contains only finitely many finite connected
structures and the sizes of their universes have greatest common divisor 1, then the class has a labeled
MSO 0-1 law. The exponential generating series for such a class will be of the form exp(p(z)), where
p(x) is a polynomial, so it is easy to see that R = co. Again, well known techniques show that the
number of labeled structures in C grows smoothly.

The class of one-to-one unary functions has exponential generating series 1/(1 — ) since there are
n! structures in C,. Hence R =1 and the class does not have a labeled MSO 0-1 law.

Let C be the class of cycle-free directed graphs in which every vertex has in-degree at most 1 and
out-degree at most 1. Thus, connected structures in C are chains. There are n! possible chains on n
elements, so C' has exponential generating series exp(z/(1 — z)). Again, R = 1 so the class does not
have a labeled MSO 0-1 law.

Let C be the class of unary functions. The exponential generating series is

klc
> et

k>0

which is easily seen to have radius of convergence 1/e, and once more the class does not have a labeled
MSO 0-1 law.

There are many other examples where a labeled MSO 0-1 law fails. In all theses cases, we would like
to know if u,, () converges for all MSO sentences . This is where Tauberian theorems play a significant
role.

In [17], we prove a Tauberian theorem stating that if the ratios of coefficients mentioned in the
definition of smooth growing classes are uniformly bounded, then u(yp) = fi(p) for every MSO sentence
@. Clearly, the class of one-to-one unary functions satisfies the hypotheses of this theorem, for every
MSO sentence has a labeled asymptotic probability for this class.

In the same paper, we prove a Tauberian theorem stating that if a(z) is admissible, then pu(p) = fi(p)
for every MSO sentence ¢. We will not define admissible functions here, since the definition is somewhat
technical (although well known in the study of asymptotics). One can show that exp(z/(1 — z)) is
admissible, so every MSO sentence has a labeled asymptotic probability for the class of directed graphs
whose components are chains.

We prove a Tauberian theorem in [15] stating that if the coefficients of a(z) are asymptotic to Kn®
for some K > 0 and « > —~1, then

nli_’l’{.lo(,Lto((P) -+ ﬂl(@) + -+ Hn—l(?’))/n

is equal to pu(p). We see by Stirling’s formula that the class of unary functions satisfies the hypotheses,
so every MSO sentence has a Cedaro probability for this class.

There has been very little work on 0-1 laws and convergence theorems for the slow growing classes
in logics other than FO and MSO. The only example we know is Kolaitis [43] where it is shown that
the class of equivalence relations has a labeled LFP 0-1 law since LFP is no more expressive than FO
on this class, but that there are classes having an unlabeled FO 0-1 law but no unlabeled ZFP 0-1 law.
It is not known for these classes if u, () converges for each LFP sentence ¢.
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Not much is known about the computational complexity of probabilities for the slow growing classes.
Compton [20] gives bounds for computing probabilities of FO and MSO sentences for the class of
one-to-one functions. Kolaitis [43] states that the problem of deciding whether an FO sentence has
probability 1 for the class of equivalence relations is PSPACE-complete. For LFP sentences the problem
is EXPTIME-complete. These results are proved by techniques similar to those introduced in the next
section for fast growing classes.

For simplicity we have stated all the theorems in this section for labeled structures, but they also
hold for unlabeled structures. Use the ordinary generating series b(z) = Y 5, brz"* rather than the
exponential generating series and define smoothness of growth as lim, o b,,_1/b, = S. The analogue
of Theorem 4.3 has S = 1 rather than R = oo. We must use properties of the Polya cycle indicator
generating series described in §3 so the arguments are somewhat more complicated, but the proofs follow
along the same lines.

5 Fast Growing Classes

In this section we present 0—1 laws for fast growing classes. The techniques are quite different than
those for slow growing classes because we can no longer use analytic properties of generating series. The
first-order 0-1 laws discussed in this section could be proved using Ehrenfeucht games, but we will see
that we can get 0-1 laws for other logics by another technique. We begin with one of the first 0-1 laws
to be proved.

Theorem 5.1 (Glebskil, et. al. [31]) Let C be the class of all structures for a given relational simi-
larity type. Then a labeled FO 0-1 law holds.

Proof: The proof of Glebskii, et. al. is by induction on formula complexity, but rather than building
formulas with the usual quantifiers 32 and Vz, we consider formulas with the excluding quantifiers
(3x #wyo,...,Yk-1) and (V& # yo,...,yk—1). If the set of free variables in a formula 1 is a subset of
{z,90,...,yk-1}, then (3z # yo,...,ys—1)¥ and (Yo #yo,...,Yk—1)¥ are also formulas. The intended
meaning of these quantifiers is evident, and it is easy to show that any FO formula is equivalent to a
formula constructed from atomic formulas using only the usual connectives and excluding quantifiers.
In fact, only the existential excluding quantifier is required, since the universal excluding quantifier may
be obtained from it using negations.

Proceeding with the proof, we claim that if ¢(zo,...,2;_1) is such a formula, ng,...,n;_; are
distinct nonnegative integers, and every atomic subformula of ¢ contains a quantified variable, then
#n(p(no,...,nj_1)) approaches either 0 or 1 exponentially fast. (Note that p,(¢(no,...,nj_1)) is

defined when n is at least max(no,...,n;_1).)
The claim is proved by induction on formula complexity. It is true by default for atomic formulas,
and the induction steps for connectives are easy. Consider a formula ¢ of the form (3z#no, ..., nj_1).

It is not difficult to show that v is equivalent to a formula \/; ., (0; A ;) where o; is quantifier free and
every atomic subformula of each formula 7; contains a quantified variable. Thus, ¢ is equivalent to

\/(Eix #no,...,nj-1)(0; ATi)

i<k
so it suffices to prove the claim for each of the formulas # of the form
Bz #£no, ..., nj_1)(os A7)

Now 7 = 7i(z,x0,...,2j_1) has smaller quantifier rank than ¢ so by the induction hypothesis, if
m # no,...,nj_1, then p, () = pn(ri(m, ng, ..., nj_1)) approaches 0 or 1 exponentially fast.

Now there are two cases to consider. In the first case either p,(7;) approaches 0 or there is no
assignment of distinct nonnegative integers that makes o; = oi(«, yo, ..., y;j-1) true. Then it is easy to
show that u,(0) approaches 0 exponentially fast. In the second case, p,(7;) approaches 1 and there is
an assignment of distinct nonnegative integers that makes o; true. Then it can be shown that u,(6)
approaches 1 exponentially fast. This proves the claim, and the labeled FO 0-1 law is an immediate
consequence.0d
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We have left a number of technical details to be verified in this proof, but it is surprisingly elemen-
tary. It involves no sophisticated techniques or difficult results from logic. It uses just the definition of
satisfaction of FO formulas and a few simple transformations for obtaining equivalent formulas. Unfor-
tunately, this proof did not lead to the discovery of other 0-1 laws, even though some 0-1 laws described
in this section might be proved in a similar manner, because it hides the model theoretic characteristics
of fast growing classes with of 0-1 laws. Fagin [28] later gave another proof of this 0-1 law which serves
as a paradigm for fast growing classes.

Alternate Proof: Consider the theory T' consisting of all sentences of the form

(V distinct o, ..., 2j_1)(3z; #£xo,...,2j-1)(6 — &)

where § = 6(xo,...,2;_1) is a conjunction of formulas in A(zo, ..., 2;_1), a maximal consistent set of of
atomic and negated atomic formulas in the variables xq,...,z;_1; 6 = 8'(xo, ..., ;) is defined similarly
for A’(zo,...,z;), a maximal consistent set of atomic and negated atomic formulas in the variables

zo,...,xj; and A(xo,...,zj-1) C A'(zo,...,z;). (If j is 0, then § is a tautology.) The sentences in T
assert that every finite substructure can be extended by one element in all possible ways. We informally
refer to sentences asserting that finite submodels can be extended as extension azxioms. Extension axioms
figure in all known 0-1 laws for fast growing classes.

An easy computation shows that p(p) = 1 for each ¢ € T. T is complete since it is No-categorical
and has no finite models. The the Compactness Theorem implies, then, that for each FO sentence v,
either 4 is a consequence of finitely many sentences in T, whence p(¢) = 1; or else ¢ is a consequence
of finitely many sentences in T, whence p(3) = 0.0

The theory T' described above has a long history. Lynch [50] attributes the discovery of this theory
to Jaskowski, who proposed it as an example of an Rg-categorical theory not finitely axiomatizable over
the axiom schema of infinity. (By Ro-categorical we mean that the theory has precisely one countable
model, up to isomorphism.) The Rg-categoricity of T is easily demonstrated by a common model
theoretic technique known as a back-and-forth argument. One simply builds an isomorphism between
an arbitrary pair of countable models of T" by successively extending finite partial isomorphisms between
the two models according to the extension axioms. Since the models are countable, one can arrange
that the union of the partial isomorphisms is an isomorphism between the two structures. Erdés used
essentially the same argument to show that almost all countable graphs are isomorphic (see [25]) as
did Gaifman [30] to show that almost all countable structures satisfy 7" (see §7). Rado [61] studied the
properties of the almost sure graph, but his motivation was not probabilistic. Blass, Exoo, and Harary
[4] give an explicit construction for graphs satisfying finite subtheories of T'. (For model theorists, we
note that T is the model completion of the empty theory.)

A proof virtually identical to the one above establishes labeled FO 0-1 laws for graphs, directed
graphs, and tournaments. Oberschelp generalized this observation by defining a parameiric condition to
be a finite set of sentences of the form

(V distinct xq,...,2j-1)¥

where 1 is a Boolean combination of formulas of the form R(yo,...,yr—1) with {yo,...,yk_1} =
{zo,...,zj_1}. (The qualifier “distinct” can be omitted when j = 1.) The usual axiomatizations
for graphs, directed graphs, and tournaments can easily be expressed as parametric conditions.

Theorem 5.2 (Oberschelp [54]) A class of structures given by a parametric condition has a labeled
FO 0-1 law.

Oberschelp gives only the statement of the theorem, not the proof. However, with some effort we
can give a proof along the same lines as Fagin’s proof by formulating the appropriate extension axioms
for parametric classes. For example, models of the parametric condition consisting of the two sentences

Ve -E(z, )
(V distinct z, y)E(z,y) — E(y, )
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are irreflexive, symmetric relations, i.e., graphs. Let T consist of these two sentences and the extension

axioms asserting that for all distinct elements x¢,...,2;_1, ¥o,...,yx-1 there is a z not equal to any of
these elements such that

N EGi ) A N\ ~E(w,2)

i<j i<k

for each j,k > 0. It is easy to see that T is Rg-categorical and that p(p) = 1 for each ¢ € T. The
argument proceeds as before. For arbitrary parametric conditions the proof is more complicated, but
along the same lines.

To state the next result we need to define a d-complez. This is a set A together with a collection S
of nonempty subsets of A of cardinality at most d + 1 such that every nonempty subset of a set in S is
also in §. For each i, with 1 < i < d, we have an (i + 1)-ary relation symbol R;. Ri(zo,...,z;) holds
only when zy, ..., z; are distinct and {zo,...,2;} € S.

Theorem 5.3 (Blass and Harary [6]) For each d > 0, the class of d-compleves has a labeled FO 0-1
law.

The proof is similar to previous proofs. Formulate extension axioms and carry out the argument
outlined earlier.

By Kleitman and Rothschild’s asymptotic estimate for the number of labeled partial orders [42] we
can prove a labeled FO 0-1 law for partial orders. (See also Remlinger [62]).

Theorem 5.4 (Compton [18]) The class of partial orders has a labeled FO 0-1 law.

Proof: Kleitman and Rothschild obtain a detailed description of the structure of random finite partial
orders. With labeled asymptotic probability 1 a partial order will have no chains of length greater than
3. Thus, almost every partial order can be partitioned into 3 levels: Lg, the set of minimal elements,
Ly, the set of elements immediately succeeding elements in Lg, and Lo, the set of elements immediately
succeeding elements in L;. Moreover, in partial orders of size n, |Lo| = n/4+ o(n), |L1| = n/2 + o(n),
and |Lz| = n/4 + o(n) almost surely. Now it is easy to formulate extension axioms for random partial

orders. First, for all distinct zo,...,2;_1 and yo,...,yr—1 in Ly and all distinct zo,...,2_1 in Lo, there
is an element z in Lg not equal to zg,...,2_1, such that
/\ z2< ;A /\ z Ly
i<j i<k
Second, for all distinct 2o,...,z;_1 and yo,...,yx~1 in Ly and all distinct 2o, ..., 2_1 in Lo, there is an
element z in Ls not equal to z,...,z_1, such that
/\ z; <z A /\ vi £z
1<j i<k
Finally, for all distinct zg,...,2;_; and yo,...,yk—1 in Lo, all distinct zj, .. ., zi_y and Yo, ..oy Yy
in Ly, and all distinct zg,..., 21 in Ly, there is an element z in L; not equal to 2o, ..., z_;, such that
Nzi<znNwdzn \z<ain \ 224
i<j i<k i<y’ i<k’

These axioms can be written as FO sentences. Taken together with the axioms for partial orders and
a sentence asserting that there is a chain of length 3 but no chain has length greater than three, they
form a an Rg-categorical theory. This is easily shown by a back-and-forth argument, but one must take
care. Before attempting to extend partial isomorphisms between two countable models of the theory,
one should first add three unary relations to the models for the levels Lg, L1, and Ly so that elements
are mapped to elements at the same level. The labeled FO 0-1 law now follows by Fagin’s argument.O
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The K;,4+1-free graphs are those graphs having no subgraph isomorphic to Kp,41, the complete graph
on m + 1 vertices. These classes are all fast growing.

Theorem 5.5 (Kolaitis, Prémel, and Rothschild [44, 45]) The class of Ky,41-free graphs has a
labeled FO 0-1 law for each m > 2.

Proof: Kolaitis, Promel, and Rothschild give an argument similar to previous arguments although the
details are more difficult. First, they derive an asymptotic estimate for the number of labeled Kp,41-
free graphs, and in so doing analyze the structure of random K,,;1-free graphs. They show that with
labeled asymptotic probability 1 a K,,41-free graph will be uniquely m-colorable, i.e., there is a unique
partition of its vertices into m sets so that no two vertices in the same set are adjacent. The property of
m-colorability is not FO expressible for arbitrary graphs; random K,,i-free graphs, however, possess
an FO property that implies m-colorability. A spindle connecting two vertices z and y in a Ky, 41-free
graph is a subgraph isomorphic to K,,_1 such that all its vertices are adjacent to both z and y. Let ¢
be an FO sentence asserting that the relation of being connected by a spindle is an equivalence relation
of index m and no two vertices in an equivalence class of this relation are adjacent. Kolaitis, Promel,
and Rothschild show that ¢ holds almost surely in a K, 41-free graph.

Suppose that the edge relation is denoted by F and that Lg,...,L,,_ are the equivalence classes
for the spindle connection relation in a random K, 11-free graph. For each i < m there are extension
axioms saying that for all distinct #¢,...,%;_1 and yo,...,yx—1 not in L; and all distinct zg,...,z_; in
L;, there is an element 2z in L; not equal to zg, ..., z;_1, such that

/\ E(zi, z) A /\ —E(yi, 2)

i<j i<k

These axioms together with ¢ form an Rg-categorical theory. Again this is proved by a back-and-forth
argument (this time with unary relations added for L, ..., Ly_1), and again a labeled 0-1 law follows
by showing that each extension axiom has labeled asymptotic probability 1.0

The proofs we have sketched provide the ideas needed to determine the complexity of labeled asymp-
totic probability computations and to extend labeled 0-1 laws to more general logics. Let T' be the
the theory of almost all finite relational structures (i.e., the set of extension axioms we listed for this
class) and let M be the unique countable model of T'. We have seen that an FQ sentence has labeled
asymptotic probability 1 if and only if it is a consequence of T, or equivalently, is true in M. Let
us therefore consider the problem of determining the truth of formulas in M. The proof that T is
Ro-categorical shows that M has the following homogeneity property. An isomorphism between finite
substructures of M can always be extended to an automorphism of M. Hence, the truth of a formula
@(x0,...,2j-1) in M, where zo,...,2;_; is a sequence of elements from M, is completely determined
by the isomorphism type of the substructure formed by restricting M to {zo,...,z;_1}, and this in turn
is completely determined by é(zo, ..., z;_1), the conjunction of the atomic and negated atomic formulas
true of elements zq,...,z;_1 in M. Grandjean uses this idea to obtain the following result.

Theorem 5.6 (Grandjean [33]) Let C be the class of all relational structures. The problem of whether
() =1 for an FO sentence ¢ is PSPACE-complete.

Proof: Let us say that é(zo, ..., 2;_1) is a j-description if it is the conjunction of the atomic and negated
atomic formulas true of a sequence of distinct elements zq,...,z;_1 in M. By convention, the only 0-
description will be a tautology 7. Now if 6 = §(xo,...,2;_1) is a j-description and ¢ = ¢(zo,...,z;_1)
is an FO formula, we would like to determine when M = § — ¢. The following equivalences allow us
to do this.

(i) If ¢ is atomic, then M | § — ¢ if and only if ¢ is a conjunct of §.
(ii) If ¢ is of the form =y, then M = § — ¢ if and only if M £ 6§ — 2.
(iii) If @ is of the form tg V 91, then M = § — ¢ if and only if M 6 — g or M = 6§ — 1.
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(iv) If ¢ is of the form 3y (zo, ..., zj-1,y), then M = § — ¢ if and only if either for some i < j, M =
6 — Y(xo,...,2j_1,2;); or for some j+ 1-description §' = §'(zo, . .., z;) extending §(zo, ..., zj_1),

M }:6'—+z[1(m0,...,:cj).

Now it is easy to translate this list of equivalences, as Grandjean does, into a polynomial time program
for an alternating Turing machine. (Chandra, Kozen, and Stockmeyer [10] is the standard reference on
alternating Turing machines.) This program takes as input a j-description § and formula ¢, and returns
a value of true or false depending on whether or not § — ¢ is true in M. We may regard the program
as consisting of a recursive procedure with formal parameters § and ¢. We assume that conjunction and
universal quantification are defined in terms of negation, disjunction, and existential quantification, so ¢
will be in one of the forms given above. If ¢ is atomic, the procedure computes the return value directly
according to (i). In all other cases it computes the return value according to recursive procedure calls
according to the equivalences listed.

To see that this program operates in alternating polynomial time note that all the j 4+ 1-descriptions
extending a particular j-description can be generated in alternating time uniformly polynomial in the
length of the j-description. Now a for an FO sentence ¢, u(¢) = 1 if and only if M = 7 — ¢, which
can be determined by applying the program to T and ¢. Chandra, Kozen, and Stockmeyer [10] show
that the set of problems solved by alternating Turing machines in polynomial time is precisely the set of
problems solved by ordinary Turing machines in PSPACE. Therefore, the problem of computing labeled
asymptotic probabilities of FO sentences is in PSPACE.

Stockmeyer [65] shows that for any FO theory 7" having a model with at least two elements, the
problem of determining whether an FO sentence ¢ is a consequence of T' is PSPACE-hard. (The
reductions used here are either polynomial time or log space reductions.) Thus, the problem of computing
labeled asymptotic probabilities of FO sentences is PSPACE-complete.0

In view of Stockmeyer’s result, the problem of computing labeled asymptotic probabilities for rela-
tional structures has the lowest possible complexity. It is interesting to compare this problem to the
problem of determining whether an FO sentence is true in all relational structures (rather than almost
all relational structures). Trakhtenbrot [68] showed that for some similarity type this problem is unde-
cidable, and Vaught [70, 71] extended the result to every similarity type with at least one non-unary
relation (these are precisely the similarity types that give rise to fast growing classes). Consideration of
almost all structures drastically reduces complexity.

Kolaitis and Vardi [46] note that Grandjean’s algorithm requires only a linear number of alternations
on an alternating Turing machine. This would seem to give a slightly better bound since many believe
that TA(poly,lin), the set of problems solved by alternating Turing machines in polynomial time with a
linear number of alternations, is properly contained in PSPACE.

Grandjean’s argument shows that the problem of whether a sentence has labeled asymptotic proba-
bility 1 is PSPACE-complete for parametric classes, the class of d-complexes, the class of partial orders,
and the classes of K,,1-free graphs.

Let us now consider complexities of 0-1 laws for other logics.

Theorem 5.7 (Blass, Gurevich, and Kozen [5]) If a class C of structures has an FO 0-1 law and
the set of FO sentences with probability 1 is an Rg-categorical theory, then that class has an LFP 0-1
law.

Proof: The Ryll-Nardzewski Theorem (Theorem 2.3.12(e) of Chang and Keisler [11]) states that a
necessary and sufficient condition for Rg-categoricity of a complete theory T is that for each j > 0,
there are only a finite number of formulas ¢(zo, ..., 2;_1), logically inequivalent with respect to 7". This
is obvious for the Rg-categorical theories we have seen because the truth value of each formula in j
variables is determined by conjunctions of atomic and negated atomic formulas in those variables (for
partial orders and K,4i-free graphs, this is true only after the addition of extra relations), and there
are just a finite number of atomic formulas.

Consider the LFP formula ¢ of the form

[X(:co,...,xj_l) = 0] ¥
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where 6 is equivalent to an F'O formula. Recall that § = (X, 2o, ..., x;_1) gives rise to an operator F on
the set of j-ary relations on each relational structure and the least least fixed point of F'is F*((), where
& is the least ordinal such that F*(0) = F*(0) whenever a > k. If « is finite, F*(() is defined by a FO
formula. But there are only finitely many inequivalent formulas with respect to T so k must be finite.
Thus, in models of T', F*(0), the least fixed point of F', is defined by an FO formula A(zo, ..., 2;_1), and
there is an FO formula asserting that A(zo, ..., 2;j_1) is the least least fixed point. By the Compactness
Theorem, the formula asserting that A is the least least fixed point of F is a consequence of some
finite subtheory T” of T. But the sentences in 7" hold with labeled asymptotic probability 1, so ¢
is equivalent to an FO formula ¢’ on almost all finite relational structures. (From our remarks it is
not difficult to show that if the number of variables in ¢ is k, we can take ¢’ to be equivalent to a
formula formed by replacing every implicit definition [X(.z'o, CLTjo1) = 9] in ¢ with an approximation
[X (zo,...,zj1) = 9]m, where m is the number of inequivalent k-descriptions.) From this it follows
that every LFP sentence has labeled asymptotic probability either 0 or 1.0

Blass, Gurevich, and Kozen also give complexity bounds for computing the labeled asymptotic prob-
abilities of LFP sentences.

Theorem 5.8 ([5]) Let C' be the class of all relational structures. The problem of computing labeled
asymptotic probabilities of LFP sentences is EXPTIME-complete.

The idea is that in an LFP sentence ¢ we can replace the implicit definitions with approximations,
as in the proof of Theorem 5.7, and then apply a recursive procedure of the sort given for FO sentences
in Theorem 5.6 to determine if it holds in the countable model M. (Some care must be taken to insure
that the algorithm takes just exponential time; see Compton [19].)

Kolaitis and Vardi use similar ideas to prove the following.

Theorem 5.9 (Kolaitis and Vardi [46]) Let C be the class of all relational structures. A labeled IT
0-1 law holds and its associaled decision problem is EXPSPACE-complete. Also, the decision problem
for TC s PSPACE-complete.

The proof carries over for all of the other classes discussed in this section. In the same paper, Kolaitis
and Vardi give a simple model theoretic argument showing the following.

Theorem 5.10 (Kolaitis and Vardi) Let C be the class of all relational structures. The logic strict-
1 U strict-T1} has a labeled 0-1 law and the problem of deciding whether a strict-X} sentence has labeled
asymptotic probability 1 is NEXPTIME-complete.

The proof that this problem is in NEXPTIME is much more difficult than the complexity proofs
for the other logics we have mentioned. We do not know if we can modify the NEXPTIME decision
procedure in the paper of Kolaitis and Vardi for the other fast growing classes we have examined, but
we can modify the 0-1 law for strict-31 U strict-II1 for these classes.

Liogon’kif [49] showed that the class of all relational structures has an unlabeled FO 0-1 law. In
fact, all the fast growing classes presented in this section have unlabeled 0-1 laws for the logics FO, TC,
LFP, and IT, and the complexity bounds for the related decision problems are the same.

Let C be any of the classes discussed in this section. If a,, is the number of labeled structures and
b, is the number of unlabeled structures in Cy,, then b, ~ a,/n!. Whenever this is the case, the labeled
asymptotic probability of a sentence is the same as its unlabeled asymptotic probability. To see this,
let pin () be the fraction of labeled structures in Cj, satisfying ¢ and v, () be the fraction of unlabeled
structures in C), satisfying . If u(p) = 1, then

by vn(p) 2 an pin ()

SO
an,/n!
12 le) 2 2% )

and therefore v, (¢) approaches 1.
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It is necessary to consider the various fast growing classes separately to show that b, ~ a,/n!. The
proofs rely on methods, pioneered by Pélya [59], for enumerating unlabeled structures. Let the symmetric
group S, act on the universes of the labeled structures in C,,. The Frobenius-Burnside Lemma tells us
that the number of unlabeled structures in C, is

by = ;IT Z Fix(a)

" w€S,

where Fix(co) is the number of structures fixed by « (i.e., for which « is an automorphism). The identity
element ¢ of S, fixes all structures, so Fix(¢) = a,. Thus, b, — a,/n! is

;11—, Z Fix(«)

T a#e

All of the proofs proceed by estimating the number of labeled structures fixed by each o # ¢ to show
that this sum is o(a, /n!).

There is a close relationship between this method and the the probability of rigidity in a random
structure. (A structure is rigid if it has no automorphisms other than the trivial automorphism.) It
is easy to show that b, ~ a,/n! if and only if the unlabeled asymptotic probability of rigidity is 1.
Furthermore, if b, ~ a,/n!, then the unlabeled asymptotic probability of rigidity is 1 (but the converse
may fail).

Pélya showed that unlabeled graphs are almost surely rigid. Wright [73] extended this result to classes
of graphs with a given number of edges. Oberschelp [56], and Fagin [27] showed that unlabeled relational
structures are almost surely rigid (assuming that there is a relation of arity at least 2), and Oberschelp
[55] extended this result to all classes given by a parametric condition. Prémel [60] proved that unlabeled
structures from a class C, with the similarity type of one binary relation, closed under substructures,
and with loga, = con? + ¢1n + o(n), are almost surely rigid. The asymptotic estimate of Kleitman and
Rothschild [42] for the number of labeled partial orders, and of Kolaitis, Prémel, and Rothschild [44] for
the number of K,,1-free graphs, shows that both kinds of classes satisfy loga, = con? + cin + o(n),
so they are covered by Promel’s theorem. Bollobas and Palmer [9] show that unlabeled d-complexes are
almost surely rigid. Hence, for all of the fast growing classes in this section we have unlabeled 0-1 laws
for FO, TC, LFP, and IT, and strict-£} U strict-II}.

This leads us to ask whether rigidity can be expressed in any of these logics. Blass and Harary [6],
show that the answer for the class of graphs is no. The reason is that the proofs of 0-1 laws for these
logics all depend on showing that if ¢, a sentence in the logic, is true in M, the unique countable model
of theory T consisting of extension axioms, then ¢ is a consequence of finitely many sentences in T on
finite structures. Thus, the sentences holding in M are precisely the sentences with labeled asymptotic
probability 1. Blass and Harary show that every finite subset of T has a finite model with nontrivial
automorphisms, so rigidity cannot be expressed in any of these logics. They also show that every finite
subset of T" has a finite model with a Hamilton cycle. One of the jewels of random graph theory is the
result that a labeled or unlabeled graph is almost surely Hamiltonian. (See Bollobas [8] for the history
of this problem and an account of its proof.) It follows that Hamiltonicity cannot be expressed in any
of these logics.

This points out the main difficulty in our present state of knowledge of 0-1 laws for fast growing
classes. The logics for which we have 0-1 laws can express only those almost sure properties that follow
from extension axioms. Bollobds [7, p. 131] remarks that the first-order labeled 0-1 law for graphs looks
sophisticated, but follows from shallow computations. This observation does not hold for all the 0-1 laws
we have seen since determining the asymptotic growth of the class, say for partial orders or K,,41-free
graphs, may be quite difficult. However, another of his criticisms does pertain: most combinatorially
interesting properties cannot be expressed in the logics for which we have 0-1 laws. (Blass and Harary
[6] point out that a few interesting combinatorial properties do follow from the extension axioms for
graphs; they include nonplanarity, having diameter 2, k-connectivity for each k, and the property of not
being a line graph.)

A 0-1 law for graphs in a logic in which Hamiltonicity or rigidity could be expressed would be
significant. A natural direction to take in the search for such a 0-1 law would be to consider fragments
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of second-order logic, but work so far in this direction holds little hope. Kaufmann and Shelah {41], for
example, show that there is not a labeled MSO 0-1 law for the class of relational structures. In the
example they give of an MSO sentence ¢ without an asymptotic probability, u, () is so badly behaved
that no reasonable modification of the notion of asymptotic probability will serve.

6 Structures with Functions and Underlying Relations

In the last section we established 0-1 laws by showing that the FO sentences in an Xy-categorical theory
T have asymptotic probability 1. Unfortunately, in cases where a 0-1 law does not hold but we would
like to show that p,(p) converges for every sentence ¢ in some logic, this approach offers no guidance.
Even in cases where a 0-1 law holds, but the set of sentences with probability 1 is not Rp-categorical,
this approach fails. In this section we will discuss a technique due to Lynch [50, 51] for dealing with
some of these cases. The technique seems most applicable to fast growing classes of structures with
underlying relations, but has also been used for slow growing classes, particularly classes of functions.
Unlike the method of the last section, Lynch’s method does not generalize to extensions of FO, in fact,
cannot generalize because, as we will see, asymptotic probabilities are not defined in general for the the
extensions of first-order logic we have introduced.

To illustrate the ideas in this approach, let us derive the labeled FO 0-1 law for the class C of
relational structures supposing that we know nothing about Rg-categoricity. Instead, we use the FO
Ehrenfeucht games described in §2. It is enough to show for a fixed r > 0 that two sufficiently large,
randomly chosen labeled structures M and A (not necessarily the same size) will almost surely satisfy
M =, N. A sentence ¢ of quantifier rank r is then either true in almost all structures or false in almost
all structures. Hence, we must determine a winning strategy for player II in the Ehrenfeucht game of
length r on M and N. Since the extension axioms each have probability 1, we may assume that in M
and N substructures on sets of size less than » may be extended by one element in all possible ways. This
shows that the naive strategy is a winning strategy for player II. Whenever player I picks an element
from one model, player II is guaranteed an element in the other structure that will extend the partial
isomorphism between elements previously chosen.

Now consider what happens if we have an underlying successor relation on structures. That is, we
add a binary relation symbol S which interprets the successor relation on the labeled structures of C.
(Recall that the universe of a labeled structure is always of the form {0, ..., n—1}; S(z, y) holds precisely
when y = ¢+ 1.) The FO 0-1 law no longer holds. Suppose, for example, that R is a binary relation
symbol in the similarity type. The probability that R(0,0) holds is 1/2. We can, however, modify our
Ehrenfeucht game argument to show the following.

Theorem 6.1 (Lynch [50]) Let C be the class of all relational structures with an underlying successor
relation. Then pn(p) converges for each FO sentence .

Proof: For a sequence of elements o, ...,z;_1 from M (empty sequence permitted) and a nonnegative
integer r, form B"(M,zo,...,z;_1), the substructure of M whose universe consists of elements at
distance no more than 3" from some #; or one of the two end points, with constants added for each of
the elements zo,...,2;_1.

We claim that the probability of M =, N, given that B"(M) and B"(N) are isomorphic, can be
made as close to 1 as we like by taking M and A large enough. Consequently, the sentences of quantifier
rank r satisfied by a structure are almost surely determined by the intervals of length 3" at the beginning
and end of the structure. There are only finitely many ways to specify relations on the beginning and
ending 3" elements of a structure, and all such specifications have equal probability. For ¢ of quantifier
rank 7, obtain u(p) by summing the probabilities of the beginning-ending combinations for which ¢
holds.

To prove the claim, we show that player II almost surely has a winning strategy on M and A when
B"(M) and B"(N) are isomorphic. Suppose that z; and %; are the elements chosen on move i from M
and A respectively. Player IT responds so that

Br—j(M,wl,...,:Bj) and B”"j(N,yl,.. .,yj)
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are isomorphic for 0 < j < r. To see that player II can effect such a strategy, let us examine her options
on move j + 1 supposing that she has managed to satisfy this condition on move j.

Player I picks an element from one of the two structures, say z;;1 from M. Now if z;4, differs
from some z; already chosen or one of the end points by at most 2 - 3"~7~1 then the universe of
Br-i-Y(M,zq,. ..,Zj41) is entirely contained in the universe of B"~J (M, zy,. ..,z;) so player II has
only to pick the corresponding element in B"~4 (N, y1,. .., y;) On the other hand, if z; differs from each
z; and both end points by more than 2-3"~7~1 then consider a maximal set of elements y that are at
least distance 2 - 3"~7=1 apart and at least the same distance from each y;. Almost surely for one such
value yj 41, B"~9 "1 (N,y1,...,yj4+1) is isomorphic to B"~I=1(M, zy,...,z;11). (Notice that although the
mapping from 1, ..., 241 to y1, ..., yj41 preserves the successor relation, it may not preserve order.)0

Let us describe the condition assuring a winning strategy for player II as an extension axiom. We

define an (r, j)-description § = 6(xy,...,x;) for xo,...,2_1 to be the conjunction of formulas giving
the relations and negations of relations holding between the elements in B"+}(M,z1,...,z;). Let
6 =46'(z1,...,2541) be the (v, j + 1)-description for z1,...,2;41. Then the extension axiom

V.’l)l, ey .’Bja.’l,‘j+1(§ — 6/)

has labeled asymptotic probability 1.

Lynch [50] formalizes this technique and applies it to other examples. It is not difficult to see that
if, rather than the successor relation, we take the modular successor relation as an underlying relation
(i.e., let S(n —1,0) hold on labeled structures with universe n), we then have an FO 0-1 law because
we no longer need to consider intervals at the ends of structures.

A much more difficult example considered by Lynch is relational structures with the successor relation
and modular addition as underlying relations. (For the latter, we have a ternary relation symbol P with
P(z,y,z) holding precisely when z + y = 2 (mod n) in structures with universe n.) Here it is no
longer the case that p1,(yp) converges for all FO sentences ¢. For example, the sentence Ve3y P(y, y, z)
holds only in structures with universes of odd cardinality. However, Lynch shows that u, () is “almost
convergent” in the following sense.

Theorem 6.2 (Lynch) Let C be the class of relational structures with underlying successor and mod-
ular addition relations. For each FO sentence ¢ there is a positive inleger p such that for each i < p,
Hiynp(p) converges as n approaches co.

The same analysis shows that if we have underlying modular successor and modular addition relations,
then for each FO sentence ¢ there is a positive integer p such that for each i < p, pt;4np(p) approaches
either 0 or 1 as n approaches co. In both of these examples, the Cedaro limit of p,(y) (defined in
the introduction) exists. The analysis of this example is similar in spirit to the analysis for relational
structures with an underlying successor relation, but is too involved to present here.

Lynch’s technique is strikingly similar to Ferrante and Rackoff’s technique for obtaining upper com-
plexity bounds for the satisfiability problem for FO theories [29]. They use Ehrenfeucht games to show
for certain theories 7' that it is possible to determine whether whether ¢ is satisfied in some model of
T by checking the truth of ¢ in just a finite number of models; moreover, to verify if ¢ holds in one of
these models it is possible to restrict the search to finitely many elements when searching for witnesses
to existentially quantified formulas. By bounding the number of models and number of elements con-
sidered, one obtains an upper bound. Grandjean’s PSPACE upper bound for the theory of almost all
relational structures in Theorem 5.6 be cast in this form.

Close scrutiny of Lynch’s arguments [50] reveals that they also give upper bounds. Let T be the set
of extension axioms described above for the class of relational structures with an underlying successor
relation. To determine that an FO sentence ¢ of quantifier rank r has labeled asymptotic probability 1,
we must verify that ¢ holds in models of T" with every combination of relations for the beginning and
ending intervals of length 3". That is, we must show that for every (r,0)-description §, § — ¢ is true in
models of T'.

A straightforward modification of Grandjean’s algorithm allows us to determine for a formula
¢(x1,...,z;) of quantifier rank » and an (r, j)-description 8(z1, ..., z;) whether § — ¢ is true in models
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of T'. Notice that to justify the negation clause in this algorithm we must show that when é(z1,...,z;)
is an (r, j)-description, T'U {8} completely determines the formulas of quantifier rank r holding in any
model. This follows from our Ehrenfeucht game analysis. Notice also in the existential quantifier clause
that generating an (r—1, j+1)-description é§’ extending an (r, j)-description § requires exponential rather
than polynomial time. Consequently, the algorithm gives an upper bound of TA(2°",n) (i.e., time 2°"
on an alternating Turing machine making n alternations), for some ¢ > 0, to determine whether an FO
sentence ¢ of length n has labeled asymptotic probability 1. The same bound holds for relational struc-
tures with an underlying modular successor relation. For relational structures with underlying successor
and modular addition relations Lynch’s analysis together with these observation show that the upper
bound is TA(2?™",n) for some ¢ > 0.

These upper bounds are the best possible. Compton and Henson [21] give a general method for
proving lower bounds for theories. They show, roughly, that if it is possible, using formulas of length
O(n), to interpret in models of a theory T” all binary relations on sets of size at most f(n) together with
the power sets of their universes, then the problem of whether a sentence ¢ is true in some model of 7"
has a lower bound of TA(f(dn),dn) for some d > 0.

Let 7" be the set of sentences having labeled asymptotic probability 1 in the class of relational
structures with an underlying successor relation. Using standard techniques we can specify formulas
an(z, u,u’) of length O(n) that hold when u < z < v/ and v’ —u < 2". Thus, by varying the parameters
u and v/, we can define all intervals of length at most 2. Now if the similarity type contains a non-
unary relation symbol, say a binary relation symbol R, the interpretation of R restricted to these
intervals almost surely will range over all binary relations on sets of size at most 2". Moreover, the
formulas an(z,u,u’) A R(z,v) almost surely define all subsets of the interval u < = < ' as v ranges
over elements in the structure. (See [21] for a detailed discussion of these methods.) It follows that the
problem of determining whether a sentence has labeled asymptotic probability 1 in the class of relational
structures with an underlying successor relation has a lower bound of TA(29",dn) for some d > 0. A
similar argument shows that for the class of structures with underlying successor and modular addition
relations the lower bound is TA(de",dn) for some d > 0.

Of course, in those cases where a 0-1 law does not hold we would like to know the labeled asymptotic
probabilities of sentences. Lynch’s technique gives this directly. For the class of relational structures
with an underlying successor relation, p(y) is always a dyadic rational number that can be computed
in SPACE(2%). Similarly, for the class of relational structures with underlying successor and modular
addition relations, there is, for each FO sentence ¢, an integer p and dyadic rational numbers I;, i < p,
such that piyn, () approaches I; as n approaches co; p and l;, ¢ < p can be computed in SPACE(QTM).

Can we obtain similar results for relational structures with an underlying linear order? Compton,
Henson, and Shelah [22] show that the answer is no. There is an FO sentence ¢ for this class such that
tn () is badly behaved: it does not converge and there is no periodic subsequence that converges. The
proof is similar to the proof of Kaufmann and Shelah [41] showing that there is an MSO sentence ¢
for the class of relational structures such that p(yp) does not converge. With an underlying successor
relation we can quantify over intervals in FO, and this is enough set quantification to define, in almost
all structures, the largest interval on which a binary relation R codes addition and multiplication. An
interesting corollary of this result is that for the class of relational structures with an underlying successor
relation, the labeled asymptotic probability of sentences from T'C, LFP, or IT. The reason is that with
a transitive closure operator we can define a linear order from a successor relation.

Theorem 6.3 (Lynch [51]) Let C be the class of structures with k unary functions. Then every FO
sentence has a labeled asymptotic probability.

Proof: The approach is like the one for the class of relational structures with an underlying successor
relation but the details are significantly harder.

The distance between elements is determined not by a successor relation now, but rather by the
shortest path between elements in the graph formed by taking an edge between two elements precisely
when one is mapped to the other by one of the k functions. Fix » > 0. We saw that for relational
structures with a successor relation, restrictions to the beginning and ending intervals of length 3" almost
surely determine which FO sentences of quantifier rank r will hold. With a similar view we define a

20



critical substructure of one of our k-function structures to be the restriction to the set of elements at
distance no more than 3" from a given cycle of length at most 2 - 3" 4+ 1. (Cycle refers to a cycle in the
graph.) Lynch shows that critical substructures are almost surely disjoint for each r (a condition he calls
r-simplicity). He also shows that structures are almost surely r-rich; this condition can be expressed
by extension axioms which insure a winning strategy for player II in the Ehrenfeucht game of length r.
These axioms are precisely the same as for relational structures with an underlying successor relation

except that B"(M,z1,...,z;) is the substructure of M whose universe consists of elements at distance
no more than 3" from some z; or a cycle of length at most 2 - 3", with constants added for each of the
elements z1,...,z;.

Computing the probabilities of relations holding on beginning and ending intervals is straightforward,
but computing probabilities of occurrences of critical substructures is not easy: for a fixed r the number
of isomorphism types of critical structures may be infinite, and there is no bound on the number of
critical substructures of a structure. Lynch overcomes these problems by defining for each r an equiv-
alence relation he calls 7-morphism on classes of critical structures. The r-morphism relation respects
isomorphism classes and has finite index I. Lynch shows that the FO sentences holding in a structure are
almost surely determined by the number of critical substructures in each r-morphism class. An Ehren-
feucht game argument shows it is only necessary to know the precise number of critical substructures in
an r-morphism class up to r; for more than r, the FO sentences of quantifier rank r that hold are no
different than if there were exactly r. For each of the | r-morphism classes there are r + 1 possibilities:
the number of critical structures in the class may be 0,1,...,7 — 1, or > . Thus, we need to consider
(r+1)! cases. If we can compute the labeled asymptotic probability of each case, the labeled asymptotic
probability of any FO sentence of quantifier rank r can be expressed as a sum of these values.

The computations proceed by induction, since r-morphism is defined by induction on r. We omit
details since they are lengthy and several combinatorial and analytic results must first be proved.0

"The proof'is effective in the sense that it provides a procedure which, for a given first-order sentence ¢,
yields an expression for () in terms of integers, e, the usual arithmetic operations, and exponentiation.
There can be up to r nestings of exponentiation in these expressions for sentences of quantifier rank ».
The proof implicitly gives a decision procedure for the set of FO sentences with labeled asymptotic
probability 1. In fact we can give an algorithm similar to the one for deciding whether an FO sentence
about relational structures with an underlying successor relation has probability 1. However, the best
bound we can obtain for number of r-morphism classes is exp, (cr) for some ¢ > 0, where

2
expoo(n) — 222“ }n times
We thereby obtain an upper time bound of exp, (cn) for determining whether an FO sentence of length n
has labeled asymptotic probability 1. (For time bounds growing this fast it makes no difference whether
the model of computation is a Turing machine or an alternating Turing machine.)

Compton, Henson, and Shelah [22] show that this bound is the best possible. Using the lower bound
techniques from Compton and Henson [21] they show an exp_ (dn) lower time bound for the problem
of determining whether an F'O sentence has labeled asymptotic probability 1 in the class of structures
consisting of a single unary function. In the same paper they prove that for the class of structures
with two or more unary functions there are MSO sentences without a labeled asymptotic probability.
They also prove that for the class of structures with a binary function, there are FO sentences without
a labeled asymptotic probability. The proofs are similar to the other nonconvergence proofs we have
cited: addition and multiplication can be coded on certain sets and the largest such set can be picked
out almost surely. Nothing is known about labeled asymptotic probabilities of sentences from TC, LFP,
or IT for the class of structures containing two or more unary functions.

Lynch’s results for functions remain true if some of the unary functions are required to be one-to-one.
When the structures have just a one-to-one function, the upper bound for determining whether an FO
sentence has labeled asymptotic probability less than 1 can be improved to NTIME(Qd"Z)‘ The best
lower bound known for this problem is NTIME(2°") (shown in Compton [20]). However, in the case
of monadic second-order logic on structures with two or more one-to-one functions, Compton, Henson,
and Shelah show that there are sentences without an asymptotic probability, and that the problem of
determining probability 1 sentences is undecidable.

21



7 Independent Probability Measures

Here we relate various findings concerning independent probability measures, including measures on
classes of infinite structures.

The most well known example of an independent probability measure is found in the study of random
graphs initiated by Erd6s and Rényi [24]. As we noted in the introduction, this measure is defined by
assigning a probability p = p(n) to the independent edge occurrence events in a random graph on n
vertices. Palmer [58] calls this Model A. This measure is closely related to the labeled asymptotic
probability on graphs with |p- ('2‘) | edges on n vertices — Model B in [58]. A result for Model A often
holds for Model B as well, but we will confine our remarks to Model A.

Erd8s and Rényi showed that many graph properties have associated threshold functions. We say
that ¢(n) is a threshold function for a property S if u(S) = 0 when p(n) < t(n) and p(S) = 1 when
t(n) < p(n). (Here f(n) <« g(n) means f(n) = o(g(n)).) When p(n) ~ ct(n) for some 0 < ¢ < oo,
we usually have 0 < p(S) < 1, in which case we do not have a 0-1 law for logics in which S is can be
expressed.

We would naturally like to know which functions are threshold functions for first-order sentences,
and whether first-order 0-1 laws hold between the threshold functions. A survey of the literature on
random graphs (see Bollobés [8] or Palmer [58]) reveals that n=2 is a threshold function for the sentence
that says “there is a pair of vertices joined by an edge”; n=1=1/¥ is a threshold function for the sentence
that says “there is a component isomorphic to 7,” where 7 is any tree with k vertices; n=! is a threshold
function for the sentence that says “there is an m-cycle,” where m is any integer greater than 2; and
n~llogn is a threshold function for the sentence that says “there is no vertex of degree m,” where m is
any nonnegative integer. Shelah and Spencer [64] give a fairly complete picture (the gaps are discussed
below) of where first-order 0-1 laws occur between these threshold functions.

Theorem 7.1 (Shelah and Spencer) Let p(n) be the edge occurrence probability for a class of random
graphs. An FO 0-1 law holds when p(n) satisfies any of the following conditions.

(i) p(n) < n~2.
(it) n=1=1* & p(n) < n=1=E+D) for some positive integer k.
(i1i)) n=1=¢ <« p(n) K n~1t for alle > 0.
(iv) n™! < p(n) €< n"llogn.
(v) n~tlogn < p(n) K n=1*¢ for alle > 0.
(vi) n=¢ K p(n) for alle > 0.

The proof of this theorem (actually six theorems) employs techniques similar to those used in sec-
tions 4 and 5 to prove 0-1 laws.

When condition (i), (ii), or (vi) holds, the set of FO sentences with probability 1 turns out to be
Ro-categorical, so by the results in §5 we also have 0-1 laws for the logics TC, LFP, and IT. (Shelah
and Spencer point out that the alternate proof we sketched for Theorem 5.1 gives case (vi) immediately.)
It is not difficult to show that the complexity of the set of probability 1 sentences in these cases is the
same as it was in §5: for FO and TC the set is PSPACE-complete, for LFP it is EXPTIME-complete,
and for IT it is EXPSPACE-complete.

When condition (i), (ii), (iii), or (iv) holds, we can use Ehrenfeucht games as described in §4 to show
that an MSO 0-1 law holds. Rather than invoking generating series methods, we can show directly that
for every r, any two random graphs will almost surely satisfy the same MSO sentences of quantifier rank
r. In cases (iii) and (iv) the set of MSO sentences with probability 1 is decidable, but even the set of
FO sentences with probability 1 cannot be decided in time exp.,(dn) for some d > 0. The lower bound
follows by essentially the same argument used by Compton, Henson, and Shelah [22] to obtain a lower
bound for random unary functions.

Theorem 7.1 above does not tell us what happens when n~!'*¢ < p(n) < n=¢ for all ¢ > 0. Here
Shelah and Spencer provide a partial solution.
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Theorem 7.2 (Shelah and Spencer) If p(n) = n=%, where « is an irrational number between 0 and
1, then an FO 0-1 law holds.

This is the most difficult result in [64]. We will not attempt to summarize the proof. The paper gives
an example where the FO 0-1 law fails for a p(n) near n=/7 and it appears that similar examples can
be given near n~¢ for every rational « strictly between 0 and 1. The probability 1 theories that result
from different irrational o are distinct, so almost all of them will be undecidable since there are only
countably many decidable theories.

Recall that the probability measure on the class of graphs with an infinite vertex set A is defined
by setting the probability of each edge occurrence event to be a fixed real number p strictly between 0
and 1. The space of graphs is identified with the product space {0, 1}[A]2. Now it is easy to see that the
extension axioms for the theory of graphs (given after Theorem 5.2) each have probability 1. Since we
are now dealing with a countably additive measure, the set S of graphs satisfying all of the extension
axioms has probability 1. Since there is only one countable graph satisfying this theory, the set of graphs
satisfying a sentence of any logic will either contain S or be disjoint from S when A is countable. Thus,
for countable graphs, we have a 0-1 law for every logic. Erdés and Rényi make this observation in [24],
although without reference to the logical framework.

Gaifman [30] gives essentially the same argument, using the extension axioms for relational structures
rather than graphs, to prove an FO 0-1 law for the infinite random relational structures of a finite
similarity type. As with graphs, if the universe is countable, the argument shows that every logic has
a 0-1 law; if the universe is uncountable, we can only conclude that there is a 0-1 law for FO, and by
Ro-categoricity, for TC, LFP, and IT. The complexity bounds for the decision problems are the same
as in §5.

Reyes [63] observed that the set of relational structures satisfying the extension axioms is comeager,
so we have a categorical analogue of a 0-1 law — a meager-comeager law — corresponding to each 0-1
law. (See Oxtoby [57] for a general discussion of the parallels between measure and category.) Let us
summarize these observations.

Theorem 7.3 The class of structures on an infinite set A has a 0-1 law and a meager-comeager law
for FO, TC, LFP, and IT. The probability 1 seniences coincide with the comeager sentences in each
case, and the complexzities of the sets of probability 1 sentences are as in §5. If A is countable, a 0-1 law
and meager-comeager law holds for every logic.

We see that the techniques of §5 apply to classes of infinite structures. Lynch [50] applies the
techniques of §6 to infinite structures with underlying relations. For example, Theorem 6.1 holds for
the class of relational structures on w = {0,1,2,...} with the usual successor relation. The proof is
the same except that now we have only one end point to worry about when we play the Ehrenfeucht
game. Results similar to those in §6 can be obtained for structures withw or Z = {...,~1,0,1,...} as
the universe and underlying successor and addition relations. Moreover, in all of Lynch’s examples 0-1
laws hold precisely when meager-comeager laws hold, and the probability 1 sentences coincide with the
comeager sentences.

One might be tempted to conclude from the discussion above that in the matter of logical probabili-
ties, infinite structures behave identically to their finite counterparts. This is not so for structures with
underlying linear orders. In §6 we saw that we do not in general have convergence for FO sentences
about relational structures with underlying linear orders. But for the set of relational structures on Z
with the usual order we have not only convergence, but also an L,,, 0-1 law. In fact, Mycielski showed
that if the automorphism group of the structure formed by restricting to the underlying relations (in
this case (Z, <)) has no finite orbits, then the set of structures satisfying an L., sentence will have
measure 0 or 1, and be meager or comeager. (The proof is given in Lynch [50].)

For the special case of structures on Z with the usual order and the similarity type containing
only unary relations, this result follows from the classical 0-1 law of Kolmogorov and its topological
analogue (see Oxtoby [57]): if X is a Baire space with a probability measure, then every shift invariant

Borel set S C XZ has measure 0 or 1, and is meager or comeager. By shift invariant we mean that
ifa=(...,a_1,a0,a1,...) is in S, then for each integer j, b = (...,b_1,bo,b1,...) is also in S, where
b; = a;4;; the mapping that takes a to b is a shift by j coordinate places. If there are k unary relations in
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the similarity type, each element of Z satisfies one of 2 possible subsets of this set of relations, and the set
of random structures may be identified with (2* )Z. A shift on this space clearly preserves isomorphism
types, so the set of structures satisfying any sentence is shift invariant. Makkai and Mycielski [52]
point out that by the Lopez-Escobar Interpolation Theorem, every shift invariant Borel set is the set of
structures satisfying some sentence of Ly, .

Now measure and category may not agree here. The standard example of a meager set with prob-
ability 1 is the set of sequences in {0, 1}Z where the asymptotic proportion of 0’s (and hence 1’s) is
1/2. This set is Borel, so there is a meager L, sentence with probability 1. Benda [3] showed that
measure and category do agree for FO sentences and Compton [13] extended this to MSO sentences.
(Both results are for similarity types having only unary relations.) Notice that it is not obvious that the
set of structures satisfying an MSO sentence should be Borel; this is shown in [13].

Another example of independent probability measures are defined on random partial orders of fixed
dimension. They were studied by Winkler in [72]. Fix a dimension k and randomly choose n points from
the (solid) k-cube [0,1]*. (The probability measure is obtained by extending the uniform measure on
[0,1] to the product.) Let a = (a; | ¢ < k) and b = (b; | i < k) be points in [0, 1]*. Write a < b if a; < b;
for each ¢ < k. Now pn(¢) is the probability that a randomly chosen order satisfies . Winkler displays
an FO sentence ¢ for k = 2 such that lim,_.c pn () = 1/e. It is not known whether convergence occurs
for every FO sentence when k > 2. It is evident that the measure we have defined is equivalent to taking
the labeled asymptotic probability on the class of structures with k linear orders and letting < be the
intersection of these linear orders in each structure.

For k = 1 an FO 0-1 law does hold. If one allows random unary predicates in addition to the random
linear order, we no longer have a 0-1 law, but Ehrenfeucht has shown that we still have convergence
for every FO sentence ¢. (The proof is given in Lynch [50].) This result relies on simple properties of
Markov chains. For unary relations with an underlying linear order there is a well known correspondence
between sets satisfying MSO sentences and sets accepted by finite automata (see Ladner [48] for a nice
treatment). From the finite automata one can construct Markov chains to compute probabilities of MSO
sentences and show that their Cesaro limit exists.

Winkler also examines random countable orders of dimension k. Here we pick a sequence of points
from [0, 1]* (or, more formally, take the product measure on ([0,1]¥)*). In the case k = 1 we have a
random sequence from the unit interval, which forms, almost surely, a dense linear order without end
points. Cantor, in the first use of a back-and-forth argument, showed that any two such structures are
isomorphic; i.e., we have Np-categoricity and therefore a 0-1 law. Winkler extends this argument to
higher dimensions.

Theorem 7.4 (Winkler [72]) The class of countable partial orders of dimension k has an FO 0-1 law
for each finite k. The set of FO sentences with probability 1 is an Rg-categorical theory.

Again, No-categoricity yields a 0—1 law for every logic. It is not difficult to see that we also have a
meager-comeager law for every logic, and that measure and category agree.

We note that Bankston and Ruitenburg [2] discuss a general method for assigning probability mea-
sures, metrics, and game strategies on classes of countably infinite structures. Their results are concerned
mostly with the model theoretic properties of sets of structures satisfying various notions of ubiquity,
such as having probability 1 and being comeager.

8 Problems and New Directions

We close with a list of problems and suggestions for further research directions.

Problem 8.1 Develop techniques for showing the ezistence of asymptotic probabilities of FO and MSO
sentences in classes whose generating series converge at the radius of convergence.

In §4 we described techniques used with slow growing classes whose generating series diverge at the
radius of convergence, but there are interesting examples not covered by this condition.

The most well known is the class of labeled rooted trees (and forests). A famous theorem of Cayley,
probably the first difficult enumeration result, says there are n”~! labeled rooted trees on n vertices,
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so the exponential generating series for the class is ¢(z) = 3 ((n"~!/n!)2" (see Harary and Palmer
[37]). It is not difficult to show that c(x) has radius of convergence e=! and ¢(e~') = 1. The exponential
generating series for forests is a(¢) = exp(c(z)) so it also converges at e=!. Does every MSO sentence
have a labeled asymptotic probability in the class of rooted trees (or equivalently, in the class of rooted
forests)?

Another example is the class of unit interval graphs. Hanlon [36] explicitly derives the ordinary gen-
erating series (enumerating unlabeled structures) for this class. It converges at its radius of convergence.
Does every FO sentence have an unlabeled asymptotic probability in this class? What about in the class
of interval graphs?

Compton [18] gives techniques for computing probabilities of certain properties when convergence
occurs at the radius of convergence. For example, if the exponential generating series a(z) of a class closed
under disjoint unions and components satisfies certain general conditions, then the labeled asymptotic
probability of connectivity is 1/a(R), where R is the radius of convergence of a(z). This result indicates
the difficulty when a(R) is finite: we must take into account not only the number of components that
occur in a structure, but also what is true within components.

Problem 8.2 Develop techniques for showing the existence of asymptotic probabilities of LFP sentences
in slow growing classes.

As we noted in §4, nothing is known in this area other than a few results of Kolaitis [43].
Problem 8.3 Prove a 0-1 law for graphs in a logic powerful enough to express Hamiltonicity.

One approach to this problem would be to see what kinds of combinatorial operators must be added
to FO to quantify over the long paths that occur in the proof of almost sure Hamiltonicity (see [8]). An
easier problem might be to prove a 0-1 law for graphs in a logic powerful enough to express rigidity.

Problem 8.4 Investigate asymptotic probabilities for naturally occurring fast growing classes not cov-
ered in sections § and 6.

Classess where the techniques of Compton, Henson, and Shelah [22] might show that labeled asymp-
totic probabilities of FO sentences fail to exist include structures consisting of a binary relation plus
unary function, and of a unary function with an underlying linear order. A class where the techniques of
Lynch [51] might show that asymptotic probabilities of FO sentences do exist is pairs of equivalence re-
lations. After all, a unary function f induces an equivalence relation {(z,y) | f(z) = f(y)}. This gives a
somewhat different distribution than the labeled asymptotic probability, however. The techniques of [22]
might show that labeled asymptotic probabilities of MSO sentences fail to exist for pairs of equivalence
relations.

Problem 8.5 We use the notation in the discussion of random graphs in §7. If t(n) is one of the

functions n=2, =11k =1 op n~!logn, then do all FO sentences have a probability when p(n) =
ct(n)?

These are all threshold functions for FO sentences, so we will not have an FO 0-1 law in any of these
cases.

Problem 8.6 (Winkler [72]) Show that all FO seniences have asymptotic probabilities on the class of
random partial orders of dimension k, where k is finite.

Winkler notes that this would follow if FO sentences have labeled asymptotic probabilities on the
class of structures consisting of k linear orders. In the case of k successor relations, the methods of
Lynch [51] can probably be applied to show that FO sentences have asymptotic probabilities.

Problem 8.7 Develop a theory of asymptotic probabilities for structures (such as groups) where direct
product ts an appropriale operation.
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We saw in §4 that for structures such as graphs where disjoint union is an appropriate operation,
extended asymptotic probabilities can be defined using ratios of power series. When direct products
occur we often use Dirichlet series for enumeration (see Goulden and Jackson [32]), so it is natural to
define asymptotic probabilities in these cases using ratios of Dirichlet series. Let C be a class of structures
and a, be the number of unlabeled structures in C of size n. For a sentence ¢ let ¢, be the number of
unlabeled structures of size n in C' satisfying ¢. The Dirichlet series for C and g are a(s) = 3", 5, a,n™*
and ¢(s) = ), cnn™*, respectively. Dirichlet series have a right half-plane of convergence rather than
a circle of convergence. Suppose the half-plane of convergence for a(s) consists of those complex numbers
with real part greater than R and lim,_.g a(s) = co. Define a(p) = lim,_ g ¢(s)/a(s). Does ji(p) exist
for every FO sentence ¢ when C' is the class of Abelian groups? What about other classes of algebraic
structures?

Problem 8.8 Investigate asymptotic probabilities and 0-1 laws for classes of regular graphs.
Bollobés [8] has a short discussion on known asymptotic results for regular graphs.

Problem 8.9 Show that all FO sentences have labeled asymplotic probabilities for classes of directed
graphs having the amalgamation property and closed under substructures.

Kolaitis, Promel, and Rothschild [45] proved that classes of (undirected) graphs with these properties
have labeled FO 0-1 laws by invoking a result of Lachlan and Woodrow [47] which characterizes such
classes and then observing that each class has a labeled 0-1 law. Is this an accident? The question is
how amalgamation figures in the study of asymptotic probabilities. Bankston and Ruitenburg [2] use
some of the well known model theoretic properties of classes with amalgamation in their work, but it
does not seem to shed light on the Kolaitis-Promel-Rothschild result. Tt would be instructive to have a
proof that used the amalgamation property directly.

A class of directed graphs with the desired properties, but without a labeled 0-1, is given in [45], but
it is easily shown that labeled asymptotic probabilities of FO sentences do exist in this example.
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