Lecture 4, Comparing Graph Invariants

LECTURE 4

Lecture 11

In Lecture 10 we introduced the notion of a graph polynomial.

- The chromatic polynomial was introduced and many facts about it were presented.
- We proved that there are many, MANY, graph polynomials.
- We have listed many explicit examples: Variations on colorings and others.

Homework: Reread the slides of Lecture 10!

Lecture 11 Comparing graph polynomials

- Distinctive power of graph polynomials
- *P*-equivalence and complete graph polynomials
- Reducibility via coefficients

Comparing graph parameters and graph polynomials

Jointly prepared with E.V. Ravve

Graph parameters and graph polynomials

Let \mathcal{R} be a (possibly ordered) ring or a field.

For a set of indeterminates \overline{X} we denote by $\mathcal{R}[\overline{X}]$ the polynomial ring over \mathcal{R} .

A graph parameter p is a function from the class of all finite graphs Graphs into \mathcal{R} which is invariant under graph isomorphism.

A graph polynomial p is a function from the class of all finite graphs Graphs into $\mathcal{R}[\bar{X}]$ which is invariant under graph isomorphism.

Remark: In most situations in the literature \mathcal{R} is \mathbb{Z}, \mathbb{Q} or \mathbb{R} . The choice of the underlying ring or field may depend on the way we want to represent the graph parameter or graph polynomial.

For the graph parameter $d_{max}(G)$, the maximal degree of its vertices, \mathbb{Z} suffices, but for $d_{average}(G)$, the average degree of its vertices, \mathbb{Q} is needed.

Equivalence of graph polynomials, I

Let C be a graph property. Let $P(G, \overline{X})$ and Let $Q(G, \overline{Y})$ be two graph polynomials.

Definition 7 We say that Q determines P over C, or Q is at least as distinctive than P over C, and write $P \leq_{d.p.}^{C} Q$ if for all graphs G_1 and G_2 in C,

 $Q(G_1) = Q(G_2)$ implies that $P(G_1) = Q(P_2)$.

- If \mathcal{C} consists of all graphs, we omit \mathcal{C} .
- The definition also applies to graph parameters $P(G), Q(G) \in \mathbb{Z}$.

P and Q are d.p.-equivalent over C, and write $P \sim_{d.p.}^{\mathcal{C}} Q$, iff $P \preceq_{d.p.}^{\mathcal{C}} Q$ and $Q \preceq_{d.p.}^{\mathcal{C}} P$

Examples of
$$P \preceq^{\mathcal{C}}_{d.p.} Q$$

- (i) (DKT, 3.2.1) The chromatic polynomial $\chi(G, X)$ determines the graph parameters |V(G)|, |E(G)|, $\chi(G)$, k(G), b(G), g(G), etc.
- (ii) d_{max} and $d_{average}$ are d.p-incomparable.
- (iii) The Tutte polynomial T(G, X, Y) determines $\chi(G, X)$ on connected graphs, but not on all graphs.
- (iv) Assume P(G; X), Q(G; X), U(G, X) are three polynomials and $P(G, X) = U(G, X) \cdot Q(G, X)$. Let C_U be a class of graphs such that for all G_1, G_2C_U we have $U(G_1, X) = U(G_2 : X)$. Then $P \preceq_{d,p}^{C_U} Q$.
- (v) Let \mathcal{F} be the class of forests. For the characteristic polynomial $char(G, \lambda)$ and the matching polynomial $dm(G, \lambda)$ and we have

$$char \sim_{d.p.}^{\mathcal{F}} dm.$$

Adjoint polynomials

Let $P(G, \lambda)$ be a graph polynomial. We denote by \overline{G} the complement graph of G.

The adjoint polynomial $\overline{P}(G,\lambda)$ is the polynomial defined by

 $\bar{P}(G,\lambda) =_{def} P(\bar{G},\lambda)$

- **Exercise:** $P \preceq^{\mathcal{C}}_{d.p.} \overline{P}$ iff $\overline{P} \preceq^{\mathcal{C}}_{d.p.} P$
- For the Tutte polynomial T(G, X, Y) and $\overline{E}_n = K_n$ we have
 - (i) $T(E_m) = T(E_n) = 1$ for all $n \in \mathbb{N}$.
 - (ii) $T(K_m) \neq T(K_n)$ for $m \neq n$.
 - (iii) Hence the Tutte polynomial and its adjoint are not d.p.-comparable.

P-unique and *P*-equivalent graphs

Definition 8 Let $P = P(G; \overline{X})$ a graph polynomial and C a class of graphs.

- (i) Two graphs G_1 and G_2 are *P*-equivalent for *C* if $P(G; \bar{X}) = P(G_1; \bar{X})$.
- (ii) A graph $G \in C$ is *P*-unique for *C* if for any other graph $G_1 \in C$ with $P(G; \overline{X}) = P(G_1; \overline{X})$ the graph G_1 is isomorphic to *G*.

(iii) *P* is complete for C if every graph $G \in C$ is $P(G; \overline{X})$ -unique for C.

If C consists of all graphs we omit C.

Proposition 9 Let P and Q be graph polynomials such that $P \preceq_{d.n.}^{\mathcal{C}} Q$.

(i) If G_1 and G_2 are Q-equivalent for C then they are also P-equivalent for C.

(ii) If G is P-unique for C then G is Q-unique for C.

(iii) If P is complete for C then Q is complete for C.

Complete graph polynomials

Are there complete graph polynomials?

The following is a graph-complete graph invariant.

• Let $X_{i,j}$ and Y be indeterminates. For a graph $\langle V, E \rangle$ with V = [n] we put

$$Compl(G, Y, \overline{X}) = Y^{|V|} \cdot \left(\sum_{\sigma \in \mathfrak{S}_n} \prod_{(i,j) \in E} X_{\sigma(i), \sigma(j)} \right)$$

Here \mathfrak{S}_n is the permutation group of [n].

Challenge: Find a polynomial in a constant finite number of indeterminates which is a graph-complete graph invariant.

An "unnatural" graph-complete invariant

Let $g : \mathcal{G} \to \mathbb{N}$ be a Gödel numbering for labeled graphs of the form $G = \langle [n], E, \langle nat \rangle$.

We define a graph polynomial using g:

$$\Gamma(G,X) = \sum_{H \simeq G} X^{g(H)}$$

Clearly this is a graph invariant.

But it is "obviously unnatural" !

Can we make precise what a **natural** graph polynomial should be?

χ -equivalent graphs (from [DKT, chapter 5])

- (i) The graphs E_n , K_n and $K_{n,n}$ are χ -unique for $n \ge 1$.
- (ii) The graphs C_n are χ -unique for $n \geq 3$, $C_i = K_i$ for $i \leq 2$.

(iii) Any two trees on n vertices are χ -equivalent.

In [DKT, chapter 5] many pairs of χ -equivalent graphs are constructed using a method due to R.C. Read (1987) and G.L. Chia (1988).

Research project:

Study *P*-equivalence for the various generalized colorings of Lecture 10.

char-equivalent graphs

From M. Noy, Graphs determined by polynomial invariants (2003)

Let $char(G, x) = det(x \cdot 1 - A_G)$ be the characteristic polynomial of G with adjacency matrix A_G .

- (i) The graphs $K_{n,n}$ are *char*-unique.
- (ii) The line graphs $L(K_n)$ are *char*-unique for $n \neq 8$. For n = 8 there are three exceptions.
- (iii) The line graphs $L(K_{n,n})$ are *char*-unique for $n \neq 4$. For n = 4 there is one exception.

The two matching polynomials

Recall, for G = (V, E) with |V| = n,

$$dm(G,x) = \sum_{r} (-1)^r m_r(G) x^{n-2r}$$

be the (defect) matching polynomial and

$$gm(G,x) = \sum_{r} m_r(G)x^r$$

the (generating) matching polynomial.

We have

$$dm(G; x) = x^n gm(G; (-x)^{-2})$$

Graphs equivalent for matching polynomials.

From M. Noy, Graphs determined by polynomial invariants (2003)

• For every graph G we have $gm(G, x) = gm(G \sqcup E_n, x)$ but $dm(G, x) \neq dm(G \sqcup E_n, x)$.

 $dm(P_2, x) = x^2 - 1$ and $dm(P_2 \sqcup E_k, x) = x^3 - x$, but $gm(P_2, x) = x^2 - 1$ and $gm(P_2 \sqcup E_k, x) = x^2 - 1$

- $|V(G)| \leq_{d.p.} dm$, and therefore $gm \leq_{d.p.} dm$. In other words gm is strictly less expressive than dm.
- $gm \sim_{d.p.} dm$ on graphs of a fixed number of vertices.
- The graphs K_{n,n} are dm-unique.
 Are they also gm-unique?

Research project:

Study dm-equivalence and gm-equivalence of graphs further.

T-unique graphs

From A. de Mier and M. Noy, On Graphs determined by the Tutte polynomial (2004)

For a graph G = (V, E) and $A \subseteq E$ we denote by G[A] = (V, A) the spanning subgraph generated by A. We set r(A) = |V| - k(G[A]) and n(A) = |A| - r(A).

The Tutte polynomial is defined by

$$T(G; X, Y) = \sum_{A \subseteq E} (X - 1)^{r(E) - r(A)} (Y - 1)^{n(A)}$$

- (i) Recall that $\chi \preceq_{d.p.} T$ on **connected** graphs. Hence the graphs $K_{n,n}$ are *T*-unique.
- (ii) The wheels W_n are T-unique for all $n \in \mathbb{N}$. Wheels are χ -unique for W_{2n} , W_5 and W_7 are not. In general it is not known (?) whether W_{2n+1} is χ -unique.
- (iii) The ladders L_n are T-unique for all $n \ge 3$. They are only known to be χ -unique for small values of n.

Bollobas-Pebody-Riordan Conjecture:

Almost all graphs are T-unique and even χ -unique

Let us make it more precise:

Let $TU(\chi U)$ be the graph property: $G \in TU \ (G \in \chi U)$ iff G is T-unique (χ -unique), and $TU(n) \ (\chi U(n))$ be the density function of $TU(\chi U)$.

The conjecture for the Tutte polynomial now is

$$\lim_{n\to\infty}\frac{TU(n)}{2^{\binom{n}{2}}}=1$$

Similar for $\chi(G, \lambda)$.

Is $TU(\chi U)$ definable in some logic with a 0 – 1-law?

B. Bollobás, L. Pebody and O. Riordan, Contraction-Deletion Invariants for Graphs, Journal of Combinatorial Theory, Serie B, vol. 80 (2000) pp. 320-345.

Almost complete graph invariants

A graph polynomial P is almost complete, if almost all graphs are P-unique.

Research problems:

- Study the definability of the graph property G is P unique for various graph polynomials P.
- Find natural graph polynomials which are almost complete.
- In particular, is the signed Tutte polynomial T_{signed} almost complete for signed graphs.

A positive answer would be interesting for knot theorists: T_{signed} is intimately related to the Jones polynomial of knot theory.

Comparison of graph polynomials by coefficients

Coefficients of graph polynomials, I: The univariate case

We denote by $\mathbb{Z}^{<\omega}$ the finite sequences of elements of \mathbb{Z} .

Let $P(G,X) \in \mathbb{Z}[X]$ and $P(G,X) = \sum_{i=0}^{d(G)} a_i(G) \cdot X^i$ with $a(G)_{d(G)} \neq 0$.

We denote by cP(G, X) the finite sequence $(a_i(G))_{i \leq d(G)} \in \mathbb{Z}^{<\omega}$.

cP(G,X) are the (standard) coefficients of P(G,X), and d(G) is its degree.

c is a one-one and onto function $c: \mathbb{Z}[X] \xrightarrow{c} \mathbb{Z}^{<\omega}$.

Instead of looking at graph polynomials $P: Graphs \xrightarrow{P} \mathbb{Z}[X]$, we can look at the function $cP: Graphs \longrightarrow \mathbb{Z}^{<\omega}$ defined by

$$cP: Graphs \xrightarrow{P} \mathbb{Z}[X] \xrightarrow{c} \mathbb{Z}^{<\omega}$$

Lemma 10

For all graphs G_1, G_2 , we have that $P(G_1) = P(G_2)$ iff $cP(G_1) = cP(G_2)$.

Other representations of graph polynomials

Our definition of cP uses the **power form of** P.

We could have used also factorial form or binomial form of P.

- cP denotes the coefficients of P in power form.
- c_1P denotes the coefficients of P in factorial form.
- c_2P denotes the coefficients of P in binomial form.

We note that there are simple algorithms to pass from one representation to another.

Equivalence of graph polynomials, II

Let C be a graph property. Let $P(G, \overline{X})$ and Let $Q(G, \overline{Y})$ be two graph polynomials.

Definition 11 We say that Q determines coefficient-wise P over C and write $P \preceq^{\mathcal{C}}_{coeff} Q$ if there is a function $F : \mathbb{Z}^{<\omega} \to \mathbb{Z}^{<\omega}$ such that for all graphs $G \in C$

F(cQ(G)) = cP(G)

P and Q are coefficient-equivalent over C, and write $P \sim_{coeff}^{C} Q$, iff $P \preceq_{coeff}^{C} Q$ and $Q \preceq_{coeff}^{C} P$

- If \mathcal{C} consists of all graphs, we omit \mathcal{C} .
- The definition also applies to graph parameters $P(G), Q(G) \in \mathbb{Z}$.
- Our definition is invariant under the choice of representations cP, c_1P or c_2P .

An example: *F* can be arbitrarily complex

Let $P(G, \lambda) = \sum_{i} a_i(G)\lambda^i$.

Let $P_{exp}(G,\lambda) = \sum_i 2^{a_i(G)} \lambda^i$,

and for $g: \mathbb{N} \to \mathbb{N}$ one-one and onto let $P_g(G, \lambda) = \sum_i a_i(G) \lambda^{g(i)}$.

Clearly,

$$P \sim_{coeff} P_g \sim_{coeff} P_{exp}$$

- If g is not computable, then F showing that $P \sim_{coeff} P_g$ cannot be computable in the **Turing model** of computation.
- Furthermore, F showing that $P \sim_{coeff} P_{exp}$ cannot be computable in the **Blum-Shub-Smale model** of computation.

Theorem 12 $P \preceq^{\mathcal{C}}_{coeff} Q$ iff $P \preceq^{\mathcal{C}}_{d.p.} Q$

Proof:
$$P \preceq^{\mathcal{C}}_{coeff} Q$$
 implies $P \preceq^{\mathcal{C}}_{d.p.} Q$.

Assume there is a function $F : \mathbb{Z}^{<\omega} \to \mathbb{Z}^{<\omega}$ such that for all graphs $G \in \mathcal{C}$ we have F(cQ(G)) = cP(G).

Now let $G_1, G_2 \in \mathcal{C}$ such that $Q(G_1) = Q(G_2)$.

By Lemma 10 we have $cQ(G_1) = cQ(G_2)$.

Hence $F(cQ(G_1)) = F(cQ(G_2))$.

Since for all $G \in C$ we have F(cQ(G)) = cP(G), we get $cP(G_1) = cP(G_2)$ and, using Lemma 10 again, we have $P(G_1) = P(G_2)$.

Proof:
$$P \preceq^{\mathcal{C}}_{d.p} Q$$
 implies $P \preceq^{\mathcal{C}}_{coeff} Q$.

We use the well-ordering principle which equivalent to axiom of choice.

Let $\{F_{\alpha} : \alpha < \beta\}$ be a well-ordering of all the functions $F : \mathbb{Z}^{<\omega} \to \mathbb{Z}^{<\omega}$.

For $G \in C$, let $\gamma(G) < \beta$ be the smallest ordinal such that $F_{\gamma(G)}(cQ(G)) = cP(G)$.

Now given $P(G,X) \preceq_{d.p.} Q(G,X)$, we define a function $F_{P,Q} : \mathbb{Z}^{<\omega} \to \mathbb{Z}^{<\omega}$ as follows:

$$F_{P,Q}(cQ(G)) = \begin{cases} F_{\gamma(G)}(cQ(G)) & \text{if } G \in \mathcal{C} \\ 0 & \text{else} \end{cases}$$

Using Lemma 10 and $P(G, X) \preceq_{d.p.} Q(G, X)$, this indeed defines a function. Finally, as $F_{\gamma(G)}(cQ(G)) = F_{\gamma(G)}(cP(G))$, we get

 $F_{P,Q}(cQ(G)) = cP(G)$

Q.E.D.

A proof without well-ordering (suggested by Ofer David)

Let S be a set of finite graphs and $s \in \mathbb{Z}^{<\omega}$. For a graph polynomial P we define:

$$P[S] = \{s \in \mathbb{Z}^{<\omega} : cP(G) = s \text{ for some } G \in S\} \text{ and } P^{-1}(s) = \{G : cP(G) = s\}.$$

Now assume $P(G, X) \preceq_{d.p.} Q(G, X)$.

If $Q^{-1}(s) \neq \emptyset$, then for every $G_1, G_2 \in Q^{-1}(s)$ we have $cQ(G_1) = cQ(G_2)$, and therefore $cP(G_1) = cP(G_2)$.

Hence $P[Q^{-1}(s)] = \{t_s\}$ for some $t_s \in \mathbb{Z}^{<\omega}$.

Now we define

$$F_{P,Q}(s) = \begin{cases} t_s & Q^{-1}(s) \neq \emptyset \\ s & \text{else} \end{cases}$$

Q.E.D.

Example, I: The two matching polynomials

 $dm(G, x) = \sum_{r} (-1)^{r} m_{r}(G) x^{n-2r}$ $gm(G, x) = \sum_{r} m_{r}(G) x^{r}$

We have $dm(G; x) = x^n gm(G; (-x)^{-2})$ where n = |V|.

- The degree of dm is n
- If $m_r(G) \neq 0$ the n 2r > 0.
- Hence

$$\frac{dm(G;x)}{X^n}$$

is a polynomial, and we can compute the coefficients of gm from the coefficients of dm.

• We cannot compute the coefficients of dm from gm without knowing the value of |V| = n.

Example II: The Tutte polynomial and the chromatic polynomial

The Tutte polynomial and the chromatic polynomial are related by the formula

$$\chi(G, X) = (-1)^{r(G)} \cdot X^{k(G)} \cdot T(G; 1 - X, 0)$$

- To compute the coefficients of $\chi(G; X)$ from T(G; X, Y) we have to know the parity of r(G) and the number of connected components of G.
- For connected graphs k(G) = 1 and r(G) = |V| 1.

Introducing auxiliary parameters $\ensuremath{\mathcal{S}}$

Let $S = \{S_1(G), \ldots, S_t(G)\}$ be graph parameters (polynomials), and C a graph property.

Let $P(G, \overline{X})$ and Let $Q(G, \overline{Y})$ be two graph polynomials.

Definition 13 We say that Q determines P relative to S over C, or Q is at least as distinctive than P relative to S over C, and write $P \preceq_{r.d.p.}^{S,C} Q$ if for all graphs $G_1, G_2 \in C$ with $S_i(G_1) = S_i(G_2)$: $i \leq t$ we have

$$Q(G_1) = Q(G_2)$$
 implies that $P(G_1) = Q(P_2)$.

Definition 14

We say that Q determines coefficient-wise P relative to S over (C)and write $P \preceq^{S,(C)}_{relcoeff} Q$ if there is a function $F : (\mathbb{Z}^{<\omega})^{t+1} \to \mathbb{Z}^{<\omega}$ such that for all graphs $G \in \mathcal{P}$ $F(cS_1(G), \ldots, cS_t(G), cQ(G)) = cP(G)$

The equivalence relations $P \sim_{r.d.p.}^{\mathcal{S},(C)} Q$ and $P \sim_{relcoeff}^{\mathcal{S},(C)} Q$, are defined as usual.

Theorem 15 $P \preceq^{\mathcal{S}}_{relcoeff} Q$ iff $P \preceq^{\mathcal{S}}_{r.d.p.} Q$

The proof is left as an exercise!

Conclusion of Lecture 11

We have established a framework for comparing graph polynomials.

What remains to do?

- In the seminar 238901 next semester
 - Comparing uniform sequences of polynomials.
 - Introducing complexity.
- In Lecture 12
 - Introducing Logic
 - Linear recurrences for graph polynomials