LECTURE 4

Lecture 11

In Lecture 10 we introduced the notion of a graph polynomial.

- The chromatic polynomial was introduced and many facts about it were presented.
- We proved that there are many, MANY, graph polynomials.
- We have listed many explicit examples: Variations on colorings and others.

Homework: Reread the slides of Lecture 10!

Lecture 11
 Comparing graph polynomials

- Distinctive power of graph polynomials
- P-equivalence and complete graph polynomials
- Reducibility via coefficients

Comparing graph parameters and graph polynomials

Jointly prepared with E.V. Ravve

Graph parameters and graph polynomials

Let \mathcal{R} be a (possibly ordered) ring or a field.
For a set of indeterminates \bar{X} we denote by $\mathcal{R}[\bar{X}]$ the polynomial ring over \mathcal{R}.

A graph parameter p is a function from the class of all finite graphs Graphs into \mathcal{R} which is invariant under graph isomorphism.

A graph polynomial p is a function from the class of all finite graphs Graphs into $\mathcal{R}[\bar{X}]$ which is invariant under graph isomorphism.

Remark: In most situations in the literature \mathcal{R} is \mathbb{Z}, \mathbb{Q} or \mathbb{R}. The choice of the underlying ring or field may depend on the way we want to represent the graph parameter or graph polynomial.

For the graph parameter $d_{\max }(G)$, the maximal degree of its vertices, \mathbb{Z} suffices, but for $d_{\text {average }}(G)$, the average degree of its vertices, \mathbb{Q} is needed.

Equivalence of graph polynomials, I

Let \mathcal{C} be a graph property.
Let $P(G, \bar{X})$ and Let $Q(G, \bar{Y})$ be two graph polynomials.

Definition 7

We say that Q determines P over \mathcal{C}, or
Q is at least as distinctive than P over \mathcal{C}, and write $P \preceq_{\text {d.p. }}^{\mathcal{C}} Q$
if for all graphs G_{1} and G_{2} in \mathcal{C},

$$
Q\left(G_{1}\right)=Q\left(G_{2}\right) \text { implies that } P\left(G_{1}\right)=Q\left(P_{2}\right)
$$

- If \mathcal{C} consists of all graphs, we omit \mathcal{C}.
- The definition also applies to graph parameters $P(G), Q(G) \in \mathbb{Z}$.
P and Q are d.p.-equivalent $\operatorname{over} \mathcal{C}$, and write $P \sim_{d . p .}^{\mathcal{C}} Q$,
iff $P \preceq_{\text {d.p. }}^{\mathcal{c}} Q$ and $Q \preceq_{\text {d.p. }}^{\mathcal{C}} P$

Examples of $P \preceq_{d \text {. } p \text {. }}^{\mathcal{C}} Q$

(i) (DKT, 3.2.1) The chromatic polynomial $\chi(G, X)$ determines the graph parameters $|V(G)|,|E(G)|, \chi(G), k(G), b(G), g(G)$, etc.
(ii) $d_{\max }$ and $d_{\text {average }}$ are d.p-incomparable.
(iii) The Tutte polynomial $T(G, X, Y)$ determines $\chi(G, X)$ on connected graphs, but not on all graphs.
(iv) Assume $P(G ; X), Q(G ; X), U(G, X)$ are three polynomials and $P(G, X)=U(G, X) \cdot Q(G, X)$.
Let \mathcal{C}_{U} be a class of graphs such that for all $G_{1}, G_{2} \mathcal{C}_{U}$ we have $U\left(G_{1}, X\right)=U\left(G_{2}: X\right)$. Then $P \preceq_{d . p .}^{\mathcal{C}_{U}} Q$.
(v) Let \mathcal{F} be the class of forests. For the characteristic polynomial char (G, λ) and the matching polynomial $d m(G, \lambda)$ and we have

$$
\operatorname{char} \sim_{d . p .}^{\mathcal{F}} d m
$$

Adjoint polynomials

Let $P(G, \lambda)$ be a graph polynomial.
We denote by \bar{G} the complement graph of G.
The adjoint polynomial $\bar{P}(G, \lambda)$ is the polynomial defined by

$$
\bar{P}(G, \lambda)=_{d e f} P(\bar{G}, \lambda)
$$

- Exercise: $P \preceq_{\text {d.p. }}^{\mathcal{C}} \bar{P}$ iff $\bar{P} \preceq_{d . p .}^{\mathcal{C}} P$
- For the Tutte polynomial $T(G, X, Y)$ and $\bar{E}_{n}=K_{n}$ we have
(i) $T\left(E_{m}\right)=T\left(E_{n}\right)=1$ for all $n \in \mathbb{N}$.
(ii) $T\left(K_{m}\right) \neq T\left(K_{n}\right)$ for $m \neq n$.
(iii) Hence the Tutte polynomial and its adjoint are not d.p.-comparable.

P-unique and P-equivalent graphs

Definition 8 Let $P=P(G ; \bar{X})$ a graph polynomial and \mathcal{C} a class of graphs.
(i) Two graphs G_{1} and G_{2} are P-equivalent for \mathcal{C} if $P(G ; \bar{X})=P\left(G_{1} ; \bar{X}\right)$.
(ii) A graph $G \in \mathcal{C}$ is P-unique for \mathcal{C} if for any other graph $G_{1} \in \mathcal{C}$ with $P(G ; \bar{X})=P\left(G_{1} ; \bar{X}\right)$ the graph G_{1} is isomorphic to G.
(iii) P is complete for \mathcal{C} if every graph $G \in \mathcal{C}$ is $P(G ; \bar{X})$-unique for \mathcal{C}.

If \mathcal{C} consists of all graphs we omit \mathcal{C}.
Proposition 9 Let P and Q be graph polynomials such that $P \preceq_{d . p \text {. }}^{\mathcal{C}} Q$.
(i) If G_{1} and G_{2} are Q-equivalent for \mathcal{C} then they are also P-equivalent for \mathcal{C}.
(ii) If G is P-unique for \mathcal{C} then G is Q-unique for \mathcal{C}.
(iii) If P is complete for \mathcal{C} then Q is complete for \mathcal{C}.

Complete graph polynomials

Are there complete graph polynomials?
The following is a graph-complete graph invariant.

- Let $X_{i, j}$ and Y be indeterminates.

For a graph $\langle V, E\rangle$ with $V=[n]$ we put

$$
\operatorname{Compl}(G, Y, \bar{X})=Y^{|V|} \cdot\left(\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{(i, j) \in E} X_{\sigma(i), \sigma(j)}\right)
$$

Here \mathfrak{S}_{n} is the permutation group of [n].

Challenge: Find a polynomial in a constant finite number of indeterminates which is a graph-complete graph invariant.

An "unnatural" graph-complete invariant

Let $g: \mathcal{G} \rightarrow \mathbb{N}$ be a Gödel numbering for labeled graphs of the form $G=$ $\left\langle[n], E,<_{n a t}\right\rangle$.

We define a graph polynomial using g :

$$
\Gamma(G, X)=\sum_{H \simeq G} X^{g(H)}
$$

Clearly this is a graph invariant.
But it is "obviously unnatural" !

Can we make precise

what a natural graph polynomial should be?

χ-equivalent graphs (from [DKT, chapter 5])

(i) The graphs E_{n}, K_{n} and $K_{n, n}$ are χ-unique for $n \geq 1$.
(ii) The graphs C_{n} are χ-unique for $n \geq 3, C_{i}=K_{i}$ for $i \leq 2$.
(iii) Any two trees on n vertices are χ-equivalent.

In [DKT, chapter 5] many pairs of χ-equivalent graphs are constructed using a method due to R.C. Read (1987) and G.L. Chia (1988).

Research project:

Study P-equivalence for the various generalized colorings of Lecture 10.

char-equivalent graphs

From M. Noy, Graphs determined by polynomial invariants (2003)

Let $\operatorname{char}(G, x)=\operatorname{det}\left(x \cdot 1-A_{G}\right)$ be the characteristic polynomial of G with adjacency matrix A_{G}.
(i) The graphs $K_{n, n}$ are char-unique.
(ii) The line graphs $L\left(K_{n}\right)$ are char-unique for $n \neq 8$.

For $n=8$ there are three exceptions.
(iii) The line graphs $L\left(K_{n, n}\right)$ are char-unique for $n \neq 4$.

For $n=4$ there is one exception.

The two matching polynomials

Recall, for $G=(V, E)$ with $|V|=n$,

$$
d m(G, x)=\sum_{r}(-1)^{r} m_{r}(G) x^{n-2 r}
$$

be the (defect) matching polynomial and

$$
g m(G, x)=\sum_{r} m_{r}(G) x^{r}
$$

the (generating) matching polynomial.
We have

$$
d m(G ; x)=x^{n} \operatorname{gm}\left(G ;(-x)^{-2}\right)
$$

Graphs equivalent for matching polynomials.

From M. Noy, Graphs determined by polynomial invariants (2003)

- For every graph G we have $\operatorname{gm}(G, x)=\operatorname{gm}\left(G \sqcup E_{n}, x\right)$ but $d m(G, x) \neq d m\left(G \sqcup E_{n}, x\right)$.
$d m\left(P_{2}, x\right)=x^{2}-1$ and $d m\left(P_{2} \sqcup E_{k}, x\right)=x^{3}-x$,
but $g m\left(P_{2}, x\right)=x^{2}-1$ and $g m\left(P_{2} \sqcup E_{k}, x\right)=x^{2}-1$
- |V(G)| $\preceq_{d . p .} d m$, and therefore $g m \preceq_{d . p .} d m$.

In other words $g m$ is strictly less expressive than $d m$.

- $g m \sim_{d . p .} d m$ on graphs of a fixed number of vertices.
- The graphs $K_{n, n}$ are $d m$-unique.

Are they also gm-unique?

Research project:

Study $d m$-equivalence and $g m$-equivalence of graphs further.

T-unique graphs

From A. de Mier and M. Noy, On Graphs determined by the Tutte polynomial (2004)

For a graph $G=(V, E)$ and $A \subseteq E$ we denote by $G[A]=(V, A)$ the spanning subgraph generated by A. We set $r(A)=|\bar{V}|-k(G[A])$ and $n(A)=|A|-r(A)$.
The Tutte polynomial is defined by

$$
T(G ; X, Y)=\sum_{A \subseteq E}(X-1)^{r(E)-r(A)}(Y-1)^{n(A)}
$$

(i) Recall that $\chi \preceq_{\text {d.p. }} T$ on connected graphs.

Hence the graphs $K_{n, n}$ are T-unique.
(ii) The wheels W_{n} are T-unique for all $n \in \mathbb{N}$.

Wheels are χ-unique for $W_{2 n}, W_{5}$ and W_{7} are not. In general it is not known (?) whether $W_{2 n+1}$ is χ-unique.
(iii) The ladders L_{n} are T-unique for all $n \geq 3$.

They are only known to be χ-unique for small values of n.

Bollobas-Pebody-Riordan Conjecture:

Almost all graphs are T-unique and even χ-unique

Let us make it more precise:
Let $T U(\chi U)$ be the graph property:
$G \in T U(G \in \chi U)$ iff G is T-unique (χ-unique),
and $T U(n)(\chi U(n))$ be the density function of $T U(\chi U)$.
The conjecture for the Tutte polynomial now is

$$
\lim _{n \rightarrow \infty} \frac{T U(n)}{2^{\binom{n}{2}}}=1
$$

Similar for $\chi(G, \lambda)$.
Is $T U(\chi U)$ definable in some logic with a $0-1$-law?
B. Bollobás, L. Pebody and O. Riordan, Contraction-Deletion Invariants for Graphs, Journal of Combinatorial Theory, Serie B, vol. 80 (2000) pp. 320-345.

Almost complete graph invariants

A graph polynomial P is almost complete, if almost all graphs are P-unique. Research problems:

- Study the definability of the graph property G is P unique for various graph polynomials P.
- Find natural graph polynomials which are almost complete.
- In particular, is the signed Tutte polynomial $T_{\text {signed }}$ almost complete for signed graphs.

A positive answer would be interesting for knot theorists: $T_{\text {signed }}$ is intimately related to the Jones polynomial of knot theory.

Comparison of graph polynomials by coefficients

Coefficients of graph polynomials, I: The univariate case

We denote by $\mathbb{Z}^{<\omega}$ the finite sequences of elements of \mathbb{Z}.
Let $P(G, X) \in \mathbb{Z}[X]$ and $P(G, X)=\sum_{i=0}^{d(G)} a_{i}(G) \cdot X^{i}$ with $a(G)_{d(G)} \neq 0$.
We denote by $c P(G, X)$ the finite sequence $\left(a_{i}(G)\right)_{i \leq d(G)} \in \mathbb{Z}^{<\omega}$. $c P(G, X)$ are the (standard) coefficients of $P(G, X)$, and $d(G)$ is its degree.
c is a one-one and onto function $c: \mathbb{Z}[X] \xrightarrow{c} \mathbb{Z}^{<\omega}$.
Instead of looking at graph polynomials $P:$ Graphs $\xrightarrow{P} \mathbb{Z}[X]$, we can look at the function $c P:$ Graphs $\longrightarrow \mathbb{Z}^{<\omega}$ defined by

$$
c P: \text { Graphs } \xrightarrow{P} \mathbb{Z}[X] \xrightarrow{c} \mathbb{Z}^{<\omega}
$$

Lemma 10

For all graphs G_{1}, G_{2}, we have that $P\left(G_{1}\right)=P\left(G_{2}\right)$ iff $c P\left(G_{1}\right)=c P\left(G_{2}\right)$.

Other representations of graph polynomials

Our definition of $c P$ uses the power form of P.
We could have used also factorial form or binomial form of P.

- $c P$ denotes the coefficients of P in power form.
- $c_{1} P$ denotes the coefficients of P in factorial form.
- $c_{2} P$ denotes the coefficients of P in binomial form.

We note that there are simple algorithms to pass from one representation to another.

Equivalence of graph polynomials, II

Let \mathcal{C} be a graph property.
Let $P(G, \bar{X})$ and Let $Q(G, \bar{Y})$ be two graph polynomials.

Definition 11

We say that Q determines coefficient-wise P over \mathcal{C} and write $P \preceq_{\text {coeff }}^{\mathcal{C}} Q$ if there is a function $F: \mathbb{Z}^{<\omega} \rightarrow \mathbb{Z}^{<\omega}$ such that for all graphs $G \in \mathcal{C}$

$$
F(c Q(G))=c P(G)
$$

P and Q are coefficient-equivalent over \mathcal{C}, and write $P \sim_{\text {coeff }}^{\mathcal{C}} Q$, iff $P \preceq_{\text {coeff }}^{\mathcal{C}} Q$ and $Q \preceq_{\text {coeff }}^{\mathcal{C}} P$

- If \mathcal{C} consists of all graphs, we omit \mathcal{C}.
- The definition also applies to graph parameters $P(G), Q(G) \in \mathbb{Z}$.
- Our definition is invariant under the choice of representations $c P, c_{1} P$ or $c_{2} P$.

An example: F can be arbitrarily complex

Let $P(G, \lambda)=\sum_{i} a_{i}(G) \lambda^{i}$.
Let $P_{\exp }(G, \lambda)=\sum_{i} 2^{a_{i}(G)} \lambda^{i}$,
and for $g: \mathbb{N} \rightarrow \mathbb{N}$ one-one and onto let $P_{g}(G, \lambda)=\sum_{i} a_{i}(G) \lambda^{g(i)}$.
Clearly,

$$
P \sim_{\text {coeff }} P_{g} \sim_{\text {coeff }} P_{\text {exp }}
$$

- If g is not computable, then F showing that $P \sim_{\text {coeff }} P_{g}$ cannot be computable in the Turing model of computation.
- Furthermore, F showing that $P \sim_{c o e f f} P_{e x p}$ cannot be computable in the Blum-Shub-Smale model of computation.

Theorem $12 P \preceq_{\text {coeff }}^{\mathcal{C}} Q$ iff $P \preceq_{\text {d.p. }}^{\mathcal{C}}, Q$

$$
\text { Proof: } P \preceq_{\text {coeff }}^{\mathcal{C}} Q \text { implies } P \preceq_{\text {d.p. }}^{\mathcal{C}} Q \text {. }
$$

Assume there is a function $F: \mathbb{Z}^{<\omega} \rightarrow \mathbb{Z}^{<\omega}$ such that for all graphs $G \in \mathcal{C}$ we have $F(c Q(G))=c P(G)$.

Now let $G_{1}, G_{2} \in \mathcal{C}$ such that $Q\left(G_{1}\right)=Q\left(G_{2}\right)$.
By Lemma 10 we have $c Q\left(G_{1}\right)=c Q\left(G_{2}\right)$.
Hence $F\left(c Q\left(G_{1}\right)\right)=F\left(c Q\left(G_{2}\right)\right)$.

Since for all $G \in \mathcal{C}$ we have $F(c Q(G))=c P(G)$, we get $c P\left(G_{1}\right)=c P\left(G_{2}\right)$ and, using Lemma 10 again, we have $P\left(G_{1}\right)=P\left(G_{2}\right)$.

$$
\text { Proof: } P \preceq_{d . p}^{\mathcal{C}} Q \text { implies } P \preceq_{\text {coeff }}^{\mathcal{C}} Q \text {. }
$$

We use the well-ordering principle which equivalent to axiom of choice.
Let $\left\{F_{\alpha}: \alpha<\beta\right\}$ be a well-ordering of all the functions $F: \mathbb{Z}^{<\omega} \rightarrow \mathbb{Z}^{<\omega}$.
For $G \in \mathcal{C}$, let $\gamma(G)<\beta$ be the smallest ordinal such that $F_{\gamma(G)}(c Q(G))=$ $c P(G)$.

Now given $P(G, X) \preceq_{\text {d.p. }} Q(G, X)$, we define a function $F_{P, Q}: \mathbb{Z}^{<\omega} \rightarrow \mathbb{Z}^{<\omega}$ as follows:

$$
F_{P, Q}(c Q(G))= \begin{cases}F_{\gamma(G)}(c Q(G)) & \text { if } G \in \mathcal{C} \\ 0 & \text { else }\end{cases}
$$

Using Lemma 10 and $P(G, X) \preceq_{\text {d.p. }} Q(G, X)$, this indeed defines a function.
Finally, as $F_{\gamma(G)}(c Q(G))=F_{\gamma(G)}(c P(G))$, we get

$$
F_{P, Q}(c Q(G))=c P(G)
$$

Q.E.D.

A proof without well-ordering (suggested by Ofer David)

Let S be a set of finite graphs and $s \in \mathbb{Z}^{<\omega}$.
For a graph polynomial P we define:
$P[S]=\left\{s \in \mathbb{Z}^{<\omega}: c P(G)=s\right.$ for some $\left.G \in S\right\}$ and $P^{-1}(s)=\{G: c P(G)=s\}$.
Now assume $P(G, X) \preceq_{\text {d.p. }} Q(G, X)$.
If $Q^{-1}(s) \neq \emptyset$, then for every $G_{1}, G_{2} \in Q^{-1}(s)$ we have $c Q\left(G_{1}\right)=c Q\left(G_{2}\right)$, and therefore $c P\left(G_{1}\right)=c P\left(G_{2}\right)$.

Hence $P\left[Q^{-1}(s)\right]=\left\{t_{s}\right\}$ for some $t_{s} \in \mathbb{Z}^{<\omega}$.
Now we define

$$
F_{P, Q}(s)= \begin{cases}t_{s} & Q^{-1}(s) \neq \emptyset \\ s & \text { else }\end{cases}
$$

Q.E.D.

Example, I: The two matching polynomials

$$
\begin{aligned}
& d m(G, x)=\sum_{r}(-1)^{r} m_{r}(G) x^{n-2 r} \\
& g m(G, x)=\sum_{r} m_{r}(G) x^{r}
\end{aligned}
$$

We have $d m(G ; x)=x^{n} \operatorname{gm}\left(G ;(-x)^{-2}\right)$ where $n=|V|$.

- The degree of $d m$ is n
- If $m_{r}(G) \neq 0$ the $n-2 r>0$.
- Hence

$$
\frac{d m(G ; x)}{X^{n}}
$$

is a polynomial, and we can compute the coefficients of gm from the coefficents of $d m$.

- We cannot compute the coefficients of $d m$ from $g m$ without knowing the value of $|V|=n$.

Example II: The Tutte polynomial and the chromatic polynomial

The Tutte polynomial and the chromatic polynomial are related by the formula

$$
\chi(G, X)=(-1)^{r(G)} \cdot X^{k(G)} \cdot T(G ; 1-X, 0)
$$

- To compute the coefficients of $\chi(G ; X)$ from $T(G ; X, Y)$ we have to know the parity of $r(G)$ and the number of connected components of G.
- For connected graphs $k(G)=1$ and $r(G)=|V|-1$.

Introducing auxiliary parameters \mathcal{S}

Let $\mathcal{S}=\left\{S_{1}(G), \ldots, S_{t}(G)\right\}$ be graph parameters (polynomials), and \mathcal{C} a graph property.
Let $P(G, \bar{X})$ and Let $Q(G, \bar{Y})$ be two graph polynomials.

Definition 13

We say that Q determines P relative to \mathcal{S} over \mathcal{C}, or
Q is at least as distinctive than P relative to \mathcal{S} over \mathcal{C}, and write $P \preceq \preceq_{\text {r.d.p. }}^{\mathcal{S}, \mathcal{C}} Q$ if for all graphs $G_{1}, G_{2} \in \mathcal{C}$ with $S_{i}\left(G_{1}\right)=S_{i}\left(G_{2}\right): i \leq t$ we have

$$
Q\left(G_{1}\right)=Q\left(G_{2}\right) \text { implies that } P\left(G_{1}\right)=Q\left(P_{2}\right)
$$

Definition 14

We say that Q determines coefficient-wise P relative to \mathcal{S} over (C) and write $P \preceq \preceq_{\text {relcoeff }}^{\mathcal{S},(C)} Q$
if there is a function $F:\left(\mathbb{Z}^{<\omega}\right)^{t+1} \rightarrow \mathbb{Z}^{<\omega}$ such that for all graphs $G \in \mathcal{P}$

$$
F\left(c S_{1}(G), \ldots, c S_{t}(G), c Q(G)\right)=c P(G)
$$

The equivalence relations $P \underset{\text { r.d.p. }}{\mathcal{S},(C)} Q$ and $P \underset{\text { relcoeff }}{\mathcal{S},(C)} Q$, are defined as usual.

Theorem $15 P \preceq_{\text {relcoeff }}^{\mathcal{S}} Q$ iff $P \preceq \preceq_{\text {r.d.p. }}^{\mathcal{S}} Q$

The proof is left as an exercise!

Conclusion of Lecture 11

We have established a framework for comparing graph polynomials.
What remains to do?

- In the seminar 238901 next semester
- Comparing uniform sequences of polynomials.
- Introducing complexity.
- In Lecture 12
- Introducing Logic
- Linear recurrences for graph polynomials

