
Graph polynomials, 236603-11 Lecture 2, More Graph Invariants

LECTURE 2

1



Graph polynomials, 236603-11 Lecture 2, More Graph Invariants

What we have done so far

We have introduced two graph polynomials:

• the chromatic polynomial χ(G,X), and

• the characteristic polynomial P (G,X).

We have looked at typical theorems about these graph polynomials.
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Outline of Lecture 2

We introduce the matching polynomial in three versions.

• The acyclic matching polynomial m(G;X);

• The generating matching polynomial g(G;X);

• The bivariate matching polynomial M(G;X).

We also get a glimpse the Magic of the Tutte polynomial.

Finally, we define when a graph invariant is

induced by a set of graph invariants.
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Example 7 The acyclic or matching defect polynomial, I

We denote by mk(G) the number of k-matchings of a graph G,
with m0(G) = 1 by convention.

• The polynomial

m(G,X) =

n

2
∑

k

(−1)kmk(G)Xn−2k

is called the acyclic polynomial of G and also the reference polynomial
or matching defect polynomial.
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The acyclic or matching defect polynomial, II

The acyclic polynomial has important applications in Chemistry (Hückel the-
ory again) and and Molecular Physics of Ferromagnetisms. It was first studied
in the 1970 (Heilman and Lieb, Kunz)

• L. Lovász and M.D. Plummer
Matching Theory
Annals of Discrete mathematics, vol. 29
North-Holland 1986

• N. Trinajstić,
Chemical Graph Theory
CRC, 1992 (2nd edition)

• P.J. Garratt
Aromaticity
John Wiley and Sons, 19xx
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Example 8 The matching (generating) polynomial

• The polynomial

g(G,X) =

n
∑

k

mk(G)Xk

is called the matching polynomial of G or the matching generating
polynomial of G.

• It is easy to verify the identity

m(G,X) = Xng(G, (−X−2))
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Example 9 Multi-variate matching polynomial

The two matching polynomials are special cases of a bivariate matching poly-
nomial

M(G,X, Y ) =

n

2
∑

k

Xn−2kY kmk(G) =
∑

A

X |V (G)|−2|A|Y |A|

where A ranges over all subsets of E(G) which are matchings.

Now we have

m(G;X) = M(G;X,−1)

and

g(G;X) = M(G; 1, X)

In other words, both m(G;X) and g(G;X) are substitution instances of M(G;X,Y ).

Interpretation: | A | is the size of the matching A, and | V (G) | −2 | A | is

the number of vertices not incident with any edge in A.
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Example 10 Multi-variate Tutte polynomial

Inspired by H. Whitney’s work (1932) W.T. Tutte (1947, 1954) investigated
generalizations of the chromatic polynomial to a polynomial in two variables,
which he called the dichromatic polynomial, but now is called the Tutte
polynomial, T(G,X, Y ).

The Tutte polynomial and its many generalizations became prominent, due
to its many combinatorial interpretations in fields outside graph theory:

• Knot theory (via the Jones polynomial and its relatives)

• Statistical mechanics

• Quantum theory and quantum computing

• Chemistry
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Example 11 The Tutte polynomial

Let G = (V,E) be a graph,

and for A ⊆ E, let GA = (V,A) be a spanning subgraph.

The rank r(G;A) is defined as | V (G) | −k(GA).

The Tutte polynomial of G is defined as

T(G;X, Y ) =
∑

A⊆E

(X − 1)r(G;E)−r(G;A) · (Y − 1)|A|−r(G;A)

This looks confusing and innocent at the same time.
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The fascination with the Tutte polynomial

The Tutte polynomial is like

a magician’s hat with

rabbits, birds and other surprises coming out.

Easy manipulations produce various combinatorial counting functions. We
have, at first glance surprisingly, the following

• T(G,1,1) counts the number of spanning trees of G.

• T(G,2,1) counts the number of forests of G.

• T(G,2,0) counts the number of acyclic orientations of G.

• The chromatic polynomial is given by

χ(G,X) = (−1)r(G;E)Xk(G)T(G; 1−X,0)

• The reliability polynomial and the flow polynomial can also be derived
with similar formulas.
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Definition 12 Complete graph invariants

A graph invariant f is graph-complete if for any two graphs G1, G2 with
f(G1) = f(G2) we have also G1 ≃ G2.

The following is a graph-complete graph invariant.

• Let Xi,j and Y be indeterminates.
For a graph 〈V,E〉 with V = [n] we put

Compl(G,Y, X̄) = Y |V | ·





∑

σ∈Sn

∏

(i,j)∈E

Xσ(i),σ(j)





Here Sn is the permutation group of [n].

Challenge: Find a polynomial in a constant finite number of indeterminates
which is a graph-complete graph invariant.
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An “unnatural” graph-complete invariant

Let g : G → N be a Gödel numbering for labeled graphs of the form G =
〈[n], E,<nat〉.

We define a graph polynomial using g:

Γ(G,X) =
∑

H≃G

Xg(H)

Clearly this is a graph invariant.

But it is “obviously unnatural” !

Can we make precise

what a natural graph polynomial should be?
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Comparing graph invariants

In the literature we often find statements or questions of the form

• The Tutte polynomial is generalization of the chromatic polynomial.

• The Tutte polynomial does not determine the matching polynomial.

• Is there a natural most general graph polynomial?

We attempt to make this precise
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Definition 13 Induced graph invariants

Let H ⊆ G be a class of graphs closed under isomorphisms.
Let F be a set of graph invariants in a ring R,
and let g be one more graph invariant.

We say that F induces g on H,
or g is a consequence of F ,
if for any two graphs G1, G2 ∈ H such that f(G1) = f(G2) for all f ∈ F
we also have g(G1) = g(G2).

We denote by IndHR(F ) the set of graph invariants in R induced by F on H.

We write also F |=H
R g for g ∈ IndHR(F ).

How do we see if F |=H
R g ?
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Example 14

Algebraically induced invariants

Let f, g be two graph invariants in R.
Then the following are induced invariants of F = {f, g}:

• f + g, f − g, f × g

• The formal derivative f ′.

• Let φ : R2 → R be a function.
Then φ(f, g) is induced by F .

• If Q(G; X̄) is a graph polynomial and g is a substitution instance of Q,
then g is induced by F .
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Examples 15

Invariants induced by the characteristic polynomial

The characteristic polynomial P (G,X) induces

• The number of vertices | V |.

• The number of edges | E |.

• The number of triangles of G.

We also have P (K1,4, X) = P (C4 ⊔ E1, X)

but K1,4 has no 2-matchings, whereas C4 does.

Hence the P (G,X) does not induce the number of connected components

k(G) nor m(G,X).
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Example 16

Invariants induced by the acyclic polynomial.

The acyclic polynomial m(G,X) induces

• The number of vertices | V |.

• The number of edges | E |.

• The number of perfect matchings.

• the matching generating polynomial.

On the other side g(En, X) = 1 for all n ∈ N,
whereas m(En;X) = P (En, X) = Xn.
Hence g(G,X) does not induce the characteristic polynomial P (G,X) nor the
acyclic polynomial m(G;X).

We shall discuss this further in Lecture 4.
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Example 17

Invariants induced by the chromatic polynomial

The following are induced by χ(G,X) =
∑n

i=1(−1)n−ihiX
i:

• The cardinality of V (G) = n is the degree of χ(G,X).

• The cardinality of E(G) = m = hn−1.

• The chromatic number χ(G) is
the smallest integer a such that χ(G, a) > 0.

• The number of connected components k(G)
is the multiplicity of zeros X = 0.

• The number of blocks b(G) is the multiplicity of zeros X = 1.

• The girth g = g(G) is given by the fact that

for 0 ≤ i ≤ g − 2 we have hn−i =
(

E(G)
i

)

.
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Example 18

The acyclic polynomial and the characteristic polynomial.

Theorem 19 (I. Gutman, 1977)

P (G,X) = m(G,X) iff G is a forest.

For H = F the forests we have

P (G,X) = m(G,X)

i.e., the acyclic (matching defect) polynomial and the characteristic polyno-
mial coincide,
and we have

P (G,X) |=F m(G,X) and m(G,X) |=F P (G,X).

and

P (G,X) |=F g(G,X) and g(G,X) |=F P (G,X).

In general, none induces the other.

I. Gutman, The acyclic polynomial of a graph, Publ. Inst. Math. (Beograd) (N.S.) 22 (36)
(1977), pp. 63-69.
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Example 20

The acyclic polynomial and the chromatic polynomial.

Definition 21
The complement graph of the simple graph G = (V,E)

is the graph Ḡ = (V, V 2 −D(V )− E) .

For a graph polynomial g = g(G, X̄) the adjoint polynomial ĝ(G, X̄) of g is
defined by ĝ(G, X̄) = g(Ḡ, X̄).

Theorem 22 (E.J. Farrell and E.G. Whitehead Jr. 1992)
For H = T F, the triangle free graphs, we have

χ̂(G,X) |=T F m(G,X) and m(G,X) |=T F χ̂(G,X).

i.e., the acyclic (matching defect) polynomial
and the adjoint chromatic polynomial mutually induce each other.

Note that χ(P4) = χ(K1,3), P4 ≃ P̄4, but m(P4) 6= m(K1,3).
Hence, χ(G;X) does not induce m(G;X).

Exercise: Show that m(G;X) does not induce χ(G;X).
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Graph polynomials on trees

Combining the Gutman Theorem with the Farrell-Whitehead Theorem we get

Corollary: On trees the chromatic polynomial χ(G;X),
the acyclic matching polynomial, m(G;X)
and the characteristic polynomial P (G;X) induce each other.

Proof: Trees are triangle-free.

Note, this is not true for the generating matching polynomial g(G;X).
Explain!
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Project 1 (for this course)

• Prepare slides with a proof of the Farrell-Whitehead Theorem:
E.J. Farrell and Earl Glen Whitehead, Jr.
Connections between the matching and chromatic polynomials
Internat. J. Math. & Math. Sci. VOL. 15 NO. 4 (1992) 757-766 pdf-file

• Find more Theorems similar to the Gutmann or Farrell-Whitehead The-
orems.
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Example 23

The chromatic polynomial and Tutte polynomial

(i) The chromatic polynomial χ(G,X) is not induced
by the Tutte polynomial T(G,X, Y ).

(ii) On connected graphs C we have T(G,X, Y ) |=C χ(G,X) for

(iii) Tutte polynomial T(G,X, Y ) is not induced
by the the chromatic polynomial χ(G,X).

Proof:

(i) Let En be the graph with n vertices and no edges. We have T (En, X, Y ) = 1 but
χ(En, X) = Xn.

(ii) (After W.T. Tutte, 1954) χ(G,X) = (−1)|V |−k(G)Xk(G)T (G,1−X,0).

(iii) (After M. Noy, 2003) Let Wn be the wheel with n spokes. It is known that T (G,X, Y ) =

T (Wn, X, Y ) implies that G ≃ Wn for all n.

But there is a G 6≃ W5 with χ(G,X, Y ) = χ(W5, X, Y ).
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Example 24

The Tutte polynomial and the matching polynomials

• The matching polynomial is not induced by the Tutte polynomial, even
on connected planar graphs.

• The Tutte polynomial is not induced by the matching polynomial, even
on connected planar graphs.

Proof:

(i) For trees with n vertices tn we have T(tn, X, Y ) = Xn−1. But it is easy
to see that K1,n−1 and Pn are both trees with n vertices and their matching
polynomials differ, as K1,n−1 has no 2-matching but Pn has for n ≥ 3.

(ii) On the other hand C3 ⊔e C5 and C4 ⊔e C4 have the same matching poly-

nomials (check by hand) but have different Tutte polynomials, as the Tutte

polynomials counts cliques of given size.
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What do we learn?

What do we ask?

• Polynomial graph invariants are still a mystery.

• Can we analyze the consequence relation

for polynomial invariants?

• Can we identify “good invariants”?

• What are appropriate complexity classes

for graph invariants?
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