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What we have done so far

We have introduced two graph polynomials:
e the chromatic polynomial x(G, X), and

e the characteristic polynomial P(G, X).

We have looked at typical theorems about these graph polynomials.
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Outline of Lecture 2

We introduce the matching polynomial in three versions.
e The acyclic matching polynomial m(G; X);
e The generating matching polynomial ¢(G; X);
e The bivariate matching polynomial M(G; X).
We also get a glimpse the Magic of the Tutte polynomial.

Finally, we define when a graph invariant is

induced by a set of graph invariants.
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Example 7 The acyclic or matching defect polynomial, I

We denote by mi(G) the number of k-matchings of a graph G,
with mo(G) = 1 by convention.

e T he polynomial

n

m(G, X) = i(—l)kmk(G)X”_%
k

is called the acyclic polynomial of G and also the reference polynomial
or matching defect polynomial.
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The acyclic or matching defect polynomial, II

The acyclic polynomial has important applications in Chemistry (Hiickel the-
ory again) and and Molecular Physics of Ferromagnetisms. It was first studied
in the 1970 (Heilman and Lieb, Kunz)

e L. Lovasz and M.D. Plummer
Matching Theory
Annals of Discrete mathematics, vol. 29
North-Holland 1986

e N. TrinajsticC,
Chemical Graph Theory
CRC, 1992 (2nd edition)

e P.J. Garratt
Aromaticity
John Wiley and Sons, 19xx



Graph polynomials, 236603-11 Lecture 2, Matching polynomials

Example 8 The matching (generating) polynomial

e [ he polynomial
9(G,X) => mp(G)Xx*
k

is called the matching polynomial of G or the matching generating
polynomial of G.

e It is easy to verify the identity
m(G, X) = X"g(G, (=X ?))
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Example 9 Multi-variate matching polynomial

The two matching polynomials are special cases of a bivariate matching poly-
nomial

n

M(G,X,Y) =) X" 2Yrm(G) =) xV(@-2lyl4
k A

where A ranges over all subsets of E(G) which are matchings.

Now we have
m(G; X) = M(G; X,—1)
and
9(G; X) = M(G; 1, X)
In other words, both m(G; X) and g(G; X) are substitution instances of M(G; X,Y).

Interpretation: | A | is the size of the matching A, and | V(G) | =2 | A | is

the number of vertices not incident with any edge in A.
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Example 10 Multi-variate Tutte polynomial

Inspired by H. Whitney's work (1932) W.T. Tutte (1947, 1954) investigated
generalizations of the chromatic polynomial to a polynomial in two variables,
which he called the dichromatic polynomial, but now is called the Tutte
polynomial, T(G, X,Y).

The Tutte polynomial and its many generalizations became prominent, due
to its many combinatorial interpretations in fields outside graph theory:

e Knot theory (via the Jones polynomial and its relatives)
e Statistical mechanics
e Quantum theory and quantum computing

e Chemistry
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Example 11 The Tutte polynomial

Let G = (V, E) be a graph,
and for ACFE, let G4 = (V,A) be a spanning subgraph.

The rank r(G; A) is defined as | V(G) | —k(GL).

The Tutte polynomial of G is defined as

TG X,Y)= > (X - 1)?‘(G;E)—7“(G;A) (Y — 1)|A|—r(G;A)
ACE

This looks confusing and innocent at the same time.
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T he fascination with the Tutte polynomial

The Tutte polynomial is like
a magician’s hat with
rabbits, birds and other surprises coming out.

Easy manipulations produce various combinatorial counting functions. We
have, at first glance surprisingly, the following

e T'(G,1,1) counts the number of spanning trees of G.
e T((G,2,1) counts the number of forests of G.
e T(G,2,0) counts the number of acyclic orientations of G.

e [ he chromatic polynomial is given by
(G, X) = (=1)"@E) xkEp(G: 1 — X, 0)

e T he reliability polynomial and the flow polynomial can also be derived
with similar formulas.

10
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Definition 12 Complete graph invariants

A graph invariant f is graph-complete if for any two graphs Gi,Go with
f(G1) = f(G2) we have also G1 ~ G5.

The following is a graph-complete graph invariant.

o Let X;,; and Y be indeterminates.
For a graph (V, E) with V = [n] we put

Compl(G,Y, X) =YV [ Y™ ] Xowyow
0€6, (i,j)eE

Here &, is the permutation group of [n].

Challenge: Find a polynomial in a constant finite number of indeterminates
which is a graph-complete graph invariant.

11



Graph polynomials, 236603-11 Lecture 2, Comparing Graph Invariants

An “unnatural” graph-complete invariant

Let g : G — N be a Godel numbering for labeled graphs of the form G =
<[’I’L], E7 <nat>-

We define a graph polynomial using g:

MG, x)=>) x9
H~G

Clearly this is a graph invariant.

But it is “obviously unnatural’ !

Can we make precise

what a natural graph polynomial should be?

12
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Comparing graph invariants

In the literature we often find statements or questions of the form
e [ he Tutte polynomial is generalization of the chromatic polynomial.
e [ he Tutte polynomial does not determine the matching polynomial.

e Is there a natural most general graph polynomial?

We attempt to make this precise

13
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Definition 13 Induced graph invariants

Let H C G be a class of graphs closed under isomorphisms.
Let F' be a set of graph invariants in a ring R,
and let g be one more graph invariant.

We say that F' induces g on H,

or g IS a consequence of F,

if for any two graphs G1,G> € H such that f(G1) = f(Go) for all f € F
we also have ¢g(G1) = g(G2).

We denote by Ind%(F) the set of graph invariants in R induced by F on H.
We write also F =% g for g € Indit(F).

How do we see if ' =g 7

14
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Example 14
Algebraically induced invariants

Let f,g be two graph invariants in R.
Then the following are induced invariants of F' = {f, g}:

e f+g9.f—g9,fxyg
e The formal derivative f’.

e Let ¢ : R? - R be a function.
Then ¢(f,g) is induced by F'.

o If Q(G; X) is a graph polynomial and ¢ is a substitution instance of Q,
then ¢ is induced by F'.

15
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Examples 15
Invariants induced by the characteristic polynomial

The characteristic polynomial P(G, X) induces
e The number of vertices | V |,
e The number of edges | F |.

e The number of triangles of G.

We also have P(K14,X) = P(CaU E1,X)
but K14 has no 2-matchings, whereas C4 does.

Hence the P(G, X) does not induce the number of connected components
kE(G) nor m(G, X).

16
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Example 16
Invariants induced by the acyclic polynomial.

The acyclic polynomial m(G, X) induces
e The number of vertices | V' |.
e The number of edges | F |.
e [ he number of perfect matchings.
e the matching generating polynomial.
On the other side g(FE,,X) =1 for all n € N,
whereas m(E,; X) = P(FE,,X) = X".
Hence ¢g(G, X) does not induce the characteristic polynomial P(G, X) nor the

acyclic polynomial m(G; X).

We shall discuss this further in Lecture 4.
17
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Example 17
Invariants induced by the chromatic polynomial

The following are induced by x(G,X) =" (—1)"h; X"

The cardinality of V(G) = n is the degree of x(G, X).
The cardinality of E(G) = m = h,_1.

The chromatic number x(G) is
the smallest integer a such that x(G,a) > 0.

The number of connected components k(G)
is the multiplicity of zeros X = O.

The number of blocks b(G) is the multiplicity of zeros X = 1.

The girth ¢ = g(G) is given by the fact that
for 0 <i<g—2 we have h,_; = (7).

7

18
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Example 18
T he acyclic polynomial and the characteristic polynomial.

Theorem 19 (I. Gutman, 1977)

P(G,X)=m(G,X) iff G is a forest.
For H = F the forests we have
P(G,X)=m(G,X)

i.e., the acyclic (matching defect) polynomial and the characteristic polyno-
mial coincide,
and we have

P(G,X) =7 m(G,X) and m(G,X) =7 P(G, X).
and

P(G,X) =7 ¢(G,X) and ¢(G,X) =7 P(G, X).
In general, none induces the other.

I. Gutman, The acyclic polynomial of a graph, Publ. Inst. Math. (Beograd) (N.S.) 22 (36)
(1977), pp. 63-69.

19
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Example 20
T he acyclic polynomial and the chromatic polynomaial.

Definition 21
The complement graph of the simple graph G = (V, E)
is the graph G = (V,V? - D(V) — E) .

For a graph polynomial g = g(G,X) the adjoint polynomial g(G,X) of g is
defined by §(G, X) = g(G, X).

Theorem 22 (E.J. Farrell and E.G. Whitehead Jr. 1992)
For H = T JF, the triangle free graphs, we have

(G, X) =T m(G, X) and m(G, X) =77 x(G, X).

i.e., the acyclic (matching defect) polynomial
and the adjoint chromatic polynomial mutually induce each other.

Note that X(P4) = X(K1,3), Py ~ p4, but m(P4) = m(K1,3).
Hence, x(G; X) does not induce m(G; X).

Exercise: Show that m(G; X) does not induce x(G; X).

20
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Graph polynomials on trees

Combining the Gutman Theorem with the Farrell-Whitehead Theorem we get

Corollary: On trees the chromatic polynomial x(G; X),
the acyclic matching polynomial, m(G; X)
and the characteristic polynomial P(G; X) induce each other.

Proof: Trees are triangle-free.

Note, this is not true for the generating matching polynomial g(G; X).
Explain!

21
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Project 1 (for this course)

e Prepare slides with a proof of the Farrell-Whitehead Theorem:

E.J. Farrell and Earl Glen Whitehead, Jr.
Connections between the matching and chromatic polynomials
Internat. J. Math. & Math. Sci. VOL. 15 NO. 4 (1992) 757-766 pdf-file

e Find more Theorems similar to the Gutmann or Farrell-Whitehead T he-
orems.

22
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Example 23

The chromatic polynomial and Tutte polynomial

(i) The chromatic polynomial x(G, X) is not induced
by the Tutte polynomial T(G, X,Y).

(ii) On connected graphs C we have T(G, X,Y) =°¢ x(G, X) for

(iii) Tutte polynomial T(G, X,Y) is not induced
by the the chromatic polynomial x(G, X).

Proof:

(i) Let E, be the graph with n vertices and no edges. We have T(E,,X,Y) = 1 but
x(E,, X) = X",

(ii) (After W.T. Tutte, 1954) x(G, X) = (=D)IVI-HOXEOT(G, 1 — X, 0).

(iii) (After M. Noy, 2003) Let W, be the wheel with n spokes. It is known that T(G, X,Y) =
T(Wp, X,Y) implies that G ~ W,, for all n.
But there is a G ¢ W5 with x(G,X,Y) = x(Ws, X,Y).

23
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Example 24
The Tutte polynomial and the matching polynomials

e [ he matching polynomial is not induced by the Tutte polynomial, even
on connected planar graphs.

e [ he Tutte polynomial is not induced by the matching polynomial, even
on connected planar graphs.

Proof:

(i) For trees with n vertices t, we have T(t,,X,Y) = X" !. But it is easy
to see that Ki;,-1 and P, are both trees with n vertices and their matching
polynomials differ, as K7 ,-1 has no 2-matching but P, has for n > 3.

(ii) On the other hand Cs3 . Cs and C4 U, C4 have the same matching poly-
nomials (check by hand) but have different Tutte polynomials, as the Tutte

polynomials counts cligues of given size.

24
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What do we learn?
What do we ask?

e Polynomial graph invariants are still a mystery.

e Can we analyze the consequence relation
for polynomial invariants?

e Can we identify “good invariants’?
e \What are appropriate complexity classes

for graph invariants?

25



