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LECTURE 1
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Outline of Lecture 1

• Organisational matters

• Purpose of the course

• Graph invariants

• Graph polynomials:

A tour through a bizarre landscape
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Organzational matters
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Course prerequisites and requirements

Lectures:
Weekly two hour lectures.

Homework:
This course requires active participation in the form of weakly
homework by the participants, complementing material of the course.
No hand-in required.
Connect passive and active knowledge. Measure your understanding.
Control it yourself or with a partner.

Course requirements:
Either: Edit and complete notes of at least one lecture.
or: Prepare a new lecture.
or: Prepare notes for additional material.

Ideally we want to have publishable course notes.
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Purpose of the course

We want to explore

combinatorial, algebraic and algorithmic graph theory

• Graph polynomials.

• Reducibilitry between graph polynomials.

• Linear recurrences for graph polynomials.

• Complexity theory for graph polynomials.

• Parametrized complexity of graph polynomials.
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“.... the goal of theory is the mastering of

examples”
H. Lüneburg
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The Catalogue of Graph Polynomials

We work on a book

The Catalogue of Graph Polynomials

• You are invited to contribute!

• You can edit parts;

• You can prepare new parts;

• You can help finding new graph polynomials.
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Graph invariants

and
graph polynomials
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Graph isomorphims

Let DG be the class of finite graphs 〈V (G), E(G)〉 where V = V (G) is a finite
set and E = E(G) ⊆ V 2 is a set of (directed edges). G ∈ DG is called a
directed graph. G be the class of finite graphs, i.e. where E is symmetric.

For G1, G2 ∈ DG f : G1 → G2 is an isomorphisms if

(i) f is a bijection, and

(ii) For u, v ∈ V (G1) we have
(u, v) ∈ E(G1) iff (f(u), f(v)) ∈ E(G2).

G1 and g2 are isomorphic, denoted by G1 ≃ G2,
if there is an isomorphism f : G1 → G2.
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Rings R

Let R a ring.

• R = B2 the two element bolean ring.

• R = Z2 the two element field.

• R = Z, the ring of integers.

• R = Z[X], the polynomial ring over the integers
with one indeterminate.

• R = Z[X1, . . . , Xk], the polynomial ring over the integers
with k indeterminates.

• R = R, the ring of real numbers.
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Definition 1 Graph invariants over a ring R

Let R a ring, G the class of finite graphs.

A function

f : G → R

is a graph invariant if for any two isomorphic graphs G1, G2

we have f(G1) = f(G2).
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Example 2 Boolean graph invariants

Here the ring is B2,

or any ring R, but the values of the invariant are either 0 or 1.

• Connectedness

• Regular, or regular of degree r.

• Any First Order expressible graph property.

• Any Second Order expressible graph property.

• Belonging to any specific class of graph closed under isomorphisms.

• There are continuum many boolean graph invariants.
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Example 3 Numeric graph invariants

Here the ring is Z.

• The cardinality of V (G) or E(G).

• The number of connected components of G, usually denoted by k(G).

• The coloring number of G.

• The size of the maximal clique (independent set).

• The diameter of G.

• The radius of G.

• The minimum length of a cycle in G, if it exists, called the girth of the
graph G.
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Example 4 Graph polynomials

Here the ring is Z[X].

The graph polynomial p(G,X) gives for each value of X a graph

invariant, hence it encodes a possibly infinite family of graph

invariants.

The study of graph polynomials has a long history concentrating

on particular polynomials.

The classic and very readable book is:

• Norman Biggs
Algebraic Graph Theory
Cambridge University Press
1974 (2nd edition 1993)
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Example 5 The chromatic polynomial

• Let χ(G,X) denote the number of vertex colorings of G with X colors.
We shall prove that χ(G,X) is a polynomial in X,
called the chromatic polynomial of G.

The chromatic polynomial was first introduced by G.D. Birkhoff in 1912.

It led to a very rich theory, although it was introduced
in a (failed) attempt to prove the 4-color conjecture.

The most comprehensive monograph about the chromatic polynomial is

• F.M. Dong, K.M. Koh and K.L. Teo
Chromatic polynomials and chromaticity of graphs
World Scientific, 2005
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What can we do with a graph polynomial?

• Study its zeros.

• Interpret its coefficients in various normal forms.

• Interpret its evaluations.

• Study graphs uniquely determined by the polynomial.

• Study graph classes having the same graph polynomial.

• Study the strength of the graph invariant.
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Digression 1:

Typical theorems
about the chromatic polynomial
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Theorem 101 (G. Birkhoff, 1912)

χ(G,X) is indeed a polynomial in X of degree | V (G) |.

Proof Let e = (a, b) be an edge of the graph G. G− e and G/e are obtained
from G by deleting, respectively contracting the edge e.
We use induction over E(G).

• First we observe that for disjoint unions G = G1 ⊔G2

we have χ(G,X) = χ(G1, X) · χ(G2, X).

• For n isolated points K̄n we have χ(K̄n, X) = Xn.

• χa6=b(G,X) is the number of X-colorings of G with a and b having different
colors.

• χa=b(G,X) is the number of X-colorings of G with a and b having the
same color.

• χ(G− e,X) = χa6=b(G− e,X) + χa=b(G− e,X) = χ(G,X) + χ(G/e,X)

• χ(G,X) = χ(G− e,X)− χ(G/e,X) Q.E.D.
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Normal forms of χ(G,X), I

As χ(G,X) is a polynomial we can write it as

χ(G,X) =

|V (G)|
∑

i

bi(G)Xi

For the disjoint union we noted that

Proposition 102

χ(G1 ⊔G2, X) = χ(G1, X) · χ(G2, X).
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Normal forms of χ(G,X), II

We define X(i) = X · (X − 1) · . . . · (X − i+1).
We write

χ(G,X) =

|V (G)|
∑

i

ci(G)X(i)

We define a an operation ◦ on the X(i) by X(i) ◦ X(j) = X(i+j) and extend it
naturally to polynomials in X(i).

The join of two graphs G1, G2, G1 +G2,
is obtained by taking the disjoint union and
adding all the edges between V (G1) and V (G2).

Theorem 103

χ(G1 +G2, X) =





|V (G)|
∑

i

ci(G1)X(i) ◦
|V (G)|
∑

i

ci(G2)X(i)
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Trees and tree-width

• For trees T with n vertices we have χ(T,X) = X · (X − 1)n−1.
I particular, any two trees on n vertices have
the same chromatic polynomial.

• (R. Read, 1968)
Conversely, for G a simple graph, if χ(G,X) = X · (X − 1)n−1, then G is
a tree.

• (C. Thomassen, 1997)
If G has tree-width k ≥ 2 then for every real number a > k we have
χ(G, a) 6= 0.

• (B. Courcelle, J.A. Makowsky, U. Rotics, 2000)
For graphs G with tree-width at most k the polynomial χ(G,X) can be
computed in time O(c1(k) · nd).

• (J.A. Makowsky, U. Rotics, 2005)
For graphs G with clique-width at most k the polynomial χ(G,X) can be
computed in time O(nc2(k)).
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Planar graphs and the chromatic polynomial.

Theorem 104 (P.J. Heawood, 1890)
Every planar graph is 5-colorable.
χ(G,5) 6= 0 for G planar.

Theorem 105 (G. Birkhoff and D. Lewis, 1946)
χ(G, a) 6= 0 for G planar and a ∈ R, a ≥ 5.

Note that this is much stronger than the 5-color theorem.

Theorem 106 (K. Appel and W. Haken, 1977)
Every planar graph is 4-colorable.
χ(G,4) 6= 0 for G planar.

Problem 107
Find an analytic proof of the 4-color theorem.

Conjecture 108 (G. Birkhoff and D. Lewis, 1946)
For G planar, there are no real roots of χ(G, a) for 4 ≤ a ≤ 5.
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Real roots of χ(G,X)

We note that χ(G,0) = 0 always, and χ(G,1) = 0 any graph with at least
one edge.

Theorem 109 (D. Woodall, 1977)
Let G be any graph.

• There are no negative real roots of χ(G,X).

• There are no real roots of χ(G,X) in the open interval (0,1).

Theorem 110 (B. Jackson, 1993)
• There are no real roots of χ(G,X) in the semi-open interval (1, 32

27
].

• For any ǫ > 0 there is a graph Gǫ such that χ(Gǫ, X) has a root in
(32
27
, 32
27

+ ǫ).

Theorem 111 (S. Thomassen, 1997)
For any real numbers a1, a2 with 32

27
≤ a1 < a2 there exists a graph G such that

χ(G,X) = 0 for some a ∈ (a1, a2).
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Other counting interpretations:

Acyclic orientations

An orientation of a graph G is a function which for every edge e = (a, b)
selects a source value s(e) ∈ {a, b}

An orientation is acyclic, of there are no oriented cycles.

Theorem 112 (R.P. Stanley, 1993)
The number of acyclic orientations of a graph G is given by
the absolute value | χ(G,−1) |.
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Subgraph expansions

Let G be a graph with k(G) connected components.
Let S ⊂ E(G) and denote by 〈S〉 the subgraph generated by S in G.

• The rank r(G) is defined as r(G) =| V (G) | −k(G).

• The corank s(G) is defined as s(G) =| E(G) | − | V (G) | +k(G).

• The rank polynomial of a graph is defined by

R(G;X,Y ) =
∑

S⊆E(G)

Xr(〈S〉)Y s(〈S〉)

Theorem 113 (H. Whitney, 1932)

(i) χ(G,X) =
∑

S⊆E(G)(−1)|S|X |V (G)|−r(〈S〉)

(ii) χ(G,X) = X |V |R(G,−X−1,−1)
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The complexity of the chromatic polynomial, I

Let us look at the chromatic polynomial χ(G,X).

• χ(G,X) has integer coefficients,
and for X ≥ 0 non-negative values,
hence evaluating it at X = a, a ∈ N is in ♯P.

• For a = 0,1,2 evaluating χ(G,X) is in P.

• For integer a ≥ 3 evaluating χ(G,X) is ♯P-complete.

• What about evaluating χ(G,X) for X = b with
b ∈ Z, b ≤ 0?
b ∈ R or b ∈ C?

Given evaluations of χ(G,X) at | V (G) | +1 many points, we can

compute the coefficients of χ(G,X) efficiently.
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The complexity of the chromatic polynomial, II

Theorem 114
(F. Jaeger, D. Vertigan and D. Welsh, 1990)

For any two points a, b ∈ C different from 0,1,2,
there is a polynomial time algebraic reduction
from the evaluation of χ(G, a) to the evaluation of χ(G, b).

Hence they are all equally difficult.

************************

There are a few problems with the exact formualtion of the theorem:

• What is the computational model behind polynomial time algebraic
reductions?

• What is the computational model behind equally difficult.

• The hardness result is obtained by a reduction to ♯P-complete problem,
but most instances are not in ♯P.
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End of digression on typical theorems
about the chromatic polynomial
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Example 6 The characteristic polynomial

• Let V = [n] and let AG be the (symmetric) adjacency matrix of G with
(A)j,i = (A)i,j = 1 iff there is an edge between vertex i and vertex j.

• We denote by P (G,X) the polynomial

det(X · 1− A)

P (G,X) is a graph invariant and a polynomial in X,
called the characteristic polynomial of G.

• The set of roots of P (G,X) (with multiplicities) are the eigenvalues of
AG, and are called the spectrum of the graph G.

The characteristic polynomial and the spectrum of a graph
was first studied in the 1950ties

T.H. Wei 1952, L.M. Lihtenbaum 1956,
L. Collatz and U. Sinogowitz 1957,
H. Sachs 1964, H.J. Hoffman 1969
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The characteristic polynomial: Literature

The characteristic polynomial and spectra of graphs have a very rich literature
with important applications in chemistry under the name Hückel theory.

• N. Biggs, Algebraic Graph Theory,
Cambridge University Press, 1994 (2nd edition)

• D.M. Cvetković, M. Doob and H. Sachs
Spectra of Graphs
Johann Ambrosius Barth, 1995 (3rd edition)

• D.M. Cvetković, P. Rowlinson and S. Simić
Eigenspaces of Graphs
Encyclopedia of Mathematics, vol. 66
Cambridge University Press, 1997

• N. Trinajstić
Chemical Graph Theory
CRC Press, 1992 (2nd edition)
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Digression 2:

Typical theorems
about the characteristic polynomial
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Coefficients of P(G,X)

We write

P (G,X) =

|V (G)|
∑

i=0

ci(G) ·Xn−i

Proposition 201

(i) c0 = 1

(ii) c1 = 0

(iii) −c2 =| E(G) | is the number of edges of G.

(iv) −c3 is twice the number of triangles of G.
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Eigenvalues of G, I

As in linear algebra, the zeros of P (G,X) are called
eigenvalues of the matrix AG, or eigenvalues of the graph G,

Proposition 202
(i) All the eigenvalues of G are real.

(ii) If G is connected, the largest eigenvalue of G has multiplicity 1.

(iii) If G is connected and of diameter at least d, the G has at least d + 1
distinct zeros.

(iv) The complete graph is the only connected graph with exactly two distinct
eigenvalues, P (Kn, X) = (X + 1)n−1(X − n+1).

(v) Let Λ(G) be the largest eigenvalue of G.
G is bipartite iff −Λ(G) is also an eigenvalue of G.
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Eigenvalues of G, II

Proposition 203
Let G be a regular graph of degree r. Then

(i) r is an eigenvalue of G

(ii) If G is connected, then the multiplicity of r is 1.

(iii) For any eigenvalue λ of G we have | λ |≤ r.

(iv) The multiplicity of the eigenvalue r is the number of connected compo-
nents of G.
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Eigenvalues of G, III

λ(G) denotes the smallest eigenvalue of G.
λ2(G) denotes the second largest eigenvalue of G.
Λ(G) denotes the largest eigenvalue of G.

Proposition 204
(i) If H is an induced subgraph of G, then λ(H) ≤ λ(G).

(ii) If H is an induced subgraph of G, then Λ(H) ≤ Λ(G).
If H is a proper induced subgraph, then Λ(H) < Λ(G).

(iii) For no graph G is λ(G) ∈ (−1,0).

(iv) Let G have at least two vertices.
λ(G) = −1 iff G is a complete graph.

(v) For no graph G is λ(G) ∈ (−
√
2,−1).

(vi) (J. Smith, 1970) λ2(G) ≤ 0 iff G is a complete multipartite graph.
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End of digression on typical theorems
about the characteristic polynomial
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