Graph polynomials, 236603-11 Lecture 1, Organisation

Advanced Topics in Computer Science
236603-2011

Graph Polynomials

Location: Taub 4

Lecturer: Prof. Janos Makowsky

e-mail: janos@cs.technion.ac.il,

Homepage: http://www.cs.technion.ac.il/ janos/COURSES/236603-11
Office: Taub 628

Reception hours: Monday: 16:30-19:00 or by appointment (via e-mail)



Graph polynomials, 236603-11 Lecture 1, Organisation

LECTURE 1
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Outline of Lecture 1

e Organisational matters

e Purpose of the course

e Graph invariants

e Graph polynomials:
A tour through a bizarre landscape
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Organzational matters
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Course prerequisites and requirements

Lectures:
Weekly two hour lectures.

Homework:
This course requires active participation in the form of weakly
homework by the participants, complementing material of the course.
No hand-in required.
Connect passive and active knowledge. Measure your understanding.
Control it yourself or with a partner.

Course requirements:
Either: Edit and complete notes of at least one lecture.
or: Prepare a new lecture.
or: Prepare notes for additional material.

Ideally we want to have publishable course notes.
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Purpose of the course

We want to explore

combinatorial, algebraic and algorithmic graph theory
e Graph polynomials.
e Reducibilitry between graph polynomials.
e Linear recurrences for graph polynomials.
e Complexity theory for graph polynomials.

e Parametrized complexity of graph polynomials.
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“.... the goal of theory is the mastering of

examples”
H. Luneburg
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The Catalogue of Graph Polynomials

We work on a book

The Catalogue of Graph Polynomials

You are invited to contribute!

e YOu can edit parts;
e YOU can prepare new parts;

e You can help finding new graph polynomials.
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Graph invariants

and
graph polynomials
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Graph isomorphims

Let DG be the class of finite graphs (V(G), E(G)) where V = V(G) is a finite
set and E = E(G) C V? is a set of (directed edges). G € DG is called a
directed graph. G be the class of finite graphs, i.e. where E is symmetric.

For G1,G> € DG f : G1 — G2 is an isomorphisms if
(i) f is a bijection, and

(ii) For uw,v € V(G1) we have
(u,v) € E(Gy) iff (f(u), f(v)) € E(G2).

G1 and go are isomorphic, denoted by G1 ~ G>,
if there is an isomorphism f : G1 — Go.

10
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Rings R

Let R a ring.
e R = B> the two element bolean ring.

e R =7- the two element field.

R = 7, the ring of integers.

R = Z[X], the polynomial ring over the integers
with one indeterminate.

R = 7Z[X1,...,X], the polynomial ring over the integers
with k indeterminates.

R = R, the ring of real numbers.

11
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Definition 1 Graph invariants over a ring 'R

Let R a ring, G the class of finite graphs.
A function

f:Gg—>R

IS a graph invariant if for any two isomorphic graphs G1,G»>
we have f(G1) = f(Go).

12
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Example 2 Boolean graph invariants

Here the ring is By,
or any ring R, but the values of the invariant are either O or 1.

e Connectedness

Regular, or regular of degree r.

Any First Order expressible graph property.

Any Second Order expressible graph property.

Belonging to any specific class of graph closed under isomorphisms.

e [ here are continuum many boolean graph invariants.

13
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Example 3 Numeric graph invariants

Here the ring is Z.
e The cardinality of V(G) or E(G).
e The number of connected components of GG, usually denoted by k(G).
e [ he coloring number of G.
e The size of the maximal cligue (independent set).
e T he diameter of G.
e T he radius of G.

e The minimum length of a cycle in GG, if it exists, called the girth of the
graph G.

14
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Example 4 Graph polynomials

Here the ring is Z[X].

The graph polynomial p(G, X) gives for each value of X a graph
invariant, hence it encodes a possibly infinite family of graph
invariants.

The study of graph polynomials has a long history concentrating
on particular polynomials.

The classic and very readable book is:

e Norman Biggs
Algebraic Graph Theory
Cambridge University Press
1974 (2nd edition 1993)

15
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Example 5 The chromatic polynomaial

o Let x(G,X) denote the number of vertex colorings of G with X colors.
We shall prove that x(G, X) is a polynomial in X,
called the chromatic polynomial of G.

The chromatic polynomial was first introduced by G.D. Birkhoff in 1912.

It led to a very rich theory, although it was introduced
in a (failed) attempt to prove the 4-color conjecture.

The most comprehensive monograph about the chromatic polynomial is

e F-M. Dong, K.M. Koh and K.L. Teo
Chromatic polynomials and chromaticity of graphs
World Scientific, 2005

16
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What can we do with a graph polynomial?

e Study its zeros.

e Interpret its coefficients in various normal forms.

e Interpret its evaluations.

e Study graphs uniquely determined by the polynomial.

e Study graph classes having the same graph polynomial.

e Study the strength of the graph invariant.

17
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Digression 1:

Typical theorems
about the chromatic polynomial

18



Graph polynomials, 236603-11 Lecture 1, Graph Invariants

Theorem 101 (G. Birkhoff, 1912)
x(G, X) is indeed a polynomial in X of degree | V(G) |.

Proof Let e = (a,b) be an edge of the graph G. G — e and G/e are obtained
from G by deleting, respectively contracting the edge e.
We use induction over E(G).

e First we observe that for disjoint unions G = G171 U G5
we have x(G, X) = x(G1, X) - x(G2, X).

e For n isolated points K, we have y(K,,X) = X".

o X.=b(G, X) is the number of X-colorings of G with a and b having different
colors.

o Y.—»(G,X) is the number of X-colorings of G with a and b having the

same color.
® X(G_ G,X) — Xa;&b(G_e7X) _I_Xa:b(G_ 67X) — X(G7X) +X(G/67X)
o X(G,X) =x(G—-¢X)—x(G/e,X) Q.E.D.

19
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Normal forms of x(G, X), 1

As x(G, X) is a polynomial we can write it as

[V (G)]

X(G,X) = ) bi(@DX

7

For the disjoint union we noted that
Proposition 102

x(G1U G2, X) = x(G1,X) - x(G2, X).

20
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Normal forms of x(G, X), II

We define X(y =X - (X —-1)-...- (X —i+1).
We write
V(G)I
x(G,X) = Z ci(G) X ()
We define a an operation o on the X;) by X o X(;) = X(;4;) and extend it
naturally to polynomials in Xy

The join of two graphs G1,G», G1 + G»,
IS obtained by taking the disjoint union and
adding all the edges between V(G1) and V(G2).

Theorem 103

V(&) V(@)
X(G1+G2,X) = | > a(G)Xpo > a(G)X(

1 )

21
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Trees and tree-width

e For trees T with n vertices we have x(7,X) = X - (X — 1) L.
I particular, any two trees on n vertices have
the same chromatic polynomial.

e (R. Read, 1968)
Conversely, for G a simple graph, if x(G,X) = X - (X — 1)1, then G is
a tree.

e (C. Thomassen, 1997)
If G has tree-width k£ > 2 then for every real number a > k we have

x(G,a) # 0.

e (B. Courcelle, J.A. Makowsky, U. Rotics, 2000)
For graphs G with tree-width at most k the polynomial x(G, X) can be
computed in time O(c1(k) - n9).

e (J.A. Makowsky, U. Rotics, 2005)
For graphs G with clique-width at most k£ the polynomial x(G, X) can be
computed in time O(n®®)).

22
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Planar graphs and the chromatic polynomial.

Theorem 104 (P.J. Heawood, 1890)
Every planar graph is 5-colorable.
x(G,5) # 0 for G planar.

Theorem 105 (G. Birkhoff and D. Lewis, 1946)
x(G,a) = 0 for G planar and a € R,a > 5.

Note that this is much stronger than the 5-color theorem.

Theorem 106 (K. Appel and W. Haken, 1977)
Every planar graph is 4-colorable.
x(G,4) = 0 for G planar.

Problem 107
Find an analytic proof of the 4-color theorem.

Conjecture 108 (G. Birkhoff and D. Lewis, 1946)
For G planar, there are no real roots of x(G,a) for 4 < a < 5.

23
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Real roots of x(G, X)

We note that x(G,0) = 0 always, and x(G,1) = 0 any graph with at least
one edge.

Theorem 109 (D. Woodall, 1977)
Let G be any graph.

e There are no negative real roots of x(G, X).

e There are no real roots of x(G,X) in the open interval (0,1).

Theorem 110 (B. Jackson, 1993)

e There are no real roots of x(G,X) in the semi-open interval (1,32

274

e For any ¢ > 0 there is a graph G. such that x(Ge, X) has a root in

32 32
557 T €.

Theorem 111 (S. Thomassen, 1997)

For any real numbers a1, a> With % < ai < ap there exists a graph GG such that

x(G,X) =0 for some a € (a1,a2).

24
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Other counting interpretations:
Acyclic orientations

An orientation of a graph G is a function which for every edge ¢ = (a,b)
selects a source value s(e) € {a,b}

An orientation is acyclic, of there are no oriented cycles.

Theorem 112 (R.P. Stanley, 1993)

The number of acyclic orientations of a graph G is given by
the absolute value | x(G,—1) |.

25
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Subgraph expansions

Let G be a graph with k(G) connected components.
Let S C E(G) and denote by (S) the subgraph generated by S in G.

e The rank r(G) is defined as r(G) =| V(G) | —k(G).
e The corank s(G) is defined as s(G) =| E(G) | — | V(G) | +k(G).

e The rank polynomial of a graph is defined by

R(G; X,Y) = Z xSy s((S))
SCE(G)

Theorem 113 (H. Whitney, 1932)

() x(G, X) = ¥ gc ey (—DIPFIXIVIAN=r{S)

(i) x(G,X) =XVIR(G,-X"1,-1)

26
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The complexity of the chromatic polynomial, 1

Let us look at the chromatic polynomial (G, X).

e (G, X) has integer coefficients,
and for X > 0 non-negative values,
hence evaluating it at X = a,a € N is in fP.

e For a=0,1,2 evaluating x(G,X) is in P.
e For integer a > 3 evaluating x(G, X) is fP-complete.
e What about evaluating x(G, X) for X = b with

beZ, b<07
beRorbeC?

Given evaluations of x(G, X) at | V(G) | +1 many points, we can
compute the coefficients of x(G, X) efficiently.
27
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The complexity of the chromatic polynomial, II

Theorem 114
(F. Jaeger, D. Vertigan and D. Welsh, 1990)

For any two points a,b € C different from 0,1, 2,
there is a polynomial time algebraic reduction
from the evaluation of x(G,a) to the evaluation of x(G,b).

Hence they are all equally difficult.

3K 3K 3K 3kook R Kk koK kR R koK skokok Skosk sk ko kokok

There are a few problems with the exact formualtion of the theorem:

e \What is the computational model behind polynomial time algebraic
reductions?

e What is the computational model behind equally difficult.

e The hardness result is obtained by a reduction to gP-complete problem,
but most instances are not in §P.

28
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End of digression on typical theorems
about the chromatic polynomial

29



Graph polynomials, 236603-11 Lecture 1, Graph Invariants

Example 6 The characteristic polynomial

e Let V = [n] and let Ag be the (symmetric) adjacency matrix of G with
(A);: = (A);; = 1 iff there is an edge between vertex i and vertex j.

e We denote by P(G, X) the polynomial
det(X -1— A)
P(G,X) is a graph invariant and a polynomial in X,

called the characteristic polynomial of G.

e The set of roots of P(G,X) (with multiplicities) are the eigenvalues of
Aqg, and are called the spectrum of the graph G.

The characteristic polynomial and the spectrum of a graph
was first studied in the 1950ties

T.H. Wei 1952, L.M. Lihtenbaum 1956,
L. Collatz and U. Sinogowitz 1957,
H. Sachs 1964, H.J. Hoffman 1969

30
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The characteristic polynomial: Literature

The characteristic polynomial and spectra of graphs have a very rich literature
with important applications in chemistry under the name Huckel theory.

e N. Biggs, Algebraic Graph Theory,
Cambridge University Press, 1994 (2nd edition)

e D.M. Cvetkovi¢, M. Doob and H. Sachs
Spectra of Graphs
Johann Ambrosius Barth, 1995 (3rd edition)

e D.M. Cvetkovi¢, P. Rowlinson and S. Simic
Eigenspaces of Graphs
Encyclopedia of Mathematics, vol. 66
Cambridge University Press, 1997

e N. TrinajsticC
Chemical Graph Theory
CRC Press, 1992 (2nd edition)

31
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Digression 2:

Typical theorems
about the characteristic polynomial

32
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Coefficients of P(G, X)

Lecture 1, Graph Invariants

We write
IV (G)

P(G,X)= Y c(G) X"
1=0

Proposition 201
(i) co=1
(ii) c1 =0

(iii) —co =| E(G) | is the number of edges of G.

(iv) —c3 is twice the number of triangles of G.

33
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Eigenvalues of G, 1

As in linear algebra, the zeros of P(G, X) are called
eigenvalues of the matrix Ag, or eigenvalues of the graph G,

Proposition 202
(i) All the eigenvalues of G are real.

(ii) If G is connected, the largest eigenvalue of G has multiplicity 1.

(iii) If G is connected and of diameter at least d, the G has at least d + 1
distinct zeros.

(iv) The complete graph is the only connected graph with exactly two distinct
eigenvalues, P(K,,X)=(X+ 1) 1(X —n+1).

(v) Let A(G) be the largest eigenvalue of G.
G is bipartite iff —A\(G) is also an eigenvalue of G.

34
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Eigenvalues of G, 1II

Proposition 203
Let G be a regular graph of degree r. Then

(i) r is an eigenvalue of G
(ii) If G is connected, then the multiplicity of r is 1.
(iii) For any eigenvalue \ of G we have | A\ |< .

(iv) The multiplicity of the eigenvalue r is the number of connected compo-
nents of GG.

35
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Eigenvalues of G, III

A(G) denotes the smallest eigenvalue of G.
X>(G) denotes the second largest eigenvalue of G.
A(G) denotes the largest eigenvalue of G.

Proposition 204
(i) If H is an induced subgraph of G, then A\(H) < M\(G).

(ii) If H is an induced subgraph of G, then N(H) < A(G).
If H is a proper induced subgraph, then AN(H) < A(G).

(iii) For no graph G is \(G) € (—-1,0).

(iv) Let G have at least two vertices.
MG) = -1 iff G is a complete graph.

(v) For no graph G is \(G) € (—V2,—1).
(vi) (J. Smith, 1970) X>(G) < 0 iff G is a complete multipartite graph.

36
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End of digression on typical theorems
about the characteristic polynomial

37



