Advanced Topics in Computer Science 236603-2011
 Graph Polynomials

Location: Taub 4

Lecturer: Prof. János Makowsky
e-mail: janos@cs.technion.ac.il,

Homepage: http://www.cs.technion.ac.il/ janos/COURSES/236603-11

Office: Taub 628

Reception hours: Monday: 16:30-19:00 or by appointment (via e-mail)

LECTURE 1

Outline of Lecture 1

- Organisational matters
- Purpose of the course
- Graph invariants
- Graph polynomials:

A tour through a bizarre landscape

Organzational matters

Course prerequisites and requirements

Lectures:

Weekly two hour lectures.
Homework:
This course requires active participation in the form of weakly homework by the participants, complementing material of the course. No hand-in required.
Connect passive and active knowledge. Measure your understanding. Control it yourself or with a partner.

Course requirements:

Either: Edit and complete notes of at least one lecture.
or: Prepare a new lecture.
or: Prepare notes for additional material.

Ideally we want to have publishable course notes.

Purpose of the course

We want to explore
combinatorial, algebraic and algorithmic graph theory

- Graph polynomials.
- Reducibilitry between graph polynomials.
- Linear recurrences for graph polynomials.
- Complexity theory for graph polynomials.
- Parametrized complexity of graph polynomials.

".... the goal of theory is the mastering of examples"
 H. Lüneburg

The Catalogue of Graph Polynomials

We work on a book

The Catalogue of Graph Polynomials

- You are invited to contribute!
- You can edit parts;
- You can prepare new parts;
- You can help finding new graph polynomials.

Graph invariants and
 graph polynomials

Graph isomorphims

Let $\mathcal{D G}$ be the class of finite graphs $\langle V(G), E(G)\rangle$ where $V=V(G)$ is a finite set and $E=E(G) \subseteq V^{2}$ is a set of (directed edges). $G \in \mathcal{D G}$ is called a directed graph. \mathcal{G} be the class of finite graphs, i.e. where E is symmetric.

For $G_{1}, G_{2} \in \mathcal{D G} f: G_{1} \rightarrow G_{2}$ is an isomorphisms if
(i) f is a bijection, and
(ii) For $u, v \in V\left(G_{1}\right)$ we have

$$
(u, v) \in E\left(G_{1}\right) \text { iff }(f(u), f(v)) \in E\left(G_{2}\right)
$$

G_{1} and g_{2} are isomorphic, denoted by $G_{1} \simeq G_{2}$, if there is an isomorphism $f: G_{1} \rightarrow G_{2}$.

Rings \mathcal{R}

Let \mathcal{R} a ring.

- $\mathcal{R}=\mathcal{B}_{2}$ the two element bolean ring.
- $\mathcal{R}=\mathbb{Z}_{2}$ the two element field.
- $\mathcal{R}=\mathbb{Z}$, the ring of integers.
- $\mathcal{R}=\mathbb{Z}[X]$, the polynomial ring over the integers with one indeterminate.
- $\mathcal{R}=\mathbb{Z}\left[X_{1}, \ldots, X_{k}\right]$, the polynomial ring over the integers with k indeterminates.
- $\mathcal{R}=\mathbb{R}$, the ring of real numbers.

Definition 1 Graph invariants over a ring \mathcal{R}

Let \mathcal{R} a ring, \mathcal{G} the class of finite graphs.
A function

$$
f: \mathcal{G} \rightarrow \mathcal{R}
$$

is a graph invariant if for any two isomorphic graphs G_{1}, G_{2} we have $f\left(G_{1}\right)=f\left(G_{2}\right)$.

Example 2 Boolean graph invariants

Here the ring is \mathcal{B}_{2},
or any ring \mathcal{R}, but the values of the invariant are either 0 or 1.

- Connectedness
- Regular, or regular of degree r.
- Any First Order expressible graph property.
- Any Second Order expressible graph property.
- Belonging to any specific class of graph closed under isomorphisms.
- There are continuum many boolean graph invariants.

Example 3 Numeric graph invariants

Here the ring is \mathbb{Z}.

- The cardinality of $V(G)$ or $E(G)$.
- The number of connected components of G, usually denoted by $k(G)$.
- The coloring number of G.
- The size of the maximal clique (independent set).
- The diameter of G.
- The radius of G.
- The minimum length of a cycle in G, if it exists, called the girth of the graph G.

Example 4 Graph polynomials

Here the ring is $\mathbb{Z}[X]$.

The graph polynomial $p(G, X)$ gives for each value of X a graph invariant, hence it encodes a possibly infinite family of graph invariants.

The study of graph polynomials has a long history concentrating on particular polynomials.

The classic and very readable book is:

- Norman Biggs

Algebraic Graph Theory
Cambridge University Press
1974 (2nd edition 1993)

Example 5 The chromatic polynomial

- Let $\chi(G, X)$ denote the number of vertex colorings of G with X colors. We shall prove that $\chi(G, X)$ is a polynomial in X, called the chromatic polynomial of G.

The chromatic polynomial was first introduced by G.D. Birkhoff in 1912.
It led to a very rich theory, although it was introduced in a (failed) attempt to prove the 4 -color conjecture.

The most comprehensive monograph about the chromatic polynomial is

- F.M. Dong, K.M. Koh and K.L. Teo Chromatic polynomials and chromaticity of graphs World Scientific, 2005

What can we do with a graph polynomial?

- Study its zeros.
- Interpret its coefficients in various normal forms.
- Interpret its evaluations.
- Study graphs uniquely determined by the polynomial.
- Study graph classes having the same graph polynomial.
- Study the strength of the graph invariant.

Digression 1:

Typical theorems about the chromatic polynomial

Theorem 101 (G. Birkhoff, 1912)

$\chi(G, X)$ is indeed a polynomial in X of degree $|V(G)|$.

Proof Let $e=(a, b)$ be an edge of the graph $G . G-e$ and G / e are obtained from G by deleting, respectively contracting the edge e.
We use induction over $E(G)$.

- First we observe that for disjoint unions $G=G_{1} \sqcup G_{2}$ we have $\chi(G, X)=\chi\left(G_{1}, X\right) \cdot \chi\left(G_{2}, X\right)$.
- For n isolated points \bar{K}_{n} we have $\chi\left(\bar{K}_{n}, X\right)=X^{n}$.
- $\chi_{a \neq b}(G, X)$ is the number of X-colorings of G with a and b having different colors.
- $\chi_{a=b}(G, X)$ is the number of X-colorings of G with a and b having the same color.
- $\chi(G-e, X)=\chi_{a \neq b}(G-e, X)+\chi_{a=b}(G-e, X)=\chi(G, X)+\chi(G / e, X)$
- $\chi(G, X)=\chi(G-e, X)-\chi(G / e, X)$
Q.E.D.

Normal forms of $\chi(G, X)$, I

As $\chi(G, X)$ is a polynomial we can write it as

$$
\chi(G, X)=\sum_{i}^{|V(G)|} b_{i}(G) X^{i}
$$

For the disjoint union we noted that
Proposition 102

$$
\chi\left(G_{1} \sqcup G_{2}, X\right)=\chi\left(G_{1}, X\right) \cdot \chi\left(G_{2}, X\right) .
$$

Normal forms of $\chi(G, X)$, II

We define $X_{(i)}=X \cdot(X-1) \cdot \ldots \cdot(X-i+1)$.
We write

$$
\chi(G, X)=\sum_{i}^{|V(G)|} c_{i}(G) X_{(i)}
$$

We define a an operation o on the $X_{(i)}$ by $X_{(i)} \circ X_{(j)}=X_{(i+j)}$ and extend it naturally to polynomials in $X_{(i)}$.
The join of two graphs $G_{1}, G_{2}, G_{1}+G_{2}$, is obtained by taking the disjoint union and adding all the edges between $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$.
Theorem 103

$$
\chi\left(G_{1}+G_{2}, X\right)=\left(\sum_{i}^{|V(G)|} c_{i}\left(G_{1}\right) X_{(i)} \circ \sum_{i}^{|V(G)|} c_{i}\left(G_{2}\right) X_{(i)}\right)
$$

Trees and tree-width

- For trees T with n vertices we have $\chi(T, X)=X \cdot(X-1)^{n-1}$. I particular, any two trees on n vertices have the same chromatic polynomial.
- (R. Read, 1968)

Conversely, for G a simple graph, if $\chi(G, X)=X \cdot(X-1)^{n-1}$, then G is a tree.

- (C. Thomassen, 1997)

If G has tree-width $k \geq 2$ then for every real number $a>k$ we have $\chi(G, a) \neq 0$.

- (B. Courcelle, J.A. Makowsky, U. Rotics, 2000)

For graphs G with tree-width at most k the polynomial $\chi(G, X)$ can be computed in time $O\left(c_{1}(k) \cdot n^{d}\right)$.

- (J.A. Makowsky, U. Rotics, 2005)

For graphs G with clique-width at most k the polynomial $\chi(G, X)$ can be computed in time $O\left(n^{c_{2}(k)}\right)$.

Planar graphs and the chromatic polynomial.

Theorem 104 (P.J. Heawood, 1890)
Every planar graph is 5-colorable.
$\chi(G, 5) \neq 0$ for G planar.
Theorem 105 (G. Birkhoff and D. Lewis, 1946)
$\chi(G, a) \neq 0$ for G planar and $a \in \mathbb{R}, a \geq 5$.
Note that this is much stronger than the 5-color theorem.
Theorem 106 (K. Appel and W. Haken, 1977)
Every planar graph is 4-colorable.
$\chi(G, 4) \neq 0$ for G planar.

Problem 107

Find an analytic proof of the 4-color theorem.
Conjecture 108 (G. Birkhoff and D. Lewis, 1946)
For G planar, there are no real roots of $\chi(G, a)$ for $4 \leq a \leq 5$.

Real roots of $\chi(G, X)$

We note that $\chi(G, 0)=0$ always, and $\chi(G, 1)=0$ any graph with at least one edge.

Theorem 109 (D. Woodall, 1977)
Let G be any graph.

- There are no negative real roots of $\chi(G, X)$.
- There are no real roots of $\chi(G, X)$ in the open interval $(0,1)$.

Theorem 110 (B. Jackson, 1993)

- There are no real roots of $\chi(G, X)$ in the semi-open interval $\left(1, \frac{32}{27}\right]$.
- For any $\epsilon>0$ there is a graph G_{ϵ} such that $\chi\left(G_{\epsilon}, X\right)$ has a root in $\left(\frac{32}{27}, \frac{32}{27}+\epsilon\right)$.
Theorem 111 (S. Thomassen, 1997)
For any real numbers a_{1}, a_{2} with $\frac{32}{27} \leq a_{1}<a_{2}$ there exists a graph G such that $\chi(G, X)=0$ for some $a \in\left(a_{1}, a_{2}\right)$.

Other counting interpretations:
Acyclic orientations

An orientation of a graph G is a function which for every edge $e=(a, b)$ selects a source value $s(e) \in\{a, b\}$

An orientation is acyclic, of there are no oriented cycles.
Theorem 112 (R.P. Stanley, 1993)
The number of acyclic orientations of a graph G is given by the absolute value $|\chi(G,-1)|$.

Subgraph expansions

Let G be a graph with $k(G)$ connected components.
Let $S \subset E(G)$ and denote by $\langle S\rangle$ the subgraph generated by S in G.

- The rank $r(G)$ is defined as $r(G)=|V(G)|-k(G)$.
- The corank $s(G)$ is defined as $s(G)=|E(G)|-|V(G)|+k(G)$.
- The rank polynomial of a graph is defined by

$$
R(G ; X, Y)=\sum_{S \subseteq E(G)} X^{r(\langle S\rangle)} Y^{s(\langle S\rangle)}
$$

Theorem 113 (H. Whitney, 1932)
(i) $\chi(G, X)=\sum_{S \subseteq E(G)}(-1)^{|S|} X^{|V(G)|-r(\langle S\rangle)}$
(ii) $\chi(G, X)=X^{|V|} R\left(G,-X^{-1},-1\right)$

The complexity of the chromatic polynomial, I

Let us look at the chromatic polynomial $\chi(G, X)$.

- $\chi(G, X)$ has integer coefficients, and for $X \geq 0$ non-negative values, hence evaluating it at $X=a, a \in \mathbb{N}$ is in $\sharp \mathbf{P}$.
- For $a=0,1,2$ evaluating $\chi(G, X)$ is in \mathbf{P}.
- For integer $a \geq 3$ evaluating $\chi(G, X)$ is $\sharp \mathrm{P}$-complete.
- What about evaluating $\chi(G, X)$ for $X=b$ with
$b \in \mathbb{Z}, b \leq 0$?
$b \in \mathbb{R}$ or $b \in \mathbb{C}$?

Given evaluations of $\chi(G, X)$ at $|V(G)|+1$ many points, we can compute the coefficients of $\chi(G, X)$ efficiently.

The complexity of the chromatic polynomial, II

Theorem 114

(F. Jaeger, D. Vertigan and D. Welsh, 1990)

For any two points $a, b \in \mathbb{C}$ different from $0,1,2$, there is a polynomial time algebraic reduction from the evaluation of $\chi(G, a)$ to the evaluation of $\chi(G, b)$.

Hence they are all equally difficult.

There are a few problems with the exact formualtion of the theorem:

- What is the computational model behind polynomial time algebraic reductions?
- What is the computational model behind equally difficult.
- The hardness result is obtained by a reduction to $\sharp \mathbf{P}$-complete problem, but most instances are not in $\sharp \mathbf{P}$.

End of digression on typical theorems about the chromatic polynomial

Example 6 The characteristic polynomial

- Let $V=[n]$ and let A_{G} be the (symmetric) adjacency matrix of G with $(A)_{j, i}=(A)_{i, j}=1$ iff there is an edge between vertex i and vertex j.
- We denote by $P(G, X)$ the polynomial

$$
\operatorname{det}(X \cdot \mathbf{1}-A)
$$

$P(G, X)$ is a graph invariant and a polynomial in X, called the characteristic polynomial of G.

- The set of roots of $P(G, X)$ (with multiplicities) are the eigenvalues of A_{G}, and are called the spectrum of the graph G.

The characteristic polynomial and the spectrum of a graph was first studied in the 1950ties
T.H. Wei 1952, L.M. Lihtenbaum 1956,
L. Collatz and U. Sinogowitz 1957,
H. Sachs 1964, H.J. Hoffman 1969

The characteristic polynomial: Literature

The characteristic polynomial and spectra of graphs have a very rich literature with important applications in chemistry under the name Hückel theory.

- N. Biggs, Algebraic Graph Theory, Cambridge University Press, 1994 (2nd edition)
- D.M. Cvetković, M. Doob and H. Sachs Spectra of Graphs
Johann Ambrosius Barth, 1995 (3rd edition)
- D.M. Cvetković, P. Rowlinson and S. Simić

Eigenspaces of Graphs
Encyclopedia of Mathematics, vol. 66
Cambridge University Press, 1997

- N. Trinajstić

Chemical Graph Theory
CRC Press, 1992 (2nd edition)

Digression 2:

Typical theorems about the characteristic polynomial

Coefficients of $P(G, X)$

We write

$$
P(G, X)=\sum_{i=0}^{|V(G)|} c_{i}(G) \cdot X^{n-i}
$$

Proposition 201
(i) $c_{0}=1$
(ii) $c_{1}=0$
(iii) $-c_{2}=|E(G)|$ is the number of edges of G.
(iv) $-c_{3}$ is twice the number of triangles of G.

Eigenvalues of G, I

As in linear algebra, the zeros of $P(G, X)$ are called eigenvalues of the matrix A_{G}, or eigenvalues of the graph G,

Proposition 202

(i) All the eigenvalues of G are real.
(ii) If G is connected, the largest eigenvalue of G has multiplicity 1.
(iii) If G is connected and of diameter at least d, the G has at least $d+1$ distinct zeros.
(iv) The complete graph is the only connected graph with exactly two distinct eigenvalues, $P\left(K_{n}, X\right)=(X+1)^{n-1}(X-n+1)$.
(v) Let $\wedge(G)$ be the largest eigenvalue of G.
G is bipartite iff $-\wedge(G)$ is also an eigenvalue of G.

Eigenvalues of G, II

Proposition 203

Let G be a regular graph of degree r. Then
(i) r is an eigenvalue of G
(ii) If G is connected, then the multiplicity of r is 1 .
(iii) For any eigenvalue λ of G we have $|\lambda| \leq r$.
(iv) The multiplicity of the eigenvalue r is the number of connected components of G.

Eigenvalues of G, III

$\lambda(G)$ denotes the smallest eigenvalue of G.
$\lambda_{2}(G)$ denotes the second largest eigenvalue of G.
$\wedge(G)$ denotes the largest eigenvalue of G.

Proposition 204

(i) If H is an induced subgraph of G, then $\lambda(H) \leq \lambda(G)$.
(ii) If H is an induced subgraph of G, then $\wedge(H) \leq \wedge(G)$.

If H is a proper induced subgraph, then $\wedge(H)<\Lambda(G)$.
(iii) For no graph G is $\lambda(G) \in(-1,0)$.
(iv) Let G have at least two vertices.
$\lambda(G)=-1$ iff G is a complete graph.
(v) For no graph G is $\lambda(G) \in(-\sqrt{2},-1)$.
(vi) (J. Smith, 1970) $\lambda_{2}(G) \leq 0$ iff G is a complete multipartite graph.

End of digression on typical theorems about the characteristic polynomial

