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Chapter 1

Graph polynomials

A graph is a relational structure G =< V, E; R >, where V is a set of vertices, E is a set of edges,
and R is the a ternary relation R ⊆ V ×E×V , where R(u, e, v) holds if and only the edge has u as
its source and v its target. An edge labeling of a graph is a function cE : E → N, A vertex labeling
of a graph is a function cV : V → N. A labeled graph is a tuple of the form < V, E, cV , cE >. cV or
cE could be the empty map. Let G denote the class of finite graphs, Glab denote the class of finite
labeled graphs.

1.1 Comparing graph polynomials

We want to compare the combinatorial expressive power of graph polynomials. Several approaches
have been used explicitly or implicitly in the literature. We shall state our definitions for PNGIs,
rather than rstricting ourselves to graph polynomials, whenever it makes sense.

1.1.1 Distinctive power

Let f, g be two NPGIs for a class of labeled graphs G.

Definition 1. f is less distinctive than g, and we write f <dist g, if whenever G1, G2 ∈ G and
g(G1) = g(G2) then also f(G1) = f(G2).
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1.1.2 Substitution instances

1.1.3 Uniform algebraic reductions

1.1.4 Substitution instances

1.1.5 Substitution instances

1.1.6 Substitution instances

1.2 Definability of graph polynomials

1.2.1 Static definitions

1.2.2 Dynamic definitions

1.2.3 SOL-definable polynomials

1.2.4 Generalized chromatic polynomials
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Chapter 2

A catalogue of graph polynomials

2.1 Polynomials from the zoo

2.1.1 Chromatic polynomial

Author: Introduced by G. Birkhoff in 1912, [Bir12].

Motivation: To prove the four-color conjecture.

Definition: χ(G, k) is the number of proper k-vertex colorings of G. It is a polynomial by
Birkhoff’s argument via the recurrence relations. It is also a polynomial by the Makowsky-
Zilber argument.

Reducibility Instance of the Tutte polynomial for connected graphs.

χ(G, k) = (−1)|V (G)|−k(G)Xk(G) · T (G, 1 − k, 0)

Recurrence relations Deletion-Contraction rules.

Complexity ♯P-hard almost everywhere. On the other hand, there exists an O(n·log2n) algorithm
to compute all coefficients of the chromatic polynomial of an n vertex graph of bounded tree-
width, [Für10].

Difficult point property: Proven in [Lin86].

Definability: MSOL2 over ordered graphs, order invariant (via the Tutte polynomial).

Combinatorial interpretations: For k = −1 it counts the number of acyclic orientations, [Sta73].

Roots: In [BT69] first found zeros of the chromatic polynomials. In [Bro98], it was proved that
the chromatic polynomial of a connected graph with n vertices and m edges has a root with
modulus at least (m−1)/(n−2); this bound is best possible for trees and 2-trees (only). It as
also proved that the chromatic polynomial of a graph with few triangles that is not a forest
has a nonreal root and that there is a graph with n vertices whose chromatic polynomial
has a root with imaginary part greater than

√

(n
4 ). Moreover, the real closure of its roots is

{0}⋃{1}⋃

[3227 ,∞), and the complex closure of its roots is C, [Hos07]. In [Roy07], an infite
family of 3-connected non-bipartite graphs with chromatic roots in the interval (1; 2) was
inverstigated. See also [BKW80].
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References A survey monograph is [DKT05]. See also [MW82], [AT97], [NW99], [DPT03], [Sar00]
.

2.1.2 Chromatic symmetric function

Authors: Introduced by Stanley, [Sta95].

Motivation: Certain conjectures regarding immanants of Jacobi-Trudi matrices

Static definition: YG(x, t) is given by

YG(x, t) =
∑

χ

xχ(v1)xχ(v2) · · ·xχ(vn)(1 + t)b(χ),

the sum ranges over all proper colorings χ, b(χ) is the number of monochromatic edges.

Reducibility: Related to the Universal polynomial, cf. [MN09]. For any G, YG(x, t) is given by

YG(x, t) = t|V |UG(xj = pj(x)/t, y = t + 1),

pj(x) =
∑∞

i=1 xj
i .

References: [Sta98], [MN09].

2.1.3 Adjoint polynomials

Authors: Introduced by Liu, [Liu87].

Motivation: To relate the chromatic uniqueness of a graph to the structure of its complement
and employ the classical theory of polynomial algebra. A graph G is chromatically unique if
P (H, λ) = P (G, λ) imlies that H is isomorphic to G.

Static definition: If G0 is a spanning subgraph of G and every component of G0 is complete,
then G0 is called an ideal subgraph of G. For a given graph G, let N(G, k) be the number of
ideal sungraphs with k components. The polynomial

h(G, x) =

p
∑

i=1

N(G, i)xi

is called the adjoint polynomial of the graph G, where p = |V (G)|.

Recursive definition: If uv ∈ E(G), and if uv does not belong to any triangle in G, then

h(G, x) = h(G − uv, x) + x · h(G − u, v, x)

Reducibility: Related to chromatic polynomial [Liu97]. Let α(G, i) denote the number of i-
independent partitions of G and σ(G, x) =

∑p
i=1 α(G, i)xi−χ(G). Then

h(G, x) = xχ(Ḡ) · σ(Ḡ, x)

Roots: In [ZL09], the nimimal roots β(G), such that −(2 +
√

5) ≤ β(G) ≤ −4 characterized for
connected graphs G.

References: [Wa] and [Za04].
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2.1.4 The Tutte polynomial

Authors: Introduced by W.T. Tutte [Tut54], building on H. Whitney [Whi32].

Motivation: To be checked.

Static definition: To be checked.

Recurrence relations: To be checked.

Recursive definition: To be checked.

Reducibility: To be checked

Related polynomials: Chromatic polynomial, flow polynomial, and more (to be added).

Complexity: ♯P-hard for most points.

Difficult point property: Proved in [JVW90].

Definability: To be checked.

Combinatorial interpretations: To be added.

Roots: To be checked.

References: Monographs dealing with the Tutte polynomial are [Bol99, GR01].

2.1.5 Strong Tutte symmetric function

Authors: Introduced by C. Merino and S. Noble, [MN09].

Motivation: To extend Stanley’s Tutte symmetric function by replacing the t varible by countably
infinitely many commuting varialbles.

Static definition: ȲG(x, t) is given by

ȲG(x, t) =
∑

χ

(
n

∏

i=1

xχ(vi))(
∞
∏

i=1

(1 + ti)
bi(χ))

the sum ranges over all proper colorings χ, bi(χ) is the number of monochromatic edges for
wich both endpoints have colour i.

Reducibility: Related to the strong U -polynomial, cf. [MN09]. The strong U -polynomial and the
strong Tutte symmetric function are aquivalent:

ȲG(x, t) = ŪG(zi,j = p̄i,i+j−1(x, t)),

p̄r,s(x, t) =
∑∞

i=1 xr
i t

s
i .

References: See [Goo08].

7



2.1.6 Tutte-Grothendieck invariants

Authors: Introduced by A.Goodall, [Goo08].

Motivation: Investigate the Tutte polynomial of a grapf as a Hamming weight enimerator of its
tensions (or flows). Consider a family polynomials containing the graph polynomials. The
question is: whether other Tutte-Grothendieck invariants can be obtained in a similar way.

Definition of Tutte-Grothendieck invariants : A function F from (isomorphism classes of)
graps to C[α, β, γ, x, y] is a Tutte-Grothendieck invariant if it satisfies, for each graph G =
(V, E) and any edge e ∈ E,

F (G) =















γ|V | E = ∅
xF (G/e) e a bridge
yF (G\e) e a loop
αF (G/e) + βF (G\e) e not a bridge or loop

Reducibility: If F is a Tutte-Grothendieck invariant then

F (G) = γk(G)αr(G)βn(G)T (G;
x

α
,
y

β
).

Fact: Let Q be a set of size q and w = (wa,b) a tuple of complex numbers indexed by (a, b) ⊂ Q×q.
Assume that the edges u, v of G = (V, E) have been given an arbitrary, fixed orientattion
(u, v). Denote by ~E the resulting set of derected edges. Consider the partition function for a
vertex Q-colouring model that assigns a weight wa, b to a directed edge (u, v) coloured (a, b):

F (G;w) =
∑

c∈QV

∏

(u,v)∈ ~E

wcu,cv =
∑

c∈QV

∏

(a,b)∈Q×Q

w
♯{(u,v)∈ ~E:(cu,cv)=(a,b)}
a,b

The graphical invariant F (G;w) is a Tutte-Grothendieck invariant if and only if there are
constants y, w such that

wa,b =

{

w a 6= b
y a = b

proven in [MN09].

2.1.7 A weighted graph polynomial

Authors: Introduced by S. Noble and D. Welsh in [NW99].

Motivation: To extend the treatment of the relationship between chord diagrams and Vassiliev
invariants of knots [CDL94] to Tutte-Grothendieck invariants.

Static definition: The weighted graph polynomial U(G, x̄, y) for a graph G = (V, E) is defined
as

U(G, x̄, y) =
∑

A⊆E

|V |
∏

i=1

x
s(i,A)
i y|A|−r(A)

where s(i, A) denotes the number of connected components of size i in the spanning subgraph
(V, A), and r(A) = |V | − k(A) is the rank of (V, A).
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Reducibility and Related polynomials: The weighted graph polynomial contains many other
graph invariants as specialization, for instance the 2-polymatroid rank generating function
of Exley and Whittle [OW93], and as a consequence the matching polynomial [HL72] and
the symmetric function generalization of the chromatic polynomial [Sta95]. In [Sar00], it was
shown that the coefficients of U and the polychromate determine one another. Related to the
weighted integral gain graph of [FZ07].

Complexity: For graphs of tree-width atmost k, computable in polynomial time, with exponent
depending on k, [Nob09]. Not known to be in FPT .

Definability: Not even SOL-definable. Proof sketched in [AGM07].

References: The dichromatic polynomial of [FZ07] on a graph whose edges are labelled invertibly
from a group and vertices weighted from a semigroup, includes in particular the Noble and
Welsh’s for graphs with positive interger weights.

2.1.8 Chain polynomial

Authors: Introduced by R.C. Read and E.G. Whitehead Jr. [RJ99].

Motivation: Chromatic polynomials for homeomorphisms classes of graphs.

Static definition: r(S) denotes the rank of the spanning subgraph induced by S.

Ch(G, ω, q̄) =
∑

S⊆E

(1 − ω)|S|−r(S)
∏

e∈E−S

qe

Recursive definition:

• Ch(E1) = 1;

• For G1 and G2 with at most one vertex in common we have

Ch(G1 ∪ G2) = Ch(G1) · Ch(G2)

• If e ∈ E is a loop, we have

Ch(G) = (qe − ω)Ch(G − e)

• If e ∈ E is not a loop, we have

Ch(G) = (qe − 1)Ch(G − e) + Ch(G/e)

Reducibility: Related to the labeled Tutte polynomial. Suppose U is an edge-labeled multigraph
and M is doubly weighted matroid on E = E(G) obtrtained from the circuit matroid of G
by letting the weights of an edge labeled a be p(a) = 1 and q(a) = a − 1. Then the chain
polynomial Ch(G) is obtained from the Tutte polynomial t(M) by evaluating y = 2−w and
x = 2, cf. [Tra02]. In [Ja10], a formula for computing the Tutte polynomial of the signed
graph formed from a weighed graph by edge replacement in terms of the chain polynomial of
the weighed graph presented.
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Complexity: ♯P-hard for many instances.

Definability: Order invariant MSOL2-definable with auxiliary order on edges.

Roots: If a poset is a semi-order (i.e. 1+3 free and 2+2 free) then the roots of its chain polynomial
are real. It is conjectured that if a poset is a distributive lattice, then again, the roots are
real. In [BR05], it was proven that the number ci of chains of length i in the proper part of
a distributed lattice L of lenght l + 2 satisfy the inequalities:

c0 ≤ . . . ≤ c⌊l/2⌋ and c⌊3l/2⌋ ≤ . . . ≤ cl

References: [RJ99, RJ03, Tra02, BR05, Ja10, AGM08, AGM10].

2.1.9 Characteristic polynomial

Motivation: In linear algebra, one associates a polynomial to every square matrix: its character-
istic polynomial. This polynomial encodes several important properties of the matrix, most
notably its eigenvalues, its determinant and its trace. The characteristic polynomial of a
graph is the characteristic polynomial of its adjacency matrix.

Static definition: We start with a field K (such as the real or complex numbers) and an n × n
matrix A over K. The characteristic polynomial of A, denoted by pA(t), is the polynomial
defined by

pA(t) = det(t · I − A)

where I denotes the n-by-n identity matrix and the determinant is being taken in K(t), the
field of rational functions in t.

Recursive definition: Let’s call the collection of the characteristic polynomials of the vertex-
deleted subgraphs the polynomial deck. Tutte [Tut79] proved that the characteristic polyno-
mial of a graph is reconstructible from its deck. More results may be found in particular in
[CL98, Sch79, Sim92, Hag00b, Sci02]. In the molecular context, it was given in [Hei53] and
developped in [RG96].

Reducibility and Related polynomials: On forest it equals the matching polynomial.

Complexity Polynomial time computable (Determinant).

Definability Substitution instance of MSOL-polynomial for I(G).

Combinatorial interpretations: Coefficient is related to Expanders.

Roots: Roots of the characteristic polynomial are known as the spectrum (or eigenvalues) of the
matrix (or of the graph); differing graphs with the same characteristic polynomial (and so
the same roots) are known as Isospectral Graphs.

References Fan Rong K. Chung Spectral Graph Theory, CBMS Conference on Recent Advances
in Spectral Graph Theory held at California State University at Fresno, June 6-10, 1994”–T.p.
verso. Published 1997 American Mathematical Society ISBN 0821803158

Chemical Graphs: Looking Back and Glimpsing Ahead AT Balaban - Journal of Chemical
Information and Computer Sciences, 1995
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2.1.10 Matching polynomial

Authors: Introduced by C.J. Heilmann and E.H. Lieb in 1972 [HL72]. See alse [Far79].

Motivation: Physics and chemistry. See [Tri92, Bal93a, Bal95].

Static definition: A matching of a graph G is a set of paiwise disjoint edges of G. The matching
polynomial µ(G, x) of G is given by

µ(G, x) = Σk≤0(−1)k · p(G, k) · xn−2k,

where p(G, k) is the number of matchings with k edges in G. It is possible to recover the
order, degree, girth and number of minimal cycles for a regular graph from its matching
polynomial, [BF95].

Recurrence relations: In the chemeistry contex, for polygraph, given in [BGMP86] and devel-
opped in [BX93]. See also [ABBK03].

Recursive definition: See [AGM07].

Related polynomials: Characteristic polynomial [Gut80], the matching polynomial of a graph
coincides with the chracteristic polynomial if and only if the graph is a forest [GG81],
acyclic polynomial [Far80], Hermite and Laguerre polynomials [GG81, Las04], rook poly-
nomial [Far88], independent set polynomial, clique polynomial, vertex-cover polynomial.

Complexity: On arbitrary graphs, or even planar graphs, computing the matching polynomial is
#P-complete, [Jer87]. However, it can be computed more efficiently when additional structure
about the graph is known. In particular, computing the matching polynomial on n-vertex
graphs of tree-width k is fixed-parameter tractable: there exists an algorithm whose running
time, for any fixed constant k, is a polynomial in n with an exponent that does not depend
on k, [CMR01]. The matching polynomial of a graph with n vertices and clique-width k may
be computed in time nO(k), [MRAG06]. For the case of Gallai-Edmonds decomposition, see
[Gee00]. For the case of (edge-colouring) bipartite graphs, see [Sch03].

Difficult point property: Proved in I. Averbouch’s thesis, [Ave11].

Definability: MSOL2-definable.

Roots: It is well known that the roots of the matching polynomial are real, [GG81]. Moreover,
the real and complex closure of its roots is [0,∞), [Hos07]. It is also well known that the
multiplicity of a root changes by at most one upon deleting a vertex from G. In the context
of [HL72], the polynomial has its zeros on the imaginary axis when the dimer activities are
non-negative. The following was proven in [God93]:

(i) The maximal multiplicity of a root of the matching polinomial µ(G, x) is at most the
minimal number of vertex disjoint paths needed to cover the vertex set of G.

(ii) If G is a Hamiltonial path, then all roots of its matching polynomial are simple.

The necessary and sufficient condition for the maximum multiplicity of a root of the matching
polinomial of a tree to be equal to the minimum number of vertex disjoint paths needed
to cover it was proven in [KW09]. The detailed investigation of the spectra of matching
polynomials of graphs relevant to chemical physisc may be found in [Bal93b].
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References: Generalized in different ways in [GH83, ZX85, AEMR05, AM06]. The matching-
equivalence of graphs investigated in [Pra99].

2.1.11 The independent set polynomial

Authors: Introduced by I. Gutman and F. Harary in [GH83].

Motivation: Generalizations of the matching polynomial.

Static definition: Let in(G, r) denote the number of independent sets of size r, which are induced
subgraphs of G.

In(G, x) =

|V |
∑

r=0

in(G, r) · xr

The following table summarizes closed forms for the independence polynomials of some com-
mon classes of graphs. For more graphs, see [Wei].

Graph G In(G, x)

Complete Kn 1 − nx

Complete bipartite graph Kn,n 2(x + 1)n − 1

Star graph Sn x + (1 + x)n−1

Wheel graph Wn
−(1−t)n−(1−t)nt+(t−1)(t+1)n+2n−1x2

2n+2x
, t =

√
1 + 4x

Recurrence relations: In [HL94] and [LM05] proven:
Let G = (E, V ) be a graph and U ⊂ V such that G(U) is a complete sungraph of G. Then
the following holds:

In(G, x) = In(G − w; x) + x · In(G − N [w];x);

In(G, x) = In(G − e; x) − x2 · In(G − N [u] ∪ N(v); x);

In(G, x) = In(G − U ; x) − x · Σv∈UIn(G − N [v];x);

The following table summarizes the recurrence relation of some common classes of graphs.
For more graphs, see [Wei].
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Graph G Recurrence

Complete bipartite graph Kn,n Inn(x) = (x + 2)Inn−1(x) − (x + 1)Inn−2(x)

Star graph Sn Inn(x) = (x + 2)Inn−1(x) − (x + 1)Inn−2(x)

Wheel graph Wn Inn(x) = 2Inn−1(x) + (x − 1)Inn−2(x) − xInn−3(x)

Cyrcle graph Cn Inn(x) = Inn−1(x) − xInn−2(x)

Path graph Cn Inn(x) = Inn−1(x) − xInn−2(x)

Further results see in [WZ11].

Reducibility: In [Aro84], shown that

In(Pn; x) = Fn+1(x) and In(Cn; x) = Fn−1 + 2xFn−2(x),

where Fn(x), n ≤ 0, are so-called Fibonacci polynomials, i.e., the polynomials defined recur-
cively by

F0(x) = 1, F1(x) = 1, Fn(x) = Fn−1(x) + xFn−2(x).

Related polynomials: Matching polynomial, vertex-cover polynomial.

Complexity: The independent set polynomials are almost everywhere #P -hard to evaluate, it is
even hard to approximate at every point except at 1 and 0, see [BH08].

Difficult point property: See I. Averbouch’s thesis, [Ave11].

Definability: MSOL1-definable.

Roots: A graph is called claw-free if it has no induced subgraph isomorphic to K1,3. In [CS07]
proven that the roots of independence polynomial of a claw-free graph are real. Moreover,
the real closure of its roots is (−∞, 0], and the complex closure of its roots is C, [Hos07].
Moreover, the average independence polynomial has all real, simple roots. On the other hand,
with probability tending to 1, the independence polynomial of a graph has a nonreal root.
See [BN01] for these results. More results are summarized in [LM05, LM08]. Development of
the results see in [WZ11].

References: Surveys are [HL94, LM05]. See also [GP06].
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2.1.12 The clique polynomial

Authors: Introduced by I. Gutman and F. Harary in [GH83] and [Far89].

Motivation: Generalizations of the matching polynomial.

Static definition: Let cl(G, r) denote the number of cliques of size r, which are induced subgraphs
of G.

Cl(G, x) =

|V |
∑

r=0

cl(G, r) · xr

Recurrence relations: The recurrence relation for the weighted version of the clique graph was
obtained in [Far89]. In the original notation, let G′ be the graph obtained from G by deleting
of an edge e, G” be the graph obtained from G by removing the nodes at the ends of e and
G∗ be the graph obtained from G by incorporating e. Then

Cl(G) = Cl(G′) + Cl(G”) + Cl(G∗)

Related polynomials: Clique polynomials are related to H-polinomials of [BIK05] as well as
to trace monoids, see [GS98]. For the relation to the Hibert series of an algebra whose
generators correspond to vertices and whose ideal of relations has generators that are graded
commutators corresponding to edges, see [BG10].

Roots: In [GS98], it was shown that clique polynomials can not have a negative real root, moreover,
every clique polynomial of dergee 2 has real roots. In [GS00], it was shown that clique
polynomials have a unique root of smallest modulus.

2.1.13 The vertex-cover polynomial

Authors: Introduced by F.M. Dong, M.D. Hendy, K.L. Teo and C.H.C. Little in [DHTL02].

Motivation: Biological systematics. Chemistry.

Static definition: Let cv(G, r) denote the number of vertex-covers of G of size r.

Ψ(G, x) =

|V |
∑

r=0

cv(G, r)xr

Recursive definition: Denote by NG(v) the neighborhood of v, i.e., NG(v) = {u ∈ V (G) : u 6=
v, (u, v) ∈ E}. If G has no loops and |V (G)| ≥ 2 we have

Ψ(G(x) = x · Ψ(G − v, x) + xd · Ψ(G − v − NG(v), x)

Furthermore, Ψ is multiplicative.

Algorithms: An algorithm to evaluate Ψ is given in [Cas07].
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Complexity: In 1972, Karp [Kar72] introduced a list of twenty-one NP-complete problems, one
of which was the problem of finding a minimum vertex cover in a graph. Some progress made
in [Dha06]. The corresponding counting problem is ♯P -complete [PB83]. In [BK09], it was
proven that vertex cover polynomials are VNP-complete.

Difficult point property: See the dichotomy theorem of [BK09].

Definability: MSOL1-definable.

Related polynomials: Independent set polynomial, clique polynomial, matching polynomial.

Let w(G, r) denote the number of independet sets of size r. For n = |V (G)| it is known that
w(G, n − k) = cv(G, k).

References: [AGM10].

2.1.14 The edge-cover polynomial

Authors: The order and the size of a graph G denote the number of vertices and the number of
edges of G, respectively. Let G be a simple graph of order n and size m. An edge covering of
a graph is a set of edges such that every vertex of the graph is incident to at least one edge
of the set. The concept of the edge cover polynomial was introduced by S. Akbari and M.R.
Oboudi in [AO].

Motivation: To explore the notion of the vertex-cover polynomials.

Static definition: Let G be a graph without isolated vertex. A minimum edge covering is an edge
covering of the smallest possible size. The edge covering number ρ(G) is the size of a minimal
edge covering of G. Let ǫ(G, i) denote the family of edge covering sets of G with cardinality
i. Let e(G, i) = |ǫ(G, i)|. The edge cover polynomial E(G, x) of G is defined as follows:

E(G, i) = Σm
i=ρ(G)e(G, i)xi.

Recursive definition: Let G be a graph, u, v ∈ V (G) and uv be an edge of G. Then, [AO]:

E(G, x) = (x + 1)E(G \ uv, x) + x(E(G \ u, x) + E(G \ v, x) + E(G \ {u, v}, x)).

A pendant vertex is a vertex with degree 1. Let G be a graph and u be a pendant vertex of
G. Suppose that v is the neighbor of u. Then, [AO]:

E(G, x) = xE(G \ u, x) + xE(G \ {u, v}, x).

Let Pn be a path of size n. For every natural number n ≥ 3, [AO]:

E(Pn, x) = xE(Pn−1, x) + xE(Pn−2, x).

Roots: For every natural number n ≥ 3, all roots of E(Pn, x) are real, [AO]. Moreover, the real
roots of the edge cover polynomials are dense in interval [−4, 0], [AO]. E(G, x) has exactly
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one distinct root if and only if every connected component of G is star, [AO]. For every graph
G with no isolated vertex, all the roots of E(G, x) are in the ball

{z ∈ C| |z| <
(2 +

√
3)2

1 +
√

3
}

If every block of the graph G is K2 or cycle, then all real roots of E(G, x) are in the interval
(−4, 0]. For every tree T of order n, we have

ξR(K1,n−1) ≤ ξR(T ) ≤ ξR(Pn),

where −ξR(T ) is the smalest real root of E(T, x), and Pn, K1,n−1 are the path and the star
of order n, respectively, [CO10].

2.1.15 The Martin polynomial

Authors: Introduced by P. Martin in his thesis [Mar77]. Further developed by M. Las Vergnas
[Ver83].

Motivation: Information about Eulerian paths.

Static definition: In a graph, a circuit is a sequence v1e1v2e2 · · · vk1ek1vkek, where the vi are
vertices and the ei are distinct edges or loops such that the endvertices of ei are vi and vi+1,
with vk+1 ≡ v1 . In a digraph, the circuit are oriented: ei must be oriented from vi to vi+1.
A digraph G is said to be Eulerian if for every vertex v, the outdegree is the same as the
indegree. Also, a graph G is Eulerian if every vertex has even degree counting, as usual,
two for every loop at the vertex. Thus a graph or digraph is Eulerian if and only if it is
the edge-disjoint union of some circuits (or cycles) and isolated vertices. Given an Eulerian
digraph G and an integer k ≥ 0, we write rk(G) for the number of partitions of G into k
edge-disjoint circuits and isolated vertices. The circuit partition polynomial of G is

rG(x) = r(G; x) = Σkrk(G)xk.

The circuit partition polynomial rG(x) of an Eulerian graph G is defined similarly

rG(x) = r(G; x) = Σkrk(G)xk.

The Martin polynomial of a graph G is

mG(x) = m(G; x) =
1

x − 1
rG(x1),

and that of a digraph G is

mG(x) = m(G; x) =
1

x − 2
rG(x2).

Reducibility: The circuit partition polynomials are simple transformations of the Martin poly-
nomials, [EM04].

Related polynomials: Tutte polynomial, [EM04].
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Complexity: Let G be a directed graph, and let k be a positive integer. In [MR10], q(G; k) is
defined as follows. At each vertex v, we place a k-dimensional complex vector xv . We take
the product, over all edges (u, v), of the inner product < xu, xv >. Finally, q(G; k) is the
expectation of this product, where the xv are chosen uniformly and independently from all
vectors of norm 1 (or, alternately, from the Gaussian distribution). [MR10] shows that q(G; k)
is proportional to G’s circuit partition polynomial, and therefore that it is ♯P -complete for
any k > 1. There exists a polynomial-time algorithms for link-like graphs tree width [MM03].

Roots: If maximal deg(G) > 2k then 2 − 2k is a root of m(G; x), [EM98].

References: J. A. Ellis-Monaghan in [EM98] used Hopf algebra techniques to prove some com-
binatorial interpretations of the Martin polynomial for unoriented graphs. In [Bol02], B.
Bollobás gives proofs of similar interpretations for a considerably wider class of values.

2.1.16 Interlace polynomial

Authors: Introduced by R. Arratia and B. Bolloás and G.B. Sorkin in [ABS00a, ABS00b].

Motivation: Originally motivated by a problem relating to DNA sequencing by hybridization.
From the mathematical point of view: by circle graphs, and the enumeration of Euler circuits.

Recursive definition: Given an Euler circuit C of a 2-in, 2-out directed graph D, two vertices a
and b of D are interlaced if C visits them in the sequence . . . , a, . . . , b, . . . , a, . . . , b, . . . . The
interlace graph H = H(C) corresponding to C has the same vertex set as D, with an edge ab
in H if a and b are interlaced in C.

Let G be any undirected graph, and ab a pair of distinct vertices in G. Construct the pivot
Gab as follows. Partition the vertices other than a and b into four classes:

(i) vertices adjacent to a alone;

(ii) vertices adjacent to b alone;

(iii) vertices adjacent to both a and b;

(iv) vertices adjacent to neither a nor b.

Begin by setting Gab = G. For any vertex pair xy where x is in one of the classes (i-iii) and
y is in a different class (i–iii), toggle the pair xy: if it was an edge, make it a non-edge, and if
it was a non-edge, make it an edge.

There exists a function q1, from the set of interlace graphs to the integers, such that for any
2-in, 2-out digraph D with Euler circuit C, the number of Euler circuits of D is equal to
q1(H(C)). Moreover, q1 is uniquely defined by the following recursion:

q1(H) =

{

q1(H − a) + q1(H
ab − b) if ab is an edge of H

1 if H has no edges

The q1(H) can be generalized to a one-variable graph polynomial q(G; x), which is defined for
all graphs G, not just interlace graphs, and which for interlace graphs G satisfies q(G; 1) =
q1(G). The q(G; x) is called the interlace polynomial of G.

There is a unique map q : G → Z[x], G → q(G), such that the following two conditions hold:
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(i) If G contains an edge ab then

q(G) = q(G − a) + q(Gab − b)

(ii) On En, the edgeless graph with n vertices, q(En) = xn.

The interlace polynomials of edgeless graphs, complete graphs, stars, and complete bipartite
graphs are given by

(i) q(En) = xn for n ≥ 0

(ii) q(Kn) = 2n−1x for n ≥ 1

(iii) q(K1n) = 2x + x2 + x3 + · · · + xn for n ≥ 2

(iv) q(Kmn) = (1 + · · · + xm−1)(1 + · · · + xn−1) + xm + xn − 1 for m, n ≥ 1

For n ≥ 2, the interlace polynomial of the path Pn with n + 1 vertices and n edges satisfies

q(Pn) = q(Pn−1) + xq(Pn−2)

Static definition: For n ≥ 2, the interlace polynomial of the path Pn with n + 1 vertices and n
edges satisfies:

q(Pn) =

⌊n/2⌋
∑

r=0

{(

n − r

r

)

+

(

n − r − 1

r

)}

xr+1

For the path Pn, q(Pn)(1) = Fn+2, the (n + 2)’nd Fibonacci number (with F0 = 0, F1 = 1.

The interlace polynomials of the cycles Cn are q(C3) = 4x, for n ≥ 4 and with y =
√

1 + 4x,

q(Cn)(x) =

(

1 − y

2

)n

+

(

1 + y

2

)n

+

(

y4 − 10y2 − 7

16

)

for n even

q(Cn)(x) =

(

1 − y

2

)n

+

(

1 + y

2

)n

+

(

y2 − 7

4

)

for n odd

For the static definition on trees and forests, see [ACRT10].

Related polynomials: The interlace graph polynomial may be viewed as a special case of the
Martin polynomial of an isotropic system, which underlies its connections with the circuit
partition polynomial and the Kauffman brackets of a link diagram. The graph polynomial
also has a two-variable generalization that is unknown for the Martin polynomial.

Complexity: ♯P-hard almost everywhere, [BH08]. In [Cou08], an algorithm to evaluate the multi-
variate interlace polynomial of a graph with n vertices given a tree decomposition of the graph
of width k with running time f(k)n given, where f(k) is doubly exponential in k. Analyzing
the GF (2)-rank of adjacency matrices in the context of tree decompositions, [BH10] give a
faster algorithm that uses 23k2+O(k)n arithmetic operations and can be efficiently implemented
in parallel. In [BK09], it was proven that the interlace polynomials are VNP-complete.

Difficult point property: Proved in [BH07].
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Definability: Order independent CMSOL2-definable show by Courcelle.

References: define two-variable interlace polynomials. Further developed in [ABS04a, ABS04b,
AvdH04]. In [Cou08], the multivariate interlace polynomial defined and investigated. In
[RP05], spectral interpretations of the interlace polynomial, including the characterisation
of the values of the power spectra for quadratics, concidered in application to cryptography.
The weighted version introduced in [Tra10].

2.1.17 The cover polynomial

Authors: Introduced by F.R.K. Chung and R.L. Graham in [CG95].

Motivation: To find a Tutte-like polynomial for directed graphs.

Recursive definition: Let D = (V ; E) be a directed graph, or digraph, for short. That is, V
is some (finite) set of vertices of D, and E ⊆ V × V is the set of edges of D. For an edge
e = uv ∈ E, u 6= v, denote by D \ e the digraph with vertex set V , and edge set E \ {e};
this is called a deletion of D. Similarly, the contraction D/e of the digraph with vertex set is
obtained by replacing two vertices u and v in V by a single new vertex w, and with edge set
formed from E by removing exactly those edges of the form ux or yv.
C(D) = C(D; x, y) of D is defined recursively as follows:

(i) For the digraph with n independent vertices and no edges,

C(In) = xn := x(x − 1) . . . (x − n + 1);

For the special case of n = 0, the corresponding digraph DΦ having no vertices or edges
has cover polynomial

C(DΦ) = 1;

(ii) If e is an edge of D which is not a loop then

C(D) := C(D \ e) + C(D/e);

(iii) If e is a loop of D then
C(D) := C(D \ e) + yC(D/e);

Static definition:

C(D; x, y) := Σi,jcD(i, j)xiyj ,

where xi := x(x − 1) . . . (x − i + 1) and x0 := 1.

Facts: Note that

(i) cD(i, j) is the number of ways of (disjointly) covering all the vertices of D with i directed
paths and j directed cycles.

(ii) C(D; λ, µ) is the number of (λ, µ)-colorings of D.

(iii) C(D) is multiplicative.

(iv) C(D) is a polynomial iff D is acyclic.
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(v) C(D; x, 1) = xn,

(vi) C(D; 1, 0) is the number of Hamiltonial paths in D,

(vii) C(D; 0, 1) is the number of ways of covering D with disjoint cycles,

(viii) cD(0, 1) is the number of Hamiltonial cycles in D,

(ix) cD(1, 0) + cD(2, 0) is the number of covering D with at most two disjoint paths,

(x) ΣjcD(0, 2j) is the number of covering D with an even number of cycles.

Reducibility: Let board B be an n by n array of cells on wich certain cells have been designated
as forbidden. An arrangement of i non-attacking rooks on B corresponds to a placement of i
(chess) rooks on non-forbidden cells so that no rook attacks any other rook. Let rB(i) denote
the number of possible such arrangements, [Rio58].

cD(n − i) = rB(i).

Given a digraph D = (V, E) with |V | = n, let’s denote by Sym(D) the set of all n! bijections
π : V −→ V . if uπ(u) ∈ E then π has a drop at u. δD(k denotes the number of π ∈ Sym(D)
having k drops. For all j, [Sta86]:

ΣkδD(k)

(

n

r

)

= rB(j)(n − j)!

The binomial drop polynomila for D is defined as

∆(D; x) := ΣjΣkδD(k)

(

k

j

)(

x

n − j

)

= C(D; x, 1)

To each D can be associated a poset P = (V,≺): x ≺ y iff xy ∈ E. Let inc(P ) denote the
incomparability graph assiciated to P , so that G has vertex set V , and {x, y} is an edge of G
iff x and y incomparable in P . For any poset P with n elements:

∆(P ; x) = ΣkδP (k)

(

x + k

n

)

= χ(inc(P ); x),

where χ is a chromatic polynomial.

Related polynomials: Rook’s polynomial, binomial drop polynomil, chromatic polynomial, sf.
[CG95].

Complexity: The problem of evaluating the cover polynomial is ♯P -hard under polynomial-time
Turing reductions, while only three points are easy, [BD07]. In [BDF08], the complexity of
approximately evaluating the geometric cover polynomial was investigated. It was shown
that under the reasonable complexity assumptions RP 6= NP and RFP 6= ♯P , there exists
a succinct characterization of a large class of points at which approximating the geometric
cover polynomial within any polynomial factor is not possible.

Difficult point property: Proved in [BD07].

Definability: MSOL-definable [Mak08].
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References: In [Cho96], Chow generalized the cover polynomial to a symmetric function. In
[DM00], cyclepath indicator polynomial of D introduced in order to classify the cycle–path
covers of D by types. This polynomial can be obtained by a deletion-contraction recurrence
relation. Then some specializations of the cycle-path indicator polynomial, such as the ge-
ometric cover polynomial (the geometric version of the cover polynomial), the cycle cover
polynomial, and the path cover polynomial studied. As an application, chromatic arrange-
ments of nonattacking rooks on a board B, where the principal sub-boards determined by
the rooks of the same color are disjoint, considered. The associated polynomial is symmetric
and generalizes the usual rook polynomial.

2.1.18 Go polynomial

Authors: Introduced by G.E. Farr in [Far03a].

Motivation: Some analogy to the notion of ”captured territory” in the game of Go. The questionto
unswer is: What is the probability that the resulting partial uniform random assignment has
the following property: for every colour class, each component of the induced subgraph has
a vertex that is adjacent to an uncoloured vertex?

Static definition: Let (r, p1, . . . , pλ) be a probability distribution. For each v ∈ V (G), assign it
colour i with probability pi (and no colour with probability r = 1 − Σλ

i=1), with the choice
of the vertices being independent and identically deistributed. The colour class Ci and the
uncolored set U are now set-valued random variables. Let f be the partial λ-assignment
generated randomly in this way. Let’s consider Pr(f is free in G) . If λ = 2 and p1 = p2 ≤
1
2 then this probability is a polynomial in p. The polynomial is the Go polynomial of G.
The number of free partial λ-assignments in G (for general λ) is also a polynomial in λ and
denoted by Go♯(G; λ). If r = p1 = · · · = pλ = 1

(λ+1) and n = |V (G)| then

Go♯(G; λ)(λ + 1)n = Pr(f is free in G)

Recursive definition: Pr(f is free in G) satisfies recursive relation for intermediate graphs G(L),
i.e. graph with exactly one label from {J, L, A, a} on each edge and zero, one or two labels
from {C, S}. The intuition is as follows: joining vertices of the same colour together, we
help to form a group, and being a lifeline by making a coloured vertex adjancent to an
uncoloured one, we help to preserve the former’s group. If an adge is labelled A then we
forbid its endpoints from receiving the same colour, but allow them to receive two different
colours. In addition, one or both endpoints may remain uncoloured. Label a is similiar,
exept that at most one of the edges’s endpoints can be uncoloured. Vertex label C means
that a vertex so labelled cannot be left uncoloured, and a vertex labelled S guarantees the
freedom of any group of which it is a part, regardless of whether the group has a lifeline to
an uncoulored vertex. Let Z be a label. If e ∈ E(G) then G[e ← Z] denotes the intermediate

graph obtained by replacing the label of e by Z. If v ∈ V (G) then N
(Z)
G (v) denotes the set of

those neighbours w of v such that vw has label Z.

If G ∈ G(J, L), f is a random partial λ-assignment of G and eJ ∈ EJ(G) and eL ∈ EL(G) are
parallel edges, then

Pr(f is free in G) + Pr(f is free in G − eJ − eL) =
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Pr(f is free in G − eJ) + Pr(f is free in G − eL)

It leads to: If G is a stage 1 graph and eJ ∈ EJ(G) and eL ∈ EL(G) are parallel edges, then

Go(G; p) + Go(G − eJ − eL; p) = Go(G − eJ ; p) + Go(G − eL; p)

Go♯(G; λ) + Go♯(G − eJ − eL; λ) = Go♯(G − eJ ; λ) + Go♯(G − eL; λ)

Let’s G ∈ G(J, L, C, A) and e = uv ∈ EJ(G). Let f be a random partial λ-assignmwent whose
distribution satisfies p1 = · · · = pλ = p ≤ 1

λ . Then

Pr(f is free in G) = p · Pr(f is free in (G/e)[u ← C]) + Pr(f is free in G[e ← A])

It leads to: If G ∈ G(J, L, C, A) and e = uv ∈ EJ(G) then

Go(G; p) = p · Go((G/e)[u ← C]; p) + Go(G[e ← A]; p)

Go♯(G; λ) = Go♯((G/e)[u ← C];λ) + Go(G♯[e ← A];λ)

If G ∈ G(J, L, a) and e ∈ eJ(G) then

Go♯(G; λ) = Go♯((G/e); λ) + Go(G♯[e ← a];λ)

If G ∈ G(L, A, a, C, S) and v ∈ V \ VC then

Pr(f is free in G) = r · Pr(f is free in (G − v)[N
(L)
G (v) ← S]) + Pr(f is free in G[v ← C])

If G ∈ G(L, A, a, C, S) and v ∈ VC ∩ VS then

Pr(f is free in G) = Pr(f is free in G − EL({v}, N (L)
G (v))))

The above leads to: If G ∈ G(L, A, a, C, S) and

• v ∈ V \ VC then

Go(G; p) = (1 − 2 · p)Go((G − v)[N
(L)
G (v) ← S]; p) + Go(G[v ← C]; p)

Go♯(G; λ) = Go♯((G − v)[N
(L)
G (v) ← S];λ) + Go♯(G[v ← C];λ)

• v ∈ VC ∩ VS then
Go(G; p) = Go(G − EL({v}, N (L)

G (v)); p)

Go♯(G; λ) = Go♯(G − EL({v}, N (L)
G (v));λ)

Reducibility and Related polynomials: If we have an intermediate {A, C, S}-graph with all
vertices labelled both C and S then

Go(G; p) = pn · P (G; 2) and Go♯(G; λ) = P (G, λ)

Complexity: #P -hard to compute in general.

References: In [TF05], the exact values for the number of legal positions on square boards of
size upto 16 × 16 were obtained, as well as the limiting behaviour of the number of legal
positions on large rectangular boards of fixed width upto seven was deternined. They also
find estimates for the number of legal games of Go. In [FS07], bounds for the number of legal
Go positions for various numbers of players on some planar lattice graphs investigated.
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2.1.19 Stability polynomial

Authors: Introduced by Farr, [Far93].

Static definition: AG(p) is given by

AG(p) =
∑

U∈S(G)

p|U |(1 − p)|V (G)U |

S(G) denotes the set of all stable sets of G, i.e. all sets in a graph G, for which G has no
edge with both endpoints in S.

Recursive definition: To be completeed

Reducibility: Related to the Universal polynomial, cf. [MN09]. If G is loopless then AG(p) is
given by

AG(p) = UG(xi = 1;xj = −(−p)jfor j ≥ 2, y = 0)

References: See [Nob09] and [MN09]. Results of [Far93] are extented in [McD10].

2.1.20 Strong U-polynomial

Authors: Introduced by C. Merino and S. Noble, [MN09].

Motivation: To extend universal polynomial by countably many commuting variables zi,j .

Static definition:

ŪG(zi,j) =
∑

A⊆E

zc1,e1−c1+1zc2,e2−c2+1 · · · zck(G|A),ek(G|A)−ck(G|A)+1

where ci and ei are, respectively, the number of vertices and edegs in the ith connected
compotent of G|A.

Recursive definition: There is a recurcive relation fro the strong U -polynomial, [MN09]. Let
(G, ω) desbribe graph G with a strictly positive integer weight ω(v) attached at each vertex
v. Then

W̄(G,w)(z) =
∑

A⊆E

zw1,e1−c1+1zw2,e2−c2+1 · · · zwk(G|A),ek(G|A)−ck(G|A)+1

If ω(v) = 1 for all v, then ŪG(z) = W̄(G,w)(z). On the other hand, [MN09]:

W̄(G,w) = W̄(G,w)−e + W̄(G,w)e

Reducibility: Related to the strong Tutte symmetric function, cf. [MN09]. The strong U -
polynomial and the strong Tutte symmetric function are aquivalent:

ȲG(x, t) = ŪG(zi,j = p̄i,i+j−1(x, t)),

p̄r,s(x, t) =
∑∞

i=1 xr
i t

s
i .
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2.1.21 Two polymatroid rank generating function

Authors: Introduced by Oxley and Whittle, [OW93].

Motivation: To develop a theory of Tutte invariants for 2-polymatroids.

Static definition: Let f(A) denote the number of vertices of G that are endpoint of an adge in
A.

SG(u, v) =
∑

A∈E(G)

u|V (G)|−f(A)v2|A|−f(A)

Reducibility: Related to the Universal polynomial, cf. [MN09]. If G is loopless graph with no
isolated vertices, then

SG(u, v) = UG(x1 = u; v2 = 1;xj = vj−2for j ≥ 2, y = v2 + 1)

Recursive definition: Via the Universal polynomial.

References: See [Far03b], [LM03], [Kun06], [Nob06], [MN09].

2.1.22 Rook polynomial

Authors: The study of the rook polynomials was begun in 1946 by Kaplansky and Riordan [KR46]
with applications to cardmatching problems. Riordans 1958 book [Rio58] is considered the
first systematic analysis, and remains a classic treatment of the subject. Since then, various
researchers have applied rook polynomials to make important connections to Fibonacci theory
[Fie04], group theory [MV00], hypergeometric series summation [Hag96], and the computation
of the permanents of various matrices [CHS03, Hag00a, HOW99]. A series of papers by
Goldman et al. [GJW75, GJRW76, GJW78, GJW77, GJW76] in the 1970s expanded the
field by applying more advanced combinatorial methods.

Motivation: The classification of permutations by ascending runs was first studied by MacMahon
[Mac13]. Applications of his results to significance tests in statistics have been made by Moore
and Wallis [MW43] and Mann [Man45]. The numbers arising in this study have occurred
several times in other contexts. Rather extensive references to older literature (going back to
Laplace) are given by v. Schrutka in [Sch41]. The numbers have also appeared in papers by
Dwyer [Dwy38, Dwy40], who calls them ”cumulative numbers”, and in papers by Toscano
on summation of series, [Tos36]. These results may be unified and generalized by the study
of a chessboard recreation: in how many ways can a given number of rooks be placed on a
chessboard so that no two attack each other?

Static definition: A general board B is any sunset of m × n rectagular chessboard. Let B be a
general board and rk(B) the number of non-taking placements of k rooks on B. The rook
polynomial µB(t) for the board B is given by

µB(t) = r0(B) + r1(B)t + r2(B)t2 + · · · = Σk≥0rk(B)tk.

Note: rk = 0 if k > min(m, n).
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Recursive definition Let B be a board, B′ be the board obtained by removing the row and
column corresponding to a cell from B, and B′′ be the board obtained by restrinting the
same cell on B. Then, [Rio58]:

µB(t) = t · µB′(t) + µB′′(t).

Let B be a board containing a row i with n cells. Let B −{i} be the board obtained from B
by removing row i. Let Bn

j be the board obtained from B by removing row i and j – one of
the n columns containing cells in row i. Then, [Rio58]:

µB(t) = µB−{i}(t) + t · Σn
j=1µBn

j
(t).

Related polynomials: Rook polynomials are equal to the matching polynomial of the associated
board GB. The hit polynomial T (z; B) of B is

T (z; B) = Σn
k=0k!rn−k(B)(z − 1)n−k.

If B is a board, then its coefficints of zk is called the kth hit number, the number of ways of
placing n non-attacking rooks on B where exactly k rooks lie on non-zero.

In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834 - 1886), are
the canonical solutions of Laguerre’s equation:

x y′′ + (1 − x) y′ + n y = 0

which is a second-order linear differential equation. This equation has nonsingular solutions
only if n is a non-negative integer. The Laguerre polynomials are also used for Gaussian
quadrature to numerically compute integrals of the form

∫ ∞

0
f(x)e−x dx.

These polynomials, usually denoted L0, L1, . . . , are a polynomial sequence which may be
defined by the Rodrigues formula

Ln(x) =
ex

n!

dn

dxn

(

e−xxn
)

.

They are orthogonal to each other with respect to the inner product given by

〈f, g〉 =

∫ ∞

0
f(x)g(x)e−x dx.

The sequence of Laguerre polynomials is a Sheffer sequence.

The Laguerre polynomials arise in quantum mechanics, in the radial part of the solution of the
Schrödinger equation for a one-electron atom. The rook polynomial of a square chessboard
is closely related to the generalized Laguerre polynomial Lα

n(x) by the identity:

µm,n(x) = n!xnL(m−n)
n (−x−1).
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Facts:

• If the highest power of t in µB(t) is r, then all the terms in tm, where 0 ≤ m ≤ r, occur
in µB(t) with non-zero coefficients.

• Let
µp,q(t) = Σkrkt

k

for a board b with p rows and q cells. Then

r0 = 1, r1 = q and r2 =

(

q

2

)

− Σq
i=1

(

di

2

)

,

where di is the number of cells in row i.

• The coefficient of tk in µB(t) is the number of sets of k cells with pairwise disjoint row
and column indices.

• On rectangular board

µm,n(x) = Σk
(m)k(n)k

k!
xk.

Complexity: The rook polynomials are ♯P -hard [MM03].

Definability: The rook polynomials are MSOL-definable [MM03].

Roots: Nijenhuis [Nij76] proved that if the elements of the board matrix are non-negative real
numbers, then all the roots of the corresponding rook polynomial are non-negative real num-
bers. Moreover, the closure of its roots is (−∞, 0], [Hos07]. Let A be a board with the
property that if aij = 1, then ast = 1 whenever i ≤ s ≤ n and j ≤ n. Then A is called a
Ferrers board. In [HOW98], it was proven that all the roots of the hit polynomial of a Ferrers
board are real.

References: In [Ges89], analogs of the theory of rook polynomials that are related to general La-
guerre and Charlier polynomials in the same way that ordinary rook polynomials are related
to simple Laguerre polynomials developped. The generalizations of the definition and prop-
erties of rook polynomials to ”boards” in three and higher dimensions was given in [KA09].

2.1.23 Acyclic polynomial

Authors: Introduced by I .Gutman, [Gut77a]. Different consequences of this formula can be found
in an article by the author and H. Hosoya [GH78].

Motivation: Inspired by the works of [Hos71], [Aih76], [GMT77].

Static definition: Let G be a graph with n vertices and m edges. The acyclic polynomial of G is
defined as

α(G) = α(G, λ) = Σ
[n/2]
j=0 (−1)jp(G, k)λn−2j ,

where p(G, k) is the number of ways in which one can select k independent edges in G. In
addition, p(G, 0) = 1. Explicit expressions are obtained for the acyclic polynomials of certain
special graphs (e.g., for the cycle, the wheel, the complete graph, the complete bipartite
graphs, etc.).
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Recursive definition: Let e be an edge of G incident to the vertices v and w. Then the acyclic
polynomial satisfies the recursion formula

α(G) = α(G − e) − α(G − v − w).

The acyclic polynomial of a graph can be expressed as a linear combination of characteristics
polynomials of its subforests. Let the characteristic polynomial of G be denoted by Φ, Cn

and Pn be the cycle and the path, respectively, with n vertices. Then, [Gut77a],

α(Cn) = Φ(Pn) − Φ(Pn−2).

Reducibility: α(G) coincides with the characteristic polynomial of G if and only if G is a forest.
Note that there exist nonisomorphic graphs having cycles with equal acyclic polynomials. The
acyclic polynomial of a graph is a special case of its matching polynomial with appropriately
chosen weights: α(G) = M(G; λ,−1) , see [Far80],

Complexity: An interesting and simple way (i.e., without use of computers) to obtain acyclic
polynomial for graphs is based on a theorem, due to Godsil [God82],, which claims that the
acyclic polynomial is a factor in the characteristic polynomial of a path-tree P-T derived
for a cyclic graph G. Descriptions of algorithms, optimizations, and the efficient computer
program in the chemistry context are presented in [MT82, HRZ88], etc.

Difficult point property: Considered in [Ave11] for matching polynomial.

Definability: Definable in MSOL, [Mak04b].

Roots: I.Gutman conjectured that the zeros of α(G) are real, the proof see, for example, in [GG81].

Moreover, it can be shown [Gut77b] that Φ(Pn) = sin(n+1)t
sin t that leads to the roots of α(Cn):

2cos (2j+1)π
2n , j = 1, . . . , n.

References: Chemestry, see, for example, [TKR86].

2.1.24 Potts polynomial

Author: The classical Potts model was introduced by Potts in 1952 [Pot52] and in it is a gener-
alization of the Ising model [Isi25] to more-than-two components. A four-component version
of the model was first studied in [AT43]. Consider a finite lattice Ln of N sites or general
graph G of N vertices and suppose that each site (=vertex) can have associated with it a
spin, which can have one of Q values. The energy between two interacting spins is taken to
be zero if the spins are the same and equal to a constant if they are different.

Motivation: In statistical mechanics, the Potts model, a generalization of the Ising model, is a
model of interacting spins on a crystalline lattice. By studying the Potts model, one may
gain insight into the behaviour of ferromagnets and certain other phenomena of solid state
physics. For the complete survey see in [Wu82].

Static definition: In the simplest description of the Potts model with Q states 1, 2, ..., Q, the
Hamiltonian H is given by

H = JΣi∼j(1 − δ(σi, σj)),

27



where the sum is over all nearest-neighbor pairs of sites i, j and σi is the spin at site i. Here J
is the (constant) interaction. The model is ferromagnetic when J > 0 and antiferromagnetic
if J < 0. The probability of finding the system in state σ is then given by

Pr[σ] = e−βH(σ)/Z,

where Z, the normalizing constant, is the partition function and β = 1/kT , where k is
Boltzmanns constant and T is the temperature. Thus the partition function is

Z(G; Q, K) = Σσexp(−KΣi∼j(1 − δ(σi, σj))),

where K = J/kT , the summation in the exponential is over all near-neighbor pairs (i, j),
and the first summation is over all possible spin configurations. The Ising model with zero
external field is just the special case when Q = 2 and then the spins are usually taken to be
±1.

Recursive definition: To be completeed

Reducibility: For the relation of Potts model to Tutte (and chromatic) polynomial, see [WM00].

ZPotts(G; Q, k) = Q(ek − 1)|V |−1e−K|E|T (G;
eK + Q − 1

eK − 1
, eK).

When G has k connected components then there is an extra factor of Qk−1 on the right-hand
side of the above.

Complexity: To be completed

Difficult point property: To be completed

Definability: To be completed

Roots:

References:

2.2 New graph polynomials

2.2.1 mcc-polynomial

Author Introduced in [MZ08] based on the corresponding graph property discussed in [LMST07].

Definition mcct(G, k) is the number of colorings of G with k colors such that all the connected
components of a monochromatic set have size at most t.

For fixed t ∈ N this is a polynomial by the Makowsky-Zilber argument. [MZ06, MZ08]. For
variable t the function mcc(G, k, t) is not a polynomial, as it vanishes for large enough t .

Motivation: To be checked.

Static definition: To be checked.
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Reducibility χ(G, k) = mcc1(G, k)

Recurrence relations To be checked.

Recursive definition: To be checked.

Complexity To be checked.

Difficult point property: To be checked.

Definability To be checked.

Combinatorial interpretations: To be checked.

Related polynomials: Chromatic polynomial.

Roots: To be checked.

References To be checked.

2.2.2 hc-polynomial

Author Introduced in [MZ08] based on the corresponding graph property discussed in [HK83].

Definition hc(G, k) is the number of harmonious proper colorings of G with at most k colors.
This is a polynomial by the Makowsky-Zilber argument, [MZ06, MZ08].

hc(G) is the smallest k such that hc(G, k) 6= 0.

Recurrence relations To be added.

Complexity hc(G) is NP -hard already for trees, [EM95].

Definability If NP 6= P , it is not MSOL-definable in any expansion of G. Otherwise it would
be polynomial time computable on graphs of tree-width at most k, in particular on trees,
[Mak04a].

References For hc(G) only a survey is given in [Edw97].

2.2.3 The cc-polynomial

Author JAM

Definition cc(G, k) is the number of colorings of G with k colors such that each monochromatic
set is connected.

Reducibility

Recurrence relations

Complexity Conjecture: ♯P -hard for k = 2.

The conjecture implies the difficult point property.

Definability

References
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[BD07] M. Bläser and H. Dell. Complexity of the cover polynomial. In L. Arge, C. Cachin, T. Jurdziński,
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