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ABSTRACT. The main results established are (i) a connection between the matching and

chromatic polynomials and (ii) a formula for the matching polynomial of a general complement of a

subgraph of a graph. Some deductions on matching and chromatic equivalence and uniqueness are

maie.
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1. INTRODUCTION.
The graphs considered here are finite, undirected, and contain no loops and no multiple edges.

Let G be such a graph. A matching in G is a spanning subgraph of G, whose components are nodes

and edges only. Let ak be the number of matchings in G with k edges and let n be the number of

nodes in G. Then the matching polynomial of G is

k=0

where w and w2 are indeterminates or weights associated with each node and edge respectively, in

G. If we put w w2 w, then we obtain

[./21
M(G; to) ak wn-k,

k=0

which is called the simple matching polynomial of G. The basic properties of the matching

polynomial can be found in the introductory paper by Farrell [1].
The chromatic polynomial of a graph G is the polynomial P(G;A) which represents the number

of ways of coloring the nodes of G with colors, in such a way that adjacent nodes receive different
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colors. The basic properties of P(G;A) can be found in Read [10]. In this paper, we will assume

that P(G;A) is expressed in the complete graph basi____s, i.e.,

P(a;)= %()n-,
k=0

where ck is the number of color partitions of the nodes of G into n- k non-empty indistinguishable
classes and (A)r A(A- 1)(A- 2)...(A- r 4- 1).

Let rn(a) denote the vector of the nonzero coefficients of M(G; _w), written in ascending powers

of w2. This vector is called the matching vector of G. Graphs G and H are matching equivalent if

_re(G) _re(H). Analogously, let c(G) denote the vector of the nonzero coefficients of P(G;$). This

vector is called the chromatic vector of G. Graphs G and H are chromatically equ.ivalent if

c(G) c(H). Let V(G) denote the node set of G and IV(G) denote the cardinality of V(G).
Graphs G and H are called co-matching if IV(G)[ IV(H)[ and G and H are matching

equivalent. Graphs G and H are called co-chromatic if IV(G) IV(H) ,d ,d e

chromatically equivalent. A graph G is matching unique if M(G;_w)= M(H;_w) implies that H is

isomorphic to G. The term chromatically unique is analogously defined.

A chain is a tree with nodes of valencies and 2 only. The chain with n nodes will be denoted

by ’Pn. The notations Kp, Krn, n and Cv will be used for the complete graph with p nodes, the

complete m by n bipartite graph and the cycle (circuit) with p nodes, respectively. Let 5’ be a

subset of V(G). Then G- 5’ will denote the graph obtained from G by removing the nodes in S. If

S is a subset of E(G), then G- S will denote the graph obtained from G by removing the edges in

S.
We extend a result of Frucht and Giudici [3], by showing that their necessary condition for the

matching vector to be equal to the chromatic vector is also a sufficient condition. A formula for

the matching polynomial of a complement of a subgraph of a labeled graph is then derived. Also,
we obtain connections between matching and chromatic equivalence and uniqueness. Finally, we

deduce some results for 0-graphs.
In the material which follows, the upper and lower limits of summations will be omitted when

they are obvious from the contents of the summand. For example, the lower summation limit is

zero and the upper summation limit is [n/2] in all matching polynomials of graphs with n nodes.

The notation G U G2 U..-U Gr will denote the disjoint union of graphs G1, G2,... and Gr. The

notation (G,H) will be used for a pair of two equivalent, co-matching or co-chromatic graphs; this

pair will be referred to as an equivalent, co-matching or co-chromatic pair, as appropriate.

2. CONNECTIONS BETWEEN THE MATCHING AND THE CHROMATIC POLYNOMIALS.
The following lemmas can be easily proved.
LEMMA 1. Every proper coloring of a graph G with v colors induces a partition of V(G) into

r parts in which nodes z and t belong to a part only if zt

_
E(G).

LEMMA 2. Let G be a graph (without loops or multiple edges). Then

P(O; ) y ak(,)l k,
k

where at: is the number of partitions of V(G) into exactly p-k parts such that nodes z and t
belong to the same part only if zt : E(G); and the summation is taken over all (nonnegative
integral) values of k less than p.

DEFINITION. A color partition of G is a partition of V(G) induced by a proper coloring of

G.
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LEMMA 3. Let {R1,R2,...,Rn} be the set of all color partitions of V(G), where

Rk {SI,k, S2,/,...,Srk, k}. Then Si, j < 2 for all integers and j such that 1 < < rj and

1 < j < n, if and only if is /k-free (triangle free). Hence, if P(G;$)= _ak()Op_ k. Then a/r is
k

the number of matchings in G with p- k components if and only if G is A-free.

PROOF. Suppose that G is /k-free. Let us assume that ]Si, j] > 2 for some and j. Let

x,l,z

_
Si, j. Then x, / and z are nonadjacent in G. Thus, ztz is a triangle in G. This is a

contradiction. Therefore, our assumption is false. [Si, j < 2 for all and j.

Conversely, suppose that ]Si, j < 2 for all and j. Then G does not contain a proper

coloring in which three nodes can be colored the same. Thus, G does not contain a set of three

mutually nonadjacent nodes. Therefore, G is /k-free. This proves the first part of the theorem.

When Si, j -< 2 for all and j, the subgraph of G induced by Si, j is either a node (if Si,] 1)
or an edge (if Si, j 2). It follows that each color partition of V(G) induces a unique matching

in G.
Since the number of matchings in G with r components is the coefficient of wr in the simple

matching polynomial of G, we immediately obtain the following theorem.

THEOREM 1. Let G be a graph. Then P(G;A)= M(;w’) (where w’ means that w in

M(G;w) is replaced by (A)/)and dually, M(G;_w)= P(G;A’) (where A’ means that (A) is replaced
by the monomial w2 p w and p is the number of nodes in G) if and only if is A -free.

COROLLARY 1.1. _re(G) cG) if and only if G is A-free.
This corollary is an improvement of the main result in [5], since it gives both a necessary and

sufficient condition for the matching vector of a graph to be equal to the chromatic vector of the

complement graph.
Suppose that G is not A-free. Then the sets Si, may have more than two elements. In this

case, for some k, there will be other k-color partitions of V(G) (viz those which contain Si, j’s for

which Si, j > 2). This observation and Theorem 1 yield the following result.

THEOREM 2. Let G be a graph;

its simple matching polynomial and

M(G; w) bkwt’ k

k

P);) a()-
k

the chromatic polynomial of its complement. Then a/r > bk, for all values of k. Furthermore,
equality holds (for all values of k) if and only if G is /k-free.

We note that Theorem 2, not only characterizes graphs whose matching vector is equal to the

chromatic vector of its complement, but also gives (i) a lower bound for the coefficients of the

chromatic polynomial and (ii) a criterion for determining whether or not a given graph contains

triangles.
3. MATCHING POLYNOMIALS OF COMPLEMENTS OF GRAPHS.

DEFINITION. Let H be a graph and G a subgraph of H. A complement of G in is a

graph obtained from H by removing the edges of an isomorph of G.
Thus, if R is a complement of G in H, then V(R)= V(H) and E(R) E(H)- E(G’), where G’

is an isomorph of G. Since H is unlabeled, there could be, in general, several complements of G in

H. However, if we take H to be a labeled graph, then there is only one (labeled) complement of G
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in H. In this case, we denote the unique complement of G in H by Git. If we take H to be the

complete graph Kp, then again the complement is unique and is denoted by Gp, or simply by G,
when it is unnecessary to specify the number of nodes. Notice that if in addition, G also has p

nodes, then the complement is the usual graph complement. If H is the labeled bipartite graph

Kin, n, then we denote the complement by Gm, n, or GB, where B is a complete bipartite graph, if

it is unnecessary to specify the cardinalities of the disjoint node sets.

The following theorem gives the matching polynomial of the complement of a graph t7 relative

to any labeled graph H which contains G as a subgraph.
THEOREM 3. Let G be a graph with e edges. Let H be a labeled graph containing G as a

subgraph. Then

M(GH;W-)= (-1)kw2k _,M(H-V(Sk);w_ ),
k=l

where Sk is a set of k edges of G belonging to a matching in H and the second summation is taken
over all such matchings in H containing k edges of G.

PROOF. Our proof is based on the Principle of Inclusion and Exclusion. Let Pi be the

property that the edge of G is used in the a matching of H. Then there are e properties one for

eactl edge in G. Let N(pl,P2 ",Pie) denote the contribution to M(H;_w) of the matchings
containing the edges 1,2,...,k of G. We must find N(p’l,P’2,...,P’e), i.e., the contribution to

M(H;_w) of the matchings which do not contain any of the e edges of G. Therefore, this is the

contribution of all the matchings in GH, i.e., M(GH;W_).
Let Dk be a matching in H which contains the set Sk {i1,i2,...,ik} of k edges of G. The

edges in Sk are independent and therefore cover 2k nodes of H. Suppose that H contains n nodes.

Then the remaining n- 2k nodes of H can be covered by a matching ck of H- V(Sk). Clearly, no

edge of erk can be incident to any of the k edges in G.
Therefore the matchings which cover the n- 2k nodes can be enumerated independently.

They will be all the matchings in H- V(Sk). Therefore, the contribution of Dk to the matching
polynomial of H is

N(Pl, P2," ",Pk) wk2M(H- V(Sk);w-)"

The contribution of all such matchings of H with k edges belonging to G is therefore

, wk2M(H V(Sk);w_ ),

where the summation is taken over all such matchings Dk of H. The theorem follows by the

Principle of Inclusion and Exclusion.

Suppose, in the above theorem, H is the complete graph Kn. Then H-V(Sk) will be the

complete graph Kn_ 2k" If G contains ak matchings with k edges, then the second summation will

become akM(Kn_2k;w_). Thus we have the following result (also essentially given in Zaslavsky [4]
and Wahid [51.

COROLLARY 3.1. Let G be a graph with p nodes and n > p, a positive integer. Also let

[p/]
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Then

M(n;_W) "( 1)kakwk2M(K,_ 2k;w_ ).

In the case where H is the labeled complete bipartite graph Kin, n, we obtain the following

result, also given by Gutman [6].
COROLLARY 3.2. Let M(G; w_)= , ak w-2k w, where G is a bipartite graph. Then

M(m,n; ’(--1)kak wk2 M(gm_k,n_k;w_).

We note from Corollary 3.2 that the matching polynomial of Gm, n depends only on the

coefficients of the terms in M(G;w_). It follows that all the complements of G in Km, n are co-

matching. We therefore speak of the matching polynomial of a complement of a graph in the

complete bipartite graph. The graph is not unique but the matching polynomial is.

Corollary 3.1 can be improved as shown in the following result which is essentially given in

Codsi [7].
THEOREM 4. Let G be a graph with p nodes. Then

if and only if

M(G;w_) y ak w[-2k wk2
k

M(;_w) (- 1)kak wk2M(Kp_2k;w_).
k

PROOF. Corollary 3.1 establishes the sufficiency of the condition. Assuming the formula for

M(G;_w), it can be deducted (after careful manipulations), that M(G;_w) is the desired formula.

Corollaries 3.1 and 3.2 can be used to obtain results concerning equivalence, co-matching and

matching uniqueness. The following are deductions from these two corollaries.

THEOREM 5. If (G,H) is a matching equivalent pair, then so is (Gn, Hn). If in addition, G
and H are bipartite, then (GB, HB) is also a matching equivalent pair.

THEOREM 6. G is matching unique if and only if G is.

Theorems 5 and 6 can be used to substantially increase the presently known families of

equivalent graphs, co-matching graphs and matching unique graphs.
The following lemma is easy to prove.

LEMMA 4. Let G and H be matching equivalent graphs with p nodes and m nodes

respectively. Then M(G;w_) wM(H;w_), where r p m.

THEOREM 7. Let G be a graph which is matching equivalent to a A-free graph H. Then

p(r; A) M(G; w*),

where w* is the transformation in which wk in M(G;w) is replaced by (A)r+k where

r--IV(H)I- V(G)I. Dually, M(G;_w)= p(r;,v), where ,V represents the transformation in

Pw2 pwhich (A)r + k is replaced by Wl
2r + 2k- p-r-k and is the number of nodes in G.

PROOF. Since G and H are matching equivalent, we have from Lemma 4,

M(G;w_) w M(H;w_), where r IV(G) IV(H)
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From Theorem 1, we have M(H;w’)= P(H;A). From Equation (1), it is clear that the polynomial

M(H;w’) is essentially the polynomial M(G;w) with wk replaced by (A)r+k" Hence the result

follows. The dual part of the proof can be similarly established.

We illustrate the theorem with the following example. Let G and H be the graphs shown in

Figure 1. In this example, r 0 because both G and H have 5 nodes.

FIGURE 1:

The following polynomials are easily computed.

and

P(G;) ()5 + 5()4 + 4()3 M(a;w*).

lIotice that G 9. Also, it can be verified that

and
P(G; A) P(H; A) (A)5 + 5(A)4 -4- 5(A)3 + (A)2

M(H; _w)= M(G; _w) w51 + 5w31w2 + 4WlW

Thus G and H are matching equivalent graphs. Hence G is matching equivalent to a A-free graph
H. However, M(G;w*): P(G;$). Thus, if G is matching equivalent to a A-free graph, it is the

complement of the /k-free graph (and not the complement of G) that has equal chromatic vector.

It is well known (for example, see [1]) that the characteristic polynomial of a tree coincides

with its matching polynomial, except for the alternation of the coefficient signs. This observation,
combined with Corollary 1.1, yields the following theorem which gives a relation between the

matching, characteristic and chromatic polynomials.

THEOREM 8. For any tree T, _m(T)= _(T)= _c(), where _q,(T) i the vector of the absolute

values of the coefficients of the characteristic polynomial of T.
Suppose that we take T to be the chain Pn with n nodes. From [1] (Theorem 9), we have

It is well known (see Farrell [8] Corollary 7.1) that

From Theorem 7, we have

These results agree with Theorem 9 in Loerinc [9].
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Theorem 7 can be used to obtain combinatorial identities when explicit formulas for P(H;A)
and M(G; w*) are known. We give an example of this.

EXAMPLE.

()m(). ! ()m+ n-*"
k=0

PROOF. Since Km O Kn, Kin, n, it follows (Theorem 8) that

M(Km, n;w*) P(Km, n;+X) P(Km O

P(Km;A)P(Kn;A)= (A)m(A)n.

The results follows by using the formula for M(Km, n;w_) given in [1] (Theorem 20).
We note that this identity was also derived by Goldman et al. in [10] (Corollary 12).

4. DEDUCTIONS FOR CHROMATIC EQUIVALENCE AND UNIQUENESS.
The following theorem shows that for /k-free graphs, chromatic equivalence of complements is

completely determined by matching equivalence.

THEOREM 9. Let G and H be /k-free graphs. Then (G,H) is a chromatically equivalent

pair if and only if (G, H) is a matching equivalent pair.

PROOF. Suppose that (G,H) is matching equivalent. Then _re(G)= _re(H). Since G and H
are /X-free, c()= _re(G) and c(r)= _re(H). This implies that c(O)= c(r), which implies that

(G, H) is a chromatically equivalent pair.

Conversely, suppose that (O,r)is a chromatically equivalent pair. Then c(O)= c(r). Since

G and H are /\-free, by Theorem 5 we have _re(G)= _re(H), i.e., (G,H) is matching equivalent.

It is clear that if (G,H) is a co-matching pair, then (trivially) it is also a matching equivalent

pair. If, in addition, G and H are A- free, then by Theorem 9, (O,r) is a chromatically

equivalent pair. But G and H must have the same number of nodes because they are co-matching
graphs. It follows that G and H have the same number of nodes. Hence (G, H) is a co-chromatic

pair. The converse situation is also true, i.e., if (G,H) is a co-chromatic pair, then (G,H) must be

a co-matching pair. Hence, we have proven the following theorem.

THEOREM 10. Let G and H be /\-free graphs. Then (O,r) is.a co-chromatic pair if and

only if (G, H) is a co-matching pair.

In Farrell and Wahid [4], many families of co-matching graphs have been identified, and

constructions are given for general families. Also, by suitably choosing the lengths of the chains

and cycles, these graphs can be made to be /k-free. Therefore, by applying Theorem 10, many

families of co-chromatic graphs can be identified. For example, it can be easily verified that the

graphs G and H shown in Figure 2 are co-matching for all a,b > 2; this was proven in [9]. Note
that G and H are /k-free. Therefore, by Theorem 10, (G,H) is a co-chromatic pair.

FIGURE 2:
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An interesting question at this point is the following: Is it possible for two x-free graphs to

have different chromatic polynomials, but have chromatically equivalent complements? Suppose
that there exist /x-free graphs G and H such that (G,H) is matching equivalent but no..t
chromatically equivalent. Since G and H are /x-free, (G,H) will be chromatically equivalent by

Theorem 9. Our question would be answered if we can find a pair of matching equivalent but

chromatically nonequivalent /-free graphs. The graphs G P2n + and H Pn LI Cn + form

such a pair, for all n > 2. Thus, the answer to our question is yes. We note that G and H were

shown to be co-matching in [4]. Their complements were shown to be chromatically equivalent in

Suppose that G is /k-free and matching unique. Does it follow that G will be chromatically

unique? The answer is no in general. Let G be the chain P4" It has been shown (Farrell and Guo

[3]) that Pn, for n even, is matching unique. Therefore P4 is matching unique. However, P4 P4"
But P4 is not chromatically unique because it is chromatically equivalent to K1, 3.

Notice that we cannot say that if G is matching unique then G is not chromatically unique.

For suppose that G is a graph consisting of isolated nodes and independent edges. Then G is

known to be matching unique. However, in [9], it was shown that G is chromatically unique.

At this point, let us consider the converse of the above question. Suppose that G is

chromatically unique, does it follow that G is matching unique? The following theorem answers

this question.

THEOREM 11. If G is /X-free and G is chromatically unique, then G is matching unique up

to /X-freeness. That is, there does not exist another /k-free graph which is matching equivalent to

G.
PROOF. Let G satisfy the conditions given in the theorem. Suppose that there exists a /X-

free G such that M(G1;_w M(G;_w). Since G is /x-free, M(G;w’)= P(G;$). Since G is A-

free, M(G1;w’ P(G1;,). Therefore, P(G1;)= P(G;$). Since G is chromatically unique, we

must have G G which implies that G G.
5. SOME DEDUCTIONS FOR THE THETA GRAPH.

We can use Theorems and 7 in order to derive formulas for the chromatic polynomials of

complements of some graphs. For example, if G consists of rn isolated nodes and n independent

edges, then

P(Fg, A) (nr)(A)m + n + r

This follows from Theorem and the formula for the matching polynomial of G.
We can also obtain the chromatic polynomial of the complement of the graph consisting of two

components Pn and Cn + (n > 2). In this case,

P(PnUCn+ ;A)=r
In [1], formulas are given for the maching polynomiMs of he basic graphs with cyclomtic

number 2. These graphs e &-free for suitable choices of he lengths of the chins d cycles of

which hey are composed. From Theorem 1, i follows h the chromatic polynomiMs of the

complements of hese graphs c be found. For exple, ([1] Threm 14), we have the following

mtching polynomiM for the 0-graph G(r,s,t) consisting of hree chains of lengths r, s d whose

endpoins have been identified. Without loss of generality, we sume hat r s t.
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M(G(r,s,t);u2) M(Pr + s + t- 1; -w) + w2 [M(Pr- 1; )M(Ps + t- 2;t-v)

+ M(Ps- l;W-)M(Pr + t- 2; t-v) + M(Pt- l;u-OM(Pr +- 2;kv)

M(Pr_ I’Lo)M(Ps_ 1;w_)M(Pt_ 1; _w)], where r,s,t > 2.

Clearly, G(r,s,t) is A-free, for r,s,t > 2. By Theorem 1, thus we have

THEOREM 12.

The following theorem shows that the matching polynomial of the 0-graph G(2,s,t) depends
only on the sum s + t.

THEOREM 13.

M(G(2,s,t);w_) WlM(Ps + t;w_) + 2w2M(Ps + t- ;-w) + WlW2M(Ps + t- 2;-w)

PROOF. Applying the fundamental edge theorem (Theorem 1 in [1]) successively to the two

edges of the path of length 2, we obtain

M(G(2,s,t);w_) WlM(Cs + t;w_) + 2w2M(Ps + t- l;-W)

Applying the fundamental edge theorem to one of the edges of the cycle Cs + t, we have

M(Cs + t;w-) M(Ps + t;-w) + w2M(Ps + 2;-w)

The proof is completed by combining these two equations.

COROLLARY 13.1. The graphs G(2,Sl,tl) and G(2,sl,t2) are co-matching if and only if

s +t =s2+t2.

PROOF. If si+t =s2+t2, then G(2,s2,t2) are co-matching by Theorem 14. If

s +t # s2+t2,then V(G(2,s,tl))[ # [v(G(2,s2,t2))[ which implies that G(2,s,tl) and

G(2,s2, t2) are not co-matching.
The following corollary appears as Theorem 3.2.4 in [9].
COROLLARY 13.2. The graphs (G(2,sl, tl) and G(2,s2,t2) are co-chromatic if and only if

s + s2 + 2.

PROOF. Since 2_<si<t for iE{1,2}, G(2,si, ti) is A-free. If s+tl=s2+t2, then

G(2,sl, t) and G(2,s2,t2) are co-chromatic by Corollary 13.1 and Theorem 9. If s + t # s2 + t2,
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then v(G(2,s,t))l # V(G(2,s2,t2))iwhich implies that G(2,sl,tl) and G(2,s2,t2) are not co-

chromatic.
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