Safety and Domain Independence:

Domain Independence

Additional slides, Part I

for

Introduction to Database Systems 236363-Spring 2012

Domain-independent queries

Let A_1, \ldots, A_m be attributes and R, S, T be relation schemas.

Let D_1, \ldots, D_m be domains for these attributes.

Let E be a query expression (in RA or DRC).

Let r, s, t be relations over D_1, \ldots, D_m interpreting R, S, T.

A set of domains D'_1, \ldots, D'_m is admissible for r, s, t if for each $i \leq m$ the projections $\pi_{A_i}r$, $\pi_{A_i}s$ and $\pi_{A_i}t$ are in D'_i .

A query $\phi(\bar{x})$ is *domain independent* if for all domains *admissible for* r, s, t the *result of evaluating the query over* r, s, t *is the same*.

J.A. Makowsky

RA expressions E are domain independent

We prove this by structural induction over E.

• E is R, S or T.

By the definition of admissible domains.

- Intersection, Union and Difference.
 By the induction hypothesis and the definition of admissible domains.
- Selection and Projection.
 Both make the table smaller.
- Cartesian product.

By the induction hypothesis and the definition of admissible domains.

• Renaming.

Does not change the content of the tables.

J.A. Makowsky

There are DRC expressions which are not domain independent

Examples of formulas which are not domain independent.

- $\neg R(\bar{x})$
- $\forall \bar{x} S(\bar{x})$

Examples of formulas which are domain independent.

- $S(\bar{x}) \wedge \neg R(\bar{x})$
- $\forall \bar{x}(S(\bar{x}) \to T(\bar{x}))$

J.A. Makowsky

Why is domain independence important?

- The *compiler (interpreter)* of queries processes **RA-expressions**.
- The *human user* writes queries in **DRC** or **Datalog**.
- Therefore we have to know which DRC expressions are compilable, i.e., translatable into RA.

Note: There is **no algorithm** which takes a DRC expression E as input and decides whether E is domain independent.

We prove such results in Logic 2

However, we can define *easily recognizable* subsets of DRC expressions which are all domain independent.

Adding predicates for the actual domain, I

Let $\delta_i^R(y)$ the formula which defines $\pi_{A_i}R$. For $R[A_1, \ldots, A_m]$ the formula $\delta_i^R(y)$ for $\pi_{A_i}R$ is $\exists x_1 \exists x_2 \ldots \exists x_{i-1} \exists x_{i+1} \exists x_m R(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_m)$ Similarly for For $S[A_1, \ldots, A_m]$ the formula $\delta_i^S(y)$ for $\pi_{A_i}S$ is $\exists x_1 \exists x_2 \ldots \exists x_{i-1} \exists x_{i+1} \exists x_m S(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_m)$ and the analoguously for $\delta_i^T(y)$.

Finally, $\delta_i(\boldsymbol{y})$ is the formula $\delta_i^R(\boldsymbol{y}) \wedge \delta_i^S(\boldsymbol{y}) \wedge \delta_i^t(\boldsymbol{y})$.

J.A. Makowsky

Adding predicates for the actual domain, II

We can define inductively ADRC (DRC with actual domains):

- The atomic formulas $R(\bar{x})$, $S(\bar{x})$ and $T(\bar{x})$ are in ADRC.
- $\delta_i(x)$ is in ADRC.
- The formulas $\delta_i(x) \wedge \delta_i(y) \wedge x = y$ are in ADRC.
- Closure under \land,\lor
- If $\phi(x_1, \ldots, x_m)$ is in ADRC the also $\delta_1(x_1) \land \ldots \land \delta_m(x_m) \land \neg \phi$ is in ADRC.
- Closure under $\exists x (\delta_i(x) \land \phi(x))$ and $\forall x (\neg \delta_i(x) \lor \phi(x))$

Exercise: Show that all formulas of ADRC are domain independent.

Problems with ADRC

- It can be shown that every domain independent DRC expression is equivalent to an ADRC expression.
- Every ADRC expression can be converted into an RA expression and vice versa.
- However, ADRC is not a convenient formalism.

Formulas get too long and are awkward to read.

- We now discuss an alternative: Safe Range DRC.
- There is another alternative: **SafeDRC** defined in the TIRGUL 3b_DBMStut-RC.ppt.

J.A. Makowsky

Safety and Domain Independence:

Safe Range DRC Formulas

Additional slides, Part II

for

Introduction to Database Systems 236363-Spring 2012

Based on [AHV95]

Foundations of Databases by S. Aibiteboul, R. Hull and V. Vianu Addison-Wesley 1995 pages 83ff.

9

J.A. Makowsky

Safe range normal form SRNF

We first preprocess formulas of DRC

- **Variable substitution:** Change name of all the variables of ϕ such that **free** and **bound** variables are different and no two bound variables bound by different quantifiers are the same.
- **remove** \forall : Replace $\forall x \phi$ by $\neg \exists \neg \phi$.
- **remove** \rightarrow : Replace by $(\neg \phi \lor \psi)$
- **Push negations inside:** Replace $\neg \neg \phi$ by ϕ , Apply de Morgan rules to move negations inside as much as possible. $\neg \phi$ stays only if ϕ is atomic or is of the form $\neg \exists x \psi$.

Flatten the formula: Replace

 $(\phi_1 \land (\phi_2 \land \phi_3))$ by $(\phi_1 \land \phi_2 \land \phi_3)$ $((\phi_1 \land \phi_2) \land \phi_3)$ by $(\phi_1 \land \phi_2 \land \phi_3)$ and similarly for \lor .

J.A. Makowsky

Example:
$$(\forall x(T(x) \rightarrow S(x,y)) \land \exists xS(x,y))$$

- The free variable is y, and x is bound by two quantifiers.
- $(\forall x_1(T(x_1) \rightarrow S(x_1, y)) \land \exists x_2 S(x_2, y))$
- $(\forall x_1(\neg T(x_1) \lor S(x_1, y)) \land \exists x_2 S(x_2, y))$
- $(\neg \exists x_1 \neg (\neg T(x_1) \lor S(x_1, y)) \land \exists x_2 S(x_2, y))$
- $(\neg \exists x_1(\neg \neg T(x_1) \land \neg S(x_1, y)) \land \exists x_2 S(x_2, y))$
- $(\neg \exists x_1(T(x_1) \land \neg S(x_1, y)) \land \exists x_2S(x_2, y))$

 $(\neg \exists x_1(T(x_1) \land \neg S(x_1, y)) \land \exists x_2S(x_2, y))$ is in SRNF.

J.A. Makowsky

Example:
$$\forall x (\exists y S(x, y) \rightarrow T(x, y))$$

- The free variable is y in T(x, y), in S(x, y) y is bound.
- $\forall x (\exists y_1 S(x, y_1) \to T(x, y))$
- $\neg \exists x \neg (\exists y_1 S(x, y_1) \rightarrow T(x, y))$
- $\neg \exists x \neg (\neg \exists y_1 S(x, y_1) \lor T(x, y))$
- $\neg \exists x (\neg \neg \exists y_1 S(x, y_1) \land \neg T(x, y))$
- $\neg \exists x (\exists y_1 S(x, y_1) \land \neg T(x, y))$

 $\neg \exists x (\exists y_1 S(x, y_1) \land \neg T(x, y)) \text{ is in SRNF.}$

Normal Form Theorem for SRNF

Theorem: Every DRC-formula is equivalent to a formula in SRNF with the same set of free variables.

Proof:

- Rename all the necessary variables.
- Eliminate all occurrences \forall and \rightarrow .
- Apply de Morgan rules as long as you can.
- All this can be done while preserving logical equivalence.

Range restricted variables, I

For a formula ϕ we define the set of **range restricted variables** $rr(\phi)$ inductively as follows:

Atomic formulas: If ϕ is of the form $R(v_1, \ldots, v_n)$ or $v_i = a$ or $a = v_i$ then $rr(\phi) = free(\phi)$.

Conjunction: If $\phi = (\phi_1 \land \phi_2)$ then $rr(\phi) = rr(\phi_1) \cup rr(\phi_2)$.

Equalities: If $\phi = (\psi \land v_i = v_j)$ then

$$rr(\phi) = \begin{cases} rr(\psi) & \text{if } \{v_i, v_j\} \cap rr(\psi) = \emptyset \\ rr(\psi) \cup \{v_i, v_j\} & \text{else} \end{cases}$$

Disjunction: If $\phi = (\phi_1 \lor \phi_2)$ then $rr(\phi) = rr(\phi_1) \cap rr(\phi_2)$.

Negations: If $\phi = \neg \psi$ then $rr(\phi) = \emptyset$.

Existential quantifier : If $\phi = \exists v_1, \ldots, v_m \psi$ then

$$rr(\phi) = \begin{cases} rr(\psi) - \{v_1, \dots, v_m\} & \text{if } \{v_1, \dots, v_m\} \subseteq rr(\psi) \\ \bot & \text{else} \end{cases}$$

Range restricted variables, II

We define for any set of variables V: $\bot \cup V = \bot \cap V = \bot - V = V - \bot = \bot$ and use commutativity of \cup and \cap .

The outcome of this check is

either $rr(\phi)$ is a set of free variables of ϕ or $rr(\phi) = \bot$

 ϕ is safe range if $rr(\phi) = free(\phi)$.

Which formulas can be made safe range?

If V is a proper subset of $free(\phi)$ and $rr(\phi) = V$ then ϕ is not safe range. However, we can look for some θ with $rr(\theta) = free(\theta) = free(\phi) - V$. and the query $\phi \land \theta$ will be safe range, but not necessarily equivalent to ϕ . Let $V = \{v_1, \ldots, v_r\}$ and $free(\phi) - V = \{y_1, \ldots, y_k\}$ we can take $\theta(\bar{y})$ to be $\Delta(\bar{y}) = \bigwedge_i \left(\bigvee_i \delta_i(y_j)\right)$

We then have

$$\models \forall y_1, \ldots \forall y_k \left(\Delta(\bar{y} \to ((\phi(\bar{y}, \bar{v}) \land \Delta(\bar{y})) \leftrightarrow \phi(\bar{y}, \bar{v})) \right)$$

which says that ϕ and $\phi \wedge \Delta$ produce the same table if restricted to the actual domain.

J.A. Makowsky

Example:
$$\phi = \forall x (\exists y S(x, y) \rightarrow T(x, y))$$
 and $free(\phi) = \{y\}$

We first put ϕ in SRNF ψ : $\psi = \neg \exists x (\exists y_1 S(x, y_1) \land \neg T(x, y)).$

Then we compute $rr(\psi)$ as follows:

- $rr(S(x, y_1)) = \{x, y_1\}.$
- $rr(T(x,y)) = \{x,y\}.$
- $rr(\neg T(x,y)) = \emptyset$
- $rr(\exists y_1 S(x, y_1)) = \{x\}$
- $rr((\exists y_1 S(x, y_1) \land \neg T(x, y))) = \{x\}$
- $rr(\exists x (\exists y_1 S(x, y_1) \land \neg T(x, y))) = \emptyset$
- $rr(\psi) = \emptyset$

 ψ is not safe range but $(\psi(y) \land \exists x T(x, y))$ is safe range.

Note, ψ begins with a negation. Still we can not conclude that $rr(\psi) = \emptyset$ without the previous steps, because if $rr(\phi_1) = \bot$ then $rr(\neg \phi_1) = \bot$ as well.

J.A. Makowsky

THEOREM: The standard translation of RA into DRC gives safe range formulas

We have to assume that θ the select operator $\sigma_{\theta}E$ is **quantifier free and usues equality only**.

We prove this by (structural) induction:

We have the boolean operators \lor , - and projection $\pi_A E$, selection $\sigma_{\theta} E$ and cartesian products $E_1 \times E_2$.

- If E = R atomic, then $\phi_E = R(\bar{v})$ and $free(R(\bar{v})) = \{\bar{v}\}$.
- Let $E = E_1 \times E_2$, and the free variables in ϕ_{E_1} and ϕ_{E_2} form disjoint sets V_1 and V_2 . If both ϕ_{E_1} and ϕ_{E_2} are safe range, i.e., $free(\phi_{E_1}) = rr(\phi_{E_1}) = V_1$ and $free(\phi_{E_2}) = rr(\phi_{E_2}) = V_2$, then $\phi_E = \phi_{E-1} \wedge \phi_{E_2}$ and $rr(\phi_E) = free(\phi_E) = V_1 \cup V_2$.

Proof of the THEOREM continued

• Let
$$E = E_1 - E_2$$
, and
 $free(\phi_{E_1}) = free(\phi_{E_2}) = rr(\phi_{E_1}) = rr(\phi_{E_2})$.
Then $\phi_E = \phi_{E_1} \land \neg \phi_{E_2}$ and
 $rr(\neg \phi_{E_2}) = \emptyset$ and
 $rr(\phi_E) = rr(\phi_{E_1}) = free(\phi_{E_1}) = free(\phi_E)$.

- For $E = \sigma_{\theta} E_1$ we first have to compute $rr(\theta)$. θ is quantifier free, so $rr(\theta) \neq \bot$. By induction hypothesi $rr(\phi_{E_1}) = free(\phi_{E_1})$ and $rr(\theta) = free(\theta)$, and $\phi_{\sigma_{\theta}} E_1) = \phi_{E_1} \wedge \theta$. Therefore, $\phi_{E_1} \wedge \theta$ is safe range.
- The cases for $E = E_1 E_2$ and $E = \pi_A E_1$ are left as exercises.

Translating $S \div T$ gives a safe range formula

We have seen that

$$\phi = (\neg \exists x_1(T(x_1) \land \neg S(x_1, y)) \land \exists x_2 S(x_2, y))$$

is in SRNF.

We also know from previous lectures that for $E = S \div T$ the standard translation of $S \div T$ is logically equivalent to ϕ .

Homework: Verify, that ϕ is safe range.

J.A. Makowsky

Safe Range and Domain Independence.

- We know that RA expressions are **domain independent**.
- We have shown that standard translations of RA expressions give **safe range** DRC formulas.
- Therefore, every RA expression corresponds to a safe range DRC formula.

Theorem:[AHV95, Theorem 5.4.6]

For every safe range DRC formula ψ we can find algorithmically an RA expression E_{ψ} such that its standard translation $\phi_{E_{\psi}}$ is logically equivalent to ψ .

In other words, every safe range DRC formula corresponds to an RA expression.

In particular, every safe range DRC formula is domain independent.

Summary: What you have to know for the exam

- SRNF: Convert formulas in SRNF
- Compute $rr(\phi)$ of DRC formulas in SRNF.
- Check whether a DRC formula is safe range.
- If a DRC formula ϕ is not safe range, can you always find a safe range DRC formula θ such that $\phi \land \theta$ is safe range?

Comparing to SafeDRC

Read the definition of SafeDRC from the TIRGUL 3b_DBMStut-RC.ppt.

Show the following:

- Every formula in SafeDRC is domain invariant. Hint: Use induction.
- Show that every SafeDRC formula is a safe range formula. Hint: Put it into SRNF and apply the algorithm.
- Find a formula which is safe range but not in SafeDRC.