Winter 2019/20

Summary of Lecture 2

- DRC-queries.
- Relational structures and their isomorphisms.
- DB-structures and DB-isomorphisms.

Winter 2019/20

Typed relational structure

Given a database schema

$$R_i(A_{i,1},\ldots A_{i,m_i}), i \leq n$$

we define a relational structure ${\cal A}$ with

- domain *D*,
- unary relations $\mathcal{A}(A_{i,j} = D_{i,j} \subseteq D)$, interpreting the attributes $A_{i,j}$ which occur in the database scheme, and
- relations $\mathcal{A}(R_i) = r_i \subseteq D_{i,1} \times \ldots D_{i,m_i}$ for each relation scheme R_i .
- The actual domain of \mathcal{A} is $AC(\mathcal{A})$ is the set

$$AC(\mathcal{A}) = \bigcup_{i,j} \{ \mathbf{a} \in D : \exists a_1, \dots, a_{j-1}, a_{j+1}, \dots, a_{m_i} R_i(a_1, \dots, a_{j-1}, \mathbf{a}, a_{j+1}, a_{m_i}) \}$$

The family tree example

We practiced DRC using a family tree example:

- *PERSON(ID, gender, name, firstname, birthdate, birthplace, nationality)*
- Parent(ID_{child}, ID_{parent}, gender)
- Father(ID_{child}, ID_{father})
- Mother(ID_{child}, ID_{mother})
- Write queries for Sibling, grandparent, cousin, uncle, second cousin, etc

The natural number as a databases

We practiced DRC using the natural numbers

 $\mathcal{N} = < \mathbb{N}, Add(x, y, z), Mult(x, y, z), LEQ(x, y), 0, 1 >$

LEQ stands for less than or equal.

- Write a query for "x divides y" and "x properly divides y"
- Write a query for SQ(x, y) which says $y = x^2$.
- Write a query for Prime(x) which says that x is a prime number.
- Express Mult(x, y, z) using Add and SQ(x, y) only.
- One can show that Mult(x, y, z) cannot be defined using Add and LEQ(x, y) alone.

Winter 2019/20

Background on First Order Logic FOL

I use the notation and definitions from my slides at

https://www.cs.technion.ac.il/ janos/COURSES/LOGIC-2014/

Mostly from Lecture 11

Isomorphisms of relational structures

Let τ be a vocabulary and A_1, A_2 be two τ -structures with domains A_1, A_2 respectively.

A function $f: A_1 \rightarrow A_2$ is an τ -isomorphism if

- f is one-one and onto,
- for each constant symbol $c \in \tau$ we have $f(\mathcal{A}_1(c)) = \mathcal{A}_2(c)$.
- for each *n*-ary relation symbol $R \in \tau$ and $\overline{(a)} \in A_1^n$ we have $\overline{a} \in \mathcal{A}_1(R)$ iff $f(\overline{a}) \in \mathcal{A}_2(R)$
- for each *n*-ary function symbol $F \in \tau$ and $\overline{(a)} \in A_1^n$ we have

$$\mathcal{A}_2(F)f(\bar{a}) = f(\mathcal{A}_1(F)(\bar{a}))$$

Make examples yourself!

DRC-queries are invariant under isomorphisms

Let f be a τ -isomorphim between \mathcal{A}_1 and \mathcal{A}_2 .

Let $z : Var \to A_1$ be an assignment of the variables to elements of \mathcal{A}_1 , and let z_f be an assignment of the variables to elements of \mathcal{A}_2 defined by $z_f(v) = f(z(v))$.

• For every formula $\phi \in \text{FOL}$ and its meaning function M we have

$$M(\mathcal{A}_1,\phi,z) = M(\mathcal{A}_2,\phi,z_f)$$

• Hence,

$$\{\bar{x} \in A_1^n : \phi(\bar{a})\} = \{f(\bar{x}) \in A_2^n : \phi(f(\bar{a}))\}$$

In other words, evaluating DRC-queries in \mathcal{A}_1 first and then applying f gives the same result as applying f first and then evaluating it in \mathcal{A}_2 .

Proof of the isomorphism invariance

We proceed by structural induction on ϕ .

- If ϕ is an atomic formula this follows from the definition of τ -isomorphism.
- If ϕ is of the form $(\phi_1 \land \phi_2, (\phi_1 \lor \phi_2, \text{ or } \neg \phi_1 \text{ and it is true for } \phi_1 \text{ and } \phi_2, \text{ then this follows from the meaning function of } \land, \lor \text{ and } \neg.$
- If ϕ is of the form $(\exists v \phi_1 \text{ and it is true for } \phi_1, \text{ then this follows from the definition of the meaning function for <math>\exists$.

HOMEWORK

Domain invariance (aka domain independence)

Here are the relevant slides for the definitions and properties.

https://www.cs.technion.ac.il/ janos/COURSES/236356-19/safety-12-13.pdf

HOMWORK:

Prove by structural induction that RA queries are domain invariant.

Codd's Theorem

Let ϕ a formula of FOL (or *DRC*.

The following are equivalent.

- ϕ is logically equivalent to an expression $T \in RA$.
- ϕ is domain independent.
- ϕ is logically equivalent to ϕ^{AD} , which is ϕ relativized to its actual domain.

For details see

https://www.cs.technion.ac.il/ janos/COURSES/236356-19/safety-12-13.pdf