
Schema Optimisation Instead Of (Local) Normalisation

Bernhard Thalheim[0000−0002−7909−7786]

Christian-Albrechts University at Kiel, Department of Computer Science, D-24098 Kiel,
Germany

thalheim@is.informatik.uni-kiel.de
http://www.is.informatik.uni-kiel.de/∼thalheim

Abstract. Classical normalisation theory has a number of lacunas although it
is commonly and widely accepted and it is the basis for database theory since
the 80ies. Most textbooks and monographs still follow this approach despite the
good number of open problems. Today, modern object-relational DBMS offer far
better capabilities than the systems that have been built in the past based on the
strict relational paradigm. Constraint maintenance has been oriented on transfor-
mation of structures to structures that are free of functional dependencies beside
key constraints. The maintenance of coherence constraints such as two-type in-
clusion constraints has been neglected although this maintenance might be the
most expensive one. In reality normalisation is local optimisation that exclusively
considers functional dependency maintenance.
We thus need a different normalisation approach. This paper develops an ap-
proach towards optimisation of schemata and global normalisation. This approach
results in a denormalisation and object-relational database schemata.

Keywords: normalisation · schema optimisation · denormalisation · performance
· object-relational databases · global normalisation

1 Normalisation - The Good, The Bad, The Ugly

Normalisation is considered to be one of the pearls of database theory. There is al-
most no database course that does not teach this part of a theory. The main results
have been achieved during the 70ies, 80ies and early 90ies. Since then the theory is
considered to be completed although new DBMS (database management systems) and
new database paradigms have been developed since then. There are very few publica-
tions on object-relational structures. XML approaches have mainly be following this
research paradigm.

1.1 Local Vertical Normalisation Based on Functional and Other Dependencies

Local database normalization aims at the derivation of database structures that can eas-
ily be supported by the DBMS. In the past, DBMS supported keys, domain constraints
and referenced-key-based inclusion constraints (so-called foreign-key-constraint). There-
fore, it was a goal to derive another equivalent schema to the given one which has a set
of integrity constraints that can be supported by the DBMS used for implementation.
This approach can be understood as a descriptive approach to optimisation of database



2 Bernhard Thalheim

structuring depending on the platform for implementation. Normalisation as a concept
is typically too narrow and too much focussed on local vertical normalisation.

Three kinds of normalisation. Normalisation is mainly considered to be vertical nor-
malisation on the basis of projection sets as mappings and join as the restoration opera-
tion. Horizontal normalisation [23] is based on selection and union. Deductive normal-
isation [30] is based on reduction of classes according to tuple-generating constraints
and extended completion using this set of tuple-generating constraints (see, for instance,
[3]). It is the most storage effective and the best computational method for normalisation
as long as the tuple-generating dependency used for decomposition is acyclic [30, 31].
The latter two normalization methods have not yet got a proper support by the database
systems vendors. A common treatment for these three kinds has not yet developed.

The consideration of horizontal normalisation together with vertical normalisation
has a number of advantages. A type may be first decomposed horizontally what would
enable application of another vertical normalisation to one of the horizontal subclasses1.
Additionally, horizontal normalisation enables in separation of a class into data that are
stable and will not be changed and volatile data that are still changed. The first data
class can then be supported by a large set of indexes and improve performance.

Normalisation theory is a relict of the 80ies. The relational database design book by
[41] is one of the most comprehensive surveys on kinds of normal forms. It essentially
considers almost 30 kinds. Some of them have been superseded by other, some of them
did not find practical solutions or their specific kinds of applications.

Normalisation starts with the requirement of the first normal form, i.e. all attributes
are atomic and do not have an inner structure. Consider, however, the ZIP as an attribute
of an address. It has an inner structure which is guilty for the non-BCNF normalisation
of addresses [21]. Meanwhile DBMS suppport user-defined data structures (UDT’s).
These data structures have their specific functions and predicates. The address example
is an academic one while in practice address data are checked against public address
databases. A similar observation can be made on the second normal form and others.
They can be neatly supported by modern DBMS. The support goes far beyond what
non-first-normal-form (NF2) research provides.

Beside the flaws of the synthesis algorithm for normalisation discussed below we
should pay attention whether the collection step (step 3 in normalisation: collect all
FD’s with the same left side into a singleton new relation type) is really appropriate.
Some of the FD’s may have a different flavour. Consider, for instance, an organisation
unit which is chaired by somebody, has its postal address, has a main financial funding,
a secretariat or office, and a contact. Why it should be represented as a singleton type?
It is far better to use a star kind structure since each of the associations has its meaning
and its usage in the database application. Such structures are also causing evolution
problems.

Normalisation approaches typically do not consider the different meanings of the
dependencies [35] but treat the set of all constraints under consideration as a set of

1 This mechanism has been already used for fragmentation techniques for distributed databases.
A similar approach has been proposed by C.J. Date [10] for handling NULL-polluted classes
by rigid horizontal normalisation into NULL-free fragments (see also [40, 25]).



Schema Optimisation 3

elements which are of equal importance. Moreover, normalisation is based on classes
of constraints such as functional dependencies and multivalued dependencies. As we
shall see below, normalisation should however been based on sets of constraints from
different classes and on the meaning of such constraint sets.

Another obstacle of normalisation theory is the assumption that relation classes are
sets. SQL allows multi-sets. The normalisation theory for multi-sets has a different
setting [18].

1.2 Local Vertical Normalisation

Local vertical normalisation plays a prominent role in normalisation theory. Research
started with the introduction of FD-based normal forms (first, second, third in a good
variety of notions, Boyce-Codd) and led to a good body of knowledge2 Later func-
tional dependencies have been generalised to domain, multi-valued, and hierarchical
dependencies and the generalisation of the last one to join dependencies. This research
resulted in introduction of further normal forms, e.g. fourth and fifth. The sixth normal
form (6NF) has already been introduced with the DBMS MIMER in the mid-70ies.

Local normalisation is a good approach as long as we restrict the consideration to
strictly equality-generation dependencies such as functional dependencies and singleton
relational schemata with atomic attributes. In this case the so-called third normal form is
achievable. The Boyce/Codd Normal Form (BCNF) is not achievable in any case. [21]
has shown however that all known counterexamples are based on ill-defined structures.
It can be shown [31] that either hierarchical decomposition or refined granularity of
attributes result in BCNF structures.

Reasons to normalise. [31] surveys the main targets of normalisation: (1) avoiding in-
adequate behaviour such as anomalies, (2) elimination of unnecessary redundancy, (3)
prohibiting inconsistent data, (4) stability of database schemata during application evo-
lution, (5) optimising database performance, and (6) maintenance of abstraction levels
within a schema. We refer to [31] for discussion of other problems encountered for nor-
malisation such as adequate BCNF representation, adequacy of decomposed schemata,
competing normalisations of the same schema, and inadequacy of multivalued depen-
dencies and other tuple-generating dependencies within the relational database model.

We observe that the first three reasons are rather operational one whereas the last
two are tactical ones. The fourth reason is a strategic one that is the main source for
later modernisation, migration, and re-engineering.

Did we achieve the six targets? The answer is no. We achieved the first target and par-
tially achieved the second target. The third target can only be achieved if all potential
constraints and their influence on consistency is handled properly. The fourth target has
not yet found good research solutions. After evolution schemata suffer from manner-
ism and look similar to Gothic cathedrals or chaotic sandcastles. After normalisation,
database performance might be good for data manipulation operations. Normalisation

2 We restrict the citations to the most essential ones for this paper and restrain to give a full
survey of the research.



4 Bernhard Thalheim

might result in a far worse behaviour for database querying. The advent of data ware-
houses is a reaction on this problem. The sixth target is not supported by current lan-
guages that force us to stay on one abstraction level.

1.3 Inclusion Constraint Maintenance After Decomposition

Literature often neglects the set of additional inclusion constraints that must be main-
tained after a decomposition of a class. Given a multivalued dependency X →→ Y
for a partition X,Y, Z of the set of attribute of a relation type R. The class RC can
be decomposed into RC

1 = πX∪Y (R
C) and RC

2 = πX∪Z(R
C) in such a way that

RC = RC
1 1 RC

2 iff the multivalued dependency is valid in RC . We note that this
multivalued dependency is implied by a functional dependency X → Y .

This vertical decomposition of RC into RC
1 and RC

2 must be maintained by pairwise
inclusion dependencies πX(R1) ⊆ πX(R2) and πX(R2) ⊆ πX(R1). In the relational
DBMS setting the pairwise inclusion constraint should be maintained by foreign key
constraints, i.e. X should be a key in both RC

1 and RC
2 .

Question 1. Is there any good approach to inclusion constraint maintenance after
decomposition?

A solution to this foreign key requirement is proposed in the RM/V2 model [9] by
introduction of a third relation type RC

0 = πX(RC).
Observation 1. This approach results in a number of additional auxiliary relation types
what limits the effect of normalisation. 3

We need to add to the normalisation approach also an extended dependency preser-
vation rule that is often neglected in the literature:
Principle 1. The decomposition based on vertical normalisation adds to the decom-
posed types pairwise inclusion dependencies on intersecting attributes. The decompo-
sition based on horizontal normalisation adds to the decomposed types an exclusion
constraint.

This principle has already been implicitly used for the universal relation assump-
tion. We observe however that pairwise inclusion dependencies may cause severe per-
formance problems.

The union constraint for horizontal decomposition is implicit and is the basis for
defining a view that combines by UNION the decomposed components into the original
type4. The deductive normalisation [31] is another option.

1.4 Constraint Sets Instead of Sets of Constraints

The classical approach of computer science introduces syntax first. And then seman-
tics is defined on top of syntax. As again discussed in [35], this approach is nice for
computational handling and for inductive and incremental construction but completely

3 We forbear from postulating these observations as theorems. They are rather simple and easy
to check statements.

4 We note that a database schema is typically not a database model. The schema must be en-
hanced by views to become a database model [36]. Since we have to use anyway views then
we should better extensively use horizontal decomposition beside vertical decomposition.



Schema Optimisation 5

unnatural for normal languages. Syntax, semantics, and pragmatics form a unit. The
syntax-semantics-separation principle finds its rigid continuation in the separation of
integrity constraints into classes that have some uniformity in their definition structure.
This separation principle has been found well-acceptable by programmers and logi-
cians. It is however completely counterintuitive [35]. Natural language use a holistic
semiotic approach and do not artificially separate units that form a semiotic holistic
statement. Additionally, constraints might have their own meaning [28] such as syntac-
tic functional dependencies compared to dependencies that represent semantical units.

The main deficiency is the constraint acquisition problem. Since we need a treat-
ment for sets a more sophisticated reasoning theory is required. One good candidate is
visual or graphical reasoning that goes far beyond logical reasoning [12].

Star and snowflake structures used in OLAP approaches are the basis for an ap-
proach that handles structures as a complex within its structure and its semantics in the
complex. With the advent of object-oriented and XML languages we learned lessons
on object identification [2] and the co-use of set-based classes with pointers. These
approaches can be considered as a starting point.

Let us extend the open problem (TIC7) (Real-life constraint sets [33]):

Problem 1. Provide a reasoning facility for treatment of heterogeneous sets of con-
straints instead of constraints from a given constraint class. Classify ‘real life’ constraint
sets which can be easily maintained and specified.

In [13] we realised that the classical Hilbert-type reasoning (premises allow to de-
rive a conclusion) should be replaced by another schema: some premises which are
supported by other constraints allow to derive a conclusion. This set-of-support reason-
ing can be based on graphical reasoning means or spreadsheet reasoning schemata.

1.5 The Storyline of the Paper

Several reasons can be observed why local normalisation may be inadequate. We shall
discuss some of them in the next Section. We restrict the discussion to relational database
technology and to conceptualisation through the extended entity-relationship model
[31]. Some of the (88 [sic!]) pitfalls of object orientation [39] and of XML orientation
have similar causes but are outside the scope of this paper. Normalisation theory is so far
exclusively built as a theory of vertical local normalisation. We might ask whether we
should consider global vertical normalisation. Or at least other kinds of local normali-
sation as well. The main target of normalisation of optimisation of the overall database
for all six targets. Instead of poly-optimisation for some of the six criteria we might use
a less strict form by optimisation of some of the database types and by denormalising
others.

Since poly-optimisation is typically unsolvable we develop a number of corrections
to normalisation approaches and a general approach to denormalisation as a kernel for
a general theory of optimisation.



6 Bernhard Thalheim

2 Solutions for Classical Normalisation Approaches

2.1 Refining Synthesis Algorithms

Rigidity of classical synthesis algorithms. The third step of the classical synthesis algo-
rithm typically groups all attributes that can be inferred from the same set of attributes
by functional dependencies. This approach groups then attributes that are potentially
conceptually completely independent into one group. An alternative approach could be
rigid non-grouping, i.e. the left hand side of a functional dependency X −→ Y is the
basis of k new types with attributes X ∪ Bi for Y = {B1, ..., Bk}, 1 ≤ i ≤ k. Both
approaches are extreme positions. We may observe, however, that some separation must
be maintained.

Let us consider a simple example [35] of a relational type R: given attributes
attr(R) = {A,B,D, F,G, I} and a set of functional dependencies
ΣR = {A −→ IG,D −→ FG, IAB −→ D, IF −→ AG}.

This FD set can be represented by the graph on the left side of Figure 1. This set can be
reduced by deleting IF −→ G from the graph since it is derivable through the edges
representing IF −→ A and A −→ G. Furthermore, the set ABI can be reduced since
the edge representing A −→ I already supports subset reduction. No other reduction
can be applied to the graph. We use the calculus for graphical reasoning [12] that is
complete and sound. We use dotted lines for the subset relationship among subsets of
attributes and arrows for functional dependencies.

I

IF

A

ABI

F

D

G
�

*

*
-

�

6
-

I

IF

A

AB

F

D

G
�

*

*
-

�

6

Fig. 1. The graph of the functional dependencies and the reduced cover of this set

We may directly derive a normalisation according to this graph reduction. Each con-
straint must be covered. We arrive with the synthesis algorithm to5:

R1 = ({A,G, I} , {A −→ GI, R1[AI] ⊆⊇ R2[AI]}),
R2 = ({A,F, I} , {A −→ I, FI −→ A, R2[F ] ⊆⊇ R4[F ]}) ,
R3 = ({A,B,D} , {AB −→ D, R3[D] ⊆⊇ R4[D], R1[A] ⊆⊇ R3[A]}) ,
R4 = ({D,F,G} , {D −→ FG, R1[G] ⊆⊇ R4[G]}) .

The set {A,B} is a key. We thus do not need an additional key type for the normalisa-
tion.

If we however take into account constraint maintenance and redundancy then we
arrive at a smaller and better schema with the type:

5 If we require that all inclusion dependencies are referential integrity constraints then
we need 12 types for normalisation that results in a foreign-key-faithful decomposi-
tion: R1[A], R1[I], R1[A, I], R1[A,G], R2[F ], R2[A, I, F ], R3[B], R3[A,B], R3[A,B,D],
R4[D], R4[G], R4[D,F,G] where the key of each new type Ri[X] := πX [Ri] is underlined.



Schema Optimisation 7

R′
1 = ({A,G} , {A −→ G, R1[A] ⊆⊇ R2[A]})

due to the validity of the following derivation (reduction rule):
R1[A, I] ⊆⊇ R2[A, I], R2 : A → I, R1 : A → GI

R1 1 R2 = R′
1 1 R2, R′

1 : A → G
R′

1 = πA,G(R1) .

This rule is based on general deduction rules and on equalities for the relational algebra:

Theorem 1 (General deduction for closed Horn formulas). A sound and complete
axiomatisation for closed Horn formulas ∀...(α → β) consists of
axioms

α → β
for all facets of substructures β ≼ α

,
augmentation rules for super-structures α+ and sub-structures β− α→β

α+→β−

for either β− ≼ β and α ≼ α+ or as well as α+ = α ⊔ γ and β− = β ⊓ γ ,
and

transitivity rules α→β, β→γ
α→γ for all connecting pairs (α → β,β → γ).

The proof of the theorem is based on the Boolean representation of the open first-order
predicate calculus and on properties of implications. The completeness uses the same
arguments as the classical FD completeness proof.

An alternative proof of the reduction rule is based on algebraic dependencies
[23, 30].

We observe that graphical synthesis would result in a better behaviour. This struc-
ture is represented in Figure 2. The hyper-network approach [24, 34] uses nodes as
Venn diagrams of subsets of the set of attributes and directed edges between the nodes.
The constraint set in Figure 1 is given by the hyper-network representation in Figure 2.
Compare this representation to the decomposition hypergraph for the classical synthesis
algorithm [17]. The hyper-network representation is rather simple to read. Each of the
edges must be represented by some new relation type. Moreover, the set {A,B} is a key
due to the graph node closure. Otherwise we may use a combination of nodes for the
graph node closure. The second minimal key is {I, F,B} which is not a node and thus
would have been added to the decomposition if we would not have represented the first
one. We notice that graphical reasoning is simpler for implications than Hilbert-type
calculi, e.g. [3, 14, 40].

Questions one might ask for normalisation theory and their research agenda. The clas-
sical normalisation theory is based on functional and multi-valued dependencies. Nor-
malisation synthesis algorithms are deterministic. The result depends on the order of
attributes and on the order of constraints considered in the algorithm. The minimal
cover is not unique for a given set of constraints (even not polynomial according to the
number of attributes in the worse case). We, thus, have a good number of opportunities
for a normalisation.
Question 2. Which normalisation opportunity should be the best one?
The solution cannot be to consider only one of them. We might used a pragmatistic solu-
tion however: choose the most performing one and keep the knowledge on alternatives.



8 Bernhard Thalheim

Fig. 2. Graphical normalisation depicted as hyper-network and decomposition hypergraph.

The classical approach is based on hypergraphs. Instead we should use hyper-networks
and meta hyper-networks [35] (see also Fig. 2).

Let us consider a very simple set Σ of functional dependencies for
R = ({A,B,C,D,E, F,G,H}, Σ) with
Σ = {A → B → C → AD,D → E → F → DG,G → H → G}.

Σ has more than 50 minimal covers. Similar examples can be given for results of nor-
malisation according to synthesis algorithms.
Observation 2. Attribute sets which are FD-equivalent can be given in an abstract
form, i.e. we consider in a set of constraints the complex [A,B] instead of {A →
B,B → A}.

The attribute-wise consideration might be appropriate for first normal form defini-
tions but it complicates reasoning on constraints.

We thus represent Σ by the rather simple FD set system {[A,B,C] → [D,E, F ] →
[G,H]}. It has 18 different BCNF normalisations (similar case in [16, 17].
Question 3. Why we should consider so many minimal covers and normal forms?

We note that multivalued dependencies are defined in the relational database theory
in a mathematical manner. They are far better expressed by entity-relationship mod-
elling languages [32] and far simpler to capture and to develop.
Question 4. Should we better develop a normalisation approach for entity-relationship
schemata? Should we better consider a schema for normalisation instead of type-wise
normalisation?

Good HERM schemata are typically the best normalisation. Folklore of ER modelling
claims that the best normalisation is obtained if the main target of conceptual mod-
elling is the specification of an ER schema. This claim is not valid in general since ex-
tended entity-relationship modelling languages such as HERM [31] are not cognitively
complete. The ER approach provides however a far better solution to normalisation
of relational schemata than normalisation theory, e.g. for multivalued and hierarchical
dependencies. Moreover, the structure is more natural and thus better to comprehend.



Schema Optimisation 9

A flaw of the first normalisation algorithms was corrected by a key composition
rule, i.e. if the decomposed relational structure does not have a constructed type which
contains some key of the old schema as a (sub-)structure then a new type is created
for one of the minimal keys and added to this relational structure. This rule is nothing
else as a decomposition for which a relationship type is added with a key that has
the property that it is overwriting the key product of related decomposed types. The
corresponding hyper-network has then nodes which are not incrementally layered and
thus need a connecting element which can be then used as a key. The hyper-network
approach also allows a generalised and less strict key composition rule.

2.2 Balancing Between Conceptualisation and Programming Adequacy

Student

6

?

Enrolls

Course � -Provides Script

�

6

Download
Record

The simple HERM schema

DownloadRecord.Enrolls.Course
= DownloadRecord.Provides.Course

Student

6

?

Enrolls

Course � -Provides Script

Download
Record

Θ�

6

The sophisticated HERM schema

Θ := Enrolls.Course 1Provides.Course

The representational conceptual schema

Student

?

-Enrolls Course �

?

Provides

Script�

6

-Download
Record

The “optimized” conceptual schema

⊇ ⊆

DownloadRecord[CourseID, ScriptID]
⊆ Provides[CourseID, ScriptID]

DownloadRecord[StudId, CourseID]
⊆ Enrolls[StudId, CourseID]

DownloadRecord = ({ StudId, ScriptID, CourseID,... }, ...)
Provides = ({ CourseID, ScriptID,... }, ...),
Enrolls = ({ StudId, CourseID,... }, ...),
Script = ({ ScriptID,... }, ...),
Course = ({ CourseID,... }, ...),
Student = ({ StudId, ... }, ...),

The logical relational schema
The conceptualisation of the relational schema through a simple but inadequate ER schema

Fig. 3. The ‘Janus’ schema cluster for conceptual modelling

Database design and development is often based on the three-layer architecture.
This architecture requires that the user can be supported by views defined on top of the
conceptual schema. The conceptual schema is mapped to the logical and to the physical
schemata. The last two are considered to be internal or implementation schemata. It is
well known in database design [27, 29] that the conceptual schema be represented by a
‘Janus’ schema, i.e. one schema (representational conceptual schema) that is used for



10 Bernhard Thalheim

conceptual representation, for view formulation and for conceptual programming and
another schema (optimized conceptual schema) that is used for implementation issues
including logical and physical programming. The two schemata are equivalent to each
other and are tightly associated with each other by transformation mappings. A typical
example of these two schemata is given in Figure 3. The example is taken from a script
server project. Students enrolled in a course may download scripts that are provided by
the course.

The optimised conceptual schema can be easily mapped to a structure that supports
smooth operating of the database. We can deduct from this schema the internal repre-
sentation, supporting structures such as indexes (in various kinds), internal concatena-
tion or splitting of relations, introduction of generalisations, the navigational structure
for access, the management of derived structures (derived attributes, views, macro-data
on top of the micro-data of the database), criteria for the selection of internal storage
and computational structures, the necessity for the introduction of artificial or surrogate
keys, and for clustering or separation of records. These parameters are used for tuning
and physical optimisation of the database. The sophisticated HERM schema uses the
Θ-join for the correct building of the relationship type that records downloads. The op-
timised conceptual schema is equivalent to this schema due to the equivalence of the
join decomposition and the inclusion constraints [31].

2.3 Accuracy of the Internal Database Structure

The internal database structure is ruled by the DBMS. The mappings from the concep-
tual schema to the internal schema must preserve a number of properties:

Preservation of content: The conceptual schema has been established by modelling
the application domain and highlights data that are going to be stored in a database.
The internal schema represents the same and only the same data that can be recorded
through the conceptual schema and is based on the database modelling language of
the platform assumed for implementation.

Preservation of access and modification: The access pathes and modification pathes
that are implicitly or explicitly assumed for the conceptual schema are mapped to
access and modification pathes that are entirely supported by the platform assumed
for the implementation.

Preservation of maintenance efficiency: Integrity constraints are given in a declar-
ative form in conceptual schemata. The efficiency of their maintenance is not con-
sidered. The (economic) value of constraints is neglected. Internal schemata must
provide mechanisms for efficient integrity maintenance.

The first property is an element of any database course and well considered in most
database books. The property can be treated on the basis of non-losslessness and de-
pendency preservation. It might be enhanced by the requirement that each projection
(or other range structure) should be needed for the reconstruction process. The second
property is mainly solved by the professional experience of database professionals. It is
typically not discussed in scientific publications and is an element of database operator
education. The third property is often neglected in database research. Database oper-
ators have a very simple solution for this property: they switch off all those integrity



Schema Optimisation 11

preserving processes that become a bottleneck at database production time and switch
on these constraints for a short time at the maintenance phase.

Preservation of access and modification is a fuzzy criterion since we often may not
assume that any access and modification can be forecasted at design time. The co-design
approach to database modelling [31] also takes into consideration functionality that can
be envisioned. Optimisation of the internal schemata is based on profiles of functions,
stored procedures and transactions (shortly processes) and on the cardinality profile of
the relations. The first profile provides information on the kind of the operation, the
frequency, the relations affected by the processes, the type of access (online, batch,
prefetch or ad-hoc) and the changes applied to the databases. The cardinality profile of
relations provides detailed information on the size of the relation (minimal, maximal
and average), on the changes of the size over time and the associations among relations
that must be maintained. Both profiles are compared with the modus of computation
(bath, online, ad-hoc), with performance expectations (execution time, throughput, pri-
ority), with visibility of performance gaps (depending on operations frequency, organi-
sation level of users, business process interaction) and with computation strategies for
the operations (kind of operation, scheduling, auxiliary facilities, selection and storage
alternatives, set sizes).

Decomposition approaches generate structures that easily support some of the con-
straints such as key constraints, domain constraints and key-based inclusion constraints.
Typically, the maintenance complexity of such constraint sets is not taken into account.
Moreover, decomposition algorithms may generate a large variety of decompositions
that are semantically equivalent but pragmatically and technologically different. Typical
normalisation algorithms are deterministic for a given set of functional dependencies,
for an order of attributes and an order of the dependencies. Changes in the the last two
orders result in different solutions of those algorithms.

2.4 Infomorphisms among Schemata

We use the notion of infomorphisms as the general foundation for schema optimisa-
tion. Infomorphisms have been used for schema modernisation in [15, 38]. A typical
example of an infomorphism is the association of a relational database schema and a
sophisticated XML schema (with a good number of additional constraints since XML
uses list (or tree) and reference types instead of values). The relational database schema
that is obtained by the classical forgetful mapping from an entity-relationship schema
is not an infomorphism since the ER structuring is richer than the relational structuring.

Let us consider two database schemata S1 and S2 consisting of database types of
the form T = (struc(T ), Σ,Σ∗) with a structure definition, inner integrity constraints
Σ defined on the type, and outer integrity constraints Σ∗ that constrain the type by
means of other types. Structure elements of types that are not defined by constructors
are called basic.

Let us consider only complete schemata, i.e. those which types are complete relative
to the outer constraints. Given furthermore, basic domain types B for the value founda-
tion of the database. We use the abstract data type approach for basic domain types and
presume for these types their value collections, their operations, and their predicates.



12 Bernhard Thalheim

An extended database schema D = (S,B, DOM) consists of a database schema
and an assignment DOM of basic elements of its types to basic domain types.

The set of all MOD((S,B, DOM)) of all finite databases on M consists of finite
collections of classes for each type for which all constraints are valid, which values of
objects in a class are given by DOM .

Let us now associate databases for different extended database schemata D1 and
D2 by mappings mappings p̂ut1,2 and p̂ut2,1 . These two mappings form an infomor-
phism of MOD(D1) and MOD(D2) if for i, j with {i, j} = {1, 2}, i ̸= j and for each
database DBi on MOD(Di) there exists a database DBj and on MOD(Dj) such that
p̂uti,j(DBi) = DBj from one side and p̂utj,i(DBj) = DBi from the other side.

We may extend this notion also to views defined on each of the database schemata.
The association among views can be based on the extract-transform-load (ETL) ap-
proach where extraction is based on a query language of the first schema, transforma-
tion is given by an infomorphism, and loading uses views which allow updates on the
second database schema.

This notion is very general one. Infomorphisms are essentially transformations of
one database to another one. These transformations are information-invariant in the
sense that any database object collection can be associated with one and only one
database object collection from the other extended database schema.

The infomorphism notion can be based on HERM schema operations ([31], Chapter
9.2.) in the case that we consider only classes with set semantics. The Σ∗ dependence
among types also includes inclusion constraints. Therefore, vertical normalisation can
be directly expressed in this approach. In this case, we can represent transformations
as graph-grammar rules which are defined on sub-schemata. Horizontal normalisation
uses separating selection σαi predicates which define a partition of singleton classes.
Deductive normal forms use for the mapping a reduction operation from one side and a
chase-like completion procedure for the second mapping.
Observation 3. Vertical normalisation, horizontal normalisation, and deductive nor-
malisation are specific variants of infomorphisms.

We conclude now that a theory of infomorphisms can subsume the classical re-
lational normalisation theory, especially vertical normalisation. It is, moreover, better
since the pairwise inclusion constraints after decomposition must be integrated into the
decomposed schema. Infomorphisms can be partially supported by schema construction
rules for extended entity-relationship schemata. These rules follow the graph grammar
approach.

2.5 Global and Local Vertical Normalisation

The synthesis algorithm is also based on structure minimality, i.e. the type structures
form a Sperner set in the sense that struct(T1) ̸⊑ struct(T2) is not valid for any
two types T1 and T2 of a schema S. Structure minimality reduces the maintenance.
It might, however, provide its advantages as we already illustrated for the RM/V2 ap-
proach. Moreover, additional structures such as overlapping and subtype indexes (as
hedges of indexes) may support performance of computation and also input-output to a
real essential extent.



Schema Optimisation 13

Global normalisation concurrently and coherently considers all types of a database
schema. The example in [31] allows to derive five different results of a normalisation of
a small schema. Each of these schemata have their advantage.

We may define a result of a normalisation process that is applied to an entity-
relationship schema as a type-wise transformation of the given schema by an info-
morphism, i.e. the types of a schema are (vertically or horizontally) decomposed to a
schema in which all types are in certain α-normal form (α ∈ {1, 2, 3, 4, 5, 6, BCNF}).
Since decomposed types may be a substructure of another one, we use these types only
once. Entity, cluster, and relationship types are transformed by graph grammar rules
[31]. The decomposition of a relationship type follows the procedure developed in [22].

A schema S is a global α-normal form schema if all its types are in α-normal form
and if the schema is structure-minimal. Within a platform setting P, we add the require-
ment that all its integrity constraints can be supported by declarative means provided
by the platform. Otherwise, the schema is called (α,P)-unnormalised.
Observation 4. Global normalisation is based on an infomorphism.

3 Denormalisation

... There are many database experts, particularly the more academic ones, who
feel that any talk about denormalising a database is like a race car driving – a
great way to mangle or kill yourself even if you know what your are doing. [8]

3.1 State-Of-the-Art for Denormalisation

We observe two camps where the first one is well acknowledged.

No denormalisation at all! Almost all6 textbooks and monographs in the database
area require strict normalisation. Local (vertical) normalisation of a singleton data-
base type is well reflected in most database books (e.g. [1, 5, 19, 41]) and publi-
cations, most database courses, and in actual database practice. It is considered as
one of the pearls of database research and known to almost everybody who knows
database technology. The provenance and acknowledgement is based on the facility
it provides: keeping as much as possible locally and globally supporting only those
processes that are inherently global. Both independence concepts of databases (con-
ceptual independence and implementation independence) are based on localisation.
[11] advocates lazy normalisation based on relevant and quickly to capture FD’s,
i.e. somehow liberal normalisation7 for which not all functional dependencies that
are valid in database schema are considered but only the really important ones8.

6 We know so far only less than a handful books that do not require such.
7 Many constraints can be omitted since integrity is also often managed through proper interfac-

ing and exchange procedures without a chance for inconsistency as long as the data modifica-
tion is exclusively based on interface or exchange view data. The development of a theory for
this approach is one of the lacunas of database theory.

8 We avoid the exponential size trap for sets of functional dependencies with this toleration of
incompleteness of constraint sets. We consider only essential ones and completely or partially
neglect others. This approach can be extended to a theory of robust normalisation.



14 Bernhard Thalheim

Additionally, almost valid FD’s might be more important than FD’s that happens to
be valid. The treatment of such dependencies would be based on the introduction
of artificial identifiers, i.e. a heavy object identity pollution. A far better solution is
horizontal decomposition with a class for which all identities are valid and an ex-
ception class in which the few exceptions are recorded. Horizontal decomposition
can be combined with union views as long as the exceptions are disjoint from the
normal case.

Liberal and controlled denormalisation whenever it is really necessary: Very few pa-
pers and books advocate or consider at least to some extent denormalisation (e.g.
[6–8] or the discussion in [31]). The three central quality criteria for database in-
stallations are, however, performance, performance, and performance. The classical
vertical local normalisation is useful as long as any casual user may query by any
casual query at any time without considering performance. However, a database
system contains of a (or a number of) DBMS with a number of databases on top of
which a large massive of business procedures has been developed. These business
procedures form the main part of the profile of the database. Casual queries are
rather exceptions. The definition that is used for denormalisation is typically based
on application of the natural join operator to relational types9.
Our consulting experience and also observations on the why’s for OLAP and data
warehouse applications drives us to a completely different picture in many appli-
cations. The first setting of a database application is very often based on normali-
sation. This database becomes then step by step denormalised after the database is
fully populated and operating. Already after one year of full operation, the database
is partially normalised and also partially denormalised.

3.2 A Matter of Definition

Denormalisation has not yet been defined in the literature despite [4]. Essentially, we
find two approaches (e.g. in [6, 8, 10] for simple forms):

Denormalisation as the inverse of normalisation: Given a schema with α-normalised
types. Any non-trivial combination (typically by a join operation) of two or more
types that defines an infomorphism is a denormalisation.

Denormalisation as the extension of a schema: Given a schema S. Any extension of
the schema that is defined by an infomorphism is called denormalisation.

Typical extension operations are [8]: prejoined types for types with complex queries,
reports added to the schema, mirrored types, type splitting by horizontal decomposition,
partial combination of types, introduction of controlled redundancy for data, repeating
groups, hierarchy tables, and overloading of types.

Given a (α,P)-normalised schema. Any infomorphism transformation of this schema
to an unnormalised one is called denormalisation. Index and other supporting means
thus do not change the normalisation status of a schema.

We may consider at the same time normalised and denormalised schemata. A theory
and techniques for denormalisation for physical schemata based on normalised concep-
tual (or logical) schemata have been developed in [29]. [20] lists some key effects of

9 The validity of pairwise inclusion constraints is also neglected in this case.



Schema Optimisation 15

thoughtful denormalisation: definite improvement in query time, a potential increase in
update time or in storage space, a potential loss of data integrity due to certain dele-
tions, the necessity for program transformations for all relevant queries and the over-
head needed to reorganise some tables. Strict local normalisation may be inadequate.
Denormalisation may result in a more complex maintenance complexity. It may also
lead to complications for query formulation. It becomes easier to formulate incorrectly
a query to a request meaning that the query does not correspond to the request. Often
tricky view creation is used for denormalised tables. The denormalisation is considered
a method for performance improvement despite discussed so far advantages of normal-
isation.

Our definition of denormalisation does not allow composition by equi-join since we
have to avoid the NULL marker problem. NULL markers must be treated depending on
their specific meaning, their occurrence, and their impact on computation. We however
support co-existence of vertical and horizontal normalisation and denormalisation.

Therefore, it seems that normalisation is the best way for optimisation of database
behaviour. A theory of denormalisation has not yet been proposed as far as we know.
Question 5. What are the denormalisation criteria? Is there any theory for it? Is
there any ‘playground’ approach for consideration of (de)normalisation?

Instead, a number of heuristic rules for denormalisation are provided. These rules
are based on observations for performance traps for some of the platforms and often use
the 80/20% rule.

3.3 Denormalisation Driven By Optimisation

We base our approach on essentials of database performance forecasting, tuning tech-
niques, and database distribution into fragments [4, 26]. Our approach has been imple-
mented in an industrial setting and for performance improvement for a very large cluster
of databases [4, 37].

Let us first define the performance portfolio of a database application and the profile
of a DBMS. A portfolio consists of a set or collection of tasks. A profile of a DBMS
specifies the services and the capability of a DBMS. The extended database application
schema consists of the database schema, the business processes and the characterisation
of the application demand by a characterisation of the kind of computation based on
the description of the operations involved, the operation support, and the data volumina
transferred for support of computation, the visibility description of processes for the
business user that includes frequency of operations and their relation to business pro-
cesses, the description of the modes of computation such as online, batch and interactive
mode of computation or deferrable and immediate application of computation, the per-
formance properties and quality based on the expected execution time for online etc.
modes, based on the throughput expectation for queries, modifications and transactions,
based on restrictions such as suitability or response time, and based on priority claims
issued by the business user, the criticality level of the processes.

We derive now the measures for this application, a database schema, and a DBMS:

Data modification costs: Given a set M of modification operations mi with their weight
wmi in the application, the frequency of application hmi of each operation, their



16 Bernhard Thalheim

complexity of realisations m∗
i in the DBMS P , and the complexity of integrity

maintenance smi for the operation mi.
The complexity m∗

i can be computed type-wise for types T from the schema S, i.e.
by m∗

iT .
The modification complexity modify(S,P,M) is given by the formula:∑

mi∈M

((
∑
T

(m∗
iT + smi)× wmi)× hmi)

Query cost: Given a set Q of queries qj with their weight wqj in the application, the
frequency of application hqj of the query qj , the complexity q∗j of the realisation
of qj , and the complexity of integrity query imposed integrity maintenance sqj for
the query qj .
The complexities can be computed type-wise for the types T from the schema S,
i.e. by q∗iT .
The query complexity querymodify(S,P, Q) is given by the formula:∑

qj∈Q

((
∑
T

(q∗jT + sqj)× wqj)× hqj)

The schema complexity complexity(S,P,M,Q) is the sum of the modification com-
plexity and of the query complexity.

An infomorphism can be now extended to the modification and to the query operations
under consideration of the base types and the domain assignments (B, DOM ).

We can now compare the complexity of the schema according to the modification
and the query portfolio of a given application.

Given two extended database schemata D1 = (S1,B1, DOM1) and D2 = (S2,B2, DOM2)
and an infomorphism (p̂ut1,2, p̂ut2,1) for these two schemata; further, given a platform
P , and a modification and query portfolio.

The extended database schema D1 performs better than the database schema D2 in
a given setting P for a portfolio M ∪Q if

complexity(S1,P,M,Q) << complexity(S2,P,M,Q) .

We use << as a denotation for an essential discrepancy of the two complexities.
We may thus derive the normalisation and denormalisation criterion for schema

optimisation for given schemata where S1 is (α,P)-normalised and S2 is (α,P)-de-
normalised:

Use the normalised schema S1 if S1 performs better than S2 in the given setting.
Use the denormalised schema S2 if S2 performs better than S1 in the given setting.

We neglect within this approach the existence of casual queries and of casual data
modification. This approach, however, supports typical applications where the retrieval
and also the modification is well-defined at the development orr at later maintenance
time.
Observation 5. The optimisation approach to normalisation and denormalisation al-
lows to coherently meet demands for the six reasons why we should normalise.



Schema Optimisation 17

4 Conclusion

4.1 Summarising

Normalisation is considered to be one of the pearls of database theory and technology.
We mainly consider, however, local vertical normalisation instead of global normalisa-
tion or horizontal normalisation. It seems that normalisation theory is a body of knowl-
edge that is completely settled and well understood in most of its aspects. We discuss
on the basis of simple examples that this impression is not valid. Normalisation is not
well understood. It needs a lot of extensions and corrections. It must also be completely
revised for the modern DBMS technology. One essential revision is the flexible choice
for set-based or multi-set-based semantics. This extension opens the path towards list,
pointer, multi-list, etc. semantics that is supported nowadays by systems.

Normalisation is often a performance bottleneck. Repairing this bottleneck is of-
ten done on the fly. In practice, skilled consultancy uses here a hands-on, experience-
backed approach. The DAMA10 community and database forums widely discuss in
closed groups the experience some people got. We claim that most larger database ap-
plications allow coexistence of partial normalisation (in both vertical and horizontal
style) and partial denormalisation.

This paper aims now to highlight the path to a coherent theoretical underpinning for
this kind of coexistence. We first discussed problems of classical normalisation based
on the verticality and locality approach for simple constraints such as functional and
multivalued dependencies. The problems discussed can be resolved by pragmatical ap-
proaches. Some of them are discussed in the paper. We are not capable to present a full
theory which would require a two-volume monograph. So, we restricted only on some
parts of this theory.

Normalisation can be understood as a special kind of optimisation. As such it should
be treated as “a commandment” [10] unless the database application requires high query
performance. Optimisation of schemata is based on some kind of equivalence. We use
infomorphisms as one solution for treatment of equivalence. This solution requires deep
knowledge of the the given database application. It can be extended to handling of ro-
bust constraint sets what is, however, an open issue. It can also be extended to handling
by basic-structure normalisation that is neatly supported by interface and exchange tol-
erance as long as the interfaces and the exchange means provide a support for the other
optimisation (or more specifically normalisation) requirements.

4.2 Open Problems

The list of open problems is slowly shrinking and quickly expanding at the same time.
We have collected open problems since MFDBS’8711, have extended this list, and ob-
served whether some of them have been resolved. The latest version in [33] contains 22
open problems which are directly related to normalisation theory.

10 www.dama.org
11 With 21 open problems from which 13 are not yet solved.



18 Bernhard Thalheim

Normalisation theory is currently a theory for system structures in the small. Global
normalisation will be theory for system structures in the large. The world is now chang-
ing to systems in the web and systems that are based on completely different perfor-
mance challenges such as big data massives. Normalisation in the world is a really big
issue for future research. It goes far beyond theories we know for distributed databases.

Revolution instead of unworthy extension. Already research on the OO identifier and
the OID pollution has been demonstrating that parts and pieces of database theory must
be revised. Many assumptions taken for granted are not valid anymore and will never be
valid again for challenging applications such as big data massives. Set semantics was a
nice tool in the past. It is not the right one - at least for SQL applications and multi-sets
in practice. we might ask why not also to use multi-list semantics. Big data requires a
different FD logic.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison-Wesley, Reading,
MA, 1995.

2. C. Beeri and B. Thalheim. Identification as a primitive of database models. In Proc. FoM-
LaDO’98, pages 19–36. Kluwer, London, 1999.

3. A. A. Benczúr, A. Kiss, and T. Markus. On a general class of data dependencies in the
relational model and its implication problems. Computers & Mathematics with Applications,
21(1):1 – 11, 1991.

4. M. Bick. Denormalisierung. Master’s thesis, CAU Kiel, Dept. of Computer Science, 2015.
5. J. Biskup. Foundations of information systems. Vieweg, Wiesbaden, 1995. In German.
6. S. Buxton, L. Fryman, R. H. Güting, T. A. Halpin, J. L. Harrington, W. H. Inmon, S. Light-

stone, J. Melton, T. Morgan, T. P. Nadeau, B. O’Neil, E. J. O’Neil, P. E. O’Neil, M. Schneider,
G. Simsion, T. J. Teorey, and G. Witt. Database Design - Know It All. Morgan Kaufmann,
2008.

7. J. Celko. Joe Celko’s SQL for smarties - Advanced SQL programming. Morgan Kaufmann,
San Francisco, 1995.

8. J. Celko. Joe Celko’s Data and Databases: Concepts in Practice. Morgan Kaufmann, 1999.
9. E. F. Codd. The relational model for database management (version 2). Addison-Wesley,

Reading, MA, 1991.
10. C. J. Date. Database Design and Relational Theory - Normal Forms and All That Jazz.

O’Reilly, 2012.
11. C.J. Date. Go Faster – The transRelational approach to DBMS implementation. C.J. Date &

Ventus Publishing ApS, 2011.
12. J. Demetrovics, A. Molnar, and B. Thalheim. Graphical and spreadsheet reasoning for sets

of functional dependencies. In Proc. ER’2004, LNCS 3255, pages 54–66, 2004.
13. J. Demetrovics, A. Molnar, and B. Thalheim. Graphical and spreadsheet reasoning for sets

of functional dependencies. Technical Report 0402, Kiel University, Computer Science In-
stitute, http://www.informatik.uni-kiel.de/reports/2004/0402.html, 2004.

14. A. Kiss and T. Markus. Functional and inclusion dependencies and their implication prob-
lems. In 10th Int. Sem. on DBMS, pages 31–38, Cedzyna, Poland, 1987.

15. M. Klettke and B. Thalheim. Evolution and migration of information systems. In The
Handbook of Conceptual Modeling: Its Usage and Its Challenges, chapter 12, pages 381–
420. Springer, Berlin, 2011.



Schema Optimisation 19

16. H. Köhler. Autonomous sets - A method for hypergraph decomposition with applications in
database theory. In FoIKS 2008, volume 4932 of Lecture Notes in Computer Science, pages
78–95. Springer, 2008.

17. H. Köhler. Autonomous sets for the hypergraph of all canonical covers. Ann. Math. Artif.
Intell., 63(3-4):257–285, 2011.

18. H. Köhler and S. Link. SQL schema design: foundations, normal forms, and normalization.
Information Systems, 76:88–113, 2018.

19. M. Leonard. Database design theory. MacMillan, Houndsmills, 1992.
20. S. Lightstone, T. Teorey, and T. Nadeau. Physical database design. Morgan Kaufmann,

2007.
21. J. A. Makowsky and E. V. Ravve. Dependency preserving refinements and the fundamental

problem of database design. DKE, 24(3):277–312, 1998. Special Issue: ER’96 (ed. B. Thal-
heim).

22. H. Mannila and K.-J. Räihä. The design of relational databases. Addison-Wesley, Woking-
ham, England, 1992.

23. J. Paredaens, P. De Bra, M. Gyssens, and D. Van Gucht. The structure of the relational
database model. Springer, Berlin, 1989.

24. G.P. Popkov and V.K. Popkov. A system of distributed data processing (In Russian). Vestnik
Buryatskogo Gosudarstvennogo Universiteta, (9):174–181, 2013.

25. K.-D. Schewe and B. Thalheim. NULL value algebras and logics. In Information Modelling
and Knowledge Bases, volume XXII, pages 354–367. IOS Press, 2011.

26. D. E. Shasha and P. Bonnet. Database Tuning - Principles, Experiments, and Troubleshoot-
ing Techniques. Elsevier, 2002.

27. G. Simsion and G.C. Witt. Data modeling essentials. Morgan Kaufmann, San Francisco,
2005.

28. O. Sörensen and B. Thalheim. Semantics and pragmatics of integrity constraints. In
SDKB’11, LNCS 7693, pages 1–17. Springer, 2013.

29. M. Steeg. RADD/raddstar - A rule-based database schema compiler, evaluator, and opti-
mizer. PhD thesis, BTU Cottbus, Computer Science Institute, Cottbus, October 2000.

30. B. Thalheim. Dependencies in relational databases. Teubner, Leipzig, 1991.
31. B. Thalheim. Entity-relationship modeling – Foundations of database technology. Springer,

Berlin, 2000.
32. B. Thalheim. Conceptual treatment of multivalued dependencies. In ER’2003, LNCS 2813,

pages 363–375, 2003.
33. B. Thalheim. Open problems of information systems research and technology. In Invited

Keynote, BIR’2013. LNBIB 158, pages 10–18. Springer, 2013.
34. B. Thalheim. Conceptual models and their foundations. In Proc. MEDI2019, LNCS 11815,

pages 123–139. Springer, 2019.
35. B. Thalheim. Semiotics in databases, keynote paper. In Proc. MEDI2019, LNCS 11815,

pages 3–19. Springer, 2019.
36. B. Thalheim and M. Tropmann-Frick. The conception of the conceptual database model. In

ER 2015, LNCS 9381, pages 603–611, Berlin, 2015. Springer.
37. M. Tropmann and B. Thalheim. Performance forecasting for performance critical huge

databases. In Proc. EJC 2010, pages 214–233, Jyväskylä, 2010.
38. Q. Wang and B. Thalheim. Data migration: A theoretical perspective. DKE, 87:260–278,

2013.
39. B. F. Webster. Pitfalls of object-oriented development: a guide for the wary and entusiastic.

M&T books, New York, 1995.
40. Z. Wei and S. Link. Embedded functional dependencies and data-completeness tailored

database design. PVLDB, 12(11):1458–1470, 2019.
41. C.-C. Yang. Relational Databases. Prentice-Hall, Englewood Cliffs, 1986.


