
INFORMATION AND CONTROL 56, 154-173 (1983)

The Implication Problem for
Functional and Inclusion Dependencies

JOHN C. MITCHELL*

Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

There are two implication problems for functional dependencies and inclusion
dependencies: general implication and finite implication. Given a set of depen-
dencies 2;U {c~}, the problems are to determine whether ~ holds in all databases
satisfying 22 or all finite databases satisfying 22. Contrary to the possibility
suggested in Casanova, Fagin, and Papadimitriou ("Proceedings, 1st ACM Conf.
on Principles of Database System," pp. 171-176, 1982), there is a natural,
complete axiom system for general implication. However, a simple observation
shows that both implication problems are recursively unsolvable. It follows that
there is no recursively enumerable set of axioms for finite implication.

1. I N T R O D U C T I O N

Functional dependencies have been discussed extensively in the literature
on relational databases (e.g., Armstrong, 1974, Beeri and Bernstein, 1979,
Beeri, Fagin, and Howard, 1977, Casanova, Fagin, and Papadimitriou,
1982). The ubiquitous example of a functional dependency is the typical
correspondence between employees and managers. Since every employee has
precisely one manager, any database of office personnel contains a function
between its employees and managers. In other words, the attribute
E M P L O Y E E functionally determines the attribute M A N A G E R . Formally,
this is written E M P L O Y E E - ~ M A N A G E R . For functional dependencies,
finite and general implication coincide. Implication for functional depen-
dencies has a well-known axiomatization (Armstrong, 1974) and an efficient
decision procedure (Beeri and Bernstein, 1979). Inference rules and decision
procedures have also been developed for functional dependencies in
combination with various other dependencies (e.g., Beeri et al., 1977,
Yannakakis and Papadimitriou, 1982).

Although inclusion dependencies are common in database practice (Beeri
and Korth, 1982, Chen, 1976, Codd, 1980, Fagin, 1981), the theoretical
properties of inclusion dependencies have received relatively little attention

* The author was supported by a fellowship from the National Science Foundation.

154
0019-9958/83 $3.00
Copyright © 1983 by Academic Press, lnc.
All rights of reproduction'in any form reserved.

FUNCTIONAL AND INCLUSION DEPENDENCIES 155

until quite recently. An inclusion dependency arises in the EMPLOYEE and
MANAGER database. In a typical corporation, every MANAGER is also
an EMPLOYEE. Hence the set of employees in any office database will
include the set of managers in the database. This inclusion dependency is
written MANAGER G EMPLOYEE. As for functional dependencies,
implication and finite implication coincide for inclusion dependencies.
Recent theoretical papers on inclusion and functional dependencies include
Casanova et al. (1982) and Johnson and Klug (1982). In particular,
Casanova et al. (1982) describes the interaction between functional and
inclusion dependencies and discusses previous work by other authors. In
Casanova et al. (1982), a straightforward set of inference rules for inclusion
dependencies is presented and proved complete. Furthermore, the implication
problem for inclusion dependencies is shown to be PSPACE-complete (cf.
Garey and Johnson, 1979).

General implication and finite implication differ when functional depen-
dencies and inclusion dependencies are considered together (Casanova et al.,
1982). Since we will be concerned most often with general implication, the
term implication will refer to general implication unless otherwise specified.

Implication for functional and inclusion dependencies has an unusual
property, as shown by Casanova et al. (1982). A dependency 6 follows from
a set of dependencies Z by k-ary implication if there is some subset of k
dependencies from 27 that implies 6. In Casanova et al. (1982), the authors
show that for every (sufficiently large) integer k, there is a set of functional
and inclusion dependencies which is closed under k-ary implication but not
closed under implication. This theorem suggests that there is no natural,
complete axiom system for functional dependencies and inclusion depen-
dencies together. This is because a single inference rule generally yields a
single consequence of k antecedents. Furthermore, there is some fixed upper
bound on k for the entire system. Thus most axiom systems are complete
only for k-ary implication. Since k-ary implication for functional and
inclusion dependencies differs from implication, no straightforward, simply
presented axiom system of the usual sort is likely to be complete.

This paper presents axioms and inference rules that are complete for
general, but not finite, implication. The rules differ from those considered by
Casanova et al. (1982) in two respects. A relatively minor difference is that
inclusion dependencies are allowed to contain sequences of attributes with
duplicate elements. This seems natural, and gives inclusion dependencies
slightly greater expressive power. Specifically, equality may be expressed
using inclusion dependencies. A more important difference is that one
inference rule yields dependencies which mention attributes that are not used
in the hypotheses. This attribute introduction rule distinguishes the inference
system from the variety considered by Casanova et aI. (1982). The inference
rules of the system are all 3-ary since each rule yields a single new conse-

156 JOHN C. MITCHELL

quent by inspection of a most three antecedents. However, attribute
introduction is not sound in the usual sense. The inference system is also
"universe unbounded" (cf. Vardi, 1982) since the set of attributes used in a
single deduction may be arbitrarily large.

The attribute introduction rule allows new attribute names representing
"derived" attributes to be introduced into deductions. An example will
illustrate one intuitive interpretation for the new attribute names. Consider a
database of employees, managers and salaries. We can abbreviate the names
of the employee, manager, and salary attributes to EMP, MGR, and SAL.
Each tuple, or row in the database "table" lists an employee, his or her
manager, and the employee's salary. Since every employee has a single
salary, we have EMP--* SAL. In addition, since every manager is an
employee, MGR _~ EMP. As a consequence, the database associates a single
salary with each manager. To find the salary of a manager, say Bob, we find
a tuple listing Bob as an employee, then look up the salary given in that
tuple. Since MGR G EMP, we know that Bob is somewhere in the relation as
an employee. Because EMP--* SAL, the salary we find is uniquely deter-
mined. To describe the fact that MGR uniquely determines "manager
salary," we may add a new attribute MSAL to the database and write
MGR ~ MSAL. The entries in the new column MSAL, with

MGR, MSAL G EMP, SAL

are completely determined by the employee, manager and salary entries in
the original database. As will be shown in Section 3, this follows from the
fact that

MGR c EMP and EMP ~ SAL.

The attribute introduction rule simplifies reasoning about functional and
inclusion dependencies by introducing new attributes like MSAL. The entries
of the new attributes may be thought of as computed or derived from the
entries of the original database. Intuitively, the main use of new attributes in
proofs lies in the possibility of proving that they are equivalent to original
attributes.

One way of viewing the new attribute MSAL is as an abbreviation for an
attribute expression in an extended dependency language. This view leads to
a simple proof of undecidability for both the finite and general implication
problems. Any relation satisfying EMP--* SAL contains a function between
its employee entries and its salary entries. We could name this function by
putting braces {, / around the functional dependency and write

SAL = {EMP ~ SAL}(EMP)

to mean that the salary entry in any tuple (or "row") of the database is the

FUNCTIONAL AND INCLUSION DEPENDENCIES 157

result of applying the /EMP ~ SAL} function to the employee entry in that
tuple. This function {EMP~ SAL} is related to the new attribute MSAL
since it is the "rule" for computing MSAL entries, i.e.,

MSAL = {EMP ~ SAL}(MGR).

We know that each manager is in the domain of {EMP-~ SAL / since
MGR ~ E M P . Instead of using new attribute names like MSAL in
deductions, we could use applicative expressions built from original attribute
names.

The use of attribute expressions leads one to thinking of inclusion depen-
dencies as statements about functions named by functional dependencies. For
example, if we assume that A--*B and C ~ D , then the dependencies
EF ~ AB and EF ~ CD can be interpreted as statements about the functions
tA ~ B } and {C ~ D I. These two inclusion dependencies imply that

F = {A-, B}(E) and F = { C ~ D t (E).

This forces {A ~ B } and { C ~ D } to agree on all entries in the E column of
the database. If the domain of {C-~ D} is in the range of {A ~ B}, there are
also dependencies which express properties of the Composition
{A -~ B} o {C--* D}.

In a sense, functional and inclusion dependencies are intractable because
these dependencies may make statements about compositions of functions.
The implication problem for monoids (word problem) can be reduced to the
general implication problem for functional and inclusion dependencies by
translating equations between compositions of functions into dependencies.
The same translation also reduces implication over finite monoids to the
finite implication problem for dependencies. Since the implications valid over
all finite monoids are not recursively enumerable (Gurevich, 1966, Gurevich
and Lewis, 1982), there is no complete, recursively enumerable
axiomatization for finite implication of inclusion dependencies and functional
dependencies, i

2. DATABASES AND DEPENDENCIES

A relational database consists of a set of relations. To keep the notation
simple, all inference rules presented in this paper are written for functional
and inclusion dependencies which mention only one relation. All the rules
can be rewritten to apply to arbitrary database schemes; see Casanova et al.
(1982) for examples of dependencies involving more than one relation. The

i Both undecidability results have also been obtained independently by Chandra and Vardi
using different methods of proof (Chandra and Vardi, 1983).

158 JOHN C. MITCHELL

completeness proof in Section 4 is also easily extended to arbitrary databases
of nonempty relations.

Formally, a relation name R has associated attributes R[1], R[2] In
practice, attributes have meaningful names like EMPLOYEE, M A N A G E R ,
etc., but for the purposes of this paper the integers 1, 2 do just fine.
Infinitely many attributes are used so that attribute introduction is easy to
formalize. A relation r is a set of tuples. A tuple t E r is a sequence of entries
(a s , a2,...). We write t[i] to denote the ith entry of t. I f X is a finite sequence
of attributes (X I , X 2), then t[X] denotes the sequence of entries (t[X~],
t[Xz],... } and IX[denotes the length of X. Note that an attribute may appear
more than once in X. We write r[Y] for {t[Y] It ~ r}. A relation isfinite if it
consists of finitely many tuples.

Following common convention, capital letters from the beginning of the
alphabet A, B, C,... will be used to denote single attributes while capital
letters from the end of the alphabet U, V, W, X,... will denote nonempty
sequences of attributes. Lowercase s and t, possibly with subscripts, will
denote tuples and r a relation.

A relation r ' is an A-variant of r if there is a b i j e c t i on f from r to r ' such
that for all t C r and all attributes B 4:A, we havef(t)[B] = t[B]. Intuitively,
an A-variant of a relation r is another relation which differs from r only on
attribute A.

A functional dependency is an assertion of the form X ~ Y, where X and Y
are nonempty sequences of attributes. A relation r satisfies X-~ Y if, for any
tuples s and t in r, s[Y] = t[X] implies s[Y] = t[Y]. An inclusion dependency
is an assertion of the form X c_ y. A relation r satisfies X % Y if r[X] c_ r[Y].
The expression

Z ~ a

means that every relation satisfying S also satisfies a. The notation
27 ~fin~te a means that a holds in every finite relation which satisfies S.

3. ATTRIBUTE INTRODUCTION RULES

The attribute introduction inference system combines several known rules
for functional dependencies or inclusion dependencies together with an
equality rule and three new rules involving both kinds of dependencies. 2 The
salient new rule of the system is the attribute introduction rule,

F rom U c V and V ~ B derive UA ~_ VB.

ZTwo combined rules, listed as (FI1) and (FI2), were discovered independently by the
author and by Casanova et al. (1982). The functional dependency rules (F1)-(F3) are essen
tially from Armstrong (1974) and the inclusion dependency rules (I1)~(I3) from Casanova et
al. (1982). The functional dependency rules of Armstrong (1974) produce dependencies
between sets of attributes, rather than ordered sequences of attributes.

FUNCTIONAL AND INCLUSION DEPENDENCIES 159

This rule is not sound in the usual sense since there exist relations satisfying
U c V and V ~ B which do not satisfy UA ~ VB. However, with a definition
of proof which ensures that A is "new," all proofs of the system will be
sound. Proofs will be defined after the axioms and rules are presented.

Functional Dependencies

Reflexivity axiom.
(F 1) X-+ Y if all attributes in Y appear in X.

Augmentation.
(F2) From X - , Y derive X W - ~ YZ when all attributes in Z appear in

W.
Transitivity.

(F3) From X--, Y and Y-, Z derive X-~ Z.
Permutation and redundancy.

(F4) From X ~ Y derive U ~ V, where U and V list precisely the same
attributes as X and Y, respectively.

Inclusion Dependencies

Reflexivity axiom.
(I1) X ~ _ X

Permutation, projection, and redundancy.
(I2) From A 1 A n ~ B ~ Bn derive Ai, Aik~Bil , . . . ,Bi~ , where

1 <~ij<<,n for all j .
Transitivity.

(I3) From Xc_ Y and Y ~ Z derive X c _ Z .
Substitutivity of equivalents.

(I4) From AB % CC and a derive r, where r is obtained from a by
substituting A for one or more occurrences of B

Functional and Inclusion Dependencies

Pullback.
(FI1) From U V ~ X Y and X ~ Y derive U ~ V, where IxI =]u[.

Collection.
(FI2) From U V ~ X Y , U W ~ X Z and X ~ Y derive U V W ~ _ X Y Z ,

where IX] = I gl.
Attribute introduction.

(FI3) From U__ V and V ~ B derive UA c_ VB.
In an application of (FI3) where U_~ V and V ~ B are used to derive
UA ~_ VB, the attribute A is called the new attribute of the proof step. In
order for the rules above to be sound, we need to restrict the choices of new
attributes in proofs. Formally, proofs are defined as follows. Let S denote a
set of functional dependencies and inclusion dependencies. A proof from S is
a sequence of dependencies (a I ~,) such that:

160 JOHN C. MITCHELL

(i) Each cr i is either an element of S, an instance of (F1) or (I1), or
follows from one or more of the preceeding dependencies :r I a i_l by a
single rule.

(ii) If a i follows from preceding dependencies by attribute introduction
(rule (FI3)) then the new attribute of a~ must not appear in S or a I as_ r.

An inclusion or functional dependency a is provable from S, written 22 t- ~r if
there is some proof (cr~ crn) from 22 with c r = a n and such that no
attributes in ~r are new in cry,..., %.

THEOREM 1 (Completeness). Let S U {~7} be a set of functional depen-
dencies and inclusion dependencies. Then 27 ~ a iff S ~- a.

An induction on the lengths of proofs (0" 1 , an) from S shows that if a
relation r satisfies X, then there is a relation r ' which differs from r only on
new attributes of the proof and which satisfies each ai. It follows that the
inference system is sound. The only complicated cases of the induction are
the cases for (FI3) and (14). The attribute introduction case is discussed
below and equality subsequently. The full proof of soundness is left to the
reader.

The new attribute A in the attribute introduction rule should be thought of
as implicitly existentially quantified. Attribute introduction yields sound
proofs since for every relation r satisfying U_~ V and V ~ B , there is an A-
variant r ' of r satisfying UA ~ VB. The entries in r ' [A] are uniquely deter-
mined by r[UVB]. Specifically, we can construct r ' from r as follows. For
any sequence of entries (U 1 , . . . , Uk) ~ r[V], define g(v 1 , v~) by

@I , V k , g (v 1 Vk)) C r[VB].

Since r satisfies V-+B, this condition defines a function g uniquely.
Furthermore, since r satisfies U_c V, the projection r[U] is a subset of the
domain of g. Using g, we can define r ' by

r' = {t'[t'[A] = g (t ' [U]) and 3t C r such that VC ~ A, t[C] = t'[C]}.

Then r' is an A-variant of r and r ' satisfies UA ~_ VB. Thus for every r
satisfying U_~ V and V ~ B , there is an A-variant r ' satisfying UA ~_ VB.

In Mitchell (1983), a slightly different formulation of the attribute
introduction rule is compared to an existential instantiation rule in a natural
deduction system for predicate calculus. A sample proof using (FI3) and
other rules is given at the end of this section.

Repeated Attributes and Equality

A dependency X ~ Y or X--, Y has repeated attributes if there is some
attribute A that appears at least twice in X or twice in Y. As mentioned in

F U N C T I O N A L A N D I N C L U S I O N D E P E N D E N C I E S 161

the Introduction, equality may be expressed using inclusion dependencies
with repeated attributes. Specifically, if any relation satisfies AB c_ CC, then
the A and B entries in any tuple of the relation must be identical. To see why
this is so, let t be any tuple in a relation satisfying AB c_ CC. Then there is
some other tuple s in the relation with t[AB] =s[CC], i.e.,
t[A] = s[C] = t[B]. The inclusion CC c A B does not imply any equality of
attributes but does express a nontrivial property of a database. Repeated
attributes make no difference for functional dependencies: any functional
dependency with repeated attributes is equivalent to one without.

In Casanova et al. (1982), the authors consider repeating dependencies of
the form X = Y. The repeating dependency X = Y is equivalent to the
inclusion dependency X Y c _ X X . However, the inclusion dependency
X X cc_ X Y is not equivalent to any set Z consisting only of repeating depen-
dencies and inclusion dependencies without repeated attributes. A simple
modification to the proof presented in Casanova et al. (1982) extends their
"no k-ary axiomatization" theorem to the slightly more powerful depen-
dencies with repeated attributes.

THEOREM (Casanova et al., 1982). For every k, there is a set Z of
inclusion and functional dependencies such that all consequences of every
subset of 22 of size k are included in 22, yet Z is not closed under implication.

The inclusion dependency rules (I1)-(I3) are taken from Casanova et al.
(1982) and are shown there to be complete for inclusion dependencies
without repeated attributes. Specificall.y, if 22 is a set of inclusion depen-
dencies without repeated attributes and a is another such dependency, then 22
implies a iff a is provable from 22 by (I1)-(I3).

It may be shown that (I1)-(I4) are complete for inclusion dependencies
with repeated attributes. A corollary is that no set of inclusion dependencies
without repeated attributes implies an inclusion dependency with
"nontrivially" repeated attributes. More precisely, if _r is a set of inclusion
dependencies without repeated attributes and 22 implies the inclusion depen-
dency a, then a is equivalent to an inclusion dependency without repeated
attributes. In contrast, inclusion and functional dependencies together do not
share this property. The following example shows that there are sets of
functional and inclusion dependencies without repeated attributes that imply
dependencies of the form AB ~_ CC.

Example Deduction

Although the results of Casanova et al. (1982) show that the rules of
Theorem 1 cannot be complete without the attribute introduction rule (FI3),
it is interesting to consider an example which illustrates where (FI3) is
needed. Let Z be the following set of hypotheses:

162 JOHN C. MITCHELL

(hi) C-+ D,

(h2) A B e CD,

(h3) BA ~ CD,

(h4) B c A ,

and let a be A B c BA. The reader may verify that a cannot be derived using
inference rules other than (FI3) by checking all possible deductions (there
really are not very many).

Although a little tricky, it is not too difficult to see why Z implies a.
Consider any tuple t I in any relation r satisfying Z. Suppose t l[AB] = (a, b).
Since B GA, there must be a tuple t 2 C r with tz[AB] = (b , x) for some x.
We will see that AB ~ B A by determining that x must equal a. Since
A B c C D , there must be some tuple t 3 with t 3 [C D] = t 2 [A B] = @ , x >.
Similarly, from BA G CD we know that there must be some tuple t 4 with
t4[CD] = tl[BA] = (b, a). But since C ~ D and t3[C] = t4[C], it must be that
t3[D] = t4[D]. Thus x = a , which proves that a follows from N. We can
prove a from Z using the inference rules as follows:

(1) A ~ B from (hl) and (h2) by (FI1).

(2) B E c A B by (FI3) from (h4) and (1); note that E does no appear
in Z or previously in the proof.

(3) B E c_ CD from (2) and (h2) by (F3).

(4) BAE c_ CDD from (h3), (3), and (hl) by (FI2).

(5) A E c DD by (12).

(6) BA c A B from (2) and (5) by (I4).

This derivation shows how a new attribute may be introduced and then
proved equal to an attribute which appears in the original hypotheses.

4. COMPLETENESS

This section proves that the attribute introduction rules are complete. Let
22 o be a set of dependencies and a a dependency that is not provable from 220
by the attribute introduction rules. Theorem 1 is proved by constructing a
relation that satisfies 220 but not g. The relation is constructed from a larger
set of dependencies Z @ 220 in stages, with a new tuple added at each stage.

A slight inconvenience is that there are two cases: a may be an inclusion
dependency or e may be a functional dependency. To avoid considering each
case separately, we choose three sequences of attributes X 0, Y0 and Z 0 and
construct a relation in which both

Xo ~ Yo and X o c_ Z o

FUNCTIONAL AND INCLUSION DEPENDENCIES 1 63

fail. If ~ is a functional dependency X o ~ Yo, then choose Z 0 to be a

sequence of attributes that do not appear in Z o U {~} and with tZol = [X0[. If

is an inclusion dependency X 0 ~_ Zo, then let Yo be a single attribute which

does not appear in Z 0 U {~r}. Note that if there is some relation that satisfies
Z o but not ~, then there is also a relation that satisfies 22 o but neither X o ~ Yo

nor X 0 _c Z o. Thus, since the rules are sound, neither X 0 --, Yo nor X 0 ~ Z 0 is
provable from Z o.

A set of dependencies Z is deductively closed if 22 is closed under all

inference rules except (FI3) and for all (U~_ V), (V ~ B) ~ Z, there is some

attribute A with (UA c_ V B) E Z . We need a deductively closed set

containing Z o to carry out the construction. Let

z, =ZoU {x0-~ Xo, Yo-~ Y0, z0-~ Zo}

SO that Z 1 has the same consequences as Z o but also includes all attributes in

Xo, Y0 and Z 0. This is so that any "new" attributes introduced in any proof

from Z 1 will not be attributes which appear in X 0, Yo or Z o. Let Z _~ Z~ be
deductively closed with neither X 0 ~ Yo nor X o _~ Z o an element of Z. 3

Theorem 1 is proved by constructing a relation that satisfies 22 but does not

satisfy either X 0 ~ Y0 or X 0 c Z o.
An outline of the construction will make the proof easier to follow. We fix

some arbitrary infinite set S and choose elements of S as entries in tuples. In

the first stage of the construction, two tuples t o and tl are chosen so that
X0-4 Y0 fails in the relation r 1 = {to, tl}. Then, at stage k + 1, an additional

tuple tk+ ~ is added to the relation r k produced so far to "help" satisfy some

inclusion dependency U k ~ V k in Z. This is done in such a way that all
functional dependencies in Z hold at each stage. Furthermore, no inclusion

dependency which is not in Z will be satisfied inadvertantly. If the relation r k
produced at stage k does not satisfy U k ~_ V k, then we pick a tuple t i from r k

with ti[Uk] not in rk[Vk]. The new tuple tk+ ~ for stage k + l has
tk+~[Vk]=ti[Uk]. The other entries in tk+ ~ are chosen according to a
"pullback function" described later. The relation rk+ ~ formed at stage k + 1

is rkL3 {tk+l}. We call k + 1 the index of tuple tk+~, i.e. the number of the
stage at which it was added, and call tuple tg the predecessor of tuple tk+ ~.
All entries in tk+ 1 either occur in its predecessor t~ or do not appear in r k at

all. We write ~< for the reflexive and transitive closure of the predecessor

3We can construct a deductively closed set containing Z 1 in stages by adding dependencies
used in proofs, including those with new attributes, to Z~. We begin with £'~ at stage 1 and fix
an enumeration H2, H3, H 4,..., of all finite sequences of dependencies such that every sequence
appears infinitely often in the enumeration. At stage i + 1, we either add all dependencies in
H~ to the set Z~ so far, if H~+~ is a valid proof from Zi, or else discard H t and keep Z~+~ = Z t-
Let Z be the union of the Z i. Then every consequence of Z o is in Z, and every dependency in
2," containing only attributes that appear in Z o is a consequence of Z o.

164 JOHN C. MITCHELL

relation, i.e., s ~< t if s = t or if there is some sequence of predecessors leading
from t back to s.

The final relation r = (..)krk will be shown to satisfy precisely the inclusion
dependencies in Z. This is accomplished using a property (*), described
below, which is shown inductively to hold at each stage. Since r will not
satisfy X 0 ~ Yo by choice of t o and t 1 , and r will not satisfy X 0 _c Y0 since
this inclusion dependency is not in £ , the relation r will not satisfy or.

Attribute Equivalence and Pullback Function

In the remainder of the proof, with Z fixed, two sequences of attributes X
and Y are said to be equivalent, written X = Y, if X Y c _ X X ~ 2 2 . The
equation X = Y is used only to denote that X and Y are syntactically iden-
tical sequences of attributes. We use (V)i to denote the ith attribute
appearing in the sequence of attributes V. Thus (U) i - (V)j means that 22
contains the inclusion dependency AB c_ AA, where A is the ith attribute in U
and B the j th attribute in V.

A helpful tool in the construction is a pullback function p which is used to
choose attributes in a consistent manner. A function, rather than a relation,
is used to emphasize that identical choices are made in identical situations.
For every pair of dependencies (U_c V), (V-~ B) C Z, there is an attribute A
with (UA c_ VB) 6 Z. The attribute A is the image of U under the "pullback"
of function V ~ B to U. Lemma 1 shows that the "pullback" is unique,
modulo equivalence of attributes.

LEMMA 1. Let X and Y be any sequences of attributes. Suppose that
(Y ~ Y) is a permutation and projection of both (U l c_ VI) and (U 2 c_ V2). I f
22 contains the dependencies

X c Y, Y ~ B, Ul ~ V l, U2 c_ V2,

and B appears in both V 1 and V 2, i.e., B = (V~)j. = (V2)~ for some j and k,
then (U~) j - (U2)k.

Proof Let A~ denote (U1) j and A 2 denote (U2) k. By projection and
permutation, we have

XA ~ c YB and XA 2 ~ YB

in 22 since 22 is deductively closed. By collection, XA~A 2 c YBB C 22 and so
by projection and permutation A ~A 2 ~- BB E 22. Since A 1A 2 c A 1A 2 C 22, we
concludeA~A2%A~A~C22. YhusA~=(UOj=- (U2)k=A2 . |

Assume that (U~_ V), (V-~ B) C 22. Define p(U, V, B) as follows:

(i) If B appears first as the k-th attribute of V, i.e., if B = (V)k and
B=/=(g)j for all j < k , then define p(U, V , B) = (U) k . Note that if
B = (V)j = (V)k, then (U)2 =- (U)k.

FUNCTIONAL AND INCLUSION DEPENDENCIES 165

(ii) If B does not appear in V, then pick any inclusion dependency
(UA ~ VB) E22. Since ~ is deductively closed, there is some
(UA c_ VB) C 22. Define p(U, V, B) = A. By Lemma 1, this choice is unique
up to attribute equivalence.

We may extend p to a "pullback" function for sequences by

(p(u, v, w)), =p(U, v, (w),),

i.e., the ith attribute in the sequence p(U, V, W) is the result of applying p to
U, V and the ith attribute of W. The critical properties o f p are summarized
in

LEMMA 2. Assume (U~ V) , (V~B)~22 .

(a) I f B appears as the kth attribute in V, then p(U, V, B) =- (U)k.

(b) I f A =p(U, V,B), then (UA c VB) C22.

(c) I f (U ~_ V) follows from (We_ Z) C ,F, by permutation, projeetion
and redundancy (I2), then p(W, Z, B) -=p(U, V, B).

(d) I f (U c Z) , (Z~_ V)E22, thenp(U, V , B) - p (U , Z , p (Z , V,B)).

Proof Properties (a) and (b) are easy consequences of the definition and
Lemma 1. To see that (c) is true, let A =p(U, V, B) and let C =p(W, Z, B).
By property (b), we have

UA c VB and WC ~ ZB

in 22. Since (U% V) is a projection and permutation of (W ~ Z) , the
inclusion (UC % VB) must be a projection and permutation of (WC % ZB).
Therefore (UC ~ VB) C 2L Thus p(U, V, B) = A = C by (a).

The remaining case is (d). Let A =p(U, V,B), C=p(Z , V,B) and
D= p(U ,Z ,C) . It must be shown that D = A . Since UDc_ZC and
ZC c_ VB, we have UD c VB. Therefore, from UA ~_ VB and UD % VB, we
conclude D ~-A. II

Constructing the Counterexample Relation

At each stage in the construction, we verify inductively that the following
property holds of the relation produced at that stage:

For any pair of tuples tj, t k, if tj[X] = tk[Y] for any sequences of
attributes X and Y, then there is some common ancestor t i ~ 0, tk
and some sequence of attributes Z such that
ti[Z] = tj[X] = t~[Y]. Furthermore, (Z_~X), (Z ~ Y) C 22 and,
for any attribute A, if (X ~ A) ~ 2 2 then tj[A] = ti[p(Z,X,A)]
and similarly if (Y ~ B) C 22 then tk[B] = ti[p(Z, Y, B)]. (*)

166 JOHN C. MITCHELL

We begin the construction by choosing two tuples t o and t I to ensure that
the functional dependency (X o ~ I1o) fails. Let X~ consists of all attributes
functionally determined by X0, i.e.,

X+ = / A I (X0 ~ A) C 22 t.

The first tuple t o is chosen to have any arbitrary, distinct elements of S as
entries, subject to the restriction that to[A]=to[B] i f f A - - B . For each
attribute A C X o , let tl [A] = to[A]. For each A ~ X + , let tl [A] be some new
element of S not appearing in t 0. Again, the entries must satisfy the equality
constraint: tl[A] = tl[B] iff A = B. To avoid special cases in the remainder
of the proof, we say that t o is the predecessor of t I . Hence t o ~< t o and t o ~ t I .

It is easy to see that the relation r I = {t 0, t i t satisfies all functional depen-
dencies in Z, as follows. Suppose that t0[X] = t~[Y]. By construction,
t0[A] = tl[B] iff A --- B and A, B ~ X + . Therefore Y must be obtained from
X by substitution of equivalent attributes and each attribute in X must
appear in X 0. Thus, for any (X ~ B) C Z , we have B ~ X + and hence
to[B]=tl[B]. This also demonstrates (*) for the first stage of the
construction.

We now add more tuples, producing a sequence of relations r I _c r2 ~c . . . ,

such that the relation r = Ukrk satisfies all inclusion dependencies in Z and
such that (*) holds in each r k. Let (U 1_~ V0, (U 2 ~ V2) be an
enumeration of inclusion dependencies from 22 such that for every
(U _ V) ~ 2;, there are infinitely many i such that (U c V) is a projection
and permutation of (U i c Vt). The tuple t k produced at stage k is chosen by
looking at (U k _c Irk).

Let r k be the result of the kth stage. If r k satisfies (U k c Vk) , then let rk+ I
be r k. Otherwise, let t i be the tuple with lowest index such that ti[Uk] is not
in rk[Vk]. The tuple t i will be the predecessor of tk+ ~. The entries of tk+ l are
chosen as follows. For each attribute B such that (V k ~ B) C Z, let

tk+,[B] = tAp(U k, Vk,B)].

For each attribute C not functionally determined by V k, let tk+~[C] be some
new element of S not appearing in r k. Choose all such tk+~[C] SO that
tk+l[C] =tk+~[D] iff C-= D. Note that since p(U k, V k, Vk)= U k, we have
t +,[vd = t i [u d .

We now verify (*) for rk+ I. Since (*) holds for r k, we need only consider
the effect of adding tk+ ~. Suppose that there is some tuple tj in r k with
t j [X]=tk+~[Y] for some sequences of attributes X and Y. Then by the
choice of symbols in tk+ ~ , all the entries in tk+~[Y] must have been entries in
t i. Hence (V k ~ Y) C Z . Let W = p (U k, Vk, Y). For each attribute (W)m of
the sequence of attributes W, the construction ensures that

=

F U N C T I O N A L A N D I N C L U S I O N D E P E N D E N C I E S 1 67

By Lemma 2, each dependency Uk(W)m C _ Vk(nm is in 22. Since each
(V k - , (Y) m) E Z , it follows from (FI2) that (U k W C _ V k Y) ¢ Z . Thus
(W e Y) ¢ Z by permutation and projection. Since tt[(W)m] = tk+ 1 [(Y)m] for
all m, t i[W]=tk+l[Y]. We now have tk+l[Y]=ti[W]=tj[Y] and
(W ~ Y) CZ .

Since ti, tj ~ M k, it follows from the induction hypothesis (*) for M k that
there is some t, <~ ti, t) such that t,[Z] = t i [W] = tj[X] for some sequence of
attributes Z. Furthermore, (Z c W) and (Z c _ X) ~ 22. By transitivity of
equality, t,[Z] = tk+l[Y]
(Z _c y) E Z'. Thus

and

and by transitivity of inclusion dependencies,

t,[zl : O [x] : IV]

n z.

To finish the proof of (*), it must be shown that if (X - , A) C Z , then
O[A]=t , [p (Z ,X ,A)] and similarly (Y - , B) ~ 2 2 implies tk+l [B]=
t ,[p(Z, Y,B)]. The first case, if (X - ,A) , is a trivial consequence of the
induction hypothesis. Now suppose (Y - , B) C 22. Let C =p(W, Y,B). Then
(W C ~ YB) C Z and, by (FI1), (W- , C) ~ Z. Thus ti[C] = t,[p(Z, W, C)].
Let D = p (Z , Y,B). By Lemma 2, D - p (Z , W, C). It remains to show that
tk+l[B] = t,[D]. First note that since (UkWC_ VkY) extends (W_c Y), and
both (Y - , B) , (Vk - - ,B)EZ , we have p(U k, Vk ,B) - -P(UkW, VkY, B)=- C.
Therefore tk+l[B]=ti[C]. Recall that t i [C]=t ,[p(Z, W,C)]. But since
D : p (Z , W, C), it follows that ti[C] = t,[D]. Therefore

tk+ ,[B] = ti[C l = tn[D I.

This demonstrates (*) for rk+ ~.
Now consider the relation r = Ukrk . TO see that r satisfies all functional

dependencies in Z, let X - , Y ¢ 22 and suppose that there are two tuples t]
and t k in r with O[X] = tk[X]. By (*), there is some t i <~ O, tk such that

Zi[W] = tj[X] = tk[X] and (W_c X) e Z.

Furthermore, for all m ~<[YI,

0 [(r) m l = ti[p(w, x, (Y)m)] =

Thus t][Y] = tk[Y] and (X- , Y) holds. All functional dependencies in Z are
satisfied by r, but by choice of t o and t~ the functional dependency X 0 -, Y0 is
not.

In addition, the relation r satisfies X_~ Y iff X c Y CZ . This is
demonstrated as follows. It is clear from the construction that if X ~ Y C Z,

168 JOHN C. MITCHELL

then for any t i there is some r k with t i[X] C rk[Y]. Thus r satisfies all X_~ Y
in Z. For the converse, assume (X_c Y)~22. We show that t0[X] ~ r[Y]
using property (*). Suppose that, on the contrary, there is some tuple t k with
t0[X] = t~[Y]. Then by (*) there is some t i <<. t o, t~ with ti[Z] = t0[X] = tk[Y]
and (Z c y), (Z _c X) E Z. But the only tuple t i with t~ ~< t o is ti = t 0. Also,
be construction of t 0, we have t0[Z] = t0[X] iff Z may be obtained from X
by substituting equivalent attributes. Therefore, by substitutivity of
equivalents and Z % Y~22 we conclude X ~ Y622. Since this is a
contradiction, it follows that to[X]4:tk[Y]. Thus r satisfies X c y iff
X_c Y E 22. In particular, r does not satisfy X 0 ___ Z 0 since this dependency
does not appear in 22. This finishes the proof of Theorem 1.

5. UNDECIDABILITY

A simple translation of equations into dependencies shows that both the
finite and general implication problems are undecidable. The valid general
implications are recursively enumerable since dependencies are first-order
formulas. Since a simple enumeration of finite databases will uncover all
invalid finite implications (from finite sets of hypotheses), the valid finite
implications for functional and inclusion dependencies form the complement
of a recursively enumerable set. The reduction described below will show
that both problems are complete in their respective classes (cf. Machtey and
Young, 1978).

Intuitively, the main idea behind the reduction is to use function depen
dencies and inclusion dependencies to force the pairs of columns of a
relation to contain functions (i.e., graphs of functions) from some arbitrary
set to itself. Since any monoid (semigroup with unit; cf. Machtey and Young,
1978) is isomorphic to a monoid of functions from a set to itself, the
relations satisfying this set of dependencies correspond to arbitrary monoids.
Using inclusion dependencies, we can then express equations between
compositions of functions. This translation of equations to dependencies
provides reductions from the word problems for monoids and finite monoids
to the general and finite implication problems, respectively.

A few definitions are in order before choosing a convenient form of the
word problem. Let Y be an infinite set of variables. Variables from Y ' will
be used to write equations between compositions of functions. For every
variable x C ~ , we pick an attribute B x. If x and y are different variables,
then B x and By are assumed to be different. In addition, we need an attribute
A that is different from each B x.

A composition equation is an equation

x = y o z ~

FUNCTIONAL AND INCLUSION DEPENDENCIES 169

where x, y, z C ~ . A functional interpretation I for a set of variables U ___ ~'"
is a set S together with a function fx : S ~ S for each x E U. A functional
interpretation is finite if S is finite. An interpretation I satisfies a set of
equations E if

Vs ~ s .Z(s) =L(&(s))

for all (x = y o z) C E. The word problem for monoids is well known to be
undecidable (Post, 1947) (see, also, Machtey and Young, 1978). A
convenient version of the word problem is the following implication problem:

Given a finite set T U {r} of composition equations, determine
whether r holds in every functional interpretation that satisfies T.

In the corresponding finite version, we ask instead whether r holds in every
finite functional interpretation satisfying T. The finite implication problem
(word problem for finite monoids) is proved undecidable in Gurevich
(1966)(see, also, Gurevich and Lewis, 1982).

Composition equations can be interpreted over any relation if the
appropriate attributes of the relation contain functions from some set to
itself. This is a property which can be described using functional and
inclusion dependencies. If U c ~" is a set of variables, let Z u be the set of
dependencies

Zu= {A -~BxlxC U}U {BxC_AIx~ U}.

A relational interpretation for a set of variables U is a relation r satisfying
Z U. Note that if r is a relational interpretation for U and x 6 U, then the set
of ordered pairs r[ABx] is a function (in the set-theoretic sense, i.e., t h e
graph of a function) from r[A] to r[A]. Furthermore, r[AA] is the identity
function on r[A]. A relational interpretation r satisfies a set of composition
equations E if r[AB~] is the composition of r[ABy] and r[ABz] for every
(x = y o z) ~ E .

LEMMA 3. Let T U {r} be a set of composition equations using variables
from some subset U c_ ~". The following two conditions are equivalent.

(i) Every functional interpretation (finite functional interpretation) for
U that satisfies T also satisfies r.

(ii) Every relational interpretation (finite relational interpretation)for
U that satisfies T also satisfies r.

Proof. Let l be a functional interpretation for U using functions from S
to S. We construct a relational interpretation r that satisfies exactly the same
composition equations as I. Let r [A]=S and, for each tuple, let

643/56/3-3

170 JOHN C. MITCHELL

t[B~] =f~(t[A]) for all x C U. Note that if I is a finite functional inter-
pretation, then r is a finite relation. The details are straightforward.
Conversely, if r is a relational interpretation, we can define a functional
interpretation satisfying precisely the same composit ion equations by letting
S = r[A] and f x = r[ABx]. Again, the details are straightforward and I is
finite if r is a finite relation. II

We can express composit ion equations as inclusion dependencies, as shown
in

LEMMA 4. Let r be a composition equation x = y o z and let r be a
relational interpretation for any set o f variables containing x, y and z. Then r
satisfies r i f f r satisfies ByB x ~ A B z .

Proof. First suppose that r is a relational interpretation which satisfies
x = y o z. For each v C ~ ' , l e t f v denote the function r[AB~,]. Then for any
tuple t E r, we have

t[Bx] = fx(t[A]) = f~(fy(tlA])) =f~(t[By]) .

Since r is a relational interpretation, we know r[By] ~ rlA] and so there is
some tuple t I C r with tl [A] = t[By]. Therefore

t[ByBx] = (t[By],f~(t[By])) = (t, [A],f~(t I [A])) = t 1 lAB=].

This shows that r satisfies ByB x ~ A B z.
Now assume that r satisfies ByB x ~_AB z. For any tuple t C r, there is a

tuple t I C r with t[ByBx] = t I[ABz]. Therefore

t I [A] =fy(t[A l) and f~(tlA]) = f~(t 1 [A]).

By substitutingfy(t[A]) for t, [A] in the right hand equation above, we obtain

L (t [A]) = fz (t l [A]) = L (f y (t [A])).

Since this holds for all t[A], i.e., all elements of the domain o f f x , f y , and f : ,
we can conclude t ha t fx = f y ofz. Thus r satisfies x = y o z. II

If r is the composit ion equation x = y o z, then we call ByB x cAB,_ the
dependency translation of r and write Trans(r) = ByB~ ~_ A B z. If T is a set
of composit ion equations, then Trans(T) is the set of dependency translations
of equations from T. Lemma 4 shows that a relational interpretation r
satisfies r i f f r satisfies Trans(r) . We now have

THEOREM 2. The implication and finite implication problems for
functional dependencies and inclusion dependencies are recursively
unsolvable.

F U N C T I O N A L AND INCLUS ION D E P E N D E N C I E S 171

The theorem is a simple consequence of the undecidability results of Post
(1947) and Gurevich (1966), as follows. Let T U {r} be a set of composition
equations written using variables from U_~ 7/~, let Z = T r a n s (T) U Z u and
let a = Trans(r). It follows from the preceeding two lemmas that every
functional interpretation satisfying T also satisfies r iff every relation
satisfying 22 also satisfies a. Similarly, every finite functional interpretation
satisfying T also satisfies r iff every finite relation satisfying Z also satisfies
(7.

6. CONCLUSION

This paper presents a complete axiom system for functional dependencies
and inclusion dependencies. The system stands in contrast to the possibility
suggested in Casanova et al. (1982) that no such system exists. Essentially,
the difficulties discussed there are surmounted using an inference rule similar
to existential instantiation in a natural deduction system. A rule which
allows new attribute names to be introduced into deductions simplifies
reasoning about functional and inclusion dependencies.

Both the finite implication and general implication problems are shown to
be undecidable. The proof uses the simple observation that functional depen-
dencies force projections of a relation to be functions, and inclusion depen-
dencies can express equality between compositions of functions. This reduces
the word problems for monoids and finite monoids to the general implication
and finite implication problems for dependencies. Since implications for
finite monoids are not recursively enumerable, there is no complete, recur-
sively enumerable axiomatization for finite database implication. It is
interesting to note that when relations are interpreted as monoids,
introducing new attribute names corresponds to naming products in a
monoid.

Although the implication and finite implication problems are both
undecidable, there are restricted versions of these problems with polynomial-
time decision procedures (Kanellakis, Cosmadakis, and Vardi, 1983). For
example, as suggested in Casanova et al. (1982), one may consider
functional dependencies together with simple inclusion dependencies of the
form A c B , where A and B are both single attributes. These restricted
inclusion dependencies are called unary inclusion dependencies. In
Kanellakis et al. (1983) it is shown that implication for functional depen-
dencies and unary inclusion dependencies is decidable in polynomial time. A
polynomial-time decision procedure for finite implication of functional
dependencies and unary inclusion dependencies is also given in Kanellakis et

al. (1983), along with a complete axiom system for finite implication.
The translation presented in Section 5 of monoid equations into depen-

172 JOHN C. MITCHELL

dencies uses only simple binary inclusion dependencies of the form
AB ~ CD, where A, B, C, and D are single attributes. Thus the results of
Kanellakis et al. (1983) cannot be extended even to binary inclusion depen-
dencies.

ACKNOWLEDGMENTS

Thanks to Christos Papadimitriou, Albert Meyer, and, in particular, Paris Kanellakis for
many helpful discussions.

RECEIVED: February 4, 1983; ACCEPTED: May 10, 1983

REFERENCES

ARMSTRONG, W. W. (1974), Dependency structures of database relationships, in "Proceeding,
IFIP" pp. 580-583, North-Holland, Amsterdam.

BEERI, C., AND BERNSTEIN, P. A. (1979), Computational problems related to the design of
normal form relational schemes, A C M Trans. Database Systems 4(1), 30-59.

BEERI, C., AND KORTH, H. F. Compatible attributes in a universal relation, in "Proceeding,
1st ACM Conf. on Principles of Database Systems."

BEERI, C., FAGIN, R., AND HOWARD, J. H. (1977), A complete axiomatization for functional
and multivalued dependencies in database relations, in "Proceeding, ACM SIGMOD
Conference," pp. 47-61.

CASANOVA, M. A., FAG1N, R., AND PAPADIMITRIOU, C. H. (1982), Inclusion dependencies and
their interaction with functional dependencies, in "Proceeding 1st ACM Conf. on Prin-
ciples of Database Systems, pp. 171-176; IBM Research Report, RJ3380 (40416); J.
Comput. System Sei., in press.

CHANDRA, A. AND VARDI, M. (1983), "The Implication Problem for Functional and Inclusion
Dependencies is Undecidable," Technical Report, RC9980, IBM.

CHEN, P. (1976), The entity-relationship model--Toward a unified view of data, ACM Trans.
Database Systems I (1), 9-36.

CODD, E. F. (1980), Extending the database relational model to capture more meaning, ACM
Trans. Database Systems 4 (4), 397434.

FAGIN, R. (1981), A normal form for relational databases that is based on domains and keys,
ACM Trans. Database Systems 6 (3), 387-415.

GAREY, M. R., AND JOHNSON, D. S. (1979), "Computers and Intractability: A Guide to the
Theory of NP-Completeness," Freeman, San Francisco.

GUREVICH, Y., AND LEWIS, H. R. (1982), "The Word Problem for Cancellation Semigroups
with Zero," Technical Report, TR-08-82, Harvard Univ., Cambridge, Mass.

GUREVICH, Y. (1966), The word problem for certain classes of semigroups, Algebra and Logic
5 (5), 25-35. [Russian]

JOHNSON, D. S., AND KLUG, A. (1982), Testing containment of conjunctive queries under
functional and inclusion dependencies, in "Proceeding, 1st ACM Conf. on Principles of
Database Systems," pp. 164-169.

KANELLAKIS, P. C., COSMADAKIS, S. S., AND VARDI, M. Y. (1983), Unary inclusion depen-
dencies have polynomial time inference problems, in "Proceeding, 15-th ACM Symposium
on Theory of Computing," pp. 264-277.

MACHTEY, M., AND YOUNG, P. (1978), "An Introduction to the General Theory of
Algorithms," North-Holland, Amsterdam.

FUNCTIONAL AND INCLUSION DEPENDENCIES 173

MITCHELL, J. C. (1983), Inference rules for functional and inclusion dependencies, in
"Proceeding, 2nd ACM Conf. on Principles of Database Systems," pp. 58-69.

POST, E. L. (1947), Recursive unsolvability of a problem of Thue, J. Symbolic Logic 12,
1-11.

VARDI, M. Y. (1982), "The Implication and Finite Implication Problems for Typed Template
Dependencies," Technical Report, STAN-CS-82-912, Stanford Univ. Calif.

YANNAKAKIS, M., AND PAPADIMITRIOU, C. H. (1982), Algebraic dependencies, J. Comput.
System Sei. 25 (1), 2 4 1.

