
Discovering Functional and Inclusion
Dependencies in Relational Databases
Martti Kantola,* Heikki Mannila,t Kari-Jouko Raiha,* and Harri Sirtola*
*University of Tampere, Finland and tUniversity of Helsinki, Finland

We consider the problem of discovering the functional and inclusion dependencies that
a given database instance satisfies. This technique is used in a database design tool that
uses example databases to give feedback to the designer. If the examples show deficien-
cies in the design, the designer can directly modify the examples. The tool then infers
new dependencies and the database schema can be modified, if necessary. The discovery
of the functional and inclusion dependencies can also be used in analyzing an existing
database. The problem of inferring functional dependencies has several connections to
other topics in knowledge discovery and machine learning. In this article we discuss the
use of examples in the design of databases, and give an overview of the complexity
results and algorithms that have been developed for this problem. 0 1992 John Wiley &
Sons. Inc.

I. INTRODUCTION

In database design the task of the designer is to describe the structures
used to represent the data and to express the integrity constraints that restrict
the allowed information. Typically, one starts by designing a conceptual
schema, for example, an ER diagram. This is then transformed to relational
schemas (tables) and integrity constraints. For the design of relational data-
bases, functional and inclusion dependencies are the most important types of
integrity constraints.

The database design methods give no guarantee that all the relevant con-
straints have been found. For example, in drawing an ER diagram it is all too
easy to specify some properties of the relationships incorrectly, resulting in
missing or erroneous constraints on the relational level.

If, however, one has access to a database instance, it is possible to find
out which integrity constraints are satisfied by that particular instance. Some
of the satisfied constraints may hold by accident, but at least the instance

*Address for correspondence: Heikki Mannila, Department of Computer Science,
University of Helsinki, Teollisuuskatu 23, SF-005 10 Helsinki, Finland. e-mail: manni-
la@cs. Helsinki. FI.

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 7, 591-607 (1992)
0 1992 John Wiley & Sons, Inc. CCC 0884-8173/92/070591-17$04.00

592 KANTOLA ET AL.

illustrates those constraints that are violated, The designer can examine the
satisfied constraints and decide which of them should hold in general. The
problem of discovering the integrity constraints from a database instance is
called in this article the dependency inference problem.

We have implemented a database design and analysis tool called Design-
By-Example (DBE) that is based on the use of example databases to help locate
the constraints in the data.

In this article we discuss the role of examples in database design, describe
the DBE design tool, and discuss the algorithmic problems involved in depen-
dency inference. The article is organized as follows. Section I1 gives a brief
overview of database design and integrity constraints. Section I11 provides a
more detailed description of how we can make use of example databases and
dependency inference in database design. Section IV discusses briefly Design-
By-Example. Section V gives some theoretical results about the feasibility of
dependency inference for functional dependencies, and Section VI discusses
algorithms for solving the functional dependency inference problem. Section
VII considers inference of inclusion dependencies. Section VIII discusses re-
lated work. Section IX is a short conclusion.

11. DATABASE DESIGN AND INTEGRITY CONSTRAINTS

Database design is typically divided into requirements analysis, conceptual
design, logical design, and physical design. In the conceptual design phase one
constructs a conceptual schema of the data to be described in the database. The
conceptual schema is typically described by using the entity-relationship model.
An example description, a so-called ER diagram, is shown in Figure 1.

The database described in Figure 1 contains information about courses,
lecture rooms, and lecture hours. The diamond connecting the three boxes
represents a relationship between entities, indicating what lectures are given in
which room at a given time.

The logical design phase produces relation schemas from the ER diagram.
In the above example the result would contain the schemas

Room (Room-Number, Capacity),
Time (Hour, Description),
Course (Course-Number, Name),

MeetsIn (Course-Number, Room-Number, Hour).
and

The schemas alone are not sufficient for describing the database. In addi-
tion, integrity constraints are needed. The information in the ER diagram can
be represented using functional and inclusion dependencies.

Functional dependencies are conditions stating that any value of certain
attributes is associated with at most one value of a certain attribute. Inclusion
dependencies are conditions stating that values occurring in certain columns of
one relation must also occur in certain columns of another relation. Thus inclu-

RELATIONAL DATABASES 593

i File Edit Relation ER Windows DBMS Fonts

Name Capacity

""i""

Figure 1. An ER-diagram.

sion dependencies express the referential integrity' property that is central in
the relational model.

These types of integrity constraints are defined as follows. Given a relation
schema (a set of attributes) R, a relation over R is informally a table whose
columns are named with the attributes in R. Formally, a relation r is a set of
sequences (called tuples) with IRI components. The projection of a tuple t on a
set of attributes X C R, denoted t[X], is defined as the subsequence of t
containing only those values that correspond to the attributes of X.

A functional dependency over the schema R is an expressionx-, Y, where
X, Y, C R. The dependency X + Y holds in r , denoted r X + Y, if all tuples
u,u E r with u[X] = u[X] satisfy also u [y l = u [y l .

An inclusion dependency2 is an expression R[X] C S [u , where R and S
are relation schemas, X is a sequence of attributes of R, and Y is a sequence of
attributes of S. If r and s are relations corresponding to R and S, respectively,
then the inclusion dependency R[X] C S[yI holds in (r , s) if for each row u of
r there is a row u of s such that the sequence of values occurring in the X
columns of u is the same as the sequence of values occurring in the Y columns
of u. That is, R[X] C S [yl holds in (r , s) if r [X] C s[yl.

Returning to the ER diagram of Figure 1, transforming it to relation schemas
gives the following integrity constraints:

594 KANTOLA ET AL.

Room : Room-Number Capacity
Time : Hour + Description
Course : Course-Number + Name

MeetsIn[Course-Number] C Course[Course-Number]
MeetsIn[Room-Number] C Room[Room~Numberl
MeetsIn[Hour] C Time[Hourl

The task of database design can be formulated as the construction of
schemas and integrity constraints such that valid data can be efficiently stored
and retrieved from the corresponding relations, and that incorrect data cannot
be stored.

In addition to functional and inclusion dependencies, there are several
other types of integrity constraints that are needed to specify what is valid data
and what is not. Functional and inclusion dependencies are, however, sufficient
for modeling the structural aspects of the data.

In this article we consider the problem of finding what functional and
inclusion dependencies hold in a given database instance. Since there are only
a finite number of syntactically correct dependencies for a given database
schema, the problem is solvable: one can, in principle, check all dependencies
one by one. However, more efficient algorithms are needed.

111. EXAMPLE DATABASES IN DESIGN

When explaining a database schema to somebody, experienced designers
tend to use examples. Some informal database design guidelines3 suggest the
use of example values and relations during the design process. The advantages
of examples are easy to see. An attribute name can easily mean different things
to different people, but a concrete example of an allowed value for that attribute
is more likely to be understood in the same way by everybody, and an example
value also shows how the attribute name should be interpreted. Likewise, a
relation schema expressing connections between attributes is an abstract con-
cept and prone to misunderstandings. Concrete examples of a relation corre-
sponding to the schema are easier to understand and evaluate.

An arbitrary example relation does not necessarily indicate all the important
information about the relation schema or the database schema. An example row
or two indicate what type of information can be stored using the schema. This
is a valuable piece of knowledge, but such an example does not indicate the
interrelationships of different rows and relations implied by the design. A suit-
able example relation can, however, clearly illustrate the problems in a sug-
gested design.

Example 1 . Consider again the design of a database for recording data about
courses offered by a department. The design produced a schema with the
following columns:

MeetsIn: Course-Number, RoomNumber, Hour

RELATIONAL DATABASES 595

No functional dependencies for these attributes were produced by the
transformation from the ER diagram to relation schemas.

However, the design probably does not reflect the real world accurately.
For instance, nothing prohibits many courses from meeting in the same room
at the same time, or one course from meeting in two rooms at any given time.

The following example relation does not satisfy any nontrivial functional
dependencies.

CIS 551 PAC 30 M 9:30
CIS 510 PAC 30 M 9:30
CIS 510 DES 200 M 9:30
CIS 510 DES 200 W 13:30

In this example the problems discussed above are evident: Course CIS 510
meets in two rooms on Monday at 9:30, and Room PAC 30 is used by both CIS
510 and CIS 551 on Monday at 9:30.

Thus a suitably chosen example can be very useful in pinpointing problems
in a design. The example table above is in a sense a worst case example: it
violates all constraints that have not been explicitly required to hold. The goal
is to point out possible omissions in conceptual design by showing what can
happen unless more constraints are posed on the tables.

The worst case property can be defined formally by saying that the example
relation or database should be an Armstrong relation of database4: it should
satisfy only the integrity constraints that are logically implied by the constraints
explicitly given by the designer.

The fact that a functional dependency is not required to hold is very easy
to spot from an example relation that satisfies the Armstrong property: one only
needs to compare two rows. Noticing that a constraint does hold is more
difficult, since one has to inspect the whole table.

Examples can also make redundancy in a schema intuitively easy to com-
prehend. Suppose, for example, that in the schema.

Employees (Employee, Manager, Department)

the functional dependencies Department -+ Manager, Manager --$ Department,
and Employee + Department hold. This is represented by the following Arm-
strong relation.

Employee Manager Department
Wilson Hogger Construction
Jones Hogger Construction

Drake Sales

596 KANTOLA ET AL.

The first two lines of the example show how the information about the
manager of the Construction Department is represented twice. This can make
it easier for the designer to understand why a design algorithm can suggest
decomposing the schema into two smaller schemas, namely, (Employee, De-
partment) and (Department, Manager).

Although some things are easy to spot from examples, the explicit represen-
tation of the integrity constraints also has its advantages. Therefore the designer
can be shown both the list of constraints and the example table as representa-
tions of the constraint set. This double representation gives the designer two
complementing views of the design.

IV. DESIGN-BY-EXAMPLE

Generating and maintaining the example relations by hand is tedious, espe-
cially because the database schema tends to change frequently during the design.
During the past few years we have designed and implemented a database design
tool called Design-By-Example (DBE). This tool supports the use of automati-
cally generated and maintained example databases. The examples are Arm-
strong databases for the set of constraints given in the design.

In DBE the design can start from the construction of an ER diagram using
a typical drawing tool. The system then produces the corresponding relation
schemas and integrity constraints. To check the design, the designer can gener-
ate an example database and inspect it. If the example is incorrect (or just
unnatural), the designer can edit it. After this, a new set of integrity constraints
can be inferred from the example. These constraints are shown to the designer,
who can also directly edit the set of constraints. The changes in the set of
constraints can imply that the relation schemas should be changed. The system
does this interactively with the designer. The changes in the relation schemas
can mean changes also in the ER diagram; these can also be done by the system,
if the user so wishes. At any point of the design, the user can inspect an example
database and an ER diagram corresponding to the current set of schemas and
constraints.

Example 2. Consider the ER schema shown in Figure 1. It has been drawn
using the ER editor of DBE. The corresponding relational schema is produced
by choosing a command from a menu. In this case the four schemas shown
previously would be produced. The schema for the meeting times of courses is
shown attribute-by-attribute in Figure 2, which also illustrates how the example
relation for the MeetsIn schema can be generated by a single command.

As a result, the example relation shown in Figure 3 would be displayed.
The values appearing in the relation must have been described by the designer
as possible example values in the appropriate domains of attributes.

The example can be edited by changing the time on the second row to
something else, and the set of dependencies that the modified relation satisfies
can be inferred using the Infer Dependencies command. The outcome is shown
in Figure 4.

RELATIONAL DATABASES 597

MS Fonts 00
pendenci$OZ Meetsln Ze3'

'niirso NRme i Course-Number

Attributes

Ix1 Attribute 0 Domain
Capacity Capacities
Course_Number CourseNumbers
Descr ipt ion Descript ions

Hours
Name Courses
Room-Num be r Rooms

Domains

CourseNumbers
Courses
Defeul t
Descript ions
Hours

I ,.,,m,Nu m ber I unlit-

Ualues

CIS 510
Math 247

Figure 2. The relational level of DBE.

All dependencies found in this manner have a key of the relation schema
on their left-hand side, which means that the schema is in Boyce-Codd normal
form. Thus the relation schema is acceptable as such. However, when the
modified schema (including the new dependencies) is mapped back into an ER
diagram, the dependencies are reflected in the functionality of the MeetsIn
relationship type: it becomes functional with respect to both Course and Room.

Thus DBE supports three different representations of the relation schemas
and constraints: the relation schemas and constraints themselves, an ER dia-

-~

Meetsln - Example pJp
Cours e-N u m b e r Room-Num b e r Hour
CIS 551 P A C 30
C I S 510 P A C 30
CIS 510 DES 200 M 9:30
CIS 510 DES 200

Figure 3. An example relation.

598

CIS 551
CIS 510
CIS 510
CIS 510

KANTOLA ET AL.

PAC 30 M 9:30
PAC 30 F 12:40
DES 200 M 9:30
DES 200 W 13:30

Room-Number Hour --> Course-Number
Course-Number Hour - -> Room-Numbed

Figure 4. Inferred dcpcndencies

gram, and an cxample database that is an Armstrong database for the set of
constraints. Actually, by using functional and inclusion dependencies one can
express properties of schemas that arc not expressible in an ER diagram. Thus
the levels do not have exactly the same power.

In addition to the use of examples, the novcl features of DBE include a
design methodology bascd on the simultaneous me of the ER modcl and the
relational modcl, the use of functional dependencies and inclusion dependen-
cies* as structural integrity constraints. and cspecially efficient dcsign algo-
rit hms.

Thc implementation of DBE has required that the mappings hetwcen all
these three levels are implemented. Thc mapping from EK schemas lo relational
schcmns is a classical topic in database dcsign literature. The main idca in the
mapping is very simple. but onc has to be careful with thc details (see Refs. 5
and 6) . The mapping from rclation schemas and integrity constraints back to
ER diagrams is less common, but it is algorithmically fairly casy.

The task of producing example relations for a sct of schemas and integrity
constraints is quitc complicated. The example should be small, since a large
example is probably useless for human interface pnrposcs. The algorithms used
in DBE are described in Refs. 7 and 8 .

*Pcrh:ips surprisingly, inclusion dependencies havc not bccn widely used in databww
design tools. although t h c y are fairly intuitive.

RELATIONAL DATABASES 599

The specific topic of this article is the mapping from an (edited) example
database to the set of schemas and constraints. The schemas are, of course,
easy to obtain from the example database, but the constraints are much harder
to find, Also in this problem questions of the size of the result are important:
for a given relation there are typically many equivalent sets of constraints that
hold in the relation. The solution to the dependency inference problem should
produce a small but still intuitive representation of the constraints.

DBE can also be used to check and possibly modify the design of an existing
database. In this application, the schemas and relations of a relational database
are analyzed by DBE. The analysis gives the set of functional and inclusion
dependencies holding in the database instance. Using this information, an ER
schema describing the database can be formed almost au tomat i~a l ly .~~ '~

Since the roles of the three levels (ER schema, relation schemas and
constraints, and example databases) are symmetrical, the basic architecture of
DBE is directly applicable to the analysis of existing databases. The two types
of use have, however, important differences from an algorithmic point of view.
In the analysis of example relations generated by the design tool and subse-
quently modified by the designer the relations are typically fairly small: they
have at most 10 to 20 rows, and usually less than 10 rows. In analyzing an
existing database, the relations can, however, be of any size. Thus the two
types of applications pose different requirements for a dependency inference
algorithm. The analysis of small relations should be very interactive and fast,
and also preferably incremental, as it will be done several times with slightly
different inputs. On the other hand, the analysis program of existing databases
can be batch-oriented, as it will typically be run only once for a given database.

The DBE system has been implemented on the Macintosh I1 family of
computers and also in the OS/2 Presentation Manager environment. The system
is described in Ref. 11.

The design and use of DBE have shown how important the environment
of knowledge discovery is. While the possibility of generating and analyzing
example databases is extremely useful, it needs to be very tightly integrated
with other features that help in producing a well-designed schema.

V. THE FUNCTIONAL DEPENDENCY INFERENCE PROBLEM AND
LOWER BOUNDS

Let r be a relation over a relation schema R . If F is a set of functional
F means that all dependencies of F hold in r . The set of dependencies, then r

all functional dependencies holding in r is denoted by dep(r), that is,

X - t Y E dep(r) if and only if r

X -t Y for all relations r.

X - , Y .

The dependency X -+ Y is a consequence of F, denoted F X + Y, if r h F
implies r

If F and G are equivalent dependency sets, that is, all the dependencies of
G are consequences of F and vice versa, we say that F is a cover of G (and G
is a cover of F) .

600 KANTOLA ET AL.

The dependency inference problem is the problem of finding for a given
relation r a cover for the set dep(r). The dep(r) set always has several equivalent
covers of varying size, and we are interested in finding a small cover.

Example 3 . Consider the following relation.

Employee Department Manager Salary

Wilson Administration Brown 300
Barnes 'revs Jones 300

Smith Toys Jones 200

In this relation, the following functional dependencies (and their conse-
quences) hold:

Employee -+ Department Manager Salary
Department + Manager
Manager + Department
Department Salary -+ Employee

While the first three dependencies can be true for all instances of this
schema, the fourth is probably only accidentally true in this small example.

In this section we consider the computational complexity of dependency
inference. How feasible is the idea of inferring dependencies from existing
databases? How much time can we expect such an algorithm to take? We merely
give the results; proofs can be found in Refs. 12 and 13.

The problem instances have two parameters: the number of attributes n
and the number of rows p . If dependency inference is used to analyze modified
example relations generated by a design tool, the quantity p is probably small.
In the analysis of existing databases p can be quite large. We analyze the
complexity of dependency inference with respect to both these parameters.

A naive approach to computing a cover of dep(r) is to consider all possible
dependencies that could exist among the attributes of r .

THEOREM 1. (Ref. 12) The naive algorithm for dependency inference works
in time O(n22"p logp), where n is the number of attributes in R and p is the
number of tuples in r .
It is easy to show that O (p log p) is also a lower bound in a comparison-

based model of computation.
THEOREM 2. (Ref. 12) The dependency inference problem requires in the
worst case fl(p log p) steps for two-attribute relations with p rows.
Thus the simple algorithm that blindly tests all dependencies is optimal

with respect to the number of rows in the relation. Of course, the constant in
the time bound above is fairly large. But it turns out that this cannot be avoided
in the worst case.

RELATIONAL DATABASES 60 1

THEOREM 3. (Ref. 14) For each n there exists a relation r over R such that
IR(= n, J r J = O(n), and each cover ofdep(r) has Cl(2”’*) dependencies.
Similar results have been obtained by Demetrovics and Thi.”*I6
Hence for some small relations the size of the output of dependency infer-

ence is exponential in the size of the input. Thus any algorithm for dependency
inference must use exponential time, if it must output the result.

In practice, relations whose dependency sets have only large covers should
be rare. The fact that dep(r) has only large covers implies that either r has
many different keys, or the relation schema is highly unnormalized (since many
nonkey dependencies hold). Both situations are unlikely.

Since in the worst case the size of any cover can be exponential, a natural
goal is to look for an algorithm that would work fast for relations with small
sets of dependencies. One can try to find an algorithm that works in time
polynomial in the size of the smallest possible cover of the relation.

This problem turns out to be equivalent to the problem of computing the
transversals” of a hypergraph in polynomial time with respect to their size and
number.13 For a rich study of this and related problems, see Ref. 18.

VI. ALGORITHMS FOR FUNCTIONAL DEPENDENCY INFERENCE

We have seen that the dependency inference problem is intractable in the
worst case, but that the real world instances are likely to be simple. Clearly,
we need a better algorithm than the naive one if and when we wish to include
this feature in a database design tool.

Space does not permit a detailed description of the inference algorithms;
they have been described in a series of articles. 13*14*19 Empirical results about
the efficiency of the algorithms can be found in Ref. 20.

The basic idea in all dependency inference algorithms is to use information
about the agreements and disagreements among the rows of the relation. The
algorithm presented in Ref. 14 computes first for each attribute A E R the
collections

JA = {disag(t,t’)lt,t’ E r such that t[A] = t’[A]},

where

disag(t,t’) = {B E Rlt[Bl # t’[Bl}.

If X E JA , then for any left-hand side Y of a dependency Y + A holding in
r we must have Y rl X f $3. The sets JA can be pruned by keeping only the
minimal sets:

K A = {W E JAIthere is no V E JA such that V C W}.

Computing these sets takes O (p 2) operations, if the relation has p rows. After
this, the left-hand sides of the dependencies Y-+ A can be computed by forming
the transversals’’ of the sets in K A . A transversal of a hypergraph or a collection
of sets is a set that intersects every edge in the hypergraph. Computing the
transversals of a hypergraph is a well-known pr~blem.”.’~ No algorithm is

602 KANTOLA ET AL.

known for this problem that would work in time polynomial with respect to the
size of the output. The obvious algorithms can produce the same transversal
several times, and this makes the time requirement too large.

For large relations (say, p = 100 000) the bottleneck in dependency infer-
ence is not the exponentiality in the number of attributes, but in that even a
O(p 2 , algorithm is unusable.

One can try to get a O (p log p) algorithm with a reasonable constant by
using repeated sorts of the relation, as follows. Given a relation schema R, a
set F of functional dependencies, and an attribute A E R , denote by lhs(A) (left-
hand sides of A) the set of minimal nontrivial attribute sets X C R such that
X 4 A follows from F . That is,

lhs(r,A) = {X C R\{A}IF X - , A A V Y C X : F tf Y + A}.

The families Ihs(r,A) contain all the information about F , although F can be a
much more succinct representation in some situations.

Algorithm 1 .21 Computation of Ihs(r,A) by consecutive sorts.
Input. A relation r over schema R , and an attribute A E R.
Output. The collection Ihs(r,A).
Method. Maintain three collections of sets

lhs: the left-hand sides already found;
nonlhs: sets X such that X + A does nor hold in r ;
cand: sets still to be tested;

1. lhs := g;
2. nonlhs := $3;
3 . cand := (8);
4. while cand f 0 do
5.
6.
7.
8.
9.
10.
1 1 .
12.
13.
14.

15.
16.
17.
18.
19.
20.
21.
22.

let W be the first set of cand;
remove W from cand;
if for some L E lhs : L C W then

do nothing
else if for some N E nonlhs : W

cand := cand U { WDlD E R\(N U {A})};
else

Y := R\WA;
sort r using attributes WYA as the sort key;
let Y’ be the longest prefix of WYA
such that Y’ -+ A does not hold;
if Y‘ is not included in any set of nonlhs then

remove subsets of Y’ from nonlhs;
nonlhs := nonlhs U {Y’};

N then

fi;
if Y’ # WY then

let B be the attribute in WY following Y ’ ;
if Y’B does not include any set of Ihs then

remove supersets of Y‘B from lhs;

RELATIONAL DATABASES 603

23.
24. fi;
25. fi;
26.
27. fi;
28. od;

We omit the correctness proof of the algorithm (see Ref. 21). The algorithm
operates in time O(mn p log p + ~ 2 ~ 9 , where m is the number of sorts done.
Thus the exponentiality in the number of attributes is present, but the time
bound with respect to the number of rows is of the desired optimal form.

Another possibility of dealing with large relations is using samples of the
relations, or by aiming only at an approximate cover for the set of dependencies;
then, for example, Valiant style learning can be applied. Some algorithms and
their preliminary analysis is presented in Ref. 22.

Results of practical experiments on some dependency inference algorithms
are reported in Ref. 20.

Ihs := lhs U {Y’B} ;

cand := cand U {WDlD E R\WA};

VII. INFERENCE OF INCLUSION DEPENDENCIES

We now turn to the case of inclusion dependencies. Given a database
schema R and a database rover R, we want to find the inclusion dependencies
that hold in r.

Suppose we have a database schema consisting of two n-attribute relation
schemas R and S. Then there are more than n! possible nonequivalent inclusion
dependencies of the form R [X] C S[u] between R and S. Checking them one
by one is obviously impossible for any large value of n.

We can show that it is already NP-complete to decide whether an inclusion
dependency of the form R [X] c S [u] holds, where Y contains all the attributes
of S. Consider the following problem.

FULLINDEXISTENCE: Let R and S be relation schemas, and denote by
X the sequence consisting of the attributes of R in some order. Given relations
r and s over R and S, respectively, decide whether there exists a sequence Y
consisting of disjoint attributes of S in some order such that the dependency
R [X] c S[y1 holds in the database (r , s) .

THEOREM 4. FULLINDEXISTENCE is an NP-complete problem.
Proof. The problem is in NP, since we can nondeterministically guess a

sequence Y and then in polynomial time verify that R [X] C S[u] holds.
To prove NP-hardness, we show that the following NP-complete problem

is reducible to FULLINDEXISTENCE.
SUBGRAPH ISOMORPHISM: Given graphs G = (V , E) and H = (V ‘ , E ’) ,

decide whether H contains a subgraph isomorphic to G, that is, whether there
is an injective mapping g : V + V’ such that for all u,u E V with (u,u) E E we

We reduce this problem to the FULLINDEXISTENCE problem as fol-
lows. The relation Y corresponding to the graph G = (V , E) has as schema R the

have (g (u > , g (v >) E E ‘ .

604 KANTOLA ET AL.

set V, and it contains a row t , for each e = (u ,u) E E. The values oft, are defined
by

t&) = r,(v) = 1,

r,(w) = 0 for w E A { u , u } .

The relation s corresponding to graph H is formed in the same way: the schema
S of s consists of the elements of V‘, and s has one row for each edge in E ’ .
Denote by X the sequence of the elements of R in some order.

We claim that there is an injective mapping g from V to V ‘ preserving the
incidence relation if and only if

(r J) i= “1 c S[uJ

for some sequence Y of disjoint attributes of S. We omit the details.
Thus, in general, it is not always possible to quickly check the existence

of a long inclusion dependency. However, one should be cautious in interpreting
a result like Theorem 4. The database used to prove NP-completeness is highly
artificial. In real situations there are several ways to prune the set of possible
inclusion dependencies. If an inclusion dependency R [X] S [u] holds, then
for all attributes A of X the corresponding attribute B of Y should be of the same
type as A . That is, if A is a string-valued attribute, B should also be string-
valued, etc. Second, looking for inclusion dependencies of arbitrary length is
typically not useful: the dependencies holding in a database are probably short.
Furthermore, a necessary condition for an inclusion dependency R [X] C_ S[uJ
is that R[A] S [B] holds for each pair A and B of attributes of X and Y
corresponding to each other. Hence one can start by looking at the unary
inclusion dependencies holding in the database.

In a database schema of n attributes there are at most n2 possible unary
inclusion dependencies, so the collection

{R[Al C S[Bl (R ,S E R, A E R , B E S, and r [A] C s [B]}

can be computed in time O(n2p log p) , where p is the maximum number of rows
in any one relation of the database r. As mentioned earlier, the coefficient n2
can be further lowered. There is no need to check inclusion between attributes
with different domains. Hence instead of n2 pairs of attributes one needs to
investigate only 2,nf pairs, where i ranges over the different types of attributes
(strings, numeric, etc.) and n, is the number of attributes of type i. Given that
for most databases only relatively few inclusion dependencies hold, the checks
for most dependencies should terminate rather quickly.

VIII. RELATED WORK

Dependency inference also has applications in query optimization. Tradi-
tionally queries are optimized with respect to a given set of constraints that any
instance of the database must satisfy. However, the particular instance existing
at the time of query evaluation may well satisfy additional dependencies that

RELATIONAL DATABASES 605

could be used to speed up query evaluation. One algorithm specifically designed
for instance-based query optimization is presented in Ref. 23. If the dependency
inference problem can be solved efficiently, its time usage can be subsumed by
the savings achieved in query evaluation. SiegelZ4 considers automatically find-
ing rules that can be used to optimize queries.

In artificial intelligence, determinations (see Ref. 25) are expressions closely
corresponding to functional dependencies. Approaches to finding determina-
tions can be found in Refs. 25 and 26. Another application of dependency
inference in artificial intelligence can be found in Ref. 27.

DelgrandeZ8 studies the problem of finding supporting evidence for the
validity or invalidity of a given integrity constraint. His work differs from ours in
several aspects. First, his integrity rules can be very general: they are arbitrary
expressions in a (slightly weakened) relational algebra. We concentrate on
dependencies, since they are the most important integrity rules for (re)designing
the database schema. Delgrande also considers only finding evidence for the
dependencies proposed by the user or designer. No attempt is made to automati-
cally generate the set of all valid dependencies. (Considering the general form
of constraints, such an attempt would not even be realistic.) Similarly, Borgida,
Mitchell, and W i l l i a m s ~ n ~ ~ ~ ~ ~ suggest a method for automatically maintaining a
set of exceptions to the integrity constraints. When sufficiently many exceptions
are found, possible corrections to the constraints (based on some heuristics)
are proposed to the designer. Again, no rules are automatically inferred.

The use of inference of inclusion dependencies in mapping relational sche-
mas to conceptual schemas is considered in Ref. 31. Papers dealing with infer-
ence of more complicated constraints are Refs. 28, 32, 33, and 34 and the
collection in Ref. 35.

The problem of inferring the functional dependencies that hold in a relation
is closely related to the problem of learning a conjunction of propositional Horn
clauses.36 Namely, a functional dependency ABC + D can be considered to be
a Horn clause i A A i B A i C A D, and hence a set of functional dependencies
corresponds to a set of propositional Horn clauses.

IX. DISCUSSION

We have considered the problem of inferring the functional and inclusion
dependencies that hold in a given database instance. The motivation for the
problem arises from a database design tool that uses example databases to
illustrate the design decisions.

The dependency inference problem, as formulated above, always has an
exact solution. This gives the problem a different flavor from many other knowl-
edge acquisition or machine learning applications. However, for the analysis
of existing databases, an approximate solution for the dependency inference
problem would be preferable: one would like to see what dependencies almost
hold.

Design-By-Example is based on the idea of using examples as a tool in
human-computer interaction. We believe that examples are a good way of

606 KANTOLA ET AL.

providing feedback for the user, and our experience with DBE seems to validate
this. The domain where examples are applied is small and theoretically well-
behaved; this probably contributes greatly to the usefulness of examples in it.

References

1. C.J. Date, “Referential integrity,” In Proceedings of the 7th International Confer-
ence on Very Large Data Bases (VLDB’81), IEEE, 1981, pp. 2-12.

2. M.A. Casanova, R. Fagin, and C. Papadimitriou, “Inclusion dependencies and
their interaction with functional dependencies,” Journal of Computer and System
Sciences, 28, 29-59 (1984).

3. C.C. Fleming and B. von Halle, Handbook ofRelationa1 Database Design, Addison-
Wesley, Reading, MA, 1989.

4. R. Fagin, Armstbng Databases, Research Report RJ3440, IBM, San Jose, CA, May
1982.

5. V.M. Markowitz and A. Shoshani, “On the correctness of representing extended
entity-relationship structures in the relational model,” In Proceedings of ACM
SIGMOD Conference on Management of Data (SZGMOD’89), ACM, 1989, pp.

6. V.M. Markowitz and A. Shoshani, “Name assignment techniques for relational
schemas representing extended entity-relationship schemas. In Proceedings of the
8th International Conference on Entity-Relationship Approach, Frederick H. Lo-
chovsky, (Ed.), October 1989, pp. 21-39.

7. H. Mannila and K.-J. Kiiiha, “Design by example: An application of Armstrong
relations,” Journal of Computer and System Sciences, 33(2), 126-141 (1986).

8. H. Mannila and K.-J. Raiha, “Practical algorithms for finding prime attributes and
testing normal forms,” In Proceedings of the 8thACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS’89), ACM, 1989, pp.

9. M.A. Casanova and J.E. Amaral de Sa, “Mapping uninterpreted schemes into
entity-relationship diagrams: Two applications to conceptual schema design,” IBM
Journal of Research and Development, 28(l) , 82-94 (January 1984).

10. H . Mannila and K.-J. RBiha, “A mapping from relational database schemas to ER-
diagrams using inclusion dependencies,” April 1990.

11. M. Kantola, H. Mannila, K.-J. Raiha, H. Siirtola, and J. Tuomi,” Design-By-
Example: A tool for database design; user guide for version 3.0,” November 1991.

12. H. Mannila and K.-J. Raiha, “On the complexity of inferring functional dependen-
cies,” Discrete Applied Mathematics, (1991).

13. H. Mannila and K.-J. Raiha, The Design of Relational Datcibases, Addison-Wesley,
1992, to be published.

14. H. Mannila and K.-J. Raiha, “Dependency inference,” In Proceedings cf the 13th
International Conference on Very Large Data Buses (VLDB’87), September 1987,

IS. J. Demetrovics and V.D. Thi, “Some results about functional dependencies,” Acta

16. J. Demetrovics and V.D. Thi, “Relations and minimal keys.” Acta Cyberneticu,

430-439.

128- 133.

pp. 155-158.

Cybernetica, 8(3), 273-278 (1988).

8(3), 279-285 (1988).
17. C. Berge, Hypergruphs. Comhinutorics of Finite Sets. North-Holland, Amsterdam,

1989.
18. T. Eiter and G. Gottlob, Identibing the Minimal Trunsversals of a Hypergraph and

Related Problems, Technical Report CD-TR 91/16, Technische Universitat Wien,
January 199 1.

19. H. Mannila and K.-J. Raiha, “Algorithms for dependency inference,” Report

RELATIONAL DATABASES 607

A-1988-3, University of Tampere, Department of Computer Science, Tampere,
Finland, February 1988.

20. D. Bitton, J.C. Millman, and S. Torgersen, “A feasibility and performance study of
dependency inference,” In Proceedings of the 5th International Conference on Data
Engineering, 1989.

21. H. Mannila and K.-J. Raiha, “Algorithms for inferring functional dependencies,”
Report C-1991-41, University of Helsinki, Department of Computer Science, Hel-
sinki, Finland, August 1991.

22. J. Kivinen and H. Mannila, “Approximate dependency inference,” manuscript.
1991.

23. R. Dechter, “Decomposing an n-ary relation into a tree of binary relations,” In
Proceedings of the 6th ACM SIGACT-SIGMOD-SIGARTSymposium on Principles
of Database Systems (PODS’87), ACM, March 1987, pp. 185-189.

24. M. Siegel, Automatic Rule Derivation for Semantic Query Optimization, Technical
Report BUCS Tech Report #86-013, Boston University, Computer Science Depart-
ment, December 1986.

25. S. J. Russell, The Use of Knowledge in Analogy and Induction, Morgan Kaufmann,
San Mateo, CA, 1989.

26. J.C. Schlimmer, “Learning determinations and checking databases,” In Proceed-
ings of 1991 AAAI Workshop on Knowledge Discovery in Databases, G. Piatetsky-
Shapiro (Ed.), 1991, pp. 64-76.

27. H. Almuallim and T.G. Dietterich, “Learning with many irrelevant features,” In
AAAI-91, Proceedings, 9th National Conference on Art8cial Intelligence, AAAI
Press/The MIT Press, Cambridge, 1991, pp. 547-552.

28. J.P. Delgrande, “Formal bounds on the automatic generation and maintenance of
integrity constraints,” In Proceedings of the 6th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS’87), ACM, March 1987, pp.
190- 196.

29. A. Borgida and K.E. Williamson, “Accommodating exceptions in databases, and
refining the schema by learning from them,” In Proceedings of the 11th International
Conference on Very Large Data Bases (VLDB’85), August 1985, pp. 72-82.

30. A. Borgida, T. Mitchell, and K.E. Williamson, “Learning improved integrity con-
straints and schemas from exceptions in data and knowledge bases,” In On Knowl-
edge Base Management Systems, M.L. Brodie and J. Mylopoulos (Eds.), Springer-
Verlag, 1986, pp. 259-286.

31. M. Castellanos and F. Saltor, “Semantic enrichment of database schemas: An
object-oriented approach,” manuscript, 1991.

32. V.P. Tseng and M.V. Mannino, “Inferring database requirements from examples in
forms, In Proceedings of the 7th International Conference on Entity-Relationship
Approach, C. Batini (Ed.), November 1988, pp.255-265.

33. G . Piatetsky-Shapiro, “Discovery and analysis of strong rules in databases,” In
Advanced Database Systems Symposium, Kyoto, Japan, 1989, pp. 135-142.

34. R. Yasdi, “Learning classification rules from database in the context of knowledge
acquisition and representation,” IEEE Transactions on Knowledge and Data Engi-
neering, 3(3), 293-306 (September 1991).

35. G. Piatetsky-Shapiro (Ed.), Proceedings of 1991 AAAI Workshop on Knowledge
Discovery in Databases, American Association for Artificial Intelligence, July 1991.

36. D. Angluin, M. Frazier, and L. Pitt, “Learning conjunctions of Horn clauses,” In
Proceedings, 31st Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1990, pp. 186-191.

