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We consider the problem of discovering the functional and inclusion dependencies that 
a given database instance satisfies. This technique is used in a database design tool that 
uses example databases to give feedback to the designer. If the examples show deficien- 
cies in the design, the designer can directly modify the examples. The tool then infers 
new dependencies and the database schema can be modified, if necessary. The discovery 
of the functional and inclusion dependencies can also be used in analyzing an existing 
database. The problem of inferring functional dependencies has several connections to 
other topics in knowledge discovery and machine learning. In this article we discuss the 
use of examples in the design of databases, and give an overview of the complexity 
results and algorithms that have been developed for this problem. 0 1992 John Wiley & 
Sons. Inc. 

I. INTRODUCTION 

In database design the task of the designer is to describe the structures 
used to represent the data and to express the integrity constraints that restrict 
the allowed information. Typically, one starts by designing a conceptual 
schema, for example, an ER diagram. This is then transformed to relational 
schemas (tables) and integrity constraints. For the design of relational data- 
bases, functional and inclusion dependencies are the most important types of 
integrity constraints. 

The database design methods give no guarantee that all the relevant con- 
straints have been found. For example, in drawing an ER diagram it is all too 
easy to specify some properties of the relationships incorrectly, resulting in 
missing or erroneous constraints on the relational level. 

If, however, one has access to a database instance, it is possible to find 
out which integrity constraints are satisfied by that particular instance. Some 
of the satisfied constraints may hold by accident, but at least the instance 
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illustrates those constraints that are violated, The designer can examine the 
satisfied constraints and decide which of them should hold in general. The 
problem of discovering the integrity constraints from a database instance is 
called in this article the dependency inference problem. 

We have implemented a database design and analysis tool called Design- 
By-Example (DBE) that is based on the use of example databases to help locate 
the constraints in the data. 

In this article we discuss the role of examples in database design, describe 
the DBE design tool, and discuss the algorithmic problems involved in depen- 
dency inference. The article is organized as follows. Section I1 gives a brief 
overview of database design and integrity constraints. Section I11 provides a 
more detailed description of how we can make use of example databases and 
dependency inference in database design. Section IV discusses briefly Design- 
By-Example. Section V gives some theoretical results about the feasibility of 
dependency inference for functional dependencies, and Section VI discusses 
algorithms for solving the functional dependency inference problem. Section 
VII considers inference of inclusion dependencies. Section VIII discusses re- 
lated work. Section IX is a short conclusion. 

11. DATABASE DESIGN AND INTEGRITY CONSTRAINTS 

Database design is typically divided into requirements analysis, conceptual 
design, logical design, and physical design. In the conceptual design phase one 
constructs a conceptual schema of the data to be described in the database. The 
conceptual schema is typically described by using the entity-relationship model. 
An example description, a so-called ER diagram, is shown in Figure 1. 

The database described in Figure 1 contains information about courses, 
lecture rooms, and lecture hours. The diamond connecting the three boxes 
represents a relationship between entities, indicating what lectures are given in 
which room at a given time. 

The logical design phase produces relation schemas from the ER diagram. 
In the above example the result would contain the schemas 

Room (Room-Number, Capacity), 
Time (Hour, Description), 
Course (Course-Number, Name), 

MeetsIn (Course-Number, Room-Number, Hour). 
and 

The schemas alone are not sufficient for describing the database. In addi- 
tion, integrity constraints are needed. The information in the ER diagram can 
be represented using functional and inclusion dependencies. 

Functional dependencies are conditions stating that any value of certain 
attributes is associated with at most one value of a certain attribute. Inclusion 
dependencies are conditions stating that values occurring in certain columns of 
one relation must also occur in certain columns of another relation. Thus inclu- 
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Figure 1. An ER-diagram. 

sion dependencies express the referential integrity' property that is central in 
the relational model. 

These types of integrity constraints are defined as follows. Given a relation 
schema (a set of attributes) R, a relation over R is informally a table whose 
columns are named with the attributes in R. Formally, a relation r is a set of 
sequences (called tuples) with IRI components. The projection of a tuple t on a 
set of attributes X C R, denoted t[X], is defined as the subsequence of t 
containing only those values that correspond to the attributes of X. 

A functional dependency over the schema R is an expressionx-, Y, where 
X, Y, C R. The dependency X + Y holds in r ,  denoted r X + Y, if all tuples 
u,u E r with u[X] = u[X] satisfy also u [ y l  = u [ y l .  

An inclusion dependency2 is an expression R[X] C S [ u ,  where R and S 
are relation schemas, X is a sequence of attributes of R, and Y is a sequence of 
attributes of S. If r and s are relations corresponding to R and S, respectively, 
then the inclusion dependency R[X] C S[yI  holds in ( r , s )  if for each row u of 
r there is a row u of s such that the sequence of values occurring in the X 
columns of u is the same as the sequence of values occurring in the Y columns 
of u. That is, R[X] C S [  yl holds in ( r , s )  if r [ X ]  C s[ yl. 

Returning to the ER diagram of Figure 1,  transforming it to relation schemas 
gives the following integrity constraints: 
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Room : Room-Number Capacity 
Time : Hour + Description 
Course : Course-Number + Name 

MeetsIn[Course-Number] C Course[Course-Number] 
MeetsIn[Room-Number] C Room[Room~Numberl 
MeetsIn[Hour] C Time[Hourl 

The task of database design can be formulated as the construction of 
schemas and integrity constraints such that valid data can be efficiently stored 
and retrieved from the corresponding relations, and that incorrect data cannot 
be stored. 

In addition to functional and inclusion dependencies, there are several 
other types of integrity constraints that are needed to specify what is valid data 
and what is not. Functional and inclusion dependencies are, however, sufficient 
for modeling the structural aspects of the data. 

In this article we consider the problem of finding what functional and 
inclusion dependencies hold in a given database instance. Since there are only 
a finite number of syntactically correct dependencies for a given database 
schema, the problem is solvable: one can, in principle, check all dependencies 
one by one. However, more efficient algorithms are needed. 

111. EXAMPLE DATABASES IN DESIGN 

When explaining a database schema to somebody, experienced designers 
tend to use examples. Some informal database design guidelines3 suggest the 
use of example values and relations during the design process. The advantages 
of examples are easy to see. An attribute name can easily mean different things 
to different people, but a concrete example of an allowed value for that attribute 
is more likely to be understood in the same way by everybody, and an example 
value also shows how the attribute name should be interpreted. Likewise, a 
relation schema expressing connections between attributes is an abstract con- 
cept and prone to misunderstandings. Concrete examples of a relation corre- 
sponding to the schema are easier to understand and evaluate. 

An arbitrary example relation does not necessarily indicate all the important 
information about the relation schema or the database schema. An example row 
or two indicate what type of information can be stored using the schema. This 
is a valuable piece of knowledge, but such an example does not indicate the 
interrelationships of different rows and relations implied by the design. A suit- 
able example relation can, however, clearly illustrate the problems in a sug- 
gested design. 

Example 1 .  Consider again the design of a database for recording data about 
courses offered by a department. The design produced a schema with the 
following columns: 

MeetsIn: Course-Number, RoomNumber,  Hour 
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No functional dependencies for these attributes were produced by the 
transformation from the ER diagram to relation schemas. 

However, the design probably does not reflect the real world accurately. 
For instance, nothing prohibits many courses from meeting in the same room 
at the same time, or one course from meeting in two rooms at any given time. 

The following example relation does not satisfy any nontrivial functional 
dependencies. 

CIS 551 PAC 30 M 9:30 
CIS 510 PAC 30 M 9:30 
CIS 510 DES 200 M 9:30 
CIS 510 DES 200 W 13:30 

In this example the problems discussed above are evident: Course CIS 510 
meets in two rooms on Monday at 9:30, and Room PAC 30 is used by both CIS 
510 and CIS 551 on Monday at 9:30. 

Thus a suitably chosen example can be very useful in pinpointing problems 
in a design. The example table above is in a sense a worst case example: it 
violates all constraints that have not been explicitly required to hold. The goal 
is to point out possible omissions in conceptual design by showing what can 
happen unless more constraints are posed on the tables. 

The worst case property can be defined formally by saying that the example 
relation or database should be an Armstrong relation of database4: it should 
satisfy only the integrity constraints that are logically implied by the constraints 
explicitly given by the designer. 

The fact that a functional dependency is not required to hold is very easy 
to spot from an example relation that satisfies the Armstrong property: one only 
needs to compare two rows. Noticing that a constraint does hold is more 
difficult, since one has to inspect the whole table. 

Examples can also make redundancy in a schema intuitively easy to com- 
prehend. Suppose, for example, that in the schema. 

Employees (Employee, Manager, Department) 

the functional dependencies Department -+ Manager, Manager --$ Department, 
and Employee + Department hold. This is represented by the following Arm- 
strong relation. 

Employee Manager Department 
Wilson Hogger Construction 
Jones Hogger Construction 

Drake Sales 
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The first two lines of the example show how the information about the 
manager of the Construction Department is represented twice. This can make 
it easier for the designer to understand why a design algorithm can suggest 
decomposing the schema into two smaller schemas, namely, (Employee, De- 
partment) and (Department, Manager). 

Although some things are easy to spot from examples, the explicit represen- 
tation of the integrity constraints also has its advantages. Therefore the designer 
can be shown both the list of constraints and the example table as representa- 
tions of the constraint set. This double representation gives the designer two 
complementing views of the design. 

IV. DESIGN-BY-EXAMPLE 

Generating and maintaining the example relations by hand is tedious, espe- 
cially because the database schema tends to change frequently during the design. 
During the past few years we have designed and implemented a database design 
tool called Design-By-Example (DBE). This tool supports the use of automati- 
cally generated and maintained example databases. The examples are Arm- 
strong databases for the set of constraints given in the design. 

In DBE the design can start from the construction of an ER diagram using 
a typical drawing tool. The system then produces the corresponding relation 
schemas and integrity constraints. To check the design, the designer can gener- 
ate an example database and inspect it. If the example is incorrect (or just 
unnatural), the designer can edit it. After this, a new set of integrity constraints 
can be inferred from the example. These constraints are shown to the designer, 
who can also directly edit the set of constraints. The changes in the set of 
constraints can imply that the relation schemas should be changed. The system 
does this interactively with the designer. The changes in the relation schemas 
can mean changes also in the ER diagram; these can also be done by the system, 
if the user so wishes. At any point of the design, the user can inspect an example 
database and an ER diagram corresponding to the current set of schemas and 
constraints. 

Example 2. Consider the ER schema shown in Figure 1. It has been drawn 
using the ER editor of DBE. The corresponding relational schema is produced 
by choosing a command from a menu. In this case the four schemas shown 
previously would be produced. The schema for the meeting times of courses is 
shown attribute-by-attribute in Figure 2, which also illustrates how the example 
relation for the MeetsIn schema can be generated by a single command. 

As a result, the example relation shown in Figure 3 would be displayed. 
The values appearing in the relation must have been described by the designer 
as possible example values in the appropriate domains of attributes. 

The example can be edited by changing the time on the second row to 
something else, and the set of dependencies that the modified relation satisfies 
can be inferred using the Infer Dependencies command. The outcome is shown 
in Figure 4. 
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Figure 2. The relational level of DBE. 

All dependencies found in this manner have a key of the relation schema 
on their left-hand side, which means that the schema is in Boyce-Codd normal 
form. Thus the relation schema is acceptable as such. However, when the 
modified schema (including the new dependencies) is mapped back into an ER 
diagram, the dependencies are reflected in the functionality of the MeetsIn 
relationship type: it becomes functional with respect to both Course and Room. 

Thus DBE supports three different representations of the relation schemas 
and constraints: the relation schemas and constraints themselves, an ER dia- 

-~ 

Meetsln - Example pJp 
Cours e-N u m b e r  Room-Num b e r Hour  
CIS 551 P A C  30 
C I S  510 P A C  30 
CIS  510 DES 200 M 9:30 
CIS 510 DES 200 

Figure 3. An example relation. 
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PAC 30 M 9:30 
PAC 30 F 12:40 
DES 200 M 9:30 
DES 200 W 13:30 

Room-Number Hour --> Course-Number 
Course-Number Hour  - -> Room-Numbed 

Figure 4. Inferred dcpcndencies 

gram, and an cxample database that is an Armstrong database for the set of 
constraints. Actually, by using functional and inclusion dependencies one can 
express properties of schemas that arc not expressible in an ER diagram. Thus 
the levels do not have exactly the same power. 

In addition to the use of examples, the novcl features of DBE include a 
design methodology bascd on the simultaneous me of the ER modcl and the 
relational modcl, the use of functional dependencies and inclusion dependen- 
cies* as structural integrity constraints. and cspecially efficient dcsign algo- 
rit hms. 

Thc implementation of DBE has required that the mappings hetwcen all 
these three levels are implemented. Thc mapping from EK schemas lo relational 
schcmns is a classical topic in database dcsign literature. The main idca in the  
mapping is very simple. but onc has to be careful with thc details (see Refs. 5 
and 6) .  The mapping from rclation schemas and integrity constraints back to 
ER diagrams is less common, but it is algorithmically fairly casy. 

The task of producing example relations for a sct of schemas and integrity 
constraints is quitc complicated. The example should be small, since a large 
example is probably useless for human interface pnrposcs. The algorithms used 
in DBE are described in Refs. 7 and 8 .  

*Pcrh:ips surprisingly, inclusion dependencies havc not bccn widely used in databww 
design tools. although t h c y  are fairly intuitive. 
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The specific topic of this article is the mapping from an (edited) example 
database to the set of schemas and constraints. The schemas are, of course, 
easy to obtain from the example database, but the constraints are much harder 
to find, Also in this problem questions of the size of the result are important: 
for a given relation there are typically many equivalent sets of constraints that 
hold in the relation. The solution to the dependency inference problem should 
produce a small but still intuitive representation of the constraints. 

DBE can also be used to check and possibly modify the design of an existing 
database. In this application, the schemas and relations of a relational database 
are analyzed by DBE. The analysis gives the set of functional and inclusion 
dependencies holding in the database instance. Using this information, an ER 
schema describing the database can be formed almost au tomat i~a l ly .~~ '~  

Since the roles of the three levels (ER schema, relation schemas and 
constraints, and example databases) are symmetrical, the basic architecture of 
DBE is directly applicable to the analysis of existing databases. The two types 
of use have, however, important differences from an algorithmic point of view. 
In the analysis of example relations generated by the design tool and subse- 
quently modified by the designer the relations are typically fairly small: they 
have at most 10 to 20 rows, and usually less than 10 rows. In analyzing an 
existing database, the relations can, however, be of any size. Thus the two 
types of applications pose different requirements for a dependency inference 
algorithm. The analysis of small relations should be very interactive and fast, 
and also preferably incremental, as it will be done several times with slightly 
different inputs. On the other hand, the analysis program of existing databases 
can be batch-oriented, as it will typically be run only once for a given database. 

The DBE system has been implemented on the Macintosh I1 family of 
computers and also in the OS/2 Presentation Manager environment. The system 
is described in Ref. 11. 

The design and use of DBE have shown how important the environment 
of knowledge discovery is. While the possibility of generating and analyzing 
example databases is extremely useful, it needs to be very tightly integrated 
with other features that help in producing a well-designed schema. 

V. THE FUNCTIONAL DEPENDENCY INFERENCE PROBLEM AND 
LOWER BOUNDS 

Let r be a relation over a relation schema R .  If F is a set of functional 
F means that all dependencies of F hold in r .  The set of dependencies, then r 

all functional dependencies holding in r is denoted by dep(r), that is, 

X - t  Y E dep(r) if and only if r 

X -t Y for all relations r.  

X - ,  Y .  

The dependency X -+ Y is a consequence of F,  denoted F X + Y,  if r h F 
implies r 

If F and G are equivalent dependency sets, that is, all the dependencies of 
G are consequences of F and vice versa, we say that F is a cover of G (and G 
is a cover of F ) .  
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The dependency inference problem is the problem of finding for a given 
relation r a cover for the set dep(r). The dep(r) set always has several equivalent 
covers of varying size, and we are interested in finding a small cover. 

Example 3 .  Consider the following relation. 

Employee Department Manager Salary 

Wilson Administration Brown 300 
Barnes 'revs Jones 300 

Smith Toys Jones 200 

In this relation, the following functional dependencies (and their conse- 
quences) hold: 

Employee -+ Department Manager Salary 
Department + Manager 
Manager + Department 
Department Salary -+ Employee 

While the first three dependencies can be true for all instances of this 
schema, the fourth is probably only accidentally true in this small example. 

In this section we consider the computational complexity of dependency 
inference. How feasible is the idea of inferring dependencies from existing 
databases? How much time can we expect such an algorithm to take? We merely 
give the results; proofs can be found in Refs. 12 and 13. 

The problem instances have two parameters: the number of attributes n 
and the number of rows p .  If dependency inference is used to analyze modified 
example relations generated by a design tool, the quantity p is probably small. 
In the analysis of existing databases p can be quite large. We analyze the 
complexity of dependency inference with respect to both these parameters. 

A naive approach to computing a cover of dep(r)  is to consider all possible 
dependencies that could exist among the attributes of r .  

THEOREM 1. (Ref. 12) The naive algorithm for  dependency inference works 
in time O(n22"p logp), where n is the number of attributes in R and p is the 
number of tuples in r .  
It is easy to show that O ( p  log p )  is also a lower bound in a comparison- 

based model of computation. 
THEOREM 2. (Ref. 12) The dependency inference problem requires in the 
worst case fl(p log p )  steps for  two-attribute relations with p rows. 
Thus the simple algorithm that blindly tests all dependencies is optimal 

with respect to the number of rows in the relation. Of course, the constant in 
the time bound above is fairly large. But it turns out that this cannot be avoided 
in the worst case. 
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THEOREM 3. (Ref. 14) For each n there exists a relation r over R such that 
IR( = n, J r J  = O(n), and each cover ofdep(r) has Cl(2”’*) dependencies. 
Similar results have been obtained by Demetrovics and Thi.”*I6 
Hence for some small relations the size of the output of dependency infer- 

ence is exponential in the size of the input. Thus any algorithm for dependency 
inference must use exponential time, if it must output the result. 

In practice, relations whose dependency sets have only large covers should 
be rare. The fact that dep(r) has only large covers implies that either r has 
many different keys, or the relation schema is highly unnormalized (since many 
nonkey dependencies hold). Both situations are unlikely. 

Since in the worst case the size of any cover can be exponential, a natural 
goal is to look for an algorithm that would work fast for relations with small 
sets of dependencies. One can try to find an algorithm that works in time 
polynomial in the size of the smallest possible cover of the relation. 

This problem turns out to be equivalent to the problem of computing the 
transversals” of a hypergraph in polynomial time with respect to their size and 
number.13 For a rich study of this and related problems, see Ref. 18. 

VI. ALGORITHMS FOR FUNCTIONAL DEPENDENCY INFERENCE 

We have seen that the dependency inference problem is intractable in the 
worst case, but that the real world instances are likely to be simple. Clearly, 
we need a better algorithm than the naive one if and when we wish to include 
this feature in a database design tool. 

Space does not permit a detailed description of the inference algorithms; 
they have been described in a series of articles. 13*14*19 Empirical results about 
the efficiency of the algorithms can be found in Ref. 20. 

The basic idea in all dependency inference algorithms is to use information 
about the agreements and disagreements among the rows of the relation. The 
algorithm presented in Ref. 14 computes first for each attribute A E R the 
collections 

JA = {disag(t,t’)lt,t’ E r such that t[A] = t’[A]}, 

where 

disag(t,t’) = {B E Rlt[Bl # t’[Bl}. 

If X E JA , then for any left-hand side Y of a dependency Y + A holding in 
r we must have Y rl X f $3. The sets JA can be pruned by keeping only the 
minimal sets: 

K A  = {W E JAIthere is no V E JA such that V C W}. 

Computing these sets takes O ( p 2 )  operations, if the relation has p rows. After 
this, the left-hand sides of the dependencies Y-+ A can be computed by forming 
the transversals’’ of the sets in K A  . A transversal of a hypergraph or a collection 
of sets is a set that intersects every edge in the hypergraph. Computing the 
transversals of a hypergraph is a well-known pr~blem.”.’~ No algorithm is 
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known for this problem that would work in time polynomial with respect to the 
size of the output. The obvious algorithms can produce the same transversal 
several times, and this makes the time requirement too large. 

For large relations (say, p = 100 000) the bottleneck in dependency infer- 
ence is not the exponentiality in the number of attributes, but in that even a 
O( p 2 ,  algorithm is unusable. 

One can try to get a O ( p  log p )  algorithm with a reasonable constant by 
using repeated sorts of the relation, as follows. Given a relation schema R, a 
set F of functional dependencies, and an attribute A E R ,  denote by lhs(A) (left- 
hand sides of A) the set of minimal nontrivial attribute sets X C R such that 
X 4  A follows from F .  That is, 

lhs(r,A) = {X C R\{A}IF X - ,  A A V Y  C X :  F tf Y +  A}. 

The families Ihs(r,A) contain all the information about F ,  although F can be a 
much more succinct representation in some situations. 

Algorithm 1 .21 Computation of Ihs(r,A) by consecutive sorts. 
Input. A relation r over schema R ,  and an attribute A E R.  
Output. The collection Ihs(r,A). 
Method. Maintain three collections of sets 

lhs: the left-hand sides already found; 
nonlhs: sets X such that X + A does nor hold in r ;  
cand: sets still to be tested; 

1. lhs := g; 
2. nonlhs := $3; 
3 .  cand := (8); 
4. while cand f 0 do 
5.  
6. 
7. 
8. 
9. 
10. 
1 1 .  
12. 
13. 
14. 

15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 

let W be the first set of cand; 
remove W from cand; 
if for some L E lhs : L C W then 

do nothing 
else if for some N E nonlhs : W 

cand := cand U { WDlD E R\(N U {A})};  
else 

Y := R\WA; 
sort r using attributes WYA as the sort key; 
let Y’ be the longest prefix of WYA 
such that Y’ -+ A does not hold; 
if Y‘ is not included in any set of nonlhs then 

remove subsets of Y’ from nonlhs; 
nonlhs := nonlhs U {Y’}; 

N then 

fi; 
if Y’ # WY then 

let B be the attribute in WY following Y ’ ;  
if Y’B does not include any set of Ihs then 

remove supersets of Y‘B from lhs; 
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23. 
24. fi; 
25. fi; 
26. 
27. fi; 
28. od; 

We omit the correctness proof of the algorithm (see Ref. 21). The algorithm 
operates in time O(mn p log p + ~ 2 ~ 9 ,  where m is the number of sorts done. 
Thus the exponentiality in the number of attributes is present, but the time 
bound with respect to the number of rows is of the desired optimal form. 

Another possibility of dealing with large relations is using samples of the 
relations, or by aiming only at an approximate cover for the set of dependencies; 
then, for example, Valiant style learning can be applied. Some algorithms and 
their preliminary analysis is presented in Ref. 22. 

Results of practical experiments on some dependency inference algorithms 
are reported in Ref. 20. 

Ihs := lhs U {Y’B} ;  

cand := cand U {WDlD E R\WA}; 

VII. INFERENCE OF INCLUSION DEPENDENCIES 

We now turn to the case of inclusion dependencies. Given a database 
schema R and a database rover R, we want to find the inclusion dependencies 
that hold in r. 

Suppose we have a database schema consisting of two n-attribute relation 
schemas R and S. Then there are more than n! possible nonequivalent inclusion 
dependencies of the form R [ X ]  C S[u] between R and S. Checking them one 
by one is obviously impossible for any large value of n. 

We can show that it is already NP-complete to decide whether an inclusion 
dependency of the form R [ X ]  c S [  u] holds, where Y contains all the attributes 
of S. Consider the following problem. 

FULLINDEXISTENCE: Let R and S be relation schemas, and denote by 
X the sequence consisting of the attributes of R in some order. Given relations 
r and s over R and S, respectively, decide whether there exists a sequence Y 
consisting of disjoint attributes of S in some order such that the dependency 
R [ X ]  c S[y1 holds in the database ( r , s ) .  

THEOREM 4. FULLINDEXISTENCE is an NP-complete problem. 
Proof. The problem is in NP, since we can nondeterministically guess a 

sequence Y and then in polynomial time verify that R [ X ]  C S[ u] holds. 
To prove NP-hardness, we show that the following NP-complete problem 

is reducible to FULLINDEXISTENCE. 
SUBGRAPH ISOMORPHISM: Given graphs G = ( V , E )  and H = ( V ‘ , E ’ ) ,  

decide whether H contains a subgraph isomorphic to G, that is, whether there 
is an injective mapping g : V + V’ such that for all u,u E V with (u,u) E E we 

We reduce this problem to the FULLINDEXISTENCE problem as fol- 
lows. The relation Y corresponding to the graph G = ( V , E )  has as schema R the 

have ( g ( u > , g ( v > )  E E ‘ .  
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set V, and it contains a row t ,  for each e = (u ,u)  E E.  The values oft, are defined 
by 

t&) = r,(v) = 1, 

r,(w) = 0 for w E A { u , u } .  

The relation s corresponding to graph H is formed in the same way: the schema 
S of s consists of the elements of V‘, and s has one row for each edge in E ’ .  
Denote by X the sequence of the elements of R in some order. 

We claim that there is an injective mapping g from V to V ‘  preserving the 
incidence relation if and only if 

( r J )  i= “1 c S[uJ 

for some sequence Y of disjoint attributes of S. We omit the details. 
Thus, in general, it is not always possible to quickly check the existence 

of a long inclusion dependency. However, one should be cautious in interpreting 
a result like Theorem 4. The database used to prove NP-completeness is highly 
artificial. In real situations there are several ways to prune the set of possible 
inclusion dependencies. If an inclusion dependency R [ X ]  S [  u] holds, then 
for all attributes A of X the corresponding attribute B of Y should be of the same 
type as A .  That is, if A is a string-valued attribute, B should also be string- 
valued, etc. Second, looking for inclusion dependencies of arbitrary length is 
typically not useful: the dependencies holding in a database are probably short. 
Furthermore, a necessary condition for an inclusion dependency R [ X ]  C_ S[uJ 
is that R[A] S [ B ]  holds for each pair A and B of attributes of X and Y 
corresponding to each other. Hence one can start by looking at the unary 
inclusion dependencies holding in the database. 

In a database schema of n attributes there are at most n2 possible unary 
inclusion dependencies, so the collection 

{R[Al C S[Bl (R ,S  E R, A E R ,  B E S, and r [A]  C s [B]}  

can be computed in time O(n2p log p ) ,  where p is the maximum number of rows 
in any one relation of the database r.  As mentioned earlier, the coefficient n2 
can be further lowered. There is no need to check inclusion between attributes 
with different domains. Hence instead of n2 pairs of attributes one needs to 
investigate only 2,nf pairs, where i ranges over the different types of attributes 
(strings, numeric, etc.) and n, is the number of attributes of type i. Given that 
for most databases only relatively few inclusion dependencies hold, the checks 
for most dependencies should terminate rather quickly. 

VIII. RELATED WORK 

Dependency inference also has applications in query optimization. Tradi- 
tionally queries are optimized with respect to a given set of constraints that any 
instance of the database must satisfy. However, the particular instance existing 
at the time of query evaluation may well satisfy additional dependencies that 
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could be used to speed up query evaluation. One algorithm specifically designed 
for instance-based query optimization is presented in Ref. 23. If the dependency 
inference problem can be solved efficiently, its time usage can be subsumed by 
the savings achieved in query evaluation. SiegelZ4 considers automatically find- 
ing rules that can be used to optimize queries. 

In artificial intelligence, determinations (see Ref. 25) are expressions closely 
corresponding to functional dependencies. Approaches to finding determina- 
tions can be found in Refs. 25 and 26. Another application of dependency 
inference in artificial intelligence can be found in Ref. 27. 

DelgrandeZ8 studies the problem of finding supporting evidence for the 
validity or invalidity of a given integrity constraint. His work differs from ours in 
several aspects. First, his integrity rules can be very general: they are arbitrary 
expressions in a (slightly weakened) relational algebra. We concentrate on 
dependencies, since they are the most important integrity rules for (re)designing 
the database schema. Delgrande also considers only finding evidence for the 
dependencies proposed by the user or designer. No attempt is made to automati- 
cally generate the set of all valid dependencies. (Considering the general form 
of constraints, such an attempt would not even be realistic.) Similarly, Borgida, 
Mitchell, and W i l l i a m s ~ n ~ ~ ~ ~ ~  suggest a method for automatically maintaining a 
set of exceptions to the integrity constraints. When sufficiently many exceptions 
are found, possible corrections to the constraints (based on some heuristics) 
are proposed to the designer. Again, no rules are automatically inferred. 

The use of inference of inclusion dependencies in mapping relational sche- 
mas to conceptual schemas is considered in Ref. 31. Papers dealing with infer- 
ence of more complicated constraints are Refs. 28, 32, 33, and 34 and the 
collection in Ref. 35. 

The problem of inferring the functional dependencies that hold in a relation 
is closely related to the problem of learning a conjunction of propositional Horn 
clauses.36 Namely, a functional dependency ABC + D can be considered to be 
a Horn clause i A A i B A i C A D, and hence a set of functional dependencies 
corresponds to a set of propositional Horn clauses. 

IX. DISCUSSION 

We have considered the problem of inferring the functional and inclusion 
dependencies that hold in a given database instance. The motivation for the 
problem arises from a database design tool that uses example databases to 
illustrate the design decisions. 

The dependency inference problem, as formulated above, always has an 
exact solution. This gives the problem a different flavor from many other knowl- 
edge acquisition or machine learning applications. However, for the analysis 
of existing databases, an approximate solution for the dependency inference 
problem would be preferable: one would like to see what dependencies almost 
hold. 

Design-By-Example is based on the idea of using examples as a tool in 
human-computer interaction. We believe that examples are a good way of 
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providing feedback for the user, and our experience with DBE seems to validate 
this. The domain where examples are applied is small and theoretically well- 
behaved; this probably contributes greatly to the usefulness of examples in it. 
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