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Abstract

Functional dependencies (FDs) and inclusion dependencies (INDs) are the most fundamental integrity constraints that arise
in practice in relational databases. A given set of FDs does not interact with a given set of INDs if logical implication of any FD
can be determined solely by the given set of FDs, and logical implication of any IND can be determined solely by the given set
of INDs. We exhibit a necessary condition and two novel sufficient conditions for a set of FDs and a set of proper circular INDs
not to interact; these two sufficient conditions are orthogonal to known results in the database literature. We also discuss the
difficulty in obtaining a syntactic necessary and sufficient condition for no interaction between FDs and INDs. 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The implication problemfor FDs and INDs is the
problem of deciding for a given setΣ of FDs and
INDs whetherΣ logically impliesσ , whereσ is an
FD or an IND. The implication problem is central
in data dependency theory in recognizing tractable
subclasses of sets of data dependencies. Solutions to
the implication problem are employed in the process
of database design, where they are used to test whether
two sets of dependencies are equivalent or to detect
whether a dependency in a given set is redundant.

The implication problem for FDs and INDs is
known to be undecidable in the general case [12,6]
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and can be decided only in exponential time when
the INDs are restricted to be noncircular [4]. On
the other hand, the implication problem for FDs
on their own is known to be decidable in linear
time [2] and the corresponding implication problem
for noncircular INDs again on their own is known to be
NP-complete [13] (for INDs, which may be circular,
the implication problem is PSPACE-complete [3]).
Thus given a setΣ of FDs and INDs and an FD or
IND σ , it would be desirable if the setF of FDs and
the setI of INDs donot interact, in the sense that the
implication problem of whetherΣ logically impliesσ
can be decided byF on its own, whenσ is an FD, and
by I on its own, whenσ is an IND. That is, ifF andI
do not interact then the algorithms in database design
that use logical implication can be implemented more
efficiently than would otherwise be the case (see [11]).
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We consider the interaction between FDs and proper
circular INDs [7] which extend noncircular INDs to
allow a restricted form of cycles, called proper cycles.
Our main results are to exhibit a necessary condition
for no interaction to occur between FDs and proper cir-
cular INDs and two novel sufficient conditions for no
such interaction to occur, which also happen to be de-
sirable properties in the design of incomplete informa-
tion databases [9]. Our new sufficient conditions are
orthogonal to the well-known results in the literature
for no interaction to occur between FDs and noncir-
cular INDs [13, Section 10.10]. Although a syntactic
necessary and sufficient condition for no interaction to
occur between FDs and proper circular INDs is eva-
sive, we identify the two ways of preventing such in-
teraction from occurring. Both of them utilize the fact
that thechaseprocedure [13,10] can be used to solve
the implication problem for FDs and proper circular
INDs. The first way to prevent interaction is to find a
condition which prevents any application of the chase
FD rule during the invocation of the chase. The known
results in the database literature prevent interaction us-
ing this first approach. The second way to prevent in-
teraction is to find a condition which prevents any old
value present in the original database, prior to the com-
putation of the chase, to be equated to another value
during the computation of the chase (new values added
to the database during the computation of the chase
may be equated to other values). Our new results pre-
vent interaction using this second approach.

The layout of the rest of the paper is as follows. In
Section 2 we define FDs, INDs and their subclasses,
and introduce the chase procedure as a means of
testing satisfaction of a set of FDs and INDs. In
Section 3 we give a necessary condition for no
interaction to occur between FDs and proper circular
INDs and present several novel sufficient conditions
for such non-interaction. Finally, in Section 4 we give
our concluding remarks and discuss the open problem
of finding a syntactic condition that is both necessary
and sufficient for no interaction to occur.

2. Functional and inclusion dependencies

Herein we present the preliminary concepts needed
to obtain our results. These include the definition of
FDs and INDs, the subclasses of these dependencies

that we consider and the definition of the chase
procedure with respect to a set of FDs and INDs.

We use the notation|S| to denote the cardinality of
a setS. If S is a subset ofT we writeS ⊆ T and ifS is
a proper subset ofT we writeS ⊂ T . Furthermore,S
andT areincomparableif S 6⊆ T andT 6⊆ S. We often
denote the singleton{A} simply byA, and the union
of two setsS, T , i.e.,S ∪ T , simply byST.

Definition 2.1 (Database schema and database). Let
U be a finite set of attributes. Arelation schema
R is a finite sequence of distinct attributes fromU .
A database schemais a finite setR = {R1, . . . ,Rn},
such that eachRi ∈ R is a relation schema and⋃
i Ri = U .
We assume a countably infinite domain of valuesD;

without loss of generality we assume thatD is linearly
ordered. AnR-tuple (or simply a tuple wheneverR is
understood from context) is a member of the Cartesian
productD× · · · ×D (|R| times).

A relation r over R is a finite (possibly empty)
set ofR-tuples. Adatabased overR is a family of
n relations{r1, . . . , rn} such that eachri ∈ d is over
Ri ∈R.

From now on we letR be a database schema andd
be a database overR. Furthermore, we letr ∈ d be a
relation over the relation schemaR ∈R.

Definition 2.2 (Projection). The projectionof anR-
tuplet onto a set of attributesY ⊆R, denoted byt[Y ]
(also called theY -value of t), is the restriction oft
to Y . The projection of a relationr ontoY , denoted as
πY (r), is defined byπY (r)= {t[Y ] | t ∈ r}.

Definition 2.3 (Functional dependency). A functional
dependency(or simply an FD) over a database schema
R is a statement of the formR :X→ Y (or simply
X → Y wheneverR is understood from context),
whereR ∈ R and X,Y ⊆ R are sets of attributes.
An FD of the formR :X→ Y is said to betrivial if
Y ⊆X; it is said to bep-standardif |X|> p for some
natural numberp > 1; whenp = 1 then we say that
R :X→ Y is a standard FD.F is said to bep-standard
when all the FDs inF arep-standard.

An FD R :X → Y is satisfied ind , denoted by
d |=R :X→ Y , whenever∀t1, t2 ∈ r, if t1[X] = t2[X]
thent1[Y ] = t2[Y ].
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Definition 2.4 (Inclusion dependency). An inclusion
dependency(or simply an IND) over a database
schemaR is a statement of the formRi[X] ⊆ Rj [Y ],
whereRi,Rj ∈R andX ⊆ Ri , Y ⊆ Rj are sequences
of distinct attributes such that|X| = |Y |. An IND is
said to betrivial if it is of the formR[X] ⊆R[X], and
an INDR[X] ⊆ S[Y ] is said to bep-ary if |X|6 p for
some natural numberp > 1; whenp = 1 then we say
thatR[X] ⊆ S[Y ] is a unary IND.I is said to bep-ary
when all the INDs inI arep-ary.

An IND Ri [X] ⊆ Rj [Y ] overR is satisfied ind ,
denoted byd |= Ri [X] ⊆ Rj [Y ], wheneverπX(ri) ⊆
πY (rj ), whereri , rj ∈ d are the relations overRi and
Rj , respectively.

Definition 2.5 (Noncircular sets of INDs). A set of
INDs I over R is circular if either there exists
a nontrivial IND R[X] ⊆ R[Y ] ∈ I , or there exist
m distinct relation schemas,R1,R2,R3, . . . ,Rm ∈
R, with m > 1, such thatI contains the INDs:
R1[X1] ⊆ R2[Y2], R2[X2] ⊆ R3[Y3], . . . ,Rm[Xm] ⊆
R1[Y1]. A set of INDs I is noncircular if it is not
circular.

The class of proper circular INDs [7] defined below
includes the class of noncircular INDs as a special
case.

Definition 2.6 (Proper circular sets of INDs). A set
I of INDs overR is proper circular if it is either
noncircular or whenever there existm distinct relation
schemas,R1,R2,R3, . . . ,Rm ∈ R, with m > 1, such
thatI contains the INDs:R1[X1] ⊆R2[Y2], R2[X2] ⊆
R3[Y3], . . . ,Rm−1[Xm−1] ⊆ Rm[Ym], Rm[Xm] ⊆
R1[Y1], then for alli ∈ {1,2, . . . ,m} we haveXi = Yi ;
such a sequence of INDs is called aproper cycle.

From now on we letF be a set of FDs overR and
Fi = {Ri :X→ Y ∈ F }, i ∈ {1, . . . , n}, be the set of
FDs inF overRi ∈R. Furthermore, we letI be a set
of INDs overR and letΣ = F ∪ I .

The following definition originates from [14].

Definition 2.7 (Graph representation of INDs). The
graph representation of a set of INDsI overR is a
directed graphGI = (N,E), which is constructed as
follows. Each relation schemaR in R has a separate
node inN labeled byR; we do not distinguish between

nodes and their labels. There is an arc(R,S) ∈ E if
and only if there is a nontrivial INDR[X] ⊆ S[Y ] ∈ I .
A relation schemaR ∈ R is called asourcerelation
schema with respect toI if it has no incoming arcs.

It can easily be verified that there is a path inGI
fromR to S if and only if for some INDR[X] ⊆ S[Y ]
we haveI |=R[X] ⊆ S[Y ]. Moreover,I is noncircular
if and only ifGI is acyclic.

Definition 2.8 (Keys and key-based INDs). A set of
attributesX ⊆ Ri is asuperkeyfor Ri with respect to
Fi if Fi |= Ri :X→ Ri holds;X is akeyfor Ri with
respect toFi if it is a superkey forRi with respect to
Fi and for no proper subsetY ⊂X is Y a superkey for
Ri with respect toFi .

A database schemaR is in Boyce–Codd Normal
Form (or simply BCNF) with respect toF if for all
Ri ∈R, for all nontrivial FDsRi :X→ Y ∈ Fi , X is a
superkey forRi with respect toFi .

An IND Ri[X] ⊆ Rj [Y ] is key-basedif Y is a key
for Rj with respect toFj .

Definition 2.9 (Logical implication).Σ is satisfiedin
d , denoted byd |=Σ , if ∀σ ∈Σ,d |= σ .
Σ logically impliesan FD or an INDσ , written

Σ |= σ , if wheneverd is a database overR then the
following condition is true:

if d |=Σ holds thend |= σ also holds.

Σ logically impliesa setΓ of FDs and INDs over
R, writtenΣ |= Γ , if ∀σ ∈ Γ, Σ |= σ . We letΣ+,
called theclosureof Σ , denote the set of all FDs and
INDs that are logically implied byΣ .

It is well known that Armstrong’s axiom system
[1] can be used to computeF+ and that Casanova
and Amaral de Sa’s axiom system [3] can be used
to computeI+. However, when we consider FDs
and INDs together computingΣ+ was shown to be
undecidable [12,6]. On the other hand, whenI is
noncircular then Mitchell’s axiom system [12] can be
used to computeΣ+ [4]. Moreover, in the special case
whenI is a set of unary INDs then Cosmadakis et al.’s
axiom system [5] can be used to computeΣ+ (see
also [15]).

Thepseudo-transitivityinference rule for FDs [10]
and thepullbackinference rule for FDs and INDs [12,
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3], which are utilized below, are stated in the next two
propositions.

Proposition 2.1.

If F |=R :X→ Y andF |=R :WY →Z,

thenF |=R :XW → Z.

Proposition 2.2.

If Σ |= {R[XY] ⊆ [WZ], S :W →Z} and|X| = |W |,
thenΣ |=R :X→ Y.

We next define two subclasses of FDs which have
been very useful in characterizing desirable properties
in the design of incomplete information databases [9].

Definition 2.10 (Intersection property). Two nontriv-
ial FDs of the formsR :X→ A andR :Y → A are
said to beincomparableif X andY are incomparable.

A set of FDsF over R satisfies theintersection
property if ∀Fj ∈ F,∀A ∈ Rj , whenever there exist
incomparable FDs,Rj :X→ A, Rj :Y → A ∈ F+j ,

thenRj :X ∩ Y →A ∈ F+j .

Definition 2.11 (Split-freeness property). Two non-
trivial FDs of the formsR : XB→ A andR : YA→ B

are said to becyclic.
A set of FDsF overR satisfies thesplit-freeness

propertyif ∀Fj ∈ F , whenever there exist cyclic FDs,
Rj : XB→A, YA→ B ∈ F+j , then eitherRj :Y → B

∈ F+j orRj : (X ∩ Y )A→B ∈ F+j .

Definition 2.12 (Reduced set of FDs and INDs). The
projection of a set of FDsFi over Ri onto a set
of attributesY ⊆ Ri , denoted byFi [Y ], is given by
Fi [Y ] = {Ri :W → Z | Ri :W → Z ∈ F+i andWZ⊆
Y }.

A set of attributesY ⊆Ri is said to bereducedwith
respect toRi and a set of FDsFi overRi (or simply
reduced with respect toFi if Ri is understood from
context) if Fi [Y ] contains only trivial FDs. A set of
FDs and INDsΣ = F ∪ I is said to bereducedif
∀Ri [X] ⊆Rj [Y ] ∈ I , Y is reduced with respect toFj .

The next proposition shows that testing whether a
set of FDs and INDs is reduced can be carried out

efficiently by utilizing a solution to the implication
problem for FDs.

Proposition 2.3. It can be decided in polynomial time
in the size ofΣ whetherΣ is reduced or not.

Proof. The condition thatY is reduced with respect to
Fj is true if and only if∀A ∈ Y, (Y −A)→A /∈ F+j .

The result now follows, since(Y − A)→ A /∈ F+j
can be checked in polynomial time in the size of
Fj [2]. 2

The chase procedure provides us with a very useful
algorithm which forces a database to satisfy a set of
FDs and INDs.

Definition 2.13 (The chase procedure for INDs). The
chase ofd with respect toΣ , denoted byCHASE(d,
Σ), is the result of applying the following chase rules,
namely the FD and the IND rules, to the current state
of d as long as possible. (The current state ofd prior
to the first application of either of the chase rules is its
state upon input to the chase procedure.)

FD rule: If Rj :X → Y ∈ Fj and ∃t1, t2 ∈ rj such
that t1[X] = t2[X] but t1[Y ] 6= t2[Y ], then∀A ∈ Y ,
change all the occurrences ind of the larger of the
values oft1[A] andt2[A] to the smaller of the values
of t1[A] andt2[A].

IND rule: If Ri[X] ⊆ Rj [Y ] ∈ I and ∃t ∈ ri such
that t[X] /∈ πY (rj ), then add a tupleu overRj to
rj , whereu[Y ] = t[X] and∀A ∈ Rj − Y , u[A] is
assigned a new value greater than any other current
value occurring in the tuples of the relations in the
current state ofd .

Given the initial state ofd prior to the computation
of CHASE(d,Σ) we call the values in the tuples of
the relations ind old valuesand call the values which
are newly introduced tod during the computation of
CHASE(d,Σ) as a result of the IND rule adding tuples
to relations ind new values.

We observe that there is no loss of generality to
consider an FD rule forRj :X→ Y as an FD rule
for the FDsRj :X→ A, with A ∈ Y − X such that
t1[A] 6= t2[A]. We will utilize this observation in



M. Levene, G. Loizou / Information Processing Letters 71 (1999) 115–125 119

proofs which use the chase procedure. We also observe
that, in general, if we allowI to be circular then
the chase procedure does not always terminate [8].
The following theorem is a consequence of results in
[13, Chapter 10] and [7]. It shows that whenI is a
set of proper circular INDs, then the chase procedure
terminates and satisfiesΣ . It also shows that in this
case the chase can be decoupled into two distinct
stages. At the first stage the IND rule is applied to
the current state ofd exhaustively and at the second
stage the FD rule is applied exhaustively to the current
state ofd , after the first stage has been computed,
terminating with the final result.

Theorem 2.4. Let Σ = F ∪ I be a set of FDs and
proper circular INDs over a database schemaR. Then
the following three statements are true:
(i) CHASE(d,Σ) |=Σ .
(ii) CHASE(d,Σ) is identical to CHASE(CHASE(d,

I),F ) up to renaming of new values.
(iii) CHASE(d,Σ) terminates after a finite number

of applications of the IND and FD rules to the
current state ofd .

3. Interaction between FDs and INDs

Herein we show that the condition that a setΣ ,
comprising a set of FDsF and a set of proper circular
INDs I , both overR, be reduced is a necessary
condition for no interaction to occur betweenF and
I but it is not sufficient. Various sufficient conditions
for no interaction betweenF andI are presented; the
main new conditions that we present are that ifΣ is
reduced andF satisfies either the intersection property
or the split-freeness property thenF and I do not
interact.

We motivate our definition of interaction by an
example.

Example 3.1. Let Σ = F ∪ I , whereF = {R :X→
Y, S :W → Z}, with |X| = |W |, andI = {R[XY] ⊆
S[WZ]}. By Proposition 2.2 we have{S :W → Z} ∪
I |=R :X→ Y and trivially we haveF |=R :X→ Y .
Therefore, althoughF |= R :X→ Y , there is a subset
G= {S :W → Z} of F such thatG 6|= R :X→ Y but
we have thatG ∪ I |= R :X→ Y . Thus we consider
F andI to interact, since we can derive an FD from

a subset ofF together withI that cannot be derived
from that subset ofF on its own.

Definition 3.1 (Interaction between FDs and INDs).
A set of FDsF overR is saidnot to interactwith of
set of INDsI overR, if
(1) for all FDs α over R, for all subsetsG ⊆ F ,

G∪ I |= α if and only ifG |= α, and
(2) for all INDs β over R, for all subsetsJ ⊆ I ,

F ∪ J |= β if and only if J |= β .

We observe that our definition of interaction is
stricter than the corresponding definition in [13, Sec-
tion 10.10], where the only subsets ofF andI that are
considered areF andI themselves. Obviously our de-
finition implies that of [13] but, in general, their defin-
ition does not imply ours as is shown in Example 3.1.

Definition 3.2 (Traced value). Let rj be the current
state of the relation overRj in d during the computa-
tion of CHASE(d, I). A tuplet ∈ rj is said to betraced
from a tupleu ∈ ri , whereri is the original state of the
relation overRi in d , if t was inserted intorj as a re-
sult of the following sequence of applications of the
IND rule,m> 0:
(1) u1 was inserted intorh1 overRh1 as a result of

the IND rule forRi[Z] ⊆ Rh1[Z1], with u[Z] =
u1[Z1];

(2) u2 was inserted intorh2 overRh2 as a result of the
IND rule for Rh1[Z2] ⊆ Rh2[Z3] with u1[Z2] =
u2[Z3]; . . . ; (m+1) t was inserted intorj overRj
as a result of the IND rule forRhm[Z2m] ⊆Rj [V ]
with um[Z2m] = t[V ]. (We do not exclude the
case wheni = j , and whenm = 0 the sequence
of the applications of the IND rule reduces to:t
was inserted intorj overRj as a result of the IND
rule forRi [Z] ⊆Rj [V ], with u[Z] = t[V ].)

If t ∈ rj is traced from some tupleu ∈ ri andt[A] =
u[B], for someA ∈ Rj and someB ∈ Ri , then we say
that theA-valuet[A] is tracedfrom ri .

The next lemma is pivotal in proving our main result
(recall Definition 2.7 of a source relation schema).

Lemma 3.1. Let d be a database overR such that
d |= F and letRi be a source relation schema with
respect to a noncircular set of INDsI overR. If the
FD rule applies an FDRj :X→ A (A /∈ X) to the
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current state of the relationrj ∈ d over Rj during
the computation of CHASE(d,Σ) and either t1[A]
or t2[A] is traced from the relationri ∈ d over Ri ,
then eitherΣ is not reduced orF violates both the
intersection property and the split-freeness property.

Proof. We assume without loss of generality that the
left-hand side ofX→ A is an appropriate minimal
cardinality set, i.e., that there does not exist a proper
subsetX1 of X such thatX1→ A ∈ F+j . We also
assume without loss of generality that no relationrh ∈
d is redundant in the following sense:rh is redundant
if the state ofrj , during the computation of the chase
just prior to the application of the FD rule forX→
A referred to in the statement of the lemma, is not
affected whenrh is removed fromd before the chase
is invoked.

Now, assume for the rest of the proof thatt1[A] is
traced fromri . Consider the first application of the FD
rule referred to in the statement of the lemma. By the
assumption thatt1[A] is traced fromri , it follows that
there is a path inGI from Ri to Rj . We prove the
lemma by induction on the length of the longest path,
say q , in GI from Ri to any other relation schema
in R.

Basis: Suppose thatq = 1; q = 0 is not possible
sinceI is acyclic. We prove the lemma by a second
induction on the number of times, sayk, the FD rule
was applied tod prior to the application of the FD
rule for Rj :X→ A, referred to in the statement of
the lemma.

Basis: If k = 0 then there were no previous applica-
tions of the FD rule. It follows thatt1[XA] ∈ πZB(ri)

for someZB⊆ Ri , due to the fact that the IND rule
does not equate values,t1[X] = t2[X] and t1[A] is
traced fromri . Moreover, sinceq = 1 there must be
an IND Ri[ZB] ⊆ Rj [XA], which is obtained fromI
by the projection and permutation inference rule for
INDs [3]. The result thatΣ is not reduced follows,
sinceX→A ∈ F+j is a nontrivial FD.

Induction: Assume that the result holds when the
minimum number of times the FD rule was applied to
d prior to the application of the FD rule forRj :X→
A, referred to in the statement of the lemma, isk,
wherek > 0; we then need to prove that the result
holds when the minimum number of times the FD
rule was applied isk + 1. Consider the(k + 1)th
application of the FD rule, which applies, say, the

Table 1
The current state of the relationrj

W ′ X′ C A REST

?. . . ? 0. . .0 1 3 ?. . . ?

0. . .0 0. . .0 2 4 ?. . . ?

0. . .0 ?. . . ? 1 4 ?. . . ?

FD Rh :W → C ∈ Fh. Now, if this FD rule does
not equatet1[C] and t2[C], for someC ∈ X, then
the (k + 1)th application is redundant and the result
follows by inductive hypothesis. So, the FD rule must
have equatedt1[C] and t2[C], for someC ∈ X; in
addition, neithert1[C] nor t2[C] is traced from any
relation r ′ ∈ d over R′, otherwise again the result
follows by inductive hypothesis since the statement of
the lemma would be satisfied with this FD rule. (We
note that ifR′ is not a source relation schema with
respect toI then we can transformd and I in such
a manner thatR′ will satisfy this requirement as in
the inductive step below forq > 1.) We observe that
ri 6= rj , since neithert1[C] nor t2[C] is traced fromri
andd |= F .

Now, sinceq = 1 it must be the case thath = j
and therefore the(k + 1)th FD rule applies the FD
Rj :W → C ∈ Fj . A fragment of the state ofrj prior
to the application of the(k + 1)th FD rule is shown
in Table 1, whereX′ = X − C, W ′ = W − A and
REST= schema(Rj )− XW; ‘?’ can be any value and
the zeros can be replaced by any other domain value.

We now prove thatF violates the split-freeness
property, assuming thatΣ is reduced. We first claim
that there is some nontrivial FDRj :Z → C ∈ F+j
for someC ∈ X, with A ∈ Z, such that(Z − A)→
C /∈ F+j . Now, sincet1[A] is traced fromri andq = 1,
there is an INDRi [VB] ⊆Rj [UA] in I that caused the
insertion of part of the original state oft1 into a pre-
vious state ofrj . Suppose that the said claim is false.
Let X −U = {C1,C2, . . . ,Cm}. Then, due to the fact
that t1[X] = t2[X] in rj and all previous applications
of the FD rule must have equated two new values, we
have the sequence of FDs:U → C1 ∈ F+j , UC1→
C2 ∈ F+j , . . . ,UC1C2 . . .Cm−1→ Cm ∈ F+j . Thus by
repeated applications of the pseudo-transitivity rule
for FDs (Proposition 2.1) and the union rule for FDs
we can deduce thatU →X −U ∈ F+j , implying that

U →X ∈ F+j . Therefore,U → A ∈ F+j , leading to a
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contradiction of our assumption thatΣ is reduced thus
proving the claim.

LetX =X′C andZ =Z′A. We claim thatX′ 6=Z′
implying thatF violates the split-freeness property.
Suppose that the claim is false. Consider the FD rule
for Rj :Z→ C, which must have been applied to a
state ofrj prior to the application of the FD rule for
Rj :X→A referred to in the statement of the lemma.
Now, sincet1[A] 6= t2[A] there must exist a third tuple
t3, which is distinct fromt1 andt2, which was involved
in equating t1[C] and t2[C] via the application of
the FD rule forRj :Z→ C. Suppose that the tuples
involved in this FD rule aret2 and t3, with t2[A] =
t3[A], and thatt2[C] is equated witht3[C] by this
FD rule application, implying thatt1[C] = t3[C] but
t1[A] 6= t3[A]. Moreover, t1[X′] = t2[X′] = t3[X′],
since we have assumed thatX′ = Z′. The result now
follows by inductive hypothesis, since the FD rule for
Rj :Z → C is redundant due to the fact thatt1[A]
andt2[A] can be equated by applying the FD rule for
Rj :X→ A to the tuplest1 andt3 without needing to
apply the FD rule forRj :Z→ C.

We next prove thatF violates the intersection prop-
erty, assuming thatΣ is reduced. IfA /∈W then by the
pseudo-transitivity inference ruleRj :W(X − C)→
A ∈ F+j and by the intersection propertyRj :X−C→
A ∈ F+j implying that the left-hand side ofRj :X→
A is not minimal as assumed; thus the(k+ 1)th chase
rule is redundant implying by inductive hypothesis
that the result holds. Otherwise, ifA ∈ W , we claim
that there must have been a previous application of the
FD rule for an FDRj :Z→C ∈ Fj , withA /∈Z, con-
cluding the result as above by the intersection prop-
erty.

Now, sincet1[A] 6= t2[A] there must be a third tuple
t3, which is distinct fromt1 andt2, and was involved in
equatingt1[C] andt2[C] via the application of the FD
rule forRj :W → C. Suppose that the tuples involved
in this FD rule aret2 and t3, with t2[A] = t3[A],
and thatt2[C] is equated witht3[C] by this FD rule
application, implying thatt1[C] = t3[C] but t1[A] 6=
t3[A]. (A symmetric argument is made whent1 andt3
are the tuples involved in this FD rule.) Then, prior to
the application of the FD rule forRj :W → C, t3[C]
must have been equated witht1[C] by an FD rule for
some FDRj :Z → C ∈ Fj , since as argued earlier
neither t1[C] nor t2[C] is traced from any relation
r ′ ∈ d . The proof is complete since it must be the

case thatA /∈ Z, otherwiset3[C] could not have been
equated witht1[C] due to the fact thatt1[A] 6= t3[A] in
the state ofrj prior to the application of the(k + 1)th
FD rule and in all previous states ofrj during the
computation of the chase.

Induction: Assume that the result holds when the
length of the longest path inGI from Ri to any other
relation schema inR is q , where q > 1; we then
need to prove that the result holds when the length of
the longest path inGI from Ri to any other relation
schema inR is q + 1.

To conclude the proof we transform the original
databased into a databased ′ as follows. LetI ′ be
the subset of INDs inI such thatRi [U ] ⊆ Rh[V ],
for someRh ∈ R and letd ′ = CHASE(d, I ′ ∪ F) −
{r ′i}, wherer ′i is the current state ofri in this chase
of d . Let u be the tuple inri such thatt1 is traced
from u, and letu1 be a tuple in the relationr ′h over
Rh in d ′ such thatt1 is traced fromu1 as a result
of an IND Ri[U ′B] ⊆ Rh[V ′B ′] ∈ I ′, which inserted
u1 into r ′h with u[U ′B] = u1[V ′B ′]. It follows that
t1[A] = u[B] = u1[B ′] and thust1[A] is traced from
r ′h. Moreover,Rh is a source relation schema with
respect toI − I ′, d ′ |= F and the current state of
the computation ofCHASE(d ′, (I − I ′) ∪ F) ∪ {ri}
is equal to the current state of the computation of
CHASE(d,Σ) prior to the application of the FD rule
referred to in the statement of the lemma, due to the
fact thatI is acyclic,Ri is a source relation schema
with respect toI and initiallyd |= F implying that the
state ofri did not change until this FD rule application.
The result now follows by inductive hypothesis, since
by the construction ofd ′ andI − I ′ the length of the
longest path inGI−I ′ from Rh to any other relation
schema inR is q . In the statement of the lemma we
replaced by d ′, Ri byRh andI by I − I ′. 2

A counterexample to the lemma, without the condi-
tion thatF satisfies the intersection and split-freeness
properties, is provided below.

Example 3.2. LetR = {R1,R2} be a database schema,
with R1 = {B1,B2,B3,A} andR2 = R1 ∪ {C}. Also,
let d = {r1, r2} be a database overR, with r1 =
{〈1,2,3,0〉} andr2 = ∅. Finally, letΣ = F ∪ I be a
set of FDs and noncircular INDs. The set of INDs is
given byI = {R1[B2B3] ⊆ R2[B2B3], R1[B1B3A] ⊆
R2[B1B3A], R1[B1B2A] ⊆ R2[B1B2A]}. The set of
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FDs is given byF = F2 = {B1A → C, B2 → C,
B3C → A}. It can be verified thatΣ |= R1[B2B3A]
⊆ R2[B2B3A], sinceCHASE(d,Σ) produces a tuple
t in r2, with t[B2B3A] = 〈2,3,0〉. So there is interac-
tion betweenF andI butΣ is reduced. It is interest-
ing to note that the closure ofΣ is not reduced, since
F |= B2B3→A.

The next counterexample shows that even if the
closure ofΣ is reduced there may still be interaction
betweenF andI .

Example 3.3. Let R = {R1,R2,R3} be a database
schema, withR1= R2 = {A,B,C} andR3= {A,B1,

B2,C1,C2}. Also, let d = {r1, r2, r3} be a database
overR, with r1 = {〈0,1,2〉} andr2 = r3 = ∅. Finally,
let Σ = F ∪ I be a set of FDs and noncircular INDs.
The set of INDs is given byI = {R1[AC] ⊆ R2[BC],
R1[AC] ⊆ R3[AB1], R1[AC] ⊆ R3[AB2], R1[BC] ⊆
R3[AB1], R1[BC] ⊆ R3[AB2]}. The set of FDs is
given byF = F3= {A→ C1C2, B1→ C1, B2→ C2,
C1C2→ A}. It can be verified thatΣ |= R1[BC] ⊆
R2[BC], since inCHASE(d,Σ) the values 0 and 1 are
equated. So there is interaction betweenF andI but it
can be verified that the closure ofΣ is reduced.

In the above example the interaction is due to
the IND R1[AB] ⊆ R3[AA] being logically implied
by Σ (see [12,3] for more on INDs with repeated
attributes on their right-hand side, which are also
calledrepeating dependencies).

We now extend Lemma 3.1 to the case whereI is
a set of proper circular INDs. Let relation schemasR

and S be in the samecyclic equivalence class, if in
GI there is a cycle which contains bothR andS; if a
relation schemaR does not participate in any proper
cycle then its cyclic equivalence class is a singleton.
We construct a directed graphPI = (N,E), whose
nodes represent cyclic equivalence classes of relation
schemas and there is an arc(n1, n2) ∈ E if and only
if there is an arc inGI from a relation schema in the
cyclic equivalence class represented byn1 to a relation
schema in the cyclic equivalence class represented
by n2. By the definition of a proper circular set of
INDs it follows thatPI is acyclic. Let us call a relation
schemaR a cyclic-sourceif its cyclic equivalence
class is a source node inPI .

Lemma 3.2. Let d be a database overR such that
d |= F and letRi be a cyclic-source relation schema
with respect to a proper circular set of INDsI overR.
If the FD rule applies an FDRj :X→ A (A /∈X) to
the current state of the relationrj ∈ d overRj during
the computation of CHASE(d,Σ) and either t1[A]
or t2[A] is traced from the relationri ∈ d over Ri ,
then eitherΣ is not reduced orF violates both the
intersection property and the split-freeness property.

Proof. We observe that ifR[X] ⊆ S[Y ] is an IND
in a proper cycle, then there is no other IND inI of
the formR[X′] ⊆ S[Y ′]. This observation, which is
crucial to the proof, holds since otherwise we could
replaceR[X] ⊆ S[Y ] in the said cycle byR[X′] ⊆ [Y ′]
and thusI would no longer be proper circular as
assumed.

Case1. Ri andRj are in different cyclic equiva-
lence classes. We can now preprocessd as follows.
For each cyclic equivalence class, sayCk , which is
not a singleton, letICk be the set of all INDs inI
of the formR[V ] ⊆ S[U ], whereR andS are inCk .
Moreover, letIC denote the union of all sets of INDs,
ICk , whereCk is a cyclic equivalence class. We now
let d ′ = CHASE(d, IC ∪ F) be our initial database.
Finally, we break the proper cycles inI by remov-
ing exactly one IND from each such cycle, ensuring
that Ri is a source relation schema in the resulting
setI ′ of noncircular INDs. (We enforce this condition
by removing the INDRh[V ] ⊆ Ri[U ] from proper
cycles that involveRi .) The result now follows by
Lemma 3.1; in the statement of the lemma we replace
d by d ′ andI by I − IC .

Case2. Ri andRj are in the same cyclic equiva-
lence class and thus bothRi andRj are cyclic-source
relation schemas. In this case we only need to invoke
an induction on the number of times, sayk, the FD
rule was applied tod prior to the application of the
FD rule forRj :X→ A referred to in the statement
of the lemma. The basis step, fork = 0, is essentially
the same as in Lemma 3.1; again consider the IND,
Ri[ZB] ⊆ Rj [XA], which was responsible for insert-
ing t1 into rj . This IND is obtained from the set of
INDs in the cyclic equivalence class ofRi by employ-
ing the transitivity and the projection and permutation
inference rules for INDs [3]. The inductive step for
k > 0 follows along the same lines as the inductive
step in Lemma 3.1. We note that in this case we can
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assume without loss of generality thath= j , since we
are free to chooseRi andRj to be any of the relation
schemas in their equivalence class due to the fact that
Ri is a cyclic-source and the observation at the begin-
ning of the proof implying a symmetry betweenRi and
Rj with respect to the INDs in the cyclic equivalence
class. 2

The next theorem represents the most general result,
which we are able to obtain, for no interaction to occur
betweenF andI , apart from Corollaries 3.5 and 3.6
which are extensions of well-known results.

Theorem 3.3. If I is proper circular,F satisfies either
the intersection property or the split-freeness property
andΣ is reduced thenF andI do not interact.

Proof. We prove the result by contraposition. On
assuming thatF andI do interact, there are two cases
to consider.

Case1. For some FDRi :W → Z and for some
subsetG ⊆ F , G ∪ I |= Ri :W → Z but G 6|=
Ri :W → Z. We need to show that eitherΣ is not
reduced orF violates both the intersection property
and the split-freeness property.

Let Γ = G ∪ I . It follows that for someB ∈
Z, G 6|= Ri :W → B. Thus there is some database
d , where apart from the relationri ∈ d over Ri all
other relations are empty and such thatd |= G but
d 6|= Ri :W → B. Without any loss of generality, we
can considerRi to be a cyclic-source relation schema
since due to the construction ofd we can eliminate
from I all INDs of the formRk[U ] ⊆ Rj [V ], where
in PI there is a path from the cyclic equivalence class
of Rk to the cyclic equivalence class ofRi , andRj
is in the same cyclic equivalence class asRi , without
affecting the computation ofCHASE(d,Σ). Thus the
conditions of Lemma 3.2 are now satisfied, sinced 6|=
Ri :W → B but CHASE(d,Γ ) |= Ri :W → B; hence
the result follows.

Case 2. For some INDRi [X] ⊆ Rj [Y ] and for
some subsetJ ⊆ I , F ∪ J |=Ri [X] ⊆Rj [Y ] butJ 6|=
Ri [X] ⊆ Rj [Y ]. Again we need to show that either
Σ is not reduced orF violates both the intersection
property and the split-freeness property.

Let Γ = F ∪ J . Also, let d be a database, where
apart fromri all the relations ind are empty, and let
ri contain a single tupleti such that for all distinct

attributesA,B ∈ Ri , ti [A] and ti [B] are pairwise
distinct values. By the construction ofd we have
d |= F but d 6|= Ri[X] ⊆ Rj [Y ]. As in Case 1 we
can considerRi to be a cyclic-source relation schema
without any loss of generality. Thus the conditions
of Lemma 3.2 are satisfied, sinceCHASE(d, J ) 6|=
Ri[X] ⊆Rj [Y ] but CHASE(d,Γ ) |= Ri[X] ⊆Rj [Y ];
hence the result follows.2

The next lemma shows that althoughΣ being
reduced is not a sufficient condition it is a necessary
one. On the other hand, it is easy to see that neither the
intersection property nor the split-freeness property is
a necessary condition for no interaction; for example,
consider the case when the setI of INDs overR is
empty.

Lemma 3.4. If F and I do not interact thenΣ is
reduced.

Proof. We prove the result by contraposition. As-
sume thatΣ is not reduced and thus for some IND
Ri[Zi] ⊆ Rj [Zj ] ∈ I , Zj is not reduced with respect
to Rj andFj . It now follows thatFj [Zj ] contains a
nontrivial FD, sayRj :Xj → Yj , with XjYj ⊆ Rj .
Furthermore, we have thatI |=Ri [XiYi ] ⊆Rj [XjYj ]
for some subsetXiYi ⊆ Zi , with |Xi | = |Xj |, since
XjYj ⊆ Zj . Therefore, by Proposition 2.2,Σ |=
Ri :Xi → Yi , whereRi :Xi → Yi is a nontrivial FD.
The result follows, sinceFj ∪ I |= Ri :Xi → Yi but
Fj 6|=Ri :Xi→ Yi . 2

The next two corollaries extend Theorems 10.20
and 10.21 in [13] to broader classes of dependencies.
Their proofs, which utilize the results of Theorem 2.4
for proper circular INDs, are omitted since they are
essentially the same as those in [13, Section 10.10].

Corollary 3.5. If F is a set ofp-standard FDs andI
is a set of proper circularp-ary INDs thenF andI do
not interact.

Corollary 3.6. If R is in BCNF with respect toF , I
is a proper circular set of INDs andΣ = F ∪ I is
reduced thenF andI do not interact.

The next theorem, which follows from a straight-
forward simplification of Lemma 3.1, shows that a
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stronger syntactic restriction onΣ than it just being
reduced would be sufficient for no interaction to occur
betweenF andI .

Theorem 3.7. Let F be a set of FDs overR and I
be a set of proper circular INDs overR. If ∀Ri [V ] ⊆
Rj [U ] ∈ I and ∀Y → Z ∈ Fj we haveY 6⊆ U , or
∀Ri [V ] ⊆ Rj [U ] ∈ I and ∀Y → Z ∈ Fj , with B ∈
Z − Y , we haveB /∈ U , then there is no interaction
betweenF andI .

The next example shows that we cannot extend
Theorem 3.3, and Corollaries 3.5 and 3.6 to the case
when the set of INDs is circular.

Example 3.4. Consider a database schemaR = {R},
whereR = AB, and a set of FDs and INDsΣ =
{R :A→ B,R[A] ⊆ R[B]} overR. It can easily be
verified thatΣ is reduced andF is a standard set of
FDs that satisfies the intersection and split-freeness
properties,I is a unary set of INDs andR is in BCNF
with respect toF . Despite all these conditions being
satisfiedF and I interact, sinceΣ |= {R :B → A,

R[B] ⊆R[A]} [3,5].

We close this section with an example showing
that wecannotcombine Theorems 3.3 and 3.7, and
Corollaries 3.5 and 3.6 to obtain a necessary condition
for no interaction to occur betweenF andI whenI is
proper circular.

Example 3.5. LetR = {R1,R2} be a database schema,
with R1 = {A,B} andR2 = {A,B,C,D}. Let Σ =
F ∪ I be a set of FDs and noncircular INDs, where
I = {R1[AB] ⊆ R2[AB]} and F = F2 = {B → C,

AC→ B, D→ B}. It can be verified thatF and I
have no interaction, despite the fact thatF violates
both the intersection and split-freeness properties,R

is not in BCNF with respect toF , F is not 2-standard
while I is 2-ary and finally the conditions of Theo-
rem 3.7 are also violated.

We finally note that in Example 3.5 the FDD→ B

is redundant with respect to the chase in the sense that
the FD rule can never apply this FD no matter what
the state of the initial database is, assuming this initial
state satisfiesF , since there is no FD inF2 with D on
its right-hand side and, in addition, there is no IND in

I which includesD in its right-hand side. A simple
syntactic method of detecting such redundancies is an
open problem.

4. Concluding remarks

A sufficient and necessary condition for no interac-
tion to occur, whenI is proper circular, is still an open
problem. We have proved in Lemma 3.4 thatΣ being
reduced is a necessary condition to prevent such inter-
action but it is not a sufficient condition as is shown
in Examples 3.2 and 3.3. Still, we have made definite
progress towards a solution to this problem by identi-
fying two new sufficient conditions that are orthogonal
to previous conditions given in the database literature,
i.e., thatΣ be reduced andF satisfy either the inter-
section property or the split-freeness property. More-
over, we have also extended known results to broader
classes of dependencies in Corollaries 3.5 and 3.6.

Our main contribution can be viewed via Lem-
mas 3.1 and 3.2 which imply that, whenI is proper cir-
cular, interaction can be prevented in one of two ways
by adding an extra condition to that ofΣ being re-
duced. The first way is to add a condition that prevents
any application of the FD rule during the computation
of the chase for a database satisfyingF . Examples of
such extra conditions are thatR be in BCNF or that
F bep-standard andI bep-ary. The second way is
to add a condition that prevents the application of the
FD rule only in the case where an old value is equated
with another value, i.e., in this case the FD rule is still
allowed to equate two new values. An example of such
a condition is thatF satisfy the intersection property
or F satisfy the split-freeness property. The problem
in characterizing no interaction is to find a sufficient
and necessary condition which covers both these situa-
tions. The condition thatΣ be reduced essentially pre-
vents the application of the pullback inference rule for
FDs and INDs. On the other hand, this condition does
not preclude the logical implication of a repeating de-
pendency such asR[AB] ⊆R[CC], which is the result
of another form of interaction (see Example 3.3). We
conjecture that together with the conditions we have
presented a further syntactic restriction on the set of
INDs is needed, in order to obtain necessary and suffi-
cient conditions for no interaction to occur.
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