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Abstract 

In a context considering in a unique framework all 
the relations in a database, by means of the notion of 
global consistency, independent database schemes allow 
enforcement of constraints to be performed JocaJJy, thus 
providing independent updatability of the various rela- 
tions. Independent schemes have hitherto been studied 
in the presence of functionirl and join dependencies. 
In this paper we extend the definition and give some 
cbaracterisations when the involved set of constraints is 
composed of functional and inclusion dependencies. 

1. Introduction 

In a relational database, the information about 
an enterprise is represented by a set of tables or re- 
lations. Although information is generated from one 
or more relations, it is highly desirable’ that relations 
in a database can be updated independently. Indepen- 
dent updatability of relations has long been recognized 
as an important goal in the database design process. 
Recently, a class of database schemes called indepen- 
dent schemes (191, [ 111, IlS]) was proposed to allow 
enforcement of constraints to be performed locally in 
each relation, thus capturing an essential part of inde- 
pendent updatability. Informally, a database scheme is 
independent if local satisfaction of constraints in each 
relation implies global consistency of data. This class 
of database schemes generated a great deal of interest 
and was widely accepted to be a desirable criterion in 
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All published work involving independence con- 
siders, as possible constraints, functional dependencies 
and, in some cases, the full join dependency. Whereas 
functional and join dependencies are certainly impor- 
tant, there is a general consensus that functional’and 
inclusion dependencies are probably the two most com- 
mon kinds of constraints in a relational database ([3], 
[4], 181, [12], [13], 1171). This paper is an attempt to 
bridge this gap by extending the idea of independence 
to functional and inclusion dependencies. It is hoped 
that this work would give a contribution ‘towards a 
more realistic theory for designing relational databases. 
It should be pointed out that inclusion dependencies 
are by nature inter-relational and therefore the mean- 
ing of global satisfaction in our case is slightly different 
from the one studied previously. In Section 2, we first 
briefly introduce the notation needed throughout this 
paper. In Section 3, we define the meaning of inde- 
pendence in the presence of inclusion dependencies and 
show how this new notion is related to the classical 
one. The interaction between functional and inclusion 
dependencies is inherently difficult to handle (171, 117)); 
so, following other authors, we restrict our attention 
to two particular cases: key-based dependencies ([12]) 
and functional and unary inclusion dependencies ([ 131). 
These two cases are investigated respectively in Sections 
4 and 5 and a characterization of independence is ob- 
tained in each case. These results should provide insight 
into the design process of independent schemes under 
our assumptions. As a by-product, we derive an algo- 
rithm which converts a state that conforms to certain 
conditions to a state that satisfies both the functional 
and unary inclusion dependencies. This is a generalized 
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designing a relational database ([I], [2], [6), 1111, 1151, 
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version of the algorithm presented by 1131 and might 
be proven to be fundamental in query optimization and 
schema analysis when functional and unary inclusion 
dependencies are considered. Finally, we give our con- 
clusions in Section 6. Due to space limitations, we omit 
the standard definitions, and sketch most of the proofs. 

2. Background Definitions and Notation 

For the sake of brevity, we present only the nonstan- 
dard delinitions: for example, we omit the definitions 
of attribute, relation scheme, tuple, relation, tableau 
(i.e. relation with variables), etc, which can be found 
in standard textbooks ((141, 1221). 

2.1. Inclusion Dependencies 

The constraints we are concerned with in this 
paper are functional dependencies and inclusion de- 
pendencies. Functional dependencies are well known, 
so we concentrate on inclusion dependencies. Given a 
database scheme R, an inclusion dependency (IND) 
is a statement of the form & [Y] > Rj[ Z], where 
&(Xi),Rj(Xj) E R and Y, 2 are sequences of at- 
tributes, with the same length, respectively from Xi, Xi; 
within each sequence the attributes are distinct. Let 
Y = B1 Bg...Bk, 2 = Ci Cs...Ck; a pair of relations, 
rip rj satisfies this IND if, for every tuple tj E rj, there 
is a tuple ti E ri such that for ti.Bih = tj.Crb, for 
1 < h 5 k (or, if Y, Z are considered as sequences, 
ti.Y = tj.2). In this paper, we associate with the da- 
tabase scheme a set of constraints C = F u I, where F 
is a set of FDs, each of which is tagged with a relation 
scheme (e.g., & : Y + Z), to indicate the relation that 
has to satisfy it, and I is a set of IN&. A state of R 
is called locally consistent if its relations satisfy all the 
constraints in C. 

Given a set C of constraints and a constraint u, we 
say that C implies u if every state that satisfies C also 
satisfies 0. If relations are required to be finite (i.e., to 
contain a finite number of tuples), then we use the term 
finite implication; for the other case we use the term 
unrestricted implication. Since we are interested in the 
practical applications of our results, in the rest of the 
paper we will always refer to finite implication. The set 
of constraints implied by C is called the closure of C 
and is indicated with C+. Two sets of constraints are 
equivalent if their closures are equal. 

The implication of FDs is widely known, so we do 
not discuss it. INDs were considered from a formal point 
of view much more recently than FDs. The implication 
of INDs and the interaction of FDs and INDs were 
first studied by 141. Both the implication and the finite 
implication problem for the joint class of FDs and INDs 
were shown to be undecidable independently by [7] 
and 1171. For this reason, many authors (including 151, 

l32], 1131) t d d s u ie restricted classes of INDs, and their 
interaction with restricted classes of FDs. It should 
be noted that, as opposed to what’happens for FDs, 
the unrestricted implication problem and the finite 
implication problem for the joint class of FDs and INDs 
are not the same, as it can be shown by means of simple 
examples ([4]). 

Among the restricted classes of INDs, some are 
particularly meaningful. The IND &[Y] > Rj[Z] is 
typed if the two sequences Y and Z are equal. An 
IND is unary if the involved sequences are singletons: 
& [A] > Rj[B], where A and B are single attributes. A 
set I of inclusion dependencies is acyclic if the directed 
graph B(I) = (N,E), with the relation names as nodes 
in N and an edge from & to Rj if there is an IND 
&[X] > Rj[Y] E I, is acyclic. 

2.2. The Weak Instance Model 

The weak instance model is an approach LO the 
relational model aimed at viewing the various relations. 
within a database state in a unified framework. It is 
based on the notion of global satisfaction of constraints, 
where constraints (in our case FDs, but the extension 
to other kinds of embedded implicational dependencies 
is possible) are defined over attributes in the universe 
U, rather than over single relation schemes: the FDs 
in this case do not have tags associated with them, so 
we will sometimes use the term untagged FDs. Giveh 
a set F of untagged FDs, a relation w(U) is a weak 
instance for a state r of R if w satisfies F and, for 
every &(Xi) E R, r; c xx,(w). The state r is said 
(globally) consistent with respect to (wrt) F if it has 
a weak instance wrt F. A practical method for testing 
for global consistency of FDs is based on the notions of 
state tableau and chase ([lo]). 

The concept of independence relates the notions 
of local and global satisfaction of dependencies. In the 
literature, it has been discussed with respect to FDs and 
sometimes with other dependencies, not including INDs. 
In the rest of the paper we will study independence when 
INDs are’ present, but now we give (a slight variation 
of) the standard definition of independence wrt FDs. 

An untagged FD X -+ A is said to be embedded in 
a relation scheme R(Y) if XA G Y. A set of untagged 
FDs is embedded in a database scheme R if each of them 
is embedded in some relation scheme of R. (In the rest 
of this paragraph, we will use FU and Gn to denote 
sets of untagged FDs). The projection of a set of FDs 
FU onto R;, denoted by F$]&, is the set of the FDs 
in F;f that are embedded in &. A database scheme R 
is said to be cover embedding for a set Fir of FDs if 
there exists a set Gu of FDs embedded in R such that 
G; = FG. Given a set Fu, embedded in a database 
scheme R, let F be the set of tagged FDs,obtained 
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from F[I by tagging each FD with the relation schemes 
it is embedded in (if an FD is embedded in more than 
one relation scheme, it appears as many times in F). 
The scheme R is independent with respect to Fr, if each 
state that locally satisfies F is globally consistent wrt 
Frr. Similarly, given a set F of tagged FDs, we can 
define Fcr by removing the tags and give an identical 
definition of independence wrt F. Independence was 
first proposed by (181, who gave necessary and sufficient 
conditions for it, when the only constraints are FDs 
represented by keys; [Q] presented a number of results 
on independence, including a polynomial time test for 
independence with respect to a set of embedded FDs. 
More efficient algorithms were later presented by [ ll] 
and [20]. 

S. The Definition of Independence in Presence of 
INDs 

In this section, we give a definition of independence 
wrt a set of FDs and JNDs. Let R = {RI, Rz, . ..R.} 
be a database scheme, C = F u I, where F is a set of 
tagged FDs, and I a set of INDs over R. In this case 
the idea of defining independence on the basis of the 
untagged FDs corresponding to F does not quite work, 
since, as shown in the following example, there may be 
FDs implied due to the interaction with INDs, which 
cannot be taken into account in this way. 

Example S.l. Let the following attribute names be 
abbreviated by means of the respective initials: Man- 
ager, Dept, Project, Employee. Let R = {Rl(MD), 
Rz(DP), Rs(MP), RJED)}, F = {RZ : D --( P, R4 : 
E--t D}, I = {R,[ED] > RI[MD]}. In. this case, the 
set Fcr of untagged FDs would contain D ----) P and 
E + D, and so it is easy to see that any state that is 
locally consistent wrt C = F u I has a weak instance wrt 
F[I. However, C+ contains also the FD RI : M --t D, 
and so the untagged FDs M + D, D - P, in the 
relation schemes R,(MD), R,(DP), Rs(MP) cause a 
violation of the intuitive notion of independence. Cl 

As a consequence, we have to consider the FDs 
implied by the interaction with INDs. For every i, 
1 5 i 5 n, let G; be a cover of the FDs with tag R; in 
C+; then let G = Gi u . . . u G,,, and Grr be the set of 
untagged FDs corresponding to G. Then, we say that 
a state r is globally consistent wrt C if it is globally 
consistent wrt Gtr (i.e., it has a weak instance wrt Gu). 
Finally, a database scheme R is independent wtt C if 
every state r of R that is locally consistent wrt C is 
globally consistent wrt C. 

(In the following, when no confusion can arise, we 
will omit the distinction between a set of tagged FDs 
and the corresponding set of untagged FDs). 

The following two lemmas, whose easy proofs are 
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omitted, describe some interesting properties about our 
definition of independence. 

Lemma 8.1. Let C and G be as above. If R is 
independent wrt G then R is independent wrt C. 

Lemma 8.2. Let C and G be as above, and let 
G+ = F+. Then, for every R, if R is independent wrt 
F then R is independent wrt C. 

Let us note that in general it is not the case 
that independence wrt F implies independence wrt C, 
because, as shown in example 3.1, there may be FDs in 
G that cause nonindependence. 

The definition we have just given has one draw- 
back: since in general the implication (as well as the 
finite implication) problem for INDs and FDs is unde- 
cidable, the set G of FDs need not be computable. As 
a consequence, following what has been done for other 
problems related to INDs, we will consider restricted 
classes of FDs and INDs, for which the implication 
problem is decidable. 

4. Key-Based Dependencies. 
The first kind of restriction we consider on FDs 

and INDs is related to the concept of key. 1121 called a 
set C key-based if 

(4 

(b) 

For-every relation scheme &(Xi) E R, the FDs 
with tag & in F all have the same left-hand side 
K;, and every attribute A E Xi - Ki is in the 
right-hand side 2 of some FD in Ri : Ki - Z E F. 
(This means that, for every i, Ki is the (only) key 
for Ri). 
For each IND Ri[Y] 2 R;[X] E I, the set Y is 
contained in the key Kj of Rj, and the set X is 
disjoint from the key Ki of Ri. 
Under these assumptions, 1121 obtained a number 

of results on the containment of conjunctive queries. 
We will study a variant of the class of key-based 
dependencies, obtained by replacing assumption (b) 
with the following (while keeping assumption (a)): 
(c) The set of INDs I is acyclic, and, for each IND 

cr : Rj[ Y] 1 Ri [X] E I, at least one of the following 
holds: (i) o is typed; or (ii) it is not the case that 
Y properly contains the key Kj of Rj. 
Since in both cases the restrictions are based on 

keys, and on the relationship between the sequences 
of attributes in the INDs and the keys, the term key- 
based would be suitable for both. In order to avoid 
confusion, we will refer to the assumptions that are 
made on the constraints with the names we introduced 
above: (a), (b), (c). In th e rest of the section we study 
independence under assumptions (a), (c), but similar 
results can be obtained if (a) and (b) are assumed. 

Since we deal with the weak instance model, and SO 

want to give a unique meaning to each set of attributes, 
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we assume that if the key Ki and a non-key attribute A 
of some relation scheme & are both contained in some 
other relation scheme Rj(Xj), then the FD Rj : Ki + A 
is also in F+, and so R; and Rj have the same key. 
(Note that this does not mean that if the key of a 
relation scheme is contained in another relation scheme, 
then it is also a key for it: it is a key if also a non-key 
attribute is contained in both relation schemes). 

Example 4.1. Let the following attribute names 
be abbreviated by means of the capitalized letters: 
EmployeeNo, Name, Address, Wary, CourseTutored, 
Rank, CourseNo, Description, Instructor; and the 
following relation names be abbreviated by means 
of the respective initials: EMPLOYEES, TUTORS, 
PROFESSORS, COURSES. Let us consider the da- 
tabase scheme R = E(EN, N, A, S), WN, N, CT), 
P(EN, N, R), C(CN, D, I); let the FDs be defined in 
such a way that EN is the key for the first three schemes 
and CN the key for the last one; let the following INDs 
be in C: E[EN, A] > T[EN, A], E[EN, A] > P[EN, A], 
PIN] > C[l], C(CN] _> T[CT]. Here, the FD EN --* N 
is embedded in three relation schemes, and so R is not 
independent wrt the FDs defined on it. However, the 
INDs ‘force” the FD to express the same relationship 
in all the three relation schemes, and so it would be 
reasonable for this scheme to be independent. The re- 
sults in this section show that R is in fact independent 
wrt c. cl 

As a first step towards studying independence in 
this context, we consider the interaction between FDs 
and INDs. 

Lemma 4.1. Let R and C = FuZ satisfy assumptions 
(a), (cl. Then, for any tagged FD j, j E F+ if and 
onJyifjEC+. 

Proof. The only if part is immediate, so let us concen- 
trate on the if part. Let j be & : 2 -+ A, an FD not 
in Ft. We show that it is not in C+ either, by showing 
a state that satisfies C and does not satisfy j. It is 
immediate to see that 2 is not the key (nor a superkey) 
of &. The counterexample state is obtaind by modify- 
ing, by means of a variation of the chase procedure, a 
state with all relations empty except ri, which contains 
exactly two tuples, which agree on Z and disagree on 
the other attributes. 

We chase the state wrt C by applying the following 
rule as long as there is an IND R=[X] > Rs[Y] violated. 
For each tuple ts E rs such that there is no tuple 
TV E rT with ts.Y = tT.X, a tuple t is added to rT, 
with t.X = t?;.Y, and the other attributes defined as 
follows: for every attribute C E XT - X, if X is a key 
or a superkey for RT, and there is an FD RT : KT -B C 
such that KTC is contained in some other relation 
scheme, say Ru, and there is a tuple ty E rV with 

162 

ty.KT = t.KT, then t.C is defined with the same value 
as t,.C; otherwise, t.C is defined as a new constant. 

It is immediate to show that, ‘since the set I of 
INDs is acyclic, the process does not add any tuple to 
Ri and eventually terminates, producing a state that 
satisfies all INDs in I. In order to complete the proof 
it is sufficient to show that the final state satisfies the 
FDs in F, and so satisfies C. The proof is by induction 
on the number of steps in the chase process, i.e., the 
number of tuples being added. We omit the details. 

Summarizing, the final state satisfies both F and 
I, and so C, whereas it violates & : Z -P A, because of 
the two initial tuples in ri: this means that this FD is 
not implied by C. Cl 

Lemma .4.1 has the important consequence that 
the two sets of untagged FDs Frr and Glr mentioned 
in Section 3 are equivalent and so the definition of 
independence can be given as follows: R is independent 
if every state r of R that is locally consistent wrt C is 
globally consistent wrt F~I. 

Suppose X -( A is a nontrivial FD embedded in 
{Sl, e-e, Sk} E R. A tagged FD Sj : X --) A is said 
to be a mazimal inclusion for X + A if for all S,,, 
1 < p < k, Sj[XA] > S,,[XA] is in Ct. Notice that in 
general there may be more than one maximal inclusion 
for an FD. In this case the maximal inclusions for the 
FD include each other. However if the INDs are acyclic 
and if a maximal inclusion exists, then it is unique. R 
is said to satisfy the mazimal inclusion condition if for 
all nontrivial FDs X + A in C embedded in one or 
more relation schemes, then there is a unique maximal 
inclusion for X -t A. 

Let R ={Rl(X,),... , R,( X,,)} be a database scheme 
and F be a set of tagged FDs on R, satisfying condition 
(a). For every i, 1 5 i 5 n, Fj is the subset of F 
containing the FDs with tag Rj. R is said to satisfy 
the uniqueness condition wrt F (1191) if for all & and 
Rj there does not exist A E X,5 - Xi (X,:’ indicates 
the closure of X; wrt the untagged FDs in F) such 
that there exists a (nontrivial) FD Rj : Kj + A in Fj 
with the closure of Xi wrt the untagged FDs in F - Fj 
contains KA. [ 19) showed that the uniqueness condition 
is a necessary and sufficient condition for independence 
wrt to a set of keylbased FDs. 

Let now R and C = F u I satisfy conditions (a), 
(c), and the maximal inclusion condition. Then, R is 
said to satisfy the mazimality and uniqueness condition 
wrt C if R satisfies the uniqueness condition wrt F’, 
where F’ is the set of unique maximal inclusions for 
the set of the key dependencies in F. In the rest of this 
section we show that the maximality and uniqueness 
condition is necessary and sufficient for independence 
in this framework. 

Lemma 4.2. Let R and C satisfy conditions (a) 
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and (c). If R does not satisfy the maximal inclusion 
condition, then it is not independent wrt C. 

Proof. Since R does not satisfy the maximal inclusion 
condition, there are two distinct relation schemes Ri, 

4, such that both of them embed a key dependency 
K + A but neither Ri(KA] 2 Rj[KA] nor Rj[KA] > 
Ri [ K A] is in C+ . Without loss of generality, we assume 
there is no RI,, p # i and p # J’, in R, such that 
R,,[KA] 2 Ri[KA] or R,[KA] 2 Rj[KA] is in C+. 

In order to show that R is not independent wrt 
C the proof shows a state that satisfies C and is 
not globally consistent. This counterexample state is 
defined by chasing, in a way similar to the one in 
lemma 4.1, a simple state, with a tuple t, in R,, a tuple 
tj in Rjr and the other relations empty. The details, 
similar to those in the proof of lemma 4.1, are omitted. 
Cl 

Lemma 4.3. Let R and C satisfy conditions (a), (c), 
and the maximal inclusion condition. lf R does not 
satisfy the uniqueness condition wrt F, then it is not 
independent wrt C. 

Proof. By lemma 4.1, the FDs implied by F a.re the 
same as those implied by C. Let .S,j(Yo) and S,(Y,,,) 
be t,wo relation schemes that violate the uniqueness 
condition. Let Go, G,,, be the sets of FDs in F with 
tag SO, S,,, , respectively. Then, the closure of Yc, wrt 
F - G,, contains KA, where S,,, : K + A is the 
maximal inclusion for K + A. Let the sequence of 
maximal inclusions used in computing the closure be 
S, : Yl ---t Al,..., S ,,,- 1 : Y,,L.-, --) A,,r-lr with A,-1 = 
A. Again, the proof shows a counterexample state, 
which satisfies C and is not globally consistent. Such 
a state is obtained by chasing, in the same way as 
in lemma 4.2, an initial state, with one tuple t; in 
each relation ri(Xi): if X; contains KA then define 
tie(Xi - A) = 1 ‘s and ti.A = 2; otherwise, t, = 1’s. The 
details, again similar to those in the proof of lemma 4.1, 
are omitted. q 

Lemma 4.4. Let R and C satisfy conditions (a), (c). 
If R satisfies the maximality and uniqueness condition, 
then it is independent wrt C. 

Prooj. Since R satisfies the maximality and uniqueness 
condition, there exists a set G of unique maximal 
inclusions for the set of key dependencies in R. Let us 
define a database scheme S from G: for each Ri E R, 
if there is an FD in G with tag Ri, then there is a 
relation scheme Si (Yi) in S, where Yi is the union of all 
the attributes involved in FDs in G with tag Ri. The 
difference between Si and .its corresponding Ri in R is 
that & may contain some nonprime attributes which 
S, does not have. Also, note that the untagged sets of 
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FDs corresponding to F and G, respectively, are the 
same. 
Claim 1. S satisfies the uniqueness condition wrt G.Easy. 
Claim ,??. For each state r of R locally consistent wrt’ 
C, there is a state B of S satisfying G such that r is 
globally consistent wrt F (and so wrt C) if and only if 
B is globrrlly consistent wrt G. The state B is built as 
follows: for each relation ri in r, si = my,. Cle~ly 
the state s is locally consistent wrt G. Also, since R 
satisfies the maximality and uniqueness condition, and 
the untagged sets corresponding to F and G are equal, 
it is not difficult to see that B is globally consistent wrt 
G if and only if r is globally consistent wrt F: in fact, 
every relation w(V) is a weak instance for r wrt F if 
and only if it is a weak instance for s wrt G. 

Let r be a locally consistent state of R wrt C. By 
claim 2, there is a state s of S, satisfying G, such that r 
is globally consistent wrt C if and only if s is consistent 
wrt G. By claim 1, S is independent wrt G, and so s is 
globally consistent wrt G and so r is globally consistent 
wrt C. Therefore R is independent wrt C. Cl 

Theorem 4.1. Let C and R satisfy conditions (a), (c). 
Then R is independent wrt C if and only if & sat.bfks 
the maxjmahty and uniqueness condition wrt C. 

Proof. Follows from lemmata 4.2, 4.3, 4.4. Cl 

5. Independence with respect to FDe and Unary 
INDB 

In this section we make different assumptions on C: 
we put no restrictions on F, while requiring the INDs in 
I to be unary. In this case ([ 131) the implication problem 
is decidable, and so the set of FDs implied by C can 
be computed. Using the same notations as in Section 
3, given a database scheme R = {R,(Xl), . . . . &(Xm)} 
and the set of FDs and unary INDs C = F U I, for every 
Ri E R, G; is a cover of the FDs in EC+ with tag &, 
and G = Ui Gi. 

In order to prove our main results, we introduce 
an algorithm, essentially a modification of an algorithm 
presented by [ 131, and prove some properties about it. 
The algorithm operates on a (multi-)graph g(C) with 
colored edges, defined from R and C as follows. The 
nodes of g(C) correspond to the attributes in C tagged 
with relation names (e.g., R;.Aj). g(C) has red edges, 
corresponding to FDs, and black edges, corresponding 
to INDs. There is a red edge from &.A to &.B if and 
only if fi : A + B E C and a black edge from &.A 
to Rj.B if and only if &[A] > Rj(B] E C. If, for some 
pair of nodes nl, n2, the graph contains both the red 
(black) edge (nl, n2) and the red (black) edge (n3, IZ~), 
then we replace them with an undirected edge (121, nz} 
of the same color. 
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If we assume, without loss of generality, that E is 
closed wrt implication, the graph has the properties in 
lemma 2 of [13]: 

(4 

(b) 

(4 

(4 

Nodes have red (black) self-loops, and the red 
(black) subgraph of s(E) is transitively closed. 
The subgraphs induced by the strongly connected 
components of S(E) contain only undirected edges. 
In each strongly connected component, the red 
(black) subset of edges forms a collection of node 
disjoint cliques (the red and black partitions of 
nodes may be different). 
If A1A2...Am * B is an FD in C, and A1A2...Am 
have the common ancestor A in the red subgraph 
of 9(E), then 9(E) contains a red arc from A to 
B. 
It is possible to consider a topological sort of the 

directed acyclic graph (dag) of the strongly connected 
components (JCC’S) of s(E) and to assign to each see 
a unique see-number, smaller than the see-number of 
all its descendant components in the dag. Let s be the 
number of see’s in B(E); for every j E (1, . . . . 3) , see(j) 
indicates the see whose see-number is j. 

The algorithm we define takes as input a database 
state r = {ri, . . . . r,} and adds to the various relations 
some tuples, in order to obtain another state that satis- 
fies some interesting conditions. Assuming the domains 
contain the non-negative integers and the special sym- 
bol z (any other countable set could be used as well), 
the algorithm uses the following conventions: 

- For each attribute R.A, amax(R.A) indicates the 
maximum integer value in TA (r). 

- For each red clique C, cmax(C) indicates the max- 
imum integer value among those assumed by the 
attributes in the clique; so, 

cmax(C) = m.Ayc{amax(R.A)) 

- For each j E (1, . . . . s}, smax(j) indicates the maxi- 
mum value among those assumed by the attributes 
in scc(j’); so, 

- For each red clique C, desc(C) indicates the set of 
the attributes that are in C or in cliques that are 
red descendant of C in the dag. 

- The algorithm adds tuples to the relations in the 
input state. Whenever it is said that the tuple t 
under consideration is padded with “new values” for 
the attributes in a set X, this means that for each 
attribute A E X, t.A = amax + 1. 

The database state input to the algorithm is re- 
quired to satisfy the following conditions: 
(il) For every rehtion ri, for every attribute Aj in 

its scheme, the only repeated value (if any) is 

z, and the other values form an initial subset of 
the positive integers (i.e., { 1,2, . . . . ma(&.Aj)}). 
Also, no violation of any IND is caused by z (i.e., 
if Ri[Aj] > Rh[Ak] is in E and z E rAk(rh), then 
x E AA, (f-i)). 

(i2) For every red clique C in g(E) (which is embedded 
in some relation scheme, say Ri), and for every 
pair Rj.AI,, Rj.Ak E C, we have ama(Rj.Ah) = 
amax(Rj.Ak). 

(i3) The state satisfies the FDs in G. 
Given an input state that satisfies the above con- 

ditions, the algorithm in Figure 5.1 will produce a state 
that satisfies E = F u I. The correctness of this claim 
follows from the lemma below. 

input: a database state r over a scheme R with depen- 
dencies E; r satisfies conditions (il), (i2), (i3); s is the 
number of see’s in G(E). 
output: a database state containing the input state 
and locally consistent wrt E. 
begin 

add a row of O’s to each relation 
for j := 1 to s do begin 

let C be the set of red cliques in see(j) 
for each C E C do begin 

let nc = cmax(C) - minc#Ec cmax(C’) + 1 
end 
for each C E C do 

for each q E r do begin 
add nc tuples to r-1 
with O’s for the attributes in desc(C) 
and new values elsewhere. 

end 
if j > 1 and smax( j) 2 smax( j - 1) then begin 

let p = smax(j) - smax(j - 1) + 1 
for each C E C do begin 

add p tuples to each relation 
with O’s for the attributes in desc(C) 
and new values elsewhere 

end 
end 

end 
end 

Figure 5.1. 

Lemma 5.1. After j executions of the outer loop, the 
following properties hold, for every j 2 0 (j = 0 means 
before the first execution). 
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For every relation r;, for every attribute Al in 
its scheme, the only repeated values (if any) are 
0, z, and the other values form an initial subset of 
the positive integers (1,2, . . . . amax(R;.AI)). Also, 
0 E xA,(r;) (and so no violation of any IND is 
caused by 0), and no violation of any IND is caused 
by z (i.e., ifR,,[Ak] > Ri[AI] E C and z E xAl(r;), 
then z E ?TA,.(rh)). 
For every red clique C in g(C) (embedded in 
some relation scheme, say Rj), and for every 
pair Rj.Ah, Rj.Ak E C, we have ama(Rj.A,,) = 
ama( Rj.Ak). 
The state satisfies the FDs in G. 
For every i 5 i, if R.A,S.BE see(i), 
then amax(R.A) = amax(S.B) 
For every k < i 5 j, if R.A E see(k), S.B E see(i), 
then amax(R.A) > amax(S.B) 

Proof. We omit this proof, which is carried out by 
carefully considering the various steps in the algorithm. 
I7 

Corollary 5.1. The state produced by the algorithm 
satis6es the dependencies in F u I, provided that the 
input state satisfies the required conditions. 

Lemma 5.2. Given a database scheme R, with the 
constraints E = F U I, and G defined as usual, ifR is 
not independent wrt G, then there is a database state 
r such that 
(a) r locally satisfies G, 
(b) r is not globally consistent wrt G, and 
(c) r satisfies the conditions required to be a legal 

input to the algorithm. 

Proof. Since R is not independent wrt G we know 
that there are states satisfying conditions (a), (b). One 
of them is the counterexample state shown by [20]. 
This state satisfies condition (i3) for being an input to 
algorithm (since it locally satisfies G), but need not 
satisfy conditions (il) and (i2). However, this state can 
be transformed, by adding a suitable set of tuples to 
each relation, into a state that satisfies the required 
conditions. Again, we omit the details. Cl 

Theorem 5.1. R is independent wrt G if and only if 
R is independent wrt C = F u I. 

Proof. The only ij part holds by lemma 3.1, so we 
concentrate on the ij part. We proceed by showing 
that if R is not independent wrt G, then R is not 
independent wrt C either. 

If R is not independent wrt G, then we know, by 
lemma 5.2, that there is a state r that locally satisfies 
G, is globally inconsistent wrt G, and can be input to 
our algorithm. Then, by corollary 5.1, the state output 
by the algorithm satisfies C. Since the algorithm only 
adds tuples, without modifying the existing ones, the 
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output state is still globally inconsistent wrt G, and 
so wrt C: therefore it is a counterexample state that 
demonstrates that R is not independent wrt C. 0 

6. Conclusions 

Functional and inclusion dependencies have been 
regarded as the two most common kinds of constraints 
in a relational database. In view of the desirability 
of independent schemes, we proposed and defined the 
concept of independent schemes in the presence of func- 
tional and inclusion dependencies. Since the interaction 
between functional and inclusion dependencies is diffi- 
cult to understand in general ([7], [17]), we restricted 
our attention to key-based dependencies ([12]) and to 
functional and unary inclusion dependencies ([13]). In 
each case, a characterization of independence was ob- 
tained. This work brought insight into the design of 
independent schemes under these assumptions. For the 
caze of functional and unary inclusion dependencies, 
we also derived an algorithm which converts a state 
that satisfies certain conditions to a state that satisfies 
both the functional and inclusion dependencies. This 
algorithm might be proven to be useful in query op 
timization and schema analysis when functional and 
unary inclusion dependencies are assumed. In this pa- 
per, we only considered certain restricted classes of 
functional and inclusion dependencies. There are other 
classes of functional and inclusion dependencies which 
have decidable solution for the implication problem. 
One such example is the class of functional and acyclic 
inclusion dependencies ([4], IS]). It will be interesting 
to investigate schema properties under such an assump 
tion. 
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