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Preface 

The relational data model, which was first developed in the early 1970's, has gained immense 
popularity and acceptance in the market place. There are many commercially available 
relational database products, and there is no doubt that relational database management 
systems will continue to dominate the database industry for the foreseeable future. A large 
percentage of the activity in the information technology industry is related to the management 
of data. The huge number of database-related publications, both academic and commercial, 
is an indication of how central the database field is in computer science as a whole. 

The relational data model is based on a formal and elegant foundation, providing fertile 
ground for database researchers to investigate the problems associated with database systems. 
The core theory seems to have stabilised during the early 1990's and the attention of database 
researchers has subsequently moved to extensions of the relational data model and to newer 
data models which attempt to solve challenging new problems in database management. Still, 
the basis of all such developments is core relational database theory. Our book is a timely 
summary of the state of the art in this field. There is a personal flavour to the book in that 
we have interleaved into various chapters of the book some of our recent results in database 
theory, and have chosen to cover in more detail some of the topics which we feel are more 
important. Overall we have tried to be as unbiased as possible and to cover the spectrum of 
fundamental topics in database theory. The next section has more detail on the topics covered. 

Although there is a large variety of introductory textbooks focusing on relational databases, 
there are not many textbooks which cater for more advanced courses both at undergraduate 
and masters levels. We also hope that this book will be useful for new researchers in the field, 
and as a reference for more established researchers in the database area. Finally, we feel that 
the book will be relevant to many database practitioners who are interested in a more in-depth 
understanding of the underlying concepts and results, which are not presented in the more 
introductory textbooks. 

The effect that relational database theory has had on common practice in the information 
technology industry is immense and there has traditionally been a lot of interplay between 
theory and practice in the database field. One of the aims of this book is to show that this 
interplay is carried over to the new developments in database theory. We may now ask why 
relational database theory has been so successful. The full answer is given in the contents of 
the book. The relational data model is a relatively simple yet rich model which is appealing 
to database theorists and practitioners alike. On the one hand, its formal foundations in set 
theory and logic have provided a firm basis for research, and on the other hand its simple 
tabular representation has made it possible to popularise the model and make it easy for 
non -specialists to use. 

xi 
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The Structure of the Book 

The book is divided into ten chapters which we now detail. Chapter 1 introduces the 
fundamental concepts and terminology of the database field. The central notion of a data 
model is introduced and there follows a review of the main data models from past to present 
extending into the future. In Section 1.9 we cover the necessary background material from 
set theory, logic and the theory of computing, so that the book may be self-contained. 

Chapter 2 covers the Entity-Relationship model as a meta model for conceptual data 
modelling. We choose to restrict ourselves to the binary model, since it is the most prevalent 
in practice. The concepts pertaining to Entity-Relationship modelling will familiarise the 
reader in an informal manner with concepts that are formalised via the relational data model 
in Chapter 3. 

Chapter 3, which is by far the longest chapter in the book, covers the core material pertaining 
to the three aspects of the relational data model: its data structure, query and update languages 
and integrity constraints. Although much of the material in this chapter is by now standard, 
we have also included some significant recent results bringing the subject up to date. 

Chapter 4 covers the all important topic of relational database design and the infamous 
normal forms. The approach we take in this chapter is novel in the sense thatwe provide formal 
justification for normalisation, which includes both functional dependencies (generalising 
keys) and inclusion dependencies (generalising foreign keys). 

Chapters 5, 6 and 7 cover advanced topics building on the core material of Chapter 3. 
In Chapter 5 we consider the problem of dealing with incomplete information. We feel 
that this topic has been somewhat neglected by database researchers, to the extent that 
some fundamental concepts need to be re-examined in the light of incomplete information. 
Chapter 6 looks at the possibility of enhancing the expressive power of query and update 
languages for the relational data model. In recent years there has been a steady demand for 
extending the expressive power of SQL, and thus in this chapter we consider the foundations 
of such extensions. In Chapter 7 we extend the relational data model to support time. Such 
a temporal extension of the basic model is of great practical significance due to the growing 
need for explicit temporal support in database applications, and thus its treatment warrants 
a full chapter. 

Chapter 8 covering concurrency control in relational databases can be considered, alongside 
Chapters 3 and 4, to be core material. Despite the fact that some recent database textbooks 
do not cover concurrency control at all, we felt that the book would not be complete without 
this chapter. 

Chapter 9 covers the topic of deductive or logical databases which enhances the relational 
data model by providing users with an extended relational database query language allowing 
the specification of recursive queries via a rule-based language, called Datalog. The topic of 
recursive queries has been the most researched topic in database theory in the last ten years; 
this has led to cross fertilisation between logicians, database theorists and practitioners. There 
are many interesting and important results in this chapter which will have a strong impact on 
current database technology. 

The final chapter of the book, Chapter 10, covers various extensions of the relational data 
model and new data models which are not relational, designed to provide solutions to problems 
that are not easily solved using the standard relational data model. We also look at current 
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directions and trends in the area of database research such as hypertext databases (the World 
Wide Web being the most prominent example) and knowledge discovery and data mining. 
The treatment of the topics in this final chapter cannot be as extensive as in previous chapters, 
the main reason being that the research into these newer data models has not yet reached a 
sufficient level of maturity. Despite this proviso, we have attempted to delve into each data 
model as deeply as possible. 

Teaching from the book 

The book can be used to teach several database systems courses, from the introductory to the 
more advanced. We assume that students studying from this book will have done introductory 
courses in discrete mathematics, data structures and algorithms, and possibly the theory of 
computation. We also assume some experience in programming. In many cases the proofs 
of results have been omitted, but in such cases we give the reader enough information about 
the techniques used in the proofs and provide when appropriate the relevant pointers to the 
literature where the full proofs can be found. 

We mainly recommend teaching from this book on third year undergraduate or masters 
level courses in computer science. The book could also be used as preparation and reference 
for graduates wishing to do research in this area. Finally, practitioners who are interested in 
gaining more insight into the database field in an attempt to understand the foundations of 
relational databases will find the book very useful. 

Four strands for teaching courses from the book are suggested: 

1. The introductory course: Chapters 1 and 2. An introduction to database systems 
covering the fundamental concepts. These chapters form a prerequisite of the other 
courses and provide a brief tour of the subject. 

2. The core relational database theory course: Chapters 3, 4 and 8. Relational database 
theory, covering its underlying data structure, i.e. the relation, its query languages and 
integrity constraints, and also the fundamentals of database design and concurrency 
control. Chapter 3 forms a prerequisite for the more advanced courses. Chapter 8 can 
alternatively be taught on a concurrency course. This course forms a detailed tour of 
the main elements of the subject. 

3. Advanced relational database theory course: Chapters 5, 6 and 7. This course covers 
incomplete information, computable queries and temporal databases. It forms an 
advanced tour for those wishing to explore the subject in more depth. 

4. Extensions of the relational data model course: Chapters 9 and 10. This course covers 
deductive databases and recently developed data models. It forms an exotic tour for 
those wishing to explore the newer data models. 

Chapters 1,2 and 3 should be ta ugh t in that order. We would recommend teaching Chapter 4 
before any of the more advanced topics are tackled, since some of the central concepts of 
database design are utilised in later chapters. Chapters 5, 6, 7 and 8 are essentially independent 
of each other. We would also recommend teaching Chapter 6 before Chapter 9, since much 
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of the research in deductive databases is concerned with the expressive power of its extended 
query language, Datalog. Chapter 10 can be taught immediately after Chapter 3, to give the 
student the flavour of recent data models which have been developed as a response to new 
real-world requirements. 
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1. Introduction 

A database is essentially an organised collection of logically inter-connected data items. A 
computer system which is responsible for the efficient storage and retrieval of the data items in 
a database is called a Database Management System (or simply a database system or a DBMS). 
Thus the purpose of a DBMS is to organise and manipulate information. 

Nowadays most medium size to large size organisations use DBMS technology. Forexample, 
banks store their customer accoun ts in a database, libraries keep all their book records and loan 
information in a database and airline companies keep all their online booking information in 
a database. The widespread use of Personal Computers (PCs) has also led small organisations 
such as local video shops and general practitioners to use databases. A brief glance at the 
available popular computer magazines should be enough to convince you that in the near 
future we will all have personal databases to organise our day-to-day information. There is 
at present a very large number of database-related products that are available on the market, 
which are supported on a wide range of both hardware and software platforms. 

How can the potential buyer decide which product to invest in amongst the plethora of 
available choices? Furthermore, what features should a buyer be looking for apart from a 
user-friendly and easy-to-use graphical user interface? The problems we face as buyers may 
actually get worse once a DBMS has been purchased. How do we model the application we are 
aiming to implement in the most faithful manner to its real-world representation? How do 
we make sure that all the constraints present in the data are maintained? In addition, how do 
we make sure that the data is organised in the most efficient manner, and how do we retrieve 
and update information in the simplest and quickest manner? 

The aim of this book is not to give you specific product advice but rather to introduce 
you to the fundamental concepts of databases and their associated systems. In particular, we 
will concentrate on data modelling which provides a high level abstract model of a database. 
Using data modelling concepts users will be able to design and use their database system at a 
level compatible with their level of abstraction rather than at the machine level. Each DBMS 
supports a particular data model, the dominant one currently being the relational data model 
(or simply the relational model). (We will call a DBMS which supports the relational data 
model a relational DBMS [Cha76].) In this book we will mainly concentrate on introducing 
the various facets of the relational model. As you will discover the relational model has the 
advantage of being relatively simple to describe and understand but on the other hand it is rich 
enough to capture most aspects of data modelling. We are convinced that an understanding 
of the theoretical aspects of the relational model will allow the readers to make a better choice 



2 Chapter 1. Introduction 

than would otherwise be the case when purchasing a relational product that best suits their 
needs, on the basis of the DBMS functionality the product offers. 

The database concept has been evolving for well over thirty years. During the 1960's 
databases were viewed as a collection of files and DBMSs were therefore file systems. In the 
late 1960's and the early 1970's the introduction of the concept of a data model gave rise to 
the hierarchical data model [TL76) and the network data model [Bac69, Bac73, TF76). There 
are today still companies that are using databases based on these models. (Early editions of 
many of the database books appearing in the bibliography cover the hierarchical and network 
data models in detail; see also [MMC76, TF76, TL76] .) 

The relational data model was introduced by Codd in 1970 [Cod70) whilst working for IBM 
and in 1981 Codd received the Turing award for his important contribution to the theory 
of databases [Cod82]. During the mid 1970's there was much debate between proponents 
of the network data model on the one hand and those of the relational data model on the 
other hand [MMC76, Dat86c). Joining this debate on the relational side Date has done much 
to popularise and explain the central features of the relational data model [Dat95). During 
the mid 1970's and until the mid 1980's relational database theory dominated the output of 
database research resulting in a sound mathematical foundation for the relational data model. 
Commercially, from the mid 1980's until today DBMSs supporting the relational data model 
have had a dominant position in the DBMS market. 

During the late 1980's and the 1990's shortcomings of the relational data model in areas 
such as scientific and statistical applications, expert systems, text handling, multimedia, office 
automation, manipulating temporal and spatial data, and computer-aided design, gave rise 
to several new proposals and extensions to the relational data model. The main extensions to 
the relational data model include complex objects data models such as the nested relational 
data model [KK89, Lev92], and the deductive or logical data model [NT89, CGT90j. In 
addition , several temporal extensions to the relational data model have been put forward 
[TCG+93). Some recent proposals suggest object-orientation as a data model [Kim90, KM94) 
but there is no current agreement on a definitive object-oriented data model. An emerging 
area, for which several data models are being suggested, is that of hypertext (or more generally 
hypermedia) [Con87, Nie90, Rad91), which is concerned with organising text in a nonlinear 
fashion . 

The aim of this chapter is to introduce the reader to the basic concepts of data modelling 
showing how data can be viewed in different ways via different data models starting from the 
relational model. 

The layout of this chapter is as follows. In Section 1.1 we introduce the database concept 
using an example of a library database. In Section 1.2 we define what a database is. In 
Section 1.3 we motivate the need for DBMSs. In Section 1.4 we introduce the three levels of data 
abstraction, which should be supported by any DBMS; these are the physical, conceptual and 
view levels. In Section 1.5 we detail the components that constitute a DBMS. In Section 1.6 we 
introduce the fundamental concept of data independence, which allows changes at a lower level 
of abstraction (say the physical level) without affecting the higher levels (say the conceptual 
and view levels). In Section 1.7 we define the central concept of a data model and give an 
intuitive presentation of each of the main existing data models. In Section 1.8 we briefly discuss 
the trend of extending the relational model and what the future may hold in this respect. In 
Section 1.9 we present the basic mathematical concepts needed throughout the book. 
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1.1 An Introductory Example 

As an illustration of a small fragment of a library database consider Tables 1.1 and 1.2, which 
represent information concerning books and loans of these books, respectively. 

Table 1.1 The books relation 

AUTHOR 1 SHORT _TITLE PUBLISHER YEAR ISBN 
Atzeni DB Theory Benjamin/Cummings 1993 0-8053-0249-2 
Date Introduction to DBs Addison -Wesley 1990 0-201-52878-9 
Korth DB Concepts McGraw-Hill 1991 0-07 -044754-3 
Mannila The Design of DBs Addison -Wesley 1992 0-201-56523-4 
Ullman Principles of DBs Computer Science Press 1988 0-7167-8158-1 

Table 1.2 The loans relation 

ISBN LOCATION QUANTITY LOAN 
0-8053-0249-2 Science 1 0 
0-201-52878-9 Main 3 2 
0-07-044754-3 Main 1 1 
0-201-56523-4 Science 1 0 
0-7167-8158-1 Main 2 1 

In relational database terminology each such table is called a relation and the rows of the 
relation, which represent the data items, are called tuples. Each tuple is seen to model an 
entity, or a thing, relevant to the application; it is also common to refer to an entity as an 
object. The tuples in Table 1.1 represent book entities and the tuples in Table 1.2 represent 
loan entities. Each relation as a whole represents an entity set. We stress that a relation is a 
set in the mathematical sense (see Subsection 1.9.1), since if we reorder the tuples in any table 
we will still have the same relation, that is to say, a relation is an unordered collection of data 
items. 

The collection of all relations, in this case the books and loans relations, is called a relational 
database (or simply a database). This collection of relations is sometimes referred to as the 
extension of the database. 

The header of each column of a relation, which is called an attribute name (or simply an 
attribute), represents a property of the entities being modelled. With each attribute, say A, we 
associate a set of values, called the domain of the attribute, which represents the possible values 
for the components of tuples appearing in the column headed by A. Attributes furnish a naming 
mechanism which provides semantics to the components of tuples, which are their attribute 
values. Thus the attribute AUTHOR 1 represents the first authors of the books modelled by 
the relation shown in Table 1.1. Its domain is the set of all possible authors of books. This 
domain may be the set of all strings over the English alphabet. The attribute LOAN represents 
the number of books on loan for a particular book. Its domain is the set of all integers between 
zero and the number of copies of the particular book that is being borrowed. In general, this 
domain is the (countablyinfinite) set of all integers and so an integrity constraint must restrict 
the cardinality of this set to the number of available copies stored in the library. 

The first line of a relation is referred to as the header of the relation. The header of a relation 
is the collection of all attributes of all the columns of a relation and is called a relation schema 
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(or simply a schema). In order to avoid ambiguity in naming, it is standard practice to insist 
that attribute names are distinct. Thus we can consider a schema to be a set of attributes. On 
the other hand, it is sometimes useful to be able to refer to the attributes in some order and 
therefore it is common to impose some linear ordering (see Subsection 1.9.2) on the attributes 
in a schema. For example, in the schema of the books relation we can take AUTHORl to be 
the first attribute, SHORLTITLE to be the second attribute and so on for the third, fourth 
and fifth attributes. A relation schema models an entity type; it is also common to refer to an 
entity type as an object type. 

I t is also customary to give names to relation schemas. For example, the books schema could 
be called BOOKS and the loans schema could be called LOANS. Thus the relation schemas 
of the library database can be written as: BOOKS(AUTHORl, SHORLTITLE, PUBLISHER, 
YEAR, ISBN) and LOANS(ISBN, LOCATION, QUANTITY, LOAN); this notation emphasises 
the default order of attributes for these schemas. 

The collection of all schemas of all the relations in a database is called a relational database 
schema (or simply a database schema). This collection of relation schemas is sometimes 
referred to as the intension of the database. 

1.2 What is a Database? 

We use the example of Section 1.1 to give a higher level description of what a database 
is. Firstly, a database is a collection of persistent data. That is, the database relations are 
stored permanently in the computer rather than being transient data of some application 
program. Secondly, this collection of data, i.e. the database, models part of the real world, 
called the enterprise. For example, the enterprise might be a library and the database models 
the cataloguing and loaning of books. The fact that a database is modelling an enterprise 
implies that the data items in the database are logically interconnected. In the library example 
the books and loans relations are obviously logically connected, while a relation modelling the 
salaries oflibrary staff for payroll purposes is not logically connected in this case and therefore 
would not be part of the library database. Thirdly, in many cases a database is a shared resource. 
By sharing we mean that multiple users have access to the database concurrently. A library 
database for a college will be shared by all members of the college and possibly by other users 
who can remote login to the database system. An exception to sharing is the use of personal 
databases on PCs. 

1.3 Why do we Need Database Management Systems? 

For simplicity let us assume that a DBMS is a software package (in fact this assumption is very 
close to reality with respect to most commercial DBMSs). So, like any other software package 
we hope that by using it it will make our life easier in some way. 

The main benefit a DBMS can offer is to save programming time and software maintenance 
by handling all the interactions of an application with the database. This can be viewed 
as being compatible with one of the main goals of software engineering, which is to make 
software production as high level as possible. That is, the software package should provide 
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programmers with a variety of functional built-in modules that can be "plugged" into the 
application software. Such modules may also include application generators and high level 
database languages. In addition, the DBMS may provide high level graphical user interfaces. 
These days most PC-based DBMSs will have a window-based user interface. In Section 1.5 we 
will detail the services that a DBMS should offer the user. 

Another important reason for having DBMSs is to provide data independence, which is 
the independence of application programs from the actual organisation of the information in 
the database. This implies that application programmers and database users do not have to 
concern themselves with the actual structure of the database as it is stored on external media 
and as it is manipulated in main memory. Their interaction with the database is on an abstract 
level and any reorganisation of the way information is stored in the database should not affect 
their interaction with the database. It follows that data independence will make application 
programs much easier to maintain. This topic will be discussed in more detail in Section 1.6. 

1.4 The Three Levels of Data Abstraction 

An important proposal for a generalised framework for the architecture of a DBMS was put 
forward by the ANSI/X3/SPARC study group on DBMSs [TK781. The framework emphasises 
the interfaces that a DBMS should provide and the kind of information that should pass 
between them. The proposed architecture identifies three distinct levels of abstraction: 

• The physical (or internal) level comprises the physical schema and the physical database. 
The physical schema is the description of the storage and access methods used to store 
the information in the database on the media available within the computer system, and 
the physical database is the actual data as stored on the storage devices of the computer 
system. 

• The conceptual (or logical) level comprises the conceptual database schema (or simply 
database schema) and the conceptual database (or simply the database). The database 
schema is the description of the information about the enterprise as it is modelled in 
the database, and the database is the abstraction of the information being modelled as 
it is seen by the users. 

• The view (or external) level comprises a collection of view schemas and a collection 
of views. Each view schema is a simplified description of the enterprise as seen by 
an application program (and thus by a group of end users). A view schema has an 
associated view, which corresponds to the portion of the database being described by 
the view schema. 

A diagrammatic view of the three levels of abstraction is given in Figure 1.l. 

The physical level is, in general, dependent on the hardware and software available within 
the computer system being used. It should be able to reflect current technology. It is possible 
to make the physical schema machine independent by using device independent storage and 
access methods but the physical information is normally machine dependent. 

The conceptual database schema and the conceptual database are specified by using the 
data model that is supported by the DBMS. Thus the data model provides a "language" which 
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Fig 1.1 The three levels of abstraction 

allows us to communicate with the conceptual level of the DBMS. As we have seen in Section 1.1 
the relational model provides a simple way of describing the conceptual level. 

The external level of a DBMS may provide any number of views, corresponding to different 
application programs or user groups. For example, in the library database, an application 
program that checks which books are all out on loan (i.e. books that have a QUANTITY -value 
equal to their LOAN-value) does not need the detailed book information. An entity type 
that is represented in a view schema may not be explicitly modelled by the database schema 
at the conceptual level. For example, the total number of books in the library for a given 
publisher can be represented in a view but this information is not directly modelled in the 
library database schema. All the information in views must be derivable from the information 
present in the database at the conceptual level. 

The correspondences between the three levels of abstraction are established through data 
mappings between the view and the conceptual levels, and between the conceptual and the 
physical levels. The mapping between the view and the physical levels is a composition of 
the mappings between the view and the conceptual levels, and the mappings between the 
conceptual and the physical levels. Thus data independence is maintained by insisting that 
the information at the view level interacts with that of the physical level only through the 
conceptual level. Assuming that the conceptual level has been defined, the DBMS must then 
ensure that the mappings to the physical and view levels are consistent with the information 
at the conceptual level. 

An integral part of any DBMS is the data dictionary. The data dictionary is a meta-database 
which is a repository of information about the database. It must at least contain the description 
of the physical, conceptual and view schemas and the mappings between them. It may 
also contain statistical information on the database usage, recovery information, user login 
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and access information, security information and accounting information. In fact, the data 
dictionary can be implemented in a relational DBMS as just another relation in the database. 
Therefore, the data dictionary can be queried and updated, by using the facilities of the DBMS, 
like any other relation in the database. 

1.S What is a Database Management System? 

A DBMS is a computer system which is responsible for storage and maintenance of databases. 
A DBMS is essentially a software system but it may contain specialised hardware in order to 
make the management of data more efficient. Such hardware may include special disk drives 
that support fast access to the data and multiprocessors that support parallelism. From now 
on we will assume for simplicity that a DBMS is a software package. The DBMS software 
should provide the following services: 

• A Data Definition Language (DDL) for defining the schemas of the three levels of 
abstraction (physical, conceptual and view) and the mappings between them. 

• A Data Manipulation Language (DML) for querying and updating the information in 
the database. Updates include inserting new data, deleting existing data and modifying 
existing data. (A DML is also called a database language, a query and update language 
or simply a query language.) 

• Efficiency in query response time and utilisation of storage space. 

• Integrity and consistency. That is, the ability to define and check for integrity 
constraints, such as an ISBN is associated with a single book and the number of books 
on loan does not exceed the quantity of books available. It is a fundamental requirement 
that a database be consistent at all times. 

• Concurrency control and data sharing. In a multi-user database environment several 
processes, such as querying and updating data, may happen concurrently. Concurrency 
control is the activity of ensuring that these processes do not interfere with each other. 
A typical example of concurrency control is an airline reservation system which must 
ensure that two people do not book the same seat. 

• Transaction management. A transaction is an execution of a program that accesses 
shared data. The most important operations a transaction can perform are reading data 
(or querying) and writing data (or updating). If the transaction terminates successfully 
then it is committed, i.e. the changes to the database are made permanent. On the other 
hand, if the transaction is aborted, that is to say, it does not terminate successfully, 
then it must be rolled back, i.e. all the updates that were made to the database by that 
transaction have to be undone. 

• Recovery from failure. That is, ensuring that system failures, be they software or 
hardware, do not corrupt the database. The recovery facility should ensure that the 
database be returned to its most recent consistent state prior to the failure. 
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• Security. That is, ensuring that users have access only to those parts of the database 
they are authorised to access. This allows access privileges to be granted and revoked 
from users. 

• Database administration facilities. These are normally provided as part of the DDL. Thus 
the DDL must also allow the definition of integrity constraints and security rights. The 
DBMS might also provide software tools for database design, for monitoring and tuning 
database performance, for running benchmarks on the database and for generating 
various reports. 

A DBMS has several types of users. 

• End users, who interact with the external level of the DBMS via interfaces that are 
generated by application programs. These are the people who use the database. 

• Application programmers, who write the application programs that make use of the 
database. Application programs may interact with the conceptual and/or the external 
levels of the DBMS. 

• Database Administrator (DBA), who is responsible for defining the physical schema and 
the day-to-day administration of the database. The DBA is also responsible for handling 
database security, tuning database performance and generating reports concerning the 
database usage. 

• Enterprise administrator, who is responsible for defining the conceptual database 
schema. This involves the important task of database design. 

• Application administrator, who is responsible for defining the view schemas. This 
involves defining the view schema relevant to each application. It is possible that each 
application that is being developed has a separate application administrator. 

1.6 The Concept of Data Independence 

The concept of data independence (or physical data independence) is one of the key factors 
in the success of the relational model. It means that the physical level of the database may 
be modified without the need to make any corresponding changes to the conceptual level. 
This implies that application programs do not require any change when the physical level 
of the database is restructured. The way data independence is enforced by the DBMS is by 
modifying the data mapping between the physical and the conceptual levels, when any change 
to the physical level occurs. With respect to the library example, the conceptual level deals 
with relations and does not concern itself with their actual physical storage. Therefore, for 
efficiency reasons, the DBA may decide to restructure the library database, say by changing its 
physical access method, without affecting the conceptual level at all. The readers can convince 
themselves that the relational model indeed provides data independence. Data models which 
preceded the relational model did not provide full data independence. 

To summarise, data independence makes maintenance of applications programs easier, 
gives freedom to the DBA to modify the physical level and frees the users from having to know 
the many details concerning the physical level when interacting with the database. 
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A higher level of data independence would be conceptual data independence, which is the 
independence of the view level from the conceptual level. In general, such independence 
cannot be achieved, since the deletion of a relation or one or more columns of a relation will 
necessarily disrupt any view that references that relation or those columns. On the other hand, 
a weaker type of data independence, called growth independence [Dat86b], can be achieved 
in the relational model. Growth independence is the independence of the view level from 
adding new attributes to relation schemas (and thereafter adding attribute values to the new 
columns of the relation) and from adding new relation schemas to the database schema (and 
thereafter adding tuples to the new relations). Such additions to the conceptual level will not 
require any changes to application programs, due to the fact that these programs do not have 
references to these new attributes and relation schemas. The way growth independence is 
enforced by the DBMS is by adding the changes that occur at the conceptual level to the data 
mapping between the conceptual and view levels without changing the existing part of this data 
mapping. The readers can convince themselves that growth independence is achieved in the 
relational model. On the other hand, it is much harder to achieve such independence within 
the data models that preceded the relational model. With respect to the library example, the 
DBA may decide to add an attribute called SUBJECT, which represents the subject category 
of the book, without affecting the view level at all. 

1.7 What is a Data Model? 

A data model (or simply a model) is a combination of three components [Cod82]: 

• The structural part: A collection of data structures (or entity types, or object types) 
which define the set of allowable databases. 

• The integrity part: A collection of general integrity constraints, which specify the set of 
consistent databases or the set of allowable changes to a database. 

• The manipulative part: A collection of operators or inference rules, which can be applied 
to an allowable database in any required combination in order to query and update parts 
of the database. 

Codd [Cod82] claims that the relational model was the first data model to be defined in the 
above sense. In hindsight the three components of a data model can also be recognised in the 
hierarchical and network data models. An example of a data model that concentrates mainly 
on the structural and integrity part of a data model is the entity-relationship model (or simply 
the ER model) [Che76]i this model is discussed in detail in Chapter 2. The reason for this is 
that the main purpose of the ER model is to provide a conceptual database schema and due to 
its simple yet powerful graphical representation it is very widely used during database design. 

A useful distinction to make between the various data models, with respect to their 
manipulative part, is whether they are inherently declarative or procedural. 

Declarative database languages are logic-based, i.e. users of such languages specify what 
data they want to manipulate with respect to the conceptual database schema rather than how 
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to manipulate this schema. On the other hand, procedural database languages are access
path-based, that is, users of such languages specify the access path to the data they want to 
manipulate with respect to the conceptual database schema. 

Declarative database languages are most suitable for end users in the form of easy-to-use 
graphical interfaces and procedural languages are most suitable for database programmers 
in the form of well-defined interfaces between the database and a conventional programming 
language such as COBOL, C or Java. Normally, this interface allows DBMS calls to be embedded 
in such a programming language but there is an ongoing attempt to extend programming 
languages with built-in database types and operations over these types [Sch77J . 

Embedded query languages force application programmers to learn two different 
formalisms, the formalism of the programming language and the formalism of the query 
language. These two formalisms are not always fully compatible which leads to a problem 
known as the impedance mismatch problem. Extending programming languages with built-in 
database types is one way of solving the impedance mismatch problem. 

Declarative interfaces may also be provided for database programmers in order to shift 
the database optimisation issues from the programmer to the DBMS and thus to improve 
productivity. These declarative interfaces are known as Fourth Generation Languages (4GLs). 
4GLs which provide full programming capabilities are another way of solving the impedance 
mismatch problem. 

The manipulative part of the relational data model and its extensions naturally allows for 
declarative query and update languages while that of the hierarchical, network and object
oriented data models naturally allows for procedural query and update languages. This is one 
reason why object-oriented data models can be regarded as extensions of the hierarchical and 
network data models. 

1.7.1 The Relational Data Model 

The relational data model, or simply the relational model, is a combination of the following 
three components: 

• Structural part: a database schema is a collection of relation schemas and a database is 
a collection of relations. 

• Integrity part: primary keys and foreign keys. 

• Manipulative part: relational algebra and relational calculus. 

For an example of a relational database see Tables 1.1 and 1.2. The relational data model 
will be discussed in detail from Chapter 3 onwards. We now provide a brief summary of its 
salient features. 

A candidate key (or simply a key) for a relation schema is a minimal set of attributes whose 
values uniquely identify tuples in the corresponding relation. For example, for both the books 
and loans relation schemas ISBN is a key. Assuming that an author only writes one book a 
year then the set of attributes {AUTHORl, YEAR} is also a key for the books relation schema. 
This key is not as useful as the ISBN, since firstly it assumes that author names are unique, 
and secondly it is a combination of two attributes and is thus not as concise as the ISBN. For 
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the loans relation schema it may be the case that multiple copies of a book may be held in 
different locations in which case {ISBN, LOCATION} would be a key for this relation schema. 
An example of a relation schema with two natural keys is the schemaADDRESS(STREET, CITY, 
POSTCODE) of addresses. The two keys for this relation schema are {STREET, POSTCODE} 
and {STREET, CITY}, since both these keys uniquely determine the information conveyed 
by the other. The primary key of a relation schema is a distinguished key designated by the 
database designer. 

In general, it may be that some of the information in a relation may be either unknown or does 
not exist. Let EMPLOYEE(SSN, ENAME, SALARY, SPOUSE_SSN, ADDRESS, PROJECLID) 
be an employee relation schema with the obvious semantics. It is possible that the address of 
a given employee is unknown, i.e. this information exists but is not available in the relation 
at present. It is also possible that an employee is not married in which case there does not 
exist a social security number for the employee's spouse, i.e. SPOUSE_SSN is inapplicable. In 
order to represent an unknown or inapplicable value into a relation the domains of attributes 
are extended with two distinguished values, called null values (or simply nulls) : unk (as an 
abbreviation of unknown) and dne (as an acronym of does not exist). 

Now, in order to guarantee that every tuple in a relation is accessible we must ensure that 
for all tuples in a relation the values of at least one key are not null. Therefore, a constraint 
is placed on the values of the primary key, namely that these values cannot be null. This 
constraint is known as entity integrity. 

A foreign key is a set of attributes in a relation schema that forms a primary key of another 
relation. For example, ISBN in BOOKS and LOANS are both foreign keys of each other. A 
foreign key of a relation schema is said to reference the attributes of another relation schema. 
Thus, ISBN in BOOKS references ISBN in LOANS and vice versa. Assume a relation schema 
PROJECT(PROJECLID, TITLE, LOCATION, MGR_SSN). Then PROJECLID is a foreign key 
of EMPLOYEE which references PROJECT _ID in PROJECT and MGR_SSN is a foreign key of 
PROJECT which references SSN in EMPLOYEE. A relation schema may also reference itself; 
for example, if MGR_SSN were an attribute of EMPLOYEE then it would be a foreign key of 
EMPLOYEE which references SSN in EMPLOYEE. 

In order to guarantee that foreign key values, which are not null, reference existing tuples 
we place the constraint that if the values of a foreign key are not null then there exists a tuple in 
the referenced relation having those values as key values. This constraint, known as referential 
integrity, ensures that only valid references are made between tuples in relations. 

The relational algebra is a collection of operators which take relations as input and generate 
a relation as output. It is important to note that the relational algebra processes sets of tuples at 
a time rather than one tuple at a time. For example, we can generate a relation from the books 
relation which contains only tuples of books published by Addison-Wesley; such an operation 
is called a selection. We can also generate a relation from the books relation which contains 
only the ISBN, AUTHORl and SHORT _TITLE attribute values of tuples; such an operation 
is called a projection. Moreover, we can combine the books and loans relations to output a 
relation which contains tuples over the attributes ISBN, SHORT _TITLE and LOCATION; such 
an operation which combines two or more relations is called a join. 

The relational calculus is a declarative counterpart of the relational algebra based on first
order logic. The commercial query language SQL (an acronym for Structured Query Language), 
which is the standard query language for relational DBMSs, is based on the relational calculus. 
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Figl.2 A data structure diagram 

1.7.2 The Network Data Model 

The network data model, or simply the network model, is a combination of the following three 
components: 

• Structural part: a database schema in the form of a directed graph, called a data structure 
diagram, and a database is an instance of a data structure diagram. 

• Integrity part: record identity and referential integrity. 

• Manipulative part: network traversal. 

The nodes of a data structure diagram are called record types and its links are called set 
types. Whenever two record types are connected by a link, the source record type is called 
the owner record type (or simply the owner type) and the destination record type is called the 
member record type (or simply the member type). An example of a data structure diagram is 
shown in Figure 1.2. It has the two record types DEPARTMENT and LECTURER and only one 
set type EMPLOYS from DEPARTMENT to LECTURER. DEPARTMENT is the owner type of 
EMPLOYS and LECTURER is the member type of EMPLOYS. 

Each record type contains attributes (also called fields) in analogy to a relation schema. An 
instance of a record type is called a record. Each record contains attribute values for each of 
the attributes of its record type, in analogy to tuples of a relation, and, in addition, it has a 
record identity, which is a unique identifier for that record. Record identity can be viewed as 
a "pointer", which corresponds to the address of the record; it mayor may not correspond to 
the actual physical address of the record. The record identity is generated by the DBMS and 
is hidden from the user. Thus record identity provides a system-defined key value for each 
record in the database. 

An instance of a set type is called a set occurrence. A set occurrence contains one instance 
of the owner record type together with zero or more instances of the member record type. A 
set occurrence with no member records is called an empty set. The member records are linked 
together in some order and there are two additional links, one from the owner record to the 
first member record and one from the last member record to the owner record. An example 
of an instance of the data structure diagram of Figure 1.2 is shown in Figure 1.3. 

A set occurrence is a one-to-many association between owner and members records. It is 
important not to confuse the use of the word "set" with its set-theoretic meaning. In fact set 
occurrences in the network model are ordered and the use of the word "set" is unfortunate 
but historical. 

The constraint that a set occurrence must have exactly one owner record is called referential 
integrity. Thus in order for an owner record (for example a department) to have member 
records (for example lecturers) it must exist. 
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Fig 1.3 An instance of the data structure diagram of Figure 1.2 

We can now define a database, which is an instance of a data structure diagram, to be 
a collection of record instances for each record type in the data structure diagram and a 
collection of set occurrences for each set type in the diagram. 

Another example of a data structure diagram is shown in Figure 1.4. This data structure 
diagram has two set types TEACHES and TAUGHLBY, two owner types TEACHER and 
COURSE, ofTEACHES and TAUGHT_BY, respectively, and one member type T _C, where T_C 
stands for TEACHER_COURSE. An instance of the data structure diagram of Figure 1.4 is 
shown in Figure 1.5. 

In order to discuss the manipulative part of the network model we will assume that all the 
record types in a data structure diagram are either the owner type or member type of at least 
one set type in the diagram. There is no loss of generality in this assumption, since if a record 
type, say R, is isolated (i.e. it is not the owner type or member type of any set occurrence) we 
can create a new set type, S, and a new record type M, with R being the owner type of Sand M 
being the member type of S. 

The fundamen tal operations of network traversal consist oflocating a record in the database 
and once a record is located following a link (or "chasing a pointer") in order to obtain the 
next record. 
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Fig 1.4 Another data structure diagram 

For every set occurrence the following operations must be supported: 

• Given an owner record process its member records in some order. 

• Given a member record process its owner record. 

• Given a member record process the other member records in the set occurrence. 

Navigation in a network database is done one record at a time. At each stage when the 
user is navigating through the database several record identities, called currency pointers, are 
maintained by the DBMS. The record identity of the most recently accessed record is referred 
to as the current of run unit. Furthermore, for each record type, R, the record identity of the 
most recently accessed record of type R is referred to as the current ofR. Finally, for each set 
type, S, the record identity of the most recently accessed owner or member record in the most 
recently accessed set occurrence of type S is referred to as the current ofS. All the currency 
pointers are initially null. The actual network traversal query language consists of changing 
the values of the currency pointers using a sequence of FIND statements. 

A particular record of a record type can be located by a statement of the form: 

FIND record type USING record attributes 

where the record attributes are assigned values by assignment statements of the form: Att := 
val, where Att is an attribute and val is a value. If two or more records in the database have 
the specified attribute values then anyone of these records is located. On the other hand, if 
no records have the specified attribute values then the query fails. 

The lecturer record for Mark can be made the current of LECTURER and the department 
record for Computing can be made the current of DEPARTMENT by the query 

LNAME:= 'Mark' 
FIND LECTURER USING LNAME 
DNAME := 'Computing' 
FIND DEPARTMENT USING DNAME 

The current of run unit will now be the department record for Computing. 
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Fig 1.5 An instance of the data structure diagram of Figure 1.4 

The first member of a set type can be located by a statement of the form: 

FIND FIRST record type IN set type 

The first member of the Computing department within EMPLOYS can be located by 

FIND FIRST LECTURER IN EMPLOYS 

The current of EMPLOYS will now be the lecturer record for John!. 
The next member of a set type can be located by a statement of the form: 

FIND NEXT record type IN set type 

The query FIND NEXT R IN S fails if the current of S is the last member of the current set 
occurrence being scanned. 
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The next member of the Computing department within EMPLOYS can be located by 

FIND NEXT LECTURER IN EMPLOYS 

The current of EMPLOYS will now be the lecturer record for Mark. 

The owner of a set type can be located by a statement of the form: 

FIND OWNER IN set type 

The owner record of the Computing department can be located by 

FIND OWNER IN EMPLOYS 

Thus the current of EMPLOYS will now be the department record for Computing. 

1.7.3 The Hierarchical Data Model 

The hierarchical data model, or simply the hierarchical model, is a combination of the following 
three components: 

• Structural part: a database schema in the form of a collection of tree types, called a forest 
type, and a database in the form of a collection of trees, called a forest. 

• Integrity part: record identity and referential integrity. 

• Manipulative part: hierarchical navigation. 

A rooted tree is a tree which has a single root node and such that each child node in the 
tree has exactly one parent node (the root node is not a child node). A tree type is a directed 
graph which is a rooted tree. As in the network model each node in a tree type is called a 
record type. The record type corresponding to the root node is called the root record type (or 
simply the root type). If node, A, is a parent of another node, B, then the record type, say RA, 
corresponding to A, is the parent record type of the record type, say RB, corresponding to B. 
Equivalently, RB is a child record type of RA. A record type having no children record types 
is called a leaf record type. A forest type is a collection of tree types. An example of a tree 
type modelling a university database is shown in Figure 1.6. We also mention the concept of 
a virtual record type which is a pointer to a record type. Virtual record types are useful when 
we would like to use the same record type in two tree types (or to use the same record twice 
in a single tree type) without duplicating the record type. 

As in the network model each record type contains attributes and the instances of record 
types are records containing values for each of the defined attributes. Furthermore, as in 
the network model, each record has a record identity which specifies a unique address to the 
record. The record identity is generated by the DBMS and is hidden from the user. 

An instance of a tree type is a tree record, which is a tree whose nodes are records and whose 
links form one-to-many associations between parent and child records. The root record of 
a tree record is an instance of the root record type. A parent record may have zero or more 
children records. On the other hand, a child record must have exactly one parent record; this 
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TEACHER 

Tname 

Fig 1.6 A tree type 

constraint is called referential integrity. We can now define a database over a forest type to 
be a collection of tree records over the tree types in the forest. An example of a tree record 
over the tree type of Figure 1.6 is shown in Figure 1.7. 

In order to discuss the manipulative part of the hierarchical model we will assume that the 
forest type has only one tree type. There is no loss of generality in this assumption, since we 
can always create a new tree type with a new root record type which combines all the record 
types in the forest type into a single tree type. Moreover, without loss of generality, we assume 
that the database consists of a single tree record. 

A hierarchical path (or simply a path) is a sequence of records starting from a root record 
and following alternately from a parent record to a child record. For example, STUDENT, 
COURSE, TEACHER is a path. The fundamental operation of hierarchical navigation is that 
of traversing tree records by specifying paths starting from a root record to the record we are 
trying to locate. As in the network model tree traversal is done one record at a time. At each 
stage when the user is navigating through the database a currency pointer is maintained by 
the DBMS, which is the record identity of the most recently accessed record. 

Traversal of a tree record is performed in a depth-first [Tarn, AHU83) manner as follows, 
starting by making the root record the current record: 

1) visit the current record if it has not already been visited, else 

2) visit the leftmost child record not previously visited, else 

3) go back to the parent record. 

The first record over a record type in depth-first order can be located by a statement of the 
form: 

GET FIRST record type WHERE condition 

where condition is a Boolean expression over a record type qualifying the record that should 
be located. 
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Fig 1.7 A tree record over the tree type of Figure 1.6 

The first COURSE record having code D7 can be located by 

GET FIRST COURSE WHERE CODE = 'D7' 

The next record over a record type in depth-first order can be located by a statement of the 
form: 

GET NEXT record type WHERE condition 

The next TIMETABLE record in room G22, i.e. the first TIMET ABLE record for D7, can be 
located by 

GET NEXT TIMETABLE WHERE ROOM = 'G22' 

The next sibling record over a record type (i.e. the next record having the same parent 
record as the current record, if such a record exists) in depth-first order can be located by a 
statement of the form: 

GET NEXT WITHIN PARENT WHERE condition 



1.7. What is a Data Model? 19 

The next TIMETABLE record within the parent record of the current record, i.e. the second 
TIMETABLE record for D7, can be located by 

GET NEXT WITHIN PARENT TIMET ABLE 

Locating a record independently of the current record is achieved by a statement of the 
form: 

GET UNIQUE WHERE condition 

The TEACHER record with TNAME John can be located by 

GET UNIQUE TEACHER WHERE TNAME = 'John' 

1.7.4 The Nested Relational Data Model 

Relations are often called fiat relations due to their simple and flat tabular form. The (flat) 
relational model does not allow attribute values to be sets of values or sets of tuples. In other 
words, attribute values of (flat) relations cannot themselves be relations. This restriction on 
the attribute values of relations is known as the First Normal Form (or INF) assumption. (lNF 
and higher normal forms will be discussed in detail in Chapter 4 in the context of database 
design.) The INF assumption has the advantage of keeping the tabular structure of relations 
simple and allowing relational query languages to be able to refer to attribute values in tuples 
of relations in a straightforward manner. 

By relaxing the INF assumption we can introduce hierarchical structures into the relational 
model [Mak771 . A relation which does not necessarily satisfy the INF assumption is called 
a nested relation and the resulting data model is called the nested relational data model, or 
simply the nested relational model. Thus an important special case is a nested relation which 
satisfies the 1NF assumption; such a relation is called a fiat relation (or simply a relation 
using our previous terminology). Attributes of nested relation schemas whose values may 
be nested relations are called relation-valued attributes. Many applications have data that 
can be described naturally in a hierarchical fashion . For example, a family tree, or a parts 
inventory relation showing parts and their components, are described very naturally by using 
trees. 50 the nested relational model generalises the concepts of the (flat) relational model 
to hierarchical data structures without using record identity and links as was done in the 
hierarchical model. Thus the nested relational model has the benefits of both the relational and 
hierarchical models. On the one hand, it builds on over twenty five years of research into the 
relational model and on the other hand it allows modelling of complex objects which may not be 
flat. As an example, the flat relation shown Table 1.3 can be restructured into the nested relation 
shown in Table 1.4 having the relation-valued attribute (CNAME NO_HOURS)*, or the nested 
relation shown in Table 1.5 having the relation-valued attribute (TNAME NO_HOURS)*. We 
observe that our notation for describing relation-valued attributes highlights their internal 
structure by enclosing them with '(' and ')*'. Further nesting such as (CNAME (TNAME 
NO_HOUR5)*)* is possible, for instance if we would like to record the set of courses, teachers 
and hours that students take. This example highlights the fact that nested relations allow 
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flexibility in presenting the information to the users, which is not present in the relational 
model. One of the advantages of the nested relational model over the hierarchical model is 
that it is easy to restructure data according to the users' needs. 

Table 1.3 A flat relation 

TNAME CNAME NO_HOURS 
John Expert Syst 15 
John Databases 15 
John Prolog 15 
Mark Software Eng 10 
Mark Databases 20 
Mark Prolog 15 
George Databases 20 
George Graph Theory 25 

The integrity part of the nested relational model generalises that of the relational model. 
The concepts of key, primary key and foreign key of a nested relation schema must allow 
for relation-valued attributes. For example, TNAME is a key for the schema of the nested 
relation shown in Table 1.4, since TNAME attribute values uniquely determine the relation 
consisting of course and number of hours tuples. Correspondingly, CNAME is a key 
for the schema of the nested relation shown in Table 1.5, since CNAME attribute values 
uniquely determine the relation consisting of teacher and number of hours tuples. Let us 
assume that information about teachers is stored in a further nested relation, over a nested 
relation schema, say TEACHER, whose primary key is TEACHER~AME and information 
about courses is stored in a further nested relation, over a nested relation schema, say 
COURSE, whose primary key is COURSE_NAME. Then CNAME and TNAME are foreign 
keys which reference COURSE~AME in COURSE and TEACHER~AME in TEACHER, 
respectively. 

Table 1.4 A nested relation 

TNAME II (CNAME I NO HOURS)* II -

John Expert Syst 15 
Databases 15 
Prolog 15 

Mark Software Eng 10 
Databases 20 
Prolog 15 

George Databases 20 
Graph Theory 25 

The nested relational algebra extends the (flat) relational algebra to nested relations by 
providing two additional restructuring operators, called NEST and UNNEST. NEST transforms 
a nested relation into a "more deeply" nested relation and UNNEST transforms a nested 
relation into a "flatter" nested relation. 

Let us call a nested relation over a nested relation schema having only one relation-valued 
attribute which is not further nested, a shallow relation. For simplicity, we will restrict our 
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Table 1.5 Another nested relation 

CNAME II (TNAME I NO_HOURS)* II 
Expert Syst John 15 
Graph Theory George 25 
Software Eng Mark 10 
Prolog Mark 15 

John 15 
Databases Mark 20 

George 20 
John 15 

attention to shallow relations. For example, the nested relations shown in Tables 1.4 and 1.5 
are both shallow relations. Thus NEST transforms a flat relation into a shallow relation and 
UNNEST transforms a shallow relation into a flat relation. For example, if we NEST Table 1.3 
on (CNAME, NO_HOURS) we obtain the shallow relation shown in Table 1.4 and if we NEST 
Table 1.3 on (TNAME, NO_HOURS) we obtain the shallow relation shown in Table 1.5. On 
the other hand, if we UNNEST either the shallow relation shown in Table 1.4 or that shown in 
Table 1.5 we obtain the flat relation shown in Table 1.3. This should not give the reader the 
false impression that a shallow relation can always be recovered from a flat relation by a NEST 
operation. For example, consider the shallow relation, shown in Table 1.6, which represents 
the area of triangles and the x, y coordinates of their vertices. If we UNNEST this relation we 
obtain the flat relation shown in Table 1.7 and if we then NEST this relation on (X-COORD, 
Y -COORD) we obtain the different shallow relation shown in Table 1.8. 

Table 1.6 A nested relation storing the area of triangles 

I AREA II (X-COORD I Y-COORD)* II 
1 0 0 

1 0 
0 2 

1 0 0 
2 0 
0 1 

Table 1.7 A flat relation obtained by unnesting 
AREA X-COORD Y-COORD 

1 0 0 
1 1 0 
1 0 2 
1 2 0 
1 0 1 

This problem concerning the loss of information when a nested relation, which has been 
un nested, cannot be recovered by nesting is called the lNF normalisability problem. In order 
to solve the 1NF normalisability problem, an additional nested relational algebra operator 
needs to be defined that preserves the key values of nested tuples when unnesting a nested 
relation. For example, the schema of the shallow relation shown in Table 1.6 has a single 
key which is the relation-valued attribute (X-COORD, Y -COORD)*. The flat relation shown 
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in Table 1.7 resulting from unnesting this shallow relation does not preserve the two key 
values. The keying operator [JS82] is an operator which adds a new key to the relation schema 
of a nested relation and maintains a key value for each nested tuple in the nested relation 
being keyed. For example, keying the nested relation shown in Table 1.6 results in the nested 
relation shown in Table 1.9. It can be verified that if we UNNEST the shallow relation shown 
in Table 1.9, then NEST it on (X-COORD, Y -COORD) and finally project the result on AREA 
and (X-COORD, Y -COORD)* we obtain the original shallow relation shown in Table 1.6. 

Table 1.8 A shallow relation obtained by UNNEST and NEST 

I AREA II (X-COORD Y-COORD)* II 

I II 

0 0 

II 

1 0 
0 2 
2 0 
0 

The relational calculus and SQL have also been extended to nested relations. (Several of the 
database books appearing in the bibliography cover such extensions; see also [PT86, RKB87, 
LL89].) 

Table 1.9 A nested relation after keying 

I NEW KEY I AREA II (X-COORD I Y-COORD)* II -
k} 1 0 0 

1 0 
0 2 

k2 1 0 0 
2 0 
0 1 

1.7.5 The Deductive Data Model 

Deductive (or logical) databases in their simplest form have the same structural and integrity 
parts as the relational model. It is common in the deductive database setting to call tuples facts, 
attribute values constants and relations predicates. In addition, names of relation schemas 
are called predicate symbols and a fixed ordering is imposed on the attributes of relation 
schemas. For example, the predicate symbol associated with the relation shown in Table l.l 
could be BOOKS with the ordering of attributes as in the header of the relation, and similarly 
the predicate symbol associated with the relation shown in Table 1.2 could be LOANS with the 
ordering of attributes as in the header of the relation. This notation allows us to write facts 
(tuples) in the form, P( VI, V2, ... , vn ), where P is a predicate symbol and VI, V2, ... , Vn are its 
attribute values in the fixed ordering. For example, the third tuple in the books relation can 
be written as 

BOOKS(Korth, DB Concepts, McGraw-Hill, 1991,0-07-044754-3). 
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Similarly, the third tuple in the loans relation can be written as 

LOANS(O-07-044754-3, Main, 1, 1). 

The manipulative part of a deductive database is a logic-based language, the best known 
example being the rule-based query language Datalog. The syntax of Datalog resembles that 
of the programming language Prolog [MW88a, SS94, Apt97) but its semantics are different, 
since Prolog processes facts one at a time while Datalog processes sets of facts at a time. In 
addition, Datalog is a declarative language while Prolog can be viewed as a mixture between 
a procedural and a declarative programming language. Finally, Datalog is not a fully-fledged 
programming language and it is thus not computationally complete (see Subsection 1.9.4 for 
a definition of the important notion of computational completeness). 

We briefly describe the basic syntax of Datalog. A statement of the form 

where P is a predicate symbol and each Ai, with i E {1 , 2, .. . , n}, is either a variable or a 
constant, is called a literal. 

Datalog statements are rules of the form 

where the Pi'S are predicate symbols, the A i'S, Bi'S and C;'s are either variables or constants 
and the variables amongst the A i'S must be a subset of the B;'s, .. . , and the Ci'S. The symbol 
": -" is read as if and the commas are read as and. The literal to the left of ": -" is called the 
head of the rule and the set of literals to the right of "; -" is called the body of the rule. We 
use the convention that variables are strings beginning with the lowercase letter x, possibly 
subscripted, and constant values are all other strings. 

A Datalog program is now defined to be a finite collection of rules. 

Assume that we have a relational database and a Datalog program whose intension is to 
query that database. A literal is logically true in a database if we can find an assignment of 
constants to its variables that transforms the literal into a fact which is present in the database. 
Assignments of constants to variables are local to rules and thus we can reuse them, i.e. the 
same variable can be assigned different constants in different rules. 

The intuitive semantics of invoking a Datalog rule is that if all the literals in the body of the 
rule are logically true over the database we are querying, then derive a new fact corresponding 
to the head of the rule and (temporarily) add it to the database. This process is repeated until 
no further facts can be derived, technically until a fixpoint is attained. The result of a query 
which invokes a rule is the set of facts in the resulting database that have the predicate symbol 
of the head of the rule. The semantics of running a Datalog program corresponds to invoking 
all the rules in the program in any order as long as possible, i.e. until a fixpoint is attained for 
all the rules. Thus the result of running a Datalog program is the set of facts in the original 
database together with all the new facts derived when a fixpoint is attained. It can be shown 
that the order in which the rules are processed does not affect the result of running the Datalog 
program. 
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Table 1.10 A family relation 

PARENT CHILD 
abraham Isaac 

sara isaac 
abraham ishmael 

isaac jacob 
rivka jacob 
jacob joseph 
lavan rachel 
lavan lea 
rachel joseph 
jacob dan 

For example, the following rule finds the first author, short title, year and ISBN of books 
published by Addison-Wesley: 

Similarly, the following rule finds the first author, short title, quantity of books in the main 
library and the number of these books on loan: 

The above queries can be expressed in the relational algebra. So in what sense does Datalog 
extend the relational algebra. The answer is that Datalog supports recursive queries, a facility 
not available in the relational algebra. A Datalog rule is said to be recursive if the predicate 
symbol of the head of the rule also appears in a literal in the body of the rule. It can be shown 
that there are recursive rules that are expressible in Datalog but not in the relational algebra 
[AU79]. 

Consider the relation shown in Table 1.10 which models a family tree (this relation may be 
better modelled via a nested relation). 

The following nonrecursive rule finds the grandparents relation: 

The following nonrecursive rule finds the sibling relation, assuming that a person is a sibling 
of itself: 

The following two rules, one of which is recursive, find all the ancestors of people in the 
database: 

ANC(Xl, X2):- PAR(Xl , X2). 
ANC(Xl , X3):- PAR(Xl, X2), ANC(X2, X3). 
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The following two rules, one of which is recursive, find all the people in the database which 
are of the same generation: 

SAME_GEN(X2 , X3) : - PAR(x" X2), PAR(x" X3) . 
SAME_GEN(x" X2): - PAR(X3 , xd, PAR(X4 , X2), SAME_GEN(X3, X4) . 

Datalog can be extended to handle negation using the Closed World Assumption (CWA) 
[Rei78]. The CWA assumes that the database has complete positive information about the 
enterprise it is modelling. Thus we can utilise the absence of positive information in order 
to infer that this information is false. For example, if we assume the CW A with respect to 
our library database, then we can safely assume that if a book is not recorded in the books 
relation then it it is not available in the library. Another example is a database containing 
three relations one for employees, the second for the departments employees can work in and 
the third recording the assignment of employees to departments. A department may have no 
employees if it is a newly set up department and a new employee may have not been assigned 
to a department yet. Thus, we can use the CWA to derive departments that have no employees 
and employees that have not been assigned to a department. (For more details on the CW A 
see Chapter 5.) 

1.7.6 An Object-Oriented Data Model 

The title of this subsection begins with an rather than the as was the case in the previous 
subsections. The reason is that there is no wide agreement on what the definitive object
oriented data model should be. The growing field of object-oriented databases lacks the solid 
theoretical foundation that is characteristic of the relational data model. Thus it is difficult 
to reach a consensus on the semantics of the various concepts that database practitioners 
agree should be included in an object-oriented data model. Another source of hindrance 
is the fact that the development of object-oriented database systems has been application
driven and therefore much experimental work is under way with features being added as 
necessitated by the demand of the application being developed. Therefore we will restrict 
ourselves to mentioning the novel concepts that object-oriented databases should possess. 
It is tempting to define an object-oriented data model as a collection of concepts that have 
been found to be useful in data modelling but are not directly supported within the relational 
model. 

Object-oriented databases in their simplest form have the same structural and integrity 
parts as the network model. In object-oriented databases records are called objects, record 
identity is called object identity and collections of records are called classes. A set occurrence 
can be modelled by adding an attribute to the member object type, such that for each member 
object the value of this attribute will be a link to its owner object. 

A different approach is to view the concept of a complex object as central and to extend the 
relational model from flat relations to complex object relations (cf. [Kim95b D. Such a complex 
object relation may be a nested relation or, more generally, a recursive nested relation [SS90], 
which uses references to give semantics to nested relations that reference themselves. This 
approach has the advantage that it builds upon existing relational database technology, but 
that the simplicity of the flat relational data model is lost. 
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Class types in an object-oriented database specify the object type of the objects in its class and 
also the set of operations (also known as methods) that can be performed on objects in the class. 
For example, an EMPLOYEE class type will contain an object type, say EMPLOYEE_SCHEMA, 
and a set of operations on employees such as print employee details, retrieve salary and raise 
salary. Both the object type and the operations are stored (or encapsulated) in the database. 
Each operation has an interface and an implementation. The interface to an operation is the 
specification of how to call the operation, i.e. the name of the operation and its parameters. 
For example, in order to call the above-mentioned operations over EMPLOYEE, the user will 
need as a parameter the record identity of the employee object involved. Encapsulation means 
that users can access an object only through its interface, with all implementation information 
of these operations being hidden. Thus encapsulation provides a form of data independence, 
since the implementation of an operation can be changed without affecting the way users call 
the operation. One of the problems that arises during query processing is that in order to 
optimise queries encapsulation must be violated, since in order to perform its task the query 
optimiser must look inside the implementation of operations. Thus the optimiser must be 
trusted to access the implementation of operations. 

Another useful concept which is adopted in object-oriented databases is that of inheritance. 
As an example, we may have a STUDENT class type whose object type has attributes name, 
address, age and course description and an EMPLOYEE class type whose object type has 
attributes name, address, age and salary. Both students and employees are people so we could 
have an additional class type PERSON whose object type has attributes name, address and 
age. Thus EMPLOYEE and STUDENT inherit all the attributes and operations of PERSON 
and are considered to be its subclasses. Inheritance is useful, since we can add new class 
types to the system which reuse existing class types. Thus when we define the class types 
STUDENT and EMPLOYEE we specify that they are subclasses of PERSON and then define 
only their new attributes and new operations, so all existing data and code pertaining to 
PERSON can be reused. Another class type that could be defined for this application is that 
of RESEARCH-ASSISTANT (RA), which is a subclass of both STUDENT and EMPLOYEE, on 
the assumption that research assistants are also enrolled as postgraduate students. 

The set of all class types is organised in a class inheritance lattice (or simply an inheritance 
lattice). At the top of the inheritance lattice is the class type object, which is a superclass of 
all class types in the lattice. Inheritance can be either single or multiple. If every class type 
has a unique superclass then inheritance is single and the inheritance lattice reduces to a class 
hierarchy, i.e. it has the form of a tree. On the other hand, if a class type can have more than 
one superclass then inheritance is multiple and the lattice has the form of a directed acyclic 
graph. For example, EMPLOYEE and STUDENT have the single superclass PERSON, while 
RA has two superclasses, EMPLOYEE and STUDENT. The inheritance lattice for the above 
example is shown in Figure 1.8. 

Single inheritance is simpler than multiple inheritance, since given a class, say STUDENT, 
there is no ambiguity in determining the superclass PERSON from which STUDENT is to 
inherit its attributes and operations (or methods) . On the other hand, given the class, 
say RA, it may inherit attributes and operations from both STUDENT and EMPLOYEE. 
This may lead to naming conflicts; for example, if both STUDENT and EMPLOYEE have 
an attribute TOPIC, meaning research topic when the research assistant is a student and 
project topic when the research assistant is an employee, then a naming conflict will 
arise. It is possible to avoid such naming conflicts in the design phase by insisting 
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OBJECT 

STUDENT EMPLOYEE 

RA 

Fig 1.8 An inheritance lattice 

that attribute names and operation names are unique (see the universal relation schema 
assumption in Chapter 2) but this restriction may be hard to enforce if the inheritance 
lattice is large. The approach taken in many object-oriented systems is to resolve naming 
conflicts by setting a default superclass for the purpose of inheritance. For example, if 
STUDENT is the default superclass of RA, then TOPIC from STUDENT will be chosen as 
the default, whose meaning is the research topic of the research assistant. If multiple 
inheritance is supported, then a mechanism for overriding the default conflict resolution 
must also be provided, by allowing the user to explicitly mention the superclasses from 
which inheritance is to take place in the case of a naming conflict. In our example, if 
the user is interested in the project topic of a research assistant, then it must be stated 
explicitly that inheritance is to take place from EMPLOYEE. (A formalisation of multiple 
inheritance in the context of object-oriented programming languages can be found in 
[CarSS] .) 

The advantage of the object-oriented approach to databases is that it is compatible 
with the object-oriented approach to programming and thus the impedance mismatch 
problem mentioned earlier can be solved by merging an object-oriented data model and an 
object-oriented programming language. In fact, such a computationally complete database 
programming language can be used as the manipulative part of an object-oriented data model. 
The application programmers need only learn one formalism. This approach has the further 
advantage of providing application programmers with a computationally complete database 
language [CHSO, ABD+89, AV90, Gil94]. 

It is still important for object-oriented database systems to provide a more limited query 
language such as the relational algebra. Firstly, it may not be effective or even possible to 
optimise general programs, written in a computationally complete database programming 
language, while there are well-known algorithms available for optimising relational algebra 
queries [KRB85, UllS9]. Secondly, users should be allowed to ask the database system simple 
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queries by using a relatively simple query language such as SQL. This has given rise to several 
research projects aimed at implementing ad hoc query languages for object -oriented databases. 
Examples of such query languages are OSQL (Object SQL) [AAC+95] and OQL (Object Query 
Language) [Cat96, CB97], both of which can be viewed as extensions of SQL. 

1.8 Discussion 

The relational data model is currently the dominant data model used in the commercial 
database market-place and we predict that this dominance will not change in the near future. 
Although it may seem that object-orientation is threatening to displace the relational approach, 
advocates of the relational approach are fighting back by extending relational databases with 
object-oriented features. Thus instead of using the network model for the structural and 
integrity parts for an object-oriented data model, the structural and integrity parts of the 
relational model are extended to deal with object identity. The relational algebra is also 
extended with an operator which caters for the creation of new object identifiers. Such an 
extension, resulting in what is now called an object-relational data model [SM96], is presented 
in the last chapter of the book in Section 10.2. 

Both the nested relational model and the deductive data model are extensions of the 
relational model and thus fit in well with a trend to support an upwards compatible relational 
model. 

Many applications are naturally expressed as hierarchies and thus even if a flat relational 
model is maintained at the conceptual level of the DBMS the nested relational model with 
its hierarchical data structures can enhance the expressiveness of user views. Moreover, the 
nested relational model can provide a basis for optimising the conceptual flat level at the 
physical DBMS level. The nested relational model is discussed in more detail in Section 10.1 
of Chapter 10. 

In the last decade a great deal of effort has gone into theoretical aspects of the deductive 
database model resulting in several prototype systems being implemented [RU95] . Most of 
the research has centred around the properties of the rule-based query language Datalog, 
especially with its ability to express recursive queries. As deductive database technology is 
reaching maturity we can expect to reap the benefits in the form of extended relational DBMSs 
supporting Datalog-like query languages. Due to its perceived importance we have devoted 
the whole of Chapter 9 to the deductive data model. 

1.9 Background Material 

This section introduces the main mathematical concepts used throughout the book and the 
notation we have adopted. The reader may skip this section and return to it whenever he or 
she is in need of the concepts and definitions. We have assumed that the reader has some 
"mathematical awareness" and therefore it may be necessary to consult one or more of the 
relevant references for a more fundamental and detailed treatment of any topic. The topics 
covered include some basic concepts in set theory (Subsection 1.9.1), some basic concepts 
concerning partially ordered and linearly ordered sets (Subsection 1.9.2), some basic concepts 
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from mathematical logic (Subsection 1.9.3), some basic concepts from the theory of computing 
and computational complexity (Subsection 1.9.4), and finally a quick introduction to finite
model theory and its impact on database theory (Subsection 1.9.5). 

1.9.1 Basic Concepts of SetTheory 

Intuitively a set can be viewed as a collection of objects. The objects collected into the set are 
then called its members, or elements, and membership is designated by the symbol E or simply 
in. Thus "a is a member of the set X" or "a is in the set X" is written a E X or a in X. The 
members of a set are enclosed by { (begin) and} (end) and ',' (comma) is used as a separator. 
A set does not contain any duplicates. A relaxation of this condition results in a more general 
notion of a set which may contain duplicates; such a generalised set is called a multiset. 

The main principle of set formation is called the axiom of comprehension, which says that 
for any property we can form a set containing precisely those objects with the given property. 
Thus {x I a} means the set of all x for which a is true. 

The said principle is a very powerful principle and can be used to form a great variety of 
sets. However, too full an interpretation of the word "property" gives rise to contradictions 
such as "Russell's Paradox". For example, consider the set {x I x ~ x}. 

We next define the principal relations between sets and operations thereon. 

Subset: We write X ~ Y (or Y ;2 X) to mean that any member of X is also a member of Y, 
and say that X is a subset of Y, or that X is contained in Y. Alternatively, we say that Y is a 
superset of X. 

Proper subset: Since any set is a subset of itself, if we want to exclude this possibility, then we 
must talk instead of proper subsets. Thus we write X C Y (or Y :J X) and say that X is a proper 
subset of Y, if X ~ Y and X=/: Y. Alternatively, we say that Y is a proper superset of X. 

Another powerful principle in set theory is the axiom of extensionality, which tells us that 
how far a set extends is determined by what its members are. Thus two sets, say Sand T, are 
equal if and only if they have the same members. Symbolically, we write S = T which means 
that S ~ T and T ~ S. 

Intersection: Given any two sets X and Y, their intersection, denoted by n, is given by 

X n Y = {z I Z E X and ZEn. 

Union: Similarly, the union, denoted by u, is given by 

xu Y = {z I Z E X or Z E Y}. 

At times when no ambiguity arises X U Y is abbreviated just to XY. 

Empty set: The set without any members, i.e. {}, is denoted by 0. This could be given by 

0= {x I x =/:x}. 

That there is only one such set follows vacuously from the axiom of extensionality. 
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A set with a single element is called a singleton, and a singleton, say {A}, is at times 
abbreviated simply to A. Note that {0} 1= 0. 

Power Set: The set of all subsets of a set X, denoted by peX), is called its power set. Thus 

peX) = {Y I Y S; X}. 

Difference: Given any two sets X and Y, we denote by X - Y the set of all members of X which 
are not in Y. Thus 

X - Y = {z I Z E X and z Ii Y}. 

This is referred to as the relative complement of Y in X, and on occasion it is written as 
X\ Y. 

If all sets under consideration in a certain discussion are subsets of a set £, then £ is called 
the universal set and X denotes the complement of X relative to £, namely X = £ - x. 

Disjointness: Two sets X and Yare said to be disjoint if X n Y = 0, and a set of sets (or 
collection of sets) is said to be pairwise disjoint if any two of its members are disjoint. 

If we wish to distinguish the order in which elements are given, we need to use a different 
notation from { and }. Thus we call (x,y) or <x,y> an ordered pair. We refer to x and y as 
the coordinates of the ordered pair (x , y). The basic fact about ordered pairs, over a set X, is 
that for any Xl,YI> X2,Y2 EX 

Similarly, we may consider ordered triples, quadruples, or more generally tuples. All tuples 
possess the property that 

eXI> X2, ... , Xn) = (Yl> Y2 , . . . , Yn) if and only if Xl = Yl> X2 = Y2 , .. . , Xn = Yn, 

where n is a positive (or nonnegative) integer. 

The Cartesian product of two sets X and Y, denoted by X x Y, is given by 

Xx Y={(X,y)lxEXandYEy}. 

A binary relation, say R, or simply a relation, when no ambiguity arises, is a set of ordered 
pairs. We write xRy to mean (x , y) E R. We say that R is a binary relation on or in a set X if R 
S; X x X. If xRy implies yRx then R is said to be symmetric. If R S; X x Y, then we say that R 
is a relation from X to Y. 

A convenient graphical representation of a relation is via an associated directed graph or 
digraph. We represent the elements of the underlying set as nodes (or vertices), and two nodes 
are joined by a line (straight or curved), called a directed edge (or arc), when a relation between 
them obtains, with the appropriate direction indicated. In such a situation we say that the 
two nodes are adjacent. When R is a relation from X to Y, with X n Y = 0, then we obtain a 
bipartite digraph, whose node set is X U Y. Finally, when the relation is symmetric, we may 
omit the directions in which case we have an undirected graph or just a graph. 
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The first and second coordinates of R are given by 

{x I there exists y such that (x, y) E R} and 
{y I there exists x such that (x, y) E R}, 
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respectively, and are known as the domain and range ofR, designated by dom(R} and ran(R}, 
respectively. The inverse relation is defined by 

R- I = {(y, x) I (x, y) E R}. 

An n-ary relation on a set X is just a subset of X x X x ... x X, i.e. the Cartesian product 
of X with n factors, n ~ 0, which we denote by xn; XO = 0. 

Let R be a relation in X. Then R is: reflexive if xRx for all x E X; symmetric (defined earlier) 
if xRy implies yRx; transitive if xRy and yRz imply xRz. 

If R is reflexive, symmetric and transitive, then R is an equivalence relation on (in) X. If R 
is an equivalence relation, then the equivalence class of x, x E X, with respect to R, is given by 

R[x] = {y I xRy}. 

A function, say f, from X to Y or alternatively from X into Y (sometimes referred to as a 
total function), is a special relation with dom(j} = X and such that if (x, y) E f and (x, z) E f 
then y = z. Alternatively, if x E dom(j}, then there is a unique yin Y such that (x, y) E f; quite 
often we denote this by y = f(x}. We call x an argument off and f(x) is sometimes called the 
image of x under f. Symbolically, we write 

f: X -+ Y, 

where Y is called the codomain off and ran(j} ~ Y. If ran(j} = Y then f is a function from X 
onto Y. We say that f is a partial function from X into Y iff is a function for which dom(j} ~ 
X and ran(j} ~ Y. 

Let A ~ X. Then the characteristic function of A, denoted by XA, is defined by 

XA : X -+ {O, I} with XA(X} = 1 if and only if x E A. 

A function f: X -+ Y is 1-1 (one-to-one) if every element of X is mapped to a unique 
element of Y, namely for all x, y E X, if x i= y thenf(x} i= f(Y}, or equivalently, iff(x) = f(Y), 
then x = y. In this case the inverse relation f- I is now a 1-1 and onto function from ran(j} 
onto dom(j}. This is known as the inverse function. 

Synonyms for the word "function" include among others mapping or map, correspondence, 
transformation, and operator. 

The restriction off to A, where A ~ X, designated by flA, is given by 

flA = {(x,y) I (x,y) Ef and x E A}. 

A homomorphism is a function that preserves structure. Given a binary relation and 
therefore an underlying digraph we can define homomorphism as follows. Given a digraph, 
say D, a homomorphism 4> of D onto a digraph D' is a homomorphic image of D under 4>, 
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written ¢(D) = D', such that every arc of D' must emanate from some arc of D, namely if u 
and v are adjacent nodes in D, then there must exist two adjacent nodes u' and v in D' such 
that ¢(u) = u' and ¢(v) = v. 

If¢ is a 1-1 mapping then the homomorphism is said to be an isomorphism. In addition, if¢ 
is an isomorphism of Dwith itself, then¢ is called an automorphism. Thus each automorphism, 
say a, of D is a permutation of the node set, say V, of D, which preserves adjacency. 

Given two relations RJ and R2, the composition of R, and R2, symbolised by R2oR" is given 
by 

R20R, = {(x, y) I there exists z with (x, z) E R, and (z, y) E R2} . 

Correspondingly, the composition of two functions f and g, gof, or simply gf, is also a 
function. We say that this function exists if ran(f) ~ dom(g). If gof exists and x E dom(f), 
then (go!) (x) = g(f(x». 

Letf:X x Y -+ Xbean onto function such that for allxinX and for ally in Y,f( <x,y» = x; 
then f is called the projection of X x Yon to the first coordinate. Similarly, when f ( <x, y» = y, 
then f is called the projection of X x Y onto the second coordinate. 

Let X be a set with a finite number of elements. We use IXI to stand for the number of 
elements of X; IXI is called the cardinality of X. The notion of a 1-1 function enables us to 
extend the idea of "number of elements" to infinite sets. A 1-1 function from a set X onto a 
set Y is often called a 1-1 correspondence (bijection) between X and Y. We observe then that 

1) IXI = I YI if and only if there is a 1-1 correspondence between X and Y, and 

2) IXI .::: I YI if and only if there is a 1-1 function from X to Y. 

We postulate the existence of a "cardinality" function IXI defined for all sets satisfying (1) 
and (2). 

Let w be the set of natural numbers, namely w = {O, 1, 2,3, . . . }. Then an infinite set X is 
countable if it can be put into 1-1 correspondence with w, and uncountable otherwise. 

Given a set S, the size ofS, denoted by IISII, is the cardinality of some standard string encoding 
of S. Details about the meaning of "standard" can be found in [GJ79]. The concept of size is 
important when we wish to study the computational complexity of a problem. Any instance 
of that problem can be viewed as a single finite string of symbols, chosen from a finite input 
alphabet, which is input to the computer (see Subsection 1.9.4) . 

We next consider sets of sets or (the more frequently used terms) collection of sets or family 
of sets. To this end we introduce some further definitions. Suppose that f is a function on a 
set I into a set Y. Let us call an element i of the domain I an index, I itself an index set, ran(f) 
an indexed set, and the function f itself a family. Denote the value off at i by f; and call f; the 
ith coordinate of the family. We may write 

f={<i,f;> ElxYliEI}. 

Alternatively, it is common practice to write If; liE I} or simply {j;}iEI or even {f;) when no 
ambiguity arises. 

By definition, a sequence is a family on the set of positive (or nonnegative) integers into Y. 
That is to say, a sequence is a function for which w - {O} or w serves as an index set. 
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By the phrase "a family (Ail of subsets of E" we shall understand a function A on some set 
f of indices into P(E). We can now define the union ahd intersection of a family by 

U {Ail i E f} and n {Ai liE l}. 

Correspondingly, the Cartesian product of a family is given by 

X {Ai liE f}. 

We are now in a position to define a function of n variables (called an n-place function), 
namely a function whose domain is 

X. IXi or Xl XX2 X···xXn , 
IE 

where f is the index set {I , 2, . .. , n}. We writef(xl , X2 , ... , xn) to meanf( <Xl, X2, ... , xn». 

If] ~ f, then 

X {Xi liE] } = {xl] I X E X {Xi liE f} } 

and we can define a projection function 

f: X IXi~ X. ,Xi suchthatf(x) = xl]· 
IE IE 

Given a set X, a partition of X is a disjoint collection C of nonempty sets such that 

U{A I A E C} = X. 

If C is a partition of X, then C induces the equivalence relation XjC on X given by 

XjC = {(x,y) I there exists A E C and X E A and YEA}. 

Throughout the book we occasionally use the term class to mean a subset of a given set 
whose members are objects of a particular structure. 

Two classical books covering set theory are [Ha174] and [St079]. The topic of graph theory 
is covered in many books; we mention [Cha77, Wi185, BH90]. For the more general subjects 
of discrete mathematics and combinatorics see [VW92, Gri94]. A now classical introduction 
of the mathematical concepts that computer scientists need to know is Knuth's book [Knu73]. 

1.9.2 Basic Concepts of Ordered Sets 

Let X be a set. A partial order on X is a binary relation, say R, on X such that for all x, y, Z E X 

(i) xRx, 

(ij) xRy and yRx imply that X = y, 

(iii) xRy and yRz imply that xRz. 
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Fig 1.9 Hasse diagram for (P(la, b, e)), C) 

These three conditions are referred to as reflexivity, antisymmetry and transItIvity, 
respectively. A set X equipped with a partial order is said to be a partially ordered set. 

Let X be a partially ordered set. Then X is a chain if, for all x, y E X, either xRy or yRx. 
A chain is also known as a linearly ordered set, or a totally ordered set, or simply a linear 
ordering. The partially ordered set X is an antichain if xRy in X only if x = y. 

In the following we denote a partial order by the symbol :S. Let (X, :S) be a finite partially 
ordered set. We define the strict linear order -< as follows: for all x, y E X, x -< Y if and only if 
x :S y and x -=1= y; we say that x is covered by y or y covers x if x :S y and there does not exist 
Z E X such that x -< Z -< y. 

The covering (binary) relation for a finite partially ordered set can be conveniently displayed 
by a Hasse diagram, which is defined as follows. The elements of X are represented as points 
in the plane. If x is covered by y draw an arrow from x to y. In order to simplify the Hasse 
diagram further, arrange so that if x is covered by y, then y lies above x on the plane. Thus all 
arrows point upwards and the arrow heads may be safely omitted. The Hasse diagram for the 
partially ordered set (P( (a , b, c), c) is given in Figure 1.9. 

Let X and Y be linearly ordered sets. Then the Cartesian product X x Y can be linearly 
ordered as follows: 

(x,y) :S (x',y') if x -< x' or x = x' andy:s y'. 

This order is known as the lexicographic order (or lexicographical ordering) of X x Y, since 
it is similar to the way words are arranged in a dictionary. 

Let (X, :S ) be a partially ordered set and assume that E ~ X. If x E X then x is a lower bound 
of E if and only if for all y E E, x :S y. If, in addition, x E E, then x is the least element of E. The 
greatest lower bound (glb) of E is the greatest element in the set oflower bounds of E, if such 
an element exists. That is, x is the glb of E if x is a lower bound of E and for all lower bounds 
y of E, Y :S x. In general, E may have no, one or many lower bounds; however, E can have at 
most one glb, which is denoted by glb(E). 

Correspondingly, if x EX, then x is an upper bound of E if and only if for all y E E, Y :S x. If, 
in addition, x E E, then x is the greatest element of E. The least upper bound (lub) of E is the 
smallest element in the set of upper bounds of E, if such an element exists. That is, x is the 
lub of E if x is an upper bound of E and for all upper bounds y of E, x :S y. In general, E may 
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have no, one or many upper bounds; however, E can have at most one lub, which is denoted 
by lub(E). 

Any partially ordered setX, such that glb(x, y) and lub(x, y) exist for any elements x, y E X, 
is called a lattice. If glb(E) and lub(E) exist for all E S; X, then X is called a complete lattice. 

Let ffi be the set of real numbers. We define the following subsets of ffi: 

[0,1] = {x E ffi I 0 :::: x :::: I} 

(0,1] = {x E ffi I 0 < x :::: I} 

[0,1)= {x E ffi I 0 :::: x < I} 

(0, 1) = {x E ffi I 0 < x < I}. 

The above subsets of ffi are known as intervals; more specifically they are known as closed, 
semi-closed on the right, semi-closed on the left and open intervals, respectively. 

Given x E ffi, we define the ceiling of x, denoted by r xl, to be the smallest integer y in w 
such that y 2: x. Correspondingly, we define the floor of x, denoted by LxJ, to be the greatest 
integer yin w such that y :::: x. 

Finally, we mention topological sort; this is a process of assigning a linear ordering to the 
nodes of an acyclic digraph so that if there is an arc from node ni to node nj, then ni precedes 
nj in the linear ordering. Topological sort can be accomplished by using depth-first search 
[Tarn, AHU83j. (For the concept of acyclic digraph see Definition 2.2 in Section 2.1 of 
Chapter 2.) 

An excellent introduction to ordered sets is [DP90], and a classical book on lattice theory 
is [Gra78j. 

1.9.3 Basic Concepts of Mathematical Logic 

Herein we look at languages that can be used to make statements that might reasonably be 
viewed as true or false. The first language we consider is that of propositional calculus. The 
strings in this language, called formulae, stand for propositions that are either true or false. 
Formulae are assembled by combining atomic formulae with the aid of the logical connectives, 
namely negation (-,), disjunction (v), conjunction (/\), conditional (:::::}) and biconditional 
(<=». Atomic formulae are normally represented by small (lower-case) letters such as p, q 
and r. In the sequel the symbols T and F will stand for true and false, respectively. These two 
symbols will be referred to as truth-values. 

A truth-assignment is a function from a set of atomic formulae, say M, to the set {T, F}. Let 
F be a formula whose atomic formulae all belong to M. Consider the function A: M ---+ {T, 
F}, which assigns a unique truth-value to F. We note that A assigns the natural meaning to 
formulae which contain logical connectives. Hereafter we will assume that all atomic formulae 
of F belong to M. 
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If A(F) = T then we write A F F and we say that A verifies (or equivalently, satisfies) F; if 
A(F) = F then we write A ~ F and we say that A falsifies (or equivalently, does not satisfy) F. 

Let S be a set of formulae. If A verifies each formula in S, then A is said to verify (or 
equivalently, satisfy) S; symbolically A F S. If A falsifies at least one formula in S, then A is 
said to falsify (or equivalently, not to satisfy) S; symbolically A ~ S. If A verifies a formula 
or a set of formulae, then A is a model for that formula or set of formulae. 

A formula or a set S of formulae is satisfiable if it has at least one model; otherwise it is 
unsatisfiable. A formula F is valid if every truth-assignment verifies F, in which case F is called 
a tautology. 

In order to determine whether a formula F is valid or satisfiable we can employ the method 
of truth tables. The truth tables of the logical connectives provide the basis upon which 
appropriate truth-assignments to F are obtained. 

As a language for stating mathematical ideas propositional calculus is severely limited, since 
there is no wayof talking about individual objects and neither does there exist a way of making 
an assertion about all objects in a single formula which covers infinitely many similar cases. 
The reason for this is the fact that propositional calculus is limited to the structure of sentences 
in terms of component sentences, namely it does not break a sentence into sufficiently fine 
constituents for most purposes. To achieve this the structure of sentences must be viewed 
along the subject-predicate lines employed by classical grammarians. 

In predicate calculus we can make general statements about all objects in a fixed set, called the 
universe. Atomic formulae are constructed out of names for relations and names for individual 
objects. Thus P(x, y) is an atomic formula stating that some (binary) relation, designated by P, 
obtains for the pair of objects (x, y). P is called a predicate (symbol) (alternatively, a relation 
symbol) and x , yare called variables. In addition, there are the universal and existential 
quantifiers, denoted by V and 3, respectively. Besides predicate symbols, there are function 
symbols and constants. More specifically, we have: 

(i) Terms are defined inductively as follows: 

(i) Every variable is a term. 

(ii) Iff is an n-place function, with n > 0, and tl, t2, ... , tn are terms, then f(tb 
t2, ... , tn) is a term. 

(ii) Atomic formulae are defined as follows: 

If P is an n-place predicate, with n ~ 0, and tl> t2, ... , tn are terms, then P(tb t2 , ... , tn) 
is an atomic formula. 

(iii) Formulae are defined as follows: 

(i) Atomic formulae are formulae. 

(ii) If F and G are formulae, then so are F v G, F /\ G, (F) and ...... F. 

(iii) If F is a formula and x is a variable, then VxF and 3xF are formulae. 

A O-place function symbol stands for a particular element in the universe and we call 
such function symbols constants. Correspondingly, a O-place predicate is viewed as a 
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proposition. We sometimes refer to I-place and 2-place predicates as unary and binary 
predicates, respectively. 

The free variables of a formula are defined inductively as follows: 

(i) In an atomic formula all the variables occurring in it are free. 

(ii) The free variables in F v G or F 1\ Gare the free variables of F and the free variables of 
G, whilst the free variables of (F) or -, F are the free variables of F. 

(iii) In VxF or 3xF the free variables are the free variables of F, except for x. 

An occurrence of a variable x in a formula G is bound in G if it is not free in G, i.e. it is within 
a subformula of G of the form VxF or 3xF. We say that the indicated occurrence of V or 3 
binds each free occurrence of x in F. A formula F is closed if there are no free occurrences of 
variables in it. A closed formula is also called a sentence. 

As in the propositional calculus we would like to assign a unique truth-value to any formula 
F of predicate calculus. However, this task here is much more complicated. The technical 
details for this can be found, for example, in one of the books we recommend at the end of this 
subsection. Nevertheless we give the following technical definition in order to facilitate the 
exposition in Subsection 1.9.5; it is a special case of the more general notion of an interpretation. 

Definition 1.1 (Structure) A structure is a pair A = ([Aj, F), where [Aj is any nonempty 
set, called the universe of A, and F is a function whose domain consists of predicate and 
function symbols. In particular, 

(i) if P is an n-place predicate in the domain of F, then F(P) is an n-ary relation on [AJ, 
namely a subset of [Ajn; 

(ii) iff is an n-place function in the domain of F, then F(j) is a function from [Ajn to [Aj . 

• 
Assume that F is a sentence (closed formula), and that every predicate and function symbol 

thereof is assigned a value by:F. If A F F then A is a model for F. If A F F for all structures A 
which are appropriate to F, then F is said to be valid. (A structure A is said to be appropriate 
to F, if each predicate and function symbol of F is assigned a value by the corresponding :F.) 

A sentence (closed formula) is satisfiable if it has at least one model; otherwise it is 
unsatisfiable. 

We next describe a general language L, which comprises nonlogical symbols and logical 
symbols. The nonlogical symbols of L are: propositional constants T, F, propositional 
variables p, q, r, ... , (individual) variables x, y, z, . .. , (individual) constants a, b, c, ... , 
functions and predicates (also called relations). The logical symbols of L are: the logical 
connectives and the two quantifiers; often equality (=) is also taken to be a logical symbol, in 
which case it is interpreted as identity. 
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An interpretation for C consists of: 

(i) a nonempty set D, called the domain; 

(ii) for each constant an assignment of an element in D; 

(iii) for each n-place function an assignment of a function from Dn to D; 

(iv) for each n-place predicate an assignment of an n-ary relation on Dn, or equivalently, a 
Boolean function from Dn to {T, F}. 

A variable assignment for C consists of: 

(i) for each propositional variable an assignment ofT or F; 

(ii) for each variable an assignment of an element in D. 

The concepts of term, atomic formula, formula and closed formula or sentence carryover 
from the predicate calculus except that we now have to add constants and propositional 
variables to terms and to atomic formulae, respectively. We can similarly define free and 
bound variables and consequently a sentence (closed formula). We observe that for a sentence 
the variable assignment is irrelevant. 

A formula F is satisfiable if there is an interpretation and a variable assignment for which 
it takes the truth-value T. Such an interpretation and variable assignment is a model for F. A 
formula Fis valid ifittakes the truth-value T in any interpretation and any variable assignment. 
The concepts of satisfiability, model and validity can easily be extended to a set of formulae, 
say S = {FI, F2, ... , Fn}. A formula F is a logical consequence of S if every model for S is also 
a model for F. Symbolically, we write S 1= F. 

Assume that C admits quantification of individual variables only. Then C is said to be a 
first-order language. If, in addition, we attach to C rules of inference such as modus ponens 
(from ct ~ {3 and ct infer {3), then .c is a first-order theory. 

A literal is an atomic formula or the negation thereof. A disjunction of a set of formulae 
{FI, F2, ... , Fn} is the formula FI V F2 V ... v Fn and its conjunction is the formula FI /\ F2 /\ 
... /\ Fn· 

The universal closure of a formula can be obtained by prefixing Vx for every free variable x 
in the formula. A Horn clause is a formula with no free variables, and is the universal closure 
of a disjunction of literals. For example, the formula 

VxVy(P(x,y) v Q(x, x) v -'P(x,f(y)) v -'P(y, x» 

is a Horn clause. 

As in the cases of the propositional and predicate calculi we would like to assign truth-values 
to any formula or set of formulae over .c. However,.c is too general for this to be achieved in 
a computationally efficient way. So we consider special cases of C. 

Let S be a set of formulae. The Herbrand universe of S is the set of all terms that contain no 
variables and contain only the constants and individual functions that occur in S. (Whenever 
no constants occur in S, then we still allow some constant, say a, to occur in the terms.) The 
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Herbrand base is the set of all atomic formulae formed by applying predicates that occur in S 
to the terms in the Herbrand universe. 

For example, let 
S = (V'x(P(x) v ~Q(j(x), g(x))) , V'yW(y)} . 

Then the Herbrand universe is 

(a,f(a) , g(a),f(j(a»,f(g(a» , g(g(a», g(j(a» , . . . } 

and the Herbrand base is 

(pea), Q(a, a), W(a) , P(j(a», P(g(a» , Q(a , g(a» , Q(a,f(a», Q(j(a) , a), . . . }. 

A Herbrand interpretation is one such that: 

(i) the domain D is the Herbrand universe; 

(ii) the constants are assigned to themselves; 

(iii) the functions are what we normally think they are; for example, I is assigned to the 
function that maps a to I(a), maps g(a) to I(g(a» , maps I(a) to l(j(a» and so on. 

There is no restriction on the assignment of predicates, so a set S of formulae will have 
infinitely many interpretations. Each Herbrand interpretation is characterised by the subset 
of the Herbrand base consisting of all those base formulae which take the value T in the 
interpretation. Thus a Herbrand interpretation is a subset of the Herbrand base and vice 
versa. 

A Herbrand model for S is a Herbrand interpretation that is a model for S. A Herbrand 
model, say M, of S is minimal if no proper subset of M is a Herbrand model of S. 

The next result signifies the importance of Horn clauses. 

Theorem 1.1 
model. 

If S is a set of Horn clauses and, in addition, S has a model, then S has a Herbrand 
o 

We observe that Theorem 1.1 can be extended to general first-order sentences provided that 
there is an arbitrarily large number of constant symbols available in C [Fit961. We further 
observe that Theorem 1.1 does not necessarily hold if S is merely a set of closed formulae. For 
example, let S = (P(a), 3x ~P(x)}. Let D = {O, I} , a = 0 and the predicate P be true only on 
zero, then S has a model but it has no Herbrand model, since the Herbrand universe consists 
of the singleton (a}. 

A program clause is a Horn clause in which every literal, except one, is the negation of 
an atomic formula. Suppose that S is a set of program clauses. Consider each Herbrand 
interpretation as a subset of the Herbrand base. The intersection of any number of Herbrand 
models of S is a Herbrand model. Since the Herbrand base is a Herbrand model, there is always 
at least one Herbrand model. The intersection of all Herbrand models is a Herbrand model and 
is called the least Herbrand model; evidently the least Herbrand model is a minimal Herbrand 
model. It consists of just those members of the Herbrand base that are logical consequences 
ofS. 



40 Chapter 1. Introduction 

There are numerous introductions to mathematical logic that the reader can consult; we 
mention [End72, St079, Men87, Van89, Fit96]. A more advanced book which covers the 
interface between logic and computability is [BJ89]. Two books on first-order logic from the 
point of view oflogic programming are [Ll087, Apt97]. 

1.9.4 Basic Concepts of the Theory of Computing 

The pioneering work in this field, and much early work on computers was either done or 
inspired by Alan Turing and Emil Post. In their seminal papers [Tur36, Pos36, Tur37] they 
laid the foundations of computable mappings (functions) . 

In [Tur36, Tur37] Turing defined an idealised kind of machine, nowadays called a "Turing 
machine", and he argued that it was possible to compute on such a machine any mapping, 
which it would be reasonable to call "computable". This conjecture is known as the Church
Turing thesis. It was shown that the class of mappings produced in this fashion is identical 
with the classes of mappings produced by other apparently different methods, proposed by 
A. Church, K. Godel, S. Kleene, E. Post and A. Markov. 

We begin with "machines" that are less powerful than a Turing machine in terms of the 
computations they can perform. We then incrementally look at more powerful machines 
leading to the Turing machine. 

A deterministic finite automaton consists of an input tape, which is divided into squares, 
and a black box, called finite control. The latter can sense what symbol is written at any 
position on the input tape by means of a movable reading head (see Figure 1.10). Initially, the 
head is placed at the leftmost square of the tape and the finite control is set in a designated 
initial state. At regular intervals the automaton reads one symbol from the input tape and 
then enters a new state depending on the current state and the symbol just read. After reading 
an input symbol, the head moves one square to the right (its next square) on the tape and on 
the next move it will read the symbol in the next square of the tape. This process, namely read 
a symbol, the head moves to the right, and the state of finite control changes, is carried out 
repetitively until the head reaches the end of the input string of symbols. The automaton then 
indicates its approval or otherwise of what it has read by the state it is at the end. If it ends 
with one of a set of final states, the input string is considered to be accepted by the automaton; 
the set of strings accepted by the automaton is the language accepted by it. 

The formal definition of a deterministic finite automaton follows. 

Definition 1.2 (Automaton) A Deterministic Finite Automaton (DFA) is a quintuple M = (K, 
"E, 8, s, F), where K is a finite set of states, "E is an alphabet, i.e. a finite set of symbols, s E K is 
the initial state, F S; K is the set of final states, and 8 is the transition function, i.e. a function 
~mKx"EwK • 

We denote the set of all strings over"E, i.e. the countably infinite set of all finite sequences of 
symbols from "E, by"E*. A set of strings over "E, namely any subset of"E*, is called a language. 
Since languages are sets, they can be combined via the set operations of union, intersection 
and difference. If L is a language, then L, the complement of L, is given by "E* - L. In addition, 



1.9. Background Material 

Input I 
tape . ( 

41 

I d I ( I ( did I ( I d I 
~eading head 

Finite control 

Fig 1.10 A deterministic finite automaton 

we can define the concatenation of two languages over I;, that is, if Ll> L2 are languages over 
I; then their concatenation is L = L\ 0 L2, or simply L\L2, defined by 

L = {w I w = x 0 y, or simply w = xy, for some x E L\ and y E L2}, 

where 0 stands for the concatenation of strings x and y, namely the leading part of w comes 
from x and the trailing part from y. 

Finally, the closure or Kleene star of a single language L, denoted by L *, is the set of all 
strings obtained by concatenating zero or more strings from L. 

The regular expressions over L are the strings over the alphabet L U { (, ), 0, U, * } such that 

(i) 0 and each member of L is a regular expression. 

(ii) If a and fJ are regular expressions then so is (afJ) . 

(iii) If a and fJ are regular expressions then so is (a U fJ). 

(iv) If a is a regular expression then so is a*. 

(v) Nothing is a regular expression unless it follows from (i) through (iv). 

The class of regular languages (or regular sets) over L is the minimal set of languages 
containing 0 as well as the singletons {a}, for all a E L, and closed under union, concatenation 
and Kleene star. 

It can be shown that a language is regular if and only if it can be described by a regular 
expression. In addition, a language is regular if and only if it is accepted by a DFA. This 
fundamental result was proved in a seminal paper by Kleene [Kle56]. 

The rules according to which a DFA, M, chooses its next state are encoded into 8. They 
are given in a table, sometimes known as the state transition table, or graphically via a state 
diagram. We note that the transition function 8 naturally extends to a transition function 8 
from K x I;* to K by composing 8 with itself zero or more times. 

If when a DFA changes state it has the option of selecting one from a set of possible "next 
states", then we have a Nondeterministic Finite Automaton (NFA). The formal definition is 
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Fig 1.11 A pushdown automaton 

as before except that the transition function 8 is replaced by the finite transition relation 6., 
where 6. S; K x :E* x K; as before :E* denotes the set of all strings, including the empty string, 
over the alphabet :E. 

LetL(M) be the language accepted by a DFA M. Then DFAs MI andM2 are equivalent if and 
only if LI (M) = L2(M). It can be shown that for each NFA there is an equivalent DFA. This 
result was proved in a seminal paper on finite automata by Rabin and Scott [RS59j. 

There are languages, however, that are not regular and thus not, in general, accepted by 
DFAs. In order to recognise such languages via an automaton, we need to increase its memory. 
To this end we define an automaton that incorporates the idea of a "stack" (see Figure 1.11). 

The notion of an automaton with a stack as auxiliary storage is now formalised. 

Definition 1.3 (Pushdown automaton) A Pushdown automaton is a sextuple M = (K, :E, r, 
6., s, F), where K is a finite set of states, :E is an alphabet (the input symbols), r is also an 
alphabet (the stack symbols), s E K is the initial state, F S; K is the set ofJinal states, and 6., 
the transition relation, is a finite subset of (K x :E* x r*) x (K x r*). _ 

Intuitively, if «p, u, (3), (q, Y» E 6., then, whenever M is in a state p with f3 at the top 
of the stack, it may read u from the input tape, replace f3 by y on the top of the stack and 
then enter state q; such a pair is called a transition ofM. Since several transitions ofM may be 
applied concurrently, M is nondeterministic in its mode of operation. In addition, a pushdown 
automaton mimics the push and pop operations associated with a stack. 

In essence if a pushdown au tomaton M reaches a configuration whereby the stack is empty, 
the input tape has been read and M is in a final state, then M accepts the input string. On 
the other hand, if M detects a mismatch between input and stack symbols, or if the input is 
exhausted before the stack is emptied, then it does not accept the input string. 

We next define a class oflanguages accepted by pushdown automata. 

Defmition 1.4 (Context-free grammars and languages) A context-free grammar G is a 
quadruple (N, :E, R, S), where N is an alphabet, :E is a subset of N (the set of terminal 
symbols), R is a finite subset of (N - :E) x N* (the set of rules or productions) and S is an 
element of N - :E (the start symbol). 
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For any A EN - I; and u E N*, we often write A ~ u whenever (A, u) E R. For any strings 
u, Y E N*, we write u ==} y if and only if there are strings x, y, yl E N* and A E N - I; such that 
u = xAy, y = Xyly and A ~ y'. The language generated by G, designated by L( G), is given by 

L(G) = {w E I;* IS=h w}, 
G 

where =h is the reflexive, transitive closure of ==} • A language L is context-free if it is equal to 
G G 

L(G) for some context-free grammar G. • 

The elements of N - I; are called the nonterminal symbols. A string consisting entirely of 
terminal symbols is termed a terminal string (this concept is used in Section 9.3 of Chapter 9). 

It can be shown that if a language is accepted by a pushdown automaton, then it 
is context-free; conversely, each context-free language is accepted by some pushdown 
automaton. Closure properties of context-free grammars were investigated in a seminal 
paper by Bar-Hillel et al. [BPS64]. 

As an epilogue to this particular subarea of the theory of computing we mention the 
interesting problem of minimising a DFA, MJ> namely finding another DFA, M 2 , such that 
L(Md = L(M2) and with a set of states, whose cardinality is minimum. For a recent application 
of this idea see [VB92]. 

We now return to the Turing machine. A Turing Machine (TM) is basically composed of 
a finite-state control unit (or simply finite control) and a tape. The tape has an infinite (or at 
any rate arbitrarily large) storage capacity in the simple form of a semi-infinite tape, marked 
off into squares. Communication between the control unit and the tape is provided by a single 
read/write head, which reads symbols from the tape and may change symbols on the tape. The 
control unit operates in discrete steps and at each step it performs the ensuing two functions 
depending on its current state and the tape symbol which is scanned by the read/write head 
(see Figure 1.12): 

1) The control unit is put in a new state. 

2) Either a symbol is written in the tape square, which is currently scanned, thus replacing 
the one already there or the read/write head is moved one tape square to the left (L) or to 



44 Chapter 1. Introduction 

right (R). (If the Turing machine attempts to move its read/write head off the end of the 
tape, it automatically ceases to operate, in which case we say that the Turing machine 
hangs.) 

The input to a TM is a string inscribed on the tape squares at the left end of the tape. The 
rest of the tape contains a blank symbol, designated by #. A TM can alter its input as it sees fit 
and can write on the blank portion of the tape situated to the right of the input string. It leaves 
its answer on the tape (since it can write on its tape) at the end of a computation; a special 
state, called halt state, signals the end of the computation for TMs and is denoted by h. 

Defmition 1.5 (Deterministic Turing machine) A Deterministic Turing Machine (DTM), 
referred to simply as a Turing machine, is a quadruple TM = (K, 1;, 8, s), where K is a 
finite set of states such that h f/. K, 1; is an alphabet such that # E 1; and L, R f/. 1;, s E K is the 
initial state and 8 is the transition function (or next move function) from K x 1; to (K U {h}) 
x (1; U {L, R}). • 

Sometimes it is advantageous to consider a TM with k ::: 1 (k E w) one-way infinite tapes. 
Such a machine is called a k-tape TM. Another version for a I-tape TM is to allow the tape to be 
two-way infinite. However, these and other variations ofTMs are computationally equivalent 
in the sense that they compute the same class of functions. 

In order to specify the status of a TM, it is necessary to specify the state, the contents of the 
tape, split into three pieces, namely the part (possibly empty) to the left of the tape square being 
scanned, the symbol currently in the scanned square, and the part (again possibly empty) to 
the right of the tape square being scanned, and the position of the head. Since no input string 
ends with the blank symbol #, and in view of the said considerations, we define a configuration 
(also called an instantaneous description) to be an element of the set 

(K U {h}) x 1;* x 1; x (1;* (1; - {I}) U {A}), 

where A denotes the empty string. A configuration whose state component is h will be called a 
halt (or halting) configuration. We designate the change from one configuration to another 
by 

incorporating three cases: overwrite the symbol of the scanned tape square without moving 
the read/write head, TM moves the read/write one square to the left (if it is moving to the left 
off blank tape the symbol # on the scanned tape square disappears from the configuration) 
and finally TM moves the read/write head one square to the right (if it is moving onto blank 
tape, a new blank symbol, #, appears in the configuration as the new scanned tape symbol). 

For any Turing machine TM, f-~M stands for the reflexive, transitive closure of f-TM. 
We write Cl f-~M C2 to indicate that configuration C1 yields configuration C2. Hereafter, the 
underlined symbol indicates the position of the read/write head. 

Henceforth the input string to a Turing machine will be surrounded by # on each side and 
written on the leftmost squares of the tape. The read/write head is positioned at the symbol 
#, which marks the right end of the input string, and the Turing machine starts functioning 
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in its initial state. Thus, given a Turing machine TM and w E 1:*, TM is said to halt on input 
w if and only if (s, #w!D yields a halt configuration. 

We are now in a position to introduce formally the concept of a Turing-computable mapping 
or function. 

Definition 1.6 (Turing-computable mapping) Let 1:0 and 1:\ be alphabets not containing #. 
Letf: 1:0' -+ 1:r A Turing machine TM = (k, 1:,8, s) computesf if 1:0,1:\ S; 1: and for anyw 
E LO', if f( w} = u then (s, #w!D riM (h, #u!). If some such Turing machine TM exists, then 
f is said to be a Turing-computable mapping (or a Turing-computable function). • 

We note that a function computed by a Turing machine is called a partially recursive 
function. If it happens to be defined for all values of its arguments, then it is also called a 
totally recursive function (or simply a recursive function). In the case of computing a recursive 
function the Turing machine always halts in state h. The notion of a Turing-computable 
mapping from strings to strings can be readily extended to mappings from w to w. 

Turing machines can be viewed as a low-level language for expressing computations; thus 
they provide a way to measure the expressive power of any programming language. 

Definition 1.7 (Computationally complete programming language) A programming lan
guage is said to be computationally complete if it can express all Turing-computable mappings . 

• 
If we allow Turing machines to behave nondeterministically, then upon certain 

combinations of state and scanned symbol such machines might have more than one possible 
choice of behaviour. Thus in Definition 1.58 is replaced by a transition relation 6., which is a 
subset of (K x L) x {(K U {h)) x (L U {L, R}}}. However, rTM is no longer single-valued, 
since one configuration may yield several others in a single step (move). It can be shown 
that for each Nondeterministic Turing Machine (NTM) there is an equivalent deterministic 
Turing machine (DTM), i.e. each mapping computed by a nondeterministic Turing machine 
is Turing-computable. 

We next consider the class of primitive recursive functions, in other words the smallest class 
of functions containing the initial functions (also called basis functions) and closed under 
composition and primitive recursion. Most of the Turing-computable functions arising in 
practice belong to this class. 

The initial functions are primitive recursive and comprise the successor function succ(x) = 
x+ 1, the zero function zero(x) = 0, where x E w, and the projection functions. If/I,/2, ... ,fm 
are primitive recursive functions of n variables and g is a primitive recursive function of m 
variables, then the function h, obtained via composition, where 

is primitive recursive. 
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We next define primitive recursion. Iff and g are primitive recursive functions of nand 
n + 2 variables, respectively, then the function h, where 

h(xl, X2, .. . , Xn, 0) 

h(xl , X2, ... , xn,y + 1) 

is primitive recursive. 

f(xl, X2, ... , xn) , 

g(Xl, X2,···, xn ,Y, h(xl, X2, · ··, xn,y», 

A function is said to be primitive recursive if it is an initial function or can be generated by 
a sequence of the operations of composition and primitive recursion. 

However, not all functions are primitive recursive. For example, using Cantor's diagonal 
method [Can55] it can be shown that there is a totally recursive function which is not primitive 
recursive. 

We now look at two derivatives of the important notion of a Turing-computable function, 
namely that of a Turing-enumerable language and a Turing-decidable language. In this context 
let Eo be an alphabet which does not contain the blank symbol #. 

A Turing machine TM enumerates the language L S; E~, denoted as L = L(TM), if and only 
if, for some fixed state q of TM, 

L = {w I for some string u, (s,!J t-;M (q, #w!u)}, 

where 5 is the initial state ofTM. 

A language is Turing-enumerable (or recursively enumerable) if and only if it is enumerated 
by some Turing machine. 

Let V, N rt Eo be two distinguished symbols. Then a language L S; E~ is Turing-decidable 
(or recursively decidable or simply recursive or decidable) if and only if the function 

XL: E~ -+ {V, N} 

is Turing-computable, where for each w E E~ xLCw) = V if WE Land XL(W) = N if w rt L. 

If XL is computed by a Turing machine TM, then we say that TM decides (or accepts) L, 
and write L = L(TM). Otherwise, when there is no TM that decides L, then L is said to be 
undecidable. It can be shown that a language is Turing-decidable if and only if both it and its 
complement are recursively enumerable. 

The most famous undecidable problem is the halting problem for Turing machines, namely 
to decide (determine), for any arbitrary given Turing machine TM and input w, whether TM 
will eventually halt on w. 

Continuing in this vein we next state Rice's theorem [Ric53], which is utilised in Section 6.4 
of Chapter 6. 

Theorem 1.2 Assume that C is a proper nonempty subset of the set of recursively enumerable 
languages. Then the following problem is undecidable: given a Turing machine TM, is the 
language L = L(TM) enumerated by TM in C? 0 
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We next look briefly at another computing device, called the Two-counter Machine (or 
Register Machine), which is much simpler than a Turing machine. Such a machine has two 
counters (or registers), which, at any time during the running of the machine, contain a natural 
number. 

An example of a two-counter machine is shown in Figure 1.13; the symbols@and$areused 
as end markers and Z is the non blank symbol on each tape. An instance of the two-counter 
machine can be described by the state, the contents of the input tape, the position of the input 
head, and the distance of the storage heads from Z (shown in Figure 1.13 as d, and d2). We 
call these distances the counts over the tapes. 

Let ii stand for the contents of the nth counter in some fixed listing, so that ii E w for n = 1, 2. 
A two-counter machine program is a finite sequence < 1, 2, ... , H> of instructions, where H 
stands for the halt instruction. The other i are all active instructions; they are of two types, 
namely (n,j) and (n,j, k), where n is the number of a counter, andj, k are the numbers of 
instructions. Their meanings follow: 

(n,j): add 1 to iI, and then go to instruction}. 

(n,j, k): if iI > 0, subtract 1 from iI, and then go to instruction], otherwise go to instruction k. 

We briefly illustrate the way a two-counter machine operates by considering the very simple 
two-counter machine program: 

i (2,2,3) 
2 (1, 1) 

3 halt 
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Starting with, say (3, 2), in the contents of the two counters and at instruction 1, we obtain 
the following computation: 

i (3,2) 2 (3,1) i (4,1) 2 (4,0) i (5,0) 3 (5,0) halt 

In general, the above two-counter machine program starting at position (m, n), that is, with 
m and n in the two counters, and at instruction 1, terminates in position (m + n, 0). 

It can be shown that a two-counter machine can simulate an arbitrary Turing machine 
and consequently the corresponding halting problem, that is to say, to decide whether a 
two-counter machine program, when applied to itself as input, terminates, is undecidable. 

In the context of undecidability, we state two well-known undecidable problems, namely 
the word problem for semigroups and finite semigroups, and the Post correspondence problem. 

We begin with the definition of semigroup and finite semigroup. 

Definition 1.8 (Semigroup and finite semigroup) A non empty set S together with a binary 
operation, called composition, denoted by the juxtaposition ab for any a, b E S, constitutes a 
semigroup whenever the following two axioms are satisfied: 

(i) (Closure). For any two elements a, b E S, ab is also an element of S. 

(ii) (Associativity). For any three elements a, b, c E S, (ab)c = a(bc). 

A semi group is called a finite semigroup if S is a finite set. A semigroup is called a monoid, 
if in addition to (i) and (ii) above, there is a special element E of S, called the identity, such 
that for any a E S, Ea = a and aE = a. • 

Let L be a finite alphabet and recall that a string over L (also called a word over L) is a 
finite sequence of symbols from L. It is easy to verify that the countably infinite set L* of all 
words over L is a semigroup; the set L* is called the free semigroup generated by L. 

Now, let E = {ai = fJi I i = 1, 2, . . . , n} be a finite set of equalities and let e be an additional 
equality a = fJ, with ai, fJi, a, fJ E L*. Then E (finitely) implies e, iffor each (finite) semigroup 
S and homomorphism h : L* --+ S, the following statement is true: 

if h(ai) = h(fJi) for each i = 1, 2, . . . , n, then h(a) = h(fJ). 

The word problem for (finite) semigroups is to decide given E and e, whether E (finitely) 
implies e. The word problem for semigroups was shown to be undecidable by Post [Pos47j, 
and the word problem for finite semigroups was shown to be undecidable by Gurevich [Gur66J. 

Another powerful result in the theory of computing is the undecidability of Post's 
correspondence problem [Pos46J. This problem has had many important applications and has 
been employed to obtain undecidability results in many areas including that of context-free 
languages. Hereafter we present formally a version of this problem. 
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A correspondence pair is a pair C = CA, B) in which A and B are ordered, finite sets of strings 
over an alphabet ~, with 

where nEW and n ::: 1. We say that the finite sequence of integers iI, i2, ... , im , 1 S ij S n, 
1 S j S m, is a solution for the correspondence pair C if and only if the strings 

are identical. The correspondence problem is that of deciding, for any given C, whether C has 
a solution. 

We next turn our attention to the problem of computational complexity. Given an instance 
of a problem, we can encode it using some standard string encoding. We then assess the 
efficiency of an algorithm for solving the problem by considering the number of primitive 
steps required to produce an implementation of the algorithm on a computing device; the 
input to the device is the encoded string version of the problem instance. 

The computing device we employ is the nondeterministic Turing machine (NTM) with k 
tapes. (Recall that NTMs are equivalent to DTMs and that a DTM is just a special case of an 
NTM.) 

We say that an NTM is of time complexity T(n) if for every input string of length n there is 
some sequence of at most T(n) moves leading to the halt state h. Correspondingly, an NTM is 
of space complexity Sen) iffor every input string oflength n there is some sequence of moves 
leading to the halt state in which at most Sen) different cells are scanned on anyone of the k 
tapes. 

We define PTIME to be the set of all languages which can be accepted by deterministic 
Turing machines (DTMs) of polynomial-time complexity. In formal terms 

PTIME = {L I there exists a deterministic Turing machine, TM, and a polynomial pen) 

such that TM is of time complexity pen) and L = L(TM)}. 

Linear-time languages are a special case of polynomial-time languages that are accepted 
by a TM of time complexity kn (k E w), i.e. by a TM that needs to scan its input only a fixed 
number of times. 

Correspondingly, NPTIME (or simply NP) is defined to be the set of all languages which 
can be accepted by NTMs of polynomial-time complexity. 

We next define PSP ACE which is a superset of NP. PSP ACE is defined to be the set of all 
languages which can be accepted by polynomial-space-bounded DTMs, namely 

PSPACE = {L I there exists a deterministic Turing machine, TM, and a polynomial pen) 

such that TM is of space complexity pen) and L = LCTM)}. 

Although it is not known whether PTIME is properly contained in NP, we can show that 
certain languages are as hard as any in NP, in the sense that if we had a deterministic 
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polynomial-time-bounded algorithm to recognise one of these languages, then we could obtain 
a deterministic polynomial-time-bounded algorithm to recognise any language in NP. 

Let I:l and I:2 be two alphabets. A mappingf: I:t -+ I:; is a polynomial-time computable 
transformation (or simply a transformation), iff can be computed in polynomial time on a 
DTM. 

Let Ll ~ I:t and L2 ~ I:; be languages. Ll is (polynomial, many-to-one) reducible to L2, 
written Ll ex: L2, if there is a transformation f such that 

for all x E I:t, x E L1 if and only if f(x) E L2. 

A language L is NP-complete, if L E NP and for all L' E NP, L' ex: L. 

Historically, the set of satisfiable formulae of the propositional calculus was the first language 
shown to be NP-complete [Co0711. There followed a seminal contribution by Karp [Kar721, 
wherein a large number of problems, many of them graph-theoretic, were shown to be NP
complete. 

In a similar vein a language L is PSPACE-complete, with respect to polynomial 
transformabilityas above, if L E PSP ACE and for all L' E PSP ACE, L' ex: L. 

We next define another computational complexity class, designated as co-NP, that deals 
with complementary problems. As before let I: be an alphabet. In language terms 

co-NP = {I:* - L I L is a language over I: and L E NP}. 

In the context of this book we also employ the computational complexity class NP-hard 
defined by 

NP-hard = {L I L is a language over I: and for all L' E NP, L' ex: L}. 

At this juncture we briefly consider the intriguing problem of the polynomial hierarchy. To 
this end we introduce the oracle Turing machine (alternatively, query Turing machine), which 
may be deterministic or nondeterministic. An oracle Turing machine is a Turing machine 
with an additional distinguished tape, called the query tape, and three distinguished states 
called the query state, the yes state and the no state. The computation of an oracle Turing 
machine depends on its input and also on a given language over the alphabet I:, called the 
oracle. The actions of an oracle Turing machine with oracle, say L', are identical to those 
of a Turing machine with the following exception. If the finite control of the oracle Turing 
machine enters its query state at some step, then the finite control next enters the machine's 
yes state if the nonblank portion of the query tape contains a string in L'; otherwise the finite 
control next enters the machine's no state. 

An oracle Turing machine, OTM, is of time complexity T(n) if and only if, for every input 
string oflength n there is some sequence of at most T(n) moves, relative to any oracle, leading 

to the halt state of OTM. We let OTML' denote the oracle Turing machine, OTM, with oracle 

L', and L = L(OTML') denote the language accepted by OTML'. 

We now define two further computational complexity classes as follows, assuming that all 
languages are over an alphabet I:. 
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PTIMENP 

co-NP 8 NP 

Fig 1.14 Containment relationships amongst computational complexity classes 

PTIMENP = {L I there exists an oracle Turing machine, OTML', with L' E PTIME, 

and a polynomial pen) such that OTM is of time complexity pen) and 

L = L(OTML')}. 

NpNP = (L I there exists an oracle Turing machine, OTML', with L' E NP, 

and a polynomial pen) such that OTM is of time complexity pen) and 

L = L(OTML')}. 
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We observe that it is not known whether PTIMENP differs from NpNP or not. Pictorially, 
assuming that PTIME =1= NP, the containment relationships amongst PTIME, NP, co-NP, 
PTIMENP and NpNP are illustrated in Figure 1.14. 

On the basis of this figure 5tockmeyer [5to77] observed that this process of defining new 
computational complexity classes in terms of old ones could be carried out indefinitely, 
resulting in classes of apparently greater difficulty. We obtain in this manner what is termed 
the polynomial hierarchy. The computational complexity classes in the resulting hierarchy 
are designated by :Ei, n~ and f.~, and are defined by 

:E& = nb = f.b = PTIME 

and for all k ::: 0, k E w, 

f.~+l PTIMELf 

:Ef+l NpLf 

nf+! co- :Ef+!, 

where co- :Ef+ 1 denotes the complement of :Ef+ 1 in a similar way that co-NP is the complement 
ofNP. 
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We now look at two further computational complexity classes, namely EXPTIME 
and EXPSP ACE. The former consists of all languages, recognised by a deterministic or 
nondeterministic Turing machine, with time complexity bounded above by 2J'(n) for some 
polynomial p of the in put string oflength n, whilst the latter consists of all languages recognised 
bya deterministic or nondeterministic Turing machine, with space complexity bounded above 
by 2P(n). 

As above we can define the notions of EXPTIME-complete and EXPSPACE-complete. 

Two further computational complexity classes are LOGTIME, which consists of all 
languages, recognised by a deterministic or nondeterministic Turing machine, with time 
complexity bounded above by f/og2n + 11, where n is the length of the input string, and 
LOGSP ACE, which consists of all languages, recognised by a deterministic or nondeterministic 
Turing machine, with space complexity bounded above by f/og2n + 11. 

A standard way of measuring computational complexity is by introducing the big-O 
notation, which reads "of the order of'. Consider two functions f and g. We say that f 
is "big oh" of g, writtenf = O(g) or f(n) is O(g(n)), if there exist constants c and no such that 
f(n) ::: c g(n) for all n ::: no. Thus a polynomial-time algorithm is one whose time complexity 
is O(p(n)) , for some polynomial p, where p is a function in the size of the input n to the 
algorithm. This complexity measure determines the worst-case behaviour of the algorithm. 
Alternatively, we may wish to determine the average-case behaviour of an algorithm [Pap94]. 

Hereafter an algorithm of polynomial-time complexity is meant to be an algorithm of 
deterministic polynomial-time complexity. In the course of developing the material in this 
book we shall refer to a problem as tractable when there is a polynomial-time algorithm for its 
solution. The pursuit of efficient polynomial-time algorithms for solving problems is central 
to computer science [AHU83]. On the other hand, we shall refer to a problem as intractable 
if it is so hard that no polynomial-time algorithm can possibly solve it. 

We recommend the now classical books [Min69, Har78, HU79, LP81, Rog87] on the theory 
of computation and formal languages. A collection of papers dealing with both a historical 
perspective and contemporary research in the area of computability can be found in [Her88] . 
The definitive book on computational complexity is [GJ79]; for a recent survey see [Joh90]. A 
more recent book on computational complexity is [Pap94]. 

1.9.5 Finite-Model Theory 

Model theory is a branch of logic concerned with the study of the properties of mathematical 
structures. It endeavours to establish the expressive power of a logical language (usually a 
first-order language) in terms of the class of problems that can be solved by the language. 
Many of the central results from mathematical logic hinge upon the fact that the universe of 
a model can be infinite. Finite-model theory is a sub-branch of model theory concerned only 
with the study of the logical properties of models whose universe is finite. Since, a relational 
database can be viewed as a finite model, there is an intimate connection between relational 
database theory and finite-model theory, which has lead to a rich cross-fertilisation of ideas 
between database theorists and logicians. 

Let us consider a first-order language £ having a finite set of relation symbols, 
RI , R2 , ... , Rn, each of which has an arity and a finite set of constant symbols, CI , C2, . . . , cm. 
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(We assume that equality is a logical symbol of'c interpreted as identity.) A structure A 
over'c (or simply a structure when ,c is understood from context) comprises the following 
components: 

1) a nonempty set [A]' called the universe of A; 

2) a set of relations rl , r2, .. . , rn such that each ri is a relation on [A] associated with Ri 
and having the same arity as Ri, for i = 1,2, . .. , n (ri is called the interpretation of Ri)i 
and 

3) a set of constants ai, a2, . . . . am such that each ai is a member of [A] and is associated 
with Ci, for i = 1,2, .. . , m (ai is called the interpretation of Ci). 

We note that the above definition of structure is a special case of the more general 
Definition 1.1 of Subsection 1.9.3. Given a structure A and a first-order sentence <p both 
over the same first-order language'c, we write A F= <p to mean that A satisfies <po We extend 
the satisfaction relation, F=, to a set ~ of first-order sentences over 'c, where A F= ~ means 
that A F= <p for all <p E ~. A structure A is a model of ~ precisely when A satisfies ~. 

A finite structure is a structure whose universe if finite, and a finite model of ~ is a finite 
structure that satisfies ~. A first-order sentence over ,C is satisfiable (finitely satisfiable) if 
it is satisfied in at least one structure (finite structure), i.e. it has at least one model (finite 
model). A first-order sentence over ,C is valid (finitely valid) if it is satisfied in all structures 
(finite structures) over'c, i.e. every structure (finite structure) is a model (finite model) of the 
sentence. 

An algebraic language operating on structures is presented in Subsection 3.2.1 of Chapter 3 
as an alternative to first-order formulae of the first-order predicate calculus, presented in 
Subsection 3.2.2 of Chapter 3 in the context of the relational data model. 

In Subsection 3.3.2 of Chapter 3 it is shown that, on finite structures, the algebraic language 
is exactly as expressive as its counterpart first-order language. This result is one of the 
cornerstones of relational database theory. 

Many of the classical results from model theory fail for finite models; this in itself justifies 
the study of finite models as an independent branch of model theory. 

In the early 1930's G6del devised a proof system for first-order sentences which completely 
characterises the set of valid first-order sentences. This monumental result, known as G6del's 
completeness theorem, implies the following result, since we can systematically list all possible 
proofs with the aid of a Turing machine. 

Theorem 1.3 The set of valid first-order sentences over ,C is recursively enumerable but not 
recursive, i.e. its complement is not recursively enumerable. 0 

Trakhtenbrot [Tra63] proved the following result which implies the failure of the 
completeness theorem for finitely valid first-order sentences (the original result in Russian 
was published earlier in 1950). 

Theorem 1.4 The set of finitely valid first-order sentences over ,C is not recursively 
enumerable. 0 
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Turing [Tur36, Tur37) in his seminal paper, defining the notion of computability, proved 
the following result. 

Theorem 1.5 The set of satisfiable first-order sentences over .c is not recursively enumerable. 
o 

On the other hand, the next result holds on using Theorem 1.4 since, given a first-order 
sentence cp, we can systematically list all finite structures and test whether they satisfy cp. 

Theorem 1.6 The set of finitely satisfiable first-order sentences over .c is recursively 
enumerable but not recursive, i.e. its complement is not recursively enumerable. 0 

A sentence which is either unsatisfiable or finitely satisfiable is said to be finitely controllable. 
The following result is a direct consequence of Theorems 1.3 and 1.6. 

Theorem 1.7 
is decidable. 

The problem of whether a finitely controllable first-order sentence is satisfiable 
o 

The theory of data dependencies, which is central to relational database theory, deals with the 
investigation of limited subclasses of first-order sentences, which express certain constraints 
on structures. In particular, the implication problem defined below is central. 

Given a set of data dependencies ~ and a data dependency cp both in the same subclass offirst
order sentences under consideration, the implication problem is the problem of determining 
the computational complexity of deciding whether for all structures A over .c, the following 
condition is true: 

A F= ~ implies A F= cp. 

The reader will find a detailed account of data dependencies in Section 3.6 of Chapter 3. 

Another fundamental result of model theory is the compactness theorem. It states that if 
every finite subset of a set of sentences ~ is satisfiable then ~ is satisfiable; the cardinality of 
E may be infinite. To see that the compactness theorem fails for finite models consider the 
countably infinite set of sentences, <t> = {cPl , cP2 •...• cPi • ... }, where cPi states the existence of 
at least i distinct elements in the universe. Then it is evident that every finite subset of <t> is 
finitely satisfiable but <t> itself is not finitely satisfiable. 

From the above we conclude that the foundations of finite-model theory cannot be built on 
classical model theory. We will now briefly take a look at the fundamental tools and results 
of finite-model theory. For the rest of this subsection we will assume that all structures, and 
thus all models, are finite and that all structures and sentences are over a first-order language 
.c. In the following we will often use the term logic instead of language; thus, for example, we 
will use the term first -order logic instead of first -order language. 

Two structures A and B over .c are said to be elementary equivalent, denoted by A == B, if 
for every sentence cp over .c, A F= cp if and only if B F= cp. The next theorem implies that two 
elementary equivalent structures cannot be distinguished by first-order sentences. 
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Theorem 1.8 Two structures are elementary equivalent if and only if they are isomorphic. 
o 

Thus in finite-model theory it is more interesting to study classes of structures rather than 
individual structures. Let a class of structures S be a subset of the set of all structures over 
£, which is closed under isomorphism. A class of structures S can be viewed as expressing 
some property such as being a connected graph (see Section 2.1 which introduces the notion 
of a graph). 

In order for a class of structures S to be definable (or expressible) in a language £ it must 
be the case that there is a sentence cp over £ such that if A E S then A F cp and if A <t S 
then A [;t: cpo That is, definability means that there is a sentence that is satisfied only by the 
structures possessing the property. 

One of the fundamental tools used to test whether a class of structures is definable is the 
Ehrenfeucht-Frai'sse game [Ehr61, Bar73, Fag971. The k-round Ehrenfeucht-Fralsse game, 
where k is a natural number, is a game consisting of k rounds played on a pair of structures 
A and B by two players the Spoiler and the Duplicator. At each round the Spoiler makes a 
move by choosing some constant in the universe of one of the structures and the Duplicator 
must respond by a move choosing a constant from the universe of the other structure. The 
game ends after k rounds, with k constants, ai, a2, ... , ak> chosen from the universe of A and 
k constants, bl , b2, .. . , bk> chosen from the universe of B. If the mapping which takes each 
ai to bi, for i = 1,2, ... , k, is a partial isomorphism from A to B then the Duplicator wins, 
otherwise the Spoiler wins. (Bya partial isomorphism from A to B we mean that the respective 
structures, induced by the restriction of the universe of A to ai , a2, . . . , ak together with the 
interpretation of the constants of £, and the restriction of the universe of B to bl , b2, ... , bk 

together with the interpretation of the constants of £, are isomorphic.) A winning strategy for 
one of the players is a prescription, for playing the moves of each round of the game, which 
guarantees that a player wins no matter how the other player moves in each round. The next 
theorem characterises definability in terms of the Ehrenfeucht-Fralsse game. 

Theorem 1.9 A class of structures S is definable in a first-order language £ if and only if 
there is a natural number k such that whenever A E S but B <t S then the Spoiler has a 
winning strategy in the k-round game over A and B. 0 

As a corollary we can characterise the classes of structures S which are not definable in £. 

Corollary 1.10 A class of structures S is not definable in a first-order language £ if and only 
if for all natural numbers k, there exist structures A E Sand B <t S such that the Duplicator 
has a winning strategy in the k-round game over A and B. 0 

As an example consider a first-order language having no relation symbols and no constant 
symbols, and two structures Ak and Ak+I, over this language, whose universes have k and 
k + 1 elements, k E UJ, respectively. The reader can verify that the Duplicator has a winning 
strategy in the k-round game over Ak and Ak+l. It follows that the property of having a 
universe with an even number of elements is not definable in a first-order language. 
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As a more complicated example consider a first-order language having a single binary 
relation symbol <, denoting the less than operator, and no constant symbols. A structure 8 m 

over this language has a universe with m elements and a single relation 1 < 2 < ... < m 
modelling a linear order oflength m. The reader can verify that the Duplicator has a winning 
strategy in the k-round game over 8 ml and 8 m2 as long as the cardinalities of the two structures 
are such that ml , m2 ~ 2k. Intuitively, after P rounds, with P :::: k, the Duplicator can always 
maintain a large enough gap between any two elements in the smaller cardinality structure 
which is needed to win the game. A more complex argument is needed to show that the 
property of being a connected graph is not definable in a first-order language [Fag97J . 

Viewing the number of variables in a first-order sentence as a logical resource motivates 
the investigation of the expressiveness of variable-confined logics where variables may need 
to be reused. This is similar to the situation in programming languages where variables are a 
memory resource and thus their reuse leads to a more judicious use of space. Let FOk consist 
of all the sentences over a first-order language C having at most k variables, where k is a 
natural number. 

As an example consider a first-order language having a single binary relation symbol E, 
denoting the edges of a directed graph, and no constant symbols. Then the property asserting 
the existence of a path (see Definition 2.2 in Section 2.1) of length n, where n is a natural 
number, from a node x to a node y can be expressed in F03 by 

3x 3y (Pn(x ,y)) , 

where PI (x, y) is defined by 

PI (x , y) = E(x, y) 

andpn(x,y) is defined inductively by 

Pn(x, y) = 3z (E(x, z) ;\ (3x (x = z ;\ Pn- I (x , y)))). 

Two structures A and 8 over C are said to be elementary equivalent in FOk, denoted by 
A =k 8, if for every sentence rp E Fok, A F rp if and only if 8 F rp. 

It is possible to characterise elementary equivalence in Fok in terms of an infinitary k-pebble 
game, where k is a natural number, which can be viewed as a variation of the Ehrenfeucht
Fraisse game defined earlier. The Spoiler and the Duplicator share k pairs of pebbles such that 
the pebbles in a given pair are said to correspond to each other. The game is played on two 
structures A and 8 and the players take turns as follows. At each round of the game the Spoiler 
chooses a pebble and places it on one of the constants in the universe of one of the structures. 
The Duplicator must respond by placing the corresponding pebble in the pair on one of the 
constants in the universe of the other structure. At each round the Spoiler may choose a 
pebble which has so far been unused, i.e. not yet placed on a constant in the universe of one 
of the structures, or the Spoiler may choose to reuse a pebble already placed on a constant in 
the universe of one of the structures. In each case the Duplicator must respond by choosing 
the corresponding pebble and placing it on a constant in the universe of the other structure 
according to the rules of the game. The game continues indefinitely. After m rounds, m ~ 0, 
we have n pairs (ai, bl) , (a2 , b2), ... , (an , bn) of constants chosen from the universes of A and 
8, respectively, with n :::: k, corresponding to the n placed pairs of pebbles. The Spoiler wins 
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the in finitary k-pebble game if after m rounds, for some m, with m ::: 0, the mapping which 
takes each ai to bi, for i = 1, 2, . . . , n, is not a partial isomorphism from A to B, otherwise 
the Duplicator wins. Thus if the Spoiler wins after m rounds the game may be terminated, 
otherwise the Duplicator can force the game to continue forever. A winning strategy for one 
of the players is defined as for the Ehrenfeucht-Fralsse game. The next result characterises 
elementary equivalence in FOk [Bar77, IK89, KV92a, KV92b, DLW95] . 

Theorem 1.11 Let A and B be two structures over a first-order language C. Then A =k B 
if and only if the Duplicator has a winning strategy in the k-pebble game. 0 

In the above references a further characterisation of elementary equivalence in FOk is 
shown in terms of elementary equivalence in the injinitary logic L~w' The first subscript 
indicates that conjunctions and disjunctions can be taken over arbitrary, possibly infinite, 
sets of formulae and the second subscript indicates that only finite quantifier blocks are 
allowed. The superscript indicates that any formula can have at most k variables. The study 
of infinitary logics has been instrumental in studying the expressive power oflanguages which 
are more expressive than first-order ones. 

As we have seen, the expressive power of finite structures over a first-order language is 
rather limited, since there are many useful properties which are not definable within first-order 
logic. This has lead researchers to investigate more expressive logics such as fixpoint logic and 
second-order logic over finite structures. (We refer the reader to Chapter 9 and to Section 6.7 
of Chapter 6 for extensions of query languages beyond first-order logic; for example, with the 
addition of a fixpoint operator.) 

A very fruitful subarea of finite-model theory which deals specifically with the expressive 
power of logical languages is descriptive complexity [Imm89, Imm95]. In descriptive 
complexity we endeavour to capture computational complexity classes in terms of the classes 
of structures, i.e. properties that are definable in a particular language of logic. The area 
of descriptive complexity began in 1974 with Fagin's characterisation of the computational 
complexity class NP as the set of properties that are definable by second-order existential 
formulae [Fag741. (The language of second-order logic supersedes first-order logic by also 
having variables that range over relations such that these variables may be quantified. A 
second-order existential formula begins with second-order existential quantifiers and is 
followed by a first-order formula.) 

As we have mentioned above the expressive power of first-order logic is limited. More 
specifically, its descriptive complexity can be seen to be contained in LOGSPACE. The addition 
of a fixpoint operator to a first-order language increases the expressive power of first-order 
logic by allowing inductive definitions of relations. In Section 6.7 we present Vardi and 
Immerman's characterisation of the computational complexity class PTIME as the set of 
properties that are definable within first-order logic having a linear order relation symbol 
and augmented with the addition of a fixpoint operator possessing least jixpoint semantics 
[Var82a, Imm86]. We also mention that the computational complexity class PSP ACE can be 
characterised as the set of properties that are definable within first-order logic having a linear 
order relation symbol and augmented with the addition of a fixpoint operator possessing 
partial jixpoint semantics [Var82al; partial fixpoint semantics allows the inductive definition 
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to repeat itself an exponential number of times, but using only a polynomial amount of space, 
when a least fixpoint does not exist. 

Descriptive complexity is a significant route one can take in trying to solve hard problems 
in the area of computational complexity. As an example, Immerman has been able to solve a 
longstanding open problem using a result in descriptive complexity; specifically he has shown 
that nondeterministic space is closed under complementation [Imm88). 

We now briefly discuss a fascinating connection between the asymptotic probability of a 
property, which informally measures the probability of a random structure possessing the 
property, and definability in a language oflogic. 

Assume a first-order language ,c having no constant symbols, and assume that the universe 
[A) of a structure A over ,c is always taken to be {O, 1, . .. , n - I} for some natural number 
n. Also, let en be the set of all structures over'c, where the universe is the set {O, 1, . . . , n - I} 
of cardinality n, and let S be a class of structures over ,c defining some property. 

The asymptotic probability p,(S) is the limit as n tends to infinity of the fraction of structures 
over ,c whose universe has n elements and are in S. Formally, 

p,(S) = lim P,n(S), 
n-HXl 

where 
(S) = IS n enl. 

P,n lenl 

When the asymptotic probability of the property defined by a class of structures S over 
,c is one then we say that almost all structures over ,c have this property, and when the said 
asymptotic probability is zero then we say that almost no structures over ,c have this property. 
Many interesting properties of graphs, which can be modelled as structures over a first-order 
language having a single binary relation symbol, are satisfied by almost all or almost no graphs 
[BH79). For example, almost all graphs are connected and almost no graphs are planar. (A 
planar graph is a graph that can be drawn in the plane in such a way that no two edges cross 
each other.) On the other hand, not all properties have an asymptotic probability of zero or 
one. Thus, for example, the asymptotic probability of the property of having a universe with 
an even number of elements is undefined, since it oscillates between zero and one. As another 
example, suppose we allow ,c to have a single constant symbol, c, and that U is a unary relation 
symbol in'c. Then the property U(c) of all structures, which have a tuple whose interpretation 
is c, has an asymptotic probability of 1/2. 

The asymptotic probability p,(rp) of a sentence rp over ,c is the asymptotic probability of the 
set of all structures which satisfy rp. More formally, 

p,(rp) = p,({A 104 1= rpl) . 

A language ,c is said to have a zero-one law if the asymptotic probability ·of each of its 
sentences is either zero or one. Fagin [Fag76) and independently Glebskii [GKLT69] proved 
the remarkable result that first-order logic has the zero-one law. It therefore follows that if the 
asymptotic probability of a property is not zero or one, then it is not definable in first-order 
logic. Thus for example, the zero-one law for first-order logic implies that the property of 
having a universe with an even number of elements is not first-order definable. It has been 
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shown that the zero-one law also holds for fixpoint logic [BGK85j. A more general result is 
that the zero-one law also holds for the infinitary logic L~w' where k is a natural number 
[KV92cj. 

The reader interested in the finite-model theory of nonclassical logics will also find strong 
links between such logics and database theory. The foundations, which underpin the treatment 
of incomplete information in relational databases, presented in Chapter 5, build upon three
valued, modal and fuzzy logics, while the foundations of temporal databases, presented in 
Chapter 7, build upon temporal logic. Moreover, recent research into deductive databases 
also known as logical databases, presented in Chapter 9, has made an immense contribution 
to the advancement of the theories of nonmonotonic and default logics. 

The classical reference on model theory, now in its third edition, is [CK90], and a recent 
introduction to model theory is [Doe96j. Many of the seminal papers which laid the 
foundations of mathematical logic can be found in [Van67j. A recent book solely devoted 
to finite-model theory is [EF95]. Gurevich [Gur84] discusses in detail the failure of classical 
results in model theory, and Fagin [Fag93] presents a very informative perspective on the 
achievements of finite-model theory from a logician's point of view. A database theorist's 
point of view is given by Vianu [Via97a]; he surveys the achievements of database theory 
with the aim of convincing finite-model theorists that database theory provides a rich source 
of interesting and relevant problems. The reader will find in this book many connections 
between finite-model theory and database theory. 

1.10 Exercises 

Exercise 1.1 Assume that we have a relational data model at the conceptual database level. 
Argue for and against adding a new internal database level between the conceptual and physical 
levels, whose database schema is either hierarchical or nested relational. Define the notion of 
internal data independence when such an internal level is added to the DBMS levels [SPS87]. 

Exercise 1.2 Define relational, network and hierarchical conceptual database schemas for 
an application which manages exam results. 

Exercise 1.3 With the widespread use of personal computers (PCs) it is common for a 
database system to be used by a single user only. Discuss how this situation eases the tasks 
the DBMS has to perform. 

Exercise 1.4 At the physical level relations are stored as files and each tuple in a relation is 
stored as a record in the file. An index allows us to locate records in a file in a similar way to 
locating information in a book via an index. Thus an index to a file consists of the key values 
of records and their addresses indicating their location in the file. (See [U1l88] for more details 
on indexed files, and [Com79] for a survey on B-trees, which is a well-known technique for 
organising a file and its index.) 

Justify the use of an indexed file for query optimisation purposes, as opposed to a sequential 
file organisation, where the records in a file are arranged in a particular order and a record 
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can only be accessed when all the records prior to it in the file have been accessed. You must 
take into account the overhead of maintaining an indexed file compared to a sequential file. 

Exercise 1.5 Indexed files allow random access to records, in the sense that any record in 
the file can be accessed independently of accessing any other record. A hashed file is a file 
which allows random access to its records without the need to maintain an index. The basic 
idea is to compute the location of a record by applying the key value of the desired record to 
an algorithm, called a hashing algorithm. A problem that may arise with a hashing algorithm 
is that of collisions, i.e. the hashing algorithm may map two different key values to the same 
location. In order to lessen the problem of collisions we can organise the records in a file in 
buckets, which have the capacity to store several records. Then we require that the result of 
the hashing algorithm return the address of the bucket in which the record is held, so that 
this bucket can be sequentially searched for the desired record. Still this does not completely 
solve the problem of collisions, since eventually a bucket may be full , and then an overflow 
area must be designated for new records with the same hashed location. (See [Wie77, U1l88j 
for more details on hashed files.) 

Discuss the issues that determine whether you would choose a hashed file organisation for 
the physical storage of a relation as opposed to an indexed file organisation. 

Exercise 1.6 Suggest how referential integrity may be maintained when primary and foreign 
key values of tuples in relations are updated [Dat86a, eT88, HR96j. Note that there may 
be several competing policies for integrity maintenance such as blocking, i.e. disallowing the 
update in certain circumstances, or propagation of the update to all tuples in the database 
which are affected by the update. 

Exercise 1.7 Discuss the pros and the cons of having a computationally complete database 
language as a user query language. 

Exercise 1.8 You may have heard of or already used a logic programming language, called 
Prolog, whose style is similar to that of Datalog. Suggest how a rule-based query language 
such as Datalog can combine general purpose programming with database programming. 

Exercise 1.9 A recent proposal is to extend attribute domains of relation schemas so that 
they may be specified as user-defined abstract data types. For example, the user may define an 
abstract data type, ADDRESS, which is composed of the various address components such as 
house number, street name, city and postcode. Argue for and against calling such an extended 
relational data model, the object-relational data model [SM96j. 

Exercise 1.10 Suppose that we have available an object-oriented DBMS, which comes 
equipped with a computationally complete database programming language, called DPLOO, 
providing the interface between the user and the database. Discuss the validityofthe statement 
that DPLOO queries are harder to optimise than SQL queries. 
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The Entity-Relationship model (abbreviated to ER model) is a data model, which allows us to 
model the semantics of a conceptual database schema. Actually, the ER model is only a partial 
data model, since it only caters for the data structure and integrity constraint parts of a data 
model with no provision being made for a query and update language. 

The main motivation for defining the ER model [Che76, Che77] is to provide a high level 
model for conceptual database design, which acts as an intermediate stage prior to mapping 
the enterprise being modelled onto a conceptual level of say the relational model. The ER 
model explicitly incorporates in its constructs important semantic information about the real 
world, thus easing the task of the database designer. Furthermore, it achieves a high degree 
of data independence freeing the database designer from the details of the physical structure 
of the database. 

The main semantics modelling constructs of the ER model are: entities, attributes of entities 
and relationships between entities. For example, we can have employee entities where each 
employee has the attributes: name, salary, address and phone numbers. Another example is 
department entities where each department has a name, a manager and a location. This type 
of abstraction, which forms a class of objects, in this case employee entities or department 
entities, from its component objects, in this case its set of attributes, is called aggregation 
[5577, PM88]. An example of a relationship between employees and departments is that of 
"works in", meaning that an employee works in a department. This is also a type of abstraction, 
which forms a binary relationship between two types of entity. Another important semantic 
construct is that of generalisation [SS77, PM88] which ignores the differences between similar 
objects in order to form an object of higher type. For example, employee and student entities 
can be generalised to person entities. This type of abstraction can be viewed as specialisation, 
since both student and employee entities can be viewed as special cases of person entities. In 
the ER model generalisation is represented by a built -in relationship, called an [SA relationship. 
For example, an employee ISA person and a student ISA person. This means that both the sets 
of student and employee entities are a subset of the set of person entities. ISA relationships are 
useful since they allow inheritance of attributes [PM88]. In our example, student entities will 
inherit all the attributes of person entities. In addition to the inheritance of attributes, student 
entities may also have specific attributes not present in person entities, such as student id and 
the course they are taking. 

The ER model has proved to be very successful in database design due its simple yet powerful 
graphical representation via Entity-Relationship Diagrams (ERDs). An ERD for describing 
the conceptual database schema of a computerised book order system is shown in Figure 2.1. 
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Fig 2.1 An ERD describing a computerised book order system 

Intuitively, a Customer places Orders which specify the Books being ordered and each Order 
is billed by an Invoice, which is received by the Customer who ordered the Books. 

The meaning of all the symbols used to represent an ERD will be discussed in Section 2.2 
below. We mention that ERDs are widely used in software engineering for doing data analysis 
[MM85, You89, Pla92], since they provide a high level data independent description of the 
data involved in the system under development. 

The ERD shown in Figure 2.1 represents the database schema, i.e. the types of the objects 
corresponding to the real world enterprise we are modelling. Our notation differs from the 
original notation encountered in [Che76, Che77] but is commonly used nowadays in industry 
[MM85]. On the other hand, there is no accepted notation for the instances of entity types and 
the relationships amongst relationship types; a conventional approach is the tabular approach 
as in the relational model. The main disadvantage of this approach is that the semantics which 
are explicitly represented in the ERD become implicit at the instance level. In Section 2.2 
together with the detailed description of ERDs we propose to use a graphical notation in the 
spirit of the ER model for the actual entities and relationships (cf. [PL94, LL95b D. 

The main advantages of ERDs are: 

• They are relatively simple . 

• They are user-friendly, i.e. they correspond to a natural view of the real world. 
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• They can be translated into database schemas of different data models such as the 
relational, network and hierarchical data models and thus can provide a unified view of 
data [Che76, Che77]. 

In Section 2.1 we define the concept of a graph. In Section 2.2 we present the building blocks 
of an ERD. In Section 2.3 we discuss recursive relationships. In Section 2.4 we discuss weak 
entity types, and in Section 2.5 we describe the steps a database designer should follow when 
constructing an ERD. 

2.1 Graphs 

In this section we define the concept of a graph [Cha77, Wil85, BH90 1, which is the mathematical 
concept that underpins the notion of a diagram. 

Defmition 2.1 (Graph and subgraph) A graph is an ordered pair (N, E), where N is a finite 
set of nodes (also called vertices) and E is a set edges such that each edge, e = {u , v}, is an 
unordered pair of distinct nodes of E. 

Both nodes and edges can be labelled, i.e. they can be annotated by a number or a string to 
add meaning to the graph. At times we also label the graph as a whole in order to distinguish 
it from other graphs. 

A directed graph (or simply a digraph) is a special case of a graph (N, E), where E is a set of 
arcs such that each arc, e = (u, v), is an ordered pair of nodes of E. If (u , v) E E, then we say 
that there is an arc from u to v in E. 

A subgraph (or a subdigraph if the graph is directed) of a graph (N, E) is a graph having all 
of its nodes in N and all of its edges in E. For any subset S ofN, the subgraph of (N, E) induced 
by S is the maximal subgraph of (N, E) having S as its node set. • 

Defmition 2.2 (Acyclic and cyclic graphs) A walk (oflength k) from node u EN to node v E 
N in a directed graph (N, E) is an alternating sequence of nodes ni E N and arcs ei E E 

where no = u, nk = v and ei = (ni-l, ni) , 1 SiS k. If the graph is undirected then we 
replace (ni-l, ni) by the unordered pair {ni-l , nil. 

A path from u to v is a walk from u to v in which all the nodes ni, 0 Si S k, are distinct. A 
cycle (from u) is a walk from u to v in which u = v (i.e. it is a closed walk) and such that all 
the ni, 1 SiS k - I, are distinct. 

A graph (which is either directed or undirected) is acyclic if it does not contain any cycles, 
otherwise if it contains at least one cycle then it is cyclic. In the case when the graph is not 
directed, a connected acyclic graph is called a tree; a graph is connected if there is a path joining 
each distinct pair of its nodes. • 

We next give some examples of the usefulness of graphs. In Figure 2.2 we show a graph 
representing a network of motorways between cities; the labels of the nodes denote the names 
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Fig 2.2 Graph representing a network of motorways 

Bob 

Ray 

Mary 

Jill Jane 

Fig 2.3 Digraph representing a company hierarchy 

of the cities and the labels of the edges denote the distance in kilometres between the cities. 
This type of graph (or digraph) is called a network. 

In Figure 2.3 we show a digraph representing a company hierarchy between employees. 
The labels of the nodes denote the employees' names. This type of graph is called a tree (see 
Definition 2.2) and a collection of trees is called a forest. 

In Figure 2.4 we show a digraph representing the machine parts supplied to projects. This 
type of digraph is called a data structure diagram [Bac69). 

We note that the direction of the arc is represented diagrammatically by an arrow head. If 
an arc is bidirectional, i.e. both (u, v) and (v, u) are in E, then we can just draw a line between 
u and vas we would in the case of an edge {u, v}. Thus a bidirectional arc can be viewed as an 
edge. At times when the direction of the arc is understood from context we refer to an arc as 
an edge. We observe that the ERD shown in Figure 2.1 is also a digraph. The exact meaning 
of the labelling system used for ERDs will be explained in the following sections. 
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Fig 2.4 Digraph representing parts supplied to projects 

Basic ERD Constructs 

Concept Representation Example 
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Primary key Q ® attribute 

Fig 2.5 Summary ofthe basic ERD constructs 

2.2 The Building Blocks of an Entity-Relationship Diagram (ERD) 

An ERD has only three components: 

1) Entity types represented by labelled boxes. 

2) Relationship types represented by labelled arcs, which connect the two entity types 
participating in the relationship type. 

3) Attributes represented by labelled ellipses, which are connected to an entity type by an 
edge. 

A summary of the basic ERD constructs is shown in the table of Figure 2.5. 

For example, in the ERD shown in Figure 2.1 CUSTOMER and ORDER are entity types, 
PLACES is a relationship type between CUSTOMER and ORDER and NAME and ADDRESS 
are attributes of CUSTOMER. 
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2.2.1 Entities 

Definition 2.3 (Entity) An entity (or an object) is a "thing" that exists and is distinguishable, 
i.e. it can be uniquely identified. • 

The following are examples of entities: 

1) A particular person, say Mark, is an entity. 

2) A particular department, say the UCL Computer Science department, is an entity. 

3) A particular book, say this book, is an entity. 

Definition 2.4 (Entity type) An entity type (sometimes called an entity set) is a collection (or 
a set) of similar entities. • 

The following are examples of entity types: 

1) The entity type of all lecturers in UCL, say LECTURER. 

2) The entity type of all students in UCL, say STUDENT. 

3) The entity type of all cars in London, say CAR. 

Note that, in general, an entity may belong to more than one entity type. For example, 
Mark may belong to both the entity types PERSON and LECTURER. An instance of an entity 
type is a set of entities which contains the actual entities of the entity type that are stored in 
the database. (When no ambiguity arises we also call an instance of an entity type simply an 
entity set.) We depict an instance of an entity type by a graph which is labelled by the entity 
type and whose nodes represent the entities in the instance. For some examples of instances 
of entity types see Figure 2.6. 

By convention each node (or entity) in the instance is represented by a string beginning 
with "$". We observe that since we are dealing with a database system each instance of an 
entity type can only contain a finite number of entities although the set of possible entities in 
an entity type may be infinite for all practical purposes. 

2.2.2 Relationships and their Functionality 

Definition 2.5 (Relationship type) A (binary) relationship type among entity types is an 
association among two entity types. • 

The following are examples of relationship types: 

1) TEACHES is a relationship type between LECTURER and STUDENT. 

2) TUTORS is also a relationship type between LECTURER and STUDENT. 

3) ASSIGNED_TO is a relationship type between EMPLOYEE and DEPARTMENT. 
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Fig 2.6 Instances of entity types 
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We observe that as in TEACHES and TUTORS above there may be more than one 
relationship type between any two entity types. Relationship types are linked to the entity 
sets participating in the relationship type by edges whose end points are either arrow heads 
or crow's feet; the meaning of this notation will be explained below. Some examples of 
relationship types are shown in Figures 2.7, 2.8, 2.9 and 2.10. 
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Fig 2.9 An example of a relationship type 

~ ___ MA_N_A_GE_R __ ~~14r---RE-SI-DE-S-J-N--~.IL ____ O_F_FI_CE ____ ~ 
Fig 2.10 An example of a relationship type 

We refer to a relationship as the instance of a relationship type, i.e. to the set of pairs of 
entities that are constructed from the entity types over which the relationship type is defined 
and that participate in the actual relationship that is stored in the database. In mathematical 
terms a relationship is just a (binary) set-theoretic relation (see Section 1.9.1). For simplicity 
of the model we will always assume that any entity in an instance of an entity type mayor 
may not participate in a relationship. Thus, for example, if $John is an entity belonging 
to an instance of EMPLOYEE, then $John mayor may not participate in an ASSIGNED_TO 
relationship. That is, we are assuming that $John mayor may not be assigned to a department. 
This allows the participation in a relationship of entities, in an entity type of a relationship 
type, to be optional (or partial). In general, it is also possible to constrain the participation in a 
relationship of entities, in an instance of an entity type of a relationship type, to be mandatory 
(or total), i.e. if we insist that every entity in the instance of the entity type participates in the 
relationship. Such a distinction is made in [MM85, BCN92, Te094J. By default we assume that 
the participation of entities in relationships is optional. 

In the following we will use the term cardinality of a set to be the number of elements in 
that set (see Section 1.9.1). Let R be a relationship type connecting the two entity types EJ 

and E2. We now classify a relationship type according to how many entities in an instance of 
El can be associated with how many entities in an instance of E2, within an instance of the 
relationship type R. That is, we classify relationship types according to the cardinality ratio 
between the instances of the two participating entity types. Now, let r be a relationship over 
R and let e) and e2 be entities belonging to instances of E) and E2, respectively, such that e) 
and e2 participate in r. Then we say that R is 

• many-to-one if every entity el as defined above is associated in r with at most one entity 
belonging to an instance of E2' 

• one-to-many if every entity e2 as defined above is associated in r with at most one entity 
belonging to an instance of E). 

• one-to-one if every entity el as defined above is associated in r with at most one entity 
belonging to an instance of E2, and correspondingly every entity e2 as defined above is 
associated in r with at most one entity belonging to an instance of E). 

• many-to-many if every entity eJ as defined above is associated in r with zero or more 
entities belonging to an instance of E2, and correspondingly every entity e2 as defined 
above is associated in r with zero or more entities belonging to an instance of E) . 
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We note that the definitions of many-to-one and one-to-many are symmetric with respect 
to El and E2 and that R is one-to-one if and only if it is many-to-one and one-to-many. 
Furthermore, R is many-to-manyifit is neither many-to-oneor one-to-many. In mathematical 
terms a many-to-one relationship type induces a partial mapping (or function) from instances 
of El to instances of E2, and correspondingly a one-to-manyrelationship type induces a partial 
mapping from instances of E2 to instances ofEI (see Section 1.9.1). Furthermore, a one-to-one 
relationship type induces a partial one-to"one mapping from instances of El to instances of 
E2• Finally, a many-to-many relationship type induces a (mathematical) relation between 
instances of El and instances of E2 . 

Some examples of the functionality of relationship types are now given: 

1) The relationship type ASSIGNED_TO between EMPLOYEE and DEPARTMENT is many
to-one. 

2) The relationship type EMPLOYS between DEPARTMENT and EMPLOYEE is one-to
many. 

3) The relationship type MANAGES between MANAGER and DEPARTMENT is one-to
one. 

4) The relationship types TEACHES and TUTORS between LECTURER and STUDENT are 
many-to-many. 

We use the following notation in an ERD to indicate the functionality of a relationship type 
R from El to E2: 

1) IfR is one-to-one then the end points of the edge connecting El and E2 are both depicted 
by arrow heads. 

2) If R is many-to-one then the end points of the edge connecting El and E2 are depicted 
by a crow's foot on the El side and an arrow head on the E2 side. 

3) If R is one-to-many then the end points of the edge connecting El and E2 are depicted 
by an arrow head on the El side and a crow's foot on the E2 side. 

4) If R is many-to-many then the end points of the edge connecting El and E2 are both 
depicted by crow's feet. 

A summary of the constructs for an ERD relationship type is shown in the table of Figure 2.11. 

As with instances of entity types, instances of relationship types are also depicted as graphs. 
In this case the graph is labelled by the relationship type, its nodes represent the entities 
that participate in the relationship and its edges (or arcs) represent the associations which 
make up the relationship. As in our representation of instances of entities the nodes in the 
relationship are represented by strings beginning with a "$". For some examples of instances 
of relationship types see Figure 2.12. 

We note that the graphs that represent instances of relationship types are bipartite graphs, 
i.e. their node set N is partitioned into two subsets, say Nl and N2 , such that every edge (or 
arc) in E joins a node in Nl with a node in N2, and no node joins with another node of its own 
subset. Diagrammatically, we can see in Figure 2.12 that the node sets Nl and N2 of a bipartite 
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Fig 2.12 Examples of instances ofrelationship types 

graph can be depicted each in a separate column and each edge in E joins a node from one 
column to the other. The node set NJ is seen to represent the set of entities EJ and N2 is seen 
to represent the set of entities E2. 

In the formalism we have presented herein we have restricted ourselves to binary 
relationship types, since they are the most common in practice. In fact this is not a restriction, 
since any relationship type can always be reduced to a set of binary relationship types. For 
example, suppose thatwe have the entity types, SUPPLIER, PART and PROJECT, with a ternary 
relationship type between these three entity types meaning that a Supplier supplies many Parts 
to many Projects. In Figure 2.13 we show how this ternary relationship type can be expressed 
as a set of three binary relationship types, via the new entity type SPP. 

We close this section with a bit of controversy. It has been claimed in [Dat92b 1 that there 
is no clear distinction between the concepts of entity and relationship, i.e. one person's entity 
may be another person's relationship. For example, suppose that we are designing an airline's 
flight database. Then, a FLIGHT may be considered as a relationship type between an entity 
type ROUTE and an entity type AIRCRAFT or as an entity type in its own right. There are two 
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SUPPLIER PART PROJECT 

Fig 2.13 A binary relationship type representing a ternary relationship type 

answers one can give to such critics of the ER model. The first answer is that the ER model 
provides the flexibility to model real-world enterprises in several different ways. This is an 
advantage, since in any case there is always more than one way of viewing the semantics of any 
application under development and, in general, there is no one definitive design. Furthermore, 
from the practical point of view the distinction between entity and relationship seems to be 
very useful and it is clear that without relationship types the semantics of the data model would 
be greatly reduced. The second answer is that if the relationship type is such that it needs to 
have attributes then it must be modelled as an entity type, since we do not allow relationship 
types to have their own attributes. Thus, if we would like to model the flight's date as an 
attribute of FLIGHT rather than an attribute of ROUTE, then FLIGHT must be modelled as 
an entity type. We note that in the original ER model of Chen [Che76, Che77) relationship 
types are allowed to have their own attributes. It follows that the variation of the ER model 
we have presented herein has the advantage of simplifying the problem of deciding whether 
to represent some part of the enterprise as an entity or as a relationship. 

2.2.3 Attributes and Domains 

Definition 2.6 (Attribute) Attribute names (or simply attributes) are properties of entity 
types. • 

The following are examples of attributes: 

1) SOC#, PNAME, SPOUSE, CNAMES, HEIGHT and ADDRESS are attributes of PERSON. 

2) DNAME, COLLEGE, ADDRESS and PHONES are attributes of DEPARTMENT. 

3) SERIAL#, MODEL, COLOUR and ENGINE_SIZE are attributes of CAR. 

We distinguish between single-valued attributes such as PNAME, DNAME and ADDRESS 
and multi-valued attributes such as CNAMES and PHONES. In the ERD we represent the fact 
that an attribute is single-valued by connecting it to its entity type with a single line and the 
fact that an attribute is multi-valued by connecting it to its entity type by a double line; see 
Figure 2.1 for examples of single-valued and multi-valued attributes in an ERD. 

The domain of an attribute indicates what values the attribute can take. Domains can be 
viewed as giving meaning (or semantics) to attributes. 
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DefInition 2.7 (Domain) The domain of an attribute of an entity type is a set of constant 
values (or simply values) associated with that attribute. • 

A domain is atomic (or primitive) if its values are non decomposable, i.e. as far as the 
database system is concerned they have no internal structure. Examples of atomic domains 
are the domain of all positive integers, the domain of integers between 10 and 10,000, the 
domain of all strings over the English alphabet and the domain of all strings of length 20 over 
the English alphabet. A domain is set-valued if its values are finite sets of atomic domains, i.e. 
a set-valued domain is a subset of the power set of an atomic domain. Examples of set-valued 
domains are the domains of finite sets of integers and the domain of finite sets of strings. 

We note that a domain may be finite or countably infinite. (A set is countably infinite 
if it can be put into a one-to-one correspondence with the set of all natural numbers; see 
Section 1.9.1.) Furthermore, we observe that we can view domains in terms of Data Dictionary 
(DD) definitions, where atomic domains are specified by primitive DD definitions and set
valued domains are specified by iterated DD definitions [You89]. 

An attribute for a given entity type, say E, associates with each specific entity in an instance 
ofE, a unique attribute value (or simply a value) from its domain. That is, an attribute can be 
considered as a mapping from an instance of its underlying entity type to its domain. 

Let att be an attribute of the entity type E and ent be an entity in an instance ofE. The value 
that att associates with ent is denoted by att(ent). 

For example, let PI be an entity in an instance of the entity type PERSON. Then we may 
have: 

SOC#($Pl) = 45671, 
PNAME($Pl) = Jack, 
SPOUSE($Pl) = Lisa, 
CNAMES($Pl) = (Jill, Mary, Mona), 
HEIGHT($Pl} = 187 and 
ADDRESS($P1) = "North London". 

As another example, let D2 be an entity in an instance of the entity type DEPARTMENT. 
Then we may have: 

DNAME($D2) = "Computer Science", 
COLLEGE($D2) = "UCL", 
ADDRESS($D2) = "Central London" and 
PHONES($D2) = {3807777, 3877050}. 

We depict the attribute values of an entity, say ent, as a digraph labelled by ent as follows: 

I) For each attribute we have a node in the digraph labelled with the name of the attribute, 
which is denoted by a string of uppercase letters possibly containing the underscore 
character. 

2) For each attribute value we have a node in the digraph labelled with the value of the 
attribute, which is denoted by a string containing at least one lowercase letter or a string 
surrounded by double quotes or a natural number. 
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3) For each single-valued attribute, designated SATT, we draw an arc from SATT to its 
value, say val, representing the fact that SATT(ent) == val. (That is, for single-valued 
attributes we have a single arc for the only attribute value.) 

4) For each multi-valued attribute, designated MATT, and each value, say vah, with vali 
E MATT(ent), we draw an arc from MATT to vah. (That is, for multi-valued attributes 
we may have multiple arcs, one for each attribute value.) 

Our graphical representation allows a natural representation of missing information of the 
type value does not exist. For example, if CNAMES($P!) == 0, i.e. $P! does not have any 
children, then in the digraph for $P! we do not have any arcs emanating from CNAMES. In 
addition, if SPOUSE($Pl) is undefined or inapplicable, i.e. $P! does not have a spouse, then 
in the digraph for $P1 we do not have any arcs emanating from SPOUSE. Some examples of 
the digraphs that depict entities are shown in Figure 2.14. 

2.2.4 Keys 

Definition 2.8 (Key and superkey) An attribute or a set of attributes, whose values uniquely 
identify each entity in an instance of an entity type, is called a superkey for the entity type. 

If a set of attributes K is a superkey for an entity type E and, in addition, no proper subset 
ofK is a superkey for E (i.e. K is a minimal set of attributes that is a superkey for E) then K is 
called a candidate key (or a minimal key or simply a key) for E. 

A simple key for E is a key for E which is composed of a single attribute. • 



74 Chapter 2. The Entity-Relationship Model 

In other words a key is a minimal set of attributes that uniquely determines each entity 
in an instance of an entity type_ From now on we will assume that keys contain at least one 
attribute, i.e. we disallow keys to be the empty set of attributes. 

The following are examples of simple keys: 

1) {SOC#} (or simply SOC#) is a simple key for PERSON. 

2) {PHONES} (or simply PHONES) is a simple key for DEPARTMENT. 

3) {SERIAL#} (or simply SERIAL#) is a simple key for CAR. 

A composite key is a key composed of two or more attributes. The following are examples 
of composite keys: 

1) {DNAME, COLLEGE} is a composite key for DEPARTMENT. 

2) {PNAME, ADDRESS} is a composite key for PERSON. 

We now make several observations: 

• Every entity type must have at least one key, since we define en tities to be distinguishable. 

• In the absence of a natural key we can create an artificial simple key such as SERIAL#, 
EMP# and PROJECT#, which assigns a unique number to each entity in an instance of 
an entity type. Such artificial simple keys are called surrogate keys. 

• Simple keys are easier to specify and to maintain than composite keys but may have 
been artificially created. 

• An entity type may have more than one key; for example, the entity types PERSON 
and DEPARTMENT have multiple keys. Thus for such entity types one of the keys is 
designated as the primary key, and the other keys are called alternate keys. The primary 
key provides a guaranteed logical access to every entity in an instance of an entity type 
through the attribute values of the entity. 

In the ERD we represent the fact that an attribute belongs to the primary key by underlining 
the attribute; see Figure 2.1 for examples of key attributes in an ERD. 

Definition 2.9 (Primary key of a relationship type) Let EJ and E2 be the entity types 
participating in a relationship type R, with KJ being the primary key of EJ and K2 being 
the primary key of K2' The primary key of R is determined according to the following cases: 

1) IfR is many-to-many then KJ U K2 is the primary key ofR. 

2) If R is one-to-many then K2 is the primary key of R. 

3) If R is many-to-one then KJ is the primary key of R. 

4) If R is one-to-one then either KJ or K2 is the primary key of R. • 
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In this definition we assume, without loss of generality, that KJ and K2 are disjoint; we can 
always enforce this disjointness by adding to each attribute a role name corresponding to the 
entity type it belongs to; see Section 2.3. We further note that in all cases KJ U K2 is a superkey 
for R. 

The following example gives the primary keys of two relationship types: 

1) Assume that there is a many-to-many relationship, SPECIFIES, between ORDER and 
BOOK, that 0# is the primary key of ORDER and that B# is the primary key of BOOK. 
Then {O#, B#} is the primary key of SPECIFIES. 

2) Assume that there is a many-to-one relationship, ASSIGNED_TO, between EMPLOYEE 
and DEPARTMENT, that (DNAME, COLLEGE) is the primary key of DEPARTMENT 
and that EMP# is the primary key of EMPLOYEE. Then {EMP#, DNAME, COLLEGE} is 
a superkey for ASSIGNED_TO and (EMP#) is its primary key. 

3) Assume that there is a one-to-one relationship, BILLING, between ORDER and 
INVOICE, that 0# is the primary key of ORDER and that 1# is the primary key of 
INVOICE. Then (0#, I#) is a superkey for BILLING and either 0# or 1# is the primary 
key of BILLING. 

A summary of the attribute constructs of an ERD is shown in the table of Figure 2.15. 
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2.3 Recursive Relationships 

Definition 2.10 (Recursive relationship) A relationship type between two occurrences ofthe 
same entity type is called a recursive relationship type (or alternatively a cyclic relationship 
type). • 

Some examples of recursive relationship types are: 

1) MARRIAGE, which is a recursive relationship type between PERSON and PERSON. 

2) PARENT -CHILD, which is a recursive relationship type between PERSON and PERSON. 

3) PART-SUBPART, which is a recursive relationship type between PART and PART. 

In order to uniquely identify a recursive relationship we firstly need to determine the role 
each occurrence of the entity type plays in the relationship. 

For example, in MARRIAGE one person plays the role of husband and the other the role 
of wife. In PARENT-CHILD one person plays the role of the parent and the other the role of 
the child. On the other hand, in PART-SUBPART one part plays the role of superpart and the 
other part plays the role of subpart. Thus we create a role name for each occurrence of the 
entity type involved in the recursive relationship type. 

In order to create the primary key for a recursive relationship type we first take two copies 
of the primary key of the entity type involved in the relationship type. We then concatenate 
the role names of each entity type participating in the relationship type to each attribute 
in each copy of the primary key and finally take the union of the two resulting sets when 
appropriate. The resulting set of attributes is the primary key of the recursive relationship 
type. For example, ifin the relationship type MARRIAGE the attached role names are husband 
and wife, then the primary key of MARRIAGE is either {HUSBAND_SOC#} or {WIFE_SOC#} . 

In the ERD we label each end point of the edge connecting the recursive relationship type 
to itself with the appropriate role name; see Figure 2.16 for the ERD of the MARRIAGE 
relationship type. 

2.4 Weak Entity Types 

The existence of an entity in an instance of an entity type may depend on the existence of 
another entity in an instance of another entity type. The most common example is that of 
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child entities depending on their parent entities; for example, when we record the children of 
employee entities. Assume that the current database has an instance, say P, of PARENT and 
an instance, say C, of CHILD. Then in this case a CHILD entity would not be present in C unless 
its parent entity exists in P. Such an entity type as CHILD is called a weak entity type. Another 
example of a weak entity type arises via the concept of inheritance of attributes. Suppose that 
we have the entity types PERSON, EMPLOYEE and STUDENT with respective instances P, E 
and S, where both E and S are subsets of P. Thus, each EMPLOYEE entity is a special case of 
a PERSON entity and similarly each STUDENT entity is a special case of a PERSON entity. 
In other words, each person entity can be viewed as a general case of an EMPLOYEE entity 
and a general case of a STUDENT entity. It follows that the existence of a STUDENT entity 
depends on the existence of its corresponding PERSON entity and similarly the existence of 
an EMPLOYEE entity depends on the existence of its corresponding PERSON entity. Such 
entity types as EMPLOYEE and STUDENT that arise via generalisation are also called weak 
entity types. 

Weak entity types can depend on other entity types through two built-in relationship types, 
the ID relationship type and the ISA relationship type. 

Definition 2.11 (ID relationship type) An entity type EI is related to entity type E2 via an ID 
relationship type (or simply EI ID E2 ) if the primary key of EI comprises the primary key of 
E2 together with one or more additional attributes of EI. • 

For example, suppose that we have a PARENT entity type and a CHILD entity type, where 
the attributes of PARENT are: SOC#, PNAME, ADDRESS and AGE and the attributes of CHILD 
are: AGE and CNAME. Furthermore, suppose tha t the primary key of PARENT is SOC#. Then 
CHILD ID PARENT holds and the primary key of CHILD is: {SOC#, CNAME}, i.e. in order to 
uniquely identify a CHILD we need to know the social security number of the child's parent 
and the child's name. In the ERD we represent an ID relationship, EI ID E2, as a many-to-one 
relationship from EI to E2 labelled by ID; see Figure 2.17 for the ERD representing the ID 
relationship type from CHILD to PARENT. 

Definition 2.12 (ISA relationship type) An entity type EI is related to entity type E2 via an 
ISA relationship type (or simply ElISA E2) if the primary key of E\ is the same as the primary 
key of E2 . In addition, if hand 12 are the instances of EI and E2, respectively, currently 
recorded in the database, then h is a subset of h (strictly speaking, the set of primary key 
values of II is a subset of the set of primary key values of h). • 

For example, suppose we have an EMPLOYEE entity type having attributes: SOC#, PNAME, 
ADDRESS and SALARY, with primary key SOC#. In addition, suppose we have a MANAGER 
entity type having the same attributes as EMPLOYEE with the additional attribute DNAME, 
which indicates the department name the manager is responsible for. Then MANAGER 
ISA EMPLOYEE holds, and the primary key of MANAGER is the same as the primary key 
of EMPLOYEE, i.e. SOC#. Furthermore, every MANAGER entity in the current instance of 
MANAGER recorded in the database is also present in the current instance of EMPLOYEE 
recorded in the database. 

As a consequence of Definition 2.12, if ElISA E2 then EI inherits all the attributes of E2' 
Thus each entity el in an instance of EI derives all the information that is currently available 
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for its corresponding entity e2 in an instance of E2, whenever e\ and e2 have the same primary 
key values. 

In the ERD we represent an ISA relationship, E\ ISA E2, as a many-to-one relationship from 
E1 to E2labelled by ISAj see Figure 2.18 for an ERD representing several ISA relationship types. 
We note that if E\ ISA E2 we need not repeat the attributes of E2 in the ERD representation of 
E\ due to the inheritance of attributes. 

The situation where an entity type inherits all the attributes of two or more further entity 
types is called multiple inheritance. That is, we have E\ ISA E2 and E\ ISA E3, where E2 and 
E3 are distinct entity types. In the ERD, shown in Figure 2.18, we have an instance of multiple 
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inheritance, since PHD_STUDENT ISA EMPLOYEE and PHD_STUDENT ISA STUDENT both 
hold. Multiple inheritance gives rise to attribute inheritance conflicts whenever an entity type 
inherits the same attribute name from two or more distinct entity types. In the ERD, shown 
in Figure 2.IS, PHD_STUDENT inherits DNAME from both EMPLOYEE and STUDENT. The 
problem is that DNAME may have different meanings in EMPLOYEE and STUDENT. That 
is, DNAME in EMPLOYEE may mean the department an employee works in and DNAME in 
STUDENT may mean the department the student is enrolled in. Furthermore, in general, a 
PhD student may work in a different department to that which he/she is enrolled in. There are 
various ways to deal with multiple inheritance, one being to enforce some preference ordering 
on inherited attributes in order to resolve conflicts. We prefer to avoid conflicts altogether 
by requiring attribute names to have a global meaning in the ERD. The following definition 
formalises this assumption. 

Definition 2.13 (Universal relation schema assumption) An ERD is said to satisfy the 
Universal Relation Schema Assumption (or simply URSA) if each attribute of an entity type 
plays a unique role in the ERD. That is, all occurrences of an attribute name in an ERD are 
assumed to have the same meaning. • 

The URSA solves another problem highlighted in the ERD shown in Figure 2.19, which 
depicts a relationship type ASSIGNED_TO between the EMPLOYEE and DEPARTMENT 
entity types. Both EMPLOYEE and DEPARTMENT have an attribute, called NAME, meaning 
employee name and department name, respectively. When we are referring to NAME, there 
should be no ambiguity as long as it is clear from the context whether we mean employee 
name or department name. The URSA resolves this ambiguity that may arise when referring 
to attribute names by insisting that we have two distinct attribute names, say ENAME for 
employee name, and DNAME for department name. 

From now on, we assume that ERDs satisfy the URSA. The URSA can also be viewed as the 
assumption that the name of an attribute uniquely determines its underlying domain. The 
URSA is not as restrictive as it may seem, since it can always be enforced by a suitable renaming 
of attribute names. In our example above, if DNAME does mean two different things in 
EMPLOYEE and STUDENT, then DNAME in EMPLOYEE can be renamed to WORKJ>NAME 
and DNAME in STUDENT can be renamed to ENROLDNAME. 

There has been some controversy about the validity of the URSA [KenSI, KenS3bl. In 
particular, it has been claimed that due to the necessity of renaming attributes, some attributes 
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will receive unintuitive names. However, as stated in [UIJ83] there is no real practical evidence 
to that effect, and in particular it does not seem to be true that in practice many attributes 
have to be renamed. In fact, although the URSA is not always made explicit, it seems to be 
fundamental in the initial stage of database design and relational database design in particular. 
We note that the URSA does not involve the stronger assumptions made in the context of the 
Universal Relation, i.e. the unique role assumption and the one-flavour assumption [MUV84, 
MRW86, Var89b, Lev92), which are harder to justify. 

Our approach to defining weak entity types is similar to thattaken in [MR92a], which can be 
viewed as a formalisation of the original approach in [Che76, Che77] in terms of the relationship 
of the primary keys of the entity types involved in the relationship type. A summary of the 
ERD built-in relationship type constructs is presented in the table of Figure 2.20. 

2.S The Steps Needed for Constructing an ERD 

Constructing an ERD for the enterprise being modelled is a data analysis activity and involves 
abstracting the semantics of the data being used in the application under development. There 
are several methodologies a data analyst can use for this purpose with varying degrees of 
formality (see [BCN92, Te094] for detailed methodologies). We will content ourselves with 
outlining the major steps that a database designer ought to take when constructing an ERD: 

I) Identify the entity types (including weak entity types) of the enterprise. 

2) Draw some instances of the identified entity types. 

3) Identify the relationship types (including ISA and ID relationship types) of the 
enterprise. 

4) Classify each relationship type identified in step 3 according to its functionality, i.e. if it 
is a one-to-one, many-to-one (equivalently one-to-many) or many-to-many. 

5) Draw some instances of the identified relationship types. 

6) Draw an ERD with the entity types and the relationship types between them. 
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7) Identify the attributes of entity types and their underlying domains; if you are familiar 
with DD notation then give the DD definitions of the domains (recall that DD is an 
abbreviation for data dictionary). 

8) Identify a primary key for each entity type. 

9) Draw some instances of attribute values of entities. 

10) Add the attributes and keys to the ERD drawn in step 6. 

The main purpose of steps (2), (5) and (9), which involve drawing example instances, is to 
verify by example that the previous identification steps faithfully model the enterprise. 

Let us assume that we are planning to implement the application under development over a 
relational DBMS. After the ERD has been finalised, it is possible to convert it into a relational 
database schema using an algorithmic approach [JNS83a, JNS83b, CA84, DA87, MM90, MR92a, 
Te094]. The main benefit of this approach is that data analysts can use the ERDs, which 
provide us with an intuitive and high level picture of the enterprise being modelled, without 
worrying themselves, at this stage of the design process, with the details of the relational 
database schema. We will present such a conversion algorithm in Chapter 4, which deals with 
relational database design. 

2.6 Discussion 

The ER approach to data modelling has become a very popular paradigm for conceptual 
database design. It is widely used in industry during systems analysis and design due to 
its relative simplicity and its naturalness. We will return to the ER model in Chapter 4 in 
the context of relational database design, where we will show how to convert an ERD into a 
relational database schema. 

The ER model was pioneered in Chen's seminal paper [Che76) (see also the monograph 
[Che77)). At the time there was ongoing debate between proponents of the relational model 
on the one hand and hierarchical and network models on the other hand. The ER model was 
proposed as a higher level model with the view of translating an ERD into a conceptual schema 
in any of these three data models. Arguments in favour of the binary relationship concept as the 
smallest meaningful concept can be found in [Abr74, BPP76). Some early ideas relating to the 
semantics of entities and relationships in terms ofthe relational model can be found in [SS75) 
and [Ken79]; therein the entity, relationship and attribute approach is advocated. Although 
the original ER model had no provision for querying instances of entity types and relationship 
types, there have been several proposals of algebras for the ER model [Che84, PS87]. These 
algebras are similar to the relational algebra and include operators for: projecting specified 
attribute values of entities in an instance, selecting entities from an instance which satisfy 
certain selection criteria, taking the union and difference of two instances of an entity type 
and joining two instances of two entity types via an instance of a relationship type in order 
to create an instance of a new entity type. The ER model has also been extended to include 
concepts such as complex objects [AH87, PS89], incomplete information [ZC86] and view 
updates [LL96b]. 
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Several books have been solely devoted to the ER model; [BCN92, Te094] concentrate on 
data modelling issues and [Pla92] concentrates on system modelling issues. Both [BCN92] 
and [Pla92] show how functional and data analysis can be done jointly by incorporating ERD 
information into Data Flow Diagrams (DFDs). This highlights the importance of database 
design in the software engineering process. A recent book [MR92a] makes extensive use of 
the ER model in the process of relational database design. 

The ER model can be viewed as a visual formalism which conceptualises part of the real 
world. Other visual formalisms which were proposed for knowledge representation are: 
conceptual graphs [Sow76], higraphs [Har87, Har88], concept lattices [WiI92] and hypernodes 
[PL94, LL95b]. 

2.7 Exercises 

Exercise 2.1 We have presented an ER model in which the relationships are restricted to be 
binary. Discuss the pros and cons of binary versus general n-ary relationships. 

Exercise 2.2 In the ER model there are entities and relationships, although it is possible to 
view a relationship as a special kind of entity. Why do you think the ER model supports 
entities and relationships as two distinct concepts? 

Exercise 2.3 Discuss the statement that the ER model provides an informal foundation for 
the relational model. 

Exercise 2.4 Construct an ERD for an application whereby a company would like to record 
information about its employees and managers, information about the projects they work on 
and the various locations of projects. 

Exercise 2.5 Discuss the view that the ER model supports the fundamental concepts of an 
object-oriented data model. 

Exercise 2.6 Given an ERD describing the conceptual schema of an application, suggest how 
ERDs can be used to describe the view schema of the application. In particular, care has to be 
taken so that the semantics of the view schemas are consistent with those of the conceptual 
schema. 

Exercise 2.7 Data flow diagrams (DFDs) represent a diagrammatic tool that is used in 
software engineering in order to describe the interconnection of processes for a given 
application being analysed. Suggest an outline of a proposal for integrating the analysis 
of the processes and data for a given application using ERDs. 

Exercise 2.8 Consider an application where we would like to record the changes to an entity 
over time; for example, such an entity could represent bank account details. Describe how 
this could be done in the ER model. 

Exercise 2.9 Discuss the merits of a DBMS having an ER-like user interface. 
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Exercise 2.10 Consider enhancing the ER model with entity clustering, which allows us to 
combine several entity types and their relationships into a higher order entity type [Teo94]. 
For example, in the ERD of the computerised book order system, shown in Figure 2.1, 
we can cluster the entity types Order, Invoice and Book to form an entity cluster called 
Book_Ordering_Interface. How could you use entity clustering to improve an ER-like user 
interface? 

Exercise 2.11 Devise a query language for the ER model with binary relationships [AC83, 
Che84]. Such a query language must provide at least the following facilities: 

1) Locating the entities in an entity set such that their attribute values satisfy a given 
Boolean condition. 

2) Locating the entities that participate in a particular relationship. 

3) Chaining queries together by composition of relationships. 



3. The Relational Data Model 

In this chapter we present the core theory of relational databases. As described in 
Subsection 1.7.1 of Section 3.1 of Chapter 1 the relational model has three components: a 
structural part, a manipulative part and an integrity part. Thus we can view this chapter 
as consisting of three mini chapters one corresponding to each component of the relational 
model. The data structure of the model, i.e. the relation, and the relation schema over which 
it is defined, is presented in Section 3.1. In this section the simple tabular form of database 
relations is given a set-theoretic formalism. 

The manipulative part of the relational model is presented in Section 3.2. We present 
three relational query languages: the relational algebra, which is a procedural language, the 
relational calculus, which is a declarative query language (SQL is based on the relational 
calculus) and nonrecursive Datalog, which is a rule-based query language. In Section 3.3 
we show that all three query languages are equivalent, i.e. they differ only in style but not in 
expressive power. This result is fundamental to the theory of relational databases for two main 
reasons. Firstly, it establishes the robustness of the query formalism for the model, i.e. three 
languages which on the surface seem to be distinct turn out to be as expressive as each other. 
Secondly, from a practical point of view we can choose the query language that best fits the 
application. For example, naive users will, in general, prefer declarative languages such as the 
relational calculus and Datalog, while system programmers may prefer the relational algebra 
due to its procedural nature. It is considered beneficial to give users of database systems 
(or any computerised system) choice of the method of interaction with the information. In 
Section 3.3 we also present a simple update language for the relational model allowing us to 
formalise the notion of a transaction. Updates are often not given enough coverage, although 
the dynamic changes that occur to the current state of the database as a result of updates are 
an ongoing and fundamental process in the management of the database. 

The integrity part of the relational model is introduced in Section 3.4. Integrity constraints 
restrict the allowable relations in a database to satisfy certain logical conditions, called integrity 
constraints. Constraints such as functional dependencies (which generalise the notion of 
keys) and inclusion dependencies (which generalise the notion of foreign keys) are called 
data dependencies. The theory of data dependencies is very rich and there is a multitude of 
results in this area. It is fair to say that although the core theory can be considered stable, 
researchers are still refining and extending it. In Section 3.5 we describe the central problem 
of automating the process of inferring new integrity constraints from a given set of integrity 
constraints; this problem is known as the implication problem. In order to solve it data 
dependency theorists have investigated the logical notion of a sound and complete axiom 

85 
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system for a particular class of integrity constraints. Such a system, when it exists, provides 
us with a computational procedure to solve the implication problem. When the implication 
problem can be solved efficiently, the database designer can use the resulting algorithm to 
refine his/her constraints over the database. On the other hand, when the database theorist 
has shown that the implication problem cannot be solved efficiently for a particular class of 
constraints, then only heuristic algorithms can be used to help the database designer refine 
his/her constraints. In Section 3.6 we cover the most common data dependencies that are 
used in practice. We attempt to cover the main achievements in this field but would need 
several volumes to cover all the results obtained so far. In Section 3.7 we study domain and 
cardinality constraints, which we feel have been neglected in the database literature despite 
their importance. We arrive at a novel interpretation of the notion of atomic domain that 
can pave the way to incorporating the notion of user-defined data types in relational database 
systems. 

Up until now we have concentrated on the conceptual level of the database system. The 
question arises, however, as to what happens at the view level which is the level at which 
the interaction between the users and the database systems occurs. In a relational database 
a view can be defined as any portion of the database that can be retrieved by a relational 
algebra query. Querying a view does not pose any particular problem, since it only involves 
composing the query on the view with the definition of the view. On the other hand, updating 
the view can cause serious problems to the database system, since in general such updates do 
not unambiguously translate into database updates. We investigate solutions to this problem, 
called the view update problem, in Section 3.8. 

3.1 The Data Structure of the Relational Model 

The relational model has only one data structure, the relation. An informal description and 
an example of a relation and a relational database were given in Section 1.2 of Chapter 1. A 
relation is a set of tuples, each tuple representing some entity, and a relational database is a set 
of relations. The schema of a relation (i.e. a relation schema) is a set of attributes describing 
the properties of the components of tuples, and the schema of a database (i.e. a database 
schema) is a set of relation schemas. Notation-wise we give every relation schema a name, say 
R, and denote the set of attributes of R by schema(R). 

The representation of relations as tables is very convenient. The rows of the tables are the 
tuples and the column headers the attributes of its schema. 

We present a further example of a simple university database. In Table 3.1 we show a relation 
rl over a relation schema STUDENT, where schema(STUDENT) = {SNAME, AGE, ADDRESS, 
DEPT, DEGREE, YEAR}. In Table 3.2 we show a relation r2 over a relation schema COURSE, 
where schema(COURSE) = {DEPT, CNAME, TNAME, TEXT}. In Table 3.3 we show a relation 
r3 over a relation schema TUTOR, where schema(TUTOR) = {TNAME, DEPT, SALARY, DA Y}. 
Together, the set of relations {rl> r2, r3} is a database d over a database schema UNIVERSITY 
= {STUDENT, COURSE, TUTOR}. 

Recall the definitions of attribute and domain from Subsection 2.2.3 of Chapter 2. 
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Table 3.1 The relation q over STUDENT 

SNAME AGE ADDRESS DEPT DEGREE YEAR 
Iris 21 Malet St Computing BSC first 

Reuven 32 Harold Rd Maths BSC second 
Hanna 31 HaroldRd Linguistics BA second 

Dan 34 Gower St Linguistics BA second 
Hillary 25 Gower St Computing BSC third 

Eli 38 Oxford St Economics BCOM third 
Naomi 39 Oxford St Maths BA fourth 
David 42 Queens Ave Computing BSC first 

Table 3.2 The relation r2 over COURSE 

DEPT CNAME TNAME TEXT 
Computing databases Robert Date 
Computing databases Robert Ullman 
Computing programming Hanna Knuth 
Computing programming Richard Knuth 
Computing algorithms Ada Harel 

Maths logic Reuven Mendelson 
Maths graph-theory Martine Harary 

Linguistics hebrew Dan Bible 

Table 3.3 The relation r3 over TUTOR 

TNAME DEPT SALARY DAY 
Robert Computing 2000 Monday 
Robert Computing 2000 Tuesday 
Robert Computing 2000 Thursday 
Hanna Computing 1400 Wednesday 
Hanna Computing 1400 Friday 

Richard Computing 1000 Friday 
Martine Maths 1600 Tuesday 
Martine Philosophy 1600 Friday 
Reuven Maths 1500 Wednesday 
Reuven Maths 1500 Thursday 

Dan Linguistics 1000 Tuesday 
Ruth Linguistics 1100 Monday 

Definition 3.1 (Attributes and domains) We assume that for the purpose of defining 
relational databases a countably infinite set of attribute names (or simply attributes), U, 
and a countably infinite set of constant values, TJ, are available. U is called the universe of 
attributes and TJ is called the underlying database domain. 

Given an attribute A inU the domain of A, denoted byDOM(A), is a subsetofTJ (which may 
be finite or infinite). We will also refer to the constant values in DOM(A) simply as constants 
or values. • 

The following assumption states that if two constants are written differently then they are 
actually different. For example, 'Robert' and 'Mark' and 1400 are all different but 'Mark' is 
the same as 'Mark'. 
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Definition 3.2 (The unique names assumption) The Unique Names Assumption (UNA) 
states that any two constant values CI E DOM(AI), C2 E DOM(A2) are equal if and only if 
they are syntactically identical, i.e. they have the same name. • 

Defmition 3.3 (Relation schema) A relation schema (or simplya schema) is a relation symbol 
R together with an associated similarity type, denoted by type(R), such that type(R) is a natural 
number. We refer to such a schema simply as R. We associate with each relation schema R a 
one-to-one mapping, att: {I , 2, ... , type(R)} -+ U, which allows us to attach attribute names 
to the type(R) components of a relation schema R; we denote the set {att(l), att(2), ... , 
att(type(R))} by schema(R). • 

The relation symbol R is the name we attach to the relation schema, for example, STUDENT, 
COURSE and TUTOR are relation symbols. The number of attributes in a relation schema, 
R, is its similarity type, type(R). For example, type(STUDENT) = 6, type(COURSE) = 4 and 
type (TUTOR) = 4. Finally, schema(R) is the set of attributes associated with R. For example, 
schema(TUTOR) = {TNAME, DEPT, SALARY, DAY}. The mapping att allows us to refer to 
the attributes in schema(R) in some fixed order. For example, the mapping att associated with 
TUTOR gives us att(l) = TNAME, att(2) = DEPT, att(3) = SALARY and att(4) = DAY. This 
ordering is useful for displaying the columns of a relation in some default ordering. 

A database schema is now defined as a set of relation schemas. 

Definition 3.4 (Database schema) A database schema is a finite set R = {R, , R2 , . • . , Rn} such 
that each Ri E R is a relation schema. We denote by schema(R) the set of all attributes associated 
with the relation schemas in R, i.e. schema(R) = UiE[ schema(Ri), where I = {I, 2, . . . , n}. 

We also refer to a database schema R as a decomposition of a finite set of attributes X 
c U whenever X = schema(R) (or we call R simply a decomposition if X is understood from 
~~. . 

In the following uppercase letters (which may be subscripted) appearing at the end of the 
alphabet such as X, Y, W, Z will be used to denote sets of attributes, whilst those at the beginning 
of the alphabet such as A, B, C will, in general, be used to denote single attributes. Whenever 
no ambiguity arises in a particular context we will write schema to mean either relation schema 
or database schema. 

Recall the definition of an atomic domain (i.e. a nondecomposable set of values which has 
no internal structure as far as the database system is concerned) from Subsection 2.2.3 of 
Chapter 2. We now formalise a very important structural constraint on relation schemas. 

Definition 3.5 (First Normal Form) A relation schema R is in First Normal Form (INF) if all 
the domains of attributes Ai in schema(R) are atomic. A database schema R is in INF if each 
relation schema Ri in R is in INF. • 

Relation schemas (respectively, database schemas) that are in INF are also called normalised 
relation schemas (respectively, normalised database schemas) or jlat relation schemas 
(respectively,jlat database schemas). From now on throughout the rest of the book a relation 
schema will be assumed to be in INF unless otherwise stated. This assumption is known as 
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the INF assumption. We note that Codd defined the concept of 1NF schemas in his seminal 
paper in 1970 [Cod70). The main justifications for assuming 1NF schemas are: 

1) It is easy to understand the semantics of attributes of 1NF schemas, since the internal 
structure of atomic attributes is hidden both from the user and the database system. 

2) It is simpler to formalise the relational model under this assumption. 

As an example with respect to point (1) assume that an address comprises a street number, 
street name, city and postcode. Then the attribute name ADDRESS, over a non atomic domain 
of address values, is ambiguous, since it has a nontrivial internal structure which is not 
obvious. On the other hand, the four attributes, STREET _NUMBER, STREET _NAME, CITY 
and POSTCODE, all over atomic domains, collectively describe an address in an unambiguous 
manner. With respect to point (2), as we have demonstrated in Subsection 1.7.4 of Chapter 1, 
when we admit attributes over nonatomicor nested domains (i.e. we relax the 1NF assumption), 
we are essentially allowing attribute values themselves to be relations. The formalisation 
of such a nested relational model, which allows hierarchical structures in addition to flat 
structures, is obviously more complex. 

We now rephrase the Universal Relation Schema Assumption (URSA), given in 
Definition 2.13 in Section 2.4 of Chapter 2 in the context of ERDs, in terms of relational 
database schemas. 

Defmition 3.6 (Universal relation schema assumption) A database schema R satisfies the 
URSA if each attribute in schema(R) plays a unique role in R. That is, all occurrences of any 
attribute name in the relation schemas ofR are assumed to have the same meaning. • 

For the justification of this assumption see Section 2.4 of Chapter 2. The URSA is a 
semantic assumption which can only be enforced by the database designer if he/she decides 
on the attributes in schema(R) prior to deciding which attributes will belong to any particular 
schema(Ri) , where Ri is in R. We observe that the URSA is stronger than the assumption that 
two attributes with the same name possess the same domain. As an example, let NUMBER 
be an attribute in an employee schema (meaning employee number) and, in addition, let 
NUMBER be an attribute in a parts schema (meaning part number). Furthermore, assume 
that the domain of NUMBER in both schemas is the set of all natural numbers. Obviously, the 
resulting database schema violates the URSA. We view the URSA as an assumption that makes 
our life slightly easier (both in theory and in practice) by allowing us to refer to attributes 
unambiguously without referring to the specific relation schema in which the attribute occurs. 

We now give the formal definition of a relation and a database. 

Definition 3.7 (Relation and database) A tuple over a relation schema R, with schema(R) 
= {A" A2, ... , Am} and where att(i) = Ai, for i = 1, 2, . .. , m, is a member of the Cartesian 
product 

A relation over R is a finite set of tuples over R. A database over R = {R" R2, . . . ,Rn} is a 
set d = {r" r2, ... , rn} such that each ri E d is a relation over Ri E R. • 
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It is important to remember that relations are finite sets of tuples. Only a finite amount of 
information can be stored in a computer. 

It is also possible to view a tuple t over a relation schema R as a total mapping from 
schema(R) to the union of the domains DOM(Ai), such that for all Ai E schema(R), t(Ai) E 

DOM(Ai). In this case we can ignore the linear order imposed on the attributes of R by the 
Cartesian product of the domains in Definition 3.7. This alternative definition of a tuple as 
a mapping highlights the fact that the ordering of the attributes in the sequence of attributes 
< att( 1), att(2), ... , att(type(R»> is not important; that is, we can choose an alternative linear 
order without changing the semantics of a relation. On the other hand, when we display a 
relation as a table we need to choose some ordering of the columns in the displayed table and 
the definition of a tuple as an element in the Cartesian product of the domains highlights this 
default ordering. 

Due to the 1NF assumption each tuple in a relation is a sequence of atomic values, which have 
no internal structure as far as the DBMS is concerned. For this reason relations (respectively, 
databases) are also called normalised relations (respectively, normalised databases) or flat 
relations (respectively, flat databases). As we have demonstrated in Subsection 1.7.4 of 
Chapter 1 when we relax the 1NF assumption we obtain nested relations and nested databases, 
wherein tuples of relations are sequences of values which may either be atomic or nested, 
nested values being values which are themselves relations. The advantages of normalised 
(lNF) relations over nested relations are: 

1) Normalised relations can be presented in a simple two-dimensional tabular form, where 
each value in such a table is atomic. 

2) Under the 1NF assumption, querying, updating and maintaining the fundamental 
integrity constraints of a relational database are performed easily and in a 
straightforward manner. 

Let us now continue the formalisation of the relational model under the 1NF assumption. 
Informally, the projection of a tuple t over R onto a subset Y of schema(R) is the restriction 
of t to the attributes of Y. 

Definition 3.8 (Projection) The projection of a tuple t in a relation r over relation schema R 
onto the attribute Ai = att(i) in schema(R) is the i-coordinate of t, i.e. t(i). 

We extend the notion of projection to a set of attributes, Y = {att(id, att(iz), ... , att(ik)} <; 
schema(R), with i l < i2 < ... < ib as follows. The projection of tonto Y (also called the 
Y -value of t), denoted by tty], is defined by tty) = <tUI), t(i2), . .. , tUk». • 

For example, consider the relation r2 in Table 3.2 and let t = <Computing, databases, 
Robert, Date>. Then t[TEXT] = <Date> and t[DEPT, TNAME] = <Computing, Robert>. 

The active domain of a relation rover R is the set of constant values that appear in the 
tuples of r and the active domain of a database dover R is the union of the active domains of 
its relations; the formal definition follows. 

Definition 3.9 (Active domain) The active domain of a relation rover R, denoted by 
ADOM(r), is defined by 

ADOM(r) = {v I 3A E schema(R) and 3t E r such that t[A] = v}. 
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The active domain of a database dover R, denoted by ADOM(d), is defined by 

ADOM(d) = U{ADOM(T) I TEd}. 

3.2 Query and Update Languages for the Relational Model 
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In the previous section we have concerned ourselves with the structural part of the relational 
model. Here we elaborate on the manipulative part of the relational model, in the form of 
query and update languages. In Subsection 3.2.1 we present the relational algebra which is a 
procedural query language for the relational model. In Subsection 3.2.2 we present the domain 
relational calculus which is the declarative counterpart of the relational algebra and is based 
on the first-order predicate calculus. The domain relational calculus is the query language 
which provides the theoretical underpinning of SQL which is the commercial relational query 
language used in most DBMSs; in fact, many people go further and equate SQL with relational 
databases. In Subsection 3.2.3 we present Datalog which is a rule-based query language for 
the relational model and views a relational database in a logical way. In Subsection 3.2.4 we 
consider an update language for the relational model that takes into account the dynamic 
aspects of updating a relational database; it complements the query languages we present 
in Subsections 3.2.1, 3.2.2 and 3.2.3, which can only be used to retrieve information from a 
relational database. 

3.2.1 The Relational Algebra 

The relational algebra is a collection of operators; each operator takes as input either a single 
relation or a pair of relations and outputs a single relation as its result. A relational query is 
a composition of a finite number of relational operators. In that sense a query is procedural, 
since it specifies the order in which the operators comprising the query are to be evaluated. 
The declarative counterpart of the relational algebra, i.e. the domain relational calculus, is 
defined in Subsection 3.2.2. The relational algebra was first presented in Codd's seminal 1970 
paper [Cod70] and a variant of the domain relational calculus was first presented in 1972 in 
another of Codd's fundamental papers [Cod72b]. Since then the relational algebra has become 
a yardstick for measuring the expressiveness of any relational query language. 

Our style of presentation of the relational algebra operators is: for each operator we give 
an informal definition of the operator, then we give its formal definition and finally we give 
an example of its use over the database presented in Section 3.l. 

The set-theoretic operators, union, difference and intersection, defined below, are all binary 
operators which take two relations over a common relation schema, say R, and return a relation 
over R. It is customary to call two relations union-compatible if their corresponding relation 
schemas have the same attribute set, and are thus effectively the same. 

The union of two relations, T1 and T2 over relation schema R, is the set of tuples that are 
either in T1 or in T2. 

Defmition 3.10 (Union) The union, U, of two relations T1 and T2 over R is defined by 

T1 U T2 = {t I t E T1 or t E T2}. • 
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Let 51 be the relation over SHORLSTUD with schema(SHORLSTUD) = {SNAME, 
ADDRESS, DEPT}, shown in Table 3.4, representing students having computing accounts, 
and let 52 be the relation over SHORLSTUD, shown in Table 3.5, representing students 
receiving a grant. The query, "Retrieve the students who either have a computing account or 
are receiving a grant", can be expressed as the union 51 U 52. The result of this query is shown 
in Table 3.6. 

Table 3.4 The relation 51 over SHORLSTUD 

SNAME ADDRESS DEPT 
Iris Malet St Computing 

Reuven Harold Rd Maths 
Hanna HaroldRd Linguistics 
Brian Alexandra Rd Sociology 

Table 3.S The relation 52 over SHORT_STUD 

SNAME ADDRESS DEPT 
Iris Malet St Computing 

Reuven Harold Rd Maths 
Annette Harold Rd Linguistics 

Cyril Oakley Gdns Medicine 

Table 3.6 The result ofthe query 51 U 52 over SHORLSTUD 

SNAME ADDRESS DEPT 
Iris MaletSt Computing 

Reuven HaroldRd Maths 
Hanna HaroldRd Linguistics 

Annette HaroldRd Linguistics 
Brian Alexandra Rd Sociology 
Cyril Oakley Gdns Medicine 

The difference between two relations, '1 and '2 over relation schema R, is the set of tuples 
that are in 'I but not in '2. 

Definition 3.11 (Difference) The difference, -, of two relations '1 and '2 over R is defined 
by 

• 
The query, "Retrieve the students who have a computing account but do not receive a grant", 

can be expressed as the difference 51 - 52, where 51 and 52 are shown in Tables 3.4 and 3.5, 
respectively. The result of this query is shown in Table 3.7. 

We note that the intersection, n, of two reiations'l and '2 over relation schema R, i.e. the set 
of tuples that are included in both 'I and '2, can be defined in terms of the difference operator 
by 
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Table 3.7 The result of the query SI - S2 over SHORT STUD 

SNAME ADDRESS DEPT 
Hanna Harold Rd Linguistics 
Brian Alexandra Rd Sociology 

The query, "Retrieve the students who have a computing account and are also receiving a 
grant", can be expressed as the intersection 51 n 52, where 5) and 52 are shown in Tables 3.4 
and 3.5, respectively. The result of this query is shown in Table 3.8. 

Table 3.8 The result of the query SI n S2 over SHORT STUD 

SNAME ADDRESS DEPT 
Iris Malet St Computing 

Reuven Harold Rd Maths 

The projection of a relation r over relation schema R onto a set of attributes Y included in 
schema(R) is the set of tuples resulting from projecting each of the tuples in r onto Y. 

Defmition 3.12 (Projection) The projection, 7r, of a relation r over relation schema R onto a 
set of attributes Y ~ schema(R) is defined by 

7ry(r) = {try] I t E r}, 

where try] is the restriction of t to Y given in Definition 3.8. • 
The query, "Retrieve the departments, degrees and years of students", can be expressed as 

the projection 7r{DEPT,DEGREE, YEAR} (r), where r) is shown in Table 3.1. The result of this query 
is shown in Table 3.9. 

Table 3.9 The result ofthe query 7r{DEPT.DEGREE.YEAR} (rJl 

DEPT DEGREE YEAR 
Computing BSC first 
Computing BSC third 

Maths BSC second 
Maths BA fourth 

Linguistics BA second 
Economics BCOM third 

We note that the cardinality of 7ry(r) is less than or equal to the cardinality of r, since two 
or more tuples in r may have the same projection onto Y. For example, in the above query 
the tuple <Linguistics, BA, second> is the {DEPT, DEGREE, YEAR}-value of both the tuples, 
whose SNAME-values are Hanna and Dan in r1 of Table 3.1. We further note that projection 
captures the semantics of existential quantification. For example, in the above query we 
retrieved the {DEPT, DEGREE, YEAR}-values of tuples such that there exist {SNAME, AGE, 
ADDRESS}-values for these tuples. 

Selection of tuples from a relation r with respect to a selection formula F is the subset of 
tuples from r that satisfy the formula F. 
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Defmition 3.13 (Selection formula) A simple selection formula over a schema R is either an 
expression of the form A = a or an expression of the form A = B, where A, B E schema(R) and 
a E DOM(A). 

A selection formula (or simply a formula whenever no ambiguity arises) over R is a well
formed expression composed of one or more simple selection formulae over R together with 
the Boolean logical connectives: /\ (and), v (or), -. (not) and parentheses. A selection formula 
is called positive if it does not have any occurrence of -'. We abbreviate -.(A = a) by A =I a 
and -'(A = B) by A =I B. • 

A simple selection formula of the type A = B is sometimes referred to as restriction. For 
simplicity we have only included equality (=) as a comparison operator but, in general, we 
can also expect :s (less than or equal to) and < (less than) to be available in simple selection 
formulae. 

Informally a tuple, t, logically implies a formula, F, if the tuple satisfies F. In the next 
definition FI and F2 are also formulae. 

Defmition 3.14 (Logical implication, F) Let r be a relation over relation schema R, t be a 
tuple in r and, in addition, let F be a selection formula over R. Then t logically implies F, 
written t F F, is defined recursively, as follows: 

1) t FA = a, if t[A) = a evaluates to true. 

2) t FA = B, if t[A) = t[BI evaluates to true. 

3) t F FI /\ F2, if t F FI evaluates to true and t F F2 evaluates to true. 

4) t F FI V F2, if t F FI evaluates to true or t F F2 evaluates to true. 

5) t F -.F, if t F F does not evaluate to true, i.e. t l;t= F. 

6) t F (F), if t F F. • 
We are now ready to formalise selection which, when applied to a relation, r, with respect 

to a formula, F, returns all the tuples in r that logically imply F. 

Definition 3.15 (Selection) The selection, a, applied to a relation r over relation schema R 
with respect to a selection formula F over R is defined by 

aF(r) = {t I t E rand t F Fl. • 
The following theorem, which easily follows from the definitions of selection and logical 

implication, shows that the Boolean logical connectives, -., v and /\, present in selection 
formulae can be expressed in terms of the set operators -, U and n, respectively. 
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Theorem 3.1 The following equalities are all satisfied, where r is a relation over relation 
schema R, and F, F, and F2 are selection formulae over R. 

1) O"~p(r) = r - O"p(r). 

2) O"Pl VP2 (r) = O"Pl (r) U O"P2 (r). 

3) O"Pl AP2 (r) = O"Pl (r) n O"P2 (r). o 

The query, "Retrieve the students who are either studying in the Linguistics department or 
whose address is Oxford Sf', can be expressed as the selection O"Pl (r,), where FI is the formula 
DEPT = 'Linguistics' v ADDRESS = 'Oxford St', and r, is shown in Table 3.1. The result of 
this query is shown in Table 3.10. 

Table 3.10 The result of the query O"Pl (TJ) 

SNAME AGE ADDRESS DEPT DEGREE YEAR 
Hanna 31 HaroldRd Linguistics BA second 

Dan 34 GowerSt Linguistics BA second 
Eli 38 Oxford St Economics BCOM third 

Naomi 39 Oxford St Maths BA fourth 

The query, "Retrieve the students who are not studying Computing and are not in their 
second year", can be expressed as the selection O"P2(r,), where F2 is the formula DEPT "# 
'Computing' /\ YEAR "# 'second', and r, is shown in Table 3.1. The result of this query is 
shown in Table 3.11. 

Table 3.11 The result of the query O"P2 (T,) 

SNAME AGE ADDRESS DEPT DEGREE YEAR 
Eli 38 Oxford St Economics BCOM third 

Naomi 39 Oxford St Maths BA fourth 

The query, "Retrieve the students who did the same number of courses in their first and 
second years", can be expressed as the selection O"P3 (53), where F3 is the formula FIRST = 
SECOND, and 53 is the relation over FST _SND shown in Table 3.12. The result of this query is 
shown in Table 3.13. 

Table 3.12 The relation 53 over FSLSND 

SNAME FIRST SECOND 
Reuven 5 5 
Hanna 4 5 

Dan 5 4 
Hillary 4 4 

Eli 3 6 
Naomi 6 5 

Informally, the natural join of two relations rl over relation schema RI and r2 over relation 
schema R2, with schema(Rd n schema(R2) being the set of attributes X, is the relation 
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Table 3.13 The result of the query (TP3 (53) 

SNAME FIRST SECOND 
Reuven 5 5 
Hillary 4 4 

containing tuples that result from concatenating every tuple of'l with every tuple of r2 both 
of which have the same X-values. The attributes in X are called the join attributes of RI and 
R2· 

Definition 3.16 (Natural join) The natural join (or simply the join), lXI, of two relations rl 
over relation schema RI and r2 over relation schema R2 is a relation over relation schema R 
defined by 

where schema(R) = schema(Rd U schema(R2). • 
Let 51 = Jr[CNAME,DEPT,TNAME}(rz) be the relation shown in Table 3.14 and 52 = 

Jr[DEPT,TNAME,SALARY} (r3) be the relation shown in Table 3.15. The query, "Retrieve the courses 
given in departments and the salaries of tutors for these courses", can be expressed as the 
natural join 51 IXI 52. 

The result of this query is shown in Table 3.16 We observe that the tuples <Philosophy, 
Martine, 1600> and <Linguistics, Ruth, 1l00> in 52 did not participate in the join, since 
their {DEPT, TNAME}-values do not match any corresponding values in 5" Furthermore, the 
tuple <algorithms, Computing, Ada> in 51 did not participate in the join, since its {DEPT, 
TNAME}-value does not match any corresponding values in 52. Such tuples are known as 
dangling tuples. 

There is a connection between the concept of dangling tuples and referential integrity, 
which was introduced in Subsection 1.7.1 of Chapter 1. For example, suppose that the set of 
attributes {DEPT, TNAME} forms the primary key for the schema of relation 52. In this case 
the attributes {DEPT, TNAME} of the schema of relation 51 form a foreign key which references 
these attributes in the schema of 52. It follows that the tuple <algorithms, Computing, Ada> 
is dangling as a result of referential integrity being violated. More specifically, if referential 
integrity is satisfied then there must exist a tuple tin 52 such that t[DEPT) = Computing and 
t[TNAME) = Ada. If, in addition, the set of attributes {DEPT, TNAME} were the primary key 
for the schema of 5" then the tuples in 52 that did not participate in the join are also dangling 
as a result of referential integrity being violated. (It is unlikely that {DEPT, TNAME} is the 
primary key for the schema of 51> since one would expect a teacher to teach more than one 
course in a given department.) 

The query, "Retrieve the courses that students can do in the department they are studying 
in", can be expressed as the natural join Jr{CNAME, DEPT} (5d IXI Jr{DEPT,SNAME) ('1), where 51 and 
r, are shown in Tables 3.14 and 3.1, respectively. The result of this query is shown in Table 3.17. 

It may be easier to understand the semantics of the natural join algorithmically rather than 
by the above declarative definition, The pseudo-code of an algorithm, designated JOIN(r" r2), 

which given the input relations r1 over R1 and r2 over R2, with X = schema(R1) n schema(R2), 
returns r1 IXI '2 over R, is presented as the ensuing algorithm. 
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Table 3.14 The relation 51 = n(CNAME.DEPT.TNAME) (T2) 

CNAME DEPT TNAME 
databases Computing Robert 

programming Computing Hanna 
programming Computing Richard 

algorithms Computing Ada 
logic Maths Reuven 

graph-theory Maths Martine 
Hebrew Linguistics Dan 

Table 3.15 The relation 52 = n (DEPT. TNAME. SALARY] (T3) 

DEPT TNAME SALARY 
Computing Robert 2000 
Computing Hanna 1400 
Computing Richard 1000 

Maths Martine 1600 
Philosophy Martine 1600 

Maths Reuven 1500 
Linguistics Dan 1000 
Linguistics Ruth llOO 

Table 3.16 The result of the query 5 I C><l 52 

CNAME 
databases 

programming 
programming 
graph-theory 

logic 
Hebrew 

Algorithm 3.1 (JOIN(rl , r2)) 
1. begin 
2. Result := 0; 
3. for each tuple t] E rl do 
4. for each tuple t2 E r2 do 
5. if t!lX] = t2 [X] then 

DEPT 
Computing 
Computing 
Computing 

Maths 
Maths 

Linguistics 

6. Joined_tuple ;= a tuple over R such that 
Joined_tuple[schema(R])] = t] and 
Joined_tuple[schema(R2}] == t2; 

7. Result;= Result U Joined_tuple; 
8. end if 
9. end for 
10. end for 
11. return Result; 
12. end. 

TNAME SALARY 
Robert 2000 
Hanna 1400 
Richard 1000 
Martine 1600 
Reuven 1500 

Dan 1000 
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We note that if schema(RI) = schema(R2 ), then the natural join operator reduces to the 
intersection operator, i.e. 
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Table 3.17 The result ofthe query )T{CNAME.DEPTI(SI) I><l )T{DEPT.SNAME) (TI) 

CNAME DEPT SNAME 
databases Computing Iris 
databases Computing Hillary 
databases Computing David 

programming Computing Iris 
programming Computing Hillary 
programming Computing David 

algorithms Computing Iris 
algorithms Computing Hillary 
algorithms Computing David 

logic Maths Reuven 
logic Maths Naomi 

graph-theory Maths Reuven 
graph-theory Maths Naomi 

Hebrew Linguistics Hanna 
Hebrew Linguistics Dan 

Furthermore, if schema(Rd n schema(R2) = 0, then the natural join operator reduces to 
the Cartesian product operator, denoted by x. Therefore, in this case, 

rl W r2 = rl x r2. 

Informally, the Cartesian product of rl over RI and r2 over R2, with schema(Rd n 
schema(R2) = 0, is the result of concatenating every tuple of rl with every tuple of r2. 

The renaming operator allows us to change the name of an attribute in a schema of a relation. 
Renaming is useful when we want to take the union, difference or intersection of relations 
over different schemas, and when we want to take the natural join of two relations over a set 
of attributes other than the set of common ones. 

Defmition 3.17 (Renaming) Let r be a relation over relation schema R, A be an attribute of 
schema(R) and B be an attribute in U, which is not in schema(R). The renaming, p, of A to B 
in r, is a relation over relation schema S, where schema(S) = (schema(R) - (A}) U (B), defined 
by 

PA-.B(r) = (t 13u E rsuch that t[schema(R)-(B}) = u[schema(R)-(A}) and t[B) = u[A)) . 

• 
The query, "Rename SNAME to STUDENT _NAME, ADDRESS to STUDENT -.ADDRESS and 

DEPT to DEPARTMENT in SI", can be expressed as the renaming 

PSNAME-.STUDENT _NAME (PADDRESS-.STUDENT -ADDRESS (PDEPT ..... DEPARTMENT(SI») , 

where SI is the relation shown in Table 3.4. The result of this query is shown in Table 3.18. 
We observe that the only effect of renaming is to change attribute names. 

We next define the division operator, which captures the semantics of universal 
quantification (i.e. for all). Informally, the division of two relations, r over a schema having 
attributes XY and S over a schema having attributes Y, is the set of X-values, say t[XJ, of tuples 
t E r such that for all tuples u E s, u is included in the set of Y -values of tuples t in r having 
X-value t[X). 
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Table 3.18 The result of the query PSNAME-> STUDENLNAME 

(PADDRESS-> STUDENT .ADDRESS (PDEPT ->DEPARTMENT(51») 

STUDENT_NAME STUDENT ...ADDRESS DEPARTMENT 
Iris Malet St Computing 

Reuven HaroldRd Maths 
Hanna Harold Rd Linguistics 
Brian Alexandra Rd Sociology 
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Definition 3.18 (Division) Let r be a relation over relation schema R, with schema(R) = XY, 
and 5 be a relation over relation schema S, with schema(S) = Y. The division, -:-, of r by 5, is a 
relation over relation schema Rb where schema(Rd = X, defined by 

r -:- 5 = {t[Xll t E rand 5 <; 7ly(aF(r», where X = {A" Az , . .. , Aq} 
and F is the formula Al = trAIl /\ Az = t[Azl/\ . . . /\ Aq = t[Aq]}. • 

Let 54 be the relation over TOPICS, shown in Table 3.19, with schema(TOPICS) = TOPIC 
representing the research topics of the Computing department and let 55 be the relation 
over INTERESTS, shown in Table 3.20, with schema(INTERESTS) = {LECTURER, TOPIC} 
representing the particular topics academic staff are interested in. The query, "Retrieve the 
lecturers who are interested in all the topics of the Computing department", can be expressed 
as the division 55 -:- 54' The result of this query is shown in Table 3.21. 

Table 3.19 The relation 54 over TOPICS 

TOPIC 
databases 

software-engineering 
distributed-computing 

Table 3.20 The relation S5 over INTERESTS 

LECTURER TOPIC 
Jack databases 
Jack software-engineering 
Jack distributed-computing 

Jeffrey databases 
Jeffrey distributed-computing 
Jeffrey automata-theory 
John expert-systems 
John software-engineering 
Jill databases 
Jill software-engineering 
Jill distributed-computing 
Jill algorithms 

Table 3.21 The result of the query s5 -:- S4 

LECTURER 
Jack 
Jill 
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The following proposition shows that the division operator can be expressed by the relational 
algebra operators, projection, difference and Cartesian product. 

Proposition 3.2 Let r be a relation over relation schema R, with schema(R) = XY, and s be a 
relation over relation schema S, with schema(S) = Y. Then 

r -:- s = lTx(r) - lTx((lTx(r) x s) - r). o 

A relational algebra expression is an expression resulting from composing a finite number 
of relational algebra operators together, where the operands of the expression are relation 
schemas. 

Definition 3.19 (Relational algebra expressions) A relational algebra expression (or alter
natively a relational algebra query, or just simply a query whenever no ambiguity arises) is 
a well-formed expression composed of a finite number of relational algebra operators whose 
operands are relation schemas which can be treated as input variables to the query. A query 
Q having as operands the relation schemas R" R2 • ... , Rn is denoted by Q(R" R2, ... , Rn) or 
simply by Q if R" R2, ... , Rn are understood from context. • 

Definition 3.20 (An answer to a query) An answer to a query Q(R1, R2, ... , Rn) is obtained 
by replacing every occurrence of Ri in Q by a relation ri over Ri and computing the result 
by invoking the algebra operators present in Q; such an answer to Q will be denoted by 
Q(r" r2, ... , rn) or simply by Q(d) if d is a database over R and for all i E {I, 2, ... , n}, Ri E 

Rand ri E d. • 

We will assume that parentheses are present in Q to indicate the priority of evaluation of 
subexpressions of Q in order to avoid ambiguity when computing Q(rl, r2, ... , r n). At times, 
when no ambiguity arises, we will also refer to an answer to a query simply as a query. 

The relational algebra operators defined above are considered to be the core operators of 
any relational query language. Therefore, in the following we will refer to this set of operators 
(or any minimal subset which is of the same expressiveness) as the relational algebra. For 
example, it is not hard to show that union, difference, projection, selection and Cartesian 
product are such a minimal subset of the relational algebra [Bec781. 

The set of queries, which are expressible in the relational algebra, is considered to be the 
minimal set of queries that any query language for the relational model should possess. Thus 
the relational algebra provides a yardstick for measuring the expressive power of a query 
language for the relational model independently of any implementation. 

Definition 3.21 (Relational completeness of a query language) A query language is said to 
be relationally complete if it is at least as expressive as the relational algebra. • 

It is interesting to investigate the independence of the operators comprising the relational 
algebra. For instance, in Proposition 3.2 we have shown that division is not independent, 
since it can be expressed with projection, difference and Cartesian product. Furthermore, 
we have also shown that intersection can be expressed with difference or with join, Cartesian 



3.2. Query and Update Languages for the Relational Model 101 

product can be expressed with join and in Theorem 3.1 we have shown that simple selection 
together with difference, union and intersection can express any selection formula. Another 
independence result is that join can be expressed with selection, renaming, Cartesian product 
and projection. It can be shown that projection, union and difference are independent 
operators of the relational algebra. Projection is the only operator that removes columns 
from a relation and union is the only operator that adds rows to a relation. It may seem that 
difference can be expressed with selection formulae that allow negation but this is not the case 
as evidenced by the following argument. 

An operator, r, from relations to relations is monotonic, if whenever rl and r2 are relations 
over R, with rl S; r2, it is also the case that r (rd S; r (r2); otherwise r is nonmonotonic. We 
leave it to the reader to verify that selection is a monotonic operator. Now, let r be a relation 
over R, with schema(R) = {AI , A2, . . . , Am}. The complement of r, denoted by r, is given by 

r = (lTAl (r) x lTA2 (r) x .. . X lTAm (r» - r. 

We leave it to the reader to show that, in general, the complement operator is nonmonotonic. 
We therefore conclude that difference cannot be expressed with selection. 

Although the relational algebra provides minimal relational capability, in practice, there 
arises a need for extending the relational algebra in order to enhance its expressive power. We 
will now introduce two extensions in the form of two additional algebraic operators, which 
we will not consider as an integral part of the relational algebra. 

Table 3.22 A family relation 

PARENT CHILD 
pi p3 
pi p4 
p2 p4 
p2 pS 
p3 p6 
p3 p7 
p4 p8 
pS p9 
pS plO 
pS pll 
p7 pl2 
p9 pl2 

The first extension deals with a new operator, called the transitive closure operator, which 
solves the "parts explosion problem" also known as the "bill of materials problem". Consider 
the relation, which we call family, over the relation schema FAMILY with schema(FAMILY) 
= {PARENT, CHILD} describing the descendants of the two parents pI and p2. The acyclic 
structure of the family relation shown in Table 3.22 is described pictorially as a family tree 
shown in Figure 3.1. We note that another common example considers a relation, called parts, 
which has attributes SUPER_PART corresponding to PARENT and SUB_PART corresponding 
to CHILD. In this case the family tree tells us which parts are immediate subparts of a given 
part and which subparts are indirect subparts of a given part. 
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/Pl~/Pl~ 
p3 p4 p5 

/ \ 1 /1"'~ 
p6 P7~Pll/p9 p10 pll 

Fig 3.1 The family tree ofthe family relation in Table 3.22 

A query such as "output the parents and their children" is answered easily by just displaying 
the family relation, and the query "output the parents and their grandchildren" is also easily 
answered by the query: 

7T{GPARENT,GCHILD) (PCHILD---> Jatt (PPARENT---> GPARENT (FAMILY) ) 
~ PPARENT ---> Jatt (PCHILD---> GCHILD (FAMILY))) , 

Let us denote the above query by QKp(FAMILY). Using this query we can easily answer 
queries such as who are the grandchildren of p 1 by 

7TGCHILD(CTp( QKp(FAMILY))). 

where F is the formula GPARENT = pI, and who are the grandparents ofp12 by 

lTGPARENT(CTp(QK p(FAMILY))). 

where F is the formula GCHILD = p12. 

On the other hand, it can be shown that a query such as "Who are the descendants of a 
particular parent at all levels?" cannot be expressed as a relational algebra query, in such a 
way that, for every input relation over FAMILY, we obtain the correct answer. A similar query 
that, in general, cannot be expressed as a relational algebra query is "Who are the ancestors 
of a particular child at all levels?" (A formal proof can be found in [AU79] showing that 
the transitive closure cannot be expressed by using the relational algebra operators we have 
defined so far.) 

In order to understand why the relational algebra is unable to answer such queries, let us first 
examine the bill of materials for the family relation, shown in Table 3.23. This relation shows 
the structure of the family tree by indicating the level of a parent-child relationship relative 
to a given parent at levell. For example, the tuple < I, pI, p3> indicates that pI is a parent 
of p3 at levell, the tuple <2, p3, p7> indicates that p3 is the parent of p7 at level 2 relative 
to pI implying that pI is a grandparent of p7, and the tuple <3, p7, p12> indicates that p7 is 
the parent of p12 at level 3 implying that pI is a great grandparent of p12. Now, informally, 
the reason that the relational algebra is not powerful enough to express such queries is that 
we cannot know a priori how many levels the bill of materials relation will contain. As we 
have seen it is easy to answer queries involving parents, grandparents, great grandparents, 
etc., by joining the family relation as many times as is necessary. However, this technique will 
not work in general, since if the relational algebra query is to give the correct answer for all 



3.2. Query and Update languages for the Relational Model 103 

possible relations over FAMILY then it would contain an unbounded number of joins. This 
leads to a contradiction of the definition of a relational algebra query, which states that a query 
must be composed of a finite number of relational algebra operators. 

Table 3.23 The bill of materials for the family relation 

LEVEL PARENT CHILD 
I pi p3 
2 p3 p6 
2 p3 p7 
3 p7 pl2 
I pI p4 
I p2 p4 
2 p4 p8 
I p2 pS 
2 pS p9 
3 p9 pl2 
2 pS plO 
2 pS pll 
I p3 p6 
I p3 p7 
2 p7 pl2 
I p4 p8 
I pS p9 
2 p9 pI2 
1 pS plO 
I pS pll 
I p7 pl2 
I p9 pI2 

We observe that the family tree is actually a directed graph (recall the formal definition 
of a directed graph given in Section 2.1 of Chapter 2). We now define the transitive closure 
operation on directed graphs. 

Definition 3.22 (Transitive closure of a directed graph) The transitive closure of a directed 
graph (N, E) is a directed graph (N, E+) defined by 

1) if (u, v) E E, then (u, v) E E+, 

2) if (u, v) E E+ and (v, w) E E, then (u, w) E E+, and 

3) nothing is in E+ unless it follows from (1) and (2). • 
The transitive closure of the family tree of Figure 3.1 is shown in Figure 3.2; the new arcs, 

which were added to the original family tree in order to obtain the transitive closure, are shown 
as squiggled lines. We are now in a position to define the transitive closure of a relation. 

Definition 3.23 (Transitive closure of a relation) Let R be a relation schema with schema(R) 
= {A, B} such that att(l) = A and att(2) = B, and where DOM(A) = DOM(B). The transitive 
closure of a relation rover R is the relation r+, where r+ is the set of arcs of the transitive 
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p1 p2 

Fig 3.2 The transitive closure of the family tree in Figure 3.1 

closure of the directed graph (V, r), with V being the set of values present in the tuples of r, 
i.e. the active domain of r. • 

The transitive closure family+ of the family relation, which was shown in Table 3.22, is 
shown in Table 3.24. We observe that the transitive closure of a relation expresses exactly the 
same information as the bill of materials of the relation (see the bill of materials for the family 
relation shown in Table 3.23) . 

It may be easier to understand the semantics of the transitive closure algorithmically rather 
than by the above declarative definition, namely Definition 3.22. The pseudo-code of an 
algorithm, designated TR_CL(r}, which given the input relation rover R returns r+ over R, is 
presented as the algorithm that follows. In the algorithm we let Qioin(R} denote the query 

Algorithm 3.2 (TR_CL(r» 
1. begin 
2. Result := r; 
3. Tmp:=0; 
4. while Tmp # Result do 
5. Tmp := Result; 
6. Result := Result U Qioin(Result}; 
7. end while 
8. return Result; 
9. end. 
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Table 3.24 The transitive closure of the family relation 

PARENT DESCENDANT 
pI p3 
pI p6 
pI p7 
pI pl2 
pI p4 
pI p8 
p2 p4 
p2 p8 
p2 pS 
p2 p9 
p2 pl2 
p2 plO 
p2 pll 
p3 p6 
p3 p7 
p3 pl2 
p4 p8 
pS p9 
pS pl2 
pS plO 
pS pll 
p7 pl2 
p9 pl2 

The second extension of the relational algebra we deal with is that of allowing aggregate 
functions in queries. Aggregate functions allow us to answer queries such as: 

Ql How many tutors work in the college? 

Q2 How many tutors are employed by the college in each department? 

Q3 What is the overall average salary of tutors? 

Q4 What is the average salary of tutors per department? 

Qs What is the maximum, respectively minimum, salary of any tutor? 

Q6 What is the sum of money that the college spends on its tutors per department? 

The above queries cannot be expressed as relational algebra queries, since the relational 
algebra treats domain values as uninterpreted objects and does not provide for computations 
that involve iterating over the tuples in a relation. Informally, an aggregate function computes 
an operation over the A-values of a set of tuples over relation schema R, where A E schema(R). 

Definition 3.24 (Aggregate functions) An aggregate function fA over R is a Turing
computable function, with A E schema(R), which given a finite set of tuples over R returns a 
natural number. • 

The most common aggregate functions are: 

1) COUNT, which returns the number of tuples in its input set of tuples (in this case the 
attribute A is irrelevant); 
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2) MIN, which returns the minimum A-value of its input set of tuples; 

3) MAX, which returns the maximum A-value of its input set of tuples; 

4) SUM, which returns the sum of the A-values of its input set of tuples; and 

5) AVG, which returns the average A-value of its input set of tuples. 

The above list of aggregate functions is by no means exhaustive and various relational 
DBMSs support additional aggregate functions of a statistical nature. For simplicity, we 
assume that if an aggregate function is not defined over one of the A-values of a tuple in its 
input set (which may be empty), then it returns the natural number zero. 

Definition 3.25 (Aggregate functions in queries) Let fA be an aggregate function over R, X 
s; schema(R) and assume that AJ 'I- schema(R) is an attribute in U. The result of applying fA 
to a relation r, over R, with the partitioning attribute set X, denoted by fI(r) (or simply fA if 
X = 0), is a relation over relation schema S, where schema(S) = X U {AJ}, defined by 

fI(r) = {t I 3tl E T such that t[Xl = tdXl and t[AJl = fA({t2 I t2 E rand t2[Xl = t[X]})} . 

• 
Consider the relation T3 over TUTOR with schema(R3) = {TNAME, DEPT, SALARY, DAY}, 

shown in Table 3.3. 

• The answer to Q1, i.e. COUNT(7l'TNAME(r3)), is shown in Table 3.2S. 

• The answer to Q2, i.e. COUNT DEPT (7l'ITNAME.DEPTI (r3)), is shown in Table 3.26. 

• The answer to Q3, i.e. AVGSALARY(7l'{TNAME.SALARYI (r3)), is shown in Table 3.27. 

• The answer to Q4, i.e. AVGflrrRy(7l'{TNAME.DEPT.SALARYI(r3)), is shown in Table 3.28. 

• The answer to QS, i.e. MAXsALARy(r3) x MINsALARy(r3), is shown in Table 3.29. 

• The answer to Q6, i.e. SUMflnRy(7l'ITNAME.DEPT,sALARYI(r3)), is shown in Table 3.30. 

Table 3.25 The answerto COUNT(rrTNAME (r3)) 

I CO~NT I 

Table 3.26 The answer to COUNTDEPT (rrITNAME.DEPT) (r3)) 

DEPT COUNT 
Computing 3 

Maths 2 
Philosophy 1 
Linguistics 2 



3.2. Query and Update languages for the Relational Model 

Table 3.27 The answerto A V GSALARY (1l (TNAME.SALAR Y} (r3)) 

AVG_SALARY 
1371 

Table 3.28 The answer to AVG~}lIRy(1l{TNAME.DEPT.SALARy}(r3)) 
DEPT AVG_SALARY 

Computing 1467 
Maths ISS0 

Philosophy 1600 
Linguistics 10S0 

Table 3.29 The answer to MAXSALARy(r3) x MINSALARy(r3) 
MAX_SALARY MIN_SALARY 

2000 1000 

Table 3.30 The answer to SUM~KlIRy(ll(TNAME,DEPT, SALARY} (r3)) 

DEPT SUM_SALARY 
Computing 4400 

Maths 3100 
Philosophy 1600 
Linguistics 2100 
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It may be easier to understand the semantics of the aggregate functions in queries 
algorithmically rather than by the above declarative definition, namely Definition 3.25. The 
pseudo-code of an algorithm, designated AGG(fA, X, r), which given the aggregate function 
IA and a relation rover R with A, X ~ schema(R), returns If (r), is presented as the following 
algorithm. (A partition of a set P is a disjoint collection of nonempty subsets ofP whose union 
is P; each subset Bi in a partition P is called a block.) 

Algorithm 3.3 (AGG(fA, X, r» 
1. begin 
2. Result := 0; 
3. P := a partition of r such tl, t2 are in the same block in P 

if and only if t, [XI = t2[XI; 
4. for each block Bi in the partition P do 
S. Agg_tuple := a tuple over S such that 

Agg_tuple[XI = t[XI with t E Bi and Agg_tuple[Aj I = IA ({t I t E Bj}); 
6. Result:= Result U {Agg_tuple}; 
7. end for 
8. return Result; 
9. end. 

3.2.2 The Domain Relational Calculus 

The domain relational calculus (or simply the relational calculus or the domain calculus or 
even the calculus) is the declarative counterpart of the relational algebra. It is based on the 
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first-order predicate calculus (see Subsection 1.9.3). In this logical approach a relational 
database is considered to be an interpretation of a first-order theory. In particular, the 
domain of the interpretation is a superset of the active database domain and the relations 
in the database are the extensions of the relation symbols of the database schema. A query 
in the domain relational calculus is essentially checking whether the database is a model of 
the first-order formula represented in the query. The importance of the relational calculus is 
that it is more suitable as a basis of user-oriented query languages due to its high-levelness 
and closeness to natural language. The equivalence between the relational algebra and the 
domain relational calculus (suitably restricted so that it only yields finite answers to queries) 
was first shown in [Cod72b 1 and is discussed in detail in Section 3.3. We proceed to formalise 
the relational calculus. 

Defmition 3.26 (Domain calculus expressions) A domain calculus expression (or alterna
tivelya domain calculus query or just simply a query whenever no ambiguity arises) has the 
form: 

(XI: AI, X2 : A2,.··, Xn : An I F(XI, X2,···, x n)}, 

where Fis a well-formed formula, AI, A2, .. . ,An are distinct attributes inU and XI, X2, ... ,Xn 
are domain variables which occur freely in F, with n ::: O. When n = 0 the above query becomes 
a~~~~ • 

We will assume that all the relation symbols mentioned in the well-formed formula F 
stand for relation schemas which are members of a database schema R. (The concepts of a 
well-formed formula and free occurrence of a variable in a well-formed formula are formalised 
subsequently; see also Subsection 1.9.3.) 

Informally, the answer to a domain calculus query 

with respect to a database d = {rl, r2, ... , r m} over the database schema R = {RI, R2, ... , Rm} 
is a relation r over relation schema R with schema(R) = {AI, A2, ... , An} such that a tuple 
< VI, V2, ... , Vn> E r if and only if 

1) for all i E {I, 2, ... , n}, Vi E DOM(Ai); and 

2) if for all i E {l, 2, . .. , n}, we substitute Vi for Xi in F, then <VI, V2 , ... , Vn> satisfies 
the formula F with respect to the database d. (The exact meaning of satisfaction of a 
formula will be explained subsequently.) 

If there no free variables in F, i.e. n = 0, then the answer to the query is either true if {< > } 
is returned or false if 0 is returned. 

If Q is a domain calculus query, then we denote the answer to Q with respect to a database 
d by Q(d), or simply as Q whenever d is understood from context. 

We now give some example queries so that the reader can get a feel of the style of the 
relational calculus as opposed to the relational algebra. 

Let d = {rl' r2, r3} denote the example database given in Section 3.1, where rl is shown in 
Table 3.1, r2 is shown in Table 3.2 and r3 is shown in Table 3.3. 
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The query, "Retrieve all the tuples in the relation over STUDENT", can be expressed as the 
domain calculus query: 

{Xl: SNAME, X2 : AGE. X3 : ADDRESS. X4 : DEPT. Xs : DEGREE. X6 : YEAR I 
STUDENT(XI. X2. X3. X4. Xs. X6)}(d)· 

The query, "Retrieve the departments, degrees and years of students", can be expressed as 
the domain calculus query: 

{X4 : DEPT, Xs : DEGREE, X6 : YEAR I 
3Xl : SNAME(3x2 : AGE(3x3 : ADDRESS(STUDENT(Xl , X2 , X3, X4, Xs, X6))))}(d) · 

Note the use of the existential quantifier (3) in this query, which is the way that the domain 
calculus simulates the relational algebra projection operation. 

The query, "Retrieve the names and ages of students who are either studying in the 
Linguistics department or whose address is Oxford St", can be expressed as the domain 
calculus query: 

{Xl: SNAME, X2 : AGE I 3X3 : ADDRESS(3x4 : DEPT(3xs : DEGREE(3x6 : YEAR 
(STUDENT(Xl, X2 , X3, X4, Xs , X6) /\ (X4 = 'Linguistics' v X3 = 'Oxford St')))))}(d). 

This query is an example of how the calculus simulates the relational algebra selection 
operation. 

In general, there are many ways of posing the same query. An alternative formulation of 
the above query is: 

{Xl: SNAME, X2 : AGE I 
(3X3 : ADDRESS(3xs : DEGREE(3x6 : YEAR(STUDENT(Xl, X2, X3 , Linguistics, Xs, X6)))))V 

(3X4 : DEPT(3xs : DEGREE(3x6 : YEAR(STUDENT(Xl, X2 , Oxford St, X4 , Xs, x6»)))}(d). 

The query, "Retrieve the names, degrees and departments of students who are not studying 
in the Computing department and are also not in their second year", can be expressed as the 
domain calculus query: 

{Xl : SNAME, Xs : DEGREE, X4 : DEPT I 3X3 : ADDRESS(3x2 : AGE(3x6 : YEAR 
(STUDENT(Xl , X2. X3, X4, Xs , X6) /\ (X4 i= 'Computing' /\ X6 i= 'second'»)))}(d). 

This query is another example of how the calculus simulates the relational algebra selection 
operation. 

For the following query let 53 be the relation over FST _SND from Subsection 3.2.1 , which is 
shown in Table 3.12. The query, "Retrieve the names of students who did the same number 
of courses in their first and second years", can be expressed as the domain calculus query: 

{Xl: SNAME I 3X2 : FIRST(3x3 : SECOND 
(FSLSND(Xl, X2. X3) /\ X2 = X3)) }({53}). 

This query is an example of how the calculus simulates the relational algebra restriction 
operation, which is a special case of selection. 
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Let SHORT_STUD 1 and SHORT_STUD2 be relation schemas with schema(SHORT_STUD1) 
= schema(SHORLSTUD2) = {SNAME, ADDRESS, DEPT} and let 51 over SHORLSTUDI and 
52 over SHORLSTUD2 be the relations from Subsection 3.2.1, shown in Tables 3.4 and 3.5, 
respectively. The query, "Retrieve the students who either have a computing account or are 
receiving a grant", can be expressed as the domain calculus query: 

{XI: SNAME, X2 : ADDRESS, X3 : DEPT I 
SHORLSTUDl(Xl, X2 , X3) V SHORLSTUD2(XI , X2 , X3)}({51 , 52}). 

This query is an example of how the calculus simulates the relational algebra union 
operation. 

The query, "Retrieve the students who have a computing account but do not receive a grant", 
can be expressed as the domain calculus query: 

{Xl: SNAME, X2 : ADDRESS, X3 : DEPT I 
SHORLSTUDl(XI, X2, X3) /\ (-.SHORLSTUD2(Xl , X2, X3))}({51, 52}). 

This query is an example of how the calculus simulates the relational algebra difference 
operation. 

The query, "Retrieve the students who have a computing account and are receiving a grant", 
can be expressed as the domain calculus query: 

{XI : SNAME, X2 : ADDRESS, X3 : DEPT I 
SHORLSTUD1(XI, X2, X3) /\ SHORLSTUD2(XI, X2, X3)}({51, 52}). 

This query is an example of how the calculus simulates the relational algebra intersection 
operation. 

The query, "Retrieve the names of courses and the tutoring days", can be expressed as the 
domain calculus query: 

{XI: CNAME, X2 : DAY I 
3X3 : DEPT(3x4 : TNAME(3xs : TEXT(3x6 : SALARY 

COURSE(X3, Xl, X4 , Xs) /\ TUTOR(X4, x3, x6, x2))))}(d). 

This query is an example of how the calculus simulates the relational algebra natural join 
operation. 

An alternative formulation of the above query is: 

{XI: CNAME, x2 : DAY I 
3x~ : DEPT(3x~ : DEPT(3x! : TNAME(3~ : TNAME(3xs : TEXT(3x6 : SALARY 
(COURSE(x~, Xl , X!, xs) /\ TUTOR(~, x~, x6, X2) /\ X~ = ~ /\ X! = ~))))))}(d) . 

Assume that 51 over SHORLSTUD is the relation of Subsection 3.2.1, shown in Table 3.4 
and recall that '2 is a relation over COURSE, shown in Table 3.2. The query, "Retrieve the 
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courses that students can do in the department they are studying in", can be expressed as the 
domain calculus query: 

{Xl: CNAME, X2 : DEPT, X3 : SNAME I 3X4 : ADDRESS(3x5 : TNAME(3x6 : TEXT 
(SHORLSTUD(x3 , X4, Xz) 1\ COURSE(X2, Xl, X5 , X6))))}({51, r2}). 

This query is another example of how the calculus simulates the relational algebra natural 
join operation. 

Let 54 be the relation over TOPICS, shown in Table 3.19, and let 55 be the relation over 
INTERESTS, shown in Table 3.20. The query, "Retrieve the lecturers who are interested in all 
the topics of the Computing department", can be expressed as the domain calculus query: 

{Xl : LECTURER I 'VX2 : TOPIC(3x3 : TOPIC 
(TOPICS(X2) 1\ INTERESTS(XI, X3) 1\ X2 = X3))}({54, 55}) ' 

This query is an example of how the calculus simulates the relational algebra division 
operation. 

We now formally define the components - which are the symbols allowed in formulae and 
well-formed formulae built from atomic formulae by using the logical connectives - of domain 
calculus expressions. 

The following symbols are allowed to appear in formulae: 

• Constant values (or simply constants) , v, Vi> Vz, ... , which are elements of the set V. 

• Domain variables (or simply variables), x, Xl, XZ, ..• , which are members of a countably 
infinite set of variables V disjoint from V . 

• Relation symbols, R, R" Rz, ... , which are drawn from a countably infinite set of 
symbols disjoint from V and V; each relation symbol corresponds to the relation schema 
associated with that symbol. 

• The equality operator, =. 

• The quantifiers and logical connectives, 3 (there exists), 'V (for all), 1\ (and), v (or), => 
(implication) and ~ (not). 

• Delimiters, 0 (parentheses), and, (comma). 

As in the relational algebra selection formulae we have only included equality (=) as a 
comparison operator; in general, however, we can expect also to have at least::::: (less than or 
equal to) and < (less than) available. 

Atomic formulae are defined as follows: 

1) R(Yl,YZ, .. . ,Yn), where R is a relation symbol with type(R) 
{I , 2, . . . , n}, Yi is either a constant or a variable. 

2) X = y, where X is a variable and Y is either a variable or a constant. 

n and for all j E 
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Well-formed formulae (or simply formulae) are now defined recursively as follows: 

1) An atomic formula is a formula. 

2) ifF is a formula, then so are ~F and (F). 

3) If FI and F2 are formulae, then so are FI 1\ F2, FI V F2 and FI ~ F2. 

4) If F is a formula then 3x : A(F) and "Ix : A(F) are formulae, where x is a variable and A 
is an attribute. 

5) No other formulae are well-formed formulae . 

A subformula of a formula F is a substring of F that is also a formula. We omit parentheses 
in formulae if no ambiguity arises as to the meaning of a formula. In addition, we write x =I Y 
as an abbreviation for ~(x = y). 

From now on we will assume that all the relation schemas corresponding to the relation 
symbols that are mentioned in F are included in a database schema R. 

The free occurrences of variables in a formula are defined as follows: 

1) All the variables occurring in an atomic formula are free. 

2) The free variables occurring in -.F and F are the same as the free variables occurring in 
the formula F. 

3) The free variables occurring in FI 1\ F2, FI V F2 and FI ~ F2 are the free variables 
occurring in the formula FI together with the free variables occurring in the formula F2. 

4) The free variables occurring in 3x : A(F) and "Ix : A(F) are the free variables occurring 
in the formula F except for occurrences of x in F. 

We write F(XI, X2 , . . . , xn) for a formula F to indicate that XI, X2 , ... , Xn are all the free 
variables occurring in F. 

Definition 3.27 (Satisfaction of a formula by a tuple) Let d = {fl, f2 , . .. , fml be a database 
over the database schema R = {RI, R2 , ... , Rml and consider the query 

A tuple < VI , V2, ... , Vn> satisfies the formula F with respect to d, if for all i E (l, 2, ... , n 1, 
Vi E DOM(Ai), and one of the following conditions is satisfied: 

1) If F is the atomic formula R(YI ,Y2, ... ,n), then R E R and the tuple t, resulting from 
substituting Vi for each variable Yi E (YI, Y2, .. . , nl, satisfies t E f, where ris the relation 
over R in d. 

2) If F is the atomic formula Xi = Yj' then Vi = Vj is satisfied, where Vi is substituted for Xi, 
and either Yj is a variable and Vj is substituted for Yj or Yj is a constant and Vj = Yj· 

3) IfF is the formula (G), then <VI, V2, .. . , Vn> satisfies the formula F if <VI. V2, . ..• Vn> 
satisfies G. 



3.2. Query and Update languages for the Relational Model 113 

4) If F takes one of the forms: -.F, FI /\ F2, FI V Fl or FI :::} Fl, then < VI , Vl , ... , Vn> 

satisfies F is defined according to the semantics of the corresponding logical connectives. 
As an example, <VI, V2, ... , Vn> satisfies FI :::} F2 if either <VI, Vl, . . . , Vn> does not 
satisfy FI or <VI, V2 , ... , Vn> satisfies Fl' (See Definition 3.14 oflogical implication for 
the semantics of the rest of the connectives.) 

5) If F is the formula 3Xi : A (G(XI, xl , ... , Xi,···, xn)), then <VI, Vl,· · ·, Vi-I, Vi+! , 
... , Vn> satisfies F if there exists aconstant Vi E DaM (A) such that when Vi is substituted 
for Xi, <VI, V2,"" Vi- I, Vi, Vi+I , ... , Vn> satisfies G. 

6) If F is the formula YXi: A (G(XI, Xl , ... , Xi , ... ,xn)), then <VI, Vl , .. . , Vi-I, Vi+l, 

... , Vn> satisfies F if for all constants Vi E DOM(A), when Vi is substituted for Xi, 

<VI , Vl , ... , Vi-I, Vi, Vi+I,· · · , Vn> satisfies G. • 
Informally, an answer to a query 

{XI: AI, Xl: A l , · · · , Xn : An I F(XI' X2,···, xn)} 

with respect to a database d is the set of all tuples satisfying F. 

Definition 3.28 (An answer to a domain calculus query) An answer to a query 

{XI : AI, Xl: Al," " Xn : An I F(XI , Xl, ... , Xn)} 

with respect to a database dover R, denoted by 

{XI: AI, Xl : A2, ... ,Xn : An I F(XI , Xl, ... , xn)}(d), 

is a relation r over relation schema R, with schema(R) = {AI, Al, ... ,An}, defined by 

r = (t I t satisfies F) . • 
At times we will also refer to an answer to a query simply as a query when no ambiguity 

arises. 

We do not deal with the extension of the domain calculus to incorporate the transitive 
closure operator or aggregate functions. We mention that an extension of the relational 
calculus which deals with aggregate functions was given in [Klu82j. On the other hand, we 
will see that the transitive closure operator can be expressed naturally in Datalog, which is 
presented in the next section. 

We now briefly introduce SQL (Structured Query Language) [AC75, ChaBOj, which is a 
relational database query language based on the domain calculus. SQL is in fact more than 
just a query language, since it also supports updates, data definition of relation schemas, 
transaction processing and recovery, security of relations, definition of integrity constraints 
and definition of views. SQL was developed during the 1970's at IBM as part of the System R 
project. During the 1980's SQL was standardised by ISO and the current ISO SQL standard is 
its second version, called SQL2 [DD93j. Currently most relational DBMSs support SQL and 
there is a growing demand from users that these systems support the standard. 
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In the following we will only cover a small subset of the data manipulation part of SQL. A 
simple SQL query is a statement, called a SELECT statement, having the form: 

SELECT AI, A2, ... , Aq 
FROM RI , R2, ... , Rk 
WHEREF 

In the above SELECT statement, RI, R2, ... , Rk are relation schemas, AI , A2, ... , Aq are 
attributes in those relation schemas and F is a selection formula over a relation schema whose 
attributes comprise the union of the attributes in each schema(Rj),j E {I, 2, ... , k} . 

The semantics of the above SQL query can be best explained in terms of the following 
relational algebra query: 

That is, in order to answer a simple SQL query we take the Cartesian product of the relations 
rj over Rj in the database which we are querying, then select the tuples that logically imply F 

and finally project the result onto attributes specified in the SELECT clause. If the WHERE 
clause is omitted then all the tuples in the Cartesian product are projected onto the specified 
attributes. 

The SQL query 

SELECT DEPT, DEGREE, YEAR 
FROM STUDENT 

is equivalent to the relational algebra query, 1l"(DEPT,DEGREE.YEAR} (STUDENT). 

The SQL query 

SELECT * 
FROM STUDENT 
WHERE DEPT = 'Linguistics' OR ADDRESS = 'Oxford St' 

is equivalent to the relational algebra query crFI (STUDENT), where FI is the formula: DEPT = 
'Linguistics' v ADDRESS = 'Oxford St'. Note that "*" is used to denote the set of all attributes 
in schema(STUDENT). 

The SQL query 

SELECT * 
FROM STUDENT 
WHERE (NOT (DEPT = 'Computing'» AND (NOT (YEAR = 'second'» 

is equivalent to the relational algebra query crF2 (STUDENT), where F2 is the formula: DEPT 
::j: 'Computing' /\ YEAR ::j: 'second'. 
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The SQL query 

SELECT SNAME, STUDENT.DEPT, CNAME 
FROM STUDENT, COURSE 
WHERE STUDENT.DEPT = COURSE.DEPT 

l1S 

is equivalent to the relational algebra query 7l'{SNAME.DEPT.CNAMEj(STUDENT ~ COURSE). 
Note that whenever an attribute appears in two or more schemas we use the dot notation R.A 
to indicate that we are referring to the attribute A in schema(R). 

The SQL query 

SELECT DEPT, MAX(SALARY) 
FROM TUTOR 
GROUP BY DEPT 

is equivalent to the relational algebra query MAX~lnRy(TUTOR). Note that the GROUP BY 
clause has the effect of partitioning an input relation to the query, over the schema TUTOR, 
according to the attribute DEPT. 

The final example shows an SQL query in which the formula in the WHERE clause of the 
query is an SQL query itself. Such a query in the WHERE clause is called a subquery. The 
syntax of a subquery, which is nested within the WHERE clause of an SQL query, is the same 
as a general SQL query and thus multiple subqueries are allowed. 

The SQL query 

SELECT TNAME 
FROM TUTOR 
WHERE EXISTS 

SELECT * 
FROM COURSE 
WHERE TNAME.TUTOR = TNAME.COURSE 

is equivalent to the relational algebra query 7l'TNAME(TUTOR ~ COURSE). Note that the 
subquery is connected to the main query by using the keyword EXISTS; informally, this leads 
to the selection of only those tuples such that the result of applying the subquery is a nonempty 
relation. 

3.2.3 Datalog 

Datalog is an abbreviation for Data Logic. As mentioned in Subsection 1.7.5 of Chapter 1 
Datalog is a rule-based declarative query language. The syntax of Datalog is essentially a 
subset of the syntax of Prolog [MW88a, SS941. In Datalog function symbols in predicates 
are not allowed and in its purest form there are no extra-logical predicates that operate by 
"side-effect" such as input and output predicates and, in addition, there are no procedural 
predicates such as the infamous cut, which, in general, cannot be interpreted declaratively. 
The semantics of Datalog are purely logical as opposed to the semantics of Prolog which 
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are procedural. Thus, for example, in Prolog the order of the rules in a program and the 
order of the literals in the body of rules can have an effect on the semantics of a program. 
Furthermore, the order of facts in a Prolog database can also have an effect on the semantics 
of a program. In Datalog the order of rules in a program and the order of literals in the 
body of rules have no effect whatsoever on the semantics of the program. Another important 
difference between Prolog and Datalog is that Prolog processes one fact at a time while Datalog 
processes sets of facts at a time. The importance of Data log is that it adds deductive or inference 
capabilities to the relational calculus, thus transforming a relational database into a logical 
database. 

We now formally define the syntax of Datalog programs. 
The atomic formulae of Datalog are the same as the atomic formulae of domain calculus 

expressions. As with domain calculus expressions, we write x i= y as an abbreviation for 
-o(x = y) . We will distinguish between the following types of atomic formula: 

• An atomic formula of the form R(y' ,Y2, . . . ,Yk) is called a predicateformula (or simply 
a predicate); recall that the relation symbol R of the atomic formula corresponds to the 
relation schema having that symbol (when no ambiguity arises we use the terms relation 
symbol, predicate and relation schema interchangeably). 

• An atomic formula of the form x = y is called an equality formula (or simply an equality). 

• A predicate formula of the form R(v" V2 , . . . , Vk) , where the Vj are constants in 
DOM(att(i)) for each i E {l , 2, . .. , k}, is called a ground atomic formula over R. 

A literal is either an atomic formula, say L, or the negation of L, namely -oL; L is called a 
positive literal and -oL is called a negative literal. A literal which is a ground atomic formula 
or the negation of a ground atomic formula is called a ground literal. 

A clause (or alternatively a rule) is an expression of the form: 

L :-L" L2, . .. , Ln. 

In a rule such as above n :::: 0 is a natural number, for all i E {I, 2, .. . , n}, Li is a literal and 
L is a predicate. The sequence of literals, L" L2, .. . , Ln, is called the body of the clause and L 
is called the head of the clause. If n = 0 then we abbreviateL: - simply to L. In the special 
case where n = 0 and L is a ground atomic formula over R, we call L a fact over R (or simply 
a fact if R is understood from context). A clause which is not a fact is called a nontrivial rule 
(or when there is no confusion, simply a rule). A Datalog program P (or simply a program 
P) is a finite set C" C2 , . .. , Cm of clauses. (When it is convenient then, without any loss of 
generality, we view P as a sequence of clauses.) 

We observe that a relation r over a schema R induces a set of facts all having the relation 
symbol R. For example, the first two tuples in the relation r, over STUDENT, shown in Table 3.1, 
induce the following two facts: 

STUDENT(Iris, 21, Malet St, Computing, BSC, first) . 
STUDENT(Reuven, 32, Harold Rd, Maths, BSC, second). 

Prior to the ensuing definition, we recall the definition of an acyclic and cyclic directed 
graph from Section 2.1 of Chapter 2. 
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FAMILY TC') 

Fig 3.3 The dependency graph ofTC 

Defmition 3.29 (Recursive and nonrecursive Datalog programs) The dependency graph of 
a Datalog program P is a digraph (N, E), where the set of nodes N is the set of relation 
symbols that appear in the literals ofP, and there is an arc from RI to R2 in E if there is a rule 
in P whose body contains either the positive literal RI (YI, Yz, . .. , Yk) or the negative literal 
...... R1(YI,Y2, ... ,Yk) and whose head is the literal R2(ZI, Z2, ... , Zq). 

A Datalog program is said to be nonrecursive if its dependency graph is acyclic, otherwise 
if its dependency graph is cyclic, it is said to be a recursive Datalog program. • 

An example of a recursive Datalog program, say TC, is: 

TC(xI , X2) : - FAMILY(xI , X2). 
TC(xI, X3):- FAMILY(xI , X2), TC(x2 , X3). 

The cyclic dependency graph of the above simple Datalog program is shown in Figure 3.3. 

After we define the meaning of a Datalog program it will be evident that the Datalog program 
given above computes the transitive closure of FAMILY, assuming that the program contains 
some facts over FAMILY (see Definition 3.34 below). 

For the rest of this section we will assume that Datalog programs are nonrecursive and refer to 
them simply as Datalog programs. Although we restrict Datalog programs to be nonrecursive, 
Definition 3.34, giving the semantics of Datalog programs, does obtain for recursive Datalog 
programs also. (The definition for recursive Datalog programs will be needed in Chapter 9 
on deductive databases). 

We now give some examples of Datalog programs so that the reader can get a feel of the 
programming style of Datalog. In all of the programs we have assumed a relation symbol, 
RESULT, whose set of facts will contain the result of the query when the Datalog program is 
evaluated. 

The query, "Retrieve all the tuples in the relation over STUDENT", can be expressed as the 
result of the Datalog program: 

The query, "Retrieve the departments, degrees and years of students", can be expressed as 
the result of the Datalog program: 

Note how the absence of variables in the head of a rule simulates the use of the 
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existential quantifier (:3) in a domain calculus query and thus the relational algebra projection 
operation. 

The query, "Retrieve the names and ages of students who are either studying in the 
Linguistics department or whose address is Oxford Sf', can be expressed as the result of 
the Datalog program: 

RESULT(xI. X2): - STUDENT(xI. X2. X3. X4. Xs. X6), X4 = 'Linguistics'. 
RESULT(xI. X2) : - STUDENT(XI, X2, X3, X4 . Xs, X6), X3 = 'Oxford st'. 

Note how two rules in a Datalog program simulate the use of disjunction (v) in a domain 
calculus query. In addition, each rule simulates a relational algebra selection operation. 

The query, "Retrieve the names, degrees and departments of students who are not studying 
in the Computing department and are also not in their second year", can be expressed as the 
result of the Datalog program: 

The above program is an example of how Datalog simulates the relational algebra selection 
operation. 

For the following query let S3 be the relation over FST _SND from Subsection 3.2.1, which is 
shown in Table 3.12. The query, "Retrieve the names of students who did the same number of 
courses in their first and second years", can be expressed as the result of the Datalog program: 

The above program is an example of how Datalog simulates the relational algebra restriction 
operation, which is a special case of selection. 

Let SHORT _STUD1 and SHORT _STUD2 be relation schemas withschema(SHORT_STUDl) 
= schema(SHORLSTUD2) = {SNAME, ADDRESS, DEPT} and let slover SHORLSTUDl and 
52 over SHORLSTUD2 be the relations from Subsection 3.2.1, shown in Tables 3.4 and 3.5, 
respectively. The query, "Retrieve the names of students who either have a computing account 
or are receiving a grant", can be expressed as the result of the Datalog program: 

RESULT(XI, X2, X3): - SHORLSTUD1(XI, X2, X3). 
RESULT(Xl, X2, X3) : - SHORLSTUD2(XI, X2, X3). 

The above program is an example of how Datalog simulates the relational algebra union 
operation. 

The query, "Retrieve the names of students who have a computing account but do not 
receive a grant", can be expressed as the result of the Datalog program: 

The above program is an example of how Datalog simulates the relational algebra difference 
operation. 



3.2. Query and Update Languages for the Relational Model 119 

The query, "Retrieve the names of students who have a computing account and are receiving 
a grant", can be expressed as the result of the Datalog program: 

The above program is an example of how Datalog simulates the relational algebra 
intersection operation. 

The query, "Retrieve the names of courses and the tutoring days", can be expressed as the 
result of the Datalog program: 

The above program is an example of how Datalog simulates the relational algebra natural 
join operation. 

An alternative formulation of the above query is: 

Assume that slover SHORT _STUD is the relation of Subsection 3.2.1, shown in Table 3.4, 
and recall that r2 is a relation over COURSE. The query, "Retrieve the courses that students 
can do in the department they are studying in", can be expressed as the result of the Datalog 
program: 

The above program is another example of how Datalog simulates the relational algebra 
natural join operation. 

Let S4 be the relation over TOPICS, shown in Table 3.19, and let S5 be the relation over 
INTERESTS, shown in Table 3.20. The query, "Retrieve the lecturers who are interested in 
all the topics of the Computing department", can be expressed as the result of the Datalog 
program: 

RESULT(xI) : - INTERESTS(xI , X3), -.DIFF(xI). 
DIFF(xI) : - PROD(xI, X2), -.INTERESTS(xI , X2) . 
PROD(xI, X2) : - INTERESTS(xI, X3), TOPICS(X2). 

The above program is an example of how Datalog simulates the relational algebra division 
operation. The acyclic dependency graph of the above program is shown in Figure 3.4. 

A Datalog program makes sense only if the relations that can be derived from executing 
these programs are finite. The safety restriction, defined next, provides a syntactic restriction 
of programs which enforces the finiteness of derived predicates (or relations). 

Definition 3.30 (Safe Datalog program) A variable x occurring in one of the literals in the 
head or the body of a rule, say C, occurs positively in C if and only if either 
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T~C:r~T 
~ 

RESULT 

Fig 3.4 The dependency graph of RESULT 

1) The variable x appears in a predicate formula R(y, , Y2, ... ,x, ... ,Yk), whichisa positive 
literal in the body of C, or 

2) The variable x appears in an equality formula x = v, which is a positive literal in the 
body of C, where v is a constant, or 

3) The variable x appears in the equality x = y or y = x, which is a positive literal in the 
body of C, where y is a variable that appears positively in C. 

A Datalog rule C is said to be safe if all the variables appearing in the literals of C (including 
the head of C) occur positively in C. A Datalog program P is said to be safe if all the rules of P 
~~. . 

We observe that in a safe rule all the variables in the head of a rule must appear in one or 
more literals in its body. Furthermore, all the variables appearing in negative literals in the 
body of a safe rule must occur positively in one or more atomic formulae in its body. 

Example 3.1 The following rules are not safe: 

1) RESULTl(x): - COURSE(x" X2, X3, X4) 

2) RESULT2(x" X2, X3, X4) : - ..... COURSE(x" X2, X3, X4) 

3) RESUL T3(x,) : - COURSE(x" X2 , x3, X4), Xs = x6 

In the first rule the variable x does not appear in the body of the rule. In the second rule the 
variables X" X2 , X3 , X4 appear only in the negative literal in the body of the rule. In the third 
case Xs and X6 appear only in the equality Xs = X6. • 

The reader can verify that all the examples of Datalog programs given prior to Example 3.1 
are safe. 

As we will show in Subsection 3.3.2 the class of nonrecursive safe Datalog programs can 
express exactly the same set of queries that the relational algebra can express. Moreover, we 
also show in Subsection 3.3.2 that nonrecursive safe Datalog can be viewed as a restricted 
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version of the domain calculus, that is, nonrecursive safe Datalog is exactly as expressive as 
this restricted version of the domain calculus. 

We proceed to define the semantics of general Datalog programs, which may be recursive 
and unsafe. 

Defmition 3.31 (The schema of Datalog program) The database schema of a Datalog pro
gram P, denoted by SCHEMA(P), is a set of relation schemas defined by 

SCHEMA(P) = {R I R is a relation symbol that appears in a literal of a rule in Pl. • 

Defmition 3.32 (Substituting the variables in a clause) Let C be a clause and {XI, X2 , . . . , Xq} 

be the variables appearing in the literals of the body of C. A substitution 0 for C is a set of 
assignments {xllvI> x21v2, .. . , xqlvq}, where for all i E {I, 2, ... , q}, Vi is in the domain of 
constants, V. We denote by O( C) the clause resulting from applying the substitution 0 to the 
literals in C, i.e. the result of substituting, for each i E {I, 2, . .. , q}, the constant Vi for the 
variable Xi in each of the literals in C. • 

We note that all the literals of the clause O(C) are ground literals. 

Definition 3.33 (Truth of a clause with respect to a database) A literal L in the body of a 
clause C in a Datalog program P is true with respect to a substitution 0 for C and a database d 
over SCHEMA(P) if one of the following conditions is satisfied: 

1) OCL) is a ground atomicformula of the form R(VI, V2, ... , vk) and <VI, V2, ... , Vk> E r, 
where rEd is the relation over R. 

2) O(L) is an equality, V = v, where V is a constant. 

3) O(L) is a ground literal of the form ~R(VI , V2 , ...• Vk) and <VI, V2, ... , Vk> ¢ r, where 
rEd is the relation over R. 

4) OCL) is a negative literal of the form, ~(Vi = Vj), where Vi and Vj are distinct constants, 
i.e. such that Vi =1= Vj' 

A clause C in a program P is true with respect to a substitution 0 for C and a database dover 
SCHEMA(P) if each of the literals in the body of C is true with respect to 0 and d. • 

We observe that the truth of a negative literal with respect to a substitution and a database 
is consistent with the CWA (closed world assumption) [Rei78], since ~R(VI, V2, ... , Vk) is 
assumed to be true if the tuple <VI , V2, .. . , Vk> is absent from the database. This causes 
a problem if the Datalog program is unsafe, since infinite relations may be derived due to 
the fact that the underlying domain is infinite. Thus RESULT2 of Example 3.1 is an infinite 
relation. 

We further note that if the body of the clause is empty, i.e. the clause is a predicate, then C 
is trivially true with respect to any substitution 0 for C and any database dover SCHEMA(P). 
In particular, if C is a fact then C is trivially true with respect to 0 and d. 

The meaning of a Datalog program P, denoted by MEANING(P), is informally the database 
resulting from adding to the initial set of facts recorded in P as many new facts of the form 
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O(L) as possible, where 0 is a substitution that makes a rule C in P true and L is the head of 
C. (A set of facts whose relation symbols are in SCHEMA(P) is naturally associated with a 
database dover SCHEMA(P), since a fact having the relation symbol R can be viewed as a set 
of tuples over R.) 

Definition 3.34 (The meaning of a Datalog program) The pseudo-code of an algorithm, 
which realises MEANING(P), is next presented. (The variable 1m is called the immediate 
consequence of the current state of MEANING(P).) • 

Algorithm 3.4 (MEANING(P» 
1. begin 
2. Result := 0; 
3. Tmp := {< >}; 
4. while Tmp #- Result do 
5. Tmp := Result; 
6. Im:= 0; 
7. for all clauses C in P and substitutions e for C 

such that C is true with respect to e and Result do 
8. Im:= 1m U {eeL)} where L is the head ofC; 
9. end for 
10. Result := Result U 1m; 
11. end while 
12. return Result; 
13. end. 

We observe that the current state of Result strictly increases after each iteration of the while 
loop beginning at line 4, provided the relations in the immediate consequence, 1m, of Result 
are not already included in the respective relations in Result. Thus 1m induces an immediate 
consequence operator, sayT, such that T(Result) = Result U 1m. Such an increasing operator 
is called inflationary, and the final output database returned from MEANING(P) is called the 
inflationary fixpoint of the Datalog program P [GS86, KP91j. (We also refer to MEANING(P) 
as the inflationary meaning of P.) 

We will now show how we can optimise Algorithm 3.4. 

Let CONST(P) denote the set of all constants appearing in the literals of the clauses in a 
Datalog program P, and call a substitution e = {xllvl> x21v2, ... , xqlvq} for a clause C in P a 
safe substitution if {VI, V2 , . . . , Vq} ~ CONST{P). 

The following proposition, which follows immediately from the definition of a clause being 
true with respect to a substitution and a database, states that when computing MEANING{P) 
for a safe Datalog program, P, it is sufficient to consider only safe substitutions. 

Proposition 3.3 Let dover SCHEMA{P) be the current state of Result at line 10 of the 
algorithm MEANING{P) after one or more executions of the while loop beginning at line 
4 of the algorithm. Then a clause C in a safe Datalog program P is true with respect to a 
substitution e for C and d if and only if e is a safe substitution for C. 0 
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The next proposition states that when considering only safe substitutions, then safe and 
unsafe Datalog are equivalent, since only finite relations can be generated in both cases. 

Proposition 3.4 Assume that only safe substitutions e for C are considered in line 7 of 
MEANING(P). Then safe and unsafe Datalog are equivalent in the sense that for every unsafe 
Datalog program pu, there exists a safe Datalog program Ps such that MEANING(PU) = 
MEANING(ps). 

Proof Let pu be an unsafe Datalog program. We can then construct a safe Datalog program, 
denoted by PC, having a distinguished unary predicate, CONSTANT, which is the head of all 
the rules in PC, and such that the set of facts in MEANING(PC) over CONSTANT is exactly 
CONST(PU). First for every rule RU in pu whose head is R(XI , X2 , . .. , Xj, . .. , Xk) such that Xj 
does not appear in the literals of the body of RU add CONSTANT(xi) to the body of RU • Then for 
every rule RU in pu, and every negative literal in the body of RU of the form --.R(XI , X2, ... , Xk), 

which causes RU to be unsafe, add the positive literals, CONSTANT(XI), CONSTANT(x2), .. . , 
CONSTANT(Xk), to the body of RU • Moreover, for every rule RU in pu, and every equality in 
the body of RU of the form Xi = Xj, which causes RU to be unsafe, add the positive literals, 
CONSTANT(xj) and CONSTANT(xj) to the body of RU • Finally, add the rules in Pc to the 
modified version of pu, and denote this program by PS. We leave it to the reader to verify that 
Ps is indeed a safe Datalog program and that MEANING(PS) = MEANING(PU). 0 

For the rest of the book we assume that only safe substitutions are considered at line 7 of 
MEANING(P). Therefore, due to the above proposition, we need not distinguish between safe 
and unsafe Datalog, since under this assumption all Datalog programs can be considered as 
being safe. (At times for clarity we will highlight the fact that a Datalog program is safe.) 

Definition 3.35 (The initial database of a Datalog program) The initial (relational) data
base of a Datalog program P, over SCHEMA(P) = {RI, R2 ,". ' Rn}, denoted by DB(P), is 
the set of relations {rl' r2 , ... , rn} such that for all i E {1 , 2, .. . , n}, ri is defined by 

rj = {<VI, V2, . .. , Vk> I Rj(vI , V2 , ... , Vk) is a fact over Ri that appears in Pl. • 
We say that a database dl over a database schema R is included in a database d2 over R, 

written dl C d2, if V r,l E dl over Rj E R, with rl -I- 0, 3,-2 E d2 over Ri such that rl c ,-2. 
- I -r I I - I 

The following proposition follows immediately from inspecting Algorithm 3.4 noting that 
if a clause C is actually a fact, say R( VI, V2, . .. , Vk), then C is true with respect to any database 
and the empty substitution e = 0. 

Proposition 3.5 The initial database of a Datalog program P, DB(P), is included in the 
meaning ofP, MEANING(P). 0 

Let P be a Datalog program and SCHEMA(P) = {RI' R2, ... ,Rn}. Now, due to the fact 
that in this section P is assumed to be nonrecursive, we can order the relation schemas in 
SCHEMA(P) in such a way that for any Rj, Rj E SCHEMA(P) if there is a path from Ri to Rj in 
the dependency graph of P then i < j. (We note that such an ordering can be obtained by a 
topological sort of the dependency graph, as defined in Subsection 1.9.2 of Chapter 1.) Let us 
assume that the relation schemas in SCHEMA(P) are ordered in this manner. 
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The pseudo-code of an algorithm, which realises NEW _MEANING(P), taking into account 
Propositions 3.3, 3.4 and 3.5 and the ordering of the relation schemas in SCHEMA(P), 
is presented as the algorithm that follows; for the purpose of the algorithm, given a 
database dover SCHEMA(P), d U R;(VI, V2, . . . , Vk) is the database resulting from inserting 
<VI, V2 , ... , Vk> into the relation ri E dover Ri, where d is a database over SCHEMA(P). 

Algorithm 3.5 (NEW ~EANING(P» 
1. begin 
2. Result := DB(P); 
3. for i := 1 to n do 
4. while there exists a rule C in P such that Ri is the relation symbol of its head 

and there exists a safe substitution 8 for C 
such that C is true with respect to 8 and Result do 

5. Result := Result U 8(L) where L is the head of C; 
6. end while 
7. end for 
8. return Result; 
9. end. 

We leave the proof of the following theorem to the reader. 

Theorem 3.6 Given a Datalog program P (which is assumed to be nonrecursive and safe), 
MEANING(P) = NEW ~EANING(P). 0 

We now show how the meaning of a Datalog program can be used to answer queries. 

Defmition 3.36 (Datalog query) A Datalog query with respect to a Datalog program P is an 
expression of the form: -pL, where L is a predicate (or simply: - L whenever P is understood 
from context). • 

Defmition 3.37 (The answer to a Datalog query) LetL be the predicate R(YI,!2, .. . ,Yk) and 
(XI, X2, ... , xq) be the variables appearing in L. Furthermore, let us call a substitution 8 = 
(xi/v" X2/V2, ..• , xqlvq) safe for L with respect to a Datalog program P if {v" V2, ..• , vq} ~ 
CONST(P). Then the answer to the Datalog query, : -pL, is the relation rover R, defined by 

(8(L) I 8 is a safe substitution for L with respect to P, and 8(L) E r, 
where r E MEANING(P) is the relation over R E SCHEMA(P)}. • 

We note that if R ¢ SCHEMA(P), then the answer to : -L is the empty set. The following 
notation will be useful later on when we discuss the equivalence of the relational algebra, the 
domain calculus and nonrecursive safe Datalog programs. 

Definition 3.38 (Datalog query with respect to a database) Let P be a Datalog program and 
d be a database over R such that R ~ SCHEMA(P). The Datalog program P with respect to 
d, denoted by P(d), is the Datalog program resulting from removing all the facts in DB(P) 
from P and then adding to P all the facts contained in the relations of the database d. That is, 
DB(P(d» = d holds, i.e. the facts in P are replaced by those in d to obtain P(d). 
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Let Q be the Datalog query : -pL. Then the Datalog query Q with respect to P and d, denoted 
by Q(d), is defined as the Datalog query: -P(d)L. • 

3.2.4 An Update Language for the Relational Model 

So far we have only considered query languages for the relational model, which can only be used 
to retrieve information from a relational database. In this section we consider the dynamic 
aspects of updating a relational database resulting in its transition from one state to another. 
An update can take one of three forms, namely an insertion, a deletion or a modification. 
Insertion of a tuple into a relation results in the addition of this tuple to the relation. The 
deletion of a set of tuples from a relation with respect to a condition, C, results in the removal 
of the set of tuples satisfying C from the relation. The modification of a set of tuples with 
respect to two conditions, CI and C2, results in replacing the set of tuples satisfying C) by the 
set of tuples satisfying C2. A transaction can now be defined as the sequential composition of 
one or more updates. The aim of this section is two-fold. Firstly, to formalise the notion of an 
update and a transaction, and secondly to show that the equivalence of two transactions can be 
tested in polynomial time in the size of the transactions being tested. The test for equivalence 
is an essential ingredient in optimising a transaction, which intuitively means replacing the 
transaction by an equivalent one which requires less operations. Prior to defining updates we 
formalise the notion of a condition and a set of tuples satisfying a condition. 

Definition 3.39 (Condition) A simple condition over R is either an expression of form A = a 
or an expression of the form A =f a, where A E schema(R) and a E DOM(A). 

AconditionCoverRisaconjunctioncjI"c2A . . . Acqofsimpleconditionsci, i E {I, 2, ... , q}, 
such that C does not contain two distinct simple conditions of the form A = a and A = b or of 
the form A = a and A =f a, for some A E schema(R). 

A positive condition over R is a condition of the form 

where {A), A2, .'" Aq} ~ schema(R) and ai E DOM(Ai), for i E {I, 2, ... , q}. 

A complete condition over R is a positive condition over R, where {AI , A2, ... ,Aq} = 
schema(R) obtains in the definition of a positive condition. • 

We observe that disallowing distinct simple conditions of the form A = a and A = b or of 
the form A = a and A =f a, for some A E schema(R), restricts conditions to be meaningful by 
not having mutually exclusive conditions. 

Definition 3.40 (Satisfaction of a condition by a tuple) Let r be a relation over R, let t be a 
tuple in r and, in addition, let C = CI A C2 A ... A cq be a condition over R. Then t satisfies C, 
written t 1= c, is defined recursively, as follows: 

1) t 1= A = a, if t[A) = a is true. 

2) t 1= A =f a, if t[A) =f a is true. 

3) t 1= C, if Vi E (I, 2, .. . ,q), t 1= Ci. • 
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We note that we could extend conditions in a straightforward way to be general Boolean 
expressions but we prefer to keep the formalism simple. Furthermore, for simplicity we only 
formalise updates on single relations but we note that the definitions given below can be 
extended to databases (containing several relations) in a straightforward manner. 

Definition 3.41 (An update) Let r be a relation over relation schema R, with schema(R) = 
{A\, A2 , .. . , Am}. An update over R is either an insertion over R, a deletion over R or a 
modification over R. 

An insertion over R is an expression of the form insert( C), where C is a complete condition 
over R. The effect of an insertion insert( C) over R on r is defined by 

[insert(C)](r) = r U {t I t F= C}. 

A deletion over R is an expression of the form delete( C), where C is a condition over R. The 
effect of a deletion delete( C) over R on r is defined by 

[delete(C)](r) = r - {t I t E rand t F= C}. 

The modification of a tuple t over R with respect to a condition C, denoted by [modify( C)] (t), 
is defined by 

[modify(C)](t) = u, where u is a tuple over R such that 
VAi E schema(R), urAd = ai if (Ai = ai) E C, otherwise urAd = t[Ad. 

A modification over R is an expression of the form modify( C\; C2), where Cl and C2 are 
conditions over R such that for each A E schema(R), if A "1= a is in C2 for some a E DOM(A), 
then A "1= a is also in C\. The effect of a modification modify(Ct; C2) over R on r is defined by 

[modify(C\; C2)](r) = (r - (t I t E rand t F= Cd) U ([modify(C2)](t) I t E rand t F= Cd . 

• 
The definition of a modification can be viewed as a deletion followed by a sequence of 

insertions whereby each inserted tuple is the result of modifying some deleted tuple. We note 
that we could restrict condition C2 above to be positive and the effect of the modification would 
remain unchanged; however, for the purpose of the normal form introduced in Definition 3.44, 
we find the above definition convenient. 

As a running example for this subsection, suppose that we have a relation schema 
EMPLOYEE having attributes: ENAME (employee name, abbreviated to EN), DNAME 
(department name, abbreviated to DN) and SALARY (employee salary, abbreviated to SL). A 
relation r over EMPLOYEE is shown in Table 3.31. 

Table 3.31 The relation r over EMPLOYEE 

ENAME DNAME SALARY 
John Computing 30K 
Jack Computing 35K 
Jake Biology 30K 
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Consider the following updates, where ":=" denotes assignment: 

1) rl := [insert(EN = Jill /\ DN = Maths /\ SL = 25K))(r) is shown in Table 3.32. 

2) r2:= [insert(EN = Joe /\ DN = Maths /\ SL = 35K))(rd is shown in Table 3.33. 

3) r := [delete(DN = Maths))(r2) is shown in Table 3.31. 

4) r:= [delete(DN =I Computing /\ DN =I Biology))(r2) is shown in Table 3.31. 

5) rl := [delete(EN = Joe))(r2) is shown in Table 3.32. 

6) r3 := [modify(DN = Computing; DN = Maths))(r) is shown in Table 3.34. 

7) r4:= [modify(DN =I Computing; DN = Maths))(r) is shown in Table 3.35. 

Table 3.32 The relation rl over EMPLOYEE 

ENAME DNAME SALARY 
John Computing 30K 
Jack Computing 35K 
Jake Biology 30K 
Jill Maths 25K 

Table 3.33 The relation r2 over EMPLOYEE 

ENAME DNAME SALARY 
John Computing 30K 
Jack Computing 35K 
Jake Biology 30K 
Jill Maths 25K 
Joe Maths 35K 

Table 3.34 The relation r3 over EMPLOYEE 

ENAME DNAME SALARY 
John Maths 30K 
Jack Maths 35K 
Jake Biology 30K 

Table 3.35 The relation r4 over EMPLOYEE 

ENAME DNAME SALARY 
John Computing 30K 
Jack Computing 35K 
Jake Maths 30K 
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Informally a transaction is the composition of several updates. In the following an update 
will be designated by upd. 

Definition 3.42 (Transaction) A transaction T over R is a finite sequence of updates over R. 
The effect of a transaction T = updJ, upd2 , ... , updn, on a relation rover R, where n ::: 0 is a 
natural number, is defined by 

[T)(r) = [updnl(. .. ([upd21([updd(r») .. . ). • 
We note that according to Definition 3.42, if n = 0 then [T](r) = r. Consider the following 

transactions on r: 

1) TJ = insert(EN = Jill /\ DN = Maths /\ SL = 25K), modify(EN = Jack; DN = Maths). 

2) T2 = insert(EN = Jill /\ DN = Maths /\ SL = 25K), insert(EN = Jack /\ DN = Maths /\ SL 
= 35K), delete(EN = Jack /\ DN = Computing /\ SL = 35K). 

3) T3 = modify(EN = John; EN = Jill /\ DN = Maths /\ SL = 25K), insert(EN = John /\ DN 
= Computing /\ SL = 30K), modify(EN = Jack; DN = Maths). 

4) T4 = delete(EN = Jack), insert(EN = Jack /\ DN = Maths /\ SL = 35K), insert(EN = Jill /\ 
DN = Maths /\ SL = 25K). 

5) Ts = modify(DN =1= Biology; DN = Maths), modify(EN = John; DN = Computing), 
insert(EN = Jill /\ DN = Maths /\ SL = 25K). 

It can be verified that [Td(r) = [T2)(r) = [T3)(r) = [T4)(r) = [Ts)(r) = rs, where r is 
shown in Table 3.31 and r5 is shown in Table 3.36. 

Table 3.36 The relation rs over EMPLOYEE 

ENAME DNAME SALARY 
John Computing 30K 
Jack Maths 35K 
Jake Biology 30K 
Jill Maths 25K 

The next definition formalises the intuition that two transactions over R are equivalent if 
they have the same effect on all relations over R. 

Defmition 3.43 (Equivalent transactions) Two transactions, TJ and T2, over a relation 
schema R are said to be equivalent if for all relations, r, over R, [Td (r) = [T2)(r) . • 

We next define a normal form for transactions which will be useful in proving that the 
equivalence of transactions can be decided in polynomial time in the size of the transactions. 

Definition 3.44 (Normal form transaction) Let T be a transaction over R. Then the active 
domain ofT with respect to an attribute A E schema(R), denoted by ADOM(T, A), is the set 
of all values in DOM(A) that occur in the conditions of the updates of T. The active domain 



3.2. Query and Update Languages for the Relational Model 129 

ofT with respect to R (or simply the active domain ofT when R is understood from context), 
denoted by ADOM(T}, is given by 

ADOM(T) = U ADOM(T,A). 
AEschema(R) 

We associate with T and each attribute, A E schema(R}, a set of normal form conditions, 
denoted by NF(T, A}, given by 

NF(T,A)={A=a1aEADOM(T,A)}U{ 1\ A#a}. 
aEADOM(T.A) 

The set of normal form conditions for T, denoted by NF(T}, is the set of all possible 
conjunctions of normal form conditions having one normal form condition from NF(T, A} 
for each attribute A in schema(R) such that A appears in T. Formally NF(T} is given by 

NF(T) = { 1\ CA 
AEschema(R) 

CA E NF(T, A) }. 

The transaction T is in normal form if every condition C occurring in T is in NF(T}. • 

It follows that a transaction T is in normal form if for every two conditions C1 and C2 
occurring in T the set of tuples {t I t F Cd is either disjoint or equal to the set of tuples 
{t I t F C2}. To see this, suppose for example that schema(R) = {A, B}, ADOM(T, A} = {O, I} 
and ADOM(T, B} = {I, 2} . Then NF(T} = {A = 0 /\ B = 1, A = 0 /\ B = 2, A = 0 /\ B # 1/\ B 
# 2, A = 1 /\ B = 1, A = 1 /\ B = 2, A = 1 /\ B # 1 /\ B # 2, A # ° /\ A # 1/\ B = 1, A # ° /\ A 
# 1 /\ B = 2, A # ° /\ A # 1 /\ B # 1 /\ B # 2}. 

From Definition 3.44 we have that insertions are always in normal form. On the other 
hand, transactions consisting of deletions and modifications may not be in normal form. 
For example, the transaction, delete(DN # Biology /\ SL = 30K), modify(DN # Maths; DN = 
Computing}, is not in normal form, while the transaction, delete(DN # Biology /\ DN # Maths 
/\ DN # Computing /\ SL = 30K}, delete(DN = Maths /\ SL = 30K}, delete(DN = Computing 
/\ SL = 30K}, modify(DN # Biology /\ DN # Maths /\ DN # Computing /\ SL = 30K; DN = 
Computing /\ SL = 35K), modify(DN = Computing /\ SL = 30K; DN = Computing /\ SL = 35K), 
modify(DN = Biology /\ SL = 35K; DN = Computing /\ SL = 30K), is in normal form. (We 
observe that the active domain of EN with respect to both these transactions is empty.) 

Given a condition Cover R we let the restriction of C to the attributes in schema(R)-{A}, 
denoted by C I~A' to be the condition C with any simple condition of the form A = a or A # a 
removed from C. 

The following two axioms, called the split axioms, allow us by their repeated application to 
transform any transaction into normal form. 

Defmition 3.45 (Split axioms) The two split axioms are given by 

SPLITl: delete( C) is transformed into the equivalent transaction: 

delete(C /\ A # a), delete(C I~A /\ A = a), 
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SPLIT2: modify( C; C') is transformed into the equivalent transaction: 

modify(C /\ A =I a; Cd, modify(C [~A /\ A = a; C2), 

where A E schema(R), a E DOM(A), A =I a is not one of the simple conditions of C, and for 
each b E DOM(A), there is no simple condition in C of the form A = b. Moreover, C1 = C2 = C' 
if A = b is a simple condition in C' for some b E DOM(A), otherwise Cl = C' /\ A =I a and 
C2 = C' [ ~A /\ A = a. • 

Intuitively, when the split axioms transform a condition C the set of tuples satisfying Cis 
partitioned into two complementary sets: the set of tuples satisfying C and A =I a and the set 
of tuples satisfying C and A = a. This allows us to apply the resulting updates to each one of 
the two sets of tuples independently. 

For example, the SPLIT! axiom transforms delete(DN = Maths /\ EN =I Jack) into the 
transaction: delete(DN = Maths /\ EN =I Jack /\ EN =I John), delete(DN = Maths /\ EN 
= John). As another example, the SPLIT2 axiom transforms modify(DN =I Biology; DN 
= Maths) into the transaction: modify(DN =I Biology /\ DN =I Computing; DN = Maths), 
modify(DN = Computing; DN = Maths). As a final example, the SPLIT2 axiom transforms 
modify(EN =I John; DN = Computing) into the transaction: modify(EN =I John /\ EN =I Jack; 
DN = Computing /\ EN =I Jack) , modify(EN = Jack; DN = Computing /\ EN = Jack). It is now 
evident that applying the SPLIT axioms repeatedly to a transaction results in an equivalent 
transaction. 

Lemma 3.7 Given a transaction T over R, a normal form transaction T', which is equivalent 
to T and such that for all A E schema(R), ADOM(T, A) ~ ADOM(T' , A), can be found in 
polynomial time in any finite set of values ADOM(T' ) that includes ADOM(T). 

Proof. We assume without loss of generality that T consists of a single update. Otherwise, we 
can transform each update in T into normal form and then concatenate all of the resulting 
normal form updates to obtain the desired normal form transaction T'. 

In order to transform T into normal form we iteratively apply the relevant split axiom 
with respect to some value in ADOM(T' ) until the current state of T is in normal form. The 
number of such iterations is bounded by O([ADOM(T' )[type(R) , since by Definition 3.45 each 
update can only be split once with respect to a given domain value. The result follows since 
this transformation is polynomial in ADOM(T'), although we note that it is exponential in 
type(R). 0 

The next theorem establishes the central result of this section, namely that transaction 
equivalence can be decided in polynomial time in the size of the transactions being tested 
lAVSS). 

Theorem 3.8 The problem of whether two transactions over a relation schema Rare 
equivalent can be decided in polynomial time in the number of active domain values in 
the two transactions. 
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Proof Let T = upd" upd2, ... , updn be a transaction over R which is in normal form. We 
show how to transform T into a pair (/, s), called a transition over R, where f is a partial 
mapping from the set of all tuples over R to themselves and s is a relation over R. The relation 
s corresponds to the tuples that are inserted by T and is equal to [T](0). The partial mapping 
f is defined from the updates, Updi, as the composition fnf"-, ... hf, (we denote composition 
of mappings by juxtaposition), where fi, i E I I, 2, ... , n - I, n}, is defined as follows: 

1) If updi is the insertion update, insert( C), then for all tuples t over R,fCt) = t, i.e. in this 
case f is the identity mapping. 

2) If upd; is the deletion update, delete(C), then for all tuples t over R such that t F= C,f(t) 
is undefined and for all other tuples t' over R such that t' ~ C,f(t') = t'. 

3) If updi is the modification update, modify( C,; C2), then for all tuples t over R such that 
t F= C"fCt) = [modify(C,; C2)]({t}) and for all other tuples t' over R such that t' ~ C" 
f(t') = t'. 

We observe that although the mapping f is defined at the individual tuple level, conceptually 
we can view the tuples as being grouped into sets of tuples according to the condition C that 
they satisfy, where C is a normal form condition. 

The effect of a transition (/, s), as constructed above, on a relation rover R is given by 

[if, 5)](r) = {j(t) I t Ern dom(/)} U 5, 

where dom(/) denotes the domain of the partial mappingf; we note that if t ¢ r n dom(j) 
thenf(t) is undefined. It is evident that the effect of a transaction T on a relation r is the same 
as the effect of the transition, which was constructed from T, on r, i.e. [(/, s)](r) = [TI(r). 

Next, let T, and T2 be two transactions over R. By Lemma 3.7 we can assume without any 
loss of generality that T, and T2 are in normal form and that ADOM(Td = ADOM(T2). When 
T, and T2 are in normal form we can transform them in polynomial time in the sizes of T, 
and T2 into the transitions (/" 5,) and (/2, 52), respectively, as described above. 

We say that two transitions (/,,5,) and (/2, 52) over R are equivalent if for all relations rover 
R the effect of (/,,5,) on r is the same as the effect of (/2, S2) on r, i.e. [(/" 5,)](r) = [(/2, 52»)(r). 
It, therefore, remains to decide whether (/,,5,) and (/2, 52) are equivalent. 

Now, it can be shown that (/" 51) and (/2, 52) are equivalent if and only if the following two 
conditions obtain: 

1) 5, = 52, i.e. both transitions insert the same tuples, and 

2) for each distinct i,j Ell, 2) and for each tuple t over R, iffi(t) is defined and is not in 
5j, then !J(t) is defined and fi(t) = !J(t), i.e. if one transition modifies a tuple t that was 
not the result of an insertion, then the other transition must also modify this tuple in 
the same manner. 

We observe that if fi(t) is undefined then !J(t) must also be undefined, otherwise a 
contradiction occurs due to the following argument. If !J(t) is defined and it is not in Sj 
then by condition (2) fi(t) = !J(t), otherwise if !J(t) E 5j then!J(t) = f;(t) = t, since Si = Sj by 
condition (l). 
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Finally, the equivalence of if) , 5) and if2 , 52) can be tested in polynomial time in IADOM( Tj) I 
as follows. Firstly, we can easily test whether the first condition holds, i.e. 5) = 52. Secondly, 
in order to test the second condition we need only consider tuples t such that for all A E 

schema(R), t[A) E ADOM(Tj, A) U {VA}, where VA is a distinct value in DOM(A) - ADOM(h 
A) and there are at most IADOM(Tj)+Iltype(R) such tuples, where i E {I,2}. (The value VA 

acts as a representative value not in ADOM(Tj, A).) To conclude the proof, it can be verified 
by the construction of ik, for k E {I, 2, ... , n}, that we can simulate !Ct) by [T)({t)). 0 

A survey on update languages can be found in [Abi88), and an algorithm for optimising 
transactions is presented in [A V88]. An extension of the formalism we have described to 
parameterised transactions and an investigation on how the consistent states, which satisfy a 
set of data dependencies, can be expressed in terms of transactions can be found in [A V85, 
AV89] . (Data dependencies are discussed in detail in Section 3.6.) A sound and complete 
axiom system (see Definition 3.53) for proving the equivalence of two transactions is given in 
[KKPV87, KV9I]. Finally, an extension of transactions to handle parallel updates is presented 
in [KV88]. 

3.3 The Equivalence of Query Languages for the Relational 
Model 

A fundamental result in relational database theory is that of the equivalence of the query 
languages for the relational model, which we presented in the previous section. Two query 
languages are equivalent if for all input databases and for each query in the first (respectively 
the second) query language there is some query in the second (respectively the first) query 
language such that both queries return the same answer relation. Establishing the equivalence 
of these query languages is important for several reasons. Firstly, it provides strong evidence 
that Definition 3.21 of relational completeness is a robust measure of the expressive power 
we would like a relational database query language to have. Secondly, due to the different 
styles of the equivalent query languages, it allows for a relational DBMS to support procedural, 
declarative and rule-based interfaces, all having the same underlying query processing engine. 
Thirdly, by proving the equivalence we gain a better understanding of the limitations of the 
relational algebra and how it can be enhanced to deal with recursive queries by using the 
logical basis of Datalog (see Chapter 9 on deductive databases for details). 

In order to prove the equivalence of the three query languages we have presented in the 
previous section, both the domain calculus and Datalog need to be restricted so that their 
answer set is always finite, even when the underlying attribute domains may be infinite. 
A suitable restriction of Datalog is that it be safe (see Definition 3.30 in Subsection 3.2.3), 
while a suitable restriction of the domain calculus is that it be allowed (see Definition 3.50 in 
Subsection 3.3.1). 

In Subsection 3.3.1 we study the important concept of domain independence which 
intuitively means that the result of a query over a database depends only on the domain 
elements in the database and those mentioned in the query and not on the rest of the values 
in the underlying domains. We show that relational algebra and Datalog queries are domain 
independent but that domain calculus queries are, in general, not domain independent. 
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When the domain calculus is restricted to the allowed domain calculus it becomes domain 
independent. In Subsection 3.3.2 we prove the fundamental result that the relational algebra 
is equivalent to both the allowed domain calculus and to nonrecursive safe Datalog. 

3.3.1 Domain Independence 

Queries expressed in the relational algebra always yield finite answers, since the operands 
of such queries are relations which are by definition finite objects. Furthermore, the values 
present in an answer to a relational algebra query depend only on the values in the input 
relations together with the constant values that appear in the query itself, and not on the totality 
of values in the domains, DOM(Aj), from which the relations are built. This characteristic of 
the relational algebra is important, since attribute domains are, in general, either countably 
infinite sets or very large finite sets. It follows that an answer to a relational algebra query 
depends only on the constants present in the query and the active domain of the database 
with respect to which the query was issued; it does not depend on other constant values 
in the domains, DOM(Aj). A query language that satisfies this property is called domain 
independent. We show that both the relational algebra and Datalog are domain independent 
but that the domain calculus is not. We present a domain independent subset of the domain 
calculus, called the allowed domain calculus, which, in the next subsection, will be shown to 
be equivalent both to the relational algebra and nonrecursive safe Datalog. 

In the following when we refer to a query Q it will either be a relational algebra query, 
a domain calculus query or a Datalog query. We will assume that the arguments of the 
query are relation schemas in a database schema R. In the case of a relational algebra query 
these arguments are the operands of the query, in the case of a domain calculus query these 
arguments are the relation schemas mentioned in the well-formed formula of the query, and 
in the case of a Datalog query with respect to a Datalog program these are the relation schemas 
over which the initial database of the Datalog program is defined. 

In order to formalise the notion of domain independence some definitions follow. 

Definition 3.46 (Active domain of a query) The active domain of a query Q, denoted by 
ADOM(Q), is the set of constant values appearing in Q. • 

Example 3.2 Let Q be the query "Retrieve the names of students who are enrolled in the 
Computing department" and let rl be the relation over STUDENT, shown in Table 3.1. Then 
ADOM( Q) = Computing. The relational algebra query corresponding to Q is: 

Jl"SNAME(ap(rd), 

where F is the formula DEPT = 'Computing'. 

The domain calculus query corresponding to Q is: 

{Xl: SNAME I 3X2(3x3(3x4(3xs(3x6 
(STUDENT(XI, X2, X3, X4, xs, X6) 1\ X4 = 'Computing'»)))}({r!l). 
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The Datalog query corresponding to Q is: 

: -p COMP _STUD(x) 

where P is the Datalog program 

COMP _STUD(xI) : - STUDENT(XI, X2, X3, Computing, xs, X6). 

together with the set of facts that are contained in rl. • 
In order to distinguish between various finite or infinite subsets ofD which can be chosen 

as the domain of an attribute A E schema(R), we extend the notation, DOM(A), to DOMj(A), 
where j is a natural number. Thus, in general, DOMj(A) =1= DOMk(A), for j =1= k. We will let 
DOMjCR) denote the union of DOMjCA) for all attributes A in schema(R), i.e. 

DOMj(R) = U{DOMj(A) I A E schema(R)}. 

We will refer to DOMjCR) as the underlying domain of R and say that DOMj(R) is the 
underlying domain of a database dover R if DOMj replaces DOM in Definition 3.7 of a 
database. (Note that this is equivalent to stating that ADOM(d) S; DOMj(R).) When we want 
to emphasise the fact that DOMjCR) is the underlying domain of d we will refer to d as the pair 
(d, DOMjCR)). 

Weare now ready to define the concept of a domain independent query, which informally 
means that for all databases d input to a query Q the answers to Q depend only ADOM(Q) U 
ADOM(d). 

Definition 3.47 (Domain independent query) A query Q is domain independent if, for all 
underlying domains of R, DOMI (R) and DOM2(R), and for all databases dover R such that 
ADOM(Q) U ADOM(d) is a subset of both DOMI (R) and DOM2(R), the equation 

Q«d, DOMI(R))) = Q«d, DOM2(R))) 

holds. • 
In Exercise 3.12 you are required to show that there is no loss of generality in restricting 

DOMI (R) and DOM2(R) in Definition 3.47 to be finite domains. This result immediately 
implies that a domain independent query is well-defined for all input databases, in the sense 
that its answer is always a finite relation. 

The following proposition follows from the semantics of answers to relational algebra and 
Datalog queries (recall from Subsection 3.2.3 that we only consider safe substitutions when 
computing the meaning of a Datalog program). 

Proposition 3.9 All relational algebra and Datalog queries are domain independent. 0 

Note that the above proposition still holds if we allow safe recursive Datalog programs in 
addition to nonrecursive safe Datalog programs. On the other hand, domain calculus queries 
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may not be domain independent as we now demonstrate with two example queries. Let 
STUDS and LECTS be two unary relation schemas with schema(STUDS) = schema(LECTS) 
= {PNAME}, where DOM(PNAME) is the domain of person names. A relation over STUDS 
contains the names of students currently enrolled in the college and a relation over LECTS 
contains the names of lecturers currently employed by the college. In addition, let TI be a 
nonempty relation over STUDS, T2 be a non empty relation over LECTS and let d = {TI, T2} be 
a database over {STUD, LECTS}. 

The following domain calculus query asks for the names of people who are not currently 
enrolled in the college, namely 

{x: PNAME I -'STUDS(x)} . (3.1) 

According to Definition 3.28 the answer to (3.1) with respect to d includes all the tuples 
in DOM(PNAME) that are not in TI. Assuming that DOM(PNAME) is infinite then the 
answer to (3.1) is infinite. Apart from the fact that the answer is not a relation (which by 
Definition 3.7 must be finite), it cannot be computed in a finite amount of time. Moreover, 
even if DOM(PNAME) is finite then increasing DOM(PNAME) by adding elements to it will 
increase the number of tuples in the answer to (3.1). 

The following query asks for the names of people who are either students enrolled in the 
college or lecturers employed by the college, namely 

{XI: PNAME, X2 : PNAME I STUDS(xI) v LECTS(X2)}. (3.2) 

The answer to (3.2) according to Definition 3.28 is the set of all possible name pairs <sname, 
lname> such that either <sname> E TI is true or <lname> E T2 is true but not necessarily 
both are true. Thus, if <sname> E TI and <iname> if. T2 or if <lname> E T2 and <sname> 
if. TI> <sname, lname> is still in the answer to (3.2). Note that if TI and T2 are both empty 
then the answer to the query is empty. It follows that if either TI or T2 is nonempty and 
DOM(PNAME) is infinite then the answer to (3.2) is infinite and therefore not computable in 
a finite amount of time. Moreover, as in (3.1), even ifDOM(PNAME) is finite then increasing 
DOM(PNAME) by adding elements to it will increase the number of tuples in the answer to 
(3.2). 

The above example highlights the two main problems which cause a domain calculus query 
to be domain dependent, namely 

1) The query has a subformula of the form -.p such that a variable in F does not occur 
positively in some atomic formula elsewhere in the query. 

2) The query has a subformula of the form FI v F2 such that the free variables of FI are not 
the same as the free variables of F2. 

The following theorem, which was proved in [DiP69j and [Var81j (see also [Kif88]), implies 
that, in general, there is no effective algorithm to decide whether a domain calculus query is 
domain independent or not. The proof relies on a reduction from the finite validity problem, 
which was stated in Theorem 1.4 of Subsection 1.9.5 of Chapter 1. 

Theorem 3.10 The problem of determining whether a domain calculus query is domain 
independent is undecidable. 0 
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Despite the negative result stated in Theorem 3.10, we will now define a subclass of domain 
calculus queries, called allowed domain calculus queries [Top87, VT91], which are guaranteed 
to be domain independent. 

Defmition 3.48 (Positive occurrence of a variable in a domain calculus formula) A variable 
x occurs positively (or simply x is positive) in a domain calculus formula if and only if one of 
the following cases holds: 

1) x is positive in an atomic formula R(YI. 12 • . ..• x . ...• Yk) in which x appears. 

2) x is positive in an atomic formula x = v in which x appears, where v is a constant. 

3) x is positive in the formula -,F, if x is negative in F. 

4) x is positive in the formula FI i\ F2, if either x is positive in FI or x is positive in F2. 

5) x is positive in the formula FI v F2, if x is positive in FI and x is positive in F2. 

6) x is positive in the formula FI => F2, if x is negative in FI and x is positive in F2. 

7) x is positive in the formula 3y : A (P), if x :f=. y and x is positive in F. • 
Defmition 3.49 (Negative occurrence of a variable in a domain calculus formula) A variable 
x occurs negatively (or simply x is negative) in a domain calculus formula if and only if one of 
the following cases holds: 

1) x is negative in the atomic formula x = y in which x appears, where y is a variable. 

2) x is negative in the formula -,F, if x is positive in F. 

3) x is negative in the formula FI i\ F2, if x is negative in FI and x is negative in F2' 

4) x is negative in the formula FI v F2, if either x is negative in FI or x is negative in F2• 

5) x is negative in the formula FI => F2, if either x is positive in FI or x is negative in F2. 

6) x is negative in the formula \ly : A (F), if x :f=. y and x is negative in F. 

7) if x does not appear in a formula F, then x is negative in F. • 
Definition 3.50 (An allowed domain calculus query) A domain calculus formula F is al
lowed if all of the following conditions hold: 

1) For every free variable x of F, x is positive in F. 

2) For every subformula 3x : A (G) of F, x is positive in G. 

3) For every subformula \Ix: A (G) of F, x is negative in G. 

A domain calculus query is allowed if its formula is allowed. • 
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In the following we call the domain calculus, restricted to allowed formulae, the allowed 
domain calculus (or simply the allowed calculus). 

We note that an algorithm which decides whether a domain calculus query is allowed or not 
can easily be devised by a simple recursion on the structure of the domain calculus formula 
of the query. 

The following theorem can be proved by induction on the number oflogical connectives in 
the domain calculus formula of a query. 

Theorem 3.11 Every allowed domain calculus formula is domain independent. 0 

We demonstrate the above theorem with some simple queries, where STUDS and LECTS 
are the relation schemas defined above and LIVES is a relation schema with schema(LIVES} 
= {PNAME, ADDRESS}. The following query retrieves the names of people who do not live 
in London: 

{Xl: PNAME I LIVES(Xl, X2) 1\ -.LIVES(XI, London)}. 

This query is allowed, since Xl is positive in LIVES(XI, X2}. 

The following query retrieves the names of people who either live in Manchester or London: 

{XI: PNAME I LIVES(Xl, Manchester) v LIVES(Xl, London)}. 

This query is allowed, since XI is positive in both LIVES(xl> Manchester} and LIVES(xl> 
London}. 

The following allowed query returns true if the relation 'lover STUDS is empty otherwise 
it returns false if'l is not empty: 

{X: PNAME I "Ix : PNAME(-.STUDS(x»}. 

The above query is actually equivalent to the following query: 

{X: PNAME I -.(:3x: PNAME(STUDS(x»)}. 

The query shown in (3.1) is not allowed, since the free variable X is negative (i.e. it is not 
positive) in -.STUDS(x). The query shown in (3.2) is also not allowed, since the free variable 
X2 is negative in STUDS(xI) and similarly the free variable XI is negative in LECTS(X2). 

The following query is not allowed, since XI does not appear in the formula of the query: 

{XI: PNAME I LIVES(x2, Manchester)} . 

Another way of restricting domain formulae so as to obtain a subclass of domain 
independent queries is to restrict the quantifiers :3 andY to range over relations, which are by 
definition finite objects. Let DOMAIN be a unary relation schema with schema(DOMAIN} = 
{A}, then 

"Ix E DOMAIN(F) is an abbreviation for "Ix: A (DOMAIN(x) =? F) 
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and 
:3x E DOMAIN(F) is an abbreviation for:3x : A (DOMAIN(x) /\ F), 

where F is a well-formed formula of the domain calculus. Such restricted quantifiers are 
known in logic as relativised quantifiers [Van89). 

For the rest of this subsection let us assume that DOMAIN E R holds, and thus any database 
d, with respect to which a query Q is answered, includes a relation over DOMAIN. In addition, 
let us assume that the relation r in d over DOMAIN is such that r = ADOM(Q) U ADOM(d), 
i.e. r includes all the active domain values in Q and d. 

We note that if the underlying domains of different attributes are disjoint (or more generally 
not equal to each other) then we can partition the relation over DOMAIN accordingly. 

The following proposition [Top87) shows that relativised quantifiers can be used to 
transform a domain calculus query, which may not be domain independent, into a domain 
independent query. 

Proposition 3.12 Let Q be the domain calculus query 

and let {y\ , Y2 , ... ,Ym} be the subset of the free variables of Q that are negative in F. Then, 
provided all of the quantifiers in Fare relativised, the query 

is allowed and thus domain independent. o 

The following theorem taken from [Top87) shows that in most practical cases domain 
independent queries have an equivalent allowed query. 

Theorem 3.13 If Q is domain independent, then for all databases dover R, such that the 
relation r in d over DOMAIN is nonempty, Q(d) = Qr(d), where Q is the domain calculus 
query of Proposition 3.12 and QT is given by the relativised query of (3.3). 0 

The reader can verify that the condition that DOMAIN be nonempty is necessary in the 
statement of Theorem 3.13 by considering a database schema R = {Rl, with schema(R) = {A}, 
and taking Q to be the Boolean query 

I "Ix: A (R(x) /\ ~R(x»}, 

whose result is always empty, representing the fact that Q is false. However, the relativised 
query QT, given by 

I "Ix: A (DOMAIN(x) ::::} (R(x) /\ ~R(x»)}, 

returns {< > } when DOMAIN is empty, representing the fact that QT is true. 

From a practical point of view we note that all SQL queries are domain independent, since 
they effectively maintain the form of the query Qr of (3.3). Every domain variable declared in 
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an SQL query must range over a projection 7r A (R), where R is a relation schema mentioned in 
the FROM-clause of the query. 

An alternative approach to dealing with the undecidability result of Theorem 3.10, which 
does not restrict the domain calculus to a subclass of its queries, is now briefly discussed, 
assuming that the underlying database domain, 1), is fixed and infinite. In this alternative 
approach for a given database dover R and a domain calculus query Q we solve the state-safety 
problem, which is the problem of deciding whether the answer Q(d) is finite, prior to actually 
computing the answer to the query. If the solution to the state-safety problem for d and Q 
is negative, i.e. the answer Q(d) is infinite, then we abandon the query and return a result 
indicating that the query is undefined for the input database. The next theorem [AGSSS6, 
KifSS] (see also [AH91, ST95]) implies that for the domain calculus a tractable solution exists 
for the state-safety problem and thus this alternative approach is viable in practice. 

Theorem 3.14 The state-safety problem is decidable in polynomial time in the size of the 
input database. 

Proof. Let d be a database and Q be a domain calculus query. We say that the underlying 
domain DOMj(R) is sufficiently large with respect to Q and d if it is finite, it contains all the 
elements in ADOM(Q) U ADOM(d) and the number of elements in DOMj(R) - (ADOM(Q) 
U ADOM(d» is at least one plus twice the number of occurrences of equality and inequality 
terms in Q, which are of the form x = y and x i=- y, respectively. 

Now, evaluate the query Q( (d, DOMj(R»), where DOMj(R) is sufficiently large with respect 
to Q and d, and let r be its answer, which is finite since DOM/R) is finite. If r contains a 
tuple t with an attribute value, say t[AJ, which is not in ADOM(Q) U ADOM(d) then return 
undefined, otherwise return r. We leave it to the reader as an exercise to verify that we return 
undefined if and only if Q(d) is infinite. 0 

3.3.2 The Equivalence of the Algebra, the Calculus and Datalog 

Herein we prove one of the most important results concerning query languages for the 
relational model, i.e. that the relational algebra is equivalent to both nonrecursive safe Datalog 
and to the allowed domain calculus. 

Informally, two queries are equivalent if they return the same answer for all input databases, 
and two query languages are equivalent if they express exactly the same set of queries. 

Defmition 3.51 (Equivalence of queries and query languages) Two queries Q, and Q2, 
whose arguments are relation schemas in a database schema R, are equivalent, denoted by 
Q, == Q2,ifforalldatabasesdoverRQ,(d) = Q2(d). 

A query language L, is contained in a query language L2, if for all queries Q, in L, there 
exists a query Q2 in L2 such that Q, == Q2 . L, is equivalent to L2, if L, is contained in L2 and 
L2 is contained in L,. • 

We now set out to prove that the relational algebra, nonrecursive safe Datalog and the 
allowed domain calculus are equivalent query languages for the relational model. We will 
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assume that the arguments of queries are relation schemas in a database schema R. We first 
show that nonrecursive safe Datalog is at least as expressive as the relational algebra. 

Lemma 3.15 The relational algebra is contained in nonrecursive safe Datalog. 

Proof. We need to show that for every relational algebra query there exists an equivalent 
Datalog query. The lemma follows by induction on the number of operators present in the 
relational algebra query, say Q. 

Basis. If Q does not contain any operators then it is simply a query of the form R, where R 
E R. Then the equivalent nonrecursive safe Datalog query is 

where P is a Datalog query satisfying R E SCHEMA(P). 

Induction. Assume the result holds for relational algebra queries containing q operators; 
we then need to prove that the result holds for relational algebra queries Q containing q + I 
operators. Without loss of generality we assume that answers to Q result in relations over 
a relation schema also named Q such that schema(Q) has k attributes. The Datalog query 
equivalent to Q is 

where P is a Datalog program satisfying Q E SCHEMA(P) such that Q is defined inductively 
according to the (q + l)th relational algebra operator. 

We consider the (q + l)th relational algebra operator to be either union, difference, 
projection, join or selection. 

If Q is the query Ql U Q2, then the Datalog rules in P that define Q are: 

Q(XI, X2, ... , Xk) : - Ql (Xl, X2 , .. . , Xk)· 
Q(XI , X2, ... ,Xk) : - Q2(XI, x2 , ... , Xk) · 

where by inductive hypothesis P contains nonrecursive safe Datalog rules that define Ql and 
Q2 . 

If Q is the query Ql - ~, then the Datalog rule in P that defines Q is: 

where by inductive hypothesis P contains nonrecursive safe Datalog rules that define Ql and 
Q2. 

IfQ is the query JTX(QI), where X = {Xl, X2, ... , xkl S; {Zl , Z2, ... , zml and Ql results in a 
relation over a relation schema with m attributes, then the Datalog rule in P that defines Q is: 

where by inductive hypothesis P contains nonrecursive safe Datalog rules that define Ql' 
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If Q is the query Q, [Xl Q2, where {XI, X2, ... , Xk} = {y, ,Y2, ... , Ym} U {z" Z2, ... , zn} and 
Q, and Q2 result in relations over relation schemas with m and n attributes, respectively, then 
the Datalog rule in P that defines Q is: 

where by inductive hypothesis P contains nonrecursive safe Datalog rules that define QI and 

Q2· 
If Q is the query crF(Q,), where F is a selection formula, which by Theorem 3.1 can be 

assumed to be a simple selection formula, then the Datalog rule in P that defines Q is: 

where X = Y is the appropriate equality formula corresponding to the selection formula F. 
Now by inductive hypothesis P contains nonrecursive safe Datalog rules that define Q,. 0 

We next show that the allowed domain calculus is at least as expressive as nonrecursive safe 
Datalog. 

Lemma 3.16 Nonrecursive safe Datalog is contained in the allowed domain calculus. 

Proof We need to show that for every nonrecursive safe Datalog query Q of the form 

there exists an equivalent allowed domain calculus query, where SCHEMA(R) = 
{A" A2 , •. . , Ad. 

In order to simplify the proof we assume, without loss of generality, that the set of variables 
appearing in any two rules in P are disjoint; if this is not the case then a simple renaming of 
variables will realise this assumption. 

We now create a set of atomic formulae from the predicate R(y, ,Y2, ... ,Yk) as follows. For 
each constant Yi E {Y" Y2 , . .. , Yk} we create an atomic formula Xi = Yi, where Xi is a variable 
which is not in {Y" Y2, ... , Yk}, and for each repeated variable Yi E {Y" Y2, ... , Yk} in positions 
i and j we create an atomic formula Yi = Xj, where Xj is a variable distinct from Yi. We now 
define the domain calculus formula 

aft /\ aJz /\ ... /\ afm 

which we denote by FR, where {af" aJz, ... , afm} is the set of atomic formulae we have created 
from R(Y' ,Y2, . .. ,Yk). 

Thus the allowed domain calculus query, which is equivalent to Q, has the form 

where FQ is a domain calculus formula which will be defined below and {XI, X2, ... , Xk} is a 
set of k variables containing all the variables in {y" Y2, ... , yd. 
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The remaining part of the lemma follows by induction on the number of rules in the 
nonrecursive safe Datalog program P, with respect to which Q is issued, having the relation 
symbol R in their head. 

Basis. If P does not contain any such rules then the equivalent domain calculus query is 

which is allowed, since for each Xi E {X], X2 , .. . ,Xk} Xi is positive in the atomic formula 
R(x] , X2 . . . , Xk)· 

Induction. Assume the result holds for nonrecursive safe Datalog programs P containing q 
rules having the relation symbol R in their head; we then need to prove that the result holds 
for nonrecursive safe Datalog programs P containing q + 1 rules having the relation symbol 
R in their head. 

Let us choose a rule C, in P having the relation symbol R in its head and assume, for 
simplicity of the argument, that it has the form 

where all the variables in the head of the rule have been appropriately renamed to conform 
with the variables Xi appearing in R(x], X2 , . .. , Xk). Now, let {z] , Z2 , . .. , zm} be the set of 
variables appearing in the body of C] but not in its head. We create the following domain 
calculus formula for C] : 

3z, : A,(3z2 : A2(." (3zm : Am(R](yj,yi , · ·· , y~l) /\ -.R2(yi ,Yi , · ·· , y~2 »)) /\ ... », 

which we denote by F] . The reader can verify that the domain calculus formula F, is allowed, 
since C] is a safe Datalog rule. 

We will make a short cut in the proof by assuming that the relation symbols of the literals in 
the body of C] do not appear as the heads of other rules in P. We will leave it to the reader to 
extend the proof to this more general case. As a hint for solving this case, for each such rule, 
where a relation symbol of a literal in the body of C] appears as the head of another rule in P, 
we replace the appropriate literal in F, by the body of the said rule, renaming the variables and 
adding existential quantifiers where appropriate, and finally negating the resulting formula if 
the said literal was negative. If there are several such rules, say n, for a given relation symbol, 

say Ri> then we create a disjunction F} V Fi V .. . V Fr, where ~ is the formula created for the 
jth rule having the relation symbol Ri in its head. 

Finally, the equivalent allowed domain calculus query is 

{X, : A" X2: A2, .. . , Xk: Ak I (FR /\ (F, V Fq))(x] , X2 , ·· ·, Xk)}, 

where by inductive hypothesis Fq is the allowed domain calculus formula used to obtain 
an equivalent allowed domain calculus query if C, is removed from P. (Note that FQ 
F, V Fq.) 0 

We finally show that the relational algebra is at least as expressive as the allowed domain 
calculus. 

Lemma 3.17 The allowed domain calculus is contained in the relational algebra. 
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Proof We need to show that for every allowed domain calculus query there exists an equivalent 
relational algebra query. 

The lemma follows by induction on the number oflogical connectives present in the allowed 
domain calculus query, say Q, which has the form 

where F is an allowed domain calculus formula. 

We can assume without loss of generality that F contains only the logical connectives, -', v 
and 3. This is due to the fact that the subformula FII\F2 is logically equivalent to the subformula 
-,( -,FI v -,F2), the subformula FI =} F2 is logically equivalent to the subformula -,Fl v F2 
and the subformula Yx : A(F) is equivalent to the subformula -,(3x : A(-,F». Furthermore, 
the reader can verify that if a formula is allowed its logically equivalent formula, containing 
only -', v and 3, is also allowed. We can also assume that F does not contain subformulae of 
the form x = y, since such subformulae can be simulated by repeated variables or constants 
in atomic formulae as appropriate. For example, R(Xl, X2) 1\ Xl = X2 can be simulated by 
R(XI, Xl), where XI and X2 are variables, and R(xl, X2) 1\ X2 = v can be simulated by R(Xl, v), 
where Xl is a variable and v is a constant value. 

For each relation symbol Ri appearing in F, with schema(Ri) = {AI, A2, . .. ,Am}, we create 
the domain calculus formula 

3z2 : A2(.' . (3zm : Am(Ri(X, Z2, ... , zm») ... ) v ... V 

3z1 : AI (. .. (3Zm-1 : Am-I (Ri(ZI, ... , Zm-I, X») .. . ), 

which we denote by Fdomi(x), with one free variable, x. 

Let ADOM(Q) = {VI, V2 , ... , vp} and assume that the set (R I , R2, ... , Rkl includes all the 
relation symbols appearing in Q. Then we let Fdom(x) denote the allowed formula 

X = VI V X = V2 V ... v X = vp v Fdoml (x) v Fdom2(x) v ... v Fdomk(x). 

Intuitively. Fdom(x) states the possible values that a variable X can range over (this is similar 
to the assumption of the unary relation schema DOMAIN encountered towards the end of 
Subsection 3.3.1). 

Thus Q is equivalent to the allowed domain calculus query 

(Xl: AI, X2 : A2 •... , Xn : An IF 1\ Fdom(x}) 1\ Fdom(x2) 1\ ... 1\ Fdom(xn»), 

since Q is allowed and thus domain independent (see Proposition 3.12). 

Now, it can easily be seen that Fdom(x) translates into the equivalent relational algebra 
expression 

{VI, V2, ... , vp} U RelDoml U RelDom2 U ... U ReiDomb 

which we denote by RelDom(F), with RelDomi being the relational algebra expression 

ll'Al(Ri) U ll'A 2 (Ri) U ... U ll'Am(Ri). 

Thus it is sufficient to show that Q translates into an equivalent relational algebra expression: 

En RelDom (F) n , 
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where E is a relational algebra expression and RelDom(F)n denotes the Cartesian product 

RelDom(F) x ... x RelDom(F), n times. 

Weare now ready to proceed with the induction referred to at the beginning of the proof. 

Basis. If F does not contain any logical connectives then it is an atomic formula of the 
form R(YI,Y2, ... ,Ym), where {XI, X2,··· , xn} ~ {YI,Y2, ... ,Ym} and the set {YI,Yl, ... ,Ym} 
- {XI, Xl, .. . , xn} consists of constants. 

Let 1fr be the conjunction of simple selection formulae of the form Ai = Aj whenever a 
variable Yi is repeated in positions i and j in R(YI, Yl, ... ,Ym) and Ai = Yi whenever Yi is a 
constant value. 

Thus the relational algebra expression equivalent to Q is 

where X = {AI, Al,"" An}. 

Induction. Assume the result holds for allowed domain calculus queries containing q 
logical connectives; we then need to prove that the result holds for domain calculus queries Q 
containing q + 1 logical connectives. 

If F(XI, Xl, ... , xn) is the formula FI (YI, Yl, .. . , Ym) v Fl(ZI, Zl, ... , Zk) then the relational 
algebra expression equivalent to Q is 

Jrx(EI x RelDom(F)n-m) U JrX(El x RelDom(F)n-k), 

where X = {AI, Al, ... , An}, and by inductive hypothesis EI and El are equivalent to the 
domain calculus queries 

and 

respectively. 
IfF(Xl, XZ, ... , xn)is the formula ~FI (XI, Xl, ... , xn), then the relational algebra expression 

equivalent to Q is 
RelDom(F)n - EI, 

and by inductive hypothesis EI is equivalent to the domain calculus query 

(XI: AI, Xz : Az,···, Xn : An I FI(XI, Xl,· · ·, Xn)}. 

IfF(xI, Xl, .. . , xn)istheformula3xn+1 : An+I(FI(xI, Xl, ... , Xn, Xn+t», then the relational 
algebra expression equivalent to Q is 

JrX(EI), 

where X = {AI, Al, ... , An}, and by inductive hypothesis EI is equivalent to the domain 
calculus query 

(XI: AI, Xl: Az,···, xn : An, Xn+1 : An+1 I FI(XI, X2,···, Xn, Xn+I)}. 

This concludes the proof. o 
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The following theorem is implied by the preceding lemmas, since query language 
containment is transitive. 

Theorem 3.18 The following three query languages for the relational model are equivalent: 

1) The relational algebra. 

2) Nonrecursive safe Datalog. 

3) The allowed domain calculus. o 

3.4 Integrity Constraints in Relational Databases 

In general, we would like to restrict relations so that they satisfy certain conditions, called 
integrity constraints (or simply constraints) . Integrity constraints can be viewed as first-order 
logic statements that restrict the set of allowable relations in a database. For example, stating 
that EMP _NO is a primary key of a relation schema, EMPLOYEE, is an integrity constraint that 
specifies that no two distinct tuples in a relation over EMPLOYEE have the same EMP ~O. 

Primary key constraints are a special case of the more general class of Functional Dependencies 
(FDs), the most studied class of integrity constraints in relational database theory. An example 
of a functional dependency, which is not necessarily a primary key, is the constraint that an 
employee's ADDRESS has a unique POSTCODE; it is written as ADDRESS ~ POSTCODE. 

As another example, stating that DEPLNO is a foreign key of a relation over EMPLOYEE 
referencing the primary key, DEPT _NO, of a relation schema, DEPARTMENT, is an integrity 
constraint that specifies that if a tuple over EMPLOYEE has a nonnull DEPT ~O-value, say 
di, then there exists a tuple in the relation over DEPARTMENT whose DEPLNO-value is di. 
Foreign key constraints are a special case of the more general class of Inclusion Dependencies 
(INDs). An example of an inclusion dependency that is not necessarily the result of a foreign 
key is the constraint that the location in which an employee works is included in the collection 
of locations of offices of the company the employee works in. 

Constraints such as functional and inclusion dependencies, which depend on the equality 
or inequality of values in tuples of relations, are called data dependencies. Another type of 
integrity constraint restricts the allowable domain values of attributes; such constraints are 
called domain dependencies. 

For example, a domain dependency could state that values of an attribute EMP _SALARY 
range between 15,000 and 40,000 pound sterling. Another domain dependency could state 
that the values of an attribute EMP _NAME is a string of at most 25 English characters. 

Yet another type of integrity constraint restricts the cardinality of a projection of a relation 
onto a set of attributes; such constraints are called cardinality constraints. 

For example, a cardinality constraint could state that there are less managers than 
employees. Another cardinality constraint could state that the number of students doing 
a particular course should not exceed some specified number. 

All the integrity constraints mentioned above are static, i.e. their satisfaction in a database 
can be checked by examining the current database state. There is another class of constraints 
which are dynamic in nature in the sense that two database states need to be examined in 
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order to test their satisfactionj such integrity constraints are called state transition constraints 
[NY78). As an example we may want to state that the attribute value age of a schema PERSON 
only increases when a relation over PERSON is updated. Thus in order to check this constraint 
during an update, we need to examine the person relation before and after the update. Another 
example of this type ofintegrityconstraint is a constraint which states that salaries of employees 
increase in time. Such state transition constraints cannot be checked statically only on the 
relation prior to or after an update took place. 

3.5 Inference of Integrity Constraints 

The integrity part of a data model is one of its fundamental components. As we have indicated 
above there are many useful constraints that can be defined over a database schema in order 
to restrict the set of allowable relations in a database to those that are of interest to the 
particular application we are dealing with. Given that we have defined a set of integrity 
constraints, we would like to know what other integrity constraints this set logically implies 
and also whether there are any redundancies in the set we have specified. For example, if 
an employee works in a unique department and a department has a unique location we can 
infer by transitivity that an employee works in a unique location. Thus, there is no need to 
specify this implied functional dependency as part of our specification. However, how do 
we know that our inference procedure can derive only and all possible logical implications 
from the initial set of constraints? If our inference procedure is "sound and complete", then 
the answer to this question is positive, otherwise, in general, we may not be able to derive an 
integrity constraint which is indeed logically implied by the original set of constraints. Even 
if the inference procedure is sound and complete, we need to investigate the computational 
complexity of deciding whether an integrity constraint is logically implied by a given set 
of integrity constraints. If the computational complexity of such an inference procedure is 
polynomial time in the size of the input set of integrity constraints, then we can normally solve 
this inference problem in reasonable time, otherwise the solution is probably only solvable in 
exponential time in which case this inference problem is intractable. 

A class C of integrity constraints refers to a particular set of integrity constraints over a given 
relation schema or database schema. For example, the set of all FDs over relation schema R 
is a class of integrity constraints and the set of all FDs and INDs over database schema R is 
another class of integrity constraints. Whenever no ambiguity arises we will refer to a set of 
integrity constraints, say~, which is included in a class of integrity constraints, say C, simply 
as ~ without explicitly mentioning the class C. In the following we will assume for simplicity 
that a set of integrity constraints is over a relation schema Rj the definition carries over to a 
database schema R in a straightforward way. 

We denote the fact that a relation r over schema R satisfies an integrity constraint a over R 
by r F= a. If r F= a does not hold, we write r ~ a and say that r does not satisfy (or violates) 
a. We say that r satisfies a set ~ of integrity constraints over R, if for all integrity constraints 
a E ~, r F= a holds. 

We say that a set of integrity constraints ~ over R logically implies a single integrity 
constraint a over R, written ~ F= a, whenever for all relations rover R the following condition 
is true: 

if r F= ~ holds then r F= a also holds. 
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We say that a set of integrity constraints I; over R logically implies a set of integrity 
constraints rover R (or r is a logical consequence of I;), written I; F r, if for all a E 

r, I; F a holds. 

The concept oflogical implication is very important, since if I; - {a} F a, then the integrity 
maintenance algorithm need only check for the satisfaction of I; - {a}. For example, {EMP 
-'; ADDRESS, ADDRESS -'; PHONE} F {EMP -'; PHONE} holds and thus the fact that an 
employee has a unique telephone number does not need to be explicitly stored in the database 
system. 

In order that a class of integrity constraints be of any practical use we need to address the 
problem of the efficiency of mechanising the process of logical implication. 

Definition 3.52 (The implication problem) The implication problem for a class of integrity 
constraints C is the problem of finding the computational complexity of deciding whether 
I; F a or I; ~ a, where I; S; C and a E C; if the class of integrity constraints C is understood 
from context we will not mention it explicitly. • 

An inference rule (with respect to a class C of integrity constraints) is a rule which allows us 
to derive an integrity constraint from a given set of integrity constraints. More precisely, an 
inference rule is a sentence of the form: if certain integrity constraints can be derived from the 
given set of constraints then we can derive an additional constraint. The ifpart of an inference 
rule is called the hypothesis of the rule and the then part of the rule is called its conclusion. 
An axiom is an inference rule with an empty if part, that is, the additional constraint can be 
derived unconditionally. An axiom system for a class C of integrity constraints is a set of 
inference rules with respect to C. 

For example, if the FDs, EMP -'; ADDRESS and ADDRESS -'; PHONE both hold, then we 
can infer by the transitivity rule that the FD EMP -'; PHONE also holds. 

Given an axiom system S (for a class of integrity constraints), a proof (in S) of an integrity 
constraint a from a given set of integrity constraints I; is a finite sequence of integrity 
constraints, whose last element is a, such that each constraint in the said sequence is either 
in I; or can be derived from a finite number of previous constraints in the sequence by using 
one of the inference rules of the axiom system S. We denote by I; f- a the fact that there exists 
a proof (in S) of a from I; in a given axiom system; if the axiom system is understood from 
context we will not mention it explicitly. 

Informally, an axiom system is sound and complete for a class of integrity constraints if 
the concept of logical implication coincides with the concept of proof within the said axiom 
system. The benefit of a sound and complete axiom system is as follows. In order to solve 
the implication problem I; F a in a naive way, we can test the logical implications r F I; 

and r F a for all relations rover R. In general, this solution is infeasible, since there are, in 
general, an infinite number of such relations. We therefore need to find a more efficient way 
to check whether I; Fa. Now, if the axiom system is sound and complete then all we need 
to do is to check whether I; f- a, i.e. we need to find a proof (which is a finite procedure) of a 
from I;. In many cases we can actually devise efficient algorithms which construct proofs for 
I; f- a and thus solve the implication problem efficiently. 

Definition 3.53 (Sound and complete axiom system) Let I; be a set of integrity constraints 
included in a given class C and let a be a single integrity constraint belonging to C. An axiom 
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system is sound (for C) whenever the following condition is true: 

if L I- a holds then L F a also holds. 
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An axiom system is complete (for C) whenever the following condition is true: 

if L F a holds then L I- a also holds. • 
The following definition will be useful when we investigate the inference structure for 

integrity constraints. 

Definition 3.54 (Closure operator) Let S be a finite set and recall that P(S) denotes the finite 
power set ofS. A closure operator [BDK87, DP90) is a total mapping Cfrom P(S) to P(S) such 
that V X, Y S; S, the following conditions are satisfied: 

1) X S; qX), 

2) if X S; Y then qX) S; qy), and 

3) C( qX)) = qX). • 
Definition 3.55 (The closure of a set of integrity constraints) The closure of a set of integrity 
constraints Lover R (with respect to an axiom system), denoted by L+, is the setof all integrity 
constraints a over R that can be proved from L. Formally, 

L+ = {a I L I- a}. • 
We observe that the operator "+" induced by the closure L+ of L is a closure operator; the 

reader can verify that "+" satisfies the three conditions of a closure operator. 
A set of integrity constraints L is said to be closed if L+ = L. Also, a set of integrity 

constraints L is said to be a cover of another set of integrity constraints r if L+ = r+ . 

As an example, let L = {EMP --+ ADDRESS, ADDRESS --+ PHONE, EMP --+ PHONE}. Then 
as we will see later on r = L - {EMP --+ PHONE} is a cover of L. The FD EMP --+ PHONE is 
called a redundant FD, since it can be removed from L without loss of information. 

Armstrong relations [Fag82a, BDFS84) are relations, which satisfy all and only those 
integrity constraints which are logically implied by a given set of integrity constraints. The 
existence of Armstrong relations for FDs holding in relations was first shown in [Arm74]. 
Such relations have been shown to be important in the process of database design [MR86a]. 
Various combinatorial results concerning the size of Armstrong relations (which is, in 
general, exponential for FDs) and algorithms that generate such relations are given in 
[Fag82a, BDFS84, MR86a, DT93]. 

Definition 3.56 (Armstrong relations) An Armstrong relation for a given set of integrity 
constraints L over schema R is a relation rover R satisfying the following condition for all 
integrity constraints a: 

r Fa ifand only ifL Fa. 
We say that a class of integrity constraints enjoys Armstrong relations if there exists an 
Armstrong relation for each set of integrity constraints in the class. • 



3.6. Data Dependencies 149 

The following theorem, whose proof we leave for the reader, shows an elegant connection 
between sound and complete axiom systems and the property of enjoying Armstrong relations. 

Theorem 3.19 Let S be an axiom system for a class of integrity constraints C and consider 
the following statements: 

1) S is sound for C and for all sets ~ of constraints included in C there exists a relation r 
over R that satisfies the condition 

r F= a if and only if ~ f-- a. 

2) C enjoys Armstrong relations. 

3) S is sound and complete for C. 

Then (1) is true if and only if (2) and (3) are both true. o 

3.6 Data Dependencies 

Constraints such as functional and inclusion dependencies, which depend on the equality or 
inequality of values in tuples of relations in a database, are called data dependencies. More 
specifically, a data dependency is a first-order logic formula defined over a database schema 
that expresses the constraint that given that certain tuples exist in the database and these 
tuples satisfy certain equalities or inequalities, then other tuples must also be present in the 
database and these other tuples must also satisfy certain equalities or inequalities. The theory 
of data dependencies has been central in the research area of relational databases, since it 
deals with the foundations of the integrity part of the relational model and generalises the 
fundamental notions of keys and foreign keys, which were discussed in Subsection 1.7.1 of 
Chapter 1. The theory of data dependencies also forms the basis of relational database design, 
which is discussed in detail in Chapter 4. 

In Subsection 3.6.1 we introduce Functional Dependencies (FD), which generalise keys, and 
give a sound and complete axiom system for FDs. In Subsection 3.6.2 we show that FDs enjoy 
Armstrong relations. In Subsection 3.6.3 we discuss the implication problem for FDs and 
show that it can be solved in polynomial time. In Subsection 3.6.4 we introduce the chase 
procedure for FDs, which acts as a theorem prover that enables us to solve the implication 
problem of whether a set of FDs logically implies that the relations in a given database can be 
losslessly joined together. The property of being able to losslessly join relations in a database 
is a fundamental one, since naturally joining relations is the means in the relational model 
by which information in several relations is combined. In Subsection 3.6.5 we investigate the 
issue of finding an appropriate cover of a set of FDs that has less redundancy in it than the 
original set ofFDs. In Subsection 3.6.6 we investigate the problem of whether a relation schema 
having a subset of attributes of another relation schema, say R, satisfies a given set of FDs 
defined over R. This problem is very important in database design, since we may define a set of 
FDs over a relation schema, say R, and then decompose R into two or more relation schemas 
each having less attributes than R. In Subsection 3.6.7 we introduce Inclusion Dependencies 
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(INDs), which generalise foreign keys, and give a sound and complete axiom system for INDs. 
In Subsection 3.6.8 we extend the chase procedure, introduced in Subsection 3.6.4, in the 
presence of FDs and INDs. In this subsection we utilise the chase procedure in order to 
test whether a given database satisfies a set of FDs and INDs. This highlights the versatility 
of the chase procedure as a very useful tool for the relational database theorist in his/her 
investigation of the properties of a class of data dependencies. In Subsection 3.6.9 we show 
that certain subclasses of FDs and INDs enjoy Armstrong relations. In Subsection 3.6.10 
we discuss the implication problem for INDs and show that it is, in general, intractable. 
In Subsection 3.6.11 we investigate the interaction between FDs and INDs. Studying this 
interaction is important, since FDs and INDs are the most fundamental integrity constraints 
that arise in practice in relational databases. The interaction between FDs and INDs turns out 
to be a complex matter resulting in the negative result that there is no sound and complete 
axiom system for the general class of FDs and INDs, and also that their implication problem 
is, in general, undecidable. In this subsection we investigate subclasses of FDs and INDs 
that have a sound and complete axiomatisation and for which the implication problem is 
decidable. Due to the complex interaction between FDs and INDs, in Subsection 3.6.12 we 
study subclasses ofFDs and INDs that do not interact at all. We exhibit a large and useful class 
of FDs and INDs that do not interact. FDs express dependencies within a relation schema 
and INDs express dependencies between relation schemas. It is not at all clear whether FDs 
are adequate to express the dependencies within a relation schema. In particular, FDs only 
express single-valued properties while in the "real world" multivalued properties, such as 
a person may have one or more children, naturally arise. In Subsection 3.6.l3 we define 
Mulitvalued Dependencies (MVDs )which express the fact that a relation can be decomposed 
into two further relations that can be losslessly joined together. This is a special kind of 
multivalued property that can, for example, express that a person has a set of children and 
independently a set of hobbies. We present a mixed sound and complete axiom system for 
FDs and MVDs and study various problems that have intrigued database researchers during 
the late 1970's until the mid 1980's. The Join Dependency (JD), presented in Subsection 3.6.14, 
generalises the MVD to express the fact that a relation can be decomposed into two or more 
relations that can be losslessly joined together. As such the JD is fundamental to relational 
database design since the lossless join property guarantees that we can meaningfully combine 
relations together in queries using the natural join operator. There is a plethora of results in 
data dependency theory and in a book such as ours we can only cover the most important 
results. The reader wishing to further his/her study of this area will discover many additional 
interesting kinds of data dependencies and results that have made relational database theory 
the fruitful area in computer science that it is. 

3.6.1 Functional Dependencies and Keys 

As we have already mentioned, the Functional Dependency (FD) generalises the notion ofkeys 
and as such it is the most common data dependency that arises in practice. The theory of FDs 
has been instrumental in providing a solid foundation for the theory of data dependencies and 
has had a major impact on relational database design, which we detail in Chapter 4. We begin 
with a motivating example. Let EMPLOYEE be a relation schema describing employees' details, 
with schema(EMPLOYEE) = {SS#, ENAME, AGE, ADDRESS, POSTCODE, SALARY}. The 
semantics of EMPLOYEE are that SS# and {ENAME, ADDRESS} are keys for EMPLOYEE and 
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ADDRESS uniquely determines POSTCODE. Thus the set of FDs specified over EMPLOYEE 
is: {SS# ~ schema(EMPLOYEE), {ENAME, ADDRESS} ~ SS#, ADDRESS ~ POSTCODE}. 

Let STUD_POS be a relation schema describing the students linear ordering in a class, with 
schema(STUD_POS) = {SNAME, SUBJECT, POSITION}. The semantics of STUD_POS are 
that {SNAME, SUBJECT} and {SUBJECT, POSITION} are keys, i.e. both these sets uniquely 
determine all the attributes in the schema; note that this implies that no more than one 
student can occupy any position. Thus the set of FDs specified over STUD_POS is: {{SNAME, 
SUBJECT} ~ POSITION, {SUBJECT, POSITION} ~ SNAME}. 

The formal definition of an FD follows. 

Defmition 3.57 (Functional dependency) A functional dependency over schema R (or 
simply an FD) is a statement of the form R: X ~ Y (or simply X ~ Y whenever R is understood 
from context), where X, Y ~ schema(R). 

An FD X ~ Y is said to be trivial if Y ~ X; it is said to be standard if X =F 0. • 

An FD R : X ~ Y is satisfied in a relation rover R if whenever two tuples in r have equal 
X-values they also have equal Y-values. This implies that every X-value in r has only one 
corresponding Y -value. The formal definition of satisfaction of an FD in a relation follows. 

Definition 3.58 (Satisfaction of an FD) An FD R : X ~ Y is satisfied in a relation rover R, 
denoted by r 1= R : X ~ Y, if'v'tJ, t2 E r, if tdX) = t2[X), then tdY) = t2[Y) ' • 

As defined above an FD X ~ Y is nonstandard if X = 0. Whenever a relation rover R 
satisfies the FD 0 ~ Y, it must be the case that r can only have at most one Y-value. That 
is, the cardinality of JTy(r) is less than or equal to one; if r = 0, then the cardinality of JTy(r) 
is zero, otherwise it must be one. It follows that nonstandard FDs correspond to cardinality 
constraints. From now on unless otherwise stated we will assume that FDs are standard. The 
justification for this assumption is that nonstandard FDs are rare in practice. Moreover, a 
nonstandard FD can always be described as a cardinality constraint when it is necessary for 
the application (see Section 3.7). 

When F is a set of FDs over one or more relation schemas R E R, where R is a database 
schema, we say that F is a set of FDs over R. Usually, all the FDs in F are over a single relation 
schema R E R, in which case we simply say that F is a set ofFDs over R. 

Definition 3.59 (Inference rules for FDs) Let F be a set of FDs over schema R. We define the 
following inference rules for FDs: 

FDI Reflexivity: ifY ~ X ~ schema(R), then F I- X ~ Y. 

FD2 Augmentation: ifF I- X ~ Y and W ~ schema(R), then F I- XW ~ YW. 

FD3 Transitivity: if F I- X ~ Y and F I- Y ~ Z, then F I- X ~ Z. 

FD4 Union: ifF I- X ~ Y and F I- X ~ Z, then F I- X ~ YZ. 

FD5 Decomposition: ifF I- X ~ YZ, then F I- X ~ Y and F I- X ~ Z. 

FD6 Pseudo-transitivity: if F I- X ~ Y and F I- YW ~ Z, then F I- XW ~ Z. • 
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Note that FDl is an axiom, since it has no hypotheses. We call the inference rules FD1, FD2 
and FD3 Armstrong's axiom system [Arm74]. 

Defmition 3.60 (The closure of a set of attributes) We define the closure of a set of attributes 
X ~ schema{R) with respect to a set of FDs F over R, denoted by X+ (assuming that F is 
understood from context), by 

X+ = U{Y IFf- X -+ Y using Armstrong's axiom system}. • 
The reader can easily verify that the operator "+" induced by the closure X+ is a closure 

operator. For our motivating examples we have: 

• SS#+ = {ENAME, ADDRESS}+ = schema(EMPLOYEE). 

• ADDRESS+ = {ADDRESS, POSTCODE}. 

• {SNAME, SUBJECT}+ = {SUBJECT, POSITION}+ = schema(STUD_POS). 

• SNAME+ = {SNAME}. 

Lemma 3.20 Armstrong's axiom system is sound. 

Proof. We prove that transitivity (FD3) is sound and leave it to the reader to prove that the 
other inference rules are also sound. 

Let r be a relation over Rand t( , t2 E r be tuples such that t( [X] = t2 [X]. We need to show 
that t( [Z] = t2 [Z], which implies that r F X -+ Z. Now, t( [Y] = t2[Y]' due to the fact that F f- X 
-+ Y and thus by assumption r F X -+ Y. The result follows, since t( [Y] = t2[Y] implies that 
t( [Z] = t2[Z] due to the fact that F f- Y -+ Z and thus by assumption r F Y -+ Z. D 

The reader can verify that FD4, FD5 and FD6 are also sound inference rules. 

Theorem 3.21 Armstrong's axiom system is sound and complete. 

Proof. Soundness follows from the previous lemma. It remains to prove the completeness. 

In order to prove completeness of Armstrong's axiom system, we need to show that ifF F 
X -+ Y, then F f- X -+ Y. Equivalently, we need to show that ifF If X -+ Y, then F [;t= X -+ Y. 
Thus assuming that F If X -+ Y it is sufficient to exhibit a counterexample relation, rover R, 
such that r F F but r [;t= X -+ Y. 

Let rover R be the relation shown in Table 3.37. We conclude the proof by showing that 
r F F but r [;t= X -+ Y. 

Table 3.37 A counterexample relation 

x+ schema(R} -x+ 
1. . . 1 1. . . 1 
1. . . 1 0 . .. 0 

Firstly, we show that r F F. Suppose to the contrary that r [;t= F and thus 3 V -+ W E F such 
that r [;t= V -+ W. It follows by the construction of r that V ~ X+ and 3A E W such that A E 
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schema(R) - X+. Now, F f- X --+ V, since V £ X+ and F f- V --+ A by the decomposition inference 
rule (FDS). Thus F f- X --+ A by the transitivity rule (FD3). This leads to a contradiction, since 
it follows that A E X+. 

Secondly, we show that r [;t': X --+ Y. Suppose to the contrary that r F X --+ Y. It follows by 
the construction of r that Y £ X+ and thus F f- X --+ Y. This leads to a contradiction, since F 
II X --+ Y was assumed. 0 

A superkey is a set of attributes that determines all the attributes in a relation schema and 
a key is a superkey whose set of attributes is minimal. 

Definition 3.61 (Key and superkey) A set of attributes K £ schema(R) is a candidate key 
(or a minimal key or simply a key) for R with respect to a set of FDs F over schema R if the 
following two conditions hold: 

1) uniqueness: K+ = schema(R), and 

2) minimality: for no proper subset X C K is X a key for R with respect to F. 

A set of attributes K S; schema(R) is a superkey for R with respect to a set of FDs F over 
schema R if it satisfies condition 1 (but not necessarily condition 2), i.e. K+ = schema(R). • 

For our motivating examples we have: 

• SS# and {ENAME, ADDRESS} are keys for EMPLOYEE; any proper superset of one of 
these is a superkey which is not a key . 

• {SNAME, SUBJECT} and {SUBJECT, POSITION} are keys for STUD_POS; the only 
superkey that is not a key is schema(STUD_POS). 

In the following we omit to mention the schema R and the set of FDs F over R if they are 
understood from context. Given a relation schema R and a set of FDs F over R one of the 
candidate keys is designated as the primary key. The other keys are called alternate keys. An 
attribute in schema(R) that belongs to at least one candidate key for R with respect to F is 
called a prime attribute of R with respect to F; an attribute in schema(R) which is not prime 
is called nonprime. A key is said to be simple if it consists of a single attribute; otherwise it is 
said to be composite. 

There has been much debate on the merits of simple keys versus composite keys. For 
example, consider a PERSON schema consisting of attributes NAME, ADDRESS, AGE and 
OCCUPATION. Obviously, NAME is not, in general, a minimal key since there may be more 
than one John Smith recorded in the database, so it can be assumed that {NAME, ADDRESS} 
is a key, which is also the primary key. However, there are several problems with this key. 
Firstly, we cannot distinguish between two John Smith's that happen to live in the same address. 
Secondly, it is more cumbersome to refer to composite keys in queries and updates, since such 
queries and updates are often tedious to specify and therefore more error prone than would 
otherwise be the case. If a simple key such as social security number (SS#) is available, then it 
should be chosen as the primary key. Simple keys such as SS# may not always be forthcoming 
and thus it is often suggested to introduce a new simple key into the schema such as person 
number (P#), which has no intrinsic meaning; we will call such a simple key a surrogate key. 
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The sole purpose of surrogate keys is to uniquely identify tuples in a relation. The values of a 
surrogate should be generated either by the database system (if it supports such a mechanism) 
or by an application program, and it is advisable that they be concealed from the user, since 
they are not real-world identifiers and thus have no meaning to the user. Although such a 
solution is viable, there are various overheads in maintaining surrogates and querying in their 
presence which need to be considered. Still surrogates can be very useful as are, for example, 
social security numbers, part numbers of various machines and order numbers. 

We next present some combinatorial problems relating to keys. The following result, 
which was shown in [DK93], gives an upper bound on the number of candidate keys that can 
be satisfied in a relation. In the following theorem (~) denotes the number of combinations 
of choosing r objects from n objects with no reference to the order in which the r objects 
are chosen. Recall from Subsection l.9.2 of Chapter 1 that LmJ denotes the greatest natural 
number less than or equal to some real number m. 

Theorem 3.22 The number of candidate keys, Ki, for a schema R, with Ischema(R)I= n, is at 
most 

and there exists a relation rover R such that for all Ki, r F= Ki ~ schema(R). o 

It is a well-known combinatorial result that given a set S of cardinality n there are at most 
(lnl2J) incomparable subsets of S under set inclusion, hence the upper bound (the result was 
first obtained by Sperner in 1928; see [VW92]). The existence of a relation satisfying the 
upper bound number of keys follows from the fact that FDs enjoy Armstrong relations (see 
Theorem 3.28 in the next subsection for a proof of this fact). Firstly, given a set of keys K it 
can easily be verified that every distinct pair of keys in K is incomparable under set inclusion. 
Secondly, we take F = {K ~ schema(R) IKE K} and construct an Armstrong relation, rover 
R, for F. 

As an example of a set of FDs with an exponential number of keys let schema(R) = 
{A\,A2, ... ,An,B\,B2, ... ,Bn}andletF={Ai ~ Bi,Bi ~ Ai liE {1, ... ,n}}. Itcan 
easily be verified that R has 2n keys with respect to F. 

The following lemma shows that finding a single key for a relation schema can be done 
in polynomial time [L078, Kun85]. The idea behind an algorithm to compute a key for R 
is: starting from schema(R), which is a superkey for R, we loop over all the attributes A in 
schema(R) in some order and remove A from the current state of the output key, say K, if A 
E (K-A)+. The loop will be iterated at most type(R) times. 

Lemma 3.23 Given a schema R and a set of FDs F over R the problem of finding a single key 
for R with respect to F can be solved in time polynomial in the sizes ofR and F. 0 

The following two decision problems concerning keys of relation schemas are unlikely to 
have efficient solutions; the full proofs can be found in [L078]. 

Theorem 3.24 Given a schema R and a set of FDs F over R the following decision problems 
are NP-complete: 
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1} The problem of deciding whether R has at least one superkey with respect to F of 
cardinality less than or equal to k. 

2} The problem of deciding whether an attribute A E schema(R} is prime with respect to 
F. 

Proof We sketch the main idea of the proof. Showing that the above two problems are in NP 
is easily done, since testing whether a set of attributes X, with IXI ::: k, is a superkey for R with 
respect to F can be done in polynomial time by testing whether X+ = schema(R}. Moreover, 
A is prime if X is a key for R, i.e. for all B E X, X - B is not a superkey for R, and in addition A 
EX. 

To show that the first problem is NP-hard, a polynomial-time transformation from the 
vertex cover problem, which is known to be NP-complete [Kar72, GJ79], is given. 

The vertex cover problem: Given a graph (N, E) and a natural number k, does there exist a 
subset M ofthe node set N, with IMI ::: k, such that for each edge {u, v} E E, at least one 
of u and v belongs to M? 

Essentially, we construct a relation schema, R, such that schema(R} has one attribute Ai for 
each node in N and one attribute Bj for each edge in E. We also construct a set F of FDs which 
is initially the empty set. We then add to F an FD Ai -+ Bj for each node represented by Ai 

that is in the edge represented by Bj. In addition, an FD X -+ Y is added to the set F, where X 
is the union of the attributes Bj and Y is the union of the attributes Ai; thus X is a key for R 
with respect to F and Y is a superkey for R with respect to F. It can now be shown that M is a 
vertex cover for (N, E) if and only if the set of attributes representing M is a superkey for R. 

To show that the second problem is NP-hard, a polynomial-time transformation from 
the superkey of cardinality k problem, shown to be NP-complete in part (1) above, can be 
given. 0 

The following result shows that the problem of finding whether a schema R has at least one 
superkey of cardinality less than or equal to k with respect to the set of FDs that hold in a 
specific relation over R is also NP-complete. We begin with a definition. 

Definition 3.62 (The set of FDs satisfied in a relation) The set of FDs holding in a relation r 
over R, denoted by F(r), is defined by F(r) = {X -+ Y I X, Y s:; schema(R) and r 1= X -+ Y} . 

• 
The proof of the next theorem follows by a reduction of the vertex cover problem [DTSS] . 

Theorem 3.25 Given a relation rover R, the problem of deciding whether R has at least one 
superkeyof cardinality less than or equal to k with respect to the set ofFDs F(r} that is satisfied 
in r is NP-complete. 0 

Definition 3.63 (Antikey) An antikey for a relation schema R with respect to a set F of FDs 
over R is a maximal set of attributes included in schema(R) that is not a superkey for R with 
respect to F. • 

The following result shown in [DTS7] characterises the set of prime attributes with respect 
to a set of FDs, F over R, in terms of the set of antikeys for R with respect to F. 
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Theorem 3.26 An attribute A E schema(R) is prime with respect to a set F of FDs over a 
relation schema R if and only if A ~ A, where A denotes the intersection of all antikeys for R 
with respect to F. 

Proof If Suppose that A ~ A and thus A E schema(R) - A. Thus for some antikey W for R 
with respect to F, we have A ~ W. Therefore, WA is a superkey for R with respect to F due to 
the fact that W is an antikey for R with respect to F. It follows that A is prime with respect to F. 

Only if Suppose that A is prime and thus there exists a key X for R with respect to F such 
that A E X. Let Y = X - (A). Now, since Y is not a superset of any key for R with respect 
to F, there exists an antikey W for R with respect to F such that Y ~ W. Obviously, A ~ W, 
otherwise W would be a superkey for R with respect to F. So A E schema(R) - W ~ schema(R) 
-A. 0 

The following surprising result shows that if we are interested in finding whether an attribute 
is prime with respect to the set of FDs that hold in a specific relation over R, then the problem 
can be solved in polynomial time [DT87]. Its proof relies on Theorem 3.26, since given a 
relation rover R, it can be shown that the set of antikeys for R with respect to the set F(r) of 
FDs that holds in r can be computed in polynomial time in the size of r. 

Theorem 3.27 Given a relation rover R and a set F of FDs over R the problem of deciding 
whether an attribute A E schema(R) is prime with respect to the set ofFDs F(r) that is satisfied 
in r can be determined in time polynomial in the size of r. 0 

We now motivate foreign keys. Assume a simple database with two relation schemas, 
EMPLOYEE (storing employee information) with attributes E#, ENAME and D# and DEPT 
(storing department information) with attributes D#, DNAME andMGR. Let us further assume 
that E# is the primary key of EMPLOYEE and D# is the primary key of DEPT. 

A tuple <El, John, Dl> means that the name of employee El is John and El works in 
department Dl. A tuple <Dl, Computing, E2> means that the name of department Dl is 
Computing and its manager is employee E2. Thus the values of the attribute D# in EMPLOYEE 
reference the primary key values of the attribute D# in DEPT and similarly the values of MGR 
in DEPT reference the primary key values of the attribute E# in EMPLOYEE. Such referencing 
attributes are called foreign keys. Foreign keys are fundamental to the relational model, since 
they assert that values of tuples in one relation reference the primary key values of tuples in 
another relation. In our motivating example, Dl in an employee tuple references a department 
tuple with primary key value 01, and E2 in a department tuple references an employee tuple 
with primary key value E2. 

Up until now we have not mentioned how we model situations where the information is 
missingorincomplete. Suppose that the schema EMPLOYEE contains the attributes ADDRES S 
and SPOUSE. Furthermore, assume that the address of an employee may be unknown or 
an employee may not have a spouse. In order to be able to record such information 
we add a distinguished null value, denoted by unknown and abbreviated to unk, to the 
domain of ADDRESS, and a distinguished null value, denoted by inapplicable (or alternatively 
does-noLexist which is abbreviated to dne), to the domain of SPOUSE. Thus if the attribute 
value of ADDRESS for a given employee tuple is unk then we interpret this as meaning that 
the address of the employee exists but is unknown, and if the attribute value of SPOUSE is 



3.6. Data Dependencies 157 

inapplicable for a given employee tuple then we interpret this as meaning that the employee 
does not have a spouse. We will now show how primary and foreign keys relate to the fact 
that the information in the database may be missing or incomplete. 

We begin by formalising the notion of a foreign key in a database. 

Definition 3.64 (Foreign key) Let R be a database schema, RI> R2 be relation schemas of R 
and let K be the primary key of R2' In addition, let d = {rl ' r2 , ... , r n} be a database over R. 

A foreign key constraint is a specification of a set of attributes X C; schema(RI) and a primary 
key K of R2. The set of attributes X is called a foreign key of RI and it is said to reference the 
primary key K of R2. The foreign key constraint that X references K is satisfied in d if the 
following condition holds: for all tuples tl E rl> if tl [Xl does not contain any null values, then 
there exists t2 E r2 such that tl [Xl = t2 [Kl . 

If d satisfies the foreign key constraint that X references K then the X-values of tuples in rl, 
which are called foreign key values, are said to satisfy the foreign key constraint. • 

We now state the two most fundamental integrity constraints that should be enforced in 
the relational model [Cod79, Cod90). 

Entity integrity The primary key values of tuples in a relation should not contain null values. 

Referential integrity If a set of attributes in a relation schema is specified as a foreign key 
referencing the primary key of another relation schema then its foreign key values in a 
database must satisfy this foreign key constraint. 

The meaning of these two constraints should be clear. Entity integrity guarantees that each 
tuple in a relation has at least one unique logical access path. On the other hand, referential 
in tegrity guaran tees tha t primary key val ues which are referenced via foreign key values indeed 
relate to existing tuples. 

We close this subsection with two algorithms which enforce entity and referential integrity 
in a relational database. The first algorithm, given below, checks whether entity integrity is 
satisfied in a relation rover R with primary key X C; R. 

Algorithm 3.6 (CHECK_PRIMARY _KEY(r, X)) 
1. begin 
2. for all tuples t E r do 
3. inA E X such that t[AI is null then 
4. return NO; 
5. end if 
6. for all tuples U E r - {t} do 
7. if u[XI = t[XI then 
8. return NO; 
9. end if 
10. end for 
11. end for 
12. return YES; 
13. end. 
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The second algorithm, given below, checks whether referential integrity is satisfied in a 
database d = (r, s) over a database schema R = {R, S}, with foreign key attributes X ~ 
schema(R) which reference the primary key attributes K ~ schema(S), 

Algorithm 3.7 (CHECK_FOREIGN_KEY(d, X, K)) 
1. begin 
2. for all tuples t E r do 
3. if VA EX, t[A] is nonnull then 
4. if ,lIu E s such that t[X] = u[K] then 
5. return NO; 
6. end if 
7. end if 
8. end for 
9. return YES; 
10. end. 

3.6.2 Armstrong Relations for Functional Dependencies 

Recall Definition 3.56 of Armstrong relations. For FDs this can be restated as follows: a 
relation rover R is an Armstrong relation for a set of FDs F over R if for all FDs, X ~ Y 
over R, r F= X ~ Y if and only if F F= X ~ Y. An immediate consequence of this definition 
and the established fact that Armstrong's axiom system is sound and complete is that r is an 
Armstrong relation for F if for all FDs X ~ Y over R, r F= X ~ Y if and only if X ~ Y E 
p+, where p+ = {W ~ Z I F I- W ~ Z} is the closure of F with respect to Armstrong's axiom 
system. 

Armstrong [Arm74] was the first to show that FDs enjoy Armstrong relations. We next give 
a proof of this assertion assuming that all FDs are standard. 

Theorem 3.28 FDs enjoy Armstrong relations. 

Proof. We first claim that ifF ~ X ~ Y, then there exists a relation over R, which we denote 
by r(X ~ Y), containing exactly two tuples such that r(X ~ Y) F= F but r(X ~ Y) ~ X ~ Y. 

Now, since F ~ X ~ Y, there exists a relation rover R such that r F= F but r ~ X ~ Y. 
Thus 3tl , t2 E r such that (tl, t2) ~ X ~ Y. Therefore, we let r(X ~ Y) be (tl , t2)' The claim 
follows, since {tl, t2} F= F holds due to the fact that r F= F. 

We assume that the underlying domains are infinite and also that for two distinct FDs X ~ 
Y and W ~ Z the active domains of r(X ~ Y) and r(W ~ Z) are pairwise disjoint. We take 
,.arm to be the union of all the relations r(X ~ Y) such that X ~ Y is an FD over R which is 
not a member of P+. 

It can easily be verified that rarm is an Armstrong relation for F. 0 

The technique used in the above proof for constructing an Armstrong relation for a set 
of FDs is called the disjoint union technique. Other techniques discussed in [Fag82a] are: 
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agreement sets (which are sets of closed attributes, i.e. sets X of attributes satisfying X = X+), 
direct products and the chase procedure (see Subsection 3.6.4). 

As an example, consider a relation schema, R, having attributes TEACHER (T), COURSE (C) 
and DAY (D). Following [MR86al we will illustrate how Armstrong relations can be used as a 
tool to show users example relations during the relational database design stage. Suppose the 
user wishes to examine a relation over R prior to specifying any FDs that should be satisfied 
in this relation. The tool could display an arbitrary relation, say the relation rJ, shown in 
Table 3.38. It can easily be verified that both r F= C 4- TD and r F= T 4- CD hold. Thus r) 
may mislead the user to suppose that these FDs indeed must be specified. 

Table 3.38 The relation r) satisfying several FDs 

TEACHER COURSE DAY 
Robert databases Monday 

Richard algorithms Monday 

A better example relation to start off with would be the relation r2, shown in Table 3.39. 
It can easily be verified that r2 is an Armstrong relation for the empty set of FDs, that is, no 
nontrivial FDs are satisfied in r2 . Thus the user can inspect this relation and decide what FDs 
correspond to the semantics of the application. 

Table 3.39 The relation r2 satisfying no FDs 

TEACHER COURSE DAY 
Robert databases Monday 
Richard databases Monday 
Richard algorithms Monday 
Robert databases Tuesday 

Suppose the user decided that the only nontrivial FD that should be satisfied in the relation 
over R is TC 4- D. The tool could then display the relation r3, shown in Table 3.40, which is 
an Armstrong relation for the set of FDs, {TC 4- D}. 

Table 3.40 The relation r3 satisfying Te --+ D 

TEACHER COURSE DAY 
Robert databases Monday 

Richard databases Monday 
Richard algorithms Monday 
Robert algorithms Tuesday 

A tool which displays Armstrong relations might also minimise such relations, since the 
presence of redundant tuples may make it more difficult for the user to understand the 
semantics embedded in the relation. Some results on the size of Armstrong relations can 
be found in [BDFS84, MR86al . In general, the size of Armstrong relations for a given set of 
FDs is exponential in the number of attributes in the relation schema. Some special cases, 
when Armstrong relations have polynomial size in the number of attributes, are considered 
in [DT93, DT951. 
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3.6.3 The Implication Problem for Functional Dependencies 

The implication problem for FDs is the problem of deciding whether F F X --+ Y, given a set of 
FDs F and a single FD X --+ Y over R. Now, by the soundness and completeness of Armstrong's 
axiom system we need only consider the problem of deciding whether F I- X --+ Y. This is 
equivalent to the problem of deciding whether Y is in the closure of X, or symbolically whether 
Y ~ X+ holds. We now show that the implication problem for FDs can be efficiently solved. 

The pseudo-code of an algorithm, designated CLOSURE(X, F}, which returns the closure 
X+ with respect to a set of FDs F over R, is given below. 

Algorithm 3.8 (CLOSURE(X, F» 
1. begin 
2. CI:=X; 
3. Done := false; 
4. while not Done do 
5. Done := true; 
6. for each W --+ Z E F do 
7. ifW ~ Cl and Z S?; Cl then 
8. Cl := CI U Z; 
9. Done: = false; 
10. end if 
11. end for 
12. end while 
13. return Cl; 
14. end. 

The computational complexity of CLOSURE(X, F} is O(IFI x IRI), where IFI is the number 
ofFDs in F (i.e. its cardinality) and IRI is the number of attributes in schema(R}. A faster linear 
time algorithm to compute X+ in the size ofF was shown in [BB79], where the size ofF is the 
sum of the number of attributes in each of the FDs in F. 

Example 3.3 Consider a relation schema R, with attributes COURSE (C), TEACHER (T), 
HOUR (H), ROOM (R), STUDENT (S) and GRADE (G). Let the set ofFDs F associated with R 
be {C --+ T, HR --+ C, HT --+ R, CS --+ G, HS --+ R} with the obvious meaning. The following 
results returned from CLOSURE(X, F) can be verified: 

• C+ = CT. 

• HR+ =CHRT 

• CS+ = CGST 
• HST+ = CHGRTS = schema(R). • 

3.6.4 Lossless Join Decompositions and the Chase Procedure 

The (natural) join operator provides the means of combining information in two or more 
relations together. For example, if we have an employees relation containing every employee's 
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name and the name of the department each employee works in, and a departments relation 
having department names and their locations, we can obtain the location that an employee 
works in by joining these two relations together. Thus the join operator allows us to reconstruct 
a larger relation, say r, from smaller ones that could have been obtained from r via projection. 
The problem we investigate in this subsection is the characterisation of when the join of two 
or more relations is meaningful, in the sense that the join operation does not incur any loss 
of information. The concept of joining relations together without loss of information is a 
fundamental property of a decomposition, which is a desirable property to attain during the 
database design stage detailed in Chapter 4 (recall from Definition 3.4 of Section 3.1 that 
decomposition is just a synonym of database schema). 

Consider a relation schema R having the set of attributes, STUDENT (S), COURSE (C) and 
TEACHER (T). Let rl over R be the relation shown in Table 3.41, representing the fact that 
both Reuven and Hanna are taking the databases course but Reuven is taught by Mark and 
Hanna by George. Now, let R = {SC, CT} be a decomposition whose aim is to separate the 
information about students and their courses from the information about courses and their 
teachers. Suppose thatweconstructthedatabased = (JTsdrl), JTCT(rl)} over the decomposition 
R. When we join the relations in d together we get r2 = JTsdrl) [xl JTCT(rl) shown in Table 3.42. 
This has created a problem, since 'I f '2 (or more precisely r1 C r2) and thus the database d 
does not preserve the information of '1. If this situation occurs we say that the decomposition 
R is lossy. 

Table 3.41 A relation TJ over R Table 3.42 The relation r2 = nsch) I><l nCT(rl) over R 

STUDENT COURSE TEACHER STUDENT COURSE TEACHER 
Reuven databases Mark Reuven databases Mark 
Hanna databases George Reuven databases George 

Hanna databases Mark 
Hanna databases George 

The next definition formalises the notion oflosslessness. 

Definition 3.65 (Lossless join decomposition) Let R = {R J, R2, ... , Rn} be a database 
schema and recall that schema(R) = UiEI schema(Ri), where I = {I, 2, ... , n}. Then R 
is a lossless join decomposition of schema(R) with respect to a set of FDs F (or simply the 
decomposition R is lossless with respect to F) if for all relations, rover schema(R), with r F 
F, the equality 

holds. • 
In the example above we have shown that R = {SC, CT} is not a lossless join decomposition 

with respect to the empty set of FDs. Let us assume that a course has only one teacher, that is, 
F = {C -+ T}, and let '3 be the relation over R shown in Table 3.43. It can easily be verified that 
'3 = JTSdr3) [xl JTCT('3). In fact, the stronger statement that R is a lossless join decomposition 
of schema(R) with respect to F holds. 

In order to show a sufficient and necessary condition for a decomposition to be lossless 
with respect to a set of FDs, F over R, we introduce the chase procedure. 



162 Chapter 3. The Relational Data Model 

Table 3.43 A relation T3 over R 

STUDENT COURSE TEACHER 
Reuven databases Mark 
Hanna databases Mark 

We first define the notion of a tableau, which is a relation whose active domain contains 
certain types of variable instead of constant values; we will call the tuples of a tableau rows. 

The types of variable that can appear in the active domain of a tableau are: 

• distinguished variables (dv's) denoted by subscripted a's; we assume that for each 
attribute A E schema(R), aj is the dv corresponding to A if and only if att(i) = A. 

• nondistinguished variables (ndv's) denoted by subscripted b's. 

We will now define a partial order, denoted by~, between dv's and ndv's; we take VI C V2 

to mean VI ~ V2 but VI #- V2. 

• for every dv aj and ndv bj, aj C bj. 

• for every pair of dv's aj and aj, aj ~ aj if and only if i S j. 

• for every pair of ndv's bj and bj , bj ~ bj if and only if i S j. 

In the following let T be a tableau over Rand F be a set of FDs over R. We next define a 
transformation rule with respect to F, called the FD rule, which is applied to a tableau T over 
R and as a result modifies T by changing the occurrences of a particular variable to another 
variable. 

FD rule: if X ---+ Y E F and 3wj , Wj E T such that Wj[X] = Wj[X] but wj[A] C wj[A] for some A 
E Y, then change all occurrences of the variable wj[A] in T to wj[A]. 

We are now ready to define the implementation of the chase procedure of a tableau T over 
R with respect to F. The chase procedure will be used as a theorem prover to test whether a 
database schema is a lossless join decomposition with respect to a set ofFDs and, in addition, 
as an alternative way to solve the implication problem for a set ofFDs. 

The pseudo-code of an algorithm, designated CHASE(T, F), which returns the chase of 
a tableau T over R with respect to a set of FDs F over R, is given below. The algorithm is 
nondeterministic, since the FD rule is free to choose any FD in F and any two tuples in T that 
cause a change in the tableau. 

Algorithm 3.9 (CHASE(T, F» 
1. begin 
2. Result := T; 
3. Tmp:= 0; 
4. while Tmp #- Result do 
5. Tmp := Result; 
6. Apply the FD rule to Result; 
7. end while 
8. return Result; 
9. end. 
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We call an execution of line 6 in Algorithm 3.9 a chase step and we say that the chase step 
applies the FD X ~ Y E F to the tuples tl and t2' There are several properties that CHASE{T, 
F) possesses. Firstly, it is a finite Church-Rosser system. That is, the tableau returned by 
CHASE{T, F) is unique independently of the order in which the FDs in F are chosen and the 
tuples in T are chosen by the FD rule. Secondly, the tableau returned by CHASE{T, F) satisfies 
F, since if this were not the case the FD rule could be applied at line 6 of Algorithm 3.9 causing 
a further modification to the returned tableau. Finally, the chase procedure, which computes 
CHASE{T, F), terminates after a finite number of steps, since no new values are created by 
the algorithm. In fact CHASE{T, F) can be computed in time polynomial in the sizes ofR and 
F, since each application of a chase step reduces the number of distinct values in the chased 
tableau by at least one. 

We will now utilise the chase to solve two important problems. The first problem is that 
of testing whether a decomposition is lossless with respect to a set of FDs, and the second 
one is an alternative method to that presented in Subsection 3.6.3 for solving the implication 
problem for FDs. 

Definition 3.66 A distinct ndv bi appearing in a tableau T over R is a ndv that appears in 
only one row and column of T. 

The tableau T for a database schema R = {RI, R2, ... , Rn}, denoted by T{R), is a tableau 
over R, with schema{R) = schema{R), having a row Wi for each Ri E R. For all attributes A E 
schema{R), if A E schema{Ri), then row Wi has the dvaj as the value of wi[A], where att(j) = 
A, otherwise if A E schema{R) - schema(Ri), then row Wi has a distinct ndv as the value of 
wi[A). 

A winning row for CHASE{T{R), F) is a row which contains dv's over all the attributes in 
schema{R). 

The tableau T for an FD X ~ Y over R, denoted by T{X ~ Y), is a tableau over R containing 
two rows. Both rows have the dv ai as the value ofwi[A), V A E X, where att(i) = A, and distinct 
ndv's as the value of wi[A), V A E schema{R) - XY. The first row, WI> has the dvaj as the value 
of WI [B], V BEY, where att(j) = B, and the second row, W2, has distinct ndv's as the value of 
w2[B], V BEY. 

A winning row for CHASE{T{X ~ Y), F) is a row which contains dv's over all the attributes 
inXY. • 

Theorem 3.29 A database schema R is a lossless join decomposition with respect to a set of 
FDs F over R, with schema{R) = schema(R), if and only if CHASE{T{R), F) contains a winning 
row. 

Proof. Let T = CHASE{T{R), F). We need to show that for all relations, rover schema{R), with 
r F= F, r =1XI1=1 lfRj(r), where R = {RI , R2, ... , Rn}, if and only ifT has a winning row. 

If. Let r be a relation over R such that r F= F and suppose that 3t E 1XI1=1 lfRj (r) such that 
t rt r. Furthermore, lets = {tl, t2, ... , tn } be the set of tuples in r satisfying {t} = 1><l1=1 lfRj{ {ti}). 
We claim that T does not contain a winning row. Let rp be a mapping from T(R) to s, with 
rp(Wi) = ti, where Wi are the tuples ofT(R) and 1 ::: i::: n. Now, suppose we apply the FD rule 
for an FD, say X ~ Y E F with respect to an attribute A E Y, to two tuples, say WI and W2, 

in the intermediate state of the tableau when computing T = CHASE(T{R), F). Then it can be 
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verified that the set of tuples {cp( WI) , cp( W2)} satisfies X 4 A, due to the fact that r F= F. Thus, 
by the construction of t it follows that all the equalities in T must hold in s and therefore cp 
is a homomorphism from T to s, that is, if wdA) = w2[A), with WI , W2 E T, then cp(wI)[A] 
= cp(w2)[A], where A E Y. The result that T does not contain a winning row follows, since 
otherwise t E r would hold contrary to our assumption. 

Only if. Suppose that T does not contain a winning row. We create a relation rover R from 
T by mapping each distinct dv and ndv in T to a distinct constant value. Now, it must be the 
case that r F= F, since T F= F. Moreover, lett;, i E {I, 2, . . . , n}, be the tuple in rcorresponding 
to the tuple in T having dv's as values for all the attributes in schema(R;}. The result follows, 
since 1><11=1 JrRi( {t;}) ~ r, due to the fact that T does not contain a winning row. 0 

Example 3.4 Let us apply Theorem 3.29 to the database schema R = {SC, CT}, with F = {C 
4 T}. The tableau T(R} is shown in Table 3.44 and the tableau CHASE(T(R}, F» is shown in 
Table 3.45. It follows that R is a lossless join decomposition of SCT with respect to F, since the 
latter tableau has a winning row. • 

Table 3.44 The tableau for R 

s C T 
al az bl 
bz az a3 

Table 3.45 The tableau CHASE(T(R), F) 

s C T 
al az a3 
bz az a3 

The following theorem can be proved by using a similar argument to that made in 
Theorem 3.29. 

Theorem 3.30 Given a set of FDs F over R and an FD X 4 Y E F, F F= X 4 Y if and only if 
both the rows of CHASE(T(X 4 Y}, F} are winning rows. 0 

Example 3.5 Let R be a relation schema with attributes EMP (E), ADDRESS (A) and PHONE 
(P), with a set of FDs F = {E 4 A, A 4 Pl. The tableau T(E 4 P} is shown in Table 3.46 and 
the tableau CHASE(T(E 4 P), F}} is shown in Table 3.47. It follows that F F= E 4 P, since the 
single row of Table 3.47 is a winning row. • 

Table 3.46 The tableau for E -+ P 

E A P 
al bl a3 
al bz b3 

Table 3.47 The tableau CHASE(T(E -+ P), F) 

I ;1 I ~ 1:31 
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The following corollary, which characterises binary lossless join decompositions with 
respect to a set of FDs, follows immediately from the above two theorems. 

Corollary 3.31 Let R = {R\, R2}, X = schema(Rd n schema(R2} and F be a set ofFDs over R, 
with schema{R} = schema{R). Then the decomposition R is lossless with respect to F if and 
only if either F F X -+ schema{RI) or F F X -+ schema{R2). 0 

The reader can find a more detailed account of the chase procedure in [ABU79, MMS79, 
Hon82). 

3.6.5 Minimal (overs for Sets of Functional Dependencies 

Recall that a set of FDs, F over R, is a cover of another set of FDs, Gover R, if p+ = G+. In 
other words, the set of FDs that can be derived from F is equal to the set of FDs that can be 
derived from G. (Note that the concept of a cover of a set of FDs is an equivalence relation 
in the set-theoretic sense.) Thus all the covers of a set of FDs equally describe the semantics 
of the application in hand. Some covers of a set of FDs are better than others in the sense 
that they contain less redundancy in them. A set of FDs, say F over R, can have redundancy 
in it if there is a cover which has less FDs in it, or it has a cover with a smaller size (the size 
of a set of FDs is the number of attributes appearing in the FD set including repetitions). 
We are interested in choosing a cover of F which has minimal redundancy in it. This is 
beneficial, since the algorithms, which we develop that involve processing a set of FDs, such 
as Algorithm 3.8 for computing the closure of a set of attributes with respect to a set of FDs, 
will execute faster on a set of FDs which has less redundancy in it. We next give a motivating 
example. 

Example 3.6 Consider a relation schema R with the three attributes EMPLOYEE (E), 
ADDRESS (A) and PHONE {P}. 

Now, let PI = {E -+ P, E -+ A} and GI = {EA -+ P, E -+ A} . It is easy to verify that PI is a 
cover of GI, since {E -+ P} f- {EA -+ P} by augmentation and decomposition and Gl f- {E -+ 
P} by augmentation and transitivity. However, PI has less attributes than Gl and is therefore 
a more succinct representation of the semantics of the application. 

Now, let P2 = {E -+ A, A -+ P} and G2 = {E -+ A, A -+ P, E -+ Pl. It is easy to verify that 
P2 is a cover of G2 by using transitivity. However, P2 has fewer FDs than G2 and is therefore a 
more succinct representation of the semantics of the application. • 

Minimising the cover of a set of FDs has the benefits of reducing the time it takes to test 
whether a relation satisfies a set of FDs and also reducing the time it takes to compute the 
closure of a set of attributes. The next definition gives three types of coverfor sets of FDs. 

Defmition 3.67 (Types of cover) Three types of cover for FDs are given by 

1) A set of FDs F is nonredundant if there does not exist a cover G of F that is properly 
contained in F. 

2) A set ofFDs F is minimum ifthere does not exist a cover G ofF that has fewer FDs than 
F. 
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3) A set of FDs F is optimum if there does not exist a cover G of F that has fewer attributes 
ilimR • 

The reader can easily verify that a minimum cover is nonredundant and not so easily that an 
optimum cover is minimum. On the other hand, a cover of a set of FDs may be nonredundant 
but not minimum. As a counterexample, F = {E --" P, E --" A} is nonredundant but not 
minimum, since G = {E --" PA} is a cover of F. Moreover, a cover of a set of FDs may be 
minimum but not optimum. As a counterexample, let us assume that R of Example 3.6 also 
has attributes NAME (N) and SALARY (S). Then F = {E --" NA, NA --" E, NA --" S} is minimum 
but not optimum, since G = {E --" NA, NA --" E, E --" S} is a cover of F. 

The pseudo-code of an algorithm, designated MINIMUM(F), which returns a minimum 
cover G of a set ofFDs F over R, is given below. 

Algorithm 3.10 (MINIMUM(F)) 
1. begin 
2. G:=0; 
3. for each X --" Y E F do 
4. G:= G U {X --" x+}; 
5. end for 
6. for each X --" X+ E G do 
7. if G - {X --" X+} f- X --" X+ then 
8. G := G - {X --" X+}; 
9. end if 
10. end for 
11. return G; 
12. end. 

The correctness of Algorithm 3.10 relies on the result that if all the FDs in a set G of FDs 
over R are of the form X --" X+, that is to say, ilie right-hand sides of FDs are the closures of 
their left-hand sides, then G is minimum if and only if it is nonredundant [Sh086j. 

The computational complexityofMINIMUM(F) is O(IFI x IIFI!), where IFI is the cardinality 
of F and IIFII is the size of F, namely the number of attributes appearing in F including 
repetitions. 

The following theorem shows that finding an optimum cover of a set F ofFDs over R is most 
likely intractable. Its proof follows by a reduction from the problem of deciding whether R 
has at least one superkey with respect to F of cardinality less than or equal to k, which was 
shown to be NP-complete in part (1) of Theorem 3.24. 

Theorem 3.32 Given a set ofFDs F over a relation schema R, ilie problem of deciding whether 
there exists a set of FDs G, with fewer ilian k attributes, k E w, such that F is a cover of G, is 
NP-complete. 0 

For a detailed account of minimal covers of FDs and full proofs of the results we have 
presented we refer the reader to [Mai80, MR83j. A recent investigation of minimal covers in a 
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lattice-theoretic framework can be found in [Wil94]. An interesting investigation of minimal 
covers in the context of FDs and functional independencies, which are negations of FDs, can 
be found in (Jan88, Jan89]. 

3.6.6 Projection of Functional Dependencies 

Given a set of FDs F over R, we are often interested to know which set of FDs is satisfied in a 
smaller relation schema, S, where schema(S) is a subset of schema(R). This is known as the 
problem of projecting a set ofFDs over R onto S.lts solution is very important during database 
design, since often, as we shall see in Chapter 4, we need to decompose a relation schema R 
into two or more smaller relation schemas each having a subset of the attribute set ofR. We can 
only carry out this decomposition if the set of FDs F is preserved in the decomposed relation 
schemas. By FD preservation we mean that the closure of the set of projected FDs is a cover 
of the original set of FDs F. 

Defmition 3.68 (Projection of a set of FDs) The projection of a set of FDs F over R onto a 
relation schema S, with schema(S) 5; schema(R), denoted by F[S], is given by 

F[S] = {X ~ Y I X ~ Y E F and XY 5; schema(S)}. 

The FDs in F[S] are said to be embedded in S. 

A relation schema S is said to preserve the set ofFDs F over R ifF[S] is a cover of p+ [S], i.e. 
F[S] is a cover of 

{X ~ Y I X ~ Y E p+ and XY 5; schema(S)}. • 
We now investigate whether FDs are closed under projection, i.e. whether a projection of a 

relation always satisfies the projection of a set of FDs and vice versa, i.e. whether a relation 
that satisfies the projection of a set of FDs is a projection of a relation that satisfies the original 
set ofFDs. 

The following result follows immediately from the above definition. 

Lemma 3.33 Let F be a set ofFDs over a relation schema Rand r be a relation over R such that 
r F F. Then Jl'schema(S) (r) F p+ [S], where S is a relation schema with schema(S) 5; schema(R). 

o 

Surprisingly the converse of this lemma is shown to be false in [GZ82]. 

Theorem 3.34 There exist relation schemas Rand S, with schema(S) c schema(R), a set of 
FDs F over R and a relation s over S such that s F p+ [S] but there does not exist a relation r 
over R such that r F F and s = Jl'schema(S)(r). 

Proof. Let R be a relation schema with schema(R) = {A, B, C, D, E, H, I} and S be a relation 
schema with schema(S) = {A, B, C, D, E}. Furthermore let F = {A ~ I, B ~ I, C ~ H, D ~ 
H, IH ~ E}. In addition, let G = {AC ~ E, AD ~ E, BC ~ E, BD ~ E}. We leave it to the 
reader to verify that G is a cover of p+ [S]. 
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Now, let s = {tl , t2, t3, t4} be the relation over S shown in Table 3.48. The reader can verify 
that s p G and thus s p P+[S]. Suppose that there exists a relation rover R such that r p 
F and s = lTschema(S) (r). It follows that 3 UI, U2, U3, U4 E r such that for i E {l,2,3.4}, ti = 
ui[schema(S)]. Let udIH] = <ii, hi>. Then the following equalities can be deduced from F: 

• UI [I] = u4[I], since udAl = u4[A] and A --+ IE F. 

• u2[I] = u4[I], since u2[B] = u4[B] and B --+ I E F. 

• UI [I] = U2 [I] follows from the above two equalities. 

• uI[H] = u3[H], since udc] = U3[C] and C --+ H E F. 

• u2[H] = u3[H], since u2[D] = u3[D] and D --+ HE F. 

• udH] = u2[H] follows from the above two equalities. 

• UI [IH] = U2 [IH] is now implied from the above. 

Table 3.48 The counterexample relation 

A B C 0 E 
al bl CI d l el 

a2 b2 C2 d2 e2 

a3 b 3 CI d2 e3 

al b2 C3 d3 e4 

Therefore, udE] = u2[E] due to the fact that IH --+ E E F and we have assumed that r p 
F. However, this leads to a contradiction, since tdE] -::j: t2[E] and thus udE] -::j: u2[E]. We 
must therefore conclude that there does not exist a relation rover R such that r p F and 
s = lTschema(S) (r). 0 

The following result was shown in [BH81]; recall that co-NP is the complement of NP. 

Theorem 3.35 The problem of determining whether a relation schema S preserves a set of 
FDs F over R is co-NP-complete. 

Proof. We show that the complement of the problem, that is, to determine whether S does not 
preserve F is NP-complete. 

The problem is easily seen to be in NP. Simply guess an FD X --+ Y over S and then verify 
in polynomial time by using CLOSURE(X, F), which was defined by Algorithm 3.8, that X --+ 

Y E P+[S) but X --+ Y ¢ F[S]. 

To show that the problem is NP-hard we give a polynomial-time transformation from 
the hitting set problem (which was shown to be NP-complete in [Kar72)) to the problem of 
determining whether S does not preserve F. 

The hitting set problem: Given a family SI , S2, . .. , Sn of subsets of a set U, does there exist 
a subset W s.; U, such that Vi E (1 , 2, ... , n}, IW n Sd = 1. Such a subset W of U is 
called a hitting set, in other words W is a hitting set if for each i the cardinality of the 
intersection of Wand Si is one. 
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Let R be a relation schema with schema{R) = U U {B I , B2, . .. , Bn, C}, where {BI , B2, ... , Bn, 
C} n U = 0, and let schema{S) be a relation schema with schema{S) = U U {C}. We define 
three sets of FDs, PI, P2 and P3 over R, and let F = PI U P2 U P3. 

1) PI = {Aj -+ Bj I Aj E Sj for some i E {I, 2, . .. , n}}; this set of FDs captures each 
membership of the form Aj E Sj. 

2) P2 = {AjAk -+ C I Aj , Ak E Sj for some i E {I, 2, . .. , n} andAj =1= Ak}. 

3) P3 = {BIB2 ... Bn -+ C}. 

We claim that W is a hitting set if and only if S does not preserve F. That is, W is a hitting 
set ifandonlyifF[S] is not a cover ofP+[S]. 

If. Suppose that F[S] is not a cover of P+[S]. Then there exists a nontrivial FD in P+[S] -
(F[S])+. By inspection of F and schema{S) we can deduce that this FD must be of the form W 
-+ C, where Vi E {I , 2, . .. , n}, IW n S;I = 1. Thus W is a hitting set. 

Only if. Suppose that W is a hitting set. Then W -+ C E P+[S] can be derived from PI and 
P3. On the other hand, W -+ C rf- (F[S])+, since P3 ~ F[S] and, in addition, we cannot use P2 
to derive W -+ C due to the fact that Vi E {l , 2, .. . , n}, (IW n Sjl = 1) < 2. Thus S does not 
preserve F. D 

3.6.7 Inclusion Dependencies 

Inclusion Dependencies (or simply INDs) generalise the notion of referential integrity which 
together with entity integrity form the fundamental integritycontraints ofthe relational model. 
In fact, foreign keys can be expressed by a subclass of INDs called key-based INDs. There 
is a proviso in that we will assume that none of the relations in the database do contain null 
values. This assumption will be relaxed in Section 5.5 of Chapter 5, where we investigate 
integrity contraints, including INDs, in the presence of incomplete information. 

INDs are different from other data dependencies such as FDs, since they can express 
interrelational constraints between attributes in two relations. Together FDs and INDs 
constitute the most fundamental data dependencies that are used in practice. 

Intuitively, an IND is an expression of the form R[X] ~ SlY], where Rand S are relation 
schemas and X and Yare equal length sequences of attributes from schema{R) and schema{S}, 
respectively. Such an IND is satisfied in a database having relations rover Rand s over S if 
the projection of r onto X is included in (Le. is a subset of) the projection of s onto Y. 

We now give a motivating example. Let STUDENTS be a relation schema having attributes 
STUD recording names of studen ts and DEPT recording names of departments. In addition, let 
HEADS be a relation schema having attributes HEAD recording names of heads of departments 
and DEPT be as before. Finally, let LECTURERS be a relation schema having attributes LECT 
recoding names of lecturers and DEPT be as before. A database d = {rl, r2 , r3} over the 
database schema containing the relation schemas STUDENTS, HEADS and LECTURERS is 
shown in Tables 3.49, 3.50 and 3.51, respectively. The semantics of the database schema can 
be captured by several FDs and INDs. The FDs are: STUD -+ DEPT over STUDENTS, DEPT 
-+ HEAD over HEADS, and LECT -+ DEPT over LECTURERS, with their obviously intended 
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meaning. The INDs are: STUDENTS[DEPT] s::; HEADS[DEPT] meaning that a student only 
studies in a department which has a head, and HEADS [HEAD, DEPT] s::; LECTURERS[LECT, 
DEPT] meaning that a head of a department is also a lecturer in the department he/she 
heads. The reader can verify that the specified FDs and INDs are all satisfied in d. There 
is also some interaction between the FDs and INDs, since the IND HEADS[HEAD, DEPT] s::; 
LECTURERS[LECT, DEPT] together with the FD LECT --+ DEPT over LECTURERS logically 
imply the FD HEAD --+ DEPT over HEADS. The reader can verify that this implied FD is 
satisfied in r2. 

Table 3.49 The relation rl over 
STUDENTS 

STUD DEPT 
Iris Computing 

Reuven Computing 
Eli Maths 

Naomi Maths 
Susi Philosophy 

Table 3.50 The relation T2 over 
HEADS 

HEAD DEPT 
Raphael Computing 

Dan History 
Brian Maths 

Annette Philosophy 

Table 3.51 The relation T3 over 
LECTURERS 

LECT DEPT 
Hanna Biology 

Raphael Computing 
Dan History 
Eli Maths 

Naomi Maths 
Brian Maths 

Annette Philosophy 

Consider another example. Let BOSS be a relation schema having two attributes, EMP and 
MGR, and let r be the relation over BOSS shown in Table 3.52. The fact that a manager is also 
an employee is captured by the IND BOSS[MGR] s::; BOSS[EMP]. This type of IND gives rise 
to the notion of circular INDs, which leads to the following problem. In order to enforce the 
satisfaction of this IND over BOSS in a relation without nulls we get into a circular argument 
implying that a relation that satisfies the IND has an infinite number of tuples (we allow 
only finite relations), unless we allow employees to manage themselves. As can be verified in 
Table 3.52 Jill is the manager of herself. 

Table 3.52 The relation r over BOSS 

EMP MGR 
Jack John 
John Jill 
Jill Jill 

In order to formally define INDs we will introduce notation for sequences of distinct 
attributes, i.e. sequences which do not repeat any attribute. A sequence of distinct attributes 
AI, A2, ... , An, whose underlying set of attributes, {AI, A2, ... , An}, is equal to Y, is denoted 
by <AI, A2 , .. . , An> or by <Y>. Whenever no confusion arises between a sequence and its 
underlying set, we will refer to the sequence of distinct attributes <Y>, simplyas Y. We take A E 

<AI, A2, .. . , An> to mean A E {AI, A2, ... , An} and <AI, A2, . . . , An> s::; <BI, B2, .. . , Bm> 
to mean {AI, A2 , ... , An} s::; {B I , B2," " Bm}. From now on we will refer to a sequence of 
attributes as a shorthand for a distinct sequence of attributes. 

We will denote the concatenation of two sequences X and Y by XY; we will assume that, 
unless otherwise stated, when we concatenate two sequences of attributes these sequences 
have no common attributes, i.e. they are disjoint. The difference between two sequences 
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of attributes, denoted by X-Y, is the sequence resulting from removing all the common 
attributes in X and Y from X while maintaining the original order of the attributes remaining 
in X. If the sequences X, Yare not disjoint we define their concatenation XY to be (X-Y)Y. 
The intersection of two sequences of attributes, denoted by X n Y, is a shorthand for X - (X 
- Y). For simplicity, we will not distinguish between the empty sequence of attributes, < >, 
and the empty set of attributes, 0. 

The projection of a tuple t over a relation schema R onto the sequence of attributes <Y> 
= <att(i1), att(i2), ... , att(ik», where Y ~ schema(R), denoted by t[ <Y>] (or simply t[Y] 
when no ambiguity arises), is defined by t[ <Y>] = <t(id, t(i2) , ... , t(ik»' We extend 
projection to a relation rover R onto <Y> in the usual manner, namely 

1Ty(r) = {t[Y] I t E r}. 

Defmition 3.69 (Inclusion dependency) An Inclusion Dependency over a database schema 
R (or simply an IND) is a statement of the form RI [X] ~ R2 [Y], where Rl> R2 E R and X, Yare 
sequences of attributes such that X ~ schema(Rd, Y ~ schema(R2) and IXI = IYI. 

An IND is said to be trivial ifit is of the form R[X] ~ R[X]. An IND R[X] ~ S[Y] is said to 
be unary if IXI = 1. An IND R[X] ~ S[Y] is said to be typed if X = Y. • 

An example of an IND which is both typed and unary is STUDENTS[DEPT] ~ 
HEADS[DEPT] and an example of an IND which is neither unary nor typed is HEADS[HEAD, 
DEPT] ~ LECTURERS[LECT, DEPT]. 

Defmition 3.70 (Satisfaction of an IND) Let d be a database over a database schema R, where 
rl> r2 E d are relations over relation schemas Rl> R2 E R. An IND RtlX] ~ R2[Y] is satisfied 
in a database dover R, denoted by d F RtlX] ~ R2[Y]' if'v'tl E rl, 3t2 E r2, such that ttl X] = 
t2[Y]. (Equivalently, d F R;[X] ~ Rj[Y], whenever 1Tx(ri) ~ 1Ty(rj)') • 

An important subclass ofINDs that is utilised in the next subsection is the class of noncircular 
INDs [Sci86]. 

Defmition 3.71 (Circular and noncircular sets ofINDs) A set of INDs lover R is circular if 
either 

1) there exists a nontrivial IND R[X] ~ R[Y] E I, or 

2) there exist m distinct relation schemas, RI, R2, R3,"" Rm E R, with m > 1, such that I 
contains the INDs: RtlXtl ~ R2[Y2], R2[X2] ~ R3[Y3], .. . , Rm[Xm] ~ Rtlytl . 

A set of INDs is noncircular if it is not circular. • 
The reader can verify that the set of INDs {STUDENTS[DEPT] ~ HEADS[DEPT], 

HEADS[HEAD, DEPT] ~ LECTURERS[LECT, DEPT]} is non circular. On the other hand, the 
single IND {BOSS[MGR] ~ BOSS[EMP]} is circular according to part (1) of Definition 3.71. 
Let us now add an attribute TUTEE to schema(LECTURERS) indicating those students that 
are in the tutorial group of a lecturer. Then we can add the IND LECTURERS[TUTEE] 
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<; STUDENTS[STUD] specifying that the students in a tutorial group of a lecturer are 
included in the official list of students. We now have the set of INDs {STUDENTS[DEPT] <; 
HEADS[DEPT], HEADS[HEAD, DEPT] <; LECTURERS[LECT, DEPT], LECTURERS [TUTEE] 
<; STUDENTS [STUD]}, which is circular according to part (2) of Definition 3.71. 

We can easily test whether a set of INDs, I over R, is non circular as follows: construct 
a directed graph GI = (N, E), whose nodes in N are labelled by the relation schemas in the 
database schema R and such that there is an arc in E from R to S if there is a nontrivial IND 
R[X] <; S[Y] in I (R = S is possible). It follows that I is noncircular if and only if GI is an acyclic 
directed graph. Testing whether a directed graph is acyclic can easily be done in polynomial 
time in the size of GI by a depth-first search algorithm [Tar72, AHU83]. 

We next define an important class of INDs where the attributes on the right-hand side of 
INDs are keys. We remind the reader that when F is a set of FDs over one or more relation 
schemas R E R, we say that F is a set of FDs over R. 

Defmition 3.72 (Key-based INDs) An IND R[X] <; S[Y] over R is superkey-based, 
respectively key-based, if Y is a superkey, respectively a key, for S with respect to a set of 
FDs F over R. 

A set I ofINDs is superkey-based, respectively key-based, with respect to a set of FDs F over 
R if every IND in I is superkey-based, respectively key-based. • 

For example, the IND STUDENTS[DEPT] <; HEADS[DEPT] is key-based, since DEPT ~ 
HEAD over HEADS implies that DEPT is a key for HEADS. On the other hand, the IND 
HEADS[HEAD, DEPT] <; LECTURERS[LECT, DEPT] is superkey-based but not key-based, 
since the FD LECT ~ DEPT over LECTURERS implies that LECT is a key for LECTURERS. 
The reader can verify that the IND HEADS[DEPT] <; LECTURERS[DEPT] is neither superkey
based nor key-based. 

An alternative formalisation of referential integrity in terms of key-based INDs is now 
evident, recalling that we have assumed that relations in the database do not have null values. 
If R[X] <; S[Y] is a key-based IND and Y is a primary key of S, then the set of attributes X is a 
foreign key of R referencing the primary key Y of S. 

The following inference rules allow us to axiomatise INDs. 

Definition 3.73 (Inference rules for INDs) Let I be a set of INDs over a database schema R 
= {RI , R2, ... , Rn}. We define the following inference rules for INDs: 

INDl Reflexivity: if X <; schema(R), with R E R, then I I- R[X] <; R[X]. 

IND2 Projection and permutation: if I I- RdX] <; R2[Yj, where X = <AI, A2, ... , Am> 
<; schema(Rd, Y = <BI, B2,"" Bm> <; schema(R2) and iI, i2, ... , ik is a sequence 
of distinct natural numbers from {l, 2, ... , m}, then I I- RdAil' Ai2'"'' Aik] <; 
R2[Bil' Bi2"'" Bik]' 

IND3 Transitivity: if I I- RdX] <; R2[Y] and I I- R2[Y] <; R3[Z], then I I- RdX] <; R3[Z]. • 
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Note that INDI is an axiom, since it has no hypothesis. We call the inference rules INDl, 
IND2 and IND3 Casanova et a/"s axiom system [CFP84j. The next lemma and theorem were 
first proved in [CFP84j. 

Lemma 3.36 Casanova et al.'s axiom system is sound. 

Proof. We prove that transitivity (IND3) is sound and leave it to the reader to prove that the 
other inference rules are also sound. 

Let rl, r2 and r3 be the relations in d over the relation schemas RI , R2 andR3 in R, respectively. 
Moreover, let tl E r" so we are required to show that tdXj E JTx(r3). By the fact that d ~ 
RdXj S; R2[Yj we have tdXj E JTy(r2). The result follows, since d ~ R2[Yj S; R3[Zj implies 
that tl [Xj E JTz(r3) as required. 0 

Theorem 3.37 Casanova et al.'s axiom system is sound and complete for INDs. 

Proof. Soundness follows from the previous lemma. It remains to prove completeness. As 
in Theorem 3.21, in which we proved that Armstrong's axiom system is sound and complete 
for FDs, we assume that I If R[X] S; S[Y]. To conclude the proof it is sufficient to exhibit 
a counterexample database, dover R, such that d F= I but d t;t= R[X] S; SlY], where X = 
<AI, A2, ... ,Am>· 

Let rEd be the relation over R that contains a single tuple t such that t[A;) = i, for 
i = 1, 2, ... , m, and t[A;) = 0 otherwise. All the other relations in d are initialised to be 
empty. We insert tuples into the relations in d by applying the following rule until no more 
tuples can be inserted into the current state of d by a further application of this rule. Let us 
call the resulting database d' (cf. the chase procedure for INDs, which is defined in the next 
subsection) . 

IND tuple insertion rule: If RI [Wj S; R2[Z] E I and 3tl E rl such that tl [Wj if- JTz(r2), then 
add a tuple t2 over R2 to r2 such that t2[Z] = tt!W] and VA E schema(R2) - Z, t2[A] = 
0, where rl and r2 in d are the relations over RI and R2 in R, respectively. 

We observe that the IND tuple insertion rule can only be applied a finite number of times, 
since this rule does not introduce new values into d'. It follows that d' F= I, since if this were 
not the case then we could apply the IND tuple insertion rule to d', contradicting the fact that 
this rule cannot be further applied. 

It remains to show that d' t;t= R[Xj S; S[Y]. We claim that if t[X] E JTY(s) then I I- R[Xj S; 

S[Yj, where sEd is the relation over S. The claim can be formally proved by induction on the 
minimal number, say k, k E cu, of applications of the IND tuple insertion rule. The basis step, 
when k = 0, follows by the reflexivity rule. The induction step follows by the projection and 
permutation rule and the transitivity rule on using the induction hypothesis. We leave it to 
the reader to fill in the missing details. 

It follows by the above claim that t[Xj if- JTy(s), since we have assumed that I If R[Xj S; S[Y]. 
The result now follows by Definition 3.70 of the satisfaction of an IND. 0 

In [Mit83] repeated attributes are allowed in inclusion dependencies. For example, if an 
IND of the form R[A, Bj S; R[C, C) is satisfied in a database d, where rEd is the relation over 
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R, then for any tuple t E r we have t[A] = t[B] = t[C]. (In [CFP84] such INDs with repeating 
attributes are called repeating dependencies.) 

IND4 Substitutivity of equivalents: if I I- R[A, B] ~ S[C, C] and I I- a, where R[X] is either 
the right-hand side or the left-hand side of a, then I I- {3, where (3 is obtained from a by 
substituting one or more occurrences ofB in R[X] with A. 

It is shown in [Mit83] that the axiom system consisting of the inference rules INDl, IND2, 
IND3 and IND4 is sound and complete for INDs which may contain repeated attributes. As 
we shall see in Subsection 3.6.11 when we consider the interaction between a set F ofFDs and 
a set I of INDs, a repeating dependency a may be logically implied by F and I even if I does 
not contain any repeating dependencies. 

3.6.8 The Chase Procedure for Inclusion Dependencies 

In this section we introduce the chase procedure for INDs in order to test the satisfaction of 
a set of INDs in a database. This highlights the versatility of the chase procedure as a useful 
tool in relational database theory, recalling that in Subsection 3.6.4 the chase was employed 
in the context of the implication problem. In the theory of data dependencies it is common 
to use the chase in both roles, i.e. to test satisfaction of a set of dependencies and to test for 
implication of dependencies. 

Let d be a database over a database schema R, where r, sEd are, respectively, the relations 
over the relation schemas R, S E R. 

IND rule: IfR[X] ~ S[Y] E I and 3t E r such that t[X] ~ Jry(s), then add a tuple u over S to s, 
where u[Y] = t[XI and VA E schema(S) - Y, urAl ~ ADOM(d). 

That is, the IND rule adds a new tuple u to the relation s, which has new values, not present in 
s, over all the attributes which are not in Y. For convenience we will assume that the elements 
in ADOM(d) are linearly ordered and that the new values, u[A] ~ ADOM(d}, are greater than 
all the values in the current state of ADOM(d). 

The pseudo-code of an algorithm, designated ICHASE(d, I), which returns the chase of a 
database dover R with respect to a set I of INDs over R, is given below. As in the case of the 
chase of a tableau with respect to a set of FDs the algorithm is nondeterministic. 

Algorithm 3.11 (ICHASE(d, I)) 
1. begin 
2. Result := d; 
3. Tmp:= 0; 
4. while Tmp =j:: Result do 
5. Tmp := Result; 
6. Apply the IND rule to Result; 
7. end while 
8. return Result; 
9. end. 
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As in the case of CHASE(T, F), where T is a tableau over a relation schema R, ICHASE(d, 

I) is a finite Church-Rosser system; the order in which the INDs are chosen by the IND rule 
in line 6 of the algorithm does not affect the result, up to the particular choice of new values 
that are added to d. On the other hand, ICHASE(d, I) does not always terminate. Consider 
the relation, r, shown in Table 3.53, and assume that d = {r} and I = (R[MGR] S; R[EMPJ), 
modelling the fact that every manager is an employee. When applying the IND rule to d we 
will add to r a tuple of the form, <New_value(l), John>. The next application of the IND rule 
will add to r an additional tuple of the form, <New-value(2), New-yalue(l». In general, the 
ith application of the IND rule will add to r an additional tuple of the form, <New_value(i), 
New-yalue(i - 1». Thus, ICHASE(d, I) will not terminate. 

It is not hard to see that the following theorem holds. 

Theorem 3.38 Let I be a set of noncircular INDs over Rand d be a database over R. 

1) The chase procedure, which computes ICHASE(d, I), terminates. 

2) ICHASE(d, I) F= I. 

3) d = ICHASE(d, I) if and only if d F= I. o 

The reader may think that the chase procedure for INDs terminates if and only if the set I 
of INDs is noncircular. We next show that this finite chase property holds for a wider class of 
INDs, which was defined in [lmi91], called proper circular. 

Definition 3.74 (Proper circular sets ofINDs) A set I of INDs over R is proper circular if it 
is either noncircular or whenever there exist m distinct relation schemas, RI, R2 , R3," " Rm 
E R, with m > 1, such that I contains the INDs: RdXd S; R2[Y2], R2[X2] S; R3[Y3], ... , 
Rm- dXm-d S; Rm[Ym], Rm[Xm] S; RdYd, then for all i E {I , 2, ... , m} we have Xi = Yi . 

• 
Let rl , r2 , . .. , rm be the relations in d over the relation schemas RI, R2, ... , Rm in R, 

respectively. Then the set of proper circular INDs, {RdXd S; R2[Y2], R2[X2] S; R3[Y3], 
... , Rm- dXm- d S; Rm[Ym], Rm[Xm] S; RdYdJ, is satisfied in d if and only if 

That is, proper circular INDs extend noncircular INDs by the ability to state that the 
projections of two sequences of attributes onto two relations are equal. We leave it to the 
reader to verify that Theorem 3.38 still holds when I is proper circular. 

For example, the set of INDs {STUDENTS[DEPT] S; HEADS[DEPT], HEADS[DEPT] S; 
LECTURERS[DEPT], LECTURERS[DEPT] S; STUDENTS[DEPT]} is proper circular but it 
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is not noncircular. This set of INDs states that the projections onto DEPT of the relations 
in the database over these relation schemas are all equal. On the other hand, the set 
of INDs {STUDENTS[DEPT) ~ HEADS[DEPT), HEADS[HEAD) ~ LECTURERS[LECT), 
LECTURERS[TUTEE) ~ STUDENTS[STUDj} is not proper circular. 

We now extend the chase procedure to FDs and INDs by introducing an FD rule. Let d be 
a database over schema R, with rEd being the relation over schema R E R. (We remind the 
reader that the elements in ADOM(d) are linearly ordered.) 

FD rule: If R : X --+ Y E F and 3t1, t2 E r such that t1 [X) = t2 [X) but t1 [Y) i= t2 [Y) then, VA E 

Y, change all the occurrences in d of the larger of the values of t1 [A) and t2 [A) to the 
smaller of the values of t1 [A) and t2 [A). 

That is, the FD rule equates values in d whenever an FD R : X --+ Y is violated in a relation in 
d. We now modify the chase procedure to take a set ~ = F U I, where F is a set of FDs and I is 
a set ofINDs over R, as input and modify ICHASE(d, ~) by changing line 6 of Algorithm 3.11 
to 

6. Apply the FD rule or the IND rule to Result; 

The following theorem extends Theorem 3.38 when considering FDs and INDs together. 
(In the following we will write d ~ R : X --+ Y to mean r ~ R : X --+ Y.) 

Theorem 3.39 Let ~ = F U I be a set of FDs and proper circular INDs over Rand d be a 
database over R. 

1) The chase procedure, which computes ICHASE(d, ~), terminates. 

2) ICHASE(d, ~) ~ ~. 

3) d = ICHASE(d, ~) if and only if d ~ ~. 

4) (1) to (3) hold when replacing ICHASE(d, ~) by ICHASE(ICHASE(d, I), F). 0 

Part (4) of Theorem 3.39 implies that the chase procedure can be decoupled into two stages: 
in the first stage we chase d with the INDs on their own, and in the second stage we chase the 
resulting database with the FDs on their own. In fact, Theorem 3.39 holds for any class of FDs 
and INDs possessing the finite chase property. 

3.6.9 Armstrong Databases for Inclusion Dependencies 

An Armstrong database for a set of INDs generalises the concept of Armstrong relations as 
follows: d is an Armstrong database for a set of INDs lover R whenever 

d ~ R[X) ~ SlY) if and only ifI ~ R[X) ~ SlY). 

As demonstrated in Subsection 3.6.2 Armstrong databases can be very useful as a tool to 
show users example databases satisfying exactly the setofFDs and INDs for a given application. 
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We prove below that proper circular INDs enjoy Armstrong databases and indicate how this 
result can be generalised to include both standard FDs and INDs. (Recall that a standard FD 
is one whose left-hand side is nonempty.) 

Theorem 3.40 Proper circular INDs enjoy Armstrong databases. 

Proof Let I be a set of proper circular INDs and d be a database with nonempty relations 
such that the active domains of distinct relations in d are disjoint, and, in addition, the active 
domains of distinct columns of the relations in d are also disjoint. We observe that this implies 
that d does not satisfy any nontrivial IND. 

We claim that ICHASE(d, I) is an Armstrong database for I, that is, ICHASE(d, I) F R[X) 
~ S[Y) if and only if I F R[X) ~ S[Y). 

For the if part suppose that I F R[X) ~ S[Y). By Theorem 3.38 (2), ICHASE(d, I) F I, and 
therefore ICHASE(d, I) F R[X) ~ S[Y) as required. 

For the only if part we need to show that if ICHASE(d, I) F R[X) ~ S[Y), then I F R[X) ~ 
S[Y). Assume to the contrary that ICHASE(d, I) F R[X) ~ S[Y) but I ~ R[X) ~ S[Y). Then 
there exists a database d' over R such that d' F I but d' ~ R[X) ~ sty). By the definition of 
the satisfaction of an IND, for some tuple t' E r', t'[X) E 7rx(r') but t'[X) fj 7rY(5'), where r' 
and 5' are the relations in d' over Rand S, respectively. We can also assume without any loss 
of generality that for all A E X the A-values of t'[X) are distinct, since we have assumed that 
INDs do not have repeated attributes. 

Let r, 5 E d be the relations over Rand S, respectively, and, due to the disjointness of the 
relations in d and the columns of the relations in d, we assume without loss of generality that 
3t E r such that t[X) = t'[X) but .lIu E 5 such that u[X) = t'[X). It follows that d ~ R[X) ~ sty). 
In order to conclude the proof we show that d' =f. ICHASE(d', I) implying by Theorem 3.38 (3) 
that d' ~ I leading to a contradiction. 

The result follows by tracing the applications of the IND rule in line 6 of Algorithm 3.11 
when computing ICHASE(d, I); denote the ith application of the IND rule by apply(i). In order 
to show that d' =f. ICHASE(d', I) we check for each i whether apply(i) will cause a modification 
to the current state of d'. In particular, we take note each time the value, t'[X), is part of a 
tuple that is added to a relation in the current state of d' as a result of apply(i). Let apply(j) 
be the application that causes t' [X) to be added to the current state of 7ry(5) . Now, if apply(j) 
does not modify the current state of d' in ICHASE(d', I), then d' F R[X) ~ S[Y); on the other 
hand if apply(j) modifies the current state of d' in ICHASE(d', I), then d' ~ I. 0 

Armstrong databases have also been investigated in the context of FDs and INDs. It was 
shown in [MR88) that in the special case when ICHASE(d, I) = ICHASE(d, ~), standard FDs 
and noncircular INDs enjoy Armstrong databases. The proof relies on a modification of 
Theorem 3.40 by requiring that the relations in the database d are Armstrong relations for 
their respective sets of FDs. 

Theorem 3.40 does not give us a general result, since it is restricted to proper circular 
INDs. In order to obtain a more general result we cannot utilise the chase procedure, since 
ICHASE(d, I) may not terminate ifI is not a proper circular set ofINDs. A more general result 
was obtained in [Fag82b, FV83) using direct products, which shows that standard FDs and the 
general class of INDs enjoy Armstrong databases. 



178 Chapter 3. The Relational Data Model 

3.6.10 The Implication Problem for Inclusion Dependencies 

The implication problem for INDs is the problem of deciding whether IF R[X] S; SlY], given 
a set I ofINDs and a single IND R[X] S; SlY] over R. Now, by the soundness and completeness 
of Casanova et a!.'s axiom system we need only consider the problem of deciding whether I I
R[X] S; SlY]. Unfortunately, the implication problem for INDs turns out to be intractable. As 
we will see the problem gets worse when we consider FDs and INDs together, since their joint 
implication problem is, in general, undecidable. This has motivated researchers to investigate 
subclasses of INDs, which have a more tractable implication problem. 

The proof of the following theorem can be found in [CFP84]. 

Theorem 3.41 The implication problem for INDs (which may be circular) is PSPACE
complete. 0 

The proof of the following theorem can be found in [Man84, CK86]. 

Theorem 3.42 The implication problem for noncircular INDs is NP-complete. 0 

The next theorem shows that the implication problem for proper circular INDs is not more 
difficult than that for noncircular INDs. 

Theorem 3.43 The implication problem for proper circular INDs is NP-complete. 

Proof. The problem is in NP, since any minimal proof of I I- R[X] S; SlY], where I is a proper 
circular set of INDs, contains at most IRI INDs. The result follows, since NP-hardness of the 
problem is a consequence of the NP-completeness of the implication problem for noncircular 
INDs. 0 

The next theorem can easily be verified, since by Theorem 3.37 IND 1 (reflexivity) and IND3 
(transitivity) are sound and complete for unary INDs [CKV90]. 

Theorem 3.44 The implication problem for unary INDs is linear-time in the size of the input 
set of unary INDs. 0 

The next theorem shows that the implication problem for typed INDs can also be solved 
efficiently [CV83]. 

Theorem 3.45 The implication problem for typed INDs is polynomial-time in the size of the 
input set of typed INDs. 

Proof. Suppose we would like to decide whether I I- R[X] S; S[X]. We utilise a directed graph 
representation, Gx = (N, E), of the set ofINDs I, which is constructed as follows. Each relation 
schema R in R has a separate node in N labelled by R; we do not distinguish between nodes 
and their labels. There is an arc (Rl , R2) in E if and only if there is a nontrivial IND Rl [W] S; 

R2[Wj E I, with X S; W. 
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We claim that I I- R[X) S; S[X) if and only if either R = S, in which case the IND can trivially 
be derived, or there is a path from R to S in Gx. The claim can be proved by induction on 
the minimal length of a proof of R[X] S; S[X] from I. The result now follows from the fact 
that path reachability is a well-known polynomial-time problem in the size of the input graph 
[AHU83). 0 

3.6.11 Interaction between Functional and Inclusion Dependencies 

As we have seen in the example at the beginning of Subsection 3.6.7 the IND HEADS[HEAD, 
DEPT) S; LECTURERS[LECT, DEPT) together with the FD LECT -+ DEPT over LECTURERS 
logically imply the FD HEAD -+ DEPT over HEADS. This is an example of interaction between 
FDs and INDs that results in an FD being derived. 

Suppose that we add an attribute FACULTY to both the relation schemas HEADS and 
LECTURERS, indicating the faculty in which a lecturer is employed, together with the IND 
HEADS[HEAD, FACULTY) S; LECTURERS[LECT, FACULTY]. Then, this IND combined 
with the IND HEADS[HEAD, DEPT) S; LECTURERS[LECT, DEPT] and the FD LECT -+ 

DEPT over LECTURERS logically imply the IND HEADS[HEAD, DEPT, FACULTY) S; 
LECTURERS[LECT, DEPT, FACULTY). This is an example of interaction between FDs and 
INDs that results in an IND being derived. 

Furthermore, suppose that we add an additional attribute INSTITUTE to the relation schema 
HEADS together with the IND HEADS[HEAD, INSTITUTE) S; LECTURERS[LECT, DEPT). 
Then, this IND combined with the IND HEADS[HEAD, DEPT) S; LECTURERS[LECT, DEPT) 
and the FD LECT -+ DEPT over LECTURERS logically imply the IND HEADS[HEAD, DEPT, 
INSTITUTE) S; LECTURERS[LECT, DEPT, DEPT) having a repeating attribute DEPT. Now, 
by IND2 (projection and permutation) we can derive the repeated dependency HEADS[DEPT, 
INSTITUTE) S; LECTURERS[DEPT, DEPT] indicating that DEPT and INSTITUTE have the 
same meaning. Such a repeating dependency is not equivalent to any set ofFDs and INDs and 
therefore repeating attributes must be considered when dealing with the interaction of FDs 
and INDs. 

The interaction between FDs and INDs turns out to be a complex matter. In fact, for 
FDs and INDs we have the negative result that, in general, we cannot find a sound and 
complete axiom system for FDs and INDs at all. This is a consequence of the important result 
that the implication problem for FDs and INDs taken together is, in general, undecidable 
[Mit83, CV85) . In practice this result means that relational database designers should restrict 
themselves to some meaningful subclass of FDs and INDs whose implication problem is 
decidable. The most tractable known subclass is that of FDs and unary INDs for which there 
is an interesting sound and complete axiom system, which is discussed below. In addition, 
for the subclass ofFDs and unary INDs the implication problem can be solved in polynomial 
time. The implication problem for the subclass of FDs and proper circular INDs is decidable 
but intractable. Moreover, apart from the subclass of FDs and unary INDs, it is the largest 
meaningful subclass ofFDs and INDs we know of that has a sound and complete axiom system 
in addition to having a decidable implication problem. 

We remind the reader that we assume that relations can only have a finite number of tuples. 
If we relax this assumption and allow relations to have an infinite number of tuples then we 
need to consider two kinds of notion of logical implication, one for finite relations and the 
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other for infinite relations. When considering FDs and INDs together it is readily shown that 
{R: A -+ B, R[A] S; R[B]} finitely implies {R: B -+ A, R[B] S; R[A]} but not infinitely [CFP84]. 
To demonstrate the latter case consider the relation, say rj, shown in Table 3.54, and the 
relation, say r2, shown in Table 3.55. For i = 1,2, it can be seen that the infinite relations 
resulting from ICHASE( {n}, (R[A] S; R[B]}) satisfy {R: A -+ B, R[A] S; R[B]} but violate R: B 
-+ A and R[B] S; R[AJ, respectively. Thus even for the subclass of FDs and unary INDs finite 
and infinite logical implication do not coincide. 

Table 3.54 A relation having an infinite chase 

ffffiB 
1 1 
2 1 

Table 3.55 Another relation having an infinite chase 

ITI!J 
c:!TIJ 

In [Mit83, CV85] it was shown that the implication problem for FDs and INDs is, in general, 
undecidable for infinite logical implication as well as for finite logical implication as mentioned 
above. It is interesting to note that, although we cannot find a sound and complete axiom 
system for FDs and INDs with respect to finite relations, the axiom system presented in [Mit83], 
which we call Mitchell's axiom system, is sound and complete for FDs and INDs defined to hold 
in relations which may be infinite. This axiom system is not attribute bounded in the sense that 
new attributes not present in the original database schema may need to be generated during 
a derivation sequence (see the attribute introduction inference rule for FDs and INDs given 
below). In fact, due to the undecidability of infinite logical implication for FDs and INDs, there 
cannot be an attribute bounded axiomatisation of FDs and INDs for infinite relations. On the 
other hand, for FDs on their own and for INDs on their own it can be shown that finite and 
infinite logical implication coincide. The largest subclass ofFDs and INDs for which we know 
finite and infinite logical implication to coincide is the subclass of FDs and proper circular 
INDs. This can formally be proved by using the fact shown above, namely that proper circular 
INDs possess the finite chase property (see [Man84, Imi9I]). It follows that Mitchell's axiom 
system is sound and complete for the subclass of FDs and proper circular INDs. It remains 
an open problem to find an attribute bounded axiomatisation for this subclass. 

The fact that finite and infinite logical implication coincide for a certain class of data 
dependencies is not just of pure theoretical interest, since it is not hard to show that this 
property implies that the implication problem for such a Class of data dependencies is 
decidable. 

In this subsection we let F be a set of FDs over R, where each FD in F is of the form R : X 
-+ Y, with R E R, so the relation schema R distinguishes the schema over which the FD holds. 
Moreover, we let Pi = {Ri : X -+ Y E Fl, with i E {I, 2, .. . , n}, be the set ofFDs in F over Ri E 

R. Finally, we let I be a set of INDs over R and let 1: = F U I. 

The next inference rule takes into account the fact that we are considering sequences 
of attributes rather than unordered sets of attributes. It states that an FD X -+ Y holds 
independently of the ordering of X and Y. 

FD7 Permutation: ifF f- R: X -+ Y, W is a permutation of X and Z is a permutation ofY, then 
F f- W -+ Z. 

The next three inference rules capture the basic interaction between FDs and INDs [Mit83]. 
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FD-INDl Pullback: if:E I- R[VW] ~ S[XY], with IVI = lXI, and :E I- S : X -+ Y, then :E I- R : 
V-+W. 

FD-IND2 Collection: if:E I- R[UV] ~ S[XY], :E I- R[UW] ~ S[XZ] and :E I- S : X -+ Y, then 
:E I- R[UVW] ~ S[XYZ]. 

FD-IND3 Attribute introduction: if:E I- R[X] ~ sty] and :E I- S : Y -+ B, then :E I- R[XA] ~ 
S[YB], where A is an attribute that is newly added to schema(R), i.e. prior to adding A 
to schema(R), A rf- schema(R). 

We call the inference rules comprising Armstrong's axiom system, Casanova's et al. axiom 
system, together with FD7 (permutation), IND4 (substitutivity of equivalents), FD-INDI 
(pullback), FD-IND2 (collection) and FD-IND3 (attribute introduction), Mitchell's axiom 
system [Mit83]. 

The reader can verify that both the pullback and collection inference rules are sound, i.e. 
if:E I- a using either FD-INDI or FD-IND2 then :E F= a, where a is an FD or IND. The 
attribute introduction inference rule requires some further explanation. Consider a database 
d containing relations rover Rand s over S such that d F= {R[X] ~ sty], S : Y -+ B}. Then 
after extending schema(R) with a new attribute A we can add an additional column to rover 
the new attribute A, resulting in a new relation r' as follows. Each tuple t E r is extended to a 
tuple t', with t = t'[schema(R)-A] and t'[A] = u[B], where u is the tuple in s such that t[X] = 
u[Y]; note that this extension is unique due to the FD S : Y -+ B. Thus attribute introduction 
is a sound inference rule. It is important to note that we do not allow :E+ to contain any data 
dependencies having new attributes, so that new attributes may be present in FDs or INDs 
only during intermediate steps of a derivation of a data dependency a from :E. 

The next example shows that attribute introduction is a nonredundant inference rule for 
FDs and INDs. 

Example 3.7 Let R = {R, S}, with schema{R) = {A, B, C} and schema(S) = {A, B1 , Bz, Cl, Cz}. 
Also, let:E = F U I, where F = {S: A -+ C l C2, S: C1Cz -+ A, S: Bl -+ CJ, S: Bz -+ Cz} and I 
= {R[AC] ~ S[ABd, R[AC] ~ S[ABz], R[BC] ~ S[ABd, R[BC] ~ S[AB2]}. We leave it to the 
reader to verify that :E I- R[AB] ~ S[AA]. Moreover, this repeating dependency cannot be 
derived without the attribute introduction inference rule. • 

We next direct our attention to whether we can restrict the number of antecedents in 
inference rules of an axiom system. 

Defmition 3.75 (k-ary axiomatisation) Given a set of data dependencies :E over R, an 
inference rule in an axiom system may have the form 

where al, az, .. . , ak> k :::: 0, k E cu, and f3 are also data dependencies over R. Such an inference 
rule allows us to derive f3 from ai, az , .. . , ak and is said to have k antecedents. 

An axiom system for a certain class of data dependencies is said to be k-ary if all its inference 
rules have at most k antecedents. • 



182 Chapter 3. The Relational Data Model 

An axiom system which is k-ary is said to be a finite axiom system, for the obvious reason 
that it has a finite set of inference rules. For example, both FDs and INDs on their own have 
2-ary axiomatisations. The following negative result shows that FDs and INDs do not have a 
finite axiomatisation. It was proved in [CFP84] and strengthened in [CK86, CKV90] . 

Theorem 3.46 For no k :::: 0, k E w, does there exist a k-ary axiomatisation for FDs and INDs, 
even if we restrict ourselves to unary INDs. 

Proof. Let r be a set of data dependencies in a certain class, C, of data dependencies over 
R. We say that r is closed under implication if whenever (i) ~ ~ r , (ii) a E C and (iii) if 
~ 1= a then a E r . Correspondingly, we say that r is closed under k-ary implication, for 
k :::: 0, k E w, if whenever (i), (ii) and (iii) hold and, in addition, I ~ I ::: k then a E r. 

In [CFP84] it was shown that a class, C, of data dependencies over R has a k-ary 
axiomatisation if and only if whenever a set of data dependencies ~ in C is closed under 
k-ary implication then ~ is also closed under implication. 

In order to prove our result we exhibit, for any k :::: 0, k E w, a set of FDs and INDs ~ that 
is closed under k-ary implication but is not closed under implication. Let R be a database 
schema with k + 1 relation schemas such that schema(Rj) = (A, Bl, for i = 0, 1, .. . k. In 
addition, consider the set of FDs and INDs ~ and an IND a defined by 

1) ~ = {Rj : A ~ B, RilA] ~ Rj+dB]}, for i = 0,1 , .. . , k, and 

2) a = Ro[B] ~ RklA], 

where we let k + 1 be 0, i.e. addition is modulo k. Let r be the union of ~ and all the trivial 
FDs and INDs over R. By using a cardinality argument it can be shown that r 1= a, but r is 
not closed under implication, since a if. r . 

It remains to show that r is closed under k-ary implication. That is, we need to show that 
if 6. ~ r contains at most k data dependencies and a is an FD or an IND, then 6. 1= a implies 
that a E r. Now, ~ contains k + lINDs and thus some IND tl E ~ is not in 6.. It can be shown 
that a database d can be constructed such that d satisfies exactly the set of data dependencies 
in r - {tll; we refer the reader to [CFP84] for the details. We observe that d is an Armstrong 
database for r - {tll as defined in Subsection 3.6.9. It follows that d 1= 6., since 6. ~ r - (tll 
and thus d 1= a also. The result that a E r - {tll now follows, since by the construction of d 
we have d 1= a if and only if r - (tll 1= a. D 

We now turn our attention to axiomatising FDs and unary INDs. If all the INDs in I are of 
the form R[X] ~ R[Y], then we say that I is a set of INDs over R and abbreviate R[X] ~ R[Y] 
to X ~ Y. The k-cycle inference rule for a set of FDs and unary INDs ~ over R is defined as 
follows: for each odd natural number k and attributes Ao, AI, . .. , Ak- I, Ak E schema(R), 

from ~ I- Ao ~ Al and ~ I- A2 ~ Al and ... and ~ I- Ak- I ~ Ak and ~ I- Ao ~ Ak 
derive ~ I- Al ~ Ao and ~ I- Al ~ A2 and .. . and ~ I- Ak ~ Ak-I and ~ I- Ak ~ Ao. 

We observe that if we allow relations to have an infinite number of tuples then the k-cycle 
inference rule will become unsound. 

The following inference rule can be derived by the I-cycle inference rule and Armstrong's 
axiom system: 
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1) from I; I- 0 -+ A and I; I- B ~ A derive I; I- B -+ A and I; I- A -+ B and I; I- A ~ B. 

The following result was shown in [CKV90]. 

Theorem 3.47 The axiom system comprising FDI (reflexivity), FD2 (augmentation), FD3 
(transitivity), FD7 (permutation), INDI (reflexivity), IND3 (transitivity) and the k-cycle 
inference rule is sound and complete for FDs and unary INDs over a relation schema R. 

Proof. We leave it to the reader to establish the soundness of this mixed axiom system. The 
technique used to prove completeness is already familiar to us. Let I; be a set F of FDs and 
a set I of unary INDs over R. We assume that I; If a, where a is an FD or a unary IND over 
R. To conclude the proof it is sufficient to exhibit a counterexample database, d, containing a 
single relation rover R, such that d 1= I; but d I;i= a. We refer the reader to [CKV90] for the 
details of the construction of d. 0 

We observe that the axiom system of Theorem 3.47 has a countably infinite number of 
inference rules, since for each odd k, k E w, we have one k-cycle inference rule. 

It was shown in [CKV90, Z092a] that the implication problem for FDs and unary INDs can 
be solved in polynomial time in the size of the input dependency set. The technique used to 
solve the implication problem is to construct a directed graph G'E = (N, E), where I; = F U I 
is a set of FDs and INDs over R as follows. Each attribute A E schema(R) has a separate node 
in N labelled A. G'E has two types of are, black and red. There is a black are, (B, A) in E, if 
there is a nontrivial IND A ~ BEL Correspondingly, there is a red are, (A, B) in E, if there is a 
nontrivial FD A -+ BE P+. It follows that the k-cycle inference rule can be used in a derivation 
if and only if there is a corresponding cycle in G'E having k + 1 nodes and k + 1 arcs such that 
the arcs alternate between red and black arcs. This problem can be solved in polynomial time 
in the size of G'E ' This result is extremely important, since the class of FDs and unary INDs is 
the largest class of FDs and INDs whose implication problem is known to be tractable. 

Theorem 3.47 can be extended to the case where the set of unary INDs are over a database 
schema rather than just over a single relation schema [CKV90]. To effect this extension 
cardinality constraints, which are discussed in Subsection 3.7, turn out to be extremely useful. 

The next theorem shows that the chase procedure can be utilised as a sound and complete 
axiom system for FDs and proper circular INDs. This is complementary to the result, 
mentioned in the introduction to this subsection, that Mitchell's axiom system is sound and 
complete for FDs and proper circular INDs, since finite and infinite logical implication coincide 
for this subclass ofFDs and INDs. It is interesting to note that Mitchell's axiom system is a finite 
3-ary axiomatisation but it is not attribute bounded. Apart from the result of Theorem 3.47 for 
unary INDs this is the most meaningful subclass of FDs and INDs whose implication problem 
is decidable and for which a sound and complete axiomatisation exists. 

Definition 3.76 (The database for an FD and an IND) Let a be an FD R : X -+ Y over R. The 
database for a, denoted by dll , is a database over R, where apart from the relation rll Ed over 
R all the other relations are empty and such that rll contains two tuples t) and t2, which are 
constructed as follows: t[ [X] = t2 [X] and for all A E schema(R)-X, t) [A] ¥ t2[A]. Moreover, 
for every pair of distinct attributes A and B in schema(R), tj[A] ¥ tj[B], for i,j E {I, 2}, i.e. the 
columns of rll are disjoint. 
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Let {3 be an IND R[Xj s; S[Yj over R. The database for {3, denoted by d/h is a database over 
R, where apart from the relation rfJ E dover R all the other relations are empty and such that 
rfJ contains a single tuple t which is constructed as follows: for every pair of distinct attributes 
A and B in schema(R), t[Aj =1= t[Bj, i.e. as above the columns of rfJ are disjoint. • 

Theorem 3.48 Let:E = F U I be a set of FDs and proper circular INDs over R, a be an FD R 
: X ~ Y over Rand {3 be the IND R[Xj s; S[Yj over R. The following two inference rules are 
sound and complete for FDs and proper circular INDs: 

Chase FD: :E I- a, if ti [Yj = t~ [YJ, where ti and ti are the final states of tl and t2 in 
ICHASE(d", :E). 

Chase IND: :E I- {3, if t[Xj E Jry(s'), where s' is the final state of the relation over S in 
ICHASE(dfJ , :E). 

Proof. In order to prove soundness we consider the chase FD and the chase IND inference 
rules separately. 

Chase FD case. Assume that t~ [Yj = t; [Yj as in the definition of the chase FD inference rule 
and let d be a database over R such that d F= :E . We need to show that d F= R: X ~ Y. Let us 
define a mapping 1/1 from d" to d such that 1/I(tl) = Ul and 1/I(t2) = U2, with Ul [Xj = U2[XJ, 
where tl, t2 E rand rEd is the relation over R. (The mapping 1/1 is called a containment 
mapping from d" to d.) We claim that UI [Yj = U2 [Yj by an induction on the number of chase 
steps, say k, required to compute ICHASE(d", :E), thereby proving the result. Due to the union 
(FD4) and decomposition (FDS) inference rules for FDs, we assume without loss of generality 
that Y = {A} is a singleton, and due to the reflexivity (FDl) inference rule for FDs we assume 
without loss of generality that A rt X. 

Basis If k = 1 then the only chase step executed is an application of the FD rule for an FD 
R : W ~ Z E F, with W s; X and A E Z. It follows that UI [Aj = U2 [Aj as required, since d F= R 
:W~Z. 

Induction Assume the result holds when the number of chase steps required to compute 
ICHASE(d", :E) is k, with k ~ 1; we then need to prove that the result holds when the number 
of chase steps required to compute ICHASE(d" , :E) is k + 1. Let us consider the last chase step 
executed to obtain ICHASE(d", E). There are two cases to consider. 

Case 1. The last chase step is an application of the IND rule. The result follows by inductive 
hypothesis, since this chase step does not change the current states of tl and t2, implying that 
they are already in their final states, i.e. ti and t~ . 

Case 2. The last chase step is an application of the FD rule for an FD S : W ~ Z. Let WI and 
W2 be the two tuples in the current state of the relation over S in the current state of d" such 
that WI [Zj and WI [Zj are equated as a result of this FD rule. It follows that for some B E Z, 
t; [Aj = t;[Aj = w'1 [Bj = w;[BJ, where w; and w; are the final states of WI and W2, respectively. 
Thus 1/1 ( w; [Bj) = 1/I(w;[Bj) since d F= S : W ~ Z. The result now follows, since by inductive 
hypothesis either udAj = 1/I(wdBJ) and u2[Aj = 1/I(w2[Bj) or udAl = 1/I(w2[Bj) and u2[Aj = 
1/1 ( wdB]). 

Chase IND case. Assume that t[Xj E JrY(s') as in the definition of the chase IND inference 
rule and let d be a database over R such that d F= E. We need to show that d F= R[Xj s; S[Yj. 
Let us define a mapping 1/1 from dfJ to d such that 1/I(t) = u, where u E rand rEd is the 
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relation over R. (The mapping 1f! is called a containment mapping from dfJ to d.) We claim 
that u[X] E JrY(s), where sEd is the relation over S, by an induction on the number of chase 
steps, say k, required to compute ICHASE(dfJ' ~), thereby proving the result. We assume 
without loss of generality by the reflexivity (INDl) inference rule for INDs that R[X] ~ SlY] 
is a nontrivial IND. 

Basis If k = 1 then the only chase step executed is an application of the IND rule for an IND 
R[W] ~ R[Z] E I, where R[X] ~ SlY] can be obtained from R[W] ~ S[Z] by the projection and 
permutation (IND2) inference rule for INDs. It follows that u[X] E Jry(s) as required, since 
d F= R[W] ~ S[Z] . 

Induction Assume the result holds when the number of chase steps required to compute 
ICHASE(dfJ. ~) is k, with k 2: 1; we then need to prove that the result holds when the number 
of chase steps required to compute ICHASE(dfJ. ~) is k + 1. Let us consider the last chase 
step executed to obtain ICHASE(dfJ. ~) . There are two cases to consider. 

Case 1. The last chase step is an application of the INO rule for an IND T[W] ~ S[Z], with Y 
~ Z. Now, by inductive hypothesis there exists an IND R[V) ~ T[W) that is logically implied 
by ~, with X ~ V. It therefore follows that R[X) ~ S[Y) can be inferred from R[V] ~ T[W] 
and T[W] ~ S[Z] by the transitivity (IND3) and projection and permutation (IND2) inference 
rules for INDs. Thus by inductive hypothesis there is a tuple W in the relation over T in d such 
that u[V] = w[W]. The result is now evident, since d F= T[W] ~ S[Z]. 

Case 2. The last chase step was an application of the FO rule for an FO T : W --+ Z. Let WI and 
W2 be the two tuples in the current state of the relation over Tin da such that WI [Z] and WI [Z) 
are equated as a result of this FO rule. Assume without loss of generality that Z-W = {B} is a 
singleton, otherwise the argument below can be repeated for all attributes in Z-W. 1t follows 
that t[A] = w~ [B) = w; [BI, where w~ and w'2 are the final states of WI and W2, respectively. 
Thus 1f!(w; [B]) = 1f!( w;[B]) since d F= S : W --+ Z. The result now follows, since by inductive 
hypothesis u[X-A] = v[Y -C], for some attribute C E Y and tuple v E Jry(s), and either urAl 
= 1f!(wdB]) = vIC] or urAl = 1f!(w2[B]) = vIC]. 

Completeness follows from Theorem 3.38, since both ICHASE(da.~) F= ~ and 
ICHASE(d/l . ~) F= ~, implying that ICHASE(da.~) F= ex and ICHASE(d/l.~) F= {J, 
respectively. 0 

The following result showing the intractability of the implication problem for FDs and 
noncircular INDs was established in [CK85] 

Theorem 3.49 The implication problem for FDs and noncircular INDs is EXPTIME
complete. 0 

It was also shown in [CK86] that the implication problem for the class of FDs and typed 
non circular INDs is NP-hard; recall from Theorem 3.45 that the implication problem for 
typed INDs on their own is polynomial-time decidable. The next theorem shows that the 
implication problem for FDs and proper circular INDs is not more difficult than that for FDs 
and noncircular INDs. 

Theorem 3.50 The implication problem for the class of FDs and proper circular INDs is 
EXPTIME-complete. 
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Proof. The problem is in EXPTIME, since the chase procedure for FDs and INDs can be 
shown to terminate in exponential time when its input set of INDs is proper circular. The 
result follows, since EXPTIME-hardness of the problem is a consequence of the EXPTIME
completeness of the implication problem for FDs and non circular INDs. 0 

The proof of the following fundamental theorem, which follows by a reduction from the 
word problem for finite semi groups defined in Subsection 1.9.4, can be found in [Mit83, CV85). 

Theorem 3.51 The implication problem for FDs and INDs is undecidable, even if we restrict 
ourselves to binary INDs, i.e. INDs whose left-hand sides and right-hand sides are restricted 
to contain only two attributes. 0 

3.6.12 The Case of No Interaction Between Functional and Inclusion 
Dependencies 

As we have seen in Subsection 3.6.11 the interaction between FDs and INDs is complex leading, 
in general, to the undecidability of their joint implication problem. Given a set I; = F U I 
of FDs and INDs over a database schema R it would be useful if F and I do not interact in 
the sense that we need not apply any mixed FD-IND rules in deciding whether I; logically 
implies an FD or an IND, a. The benefit of I; belonging to such a class of FDs and INDs is 
that the implication problem is much simpler: for FDs we need only use Armstrong's axiom 
system while for INDs we need only use Casanova et a!.'s axiom system. Unfortunately, the 
implication problem for INDs on their own is still intractable unless we restrict ourselves to 
subclasses of INDs such as unary and typed INDs. The next definition formalises the notion 
of no interaction. 

Defmition 3.77 (No interaction occurring between FDs and INDs) A set of FDs F over R is 
said not to interact with a set of INDs lover R, if 

1) for all FDs a over R, for all subsets G S; F, G U I 1= a if and only if G 1= a, and 

2) for all INDs fJ over R, for all subsets J S; I, F U J 1= fJ if and only if J 1= fJ· • 

For example, the set of FDs and INDs, (LECTURERS : LECT -+ DEPT, HEADS[HEAD, 
DEPT) S; LECTURERS [LECT, DEPT)}, logically implies the FD HEADS: HEAD -+ DEPT by 
the pullback inference rule and thus the FDs and INDs do interact. On the other hand, it can 
be verified that the set of FDs and INDs, (STUDENTS : STUD -+ DEPT, HEADS: HEAD -+ 
DEPT, STUDENTS [DEPT) S; HEADS[DEPT)}, is such that the FDs and INDs do not interact, 
since they do not logically imply any additional nontrivial FD or IND. 

In the remaining part of this subsection we restrict ourselves to the subclass of FDs and 
proper circular INDs. 

Informally, a reduced set of FDs and INDs is one such that, for each IND R[X) S; SlY) in 
the set I of INDs, Y does not contain any nontrivial FDs with respect to the set F of FDs. 

Definition 3.78 (Reduced set ofFDs and INDs) The projection of a set ofFDs Fi over Ri onto 
a set of attributes Y S; schema(Ri), denoted by Fi[Y), is given by Fi[Y) = (Ri: W -+ Z I Ri : W 
-+ Z E F; and WZ S; V). 



3.6. Data Dependencies 187 

A set of attributes Y S; schema(Ri) is said to be reduced with respect to Ri and a set ofFDs Fi 
over Rj (or simply reduced with respect to Fi if Rj is understood from context) if Fj[Y] contains 
only trivial FDs. A set of FDs and INDs L = F U I is said to be reduced if V Rj [X] S; Rj [Y] E I, 
Y is reduced with respect to Fj. • 

The next lemma shows that being reduced is a necessary condition for no interaction 
between F and I to occur. 

Lemma 3.52 IfF and I do not interact then L is reduced. 

Proof. We prove the result by contraposition. Assume that L is not reduced and thus for 
some IND Rj[Z;l S; Rj[Zj] E I, Zj is not reduced with respect to Rj and Fj. It follows that Fj[Zj] 
contains a nontrivial FD, say Rj : Xj --+ Yj, with Xj Yj S; Rj. Furthermore, we have that I F= 
Rj[Xj Y;l S; Rj[Xj Yj] for some subsetXj Yj S; Zj, with IX;\=IXjl, since Xj Yj S; Zj. Therefore, by 
the pullback inference rule (FD-IND1) L F= Rj : Xj --+ Yj, where Rj : Xj --+ Yj is a nontrivial 
FD. The result follows, since Fj U I F= Rj : Xj --+ Yj but Fj ~ Rj : Xj --+ Yj. 0 

The next example shows that being reduced is not a sufficient condition for no interaction 
to occur between F and I. 

Example 3.8 Let R = {R" Rz} be a database schema, with R, = {B" Bz, B3 , A} and Rz = R,U 
{C}. Also, letd = {r" rz} be a database over R, with r, = {<I , 2, 3, O> } and r2 = 0. Finally, 
let L = F U I be a set of FDs and typed noncircular INDs. The set of INDs is given by I = 
{RdBzB3] S; Rz[BzB3]' RdB,B3A] S; R2[B,B3A], RdB,BzA] S; R2[B,BzAj}. The set ofFDs is 
given by F = Fz = {B,A --+ C, Bz --+ C, B3C --+ A}. It can be verified that L F= R, [B2B3A] S; 
R2[B2B3A], since ICHASE(d, L) produces a tuple tin rz, with t[BZB3A] = <2,3,0>. So there 
is interaction between F and I but L is reduced. It is interesting to note that the closure of L 
is not reduced, since F F= R2 : B2B3 --+ A. • 

The next counterexample shows that even if the closure of L is reduced there may still be 
interaction between F and I. 

Example 3.9 Let R = {R" Rz , R31 be a database schema, with R, = R2 = {A, B, C} and R3 = 
{A, B" B2 , c" C21. Also, let d = {r" rz, r31 be a database over R, with r, = {<O, 1,2>}, r2 = 
r3 = 0. Finally, let L = F U I be a set of FDs and noncircular INDs as follows. The set of INDs 
is given by I = {RdAC] S; Rz[BC], RdAC] S; R3[ABll, RdAC] S; R3[AB2], RdBC] S; R3[ABd, 
RdBC] S; R3 [AB2ll· The set of FDs is given by F = F3 = {A --+ C, C2, C, Cz --+ A, B, --+ C" 
Bz --+ C21. It can be verified that L F= RdBC] S; Rz [BC], since in ICHASE(d, L) the values 0 
and 1 are equated. So there is interaction between F and I but it can be verified that the closure 
of L is reduced. • 

The next two theorems give two sufficient conditions for no interaction to occur [LL97c] 
(cf. [MR92a]). An FD of the form R : X --+ Y is said to be n-standard if IXI ::: n for some 
natural number n ::: 1. (When n = 1 then R: X --+ Y is a standard FD.) An IND R[X] S; SlY] 
is said to be n-ary if IXI ::: n for some natural number n ::: 1. (When n = 1 then R[X] S; SlY] 
is a unary IND.) 
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Theorem 3.53 IfF is a set of n-standard FDs and I is a set of proper circular and n-ary INDs 
then F and I do not interact. 

Proof. The proof hinges on the fact that in this case it is true that whenever a database d 
satisfies F then ICHASE(d, I) = ICHASE(d, ~}, i.e. the FD rule is not applied at all during the 
computation of the chase. 

To see why this fact is true consider a tuple, say t, which was newly added to a relation, 
say s, over S due to the application of the IND rule for an IND, say R[X] S; S [Y]. Then by the 
definition of the IND rule try] ¢ ny(s}. Moreover, since I is n-ary IYI ::: n. However, since F is 
n-standard then for any FD S : W -+ Z we have IWI :::: n. So, there can be no tuple in shaving 
that same W -value as the newly added tuple t, due to the fact that for all A E schema(R}-Y 
the A-value of t is a new value. Thus the FD rule cannot be applied to s U {t}. To conclude the 
proof there are two cases to consider. 

Case 1. We show that when a is an FD over a relation schema R E Rand F ~ a then ~ ~ a. 
Now, since F ~ a there is a database d" over R such that d" F F but d" ~ a. Let d' = 
ICHASE(d" , ~}. Then d' ~ a, since ICHASE(d", I) = ICHASE(d", ~}. Therefore, d' F ~ 
but d' ~ a implying the result that ~ ~ a. 

Case 2. We show that when fJ is an IND over R and I ~ fJ then ~ ~ fJ. Now, consider 
the database dfJ of Definition 3.76. It is easy to see that dfJ F F but dfJ ~ fJ. Let d' = 
ICHASE(dfJ, ~} . Then by Theorem 3.48, d' ~ fJ, since ICHASE(dfJ' I) = ICHASE(dfJ'~} and 
I ~ fJ. Therefore, d' F ~ but d' ~ fJ implying the result that ~ ~ fJ. 0 

For the next theorem we need the definition of Boyce-Codd Normal Form, which is a 
desirable property in database design, discussed in detail in Subsection 4.4.3 of Chapter 4. A 
database schema R is in Boyce-Codd Normal Form (or simply BCNF) with respect to a set of 
FDs F over R if for all Ri E R and for all nontrivial FOs Ri : X -+ Y E Fi, X is a superkey for Ri 
with respect to Fi. 

Theorem 3.54 If R is in BCNF with respect to F, I is a proper circular set of INDs and ~ = F 
U I is reduced, then F and I do not interact. 

Proof. The proof hinges on the fact that, as in Theorem 3.53, in this case it is also true that 
whenever a database d satisfies F then ICHASE(d, I} = ICHASE(d, ~}, i.e. the FD rule is not 

applied at all during the computation of the chase. 

To see why this fact is true consider a tuple, say t, which was newly added to a relation, 
say s, over S due to the application of the INO rule for an IND, say R[X] S; SlY]. Then by the 
definition of the IND rule try] ¢ ny(s). Thus, if the FO rule can be applied for an FO S : W -+ 
Z then it must be the case that We Y, i.e. W is a proper subset ofY, due to the fact that for all A 
E schema(R}-Y the A-value of t is a new value. Assume withoutloss of generality that Z = {B} 
is a singleton and B ¢ W. So, either BEY or B E schema(R}-Y. In the first case we conclude 
that ~ is not reduced, since R is in BCNF, leading to a contradiction. In the second case, 
assuming that R is in BCNF we conclude again, since We Y, that ~ is not reduced leading to 
a contradiction. Thus we finally conclude that the FO rule cannot be applied to s U {t}. The 
rest of the proof is identical to the two cases considered in the proof of Theorem 3.53. 0 

As the next example shows we cannot, in general, extend the above theorems to the case 
when the set ofINOs I is circular. 
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Example 3.10 Consider a database schema R = {R, S}, where R = S = {A, B}, and a set ~ = 
F U I, where F = {R : A --+ B, S : B --+ A} and I = {R[A] S; S[A], S[B] S; R[B]}. It can easily be 
verified that ~ is reduced and that I is circular. On using the axiom system of Theorem 3.47 
extended to relation schemas, it follows by a cardinality argument that ~ F= {R : B --+ A, S : A 
--+ B} and thus F and I do interact. 

As another example let F = {R: A --+ B} and I = {R[A] S; R[B]}. It can easily be verified that 
~ is reduced and I is circular. Again, F and I do interact, since on using the axiom system of 
Theorem 3.47 ~ F= {R : B --+ A, R[B] S; R[A]} . • 

Although a syntactic necessary and sufficient condition for no interaction to occur between 
FDs and proper circular INDs is still an open problem we close this subsection by identifying 
the two ways of preventing such interaction occurring. Both of them utilise the fact that the 
chase procedure can be used to solve the implication problem for FDs and proper circular 
INDs as a consequence of Theorem 3.48. The first way to prevent interaction is to find a 
condition which prevents any application of the chase FD rule during the computation of the 
chase. Examples of such conditions are those found in the statements of Theorems 3.53 and 
3.54. The second way to prevent interaction is to find a condition which prevents any old 
value present in the original database, prior to the computation of the chase, to be equated 
during the computation of the chase to either another old value or to a new value. In this case 
new values added to the database during the computation of the chase may be equated to each 
other. Examples of such conditions which are orthogonal to those of Theorems 3.53 and 3.54 
can be found in [LL97c], see Exercise 3.31. 

3.6.13 Multivalued Dependencies 

Schmid and Swenson [SS75] raised the question of whether FDs are adequate for expressing all 
the knowledge about the "world" we want to model. Consider an employee relation schema, 
EMP, with schema(EMP} = {ENAME, CNAME, SALARY, YEAR}, meaning that an employee 
has name ENAME, a child with name CNAME, and a salary history in which the employee's 
SALARY is recorded together with the YEAR it was awarded. An example relation, say r, over 
EMP is shown in Table 3.56. It can be seen that, in general, an employee has one or more 
children and a salary history comprising one or more {SALARY, YEAR}-values. (We can also 
record the fact that an employee has no children by using a distinguished null value to indicate 
that no children exist for this employee; we deal with this problem in Section 5.1 of Chapter 5.) 

In terms of the induced ERD we have a one-to-many relationship from employee to children 
and salary history; children may be modelled as an ID relationship in the ERD but this is another 
issue. Moreover, the children of an employee are independent ofhis/her salary history. Hence, 
we can see in r that for a given ENAME each CNAME-value appears together with all the 
{SALARY, YEAR}-values and correspondingly each (SALARY, YEAR}-value appears together 
with all the CNAME-values for that ENAME. This independence is equivalent to stating that 
r has the lossless join decomposition given by 

r = Jl'(ENAME.CNAMEI(r) t><I Jl'(ENAME.SALARY.YEARI(r) . 

We observe that the losslessness is not a consequence of any FDs that hold in r. Thus the 
semantics of EMP cannot be captured by FDs on their own. 



190 Chapter 3. The Relational Data Model 

Table 3.56 The relation T over EMP 

ENAME CNAME SALARY YEAR 
Jeremy Jill 40 1990 
Jeremy Jill 50 1993 
Jeremy Jack 40 1990 
Jeremy Jack 50 1993 

Eva Emily 30 1994 
Eva Emily 35 1995 
Eva Emily 30 1998 
Eva Andrew 30 1994 
Eva Andrew 35 1995 
Eva Andrew 30 1998 
Erol Emily 40 1994 

This type of constraint can be expressed as the Multivalued Dependency (or simply 
MVD) ENAME multidetermines CNAME in the context of EMP, or equivalently, ENAME 
multidetermines {SALARY, YEAR} in the context ofEMP. These MVDs are written as: ENAME 
~~ CNAME (EMP) and ENAME ~~ {SALARY, YEAR} (EMP), respectively. Both these 
MVDs can be expressed jointly as: ENAME ~~ CNAME I {SALARY, YEAR}, where the sum 
of attributes in the joint MVD is schema(EMP), which is the context of the MVD. The joint 
MVD emphasises the fact that CNAME and {SALARY, YEAR} are orthogonal. In fact, ENAME 
~~ CNAME (EMP) and ENAME ~~ {SALARY, YEAR} (EMP) logically imply each other 
by complementation. This is clearly seen when their satisfaction is expressed in terms of the 
binary lossless join decomposition of r onto {{ENAME, CNAME}, {ENAME, SALARY, YEAR}}. 

To see that the context of an MVD is important consider the relation s over PROJECT, 
shown in Table 3.57. The attributes of PROJECT are: PNAME meaning a project name, 
ENAME meaning an employee working on a project, COURSE meaning a course that an 
employee on the project has taken and YEAR indicating the year in which a particular course 
was taken. We assume that the semantics of PROJECT are that all employees on a project 
must take all the courses associated with that project but different employees may take these 
courses in different years. 

Table 3.57 The relation 5 over PROJEU 

PNAME ENAME COURSE YEAR 
DB Jill Databases 1993 
DB Jill Programming 1994 
DB Jack Databases 1994 
DB Jack Programming 1993 

Thus it can be seen that s does not satisfy the MVD PNAME ~~ ENAME (PROJECT) 
nor does it satisfy the complementary MVD PNAME ~~ {COURSE, YEAR} (PROJECT). 
Specifically, Jill took the Databases course in 1993 but not in 1994 and Jill took the Programming 
course in 1994 but not in 1993. On the other hand, let S' = n/PNAME,ENAME,COURSEj(S) be 
the relation shown in Table 3.58 and call the relation schema of S' PROJECTED. We call 
PROJECTED a restriction of PROJECT. The reader can verify that both PNAME ~~ ENAME 
(PROJECTED) and PNAME ~~ {COURSE} (PROJECTED) are satisfied in S' in the context 
of PROJECTED. Therefore the context of an MVD is important and cannot be omitted unless 
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it is somehow clear what the context is. Such an MVD that holds in a restricted context is 
called an Embedded Multivalued Dependency (or simply an EMVD). Although EMVDs are 
not common in practice they have played an important part in the theory of MVDs which 
flourished during the late seventies and the early eighties. 

Table 3.58 The relation 5' over PROJECTED 

PNAME ENAME COURSE 
DB Jill Databases 
DB Jill Programming 
DB Jack Databases 
DB Jack Programming 

MVDs and EMVDs were introduced in [Fag77b] (see also [DeI78]). We next give their 
formal definition. 

Definition 3.79 (Multivalued dependency) An embedded multivalued dependency over 
schema R (or simply an EMVD) is a statement of the form X ~~ Y (S), where schema(S) ~ 
schema(R) and X, Y ~ schema(S); S is called the context of the EMVD. 

An EMVD X ~~ Y (S) is said to be trivial if either Y ~ X or XY = schema(S); it is said to 
be standard if X # 0. 

An MVD over R is an EMVD X ~ ~ Y (R) (or simply X ~ ~ Y whenever R is understood 
from context), i.e. when the context of the EMVD is R then we have an MVD. • 

We next define the satisfaction of an MVD over R in a relation rover R. Intuitively, an 
MVD X ~~ Y (R) is satisfied in r if each X-value determines a unique set ofY-values and 
independently each X-value determines a unique set of (schema(R) - XY)-values. 

Defmition 3.80 (Satisfaction of an MVD) An MVD X ~~ Y (R) is satisfied in a relation r 
over R, denoted by r F= X ~ ~ Y (R), if'v'tl, t2 E r, if t!lX] = t2 [X], then 3t3, t4 E r such that 

1) tdX] = t2 [X] = t3 [X] = t4 [X], 

2) t3[Y] = t!lYl, t3[Z] = t2[Z] and 

3) t4[Y] = t2[Yl, t4[Z] = tIlZ], 

where Z = schema(R)-XY. • 
We observe that due to symmetry we can simplify the above definition by dropping t4 and 

case (3) from it. 

The next proposition shows that the MVD formalises the concept of a binary lossless join 
decomposition of R, independently of a set of FDs as was specified in Definition 3.65 of 
Subsection 3.6.4. This fact is important in relational database design, since the MVD provides 
the necessary and sufficient condition for decomposing a schema into two of its projections 
without loss of information. 
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Proposition 3.55 Let X -+-+ Y (R) be an MVD, with Z = schema(R)- XY. Then r F X-+-+ 
Y (R) if and only if r = rrxy(r) I><Irrxz(r) . 0 

The definition of the satisfaction of an EMVD can be viewed as a special case of the 
satisfaction of an MVD. 

Definition 3.81 (Satisfaction of an EMVD) An EMVD X -+-+ Y (S) is satisfied in a relation 
rover R, where schema(S) ~ schema(R), denoted by r F X -+-+ Y (S), if the MVD X -+-+ Y 
(S) is satisfied in rrschema(S) (r). • 

The next proposition shows that certain EMVDs obtained by projection can be inferred 
from a set of MVDs. 

Proposition 3.56 Let X -+-+ Y (R) be an MVD, with Z = schema(R)- XY. Also, let S be a 
relation schema, with schema(S) = XVW, where V ~ Y and W ~ Z. It is true that if r F X 
-+-+ Y (R) then rrxwv(r) F X -+-+ V (S). 0 

We caU an EMVD such as X -+-+ V (S), as defined in Proposition 3.56, a Projected MVD 
(or simply PMVD). 

We next present a set of inference rule for MVDs. 

Defmition 3.82 (Inference rules for MVDs) Let M be a set of MVDs over a relation schema 
R. We define the following inference rules for MVDs: 

MVDl Reflexivity: ifY ~ X, then M I-- X -+-+ Y. 

MVD2 Complementation: ifM I-- X -+-+ Y, then M I-- X -+-+ schema(R)-XY. 

MVD3 Augmentation: ifM r X -+-+ Y and W ~ schema(R), then M I-- XW -+-+ YW. 

MVD4 Transitivity: ifM I-- X -+-+ Yand M I-- Y -+-+ Z, then M I-- X -+-+ Z-Y. 

MVD5 Union: ifM r X -+-+ Y and M I-- X -+-+ Z, then M I-- X -+-+ YZ. 

MVD6 Decomposition: if M I-- X -+ -+ Y and M I-- X -+ -+ Z, then M I-- X -+ -+ YnZ, M r X 
-+-+ Y-Z andM I-- X -+-+ Z-Y. 

MVD7 Subset: ifM I-- X -+-+ Y, M r W -+-+ Z and Y n W = 0, then M r X -+-+ Y n Z and 
X-+-+ Y-Z. • 

Often instead of X -+ -+ Y (R) (or X -+ -+ Y when R is understood from context) we write 
X -+-+ Y I Z, where Z = schema(R)-XY, to indicate that the context of the MVD or EMVD is 
R. The justification for this notation being that from X -+ -+ Y we can derive X -+ -+ Z by the 
complementation inference rule. 

The interaction between FDs and MVDs can be described by the following two mixed 
inference rules. 
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Definition 3.83 (Mixed inference rules for FDs and MVDs) Let F be a set of FDs over Rand 
M be a set of MVDs over R. We define the following mixed inference rules for FDs and MVDs: 

FD-MVDl Generalisation: ifF U M I- X -+ Y, then FUM I- X -+-+ Y. 

FD-MVD2 Mixed pseudo-transitivity: if FUM I- X -+-+ Y, Z S; Y and for some W disjoint 
from Y, i.e. W n Y = 0, FUM I- W -+ Z, then FUM I- X -+ Z. • 

We call the inference rules FDl, FD2, FD3 (i.e. Armstrong's axiom system) together with 
the inference rules MVDl, MVD2, MVD3, MVD4 for MVDs and the mixed inference rules 
MVD-FDl, MVD-FD2 Beeri et al.'s axiom system [BFH77). The next theorem was first shown 
in [BFH77); recall that ~+ (see Definition 3.55) is the set of all FDs and MVDs that can be 
derived by using Beeri et al.'s axiom system, where ~ is a set F of FDs together with a set M of 
MVDs over R. 

Theorem 3.57 Beeri et al.'s axiom system is sound and complete for FDs and MVDs. 0 

Proof For soundness we restrict ourselves to the proof that FD-MVD2 is sound. Let r be a 
relation over R such that r F= X -+-+ Y, Z S; Y and for some W disjoint from Y, r F= W -+ Z. 
Lettl, t2 E r be two tuples such thattJlX) = t2 [X). We are required to show thattdZ) = t2[Z), 
By the definition of the satisfaction of the MVD X -+-+ Y, 3t3 E r such that 

1) tl [X) = t2 [X) = t3 [X], and 

2) t3[Yj = tdY) and t3[schema(R)-XY) = t2[schema(R)-XY). 

Since W n Y = 0, we have that t2[W) = t3[W), Hence t2[Z) = t3[Z), since r F= W -+ Z. We 
also have t3[Zj = tl [Z], since Z S; Y. It therefore follows that r F= X -+ Z as required. 

To prove completeness of Beeri et al.'s axiom system we use the same technique employed 
to prove the completeness of Armstrong's axiom system. Therefore we need to show that if 
~ F= a, then ~ I- a, where ~ is a set ofFDs F together with a set ofMVDs Mover R and a is 
an FD or an MVD over R. Equivalently, we need to show that if ~ If a, then ~ ~ a. Thus, 
assuming that ~ If ct, it is sufficient to exhibit a counterexample relation, rover R, such that 
r F= ~ but r ~ ct. 

Assume that X S; schema(R) is the left -hand side of a. Let X* = {A I ~ I- X -+ A} be the set 
of all attributes that are functionally determined by X, and let WI , W2 , ... , Wk be the finest 
partition of schema(R)-X* such that ~ I- X -+ -+ Y if and only if Y is the union of some of 
the attributes in X* together with zero or more Wi> i E {l, 2, ... , k}. The family of subsets of 
schema(R), X* , WI, W2, .. . , Wk> is called the dependency basis of X with respect to ~. It is 
common practice to denote the dependency basis of X by the full MVD 

X -+-+ x* I WI I W2 I ... I Wk· 

The dependency basis of X is unique, since it is the finest such partition, and by MVD5 and 
MVD6 it is closed under the Boolean operations, union, intersection and difference. We now 
construct the relation r. The active domain of r is the set {O, I} and the cardinality of r is 2k. 
Each tuple t E r corresponds to a sequence <VI, V2, ... , Vk> of zeros and ones as follows. 
For all A E X*, t[A) = 1 and for all A E Wi> t[A) = Vi. For example, if k = 4, then the tuple 
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corresponding to the sequence <0, 1, 0, 1> has 1 's as its X* -value, O's as its WI-value, l's as 
its W2-value, O's as its W3-value and l's as its W4-value. We leave the remaining part of the 
proof, which is to show that r ~ ~ but r ~ a, as an exercise. 0 

Additional inference rules for MVDs and the role of the complementation inference rule 
are discussed in [Bis78, Men79]. For example, it is shown in [Bis78] that the reflexivity and 
complementation rules can be replaced by the single inference rule M f-- 0 ---+---+ schema(R) 
and in [Men79] it is shown that the augmentation rule can be derived from the reflexivity, 
complementation and transitivity rules. In fact, in [Men79] it is shown that the reflexivity, 
complementation and transitivity rules are a minimal sound and complete axiom system for 
MVDs, i.e. removing anyone of these inference rules results in an axiom system which is not 
complete. 

The implication problem for FDs and MVDs is the problem of deciding whether ~ ~ a, 
given a set ~ of FDs and MVDs over R and a single FD or MVD a. The following result was 
shown in [HITK79, Bee80]. 

Theorem 3.58 The implication problem for FDs and MVDs can be solved in polynomial time 
in the size of the input set of FDs and MVDs. 0 

Proof. Given a set ~ over R, consisting of a set F of FDs and a set M of MVDs, and an FD 
or MVD a whose left-hand side is X, let DEP(X, :E) denote the dependency basis of X with 
respect to :E. By the decomposition and union inference rules for FDs, we assume that each 
FD in F is of the form W ---+ B, where B is a singleton. 

Let F be the set of MVDs resulting from replacing each FD W ---+ B E F by the MVD W ---+---+ 
B and let [' = M U F. It can be shown that an MVD can be derived from [' if and only if it can 
be derived from :E, i.e. [' f-- X ---+---+ Y if and only if:E f-- X ---+---+ Y. We next compute DEP(X, 
1) as follows. 

We initialise DEP(X, 1) to be the set {A I A EX} U schema(R)-X; we denote the current 
state of DEP(X, 1) by B and call the sets of attributes in B blocks. While a change can be 
effected to B do the following: if we can find an MVD W ---+ ---+ Z E r and a block V E B such 
that V n W = 0, V n Z i=- 0 and V - Z i=- 0, then split V into VI = V n Z and V2 = V - Z, 
i.e. replace V E B by VI and V2' It is shown in [Gal82] that the final state of B is the desired 
DEP(X, 1) and that this algorithm runs in polynomial time in the size of r. 

To conclude the proof assume firstly that a is the MVD X ---+---+ Y. Then :E f-- X ---+---+ Y if 
and only ifY is the union of one or more blocks in DEP(X, r). Secondly, assume that a is the 
FD X ---+ A. It is shown in [Bee80] that :E f-- X ---+ A if and only if either A E X or, when A E 
schema(R)-X, A E DEP(X, 1) and there is some nontrivial FD W ---+ A E F (see FD-MVD2). 
In both cases the required conditions can be checked in polynomial time in the size of :E. 0 

In Galil [Ga182] it was shown that the implication problem for FDs and MVDs can be solved 
in O( II:E II log II:E II) time, where II:E II, as before, denotes the size of ~, namely the number of 
attributes appearing in F and M including repetitions. This is the fastest known algorithm to 
date for solving this problem. 

A set of MVDs Mover R is nonredundant if for all X ---+ ---+ Y E M, (M - {X ---+ ---+ Y})+ is a 
proper subset of M+. The computation of the dependency basis, presented in Theorem 3.58, 
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can be used to find a nonredundant cover of a set, M, of MVDs over R as follows. M is 
nonredundant ifand only if for each MVD X ~~ Y E M, DEP(X, M) '" DEP(X, M-{X ~~ 
Y}). 

A simple and elegant characterisation of the implication problem for FDs and MVDs was 
given in [HF86). Prior to stating this characterisation in the form of Theorem 3.59 we first 
give a definition. 

Definition 3.84 (Closed set of attributes) A set of attributes W ~ schema(R) is said to be 
closed with respect to an FD X ~ Y, if X ~ W implies that Y ~ W. Correspondingly, a set of 
attributes W ~ schema(R) is said to be closed with respect to an MVD X ~~ Y, if X ~ W 
implies that either Y ~ W or schema(R)-XY ~ W. 

A set of attributes W ~ schema(R) is said to be closed with respect to a set ~ of FDs and 
MVDs over R, ifW is closed with respect to all the FDs and MVDs in ~. • 

Theorem 3.59 Let ~ be a set of FDs and MVDs over R and a be a single FD or MVD over R. 
Then ~ ~ a if and only if every set of attributes W ~ schema(R) that is closed with respect 
to ~ is also closed with respect to a. 0 

We next discuss some special kinds of MVDs. Suppose that schema(R) = XYZ, where X, 
Y and Z are pairwise disjoint subsets of schema(R). Moreover, let Sl and S2 be relations over 
R such that SI satisfies the FD X ~ Y and S2 satisfies the FD X ~ Z. It can be verified that if 
we let r = SI U 52, then, in general, r will not satisfy either X ~ Y or X ~ Z. However, if the 
X-values of SI and S2 are disjoint then r will satisfy the MVDs X ~ ~ Y (R) and X ~ ~ Z (R). 
Such MVDs are called degenerate MVDs [AD80). 

The degenerate MVD has an application in the maintenance of user views. Suppose that rl 
over RI and r2 over R2 are relations in a database, withschema(RI) = XYand schema(R2) = Xl, 
and that rl ~ X ~ Y or r2 ~ X ~ Z. Furthermore, assume that the natural join r = r1 ~ r2 
is a user view over R. 

The relation r is said to be deletion-viable if whenever t E r is deleted from r, then 

r - It} = (rl - (t[XY]}) ~ r2 or 

r - It) = rl ~ (r2 - (t[XZ]}), 

i.e. deleting t from r can be realised by deleting t[XY) from rl or t[XZ) from r2 [Cod74J. 

Correspondingly, the relation r is said to be insertion-viable if whenever t is inserted into r, 
then 

r U It} = (rl U (t[XY]}) ~ (r2 U (t[XZ]}), 

provided that rl U {t[XY]} ~ X ~ Y or r2 U {t[XZ]} ~ X ~ Z. That is, inserting t into r can 
be realised by inserting t[XYJ into rl and t[XZ) into r2 [Cod74J. 

In [AD80) it was shown that in the general case deletion and insertion viability can be 
characterised by degenerate MVDs. 

Theorem 3.60 Let R be a relation schema, where schema(R) = XYZ and X, Y and Z are pairwise 
disjoint subsets of schema(R), and let r be a relation over R such that r ~ X ~ ~ Y (R). If r 
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is deletion-viable or insertion-viable, then X -+--+ Y (R) is a degenerate MVD. Conversely, if 
X -+-+ Y (R) is a degenerate MVD, then r is deletion-viable and insertion-viable. 0 

We refer the reader to Section 3.8 for a comprehensive treatment of the view update problem. 

Another special kind of MVD is an MVD of the form 0 -+ -+ Y (R), i.e. a nonstandard MVD, 
that is, an MVD with an empty left-hand side. Let R be a relation schema, where schema(R) 
= YZ and such that Y and Z are pairwise disjoint sets of attributes. The reader can verify that 
a relation rover R satisfies 0 -+-+ Y (R) if and only 

r = 7l"y(r) x 7l"z(r), 

i.e. r is the Cartesian product of its projections onto Y and Z. 

An important class of MVDs, which was investigated in the context of relational database 
design in the presence of MVDs, is the class of conflict-free MVDs [Sci8l, Lie82J. One of the 
main characteristics of a set M of conflict-free MVDs over R is that M is equivalent to an acyclic 
join dependency which has many beneficial properties [BFMY83, Fag83) (see Subsection 3.6.14 
for more details). 

When we have a nontrivial MVD X -+ -+ Y (R) then it is natural to decompose R into Rl and 
R2, with schema(Rd = XY and schema(R2) = XZ, where Z = schema(R)-XY. This is due to 
Proposition 3.55 which guarantees that {R 1, R2 } is a lossless join decomposition ofR. Given a 
set of MVDs Mover R we can iterate this binary decomposition process on R using nontrivial 
PMVDs (i.e. projected MVDs) of the form X -+-+ Y (S) whenever possible with respect to a 
relation schema S in the current state of the decomposition of R (see Proposition 3.56). The 
resulting decomposition is lossless but is not unique as the next example shows [Lie8l). One 
of the benefits of a conflict-free set of MVDs M is that they give rise to a unique loss less join 
decomposition by iterating the process just described [Sci8l, Lie82). Historically, this was the 
original motivation in defining the concept of conflict-freeness. 

Example 3.11 Let R be a relation schema with schema(R} = {EMP _NO, PROJECT, 
LOCATION}, where we abbreviate EMP~O to E, PROJECT to P and LOCATION to 1. Let 
M = {E -+-+ LIP, P -+-+ L I E) be a set of MVDs over R; we denote the first MVD in M by 
ml and the second MVD by m2. The meaning of ml is that an employee works in all locations 
of the projects he/she is involved in. The meaning of m2 is that a project is associated with all 
the locations of all the employees in that project. 

We can now decompose R losslessly into Rl and R2, with either schema(Rd = {E,P} and 
schema(R2} = {E, L} on using mi> or schema(Rd = (P, E) and schema(R2} = {P, L} on using 
m2. Thus R does not decompose uniquely. The problem here is that M 1= (E -+-+ L, P-+-+ 
L) but M ~ 0 -+-+ 1. Such a problem is called an intersection anomaly. • 

Definition 3.85 (Intersection property) A set of MVDs has an intersection anomaly if M 1= 
(X -+-+ Z, Y -+-+ Z), where Z is disjoint from X and Y but M ~ (X n Y) -+-+ Z. 

A set of MVDs Mover R possesses the intersection property if it does not have any 
intersection anomalies. • 
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Example 3.12 Let us add the attribute MANAGER~O (abbreviated to N) to schema(R) of 
Example 3.11 and modify M of Example 3.11 to be the set M = {{E, N} -l--l- LIP, {P, L} -l--l
E I N} of MVDs over R; we denote the first MVD in the modified version of M by m3 and the 
second MVD by m4. The meaning of m3 is that an employee and his/her manager work in all 
the locations of the projects they are involved in. The meaning of m4 is that a project and its 
location are associated with all the employees under the jurisdiction of the manager of that 
project. 

We can now decompose R losslessly into R\ and R2, with either schema(R\) = {E, N, P} and 
schema(R2) = {E, N, L} on using m3, or schema(Rd = {P, L, E} and schema(R2) = {P, L, N} 
on using m4. Thus R does not decompose uniquely. The problem here is that m3 splits the 
left-hand side of m4, i.e. P n {P, L} -:J: 0 and L n {P, L} -:J: 0. Similarly, m4 splits the left-hand 
side of m3. Such a problem is called a split-lhs anomaly. • 

Definition 3.86 (Split-freeness property) An MVD X -l--l- Y splits a set of attributes W if it 
is nontrivial, W n (Y -X) -:J: 0 and W n (schema(R)-XY) -:J: 0. A set of MVDs Mover R splits 
W if some MVD in M splits W. 

Let M be a set of MVDs over R, and let us denote the set of left-hand sides of nontrivial 
MVDs in M by LHS(M). A set of MVDs has a split-Ihs anomaly if for some W E LHS(M) M 
splits W. 

A set of MVDs Mover R is split-free if it does not have any split-Ihs anomalies. • 

We next define conflict-freeness by combining Definitions 3.85 and 3.86. 

Defmition 3.87 (Conflict-free set of MVDs) A set M of MVDs over R is conflict-free if it is 
split-free and possesses the intersection property. • 

Example3.13 Let schema(R) = {EMP_NO, SALARY, YEAR, PROJ, LOC}, where EMP~O, 
SALARY, YEAR, PROJ and LOC are abbreviated to E, S, Y, P and L, respectively. Also, let M 
= {E -l--l- IS, Y} I {P, L}, P -l--l- L I {E, s, Y}}, meaning that an employee has a salary history 
and independently works on projects which have a set of locations, and a project has a set of 
locations. The reader can verify that M is a conflict-free set of MVDs. • 

Recall that a set of MVDs, Mover R, is a cover of another set of MVDs, N over R, if M+ = 
N+. We next define two properties of MVDs that are related to the concept of cover. This is 
the theme of Theorem 3.61 below. 

Defmition 3.88 (Subset property) A set of MVDs Mover R possesses the subset property if 
for every pair of nontrivial MVDs in M, X -l--l- Y I Z, where Z = schema(R)-XY, and U -l--l
V I W, where W = schema(R)-UV, we have 

XY 5; UV and UW 5; XZ, 

up to the renaming ofY by Z and Z by Y, or the renaming of V by Wand W by V. • 

Defmition 3.89 (Interaction-free sets ofMVDs) A set of MVDs Mover R possesses the 
interaction-free property if for every pair of nontrivial MVDs in M, X -l--l- Y I Z, where Z 
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= schema(R)-XY, and U ~~ V I W, where W = schema(R)-UV, and for any relation rover 
R, we have 

where rl = 1TXy(r) l><11Txz(r) and r2 = 1Tuv(r) l><11Tuw(r). • 
Definitions 3.88 and 3.89 were first given in [GT84) and [Van86J, respectively. The following 

theorem was established in [GT84, Van86). 

Theorem 3.61 Let M is a set of MVDs over R. Then the following statements are equivalent: 

1) A cover of M is conflict-free. 

2) A cover of M possess the subset property. 

3) A cover ofM is interaction-free. o 

The next result was established in [Lak86, OY87a). 

Theorem 3.62 It can be checked in polynomial time in the size II M II of a set of MVDs Mover 
R whether M is conflict-free. 

Proof. An MVD X ~~ Y E M+ is said to be reduced if it is nontrivial and satisfies the 
following three conditions: 

1) left-reduced, i.e. for no proper subset Z C X, does Z ~~ Y E M+ hold. 

2) right-reduced, i.e. for no proper subset We Y, is X ~~ W a nontrivial MVD in M+. 

3) nontransferable, i.e. for no proper subset Z C X, does Z ~~ (X-Z)Y E M+. 

A set of MVDs N over R is a minimal set of MVDs if each MVD in N is reduced and N is 
nonredundant. In [OY87aj it was shown that a minimal cover, say N, of M can be computed 
in polynomial time in the size ofM. Furthermore, it was shown therein that a set ofMVDs has 
a conflict-free cover if and only if the minimal cover computed by the said polynomial-time 
algorithm is also conflict-free. The result now follows by computing a minimal cover, say 
N, of M, and then invoking Definition 3.87 with the help of the algorithm for computing the 
dependency basis, given in Theorem 3.58. 0 

When we have FDs in addition to MVDs we need to extend the definition of a conflict-free 
set of data dependencies [Kat84, BK86, Y092aj. Let E = FUM be a set F of FDs over R 
together with a set M of MVDs over R. Given a set of attributes X ~ schema(R), recall that X* 
= {A I E f- X ~ A} and assume that the dependency basis of X with respect to E is given by 
DEP(X, E) = {X*. WI . W2 •...• Wk}. 

Informally, E is extended conflict-free if the set of MVDs, obtained by replacing each 
nontrivial data dependency, i.e. FD or MVD, in E, whose left-hand side is X, by an MVD, 
whose left-hand side isX*, is conflict-free according to Definition 3.87. Essentially, an extended 
conflict-free set of MVDs is obtained by neutralising the effect of the FDs in E. 
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Definition 3.90 (Extended conflict-free sets of FDs and MVDs) Let us denote the set ofleft
hand sides of nontrivial FDs and MVDs in ~ by LHS(~). We call an MVD of the form 
X* --+--+ WI I W2 I ... I Wk> where X E LHS(~), a lhs-closed MVD. 

The set ~ of FDs and MVDs is extended conflict-free if the set of all lhs-closed MVDs 
obtained from the sets of attributes X E LHS(m is conflict-free. • 

Example 3.14 Let us alter Example 3.13 be removing the attribute YEAR from schema(R) 
and by adding the FD E --+ S to the dependency set, meaning that an employee has a unique 
salary. Thus F = {E --+ S} and M = {E --+--+ S I {P, L}, P --+--+ L I {E, S}}. The reader can verify 
that FUM is an extended conflcit-free set of MVDs, since the set oflhs-closed MVDs induced 
by FUM, which is given by the nontrivial MVD P --+--+ L I {E, S} together with the trivial MVD 
{E, S} --+--+ {P, L}, is conflict-free. • 

In Subsection 3.6.14 we present the result giving the connection between extended conflict
free sets of FDs and MVDs and acyclic join dependencies. 

We close this section with the story of the EMVD. As can be seen from Definition 3.81 the 
EMVD is a generalisation of the MVD where the context of the dependency may be any subset 
of schema(R). Thus the EMVD is sensitive to the context over which it is defined as opposed 
to FDs which are oblivious to their context. Proposition 3.56, which was given in [Fag77b], 
shows that certain EMVDs, called PMVDs, can be obtained from a set of MVDs by using 
projection. It was shown in [ABU79j that the inference rule emanating from Proposition 3.56, 
called the projection inference rule or simply EMVD1, is sound and complete for inferring 
PMVDs. However, as Fagin observed, and as we have shown in Table 3.57, not all EMVDs are 
PMVDs. That is, it is possible for a nontrivial EMVD X --+--+ Y (S) to hold in a projection of 
a relation rover R, but for the corresponding MVD X --+--+ Y (R) to be violated in r, where 
schema(S) is a proper subset of schema(R). 

The first negative result for EMVDs was obtained in [PPG80, SW82, CFP84j, wherein it 
was shown that for no k :::: 0, k E w, does there exist a k-ary axiomatisation for EMVDs (see 
Theorem 3.46 showing this result for FDs and INDs). That is, there is no finite axiomatisation 
for EMVDs. In proof let R be a relation schema containing at least k + 2 distinct attributes 
AI, A2, ... , Ak, Ak+l> B. Also, let E = {AI --+--+ A2 I B, A2 --+--+ A3 I B, ... , Ak --+--+ Ak+I I 
B, Ak+1 --+--+ Al I B} be a set of EMVDs over R and ex be the EMVD Al --+--+ Ak+1 I B. It 
can be verified that the following three conditions are satisfied: (i) E F= ex, (ii) if f3 E E then 
f3 1;6 ex and (iii) ifD is a set of at most k EMVDs ofE, f3 is an EMVD over Rand D F= f3, then 
there is an EMVD Y E D such that Y F= f3. It was shown in [CFP84j that if these conditions 
are satisfied then the aforesaid negative result holds. 

As we have seen for FDs and unary INDs, the fact that no k-ary axiomatisation exists for a 
class of data dependencies does not rule out a decision procedure for solving the implication 
problem. So it remained as an open problem whether the implication problem for EMVDs is 
decidable or not. 

Let E be a set ofEMVDs over R, let S be a relation schema, with schema(S) ~ schema(R), and 
let X, V, Y, Y', Z and Z' be sets of attributes in S, with Y' ~ Y and Z' ~ Z. The next inference 
rule for EMVDs was given in [ITK83]. 
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EMVD2 Embedded union: ifE I- X -+-+ Y I Z, E I- XY -+-+ z'v (S) and E I- XZ -+-+ y'V 
(S) then E I- X -+-+ y'Z'V (S). 

In [ITK83j EMVD2 together with EMVDI (the projection inference rule) were used to 
investigate some subclasses of EMVDs that have decidable solutions to their implication 
problem. A year later Vardi [Var84aj showed that for a larger class of data dependencies, which 
properly includes EMVDs, the implication problem is undecidable (see also [CLM81, GL82)). 
Vardi [Var83j suggested that the solvability of the implication problem for EMVDs is one of 
the outstanding open questions in data dependency theory. He went further to say: "That 
question still haunts and baffles us". More than a decade later the answer was given in [Her95j: 
the implication problem for EMVDS is undecidable both for finite and for infinite logical 
implication (see the discussion at the beginning of Subsection 3.6.11 about the difference 
between logical implication for finite and infinite relations). We note that Herrmann's proof 
utilises a lattice theoretic interpretation of EMVDs. This implies that, as is the case for FDs 
and INDs, we cannot find a sound and complete (finite or countably infinite) axiom system 
for EMVDs at all. 

3.6.14 Join Dependencies 

MVDs formalise the notion of binary lossless join decompositions but there are situations 
where we require a lossless join decomposition into more than two relation schemas. Aho et 
al. [ABU79j prove that there are situations where there is a lossless join decomposition into 
n ~ 3 relation schemas but no proper subset of this collection of relation schemas is lossless. 
For n = 3, they give the database schema R = {RI , R2, R3}, with schema(Rd = {AI, A2}, 
schema(R2) = {AI, BI , B2} and schema(R3) = {A2, BI, B2}, together with the set of FDs F = 
{AI -+ BI, A2 -+ B2}. Using the chase procedure for FDs given in Subsection 3.6.4 and the 
result of Theorem 3.29, it can be verified that R is a lossless join decomposition with respect to 
F but that no proper subsetofR is lossless with respect to F. The concept of aloin Dependency 
(or simply a JD) allows us to model arbitrary lossless join decompositions, independently of a 
set ofFDs as was specified in Definition 3.65 of Subsection 3.6.4. Lossless join decomposition 
of a database schema will play an important role as a desirable property to achieve during 
database design (see Chapter 4 for details). 

Consider a relation schema, called SPJ, with attributes SUPPLIER (abbreviated to S), PARTS 
(abbreviated to P) and PROJECTS (abbreviated to J). A tuple <Si, Pi ,ji> in a relation over 
SP} means that a supplier Si supplies part Pi to project ji. In Table 3.59 we show an example 
relation, say r, over SP}. 

Table 3.59 The relation rover SP J 

SUPPLIER PART PROJECT 
51 PI h 
SI pz h 
51 PI h 
52 PI h 

Let R = {RI, R2, R3} be a database schema, with schema(R) = {S,P,J}, where schema(RI) = 
{S, P}, schema(R2) = {P, J} and schema(R3) = {S, J}. The reader should verify that r can be 
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decomposed losslessly onto these three relation schemas, since 

r = 7r(s.PJ (r) ~ 7r(P.J) (r) ~ 7r{S,J) (r). 

This type of constraint can be expressed by the JD 

~ [IS, P}, (P, J), IS, Jl]. 

Defmition 3.91 (Join dependency) A Join Dependency (or simply a JD) over a relation 
schema R is a statement of the form ~[schema(Rl)' schema(R2), ... , schema(Rn)], where R:::: 
{Rl, R2, ... , Rn} is a database schema such that schema(R) :::: schema(R). When no ambiguity 
arises we write ~[R] instead of ~[schema(Rd, schema(R2)' ... , schema(Rn)]. 

A JD ~[R] is said to be trivial if one of its components is schema(R) (or when no ambiguity 
arises simply R). • 

Alternatively, if ~[R] is a JD over R we say that R is a lossless join decomposition of R. A 
JD ~[R] is satisfied in r if there is no loss of information when projecting r onto the relation 
schemas in R and then joining the projections together. 

Definition 3.92 (Satisfaction of a JD) A JD ~[R] is satisfied in a relation rover R, denoted 
by r F ~[R], if 

When no ambiguity arises we write the above equality as 

• 
It is evident that if the decomposition R has a lossless join with respect to a set ofFDs F and 

r F F, then it is also the case that r F ~[R]. (See Subsection 3.6.4 for details on lossless join 
decompositions with respect to F.) Also, by Proposition 3.55 we have that an MVD is a special 
case of a JD when the cardinality ofR is two. That is, the JD ~[X, Y] is equivalent to the MVD 
X n Y ~ ~ X - Y I Y - X. 

In order to investigate the properties of JDs we next define the project-join mapping. 

Definition 3.93 (Project-join mapping) The project-join mapping associated with a database 
schema R with respect to a relation rover R, denoted by mR(r), is given by 

• 
It can easily be verified that r F ~[R] if andonlyif mR(r) = r. The following basic properties 

of mR(r) were shown in [BMSU81]. 

Lemma 3.63 The following properties are satisfied for all relations rand s over R: 

1) r S; mR(r). 

2) mR(mR(r» = mR(r). 
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o 

We observe that the project-join mapping satisfies the three conditions given in 
Definition 3.54 and is thus a closure operator. 

We next define two database schemas, associated with a relation schema R, to be equivalent 
if the sets of relations over R that satisfy the JDs induced by these schemas are exactly the 
same. 

Definition 3.94 (Equivalent database schemas) The set of all relations rover R such that r F= 
t><l[R), i.e. mR(r) = r, is denoted by JD(R). Two database schemas Rand S, with schema(R) = 
schema(S) = R, are said to be equivalent if JD(R) = JD(S). • 

The project-join mapping can now be used to give a syntactic condition which guarantees 
that two database schemas be equivalent. 

Definition 3.95 (Cover of a database schema) A database schema R is said to cover a 
database schema S, denoted by R ::: S, if for all relation schemas S E S there exists a relation 
schema R E R such that schema(S) S; schema(R). • 

The next theorem was shown in [BMSU81j. 

Theorem 3.64 The following statements are equivalent: 

1) R covers S. 

2) for all relations rover R, mR(r) S; ms(r). 

3) JD(S) S; JD(R). o 

The soundness of the next two inference rules for JDs, where J is a set of JDs over R, is a 
direct consequence of Theorem 3.64. (See [BV81, Sci82j for more details on inference rules 
for JDs.) 

J01 Reflexivity: J I- t><l[ {R} j. 

JD2 Covering: if} I- t><l[Sj and R::: S then J I- t><l[Rj. 

The next theorem, which was established in [Pet89j, shows that JDs do not have a finite 
axiomatisation. 

Theorem 3.65 For no k ::: 0, k E w, does there exist a k-ary axiomatisation for JDs. 0 

A sound and complete infinite axiom system for JDs, which has an unbounded inference 
rule, i.e. an inference rule such as the k-cycle inference rule for FDs and unary INDs, was 
exhibited in [BV85j. 

The implication problem for JDs is the problem of deciding whether J F= t><l[Rj, given a set J 
of JDs over R and a single JD t><l[Rj over R. Firstly, we present two intractability results for the 
logical implication of}Ds from JDs and MVDs. 
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Theorem 3.66 The following two decision problems are NP-hard: 

1) Testing whether a set oODs and MVDs logically imply a JD. 

2) Testing whether a set of MVDs logically implies a JD. D 

We note that the first decision problem was proved in [BV80, MSY81] and the second one 
was proved in [FT83]. An MVD X --+--+ Y is unary ifY is a singleton. In [TL86] it was shown 
that the implication problem, namely whether the set of unary MVDs implied by an arbitrary 
set of MVDs, say M, logically implies a JD, can be solved in polynomial time in the size of M. 
The following polynomial-time result was proved in [MSY81, Var83]. 

Theorem 3.67 Testing whether an FD X --+ Y or an MVD X --+--+ Y (R) is logically implied 
by a set ~ = J U F, where J isa set of JDs over Rand F is a set of FDs over R, can be done in 
polynomial time in the size of ~; more specifically it can be computed in O( I schema(R) I II ~ II) 
time. 

Proof. The idea is to replace ~ by a set M of MVDs such that the set of MVDs that is logically 
implied by M is exactly the same as the set of MVDs that is logically implied by ~. The set of 
MVDs M is constructed by replacing each FD X --+ Y E F by the set of MVDs {X --+ --+ A I A 
E Y -X}, and by replacing each JD I><1[R] E J, where R = {RI, Rz, ... , Rn }, by the set of MVDs 
given by 

(1)<1 [Xl, X2]1 {Sl , S2} is a binary partition ofR with Xl = schema(SI) andX2 = schema(S2)}. 

Recall that an MVD is a binary JD and observe that without any loss of generality we can 
remove any trivial MVDs from M. As an example, consider the JD, I><1[(A, q, {C, L}, (L, B}, 
(B, A}], where A stands for account, C stands for customer, L stands for loan and B stands for 
bank. Then M consists of the set of nontrivial MVDs given by {I><1[(A, C, L}, {A, L, B}], I><l[(A, 
C, B}, {C, L, B}]}, or equivalently, {(A, L} --+--+ C I B, (C, B} --+--+ A I L}. 

By using this set M of MVDs we can also derive all the FDs that are logically implied by ~, 
since as was mentioned in Theorem 3.58 ~ logically implies a nontrivial FD X --+ A if and only 
if X --+--+ A is logically implied by M and there is a nontrivial FD W --+ Z E F with A E Z. 

All that remains is to compute the dependency basis of X with respect to M, i.e. DEP(X, M) 
(see Theorem 3.58). This cannot be done by first computing M, since the size of M may be 
exponential in the size of~. Essentially, we can find the finest partition of schema(R)-X by 
refining a set of attributes, say Xi, in the current state of the partition, when there is an MVD 
W --+ --+ Z E M such that Xi n W = 0 but Xi n Z # 0 and Xi - Z # 0. In this case we replace Xi 
by Xi n Z and Xi - Z. Finding whether there exists in M such an MVD W --+ --+ Z is computed 
directly from the set J of JDs by considering the JDs I><1[R] E J. In order to do so we construct 
a graph, G = (N, E), whose nodes are the attributes in Xi and such that (A, B} is an edge in E if 
both A, BE schema(Rj) n Xi for some Rj E R. It was shown in [MSY81] that I><1[R] can refine 
Xi if and only if G is not connected, i.e. there exists a pair of nodes in N that do not have a path 
connecting them. The result follows since G can be constructed in polynomial time in the size 
00 and the graph connectivity problem is a linear-time problem in the size of the input graph 
[AHU83] . 0 
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Fig 3.5 The hypergraph represented in Table 3.60 

See also [LT87aJ for a polynomial algorithm which determines whether a set ofMVDs and 
the subclass of PMVDs induced by a decomposition R logically imply the JD 1><1 [RJ. 

The intractability results of Theorem 3.66 have led researchers to consider the subclass 
of acyclic JDs. The term acyclic will be explained by viewing a database schema R = 
{RI, Rz, ... , Rn} as a hypergraph. A hypergraph is a pair (N, E), where N is a finite set 
of nodes and £ is a set of hyperedges, each hyperedge being a nonempty subset of N. A 
hypergraph generalises the notion of a graph, since a graph is just a hypergraph where each 
hyperedge consists of exactly two nodes (assuming there are no loops in the graph, i.e. there 
are no singleton edges of the form {n}). The hyper graph induced by a database schema R has 
schema(R) as its node set and {schema(Rd, schema(Rz), ... , schema(Rn}} as its hyperedge 
set. Thus a JD I><I[RJ induces a hypergraph. In the following we will not distinguish between 
a database R and the hypergraph, say H, that it induces. We can represent a hypergraph in 
a table whose columns are the attributes of schema(R) and whose rows are the hyperedges; a 
given cell is nonempty if and only if the attribute of its column is in the hyperedge represented 
by that row. In Table 3.60 we show the representation of the hypergraph HI = {{A, B}, {A, 
C, D}, {B, L}, {C, D, L}}, where A, B, C, D and L stand for account, bank, customer, address 
and loan, respectively; a pictorial representation of this hypergraph is shown in Figure 3.5. 
In Table 3.61 we show the representation of the hypergraph Hz = {{A, B}, {B, L}, {A, Cb, 
Db}, {L, CI, DI}}, where Cb, Db, CI, and DI stand for borrowing customer, borrowing address, 
loan customer and loan address, respectively; a pictorial representation of this hypergraph is 
shown in Figure 3.6. 

Table 3.60 A hypergraph representation of R 

A B LCD 
A B 
A C D 

B L 
LCD 

We now give a syntactic definition of acyclicity. 

Definition 3.96 (Acyclic join dependency) A database schema R is acyclic if and only if 
applying the following two operations repeatedly on the hypergraph H, induced by R, results 
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Table 3.61 Another hypergraph representation of R 

A B L Cb Db Cl Dl 
A B 

B L 
A Cb Db 

L Cl Dl 

(b (I 

Db 01 

Fig 3.6 The hypergraph represented in Table 3.61 

in a hypergraph having an empty set of hyper edges: 

205 

I) If an attribute A appears in exactly one hyperedge in 1t then remove A from that 
hyperedge; A is called an isolated attribute. 

2} If Si and Sj are distinct hyperedges in 1t such that Si ~ Sj then remove Si from the 
hyper edge set of 1t; Si is called a redundant relation schema. 

A database schema R is cyclic if it is not acyclic. A JD M[RJ is said to be acyclic. respectively 
cyclic. if R is acyclic. respectively cyclic. • 

The algorithm used to determine the acyclicity of a database schema is known as Graham's 
reduction algorithm [BFMY83. Fag83). The reader can verify that the hypergraph represented 
in Table 3.60 is cyclic while the hypergraph represented in Table 3.61 is acyclic. 

The next theorem gives an alternative. more semantic characterisation of acyclic database 
schemas [FMU82. BFMY83). 

Theorem 3.68 The following statements are equivalent: 

1) R is an acyclic database schema. 

2} The JD M[RJ over R is logically equivalent to a conflict-free set M of MVDs over R. i.e. 
M[RJI= M and M 1= M[RJ. 0 

The next theorem. which tells us how to infer MVDs from a JD. was established in [FMU82) 
(see also the proof of Theorem 3.67). 

Prior to stating the next theorem we introduce some further notions concerning 
hypergraphs. A sequence <el, ez, ... , ek>. with ej E E. 1 :s i :s k. is called a path from 
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el to ek if e; n e;+ l i 0, 1 ::: i < k. Two hyperedges of a hypergraph 1-{ are connected if there is 
a path from one to the other. A set of hyper edges in 1-{ is connected if every pair of hyper edges 
in the set is connected. The connected components of 1-{ are the maximal connected sets of 
hyperedges in 1-{. 

Theorem 3.69 An MVD X -+-+ Y is logically implied by a JD t><I[R] if and only if Y is the 
union of some of the connected components of the hypergraph induced by R with the nodes 
of X removed from the node set of the hypergraph. 0 

When R is acyclic then, by using Theorem 3.69, a set of MVDs, say Mover R, which is 
equivalent to t><I[R], can be found in polynomial time in the size of R. The set M consists of the 
MVDs whose left-hand side is the intersection of exactly two hyperedges of R. Therefore, by 
Theorem 3.67 the problem of testing whether a set of JDs and FDs logically implies an acyclic 
JD can be solved in polynomial time in the size of the input. A variation of this result is that 
testing whether a set of data dependencies consisting of a single acyclic JD and a set of FDs 
logically implies any JD can be solved in polynomial time in the size of the input by modifying 
the chase procedure of Subsection 3.6.4 [YanSl]. 

Recall Definition 3.90 of an extended conflict-free set of MVDs from Subsection 3.6.13. 

Definition 3.97 (Compatibility of a set of FDs with a JD) An FD X -+ Y over R is compatible 
with a JD t><I[R] over R iffor some R; E R, XY ~ schema(R;}, where schema(R} = schema(R}. 

A set F of FDs over R is compatible with a JD t><I[R] over R if every nontrivial FD in F is 
compatible with t><I[R]. A set F ofFDs over R is completely compatible with a JD t><I[R] over R 
if F is compatible with t><I[R], and for every FD X -+ Y E F such that for some R; E R, X ~ 
schema(R;}, then it is also true that Y ~ schema(R;}. • 

The main result of [KatS4] on extended conflict-free sets of FDs and MVDs is presented 
in the next theorem; we recall that two sets of data dependencies, ~ and r, are logically 
equivalent if ~ 1= rand r 1= ~. In the context of the next theorem ~ = FUM, where F and 
M are, respectively, a set of FDs and a set of MVDs over R. 

Theorem 3.70 The following statements are equivalent: 

1) ~ is logically equivalent to an extended conflict-free set of FDs and MVDs. 

2} ~ is logically equivalent to an acyclic JD and a set of FDs which is compatible with this 
acyclic JD. 

3} ~ is logically equivalent to an acyclic JD and a set ofFDs which is completely compatible 
with this acyclic JD. 0 

An immediate corollary of this result is that any set F of FDs over R has an extended 
conflict-free cover. To show this let R = {R}, in which case it is obvious that F is compatible 
with t><I[R]. 

We next define the concepts of pairwise and join consistency which are related to the 
concept of the so called "universal relation". Intuitively, when a database designer chooses 
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a decomposition (or database schema) R then it is reasonable to assume that the join of all 
the relations rj in a database dover R is meaningful. In the universal relation approach 
meaningful is taken to mean the existence of some "fictitious" relation r such that each rj E d 
is the projection of r onto the attributes of the relation schema Rj of rj, i.e. schema(Rj). (See 
Section 2.4 of Chapter 2 for further discussion on the universal relation approach. Also see 
the monograph [Lev92) for a comprehensive survey of the role of the universal relation and 
its derivative, the weak instance approach, in relational database theory.) 

Defmition 3.98 (Pairwise and join consistency) Let rand s be relations over relation 
schemas Rand S, respectively, and let X = schema(R) n schema(S). The relations rand s 
are said to be consistent if Jl'x(r) = Jl'x(s). That is, rand s are consistent if their projections 
onto the common set of attributes of their schemas are the same. 

A database dover R is pairwise consistent if for all rj, rj E d, rj and rj are consistent. That 
is, d is pairwise consistent if for each rj E dover Rj E R and each rj E dover Rj E R, 

where X = schema(Rj) n schema(Rj)' 

A database dover R is join consistent if there exists is a relation rover R, with schema(R} = 
schema(R), such that for all rj E dover Rj E R we have 

rj = Jl'schema(Rj) (r) . 

That is, d is join consistent if there is some "universal relation" r such that each rj E d is 
the projection of r onto the attributes of the relation schema Rj of rj . • 

We observe that pairwise consistency of a database over R can be expressed via a set of typed 
INDs over R (see Definition 3.69 in Subsection 3.6.7). For example, if we have two schemas 
EMP and DEPT, with schema(EMP) = {ENAME, DNAME} and schema(DEPT) = {DNAME, 
ADDRESS}, then pairwise consistency can be expressed by (EMP[DNAME) S; DEPT[DNAME) 
and DEPT[DNAME] S; EMP[DNAME). In this case the semantics of pairwise consistency are 
that employees work in departments and every department has at least one employee. 

The next lemma shows that we can test join consistency by joining all the relations in the 
database [HLY80]. 

Lemma 3.71 A database d = {rl ' r2, . .. , r n} over R is join consistent if and only for all rj E d 
we have 

Proof. If. The result follows by Definition 3.98, since the join of all the relations in the database 
d is the relation r, which demonstrates that d is join consistent. 

Only if. Let us denote rl 1><1 r2 1><1 •• . 1><1 rn by [1><1 d) and Jl'schema(Rj) ([1><1 dJ) by rj, where Rj E 

R. Now suppose that d is join consistent and thus there is some relation rover R such that for 
all rj E d, rj = Jl'schema(Rj)(r). 

By part (1) of Lemma 3.63 r S; [1><1 d] and thus rj S; rj. It remains to show that Tj S; rj. Now, 
let t be a tuple in rj. It follows that there exists a tuple U E [1><1 d] such that t = u[schema(Ri)]. 
Now suppose that t (j. ri, i.e. t (j. Jl'schema(Rj) (r), then u (j. [1><1 d]leading to a contradiction. 0 
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Unfortunately, using the result of Lemma 3.71 for checking whether a database is join 
consistent by joining all the relations in the database leads to an exponential time algorithm 
in the size of the input database. We observe that by the definitions of pairwise consistency 
and join consistency, it follows that join consistency implies pairwise consistency. Now, 
testing whether a database is pairwise consistent can be carried out in polynomial time in 
the size of the input database. So, if pairwise consistency were to imply join consistency 
then a polynomial-time test for join consistency would be readily available. This conjecture 
unfortunately turns out to be false by the following counterexample database d. Let d = 
{TI, T2, T3) be a database over R = {RI, R2, R3), with schema{Rd = {A, B), schema{R2) = {B, 
C), and schema{R3) = {A, C), where TI, T2 and T3 are shown in Tables 3.62, 3.63 and 3.64, 
respectively. It can be verified that d is pairwise consistent but not join consistent. 

Table 3.62 The relation TI 

LffiJB 
o 0 
I I 

Table 3.63 The relation T2 

ffffic 
o 0 
I I 

Table 3.64 The relation T3 lffiJc 
o I 
I 0 

The next theorem shows that, in general, testing whether a database is join consistent is 
intractable. 

Theorem 3.n Determining whether a database is join consistent is NP-complete. 

PToof We sketch the main idea of the proof. Showing that the problem is in NP is easily done, 
since for each tuple t in each relation Ti E d we can guess whether there are tuples in the other 
relations Tj E d such that their join is nonempty. 

To show that the problem is NP-hard a polynomial-time transformation from the graph 
3-colourability problem, which is known to be NP-complete [Karn, GJ79], can be given. 

The 3-colouTability pToblem: Given a graph G = (N, E) and three colours, red, blue and green, 
does there exists a functionf from N to the three colours such that for each edge {u, v} E 

E, it is true thatf(u) =1= f(v). 

We construct a database for G as follows. For each edge ek = tUb Vk) E E we construct 
a relation schema Rb with schema(Rd = tUb vd and a relation Tk consisting of all possible 
valid 3-colourings of ek; Tk is shown in Table 3.65. It can then be verified that the constructed 
database is join-consistent if and only if G is 3-colourable. 0 

Table3.65 The relation Tk for the edge ek = (Uk . VkJ 

Uk vk 
red green 
red blue 
blue green 
blue red 

green blue 
green red 
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The proof of the next theorem can be found in [BFMY83]. 

Theorem 3.73 A database schema R is acyclic if and only if every pairwise consistent database 
over R is also join consistent. 

Proof. We sketch the idea of the proof. A join tree for a database schema R is a tree (N, E), 
denoted by Tree(R), whose node set N is the set of relation schemas Ri E R and such that 

1) each edge {Ri, Rj} E E is labelled by the set of attributes schema(Ri) n schema(Rj)' 

2) For every pair of distinct relation schemas Ri andRj and for each attribute A E schema(Ri) 
n schema(Rj), every edge in the unique path from Ri to Rj includes A in its label. 

It was shown in [GS83j that R is acyclic if and only if R has a join tree. To prove this 
intermediate result, it can be shown that R has a join tree if and only if Graham's reduction 
algorithm results in an empty hypergraph. Essentially the operations of (i) removing an 
isolated attribute, say A, and (ii) removing a redundant relation schema, say Si, from the 
current state ofthe hypergraph correspond to the operations of (i) removing A from schema(R) 
and (ii) removing Si from R, respectively. Moreover, R has a join tree if and only if the database 
schema, say S, resulting from applying the above two operations to R any number of times 
and in any order, also has a join tree. It follows that R has a join tree if and only if Graham's 
reduction algorithm results in a hypergraph having an empty set of hyper edges. 

We distinguish a node in Tree(R) to be the root of the join tree. Given that Ri is the root of 
the join tree its children are relation schemas Rj such that {Ri, Rj} is an edge in the said tree; 
if Rj is a child of Ri then Ri is said to be the parent of Rj. Now, given a relation schema Ri in 
the join tree, which is not the root, its children are relation schemas Rj such that {Ri, Rj} is 
an edge in the join tree and Rj is not the parent of Ri; in this case the parent of Rj is Ri. If a 
relation schema has no children then it is called a leaf. We define the level of a node Ri in the 
join tree inductively as follows: if Ri is the root node of the tree then its level is zero, otherwise 
the level of Ri is one plus the level of its parent node. 

To conclude the proof we are required to show that R has a join tree if and only if every 
pairwise consistent database over R is also join consistent. A join tree for R induces a join 
plan which tells us in what order to join together the relations in a database dover R. Let 
rl, r2, .. . , r n be a linear ordering of the relations in d such that if Ri is the parent of Rj then 
i < j; we note that such an ordering can be obtained by a topological sort of the join tree for 
R, as defined in Section 1.9.2 of Chapter 1. (Note that RI is the root of the join tree and Rn is 
a leaf.) This linear ordering induces the following join plan, where parentheses indicate the 
order in which to join the relations in d, namely 

Now, if R has a join tree and d is pairwise consistent, then d is also join consistent since by 
induction on IRI it can be shown that no tuples are lost at any stage of executing the join plan 
for d. Conversely, if pairwise consistency implies join consistency, then there exists a join 
plan for d such that no tuples are lost during the execution of the join plan. From this join 
plan we can construct a join tree for R. 0 
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An immediate corollary of Theorem 3.73 is that join consistency can be checked in 
polynomial time in the size of the input database when R is acyclic, since acyclicity can 
be checked in polynomial time (see Definition 3.96). 

Recall that a database schema R is also called a decomposition. This is meant to indicate 
that a relation rover R can be replaced by its projections ri = lTschema(R;){r), where Ri E R 
and schema{R) = schema{R). The reasons why we might prefer a decomposition rather than 
just keeping a single relation schema are to do with database design considerations, which 
are discussed in detail in Chapter 4. In order for such a decomposition to be useful it must 
be lossless in the sense that given the projections {ril we must be able to reconstruct the 
"universal" relation rover R. An operation that replaces a relation rover R by its projections 
{riJ over {RiJ is called a decomposition map. A decomposition map LlR is said to be one-to-one 
with respect to a set of data dependencies Lover R, if whenever rand s are relations over R 
that satisfy L, with r i= s, then LlR(r) i= LlR(S). If a decomposition map is one-to-one then it 
has an inverse which is called the reconstruction map. 

The most natural candidate to be the reconstruction map is the (natural) join operator. 
Thus it is reasonable to conjecture that the join operator is the only possible reconstruction 
map, but in [Var82bj this conjecture was refuted by showing that for a general class of data 
dependencies, which includes FDs and IDs, the reconstruction map is not necessarily the join 
operator. However, when the database schema R is acyclic and we consider only FDs and IDs 
in our dependency set, then the reconstruction map is necessarily the join operator [BV84bj 
(see also [MMSU80j). 

Theorem 3.74 Let R be an acyclic database schema, with schema{R) = schema{R), and let L 
be a set of FDs and IDs over R. Then the following statements are equivalent: 

1) The decomposition map LlR is one-to-one with respect to L. 

2) L F= t><I[R]. 

3) The reconstruction map is the join operator. 

Proof. We sketch the proof. 

(I implies 2) Suppose that LlR is one-to-one but that L 1;6 t><I[R]. Then by Theorem 3.68 
there is an MVD X -+-+ Y I Z, logically implied by t><I[RJ, such that L 1;6 X -+-+ Y I Z, since 
R is acyclic. Now by the results given in [SDPF81j there exists a relation r having exactly 
two tuples such that r F= L but r 1;6 X -+-+ Y I Z; we assume without loss of generality that 
the active domains of distinct attributes are disjoint. Let S = {St, S2}, with schema{Sd = XY 
and schema{Sz) = XZ. It follows that there exists a tuple t such that t E ms(r) but t rt r. 
Furthermore, it can be shown that there exists a permutation 8 on the active domain of r 
such that t E 8(r) and, in addition, Lls(r) = Lls(8(r». We also have r i= 8(r), due to the 
fact that t rt r. Moreover, it can be shown that 8(r) F= L. Finally, it can be verified that 
LlR(r) = LlR(8(r» and thus the decomposition map is not one-to-one with respect to L, 
leading to a contradiction. 

(2 implies 3) Let r be a relation that satisfies L and thus it also satisfies t><I[R]. It follows that 
r = mR(r) and thus by Definition 3.93 the reconstruction map is the join operator. (Recall 
that mR is the project-join mapping associated with R.) 
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(3 implies 1) If the reconstruction map is the join operator then lI.R must be one-to-one 
with respect to :E. 0 

It is interesting to consider how FDs can be used to relax the condition that a database 
schema R is acyclic by considering a set of FDs over R. We say that R is FD-acyclic with 
respect to F if every pairwise consistent database dover R that satisfies F is also join consistent 
[LMG83, SS89]. The problem with this definition is that we need to give appropriate semantics 
to the notion of d satisfying F. Such semantics are given by the weak instance approach that 
states that d satisfies F if there exists a relation rover schema(R) that satisfies F and such 
that each ri E d is contained in the projection of r onto schema(Ri) [Hon82]. As an example, 
let R be a database schema with three relation schemas TEACHES, TAKES and GIVES, with 
schema(TEACHES) = is, T}, schema(TAKES) = is, C} and schema(GIVES) = {C, T}, where S 
stands for student, T stands for teacher and C stands for course. In addition, let F = {S ~ T, 
C ~ T, T ~ C} be a set ofFDs over schema(R), meaning that a student has a unique teacher, 
a course is taught by a unique teacher and a teacher teaches a unique course. We next show 
that R is FD-acyclic; assume that d has relations r1 over TEACHES, r2 over TAKES and r3 over 
GIVES. Let < 1,2> be a tuple in rl> then by pairwise consistency there is a tuple < 1,3> in r2 
and a tuple <3,4> in r3 . Since d satisfies F, the FDs S ~ T and C ~ T imply that 2 = 4, and 
thus < 1, 2, 3> is in the join of the relations in d. It follows that no tuple in r1 is lost when the 
join of the relations in d is computed. Similarly, it can be shown that no tuple in r2 or in r3 is 
lost in the join of the relations in d. Therefore, R is FD-acyclic with respect to F. 

Other characterisations of acyclic database schemas can be found in [GS82, BFMY83, GS83, 
MU84], and efficient algorithms in the presence of acyclic database schemas are given in 
[Yan81]. A method of breaking cycles in a cyclic database schema by using maximal objects, 
which union together two or more hyper edges in the hypergraph induced by a database 
schema, is presented in [MU83]. Other types of acyclicity of database schemas, which are 
more restrictive than that of Definition 3.96, can be found in [Fag83, GR86, Gys86]. Also, see 
[Sac85, ADS86] for an extension of the hypergraph concept to include directed hyperedges, 
thus allowing us to model FDs in addition to JDs. 

It is possible to define Embedded Join Dependencies (or simply EJDs), which generalise 
the notion of EMVDs, by allowing the attribute set, schema(R), of a database schema R, to 
be a proper subset of schema(R). The implication problem for EJDs is undecidable by the 
corresponding result for EMVDs discussed at the end of Subsection 3.6.13. The implication 
problem for a subclass ofEJDs, called projected JDs, which generalise PMVDs, was also shown 
to be undecidable [Var84a). Axiomatisation ofEJDs is considered in detail in [BV81, Sci82). 
The axiom system for EJDs was shown to be sound and complete for the special case when the 
set ofJDs, J over R, contains a single JD over R [MGKL88]. In [BR84) a subclass ofEJDs, called 
cross dependencies, are considered, where the relation schemas of R have disjoint attribute 
sets. Therein, a sound and complete axiom system for cross dependencies is exhibited. 

For a generalisation ofFDs and JDs to Equality Generating Dependencies (EGDs) and Tuple 
Generating Dependencies (TGDs), respectively, see [Fag82b), [BV84a, BV84c] and [GMV86). 
An EGD says that if some tuples fulfilling certain equalities appear in the database then some 
values in those tuples must be equal. Correspondingly, a TGD says that if some tuples fulfilling 
certain equalities appear in the database then some additional tuples must be present in the 
database. We formalise and further discuss the notions of EGD and TGD in Section 9.6 
of Chapter 9 in the context of deductive databases. For comprehensive surveys on data 
dependencies see [FV84a, Var88b). 
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3.7 Domain and Cardinality Constraints 

The concept of a domain is fundamental to the definition of a relation. With each attribute, 
A, in a relation schema, R, we associate a set of values which we call the domain of A, denoted 
by DOM(A) (see Definition 3.1 in Section 3.1). Recall that a relation schema R is in INF if all 
its attribute domains are atomic, i.e. each value in such a domain is a non decomposable set 
of values which has no internal structure as far as the database system is concerned. 

With the advent of the object-oriented database paradigm we follow Date's proposal and 
interpret an atomic domain as a user-defined data type (or simply a data type) [Dat90j. The 
concept of a user-defined data type is a well-known concept which is supported by many 
programming languages; often user-defined data types are called abstract data types. To be 
more specific a user-defined data type has the following characteristics: 

I) A data type may be a simple data type, which is defined as a scalar (or primitive) data 
type, such as a numeric data type or a string, or a composite data type, which is composed 
of other data types, such as date, being composed of day, month and year, or polygon 
being composed of a list of (x, y) coordinates. 

2) The internal structure of the values of a data type is hidden both from the DBMS and 
the user; the internal structure of a data type is called its implementation. 

3) The manipulation of the values of a data type can be carried out only through the 
operators which are defined for that data type; the set of operators defined for a data 
type is called its interface which includes equality, inequality and comparison operators 
such as less than and greater than. 

Points (2) and (3) above are known as the encapsulation principle. The intention is that 
both the database system and the user manipulate and access the values of a data type in a 
disciplined manner. The encapsulation principle also guarantees data independence, since the 
implementation of a data type may change but its interface remains the same. Encapsulation 
should not be viewed as a restriction but rather as a protection against any misuse of the 
data type. For example, a data type DATE can be composed of the data types DAY, MONTH 
and YEAR, with the comparison operators, "=" and "<", which allow us to test whether two 
dates are equal and whether one date precedes another date; respectively. In addition, the 
operators DAY, MONTH and YEAR allow us to access the components of a date, for example 
MONTH(28/6/96) will return 6. As another example, a data type CITY defined as CHAR(Is), 
i.e. a string comprising 15 characters, will normally have various wild card operators to access 
substrings and the comparison operator" <" could test whether the lexicographical order of 
one substring is less than that of another substring. 

Another advantage of encapsulation is that certain typing errors can be detected by the 
DBMS through type checking. For example, two attributes, WEIGHT and GRADE, may be 
numeric but defined over distinct domains, so comparing the two should normally be illegal. 
There are exceptions that can be catered for by coercion rules which allow us to convert from 
one data type to another; for example, we can compare an integer with a real number by 
coercing the integer to be a real number. 

It may seem that the definition of an atomic domain is inconsistent, since we are essentially 
allowing a domain to be of arbitrary complexity. The crux of the argument is that an atomic 
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domain is nondecomposable by the DBMS. The interpretation of the statement that as far as 
the DBMS is concerned a data type has no internal structure is that the DBMS has no access 
to the implementation of a data type, but there is nothing to stop the DBMS accessing a data 
type through its interface. This holds both for built-in data types and for data types that were 
defined by the user; built-in data types could have been defined by the user but it is convenient 
to have data types such as DATE and TIME built into the system. An interesting implication of 
viewing domains as data types is that domains can be thought of as object classes and domain 
values can be thought of as objects, so relational databases are object-oriented after all! (See 
Section 10.2 of Chapter 10 for a comprehensive introduction to relational object-oriented 
databases.) We note that currently SQL does not support user-defined data types in their full 
generality but SQL3 promises to deliver these features [DD93]. 

Under our interpretation of a domain as a data type attributes are just variables ranging over 
data types. It is common, but not necessary, to use the same name for both a domain and an 
attribute. For example, we may have two data types, namely EMP _NAME, which is defined as 
CHAR(25), and DATE which is composed of DAY, MONTH and YEAR. Moreover, the attribute 
EMP _NAME will be defined over the domain EMP _NAME and the attribute HIRE_DATE will 
be defined over the domain DATE. 

Definition 3.99 (Domain constraint) A domain constraint (or simply a DC) is a statement 
of the form R[A] E S, where R is a relation schema, A is an attribute in schema(R) and S ~ 
DOM(A) is a subset of the domain of A (or equivalently, the user-defined data type of A). 

A DC R[A] E S is satisfied in a relation rover R, denoted by r 1= R[A] E S if lfA (r) ~ S . 

• 
There are several ways in which we may specify the subset S of DOM(A): 

1) Enumerating all the values in S. For example, if the domain COLOUR is defined as 
CHAR( 10) then S could enumerate a finite set of colours, say {"red", "yellow", "blue", 
"white"}. 

2) Specifying a range of values, when DOM(A) is linearly ordered. For example, the range 
of a day in a month is from 1 to 31, and the range of grades of students could be from A 
to F. 

3) Specifying a conditional expression which must be satisfied in order for the value to be 
in S. For example, we may specify that a salary is greater than 10,000 as a conditional 
expression. (Such conditional expressions can be specified as event-condition-action 
rules; see Section 10.4 of Chapter 10 for details.) 

Relations are defined as finite sets oftuples, and in practice it is often useful to further restrict 
their cardinality. For example, if we have a relation schema EMP, with attributes EMPLOYEE# 
and MANAGER#, it is quite sensible to assume that the number of managers is less than or 
equal to the number of employees, written as EMP[MANAGER#] ::: EMP[EMPLOYEE#]. As 
another example, we may want to restrict the number of students taking a particular course, 
or the number of tickets sold for a particular football match. Despite the practical importance 
of such cardinality constraints there are very few research papers which explicitly discuss their 
formalisation. 
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Definition 3.100 (Cardinality constraint) A Cardinality Constraint (or simply a CC) is a 
statement of the form R[X] .:s SlY]' where Rand S are relation schemas in a database schema 
R, X S; schema(R} and Y S; schema(S}. A CC R[X] .:s SlY] is said to be unary if IXI=IYI= 1. 

A CC R[X] .:s SlY] is satisfied in a database dover R, denoted by d F R[X] .:s SlY]' if Irrx(r)1 
.:s Irry(s)l, where rand 5 are the relations in dover Rand S, respectively. • 

We may also define CCs with bound k to be of the form R[X] .:s k, where k E w, i.e. k is a 
natural number. A CC R[X] .:s k is satisfied in a relation rover R, denoted by r F R[X] .:s k, if 
Irrx(r)1 .:s k. A CC with bound k can always be modelled by a CC by adding a new relation to 
the database over a new relation schema and inserting exactly k tuples into this new relation. 

The following inference rules allow us to axiomatise the restricted subclass of unary CCs. 

Definition 3.101 (Inference rules for unary CCs) Let C be a set ofCCs over a database schema 
R, and let R, S, T E R. We define the following inference rules for CCs: 

CC1 Reflexivity: if A E schema(R), then C I- R[A] .:s R[A). 

CC2 Transitivity: ifC I- R[A) .:s S[B] and C I- S[B] .:s T[D], then C I- R[B] .:s T[D]. • 

An FD is unary if it is of the form R: A --+ B, where A, B are single attributes in schema(R). 
The next two inference rules capture the basic interaction between unary FDs and unary CCs, 

where l; is a set of unary FDs and unary CCs over R. 

FD-CC1 Many-to-one: if l; I- R: A --+ B, then l; I- R[B] .:s R[A]. 

FD-CC2 One-to-one: if l; I- R: A --+ Band l; I- R[A] .:s R[B], then l; I- R: B --+ A. 

We now prove soundness and completeness for the class of unary CCs [Ng96]. 

Theorem 3.75 The axiom system comprising the inference rules CC1 (reflexivity) and CC2 
(transitivity) is sound and complete for unary CCs over a database schema R. 

Proof We leave it to the reader to verify that the axiom system is sound. It remains to prove 
its completeness. Without loss of generality, we assume that all the unary CCs in a set of unary 
CCs Cover R are of the form R[A].:s R[B], in which case we say that C is a set ofCCs over R, and 
abbreviate R[A] .:s R[B) to A .:s B. (We simply rename attributes in the relation schemas in R 
so that if Rj and Rj are disjoint relation schemas in R, then schema(Rj) and schema(Rj) are also 
disjoint, and then we construct a single relation schema R, whose attribute set is schema(R).) 
Now, as in Theorem 3.21 for example, assume that C If A .:s B. To conclude the proof it is 
sufficient to exhibit a counterexample database, d = {r} over R, such that d F C but d ~ A.:s 
B. 

Let X = {D I C I- D .:s B) and let Y = schema(R)-X. Now, let d = {r}, where r is the relation 
over R shown in Table 3.66 (see Table 3.37). We conclude the proof by showing that d F C 
but d ~ A.:s B. 

Firstly, we show that d F C. Suppose to the contrary that Aj ::: Bj E C but d ~ Ai ::: Bi. It 
follows that Aj E Y and Bi E X, and thus C I- Bi .:s B by the construction of d. Therefore, on 
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Table 3.66 A counterexample relation 

x y 

1. .. 1 1. .. 1 
1. .. 1 0 ... 0 

using CC2, we have that C I- Aj :::: B. However, by the construction of d we must have Aj EX 
which leads to a contradiction. 

Secondly, we show that d ~ A :::: B. Suppose to the contrary that d FA:::: B. Then by the 
construction of d, we have that A E X, whence C I- A :::: B, leading to a contradiction. 0 

The next result strengthens Theorem 3.75 by considering unary FDs and unary CCs together 
[BeI95b). 

Theorem 3.76 The axiom system, comprising the inference rules FDI (reflexivity), FD3 
(transitivity) for unary FDs, the inference rules CCI (reflexivity), CC2 (transitivity) for unary 
CCs, and the mixed inference rules FD-CCI (many-to-one) and FD-CC2 (one-to-one) for 
unary FDs and unary CCs, is sound and complete for unary FDs and unary CCs over a database 
schema R. 

Proof We leave the reader to verify that the axiom system is sound and sketch the idea of 
proving its completeness. Let:E be a set of unary FDs F over R together with a set of unary 
CCs Cover R. We are required to show that :E F a implies that :E I- a, where a is an FD or a 
Cc. 

Firstly, we assume that a is a CC. Define CC(F) = {B :::: A I A -+ B E F} to be the set of CCs 
that can be derived from F on using the inference rule FD-CCl. It can be shown that :E Fa 
if and only if C U CC(F) Fa. The result then follows by Theorem 3.75. 

We next assume that a is an FD, say A -+ B. It can be shown that if:E FA -+ B, then either 
F F A -+ B or F F B -+ A. If F F A -+ B then the result is immediate by Armstrong's axiom 
system, so assume that F F B -+ A but F ~ A -+ B. Then by the completeness of Armstrong's 
axiom system we have :E I- B -+ A. Moreover, since:E F A -+ B by the soundness of FD-CC 1 
we have that :E F B :::: A and by the first case above we have :E I- B :::: A. The result now 
follows, since by FD-CC2 we have :E I- A -+ B as required. 0 

Further investigation on the effects induced by the cardinalities of domains on data 
dependency satisfaction is carried out in [Kan80, Fag81, CK86, CKV90, Bel95b). 

3.8 The View Update Problem 

Users interact with a database system through its view (or external) level. A view is a relation 
comprising a portion of the conceptual level of the database system which provides the interface 
between the user and the database. Different views of the database may be set up for different 
groups of users. A view is defined as a relational algebra query over the database and is created 
by computing the answer to the query. It can be virtual (or equivalently derived) in which case 
it is recomputed each time the user accesses the view, or it can be materialised in which case 
the relation is physically stored in the database system. In addition, a view may be required 
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to satisfy a set of integrity constraints such as a set of FDs and INDs. For simplicity, we will 
assume a user who is interacting with a single view, i.e. with the single relation resulting from 
computing the view definition. The interaction is carried out via relational algebra queries 
and updates on the view, as if the view were a relational database consisting of a single relation. 

Let VIR] (or simply V when R is understood from context) be a view definition over a 
database schema R, i.e. VIR] is a query over R. We denote the set of attributes of the relation 
schema induced by VIR] by schema(V[R]) (or simply schema(V) when R is understood from 
context). Given a database dover R at the conceptual level the result of computing VIR] with 
respect to d, i.e. the actual view, is given by V[R](d) (or simply V(d) if R is understood from 
context). 

Querying a view V(d) is straightforward from the DBMS's point of view. The user's query 
is simply composed with V(d) to obtain the output, i.e. it is computed over V(d), which is 
a relation over the relation schema induced by VIR]. On the other hand updating a view is 
a difficult problem, called the view update problem. We will only consider updates that are 
insertions or deletions, recalling that a modification can be simulated by a deletion followed 
by an insertion; see Subsection 3.2.4 for more details on an update language for the relational 
model. 

As a running example for this section, suppose that a database schema R at the conceptual 
level has two relation schemas EMPLOYEE (abbreviate to E) and DEPARTMENT (abbreviated 
to D) such that EMPLOYEE has attributes: ENAME (employee name), DNAME (department 
name), SALARY (employee salary), and DEPARTMENT has attributes: DNA ME, MGR 
(manager name), and LOC (department location). In addition, we assume a set F of FDs 
over R, where F = {E: ENAME ---* {DNAME, SALARY}, D: DNAME ---* {MGR, LOC}, D: 
MGR ---* DNAME}, meaning that employee name is a key for E and, correspondingly, 
DNAME and MGR are keys for D, and a set I of INDs over R, where I = {E[DNAME] S; 

D[DNAME], D[DNAME] S; E[DNAME], D[MGR] S; E[ENAME]}, meaning that employees 
work in established departments and all department have at least one employee, and, in 
addition, managers are also employees. We let d = {rl' r2} be a database over R, where rl 
over EMPLOYEE is shown in Table 3.67 and r2 over DEPARTMENT is shown in Table 3.68; it 
can be verified that d 1= 'E, where 'E = F U I. 

Table 3.67 The relation T[ over EMPLOYEE 

ENAME DNAME SALARY 
John Computing 30,000 
Jack Computing 30,000 
Jill Maths 25,000 
Joe Maths 35,000 
Jake Biology 35,000 

Table 3.68 The relation '2 over DEPARTMENT 

DNA ME MGR LOC 
Computing Jack West London 

Biology Jake West London 
Maths Jill East London 
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We consider another database d' = {r3, r4} over a database schema R' containing two rela
tion schemas EMP _WEST and EMP _EAST, where schema(EMP _WEST) = schema(EMP ~AST) 
= schema(EMPLOYEE). The relation r3, representing the employees working in West London, 
is shown in Table 3.69 and the relation r 4, representing the employees working in East London, 
is shown in Table 3.70. The database d' can be viewed as a distributed database, satisfying 
rl = r3 U r4. 

Table 3.69 The relation '3 over EMP _WEST 

ENAME DNAME SALARY 
John Computing 30,000 
Jack Computing 30,000 
Jake Biology 35,000 

Table 3.70 The relation '4 over EMP _EAST 

ENAME DNAME SALARY 
Jill Maths 25,000 
Joe Maths 35,000 

Let us consider some views which are defined by the following relational algebra expressions: 

VI. JT{ENAME,DNAME} (rl). 

V2. JT{DNAME,SALARY} (r)). 

V3. rl [XI r2 

V4. JT{ENAME,LOC}(rl [XI r2) 

V5. aDNAME='Computing,(rl) . 

V6. r3 U r4. 

The view VI, shown in Table 3.71, is a projection of rl giving us a list of the employees and 
the departments they work in. The view V2, shown in Table 3.72, is also a projection giving us 
the departments and salaries of employees. The view V3, shown in Table 3.73, is the join of rl 

and r2 which combines information about employees and departments. The view V 4, shown 
in Table 3.74, tells us in what locations employees work in. The view V5, shown in Table 3.75, 
tells us the employees who work in the Computing department. Finally, the view V6, shown in 
Figure 3.67, which is equal to rl, gives us the list of employees working either in West London 
or in East London. 

As stated above a view may be required to satisfy a set of integrity constraints. Rather 
than state the integrity constraints separately for the view, we assume that the set of integrity 
constraints that the view should satisfy is exactly the set of all integrity constraints that can be 
derived from the underlying set of integrity constraints that are satisfied in the database from 
which the view is constructed. Assume that we are given a set of data dependencies I; = F U I 
consisting ofFDs and INDs over R defining the valid database states over a database schema R. 
Then, since the view definition V[RJ is a relational algebra query, the set of data dependencies 
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Table 3.71 The view Vl 

ENAME DNAME 
John Computing 
Jack Computing 
Jill Maths 
Joe Maths 
Jake Biology 

Table 3.72 The view V2 

DNAME SALARY 
Computing 30,000 

Maths 25,000 
Maths 35,000 
Biology 35,000 

Table 3.73 The view V3 

ENAME SALARY DNAME MGR LOC 
John 30,000 Computing Jack West London 
Jack 30,000 Computing Jack West London 
Jake 35,000 Biology Jake West London 
Jill 25,000 Maths Jill East London 
Joe 35,000 Maths Jill East London 

that should be satisfied in any view over V[R) is exactly the set of data dependencies that are 
satisfied in all views V(d), where d is a database over R that satisfies ~. Let us denote this set 
of data dependencies by V[~]. The membership problem for data dependencies in views is to 
determine whether a data dependency a is in V[ ~] or not. 

For the running example of this section we have, 

1) Vl[~] = {ENAME -+ DNAME}, 

2) V2[~] = 0, 

3) V3[~] = F U {R[MGR) S; R[ENAMEll, where R is the relation schema of V[R), 

4) V4[~) = {ENAME -+ LOC}, 

5) V5[~] = {ENAME -+ {DNAME, SALARY)) and 

6) V6[~) = 0, since, for example, if we add a tuple <John, Maths, 29,000> to r4, then r3 Ur4 
would violate both ENAME -+ DNAME and ENAME -+ SALARY. 

For the view V6, if we have the additional integrity constraint that employee names 
in relations over EMP _WEST are disjoint from employee names in relations over 
EMP ~AST, which can be stated as the exclusion dependency [CV83] EMP _WEST[ENAME] n 
EMP _EAST [ENAME] = 0, then we have, as is the case in our example, that V6[~] = V5[~]. 

From a practical point of view, if d 1= ~ then V(d) 1= V[~] and thus we need only 
maintain the consistency of the database defining the view. However, it may be useful to solve 
the membership problem for data dependencies in view, so that we can compute V[~] when 
designing a view. Knowing V[I:) is useful for update purposes, since apart from the view 
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Table 3.74 The view V4 

ENAME LOC 
John West London 
Jack West London 
Jake West London 
Jill East London 
Joe East London 

Table 3.75 The view V5 

ENAME DNAME SALARY 
John Computing 30,000 
Jack Computing 30,000 

update problem, we may reject an update if the resulting state of the view after the update 
does not satisfy V[~). Moreover, the information embedded in V[~) can be used to validate 
the view definition. For example, the user of a projection of r1 may wish to maintain a key for 
EMPLOYEE with respect to F and thus would accept the view Vl but would reject the view V2. 

We briefly survey the results concerning the membership problem for FDs in views, which is 
the problem of determining whether an FD is in V[F) or not, given a set ofFDs over R. In [Klu80) 
the negative result was shown, namely, that the membership problem for FDs in views is, in 
general, undecidable. If we consider only views which are constructed from relational algebra 
expressions, which do not include any difference operations and such that all the formulae of 
selection operations included in these expressions are simple, then the membership problem 
for FDs in views in co-NP-complete [IITK84). Moreover, if the relational algebra expressions 
that are used to construct the view are further restricted so as not to include any union 
operations, then the membership problem for FDs in views can be solved in polynomial time 
in the size of the input [IITK84). The membership problem for data dependencies in views in 
the presence of MVDs and JDs, in addition to FDs, is considered in [KP82, IITK84). 

We now use the views we have defined above to illustrate some of the problems that arise 
when we update views. In particular, for each such view we will consider the insertion of a new 
tuple into the view and the deletion of an existing tuple from the view. We will not consider 
any update that violates the set of data dependencies V[~) which should be satisfied by the 
view. 

Consider the insertion of a tuple <Jerome, Computing> into Vi. The only reasonable 
translation (see Definition 3.102) of this request is to insert <Jerome, Computing, unk> into 
rl> where we allow attribute values which are not part of the primary key to have null values; 
we note that ENAME is the only key for EMPLOYEE with respect to F and thus it must also be 
its primary key. 

Consider the deletion of the tuple <John, Computing> from Vi. The only reasonable 
translation of this request is to delete the tuple <John, Computing, 30,000> from r1. 

Consider the insertion of a tuple <Maths, 30,000> into V2. In order to translate this 
insertion we need to insert a tuple <unk, Maths, 30,000> into r1. However, the primary key 
value of this tuple will be null thus violating entity integrity. So it is not possible to insert such 
a tuple into V2. 

Consider the deletion of the tuple <Computing, 30,000> from V2. In order to translate 
this deletion we could delete the first two tuples from r1. There are several problems with this 
translation. Firstly, the IND D[DNAME) S; E[DNAME) will be violated, since no employees 
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will remain in the Computing department. Secondly, for the same reason the IND D[MGR] ~ 
E[ENAME] will also be violated. Thirdly, the deletion of a single tuple from the view results 
in the deletion of several (in this case two) tuples in the underlying database and is thus 
ambiguous. Fourthly, assume that after the deletion of the tuple <Computing, 30,000> from 
V2 we request to re-insert this tuple into V2; then since we have no knowledge of the primary 
key, we cannot insert this tuple and thus we cannot recover the original view. So we should 
disallow deletion of tuples from V2. 

Consider the insertion of a tuple <Jerome, 30,000, Computing, Jack, West London> into 
V3. The only reasonable translation of this request is to insert <Jerome, Computing, 30,000> 
into rl. If instead we request to insert the tuple <Jerome, 30,000, Physics, Jerome, West 
London> into V3, then we need to insert <Jerome, Physics, 30,000> into rl and <Physics, 
Jerome, West London> into r2. 

Consider the deletion of the tuple <Joe, 35,000, Maths, Jill, East London> from V3. The 
only reasonable translation of this request is to delete <Joe, Maths, 35,000> from rl. 

Consider the insertion of a tuple <Jerome, West London> into V 4. In order to translate this 
insertion we could either insert <Jerome, Computing, unk> into rl or we could alternatively 
insert <Jerome, Biology, unk> into rJ. The reason for our uncertainty is that there is an 
ambiguity as to which department Jerome works in. Next, consider the insertion of a tuple 
<Jerome, North London> into V4. We can insert the tuple <Jerome, unk, unk> into rJ, but 
since no departments are known to be located in "North London" we cannot insert a tuple 
into r2 without violating entity integrity. Thus we should, in general, disallow insertions of 
tuples into V 4. 

Consider the deletion of the tuple <John, West London> from V4. The only reasonable 
translation of this request is to delete <John, Computing, 30,000> from rJ. 

Consider the insertion of a tuple <Jerome, Computing, 30,000> into V5. The only 
reasonable translation of this request is to insert this tuple into rl. Now, consider the insertion 
of a tuple <Jerome, Physics, 30,000> into V5. This has no effect on V5 and thus it would be 
incorrect to insert this tuple into rl; the correct approach is to leave rl unchanged. Finally, 
consider the insertion of a tuple <Jill, Computing, 25,000> into V5. There are two approaches 
to handling this update. Firstly, we can reject this insertion on the grounds that if we insert 
this tuple into rl the FD ENAME -+ {DNAME, SALARY} will be violated, since Jill will then be 
working in two departments. Secondly, we can delete the tuple <Jill, Maths, 25,000> from rl 
and then insert <Jill, Computing, 25,000> into rl resulting in a relation that satisfies the FD 
ENAME -+ {DNAME, SALARY}. Thus in the first approach the insertion has no effect on V5 
and rl remains unchanged and in the second approach we insert the tuple into V5 and modify 
the corresponding tuple in rl. Herein we choose the first approach, since it avoids making an 
update to tuples that are not involved in the view, but on the other hand the second approach 
is semantically meaningful. Furthermore, if we take the second approach, there is no way we 
can re-insert the tuple <Jill, Maths, 25,000> into rl via a view update on V5, so in the second 
approach we cannot cancel the effect of inserting <Jill, Computing, 25,000> into V5. 

Consider the deletion of the tuple <John, Computing, 30,000> from V5. The only reasonable 
translation of this request is to delete this tuple from rl . Now, consider the deletion of a tuple 
<Jill, Maths, 25,000> from V5. This has no effect on V5 and thus it would be incorrect to 
delete this tuple from rl; the correct approach is to leave rl unchanged. 

Consider the insertion of a tuple <Jerome, Physics, 30,000> into V6. In order to translate 
this insertion we could either insert <Jerome, Physics, 30,000> into r3 or we could alternatively 
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insert <Jerome, Physics, 30,000> into r4 . The reason for our uncertainty is that there is an 
ambiguity as to which location Jerome works in. If we wish to avoid ambiguity we should 
disallow such insertions into this view. 

Consider the deletion of the tuple <Jake, Biology, 30,000> from V6. Then, assuming the 
database d' satisfies the exclusion dependency, EMP _WEST[ENAME] n EMP _EAST[ENAME] 
= 0, the only reasonable translation of this request is to delete this tuple from r3. In the 
absence of this exclusion dependency, when this tuple is present in both r3 and r4 there is 
ambiguity as to whether to delete this tuple from r3 or from r4; we could just remove it from 
both these relations. If we wish to avoid ambiguity we should, in some cases, disallow deletions 
from this view. 

We proceed to consider a formalism for dealing with the view update problem. Let U be 
an update over a view definition V[R] and v' = U( v) be the effect of the update U on the view 
v = V(d), where d is a database over R. Also, let T be an update over the database schema R 
and d' = T(d) be the effect of the update T on the database dover R. We assume that we are 
given a set L of integrity constraints comprising a set F of FDs over R together with a set I of 
INDs over R; L defines the set of allowable database states over R. 

Informally, a database update T(d) is consistent with respect to a view update U(v) if 
invoking the view definition V on the updated database results in the updated view, i.e. 
V(T(d» = U(V(d», where v = V(d). 

For example, the database update which inserts <Jerome, Computing, unk> into rl is 
consistent with the view update which inserts <Jerome, Computing> into VI. Similarly the 
database update which deletes <John, Computing, 30,000> from rl is consistent with the view 
update which deletes <John, Computing> from Vl. On the other hand, there is no database 
update which is consistent with the view update that inserts tuples such as <Maths, 30,000> 
into V2. Similarly, there is no database update which is consistent with the view update that 
deletes tuples such as <Computing, 30,000> from V2. The reader can find other examples of 
consistent database updates for the views V3 and V5, and examples of inconsistent database 
updates for the views V4 and V6. 

A database update T(d) is acceptable with respect to a view update U(v) if whenever U(v) 
is unchanged, i.e. U(v) = v, then the database state is unchanged, i.e. T(d) = d. 

For example, the database update which inserts the tuple <Jerome, Physics, 30,000> into 
rl is not acceptable with respect to the view update that inserts this tuple into V5. On the other 
hand, the database update that leaves rl unchanged is acceptable with respect to the insertion 
of the above tuple into V5. Similarly, the database update that leaves rl unchanged is the only 
acceptable update with respect to the deletion of the tuple <Jill, Maths, 25,000> from V5. 

A final requirement is that, in addition, the resulting state T(d) must satisfy the given set 
L ofFDs and INDs over R. For example, the deletion of the tuple <Jake, Biology> from the 
view VI cannot be translated by deleting the tuple <Jake, Biology, 35,000> from rl> since the 
IND D[DNAME] S; E[DNAME] would then be violated. 

Definition 3.102 (Translation) An update d' = T(d) over R is said to be consistent with 
respect to a view update v' = U(v), where v = V(d), if the diagram shown in Figure 3.7 
commutes, and is acceptable with respect to U(v), if whenever U(v) = v then T(d) = d. 
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An update T over R is said to be a translation of a view update U over V[R] with respect 
to a set ~ of FDs and INDs over R, if for all databases dover R that satisfy ~, the following 
conditions are true: 

1) T(d) is consistent with respect to U(v). 

2) T(d) is acceptable with respect to U(v). 

3) T(d) F ~. 

d 

T 

v 
------" v 

v ______ " v 

u 

Fig 3.7 Commutative diagram for consistent view updates 

• 

Recall that by Definition 3.42 in Subsection 3.2.4 a transaction is the composition of several 
updates; for the rest of this section we will not distinguish between updates and transactions 
and refer to both as updates. 

Informally, a set of view updates is complete if it is closed under composition and for every 
view update U there exists is another view update U' which cancels the effect of U. Suppose 
that the translation of the deletion of the tuple <Maths, 35,000> from V2 is the deletion of 
the tuple <Joe, Maths, 35,000> from rl. Then we cannot cancel the effect of this deletion by 
inserting a tuple into the current state ofV2 since we have lost knowledge of the primary key 
of the related tuple in rl. 

Definition 3.103 (Complete view updates) A set S of view updates over R is said to be 
complete with respect to a view definition V[Rl if the following conditions are true: 

1) Whenever the updates Ul, U2 E S, it is also the case that the composed update Ul U2 is 
also in S (i.e. the update Ul U2 resulting from composing Ul with U2 is also in S). 

2) For all databases dover R, whenever U E S, there exists U' E S such that U' (U(V(d») = 
~~. . 

We are now ready to define the notion of a translator which is a mapping from a set of 
complete view updates to a set of database updates such that 

1) each view update in the set is mapped to a translation for that update, and also 

2) when we compose two view updates in the set, then the translation of this composition is 
equal to the composition of the two translations corresponding to the two view updates. 
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We next formalise this notion. 

Defmition 3.104 (Translator) A mapping T from a set of complete view updates S to a set 
of database updates is said to be a translator of S, if the following two conditions are true: 

1) For all U E S, T(U) is a translation of U. 

• 
So we can now restate the view update problem as the problem of finding a translator of a 

set of complete updates. The solution we now present is the constant complement approach 
suggested by Bancilhon and Spyratos [BS8l b]. Informally a complement of a view with respect 
to a database d is another view such that together the view and its complement have sufficient 
information to reconstruct the database d. Given a view and its complement a view update 
is translatable into a database update if we can find a translation that leaves the complement 
invariant. Thus a constant complement of a view represents the part of the database that is 
unaffected by the view update. The importance of translatable view updates is that when they 
exist then the inverse mapping of the view update is the desired translation which solves the 
view update problem. 

As an example, consider the view VI defined by: JT{ENAME,DNAME} (rl). The view 
JT{ENAME,SALARy}(rl) x r2, which we call Cl, is a complement view of VI, since JTschema(E)(Vl 
txI Cl) == rl> i.e. we can reconstruct rl by joining VI and CI together and then projecting 
the result onto schema(E), Now consider an insertion of a tuple <e, d> into VI, where e 
is a new employee of an existing department d. Then the translation that inserts the tuple 
<e, d, unk> into rl solves the update problem for this insertion. (We assume that tuples 
whose salary attribute values are null are removed from the projection JT{ENAME,SALARY) (r\) 
when constructing the view complement Cl, and thus CI is indeed a constant complement. See 
Chapter S for a comprehensive treatment of null values.) Deletions can be handled similarly. 

As another example, consider the view V3 defined by: r\ txI r2. It is readily seen that the 
empty relation, which we call C3, is a complement view ofV3 due to the inclusion dependencies 
E[DNAME] ~ D[DNAME] and D[DNAME] ~ E[DNAME] which ensure that no tuples are lost 
when joining rl with r2. It is obvious that as long as I: is satisfied C3 is a constant complement. 
Now consider an insertion of a tuple <e, s. d, m, I> into V3, where e is a new employee, s is 
the new employee's salary, d is an existing department, m is its existing manager and I is its 
existing location. Then the translation that inserts the tuple <e, d,s> into r\ solves the update 
problem for this insertion. Deletions can be handled similarly. 

As a final example, consider the view VS defined by: O"DNAME='Computing,(r\). The view 

(rl -O"DNAME= 'Computing,(rl» X PDNAME~D_DNAME (r2), which we call CS, is a complement view 
ofVS, since JT schema(E) (CS) U VS == r1, i.e. we can reconstruct rl by projecting CS onto schema(E} 
and unioning the result with VS. Now consider an insertion of a tuple <e, Computing, s> 
into VS, where e is a new employee and s is his/her salary. Then the translation that inserts 
the tuple <e, Computing,s> into rl solves the update problem for this insertion. Deletions 
can be handled similarly. 

We now formalise the notion of a complement of a view and how it can be used to solve 
the update problem. Given a view definition V[R], a complement of V[R] is another view 
definition C[R]such that for all databases dover R, d can be uniquely reconstructed from the 
views V(d) and C(d). (As usual we write C for C[R] whenever R is understood from context.) 
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Defmition 3.105 (Complement of a view) A view definition Cover R is a complement of a 
view definition V over R, if for all databases dover R the mapping, denoted by (V x C), 
that takes d to the pair (V(d), C(d» is one-to-one (that is, (V x C) has an inverse mapping 
(V x C)-I). If C is a complement view definition of V and d is a database over R then C(d) is 
said to be the complement view to the view V(d) . • 

As can be seen from the above examples, a view definition does not, in general, have a unique 
complement. Take the view definition V3 assuming that databases over R are constrained to 
be pairwise consistent. Since V3 contains all the information in the database, all possible view 
definitions are complements ofV3. In fact, the database d is always a complement of a view. 
It is natural to prefer a minimal complement, in the sense that there does not exist another 
complement that has more information in it. As an example consider a database schema 
R having two relation schemas Rand S each having a single attribute, where schema(R) = 
schema( S) = {A}. Consider the simple view definition V = R. Then, obviously S is a complement 
of V but the symmetric difference, T = (R - S) u (S - R), ofR and S is also a complement of 
V, since S can be reconstructed by the relational algebra expression, (R U T) - (T n R). Both 
of these complements can be seen to be minimal and thus, in general, a view does not have a 
unique minimal complement. 

We proceed to show how view complements can be used to solve the view update problem. 
An update U is translatable with respect to a complement C of a view definition V, if for all 
database states d, we can find a database state d' that reflects the update U on the view V(d) 
and leaves the complement invariant, i.e. C(d') = C(d). 

Definition 3.106 (Translatable with respect to a complement) A view update U is said to be 
translatable with respect to a complement C of a view definition V over R, if for all databases 
dover R, there exists a database d' over R such that V(d') = U(V(d» and C(d') = C(d). • 

When a view update U is translatable with respect to a complement C over V, then we can 
translate U by using the mapping y (U), which is the mapping that makes the diagram shown 
in Figure 3.B commute. 

d 

(V xC) 

(V(d), C(d)) 

y(U) 
----'----_~ d 

(V xC) 

__ U ___ ~ (U(V(d)), C(d)) 

Fig 3.8 Commutative diagram defining a translation 

The following result, which is central to the theory of view updates, was shown in [BSBlb). 
This elegant result states that a set of complete view updates has a translator if and only if 
there exists a complement C of V such that this translator is induced by y(U). 
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Theorem 3.77 Let V be a view over R and let S be a set of complete view updates over R. The 
following statements are equivalent: 

1) T is a translator of S. 

2) V has a complement C such that for all view updates U E S, U is translatable with 
respect to C and T(U) = y(U). 0 

By studying the above examples for view definitions VI, V3 and VS, the reader can verify 
that the following three classes of view definition have translators: 

1) Projection views of the form nx (r), where r is a relation over Rand F = (K --+ schema(R)} 
is a singleton set of FDs over R, such that X is a superset of K; that is, the set F of FDs 
states that K is the primary key ofR. We allow attribute values which are not part of the 
primary key to have null values. 

2) Selection views of the form aM(r), where M is a conjunction of simple selection formulae 
involving only attributes in K, where F = (K --+ schema(R)} is a singleton set ofFDs over 
R, i.e. K is a superkey for R with respect to F. 

3) Join views of the form rl I><l r2, where rl is a relation over RI and r2 is a relation over R2, 
together with the set F of FDs and the set I of INDs given by 

(i) F consists of one or both of K --+ schema(RI) or K --+ schema(R2), 

(ii) I = (RdX) S; R2[X), R2[X) S; RdX)}, where X = schema(Rd n schema(R2) is 
a superset of K, i.e. databases over R = {RI , R2} are constrained to be pairwise 
consistent and the intersection of their attribute set includes K. 

Furtado and Casanova [FC8S) provide a theoretical survey of the various approaches to 
tackling the view update problem, while Date [Dat86d) provides a discussion of the view update 
problem, which investigates the viability of updating various kinds of views. It is interesting to 
note that SQL2's support of view updates is fairly limited and does not cover the class of views 
that are known to be translatable; for example, join views are not supported at all [DD93]. 
Some early approaches to the view update problem can be found in [CA79, FSS79, DB82]. The 
constant view complement approach was initiated by Bancilhon and Spyratos in [BS8I b) and 
was investigated in detail for the case when the view definition is a projection of a single relation 
database in [CP84b). In [CP84b) it is shown that finding a minimal view complement is, in 
general, NP-complete. Keller and Ullman [KU84] consider a restricted class of views, called 
independent views. Informally, two view definitions are independent if any two views over 
these definitions correspond to some common database state. Thus if two view definitions 
are both independent and complementary then all possible view updates are translatable with 
respect to their complement. Suppose that, in addition, we are only interested in monotonic 
views, i.e. views such that when we insert tuples into the database relations no tuples are 
removed from the view. Then for such a monotonic view there exists a unique complement 
view. The notion of independent views was also studied in [BS8Ia] and a characterisation of 
such database schemes in terms of a single JD I><l[R] and a set F ofFDs over R is given in [CM87) . 
Hegner [Heg84, Heg90, Heg94) refines the view complement approach by using a lattice 
theoretic approach. Gottlob and Zicari [GPZ88] generalise the view complement approach 
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by relaxing the constant complement approach so as to allow the content of complement to 
decrease according to a suitable partial order. Keller [Ke185, Kel86j advocates a more general 
approach than the constant view complement approach. In particular, Keller proposes various 
algorithms that translate view updates in which ambiguity can be resolved by a dialogue with 
the user defining a view. Matsunaga [Mas84j advocates dealing with the view update problem 
via translation rules, which are invoked recursively, and special purpose translators for solving 
any ambiguities that arise. Tuchermann et al. [TFC83j and Casanova et al. [CFT91j present 
an alternative approach to the view update problem based on Abstract Data Types (ADTs). 
The underlying idea of this approach is to implement the translator of a view update (or a 
class of view updates) as an ADT whose operations define how to translate the view update 
into a database update. This approach has the advantage of being general but it requires 
the programming effort to implement the ADT, while the constant complement approach is 
completely automatic for the class of updates that can be translated. In addition, such ADTs 
need to be maintained if the update requirements change. 

There is the final issue of materialised views versus virtual views. If the view is materialised 
then it takes up storage space but querying such a view is more efficient, especially if the 
view definition includes joins. Another point is that updates on materialised views need to be 
physically carried out both on the view and the underlying database; this incurs an extra cost 
factor. A materialised view needs to be updated in one of two situations, either when the view 
is updated or alternatively when the underlying database relations are updated. In the former 
case we are confronted with the view update problem and in the latter case we are confronted 
with the view maintenance problem. Let us consider the view maintenance problem further 
(see [GM95j for a survey of the various approaches taken to solving this problem). Suppose 
that the underlying database, say d, is updated via an update U. In order to update the 
materialised view, say V, we could first invoke the update U on d and then recompute V. 
The overhead in taking such an approach can be prohibitive if d is a very large database and 
computing V involves one or more joins. Thus we are interested in situations when U can be 
translated into an update, say U', on V such that when the translated update U' is invoked 
on V the effect is the same as recomputing the materialised view after updating d. If such a 
translation producing U' is possible then we say that the view V is self-maintainable [GJM96j. 
If a view is self-maintainable then it can be updated without accessing the underlying database 
and thus the overhead of updating it is kept to a minimum. 

3.9 Discussion 

The core of relational database theory has been presented in this lengthy chapter. It is evident 
that relational database theory is very rich with interesting results that directly affect the 
practical issues facing database programmers and users. Although the field has matured and 
the foundations have been established and are well understood, the basic building blocks of 
relational database theory are still a source for ongoing database theory research. This is 
especially true with regards to extensions of the basic relational model which will be discussed 
in later chapters. Not all the contributions to relational database theory have had direct impact 
on DBMS functionality but there are still issues, especially in the theory of data dependencies, 
that may still influence future versions of relational DBMSs. 
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Codd's seminal paper [Cod70] provided the initial impetus for relational database theory, 
while almost a decade later another seminal paper by Codd [Cod79] provided the basis for 
extending the relational model with semantic concepts. Codd's proposals are documented in 
detail in [Cod90]. A summary of the main ideas behind the relational model can be found in 
Codd's 19S1 Turing award lecture [CodS2]. Precursors of the relational data model can be seen 
in the two papers [LM67, Chi6S] which can be found in the reference listof[Cod70]. In [LM67] 
a database system, called the relational data file, is discussed together with a language, called 
relational information language, which is essentially a relational calculus query language. 
The important idea which is central to the relational model is that a relational database 
can be viewed as a finite model of a first-order logic language. The undecidability of domain 
independence with respect to the relational information language was shown in [DiP69], which 
implies the corresponding result for domain calculus queries (see Theorem 3.10). In [Chi6S] a 
theory of data relations is presen ted together with a set -theoretic query language, which can be 
viewed as a relational algebra. Again it was Codd in his seminal paper [Codnb], who showed 
the equivalence of the relational algebra and the relational calculus. In the theory of data 
dependencies Armstrong's seminal paper [Arm74j, which presented a sound and complete 
axiom system for FDs, opened the doors for the plethora of results in this area. The paper by 
Beeri and Bernstein [BB79] provides a milestone in the development of data dependency theory 
dealing with the computational complexity of the implication problem. Fagin's seminal paper 
[Fag77b] is also important, since it instigated the investigation oflossless join decompositions 
independently ofFDs. An interesting account of achievements of database theory up until the 
late 19S0's can be found in [UllS7, Bis9S]. 

3.10 Exercises 

Exercise 3.1 In the network and hierarchical data models entities are related to each other (or 
linked together) via pointers, so querying of related entities is done by "pointer chasing". On 
the other hand, in the relational model entities are related to each other through their common 
values, so querying related entities is done by "joining" relations. Discuss the advantages of 
joining versus pointer chasing as a means of navigating through a database. 

Exercise 3.2 Express the natural join using the renaming, Cartesian product, selection and 
projection operators. 

Exercise 3.3 Express the answer to a Datalog query, with respect to a nonrecursive Datalog 
program P, using the relational algebra. (You may assume by Theorem 3.1S that P can be 
translated into a relational algebra expression.) 

Exercise 3.4 Let r be a relation over schema R, with schema(R) = XY and s be a relation 
over schema S, with schema(S) = YZ. The generalised division, -:-g, of r by s, is a relation over 
schema RI, where schema{RI) = XZ, defined by 

r -:-g s = {t[XZ] I 3tl E rand 3t2 E sand t[X] = tdX] and t[Z] = t2[Z] and 

lTY(O'F2 (s)) 5; lTY(O'FI (r))}, 
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where X = {AI, A2, ... , Ap}, FI is the selection formula given by 

and correspondingly, Z = {BI, B2, ... , Bq} and F2 is the selection formula given by 

For example, if schema(R) = {SUPPLIER, PART} and schema(S) = {PART, PROJECT}, then 
r -,;-g 5 returns the set of all supplier project pairs of the form <a, h> such that supplier a 
supplies all the parts used in project h. Give the relational algebra expression for generalised 
division [DD92aj. 

Exercise 3.5 Let us denote the fact that two relational algebra expressions, EI and E2, are 
equivalent by EI == E2. Prove the following algebraic equivalences [U1l89j: 

2) EI W (E2 W E3) == (EI W E2) W E3. 

3) 7TX(7Ty(E» == 7Tx(E), if X £ Y. 

4) aFl (aF2 (E» == aFl /\F2 (E) . 

5) 7Tx(aF(E» == aF(7Tx(E», if the selection formula F involves only the attributes in X. 

6) ap(EI U E2) == aF(Ed U aF(E2). 

8) aF(EI W E2) == aF(EI) W aF(E2), if the selection formula F involves only the common 
attributes appearing in EI and E2. 

9) 7Tx(EI x E2) == 7Ty(EI ) x 7Tz(E2), where Y £ X includes all the attributes of X in EI and 
Z £ X includes all the attributes of X in E2. 

Exercise 3.6 Physical query optimisation concerns the utilisation of the physical data 
structures that implement a relational database, and logical query optimisation concerns 
ordering the execution of the relational algebra operators in a query. Both types of optimisation 
aim to speed up the processing of queries. Discuss the importance of both types of optimisation 
with an example. 

Exercise 3.7 A simple logical query optimisation rule for queries expressed in the relational 
algebra is to transform the query into an expression where the projections and selections are 
processed as soon as possible. Justify this heuristic rule with an example. 
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Exercise 3.8 Show how a relational algebra expression can be represented by a query tree, 
whose internal nodes are relational algebra operators and leaf nodes are relation schemas. 
Two query trees are said to be equivalent if the relational algebra expressions they represent 
are equivalent. 

Given a query tree, devise an algorithm for logical query optimisation which transforms 
this query tree into an equivalent query tree by using the heuristic rule of Exercise 3.7 [U1l89]. 

Exercise 3.9 It is often claimed that the join operator is the bottleneck in relational database 
query processing. Suggest how indexing relations at the physical level might be used to 
optimise queries involving joins. 

Exercise 3.10 We extend transactions to be parameterised transactions as indicated 
hereafter. Assume that we have available a countably infinite set of variables and that 
conditions may also be parameterised, i.e. they are of the form A = x or A "# x, where A 
E schema(R} and x is a variable. For example, if we have a relation schema STUDENT, with 
attributes NAME and COURSE, we can have a parameterised transaction over STUDENT, 
called CHANGE_COURSE(x, y, z}, which is specified as 

delete(NAME = x /\ COURSE = y}, 
insert(NAME = x /\ COURSE = z}. 

A transaction call to a parameterised transaction, say P over R, is a transaction, 
T over R, obtained by replacing all the variables in T by constants. For example, 
CHANGE_COURSEOohn, Programming, Databases} is a transaction call to the parameterised 
transaction CHANGE_COURSE(x,y, z}. 

A transaction schema T over R is a finite set of parameterised transactions over R. The set 
of relations generated by a transaction schema T over R, denoted by GEN(T}, is the set of 
all relations that can be generated by the effect, on the the empty relation, of a sequence of 
transaction calls to one or more of the parameterised transactions in T. For example, if T = 
{CHANGE_COURSE} then GEN(T} is the set of all possible relations over STUDENT. 

Let F be a set of FDs over Rand SAT(F} be the set of all relations over R that satisfies F. 
Show that SAT(F} = GEN(T} for some transaction schema T over R [A V8S, AV89]. 

Exercise 3.11 Formulate an algorithm which decides whether a domain calculus query is 
allowed or not (see Definition 3.50 in Subsection 3.3.1). 

Exercise 3.12 Prove that a query Q is domain independent if and only if for all finite 
underlying domains of R, DOM! (R) and DOM2(R}, and for all databases dover R such that 
ADOM(Q} U ADOM(d} is a subset of both DOM! (R) and DOM2(R}, the equation 

Q«d, DOM! (R))) = Q«d, DOM2(R}» 

holds. 

Note that the only difference between the above definition of domain independence and 
Definition 3.47 is that we require DOM! (R) and DOM2(R} to be finite [Kif88]. (Hint: Show 
that given a database d the answer Q«d, DOMj(R)}} does not depend on DOM/R} as long as 
DOMj(R} is a superset of some sufficiently large finite domain with respect to Q and d.} 
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Exercise 3.13 Let Q be a domain calculus query over a database schema R whose output is a 
relation with k attributes. Furthermore, let ADOM(d, Q) denote the set of all constant values, 
ADOM(d) U ADOM(Q), and let ADOM(d, Qi denote the Cartesian product of ADOM(d, Q) 
with itself k times, for k :::: 0, k E w. 

Show that the following statements are equivalent [HS94c): 

1) Q is domain independent. 

2) For all databases dover R, Q(d) = Q(d) n ADOM(d, Q)k. 

3) For all databases dover R, Q(d) remains invariant when we replace all the domains, 
DOM(A), where A E schema(R), by DOM(A) n ADOM(d, Q). 

Exercise 3.14 Let R be a relation schema, with schema(R) = {A, B, C, D, E, F, G}, together 
with a set of FDs F = {A --+ BC, BD --+ E, EC --+ A, FG --+ E}. Compute the closure X+ with 
respect to F for all sets X of one, two and three attributes of R. 

Exercise 3.15 Develop a linear time algorithm in the size of a set F of FDs over R, which 
computes the closure X+ of X with respect to F [BB79). 

Exercise 3.16 A set of attributes X <; schema(R) is a subkey for R with respect to a set F of 
FDs over a relation schema R ifit is a (not necessarily proper) subset of a key for R with respect 
to F. 

A subkey X for R with respect to F can be expanded into a superkey by adding to it attributes 
AI, A2 . ...• Am, m :::: 0, such that X U {AI , A2, ... , Am} is a superkey for R with respect to F 
but for each Ai+l> ° :s i < m, we have Ai+' f/. (X U {A,. A2, ... ,Ai})+. 

Show that if X is a subkey for R with respect to F and A,. A2, ... , Am are chosen as above, 
then X U Am is also a subkey for R with respect to F. Devise a polynomial-time algorithm 
which, starting from a subkey for R with respect to F, expands it into a key for R with respect 
to F [Kun85j. 

Exercise 3.17 Suppose that for security reasons certain values in a relation are masked from 
users by presenting them as null instead of their true value. For example, managers' salaries 
may be confidential and thus masked as null. Demonstrate how security may be compromised 
in the presence of FDs and INDs (see [Mic87]). 

Exercise 3.18 A multilevel relation schema M contains two types of attribute: data attributes 
Ai, which take on values from the domain of Ai extended with a distinguished value, null, and 
classification attributes Ci, which take on values from the security lattice indicating the security 
level needed to access Ai-values of tuples; Ci-values cannot be null. Given a relation rover 
a multilevel relation schema M, a tuple t E r and a classification attribute Ci E schema(M), 
we have that for a user with security level c :s t[ Cil, trAil = v, for some data value v distinct 
from null, and for a user with security level c > t[ C;], t[Ai j = null. Thus a multilevel relation 
rover M can be viewed as the union of standard relations, one for each security level in the 
security lattice, such that users with a certain security level, say c, can view only those relations 
at levels greater than or equal to c. Define the notion of a primary key for multilevel relations 
[JS91a, }S91b, S}91). 
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Exercise 3.19 Let F be a set of FDs over R and let us denote by C(F) the family of all closed 
sets of attributes in schema(R) with respect to F, i.e. X E C(F) if and only if X = X+. 

Show that C(F) is a lattice ordered by set inclusion, and that it is closed under intersection, 
i.e. if X, Y E C(F), then X n Y E C(F). Show that C(F) is cover insensitive, i.e. if G is a cover of 
F, then £(F) = C(G) [DK93j. 

Exercise 3.20 Let C(F) be the lattice of closed sets as defined in Exercise 3.19. A closed set X 
E C(F) is meet-irreducible if V Y, Z E C(F), X = Y n Z implies that either X = Y or X = Z. The 
family of all meet-irreducible closed sets in C(F) is denoted by M(F). 

Show that M (F) is the unique minimal subset of £(F) such that X E C(F) if and only if X 
is the intersection of all the closed sets in M(F) that are supersets of X [BDFS84j. 

Exercise 3.21 We now consider an alternative characterisation of M(F), which was defined 
in the Exercise 3.20. Let MAX(F, A) be the family of all the maximal closed sets C(F) such that 
V X E MAX(F, A), A rf- X. Show that the following equality holds [MR86aj: 

M(F) = u MAX(F,A). 
AEschema(R) 

Exercise 3.22 A Numerical Dependency over a relation schema R (or simply an ND) is a 
statementoftheformX~ky, where X, Y ~ Randk::: 1, k E w. AnNDX~kYissatisfiedin 
a relation rover R, whenever Vt}, t2, ... , tb tk+! E r, if t!lXj = t2[Xj = ... = tk[Xj = tk+dXj 
then 3i, j such that 1 :::: i < j :::: k + 1 and ti[Yj = tj[Yj. A set ofNDs N is satisfied in r, denoted 
by r 1= N, whenever V X ~k YEN, r satisfies X ~k Y. 

Show that an FD is a special case of an ND, i.e. when k = 1, and prove that the following 
inference rules are sound for NDs, where N is a set ofNDs over R [GM85a, GM85bj: 

1) IfN f- X ~k Y and W ~ schema(R), then N f- XW ~k YW. 

2) IfN f- X ~k YZ, then N f- X ~k Yand N f- X ~k Z. 

3) IfN f- X ~k Y and N f- Y ~m Z, then N f- X ~km YZ. 

4) IfN f- X ~k Y, then N f- X ~k+! Y. 

Exercise 3.23 The concept of a weak instance defined below allows us to formalise the notion 
of a set F ofFDs over a relation schema R being globally satisfied in a database d over a database 
schema R, with schema(R) = schema(R). 

A relation rover R is a said to be a weak instance under F for a database dover R, if r 1= F 
and for all ri E d, ri ~ 1l'schema(Ri)(r). We say that a database dover R satisfies F, written d 1= 
F, if there exists a weak instance under F for d. 

Give a polynomial-time algorithm in the sizes of d and F that tests whether d F= F or not 
[Hon82j. (Hint: Pad each relation ri E d with unique nondistinguished variables in order 
to convert ri to be a relation over R. Then take the union of all the padded relations ri E d 
and invoke the chase procedure with respect to F on the resulting relation, interpreting the 
constant values in the relations ri E d as distinguished variables. The resulting relation, when 
the chase procedure terminates, can be used to check whether d 1= F or not.) 
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Exercise 3.24 We call an FD of the form K --+ schema(R}, where K is a key for a relation 
schema R with respect to a set F of FDs over R a key dependency of F. Assume a database 
schema R = {R}, R2, . . . , Rn}, with schema(R} = schema(R}, and such that with each relation 
schema, Ri E R, we associate a set of key dependencies, Fi over Ri, where F = {FI , F2 , ... , Fn}. 

A database d is locally satisfying with respect to F, if for all ri E d, ri F= hand d is said to 
be globally satisfying with respect to F, if d F= F (see Exercise 3.23 for the precise definition of 
when a database satisfies a set of FDs ). We say that R is independent with respect to F if every 
locally satisfying database with respect to F is also a globally satisfying database with respect 
to F. 

Prove that R is independent with respect to F if and only if R satisfies the uniqueness 
condition with respect to F, which is defined below [Sag83j. 

A database schema R satisfies the uniqueness condition with respect to F, if for all distinct 
relation schemas Ri, Rj E R, there does not exist a key K of Rj with respect to Fj and an attribute 
A E schema(R;} - K such that the closure of schema(Ri} with respect to F - {Fj} contains KA. 

Exercise 3.25 We extend the definition of independence given in Exercise 3.24 to take into 
account, both a set F of FDs over R and a set I of INDS over R, as follows. Let G be a cover of 
the set of FDs that are logically implied by the data dependencies in both F and I. Then R is 
said to be independent with respect to F and I if every database, which satisfies I and is locally 
satisfying with respect to F, is also a globally satisfying database with respect to G [AC91). 

Give an example of a set F ofFDs over R and a set I ofINDs over R such that R is independent 
with respect to F but is not independent with respect to F and I. Give a simple condition which 
guarantees that R is independent with respect to F if and only if R is independent with respect 
to F and I. 

Exercise 3.26 A set I of INDs over a database schema R is nonredundant if there does not 
exist an IND a E I such that I - {a} F= a . Devise a polynomial-time algorithm for finding a 
nonredundant cover of a set of typed INDs over R [MG90). 

Exercise 3.27 Let X --+ --+ Y be a nontrivial MVD in a set :E of FDs and MVDs over a relation 
schema R, and let K be a key for R with respect to the set ofFDs in :E+. Prove that either X--+ 
Y E :E+ or that K n Y i= 0 [Jaj86). 

Exercise 3.28 A set F of FDs over R is said to be embedded in a database schema R if each FD 
in F is embedded in some relation schema Ri E R. 

Let F be a set of FDs over R that is embedded in a database schema R and satisfies the 
following three conditions: 

I} We have schema(R} = schema(R}. 

2} For each FD X --+ Y E F, there exists a relation schema Ri E R such that X is a superkey 
for Ri with respect to the set F[Rd of FDs, where F[Rd denotes the set of FDs that are 
embedded in Ri. 

3} For some Ri E R, schema(Ri } is a superkey for R with respect to F. 
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Show that given a set F of FDs satisfying the above three conditions and a database dover 
R, a relation rover R that satisfies I><I[RJ can be constructed by the sequence of joins 

( ... «rl 1><1 r2) 1><1 r3) 1><1 ••• 1><1 rn), 

where d = {rl, r2, ... , rn} and ri F= F[Rd [Hon80J. 

Exercise 3.29 Let F be a set of FDs over R, G be a nonredundant cover of F and H be a 
minimum cover of F. Show that IGI :::: IHI(type(R) - 1) [Got87J. 

Exercise 3.30 A database schema R dominates another database schema S with respect to a 
query language, Q, if there exist sets of queries, QI and Q2 of Q, such that for every database 
dl over R there exists a database d2 over S such that (qi(d l ) I qi E Qd = d2 and (qj(d2) I 
qj E Q2} = dl . Intuitively, this means that databases over R can always be restructured into 
databases over S without any loss of information. Two database schemas Rand S are said to 
be query-equivalent with respect to Q, if R dominates S with respect to Q and S dominates R 
with respect to Q [Hu186J. 

Now, let Rand S be two database schemas such that 

1) R = {R}, S = {SI, S2} and schema(R) = schema(S). 

2) F is a set of FDs over R, FI is a set of FDs over SI and F2 is a set of FDs over S2, with 
F+ = (FI U F2)+' (That is, F is a cover of FI U F2.) 

3) I = {SdX] ~ S2[X], S2[X] ~ SdX]} is a set of INDs over S, where X = schema(Sd n 
schema(S2) and X -:f. 0. (That is, I asserts the pairwise consistency of databases over S.) 

4) F+ contains either the FD X --+ schema(Sd or the FD X --+ schema(S2). (That is, S is a 
lossless join decomposition of R with respect to F.) 

Prove that Rand S are query-equivalent with respect to the query language that consists of 
all possible relational expressions containing only projection and join [AABM82J. 

Exercise 3.31 We define two subclasses of FDs which have been very useful in characterising 
desirable properties in the design of incomplete information databases and ask you to prove 
that when a set of FDs and proper circular INDs is reduced, then restricting the set of FDs 
to one of these subclasses provides a sufficient condition for no interaction to occur. (See 
Section 5.5 in Chapter 5 for motivation regarding these subclasses ofFDs.) 

Firstly, we define the subclass ofFDs satisfying the intersection property. Two nontrivial FDs 
of the form Rr X --+ A and Rr Y --+ A are said to be incomparable if X and Yare incomparable. 
A set F of FDs over R satisfies the intersection property if VFj E F, VA E Rj, whenever there 
exist incomparable FDs, Rr X --+ A, Rr Y --+ A E Ft, then Rr X n Y --+ A E Ft. 

Secondly, we define the subclass ofFDs satisfying the split-freeness property. Two nontrivial 
FDs of the form Rj: XB --+ A and Rj: Y A --+ B are said to be cyclic. A set F of FDs over R 
satisfies the split-freeness property ifVFj E F, whenever there exist cyclic FDs, Rr XB --+ A, 

Rj: YA --+ B E Ft, then either Rj: Y --+ B E Ft or Rj: (X n Y)A --+ B E Ft. 

Prove that if I is proper circular, F satisfies either the intersection property or the split
freeness property and ~ = F U I is reduced, then F and I do not interact. 
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Exercise 3.32 A Template Dependency (TD) is a generalisation of a JD, which intuitively 
asserts that if in a relation rover R we find tuples, tl, t2, . . . , tn, satisfying certain equalities 
amongst their attribute values, then r must contain another tuple t, whose attribute values are 
obtained from certain attribute values of the tuples ti, for i = 1, 2, ... , n [SU82l. 

Formally, we write a TD over Ras T = tl, t2, . .. tkit, where the t;'s and t are tuples of variables 
over R, and the variables appearing in t are a subset of those appearing in the t;' s. It is assumed 
that no variable may be both the Ai-value and the Aj-value of any two (not necessarily distinct) 
tuples, where Ai and Aj are distinct attributes in schema(R). (If this assumption holds for a 
data dependency, then we say that the data dependency is typed, otherwise we say that it is 
untyped. For example JDs are typed dependencies but INDs are untyped dependencies.) 

A homomorphism h from a TD, T, to a relation, rover R, with type(R) = n, is a mapping from 
the variables in T to values in r such that h( <VI, V2, . . . , vn» = <h(VI), h(V2), ... , h(vn». 
A relation rover R satisfies a TD, T (i.e. r F= T), if whenever there is a homomorphism h from 
T to r such that for all i = 1,2, ... , n, h(ti) E r, then h(t) E r also holds. Satisfaction of a set 
of TDs in a relation and logical implication of a TD by a set of TDs are defined in the usual 
manner (see Section 3.5). A TD T over R is trivial if it is satisfied by every relation over R. 

Show, with an example, how any JD can be expressed as a TD. In addition, prove the 
following statements about TDs over R [FMUY83l: 

1) There exists a TD, T, such that for all other TDs, T', {T} F= T' holds, i.e. there is a strongest 
TD over R. 

2) There exists a nontrivial TD, T, such that for all nontrivial TDs, T', {T'} F= T holds, where 
type(R) > 1, i.e. there is a weakest nontrivial TD over R. (Note that all TDs over R, with 
type(R) = 1, are trivial.) 

3) Iftype(R) = 2, then there are only three distinct TDs over R, up to renaming of variables. 

4) TDs are closed under finite conjunction, i.e. if ~ is a finite set of TDs over R, then there 
exists a single TD, T over R, such that I; F= T and {T} F= I;. 

Exercise 3.33 Assume that the underlying database domain 1) is linearly ordered; for 
example, 1) can be the set of natural numbers. Given a relation rover R we let t] ::::: t2 

denote the fact that t] is less than or equal to t2 according to the lexicographical order induced 
by the underlying linear order of 1), where the attributes in schema(R) are linearly ordered, 
with att(i) ::::: att(j) if and only if i ::::: j. (See Section 1.9.2 of Chapter 1 for the definition of 
lexicographical order.) 

We define an Ordered Functional Dependency (OFD) over R to be a statement of the form 
X '"V> Y, where X, Y ~ schema(R). An OFD X '"V> Y is satisfied in a relation rover R if whenever 
t], t2 E rand t\ [Xl::::: t2[Xl, then it is also true that t] [Yl ::::: t2[Yl . 

Give some examples illustrating the usefulness of the OFD. Which inference rules of 
Armstrong's axiom system are unsound for OFDs? Suggest alternative sound inference rules 
forOFDs. 

Exercise 3.34 Let R be a relation schema and F be a set of FDs over R. Moreover, let R = 
{R], R2}, with schema(R) = schema(R), and thus R] and R2 are projection views of R. Show 
that R] and R2 are complementary views (see Definition 3.105 in Section 3.8) if and only if the 
decomposition R is lossless with respect to F [CP84bl. 



3.10. Exercises 235 

Exercise 3.35 Assume a relation schema R and a singleton set F ofFDs over R containing the 
FD, K ~ schema(R). Show that, when we disallow null values in r, the projection view Jl"x(r), 
where r is a relation over R and X is a superset ofK, does not have a translator. 

Exercise 3.36 Give sufficient conditions for a view containing a selection followed by a 
projection to have a translator, assuming a database with a single relation rover R and a 
singleton set F = (K ~ schema(R)} of FDs over R. 

Exercise 3.37 It has been proposed to modify the definition of a translator by replacing the 
condition that the view has a constant complement by the condition that the translation of a 
view update must be minimal, in the sense that there is no transaction having fewer updates 
(i.e. insertions, deletions and modifications) that realises the translation [Ke185J. 

Show how this modified definition can be used to give a more intuitive semantics to view 
updates involving selection. (Hint. Assume a simple selection formula of the form A = yes, 
where DOM(A) = (yes, no} .) 

In addition, show how the modified definition can be used to give semantics for view updates 
involving the join of two relations over relation schemas R\ and R2, respectively, such that 
the join attributes of R\ and R2, i.e. their common attributes, comprise a foreign key of R\ 
referencing the primary key of R2, where, apart from the primary keys of R\ and R2, no other 
data dependencies are specified. 
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One of the key activities of an IT department is database design, which is part of the wider 
activity of software analysis and design. Since the quality of the actual database depends, to a 
large extent, on the quality of its design, it is important that the methodology and algorithms 
used are known to be correct with respect to the requirements under consideration. One of 
the advantages of using relational database systems is that they have a conceptually simple 
tabular format which is easy to understand. The well-known normal forms, which are formally 
presented in Section 4.4, give the database designer unambiguous guidelines in deciding which 
databases are "good" in the quest to avoid "bad" designs that have redundancy problems and 
update anomalies, which are discussed in Section 4.1. The central idea in relational database 
design is that all the integrity constraints in the database should be describable in terms of 
keys and foreign keys. As was shown in Section 3.6 of Chapter 3, keys and foreign keys are just 
special cases of more general classes of data dependencies, i.e. FDs and INDs, respectively. 
The classical normal forms considered in Section 4.4 all result in a vertical decomposition of 
the database. That is, assuming that the decomposition R is lossless this corresponds to being 
able to recover a relation rover R by projecting r onto R, resulting in a database {rrschema(Ri) (r)} 
with R; E R, and then joining the projections. In Section 4.5 we consider the possibility of 
a horizontal decomposition of a relation schema R, resulting in splitting R into two or more 
union-compatible relation schemas, i.e. schemas having the same attribute set. In this case a 
relation rover R will be split into two or more disjoint relations using one or more selection 
operations and can then be recovered by applying the union operator. 

Two important criteria that the database designer needs to take into account in order to 
attain a decomposition with desirable properties are dependency preservation andlosslessness 
with respect to combining the information via the natural join; both of these are discussed in 
Section 4.2. Moreover, the database designer also needs to take into account query efficiency 
and to avoid further redundancy caused by choosing a decomposition with too many relation 
schemas in it. In some cases this may lead the database designer to denormalise the database 
schema, meaning that we sacrifice being in a particular normal form by creating a single new 
relation schema which replaces two or more existing relation schemas already in normal form. 
By denormalisation we can enhance query efficiency, since the join operation of combining 
the information in two or more relations in the database is the largest bottleneck of processing 
relational queries. It may be the case that although a database schema is in the required normal 
form, we have replicated information in two or more relation schemas. Such redundancy can 
be avoided by removing all such replication. On the other hand, in a distributed environment 
replicated information may be essential for query efficiency. 

237 
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Apart from the guidelines provided by the normal forms and desirable properties of 
database schema, relational database technology provides us with the essential algorithms 
for automating the design process. In Section 4.3 we discuss two fundamental approaches 
to relational database design: the synthesis approach and the decomposition approach. 
(You should not to confuse the decomposition approach with the other usage of the term 
decomposition which is simply a database schema; the different usages of decomposition will 
be clear from context). The synthesis approach is a bottom-up approach, i.e. we start from 
the data dependencies, which in our case will be FDs, in order to obtain a database schema 
in the required normal form. On the other hand, the decomposition approach is a top-down 
approach, i.e. we start from the set of attributes schema(R) over which the FDs are defined 
and decompose this set iteratively until the resulting database schema is in the desired normal 
form. Several algorithms based on these two approaches are presented in Section 4.6. It is 
important to note that some design problems have been shown to be NP-complete and thus 
some of the design algorithms provide only heuristic solutions. 

When designing a relational database practitioners often use the Entity-Relationship model, 
described in Chapter 2, as a high level conceptual model. We demonstrate in Section 4.7 how 
an ERD can be converted into a database schema in a desirable normal form. Thus we view 
the entity relationship model as a convenient vehicle whose aim is to aid relational database 
design. 

From now on we will assume that R is a relation schema, F is a set of FDs over Rand R is a 
decomposition of schema(R) with schema(R) = schema(R) (or simply R is a decomposition, 
whenever R is understood from context). 

4.1 Update Anomalies in Relational Databases 

We have already assumed that relation schemas are in first normal form (lNF) in order to 
obtain a database model with simple data structures and straightforward semantics. First 
normal form relation schemas may possess the following two undesirable properties leading 
to a bad database design: 

• Update anomalies. 

• Redundancy problems. 

We illustrate these problems via three examples. 

Example 4.1 Let EMPI be a relation schema, with schema(EMPI) = {ENAME, DNAME, 
MNAME}, where ENAME stands for employee name, DNAME stands for department name 
and MNAME stands for manager name. In addition, let FI = (ENAME -+ DNAME, DNAME 
-+ MNAME} be a set of FDs over EMP!> implying that ENAME is the only key (and thus the 
primary key) for EMPI' A relation rl over EMPI that satisfies FI is shown in Table 4.1. 

Several problems arise with respect to EMPI and Fl ' Firstly, due to entity integrity and 
the fact that ENAME is the primary key we cannot insert a tuple having a null ENAME-value. 
Thus we cannot add information about a new department unless it has already hired one or 
more employees. Such a problem is called an insertion anomaly. 
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Secondly, the complement of the first problem arises when we would like to delete all the 
employees from a department but still maintain the information about this department. Once 
again this is not allowed, since we cannot have null ENAME-values due to the fact that ENAME 
is a primary key. Such a problem is called a deletion anomaly. 

Thirdly, assume that we would like to modify the MNAME-value in the first tuple of r[ 
from Peter to Philip. In this case the FD, ENAME -+ {DNAME, MNAME} (resulting from 
ENAME being a key) is satisfied in the modified relation, but the FD DNAME -+ MNAME 
(where DNAME is not a key) is violated in the modified relation. Thus when modifying the 
MNAME-value in a tuple of rl it is not sufficient to check that the FDs resulting from the keys 
for EMP I are satisfied in rl. A similar problem arises if we try to modify the DNAME-value in 
the first tuple of r[ to Maths. Such a problem is called a modification anomaly. 

Fourthly, there is the problem of redundancy of information. In particular, for every 
employee in a particular department the MNAME-value is repeated. Thus in r[ the 
MNAME-value for Computing appears thrice, since there are three employees in the 
Computing department, and the MNAME-value for Maths appears twice, since there are 
two employees in the Maths department. Such a problem is called a redundancy problem . 

• 
Table 4.1 The relation TJ over EMPI 

ENAME DNAME MNAME 
Mark Computing Peter 

Angela Computing Peter 
Graham Computing Peter 

Paul Maths Donald 
George Maths Donald 

Example 4.2 LetEMP2 be a relation schema, with schema(EMP2) = {ENAME, CNAME, SAL}, 
where ENAME stands for employee name, CNAME stands for child name and SAL stands for 
the employee's salary. In addition, let F2 = {ENAME -+ SAL} be a set of FDs over EMP2, 
implying that {ENAME, CNAME} is the only key (and thus the primary key) for EMP2. A 
relation r2 over EMP2 that satisfies F2 is shown in Table 4.2. 

As with the previous example several problems arise with respect to EMP2 and F2. An 
insertion anomaly occurs when we try to insert a new employee having no children, since 
due to entity integrity null values are not allowed over CNAME. A deletion anomaly occurs 
when we have made a data entry mistake and, for example, we discover that Donald does 
not really have any children. Again, due to entity integrity we cannot delete all of Donald's 
children. A modification anomaly occurs when we attempt to modify the SAL-value in the 
first tuple from 25 to 27. The modified relation still satisfies the FD {ENAME, CNAME} -+ 
SAL, arising from the key {ENAME, CNAME}, but the FD ENAME -+ SAL will be violated. 
Finally, a redundancy problem occurs, since for every employee the SAL-value is repeated for 
each child of that employee. • 

Example 4.3 Let ADDRESS be a relation schema, with schema(ADDRESS) = {S, C, P}, where 
S stands for STREET, C stands for CITY and P stands for POSTCODE. In addition, let F3 = 
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Table 4.2 The relation T2 over EMP2 

ENAME CNAME SAL 
Jack Jill 25 
Jack Jake 25 
Jack John 25 

Donald Dan 30 
Donald David 30 

{SC --+ P, P --+ C} be a set ofFDs over ADDRESS. Both SC and PS are keys for ADDRESS with 
respect to F3, so assume that PS is the primary key. A relation s over ADDRESS that satisfies 
F3 is shown in Table 4.3. 

As with the previous two examples several problems arise with respect to ADDRESS and 
F3. An insertion anomaly occurs when we try to insert a new address which has not yet been 
assigned a postcode, since due to entity integrity null values are not allowed over POSTCODE. 

A deletion anomaly occurs when we would like to delete the postcode of an address, say, 
due to an erroneous postcode being recorded for a particular address. Again, due to entity 
integrity we cannot delete the postcode. 

A modification anomaly occurs when we attempt to modify the CITY -value in the first tuple 
of s from London to Bristol. SC and PC are still keys in the modified relation but P --+ C will be 
violated. Finally, a redundancy problem occurs, since for every postcode the city is repeated 
for each street in that postcode. • 

Table 4.3 The relation s over ADDRESS 

STREET CITY POSTCODE 
Hampstead Way London NWll 

Falloden Way London NWll 
Oakley Gardens London N8 

Gower St London WClE 
Amhurst Rd London E8 

In the remaining part of this section we will formalise the notions of update anomalies and 
redundancy problems. 

We call a set F of FDs over R canonical if all the FDs in F are nontrivial and of the form X 
--+ A, with A being a single attribute. For the rest of the chapter, when convenient, we will 
assume without any loss of generality that sets ofFDs are canonical; this simplifies some of the 
definitions and proofs that follow. 

Definition 4.1 (Key dependency) Let R be a relation schema and F be a set of FDs over R. 
An FD of the form K --+ schema(R), where K is a key for R with respect to F is called a key 
dependency of F. The set of all key dependencies that are logically implied by F is denoted by 
KEYS(F). 

(Recall from Subsection 3.6.1 of Chapter 3 that an attribute A E schema(R) is prime with 
respect to F if it is a member of the left-hand side of any FD in KEYS(F).) • 
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We are making the assumption that KEYS(F) contains all the fundamental information 
a database designer needs to know about the integrity constraints over R. A less general 
approach, which is subsumed by the above definition, is that KEYS(F) contains only the 
primary key of R with respect to F. 

A compatible tuple with a relation r is a tuple such that if it is inserted in r then the resulting 
relation does not violate KEYS(F). 

Definition 4.2 (Compatible tuple) Let R be a relation schema, F be a set ofFDs over Rand r 
a relation over R. A tuple t over R is compatible with r, with respect to F (or simply compatible 
with r whenever F is understood from context), if r U {t} F KEYS(F). • 

A relation schema R has an insertion anomaly if there is a relation rover R that satisfies F 
and a tuple t over R such that t is compatible with r but when we insert t into r the resulting 
relation violates F. 

Defmition 4.3 (Insertion anomaly) A relation rover R has an insertion violation with respect 
to a set F of FDs over R (or simply r has an insertion violation if F and R are understood from 
context) if 

1) r F F, and 

2) there exists a tuple t over R which is compatible with r but r U It} [;6 F. 

The relation schema R has an insertion anomaly with respect to F (or simply R has an 
insertion anomaly if F is understood from context) if there exists a relation rover R which has 
an insertion violation. • 

A relation schema R has a modification anomaly if there is a relation rover R that satisfies 
F, a tuple u in r and a tuple t over R such that t is compatible with the relation resulting from 
deleting u from r but if we delete u from r and insert t into the result, then the resulting relation 
violates F. 

Defmition 4.4 (Modification anomaly) A relation rover R has a modification violation with 
respect to a set F of FDs over R (or simply r has a modification violation if F is understood 
from context) if 

1) r F F, and 

2) there exists a tuple u E r and a tuple t over R such that t is compatible with r - {u} but 
(r - {u}) U It} [;6 F. 

The relation schema R has a modification anomaly with respect to F (or simply R has a 
modification anomaly ifF is understood from context) if there exists a relation rover R which 
has a modification violation. • 

We view a deletion anomaly as a special case of a modification anomaly, since in order 
for such an anomaly to occur we must first remove one or more tuples from the original 
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relation and then insert a new tuple into the resulting relation. For example, with reference 
to the relation rl over EMP!> in order to record the information about a department having 
no employees we must first remove all the employee tuples for that department and only 
then insert the information about the department. This new tuple must have a nonnull 
ENAME-value, since ENAME is its primary key, and thus this department has at least one 
employee leading to a contradiction. Straightforward deletion of tuples from a relation does 
not cause any problems, as it can be verified that if a relation r satisfies F, then the relation 
resulting from removing a tuple t from r also satisfies F. 

A relation schema R has a redundancy problem if there is a relation rover R that satisfies 
F, there is an FD X ~ A in F and two distinct tuples in r that have equal XA-values. 

Definition 4.5 (Redundancy problem) A relation rover R is redundant with respect to a set 
F ofFDs over R (or simply r is redundant ifF and R are understood from context) if 

1) r F F, and 

2) there exists an FD X ~ A E F and there exist two distinct tuples, tl , t2 E r, such that 
tl [XAj = t2[XAj. 

The relation schema R has a redundancy problem with respect to F (or simply R has a 
redundancy problem if F is understood from context) if there exists a relation rover R which 
is redundant. • 

We now show the equivalence of the update anomalies and the redundancy problem [Vin91j. 

Theorem 4.1 Let F be a set of FDs over a relation schema R. Then the following statements 
are equivalent: 

1) R has an insertion anomaly with respect to F. 

2) R has a redundancy problem with respect to F. 

3) R has a modification anomaly with respect to F. 

Proof. Firstly, we prove that if R has an insertion anomaly then R has a redundancy problem. 
Suppose that R has an insertion anomaly and as a consequence there exists a relation rover 
R such that r F F and t is a tuple which is compatible with r but r U {t} ~ F. It follows that 
for some FD X ~ A E F, where X is not a superkey for R with respect to F, r U {t} ~ X -+ A, 
since r U It} F KEYS(F). Moreover, for some tuple t' E r, tt' , t} ~ X -+ A. Let u be a tuple 
over R, with u[X+j = t'[X+], and such that for all attributes BE schema(R) - X+, u[Bj is a 
distinct value not appearing in r. (Recall Definition 3.60 given in Subsection 3.6.1 of Chapter 3, 
namely that X+ is the closure of X with respect to F and that Y <; X implies that y + <; X+.) 
Now, u rt r, since X is not a superkey. Thus on replacing r by r U {u} in Definition 4.5 of a 
redundancy problem the result follows, since it is evident that r U {u} F F. 

Secondly, we prove that ifR has a redundancy problem then R has a modification anomaly. 
Suppose that R has a redundancy problem and as a consequence there exists a relation rover 
R such that r F F, and for some FD X -+ A E F there exist two distinct tuples tl, t2 E r such 
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that t, [XA] = t2[XA) . 1t follows that X is not a superkey for R with respect to F and thus each 
key K for R contains some attribute that is not in X. Now, let t be a tuple over R, with t[X+ - A] 
= t, [X+ -A], and such that for all attributes BE schema(R) - (X+ -A), t[B] is a distinct value 
not appearing in r. The result follows, since t is compatible with r - ltd but (r - (td) U {t} tt= 
F. 

Thirdly, we prove that if R has a modification anomaly then R has an insertion anomaly. 
Suppose that R has a modification anomaly and as a consequence there exists a relation rover 
R such that r F F and t is a tuple over R which is compatible with r - {u} but (r - (u)) U {t} tt= 
F for some tuple u E r. The result follows by replacing r by r - {u} in Definition 4.3 of an 
insertion anomaly. 0 

Recall the definitions of inclusion dependency (Definition 3.69) and its satisfaction 
(Definition 3.70) given in Subsection 3.6.7 of Chapter 3, which generalise the notion of 
referential integrity. In particular, the IND R[X] <; sty] is satisfied in a database dover 
R, with R, S E R, if Jl'x(r) <; Jl'y(s), where rand s are the relations in dover Rand S, 
respectively. Also recall the definitions of noncircular INDs (Definition 3.71) and key-based 
INDs (Definition 3.72) given in Subsection 3.6.7 of Chapter 3. In particular, a set I of INDs 
over R is non circular if the IND digraph G[ = (N, E) is acyclic. The nodes in N are labelled by 
the relation schemas in R and there is an arc in E from R to S if there is a nontrivial IND R[X] ~ 
sty] in I (R = S is possible). In addition, an IND R[X] <; sty) is superkey-based, respectively 
key-based, if Y is a superkey, respectively a key, for S with respect to a set F of FDs over R. If 
R[X] <; sty] is key-based and Y is a primary key for S then X is a foreign key for R. Thus when 
X is a foreign key, then a key-based IND provides a formalisation of referential integrity. 

We illustrate the problems that arise with INDs that are not key-based with two examples. 
It is interesting to observe that there is very little material in the database literature concerning 
anomalies and redundancy problems that arise as a result of referential integrity constraints 
(cf. [CA84, MR86b, LG92, MR92a, Mar94, LV99]). 

Example 4.4 Let HEAD be a relation schema, with schema(HEAD) = {H, D}, where H stands 
for head of department and D stands for department, and let LECT be a relation schema, with 
schema(LECT) = {L, D}, where L stands for lecturer and as before D stands for department. 
In addition, let d = {rl' r2} be a database over R = {HEAD, LECT}, where r, over HEAD is 
shown in Table 4.4 and r2 over LECT is shown in Table 4.5. Furthermore, let F = {HEAD: H 
-+ D, LECT: L -+ D} be a set ofFDs over R and 1= (HEAD[HD) <; LECT[LD]} be a setofINDs 
over R. The reader can verify that d satisfies both F and I. We note that I U (F - (HEAD: H 
-+ D}) F HEAD: H -+ D by the pullback inference rule and thus the FD HEAD: H -+ D E F 
is redundant. (See Subsection 3.6.11 of Chapter 3 for the definition of the pullback inference 
rule and other interactions between FDs and INDs.) We also note that we have not assumed 
that HEAD: D -+ H is in F and thus a department may have more than one head. 

Two problems arise with respect to Rand F U I. Firstly, the interaction between F and I may 
lead to the logical implication of data dependencies that were not envisaged by the database 
designer and may not be easy to detect; recall from Subsection 3.6.11 of Chapter 3 that the 
implication problem for FDs and INDs is in general intractable. In this example the pullback 
rule implies that an FD in F is redundant. 

Secondly, the IND HEAD[HD] <; LECT[LD] combined with the FD LECT: L -+ Dimply 
that the attribute D in HEAD is redundant, since the department of a head can be inferred 
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from the fact that L is a key for LECT. (Formally this inference can be done with the aid of a 
relational algebra expression which uses renaming, join and projection.) Thus HEAD[HD] 
S; LECT[LD] can be replaced by HEAD[H] S; LECT[L] and the attribute D in HEAD can be 
removed without any loss of information. (This point is discussed in [Sci86].) The problem 
here is tha tthe righ t -hand side, {L, D}, of the IND HEAD [HD] S; LECT [LD j is a proper superset 
of a key, namely the key L for LECT. • 

Table 4.4 The relation TJ over HEAD Table 4.5 The relation T2 over lECT 

H D L D 
Peter Computing Peter Computing 

Donald Maths Angela Computing 
Paul Maths Mark Computing 

Donald Maths 
Paul Maths 
Ray Maths 

Example 4.5 Let EMP be a relation schema, with schema(EMP) = {E, P}, where E stands 
for employee name and P stands for project title, and let PROI be a relation schema, with 
schema(PROJ} = {P, L}, where as before P stands for project title and L stands for project 
location. In addition, let d = {rl ' r2} be a database over R = {EMP, PROn, where rl over EMP 
is shown in Table 4.6 and r2 over PROI is shown in Table 4.7. Furthermore, let F = {EMP: E---+ 
P} be a set ofFDs over R and 1= {EMP[Pj S; PROJ[P]} be a set ofINDs over R. The reader can 
verify that d satisfies both F and I. We note that a project may be situated in several locations 
and correspondingly a location may be associated with several projects and thus {P, L} is the 
primary key for PROI. 

Let us assume that an employee working on a project works in one location only. The 
problem that arises is that the right-hand side, P, of the IND EMP[Pj S; PROJ[Pj is a proper 
subset of a key. Thus F U I does not provide us with sufficient information in order to ascertain 
in what location the employee is actually working in. It follows that a new attribute, say L', 
must be added to EMP and the IND EMP[P] S; PROJ[P] be replaced by EMP[PL'j S; PROJ[PLj. 

Even if an employee is assumed to work in all locations of the project he/she is working 
on a problem arises, which is related to an insertion anomaly. Suppose that an employee is 
assigned to a project which has not yet been allocated a location. Due to entity integrity such 
a project cannot be recorded in the relation over PROI. However, if the project is recorded 
in the relation over EMP then the IND EMP[Pj S; PROJ[P] is violated. Therefore projects are 
always associated with locations and thus it is sensible to carry out the modifications to the 
relation schema EMP and the set I of INDs mentioned above. • 

Table 4.6 The relation 'lover EMP Table 4.7 The relation '2 over PROJ 

E P P L 
Mark Alpha Alpha London 

Naomi Beta Beta London 
Alpha Paris 
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We defer the formalisation of the problems exhibited by the above examples that arise in 
the presence of INDs to Subsection 4.4.4. We now illustrate with an example the problems 
that arise with sets ofINDs that are circular (cf. [Sci86)). 

Example 4.6 Let BOSS be a relation schema with schema(BOSS) = {EMP#, MGR#} and let I 
be the singleton circular IND set {BOSS[MGR#] ~ BOSS[EMP#]} asserting that every manager 
is also an employee. Thus, if r is a relation over BOSS and we insert the tuple <e, m> into 
r, then we also need to insert a tuple <m, x> for some employee x, who is the manager of 
m. It follows that r must contain a tuple of the form <x, x> for some employee x, since r 
must be finite. Thus we must record the fact that at least one employee must be a manager of 
himself/herself. 

We can solve this problem by replacing the relation schema BOSS by the two relation schemas 
EMPS, with schema(EMPS) = {EMP#}, and BOSSES, with schema(BOSSES) = {MGR#}, and 
replacing I by the noncircular set {BOSSES [MGR#] ~ EMPS[EMP#]}. Moreover, in order not 
to lose the knowledge of who the manager of a particular employee is, we can safely assume 
that information pertaining to departments including the MGR# of its manager is contained 
in a separate department relation schema, say DEPT. • 

4.2 Desirable Properties of Database Decompositions 

The first desirable property of a decomposition R is that it be a lossless join decomposition 
with respect to F. Recall from Subsection 3.6.4 of Chapter 3 that a lossless join decomposition 
implies that we can project a relation onto a decomposition and then join the projections 
without loss of information. In order to refresh the reader's memory we repeat the formal 
definition oflossless join decomposition. 

Definition 4.6 (Lossless join decomposition) Let R = {Rl, R2, ... , Rn} be a database schema 
and recall that schema(R) = UiE[ schema(Ri), where I = {I, 2, ... ,n}. Then R is a lossless 
join decomposition of schema(R) with respect to a set F of FDs (or simply the decomposition 
R is lossless with respect to F) if for all relations, rover R, with schema(R) = schema(R), such 
that r F= F, the following equation holds: 

• 
Recall from Subsection 3.6.6 of Chapter 3 that the projection of a set F of FDs over R onto 

a relation schema S is the subset of FDs X ~ Y E F such that both X and Yare contained in 
schema(S). In order to refresh the reader's memory we again repeat the formal definition of 
the projection of a set F of FDs onto a relation schema. 

Defmition 4.7 (Projection of a set of FDs) The projection of a set F of FDs over R onto a 
relation schema S, with schema(S) ~ schema(R), denoted by F[S], is given by 

F[S] = (X ~ Y I X ~ Y E F andXY ~ schema(S)}. 

The FDs in F[S] are said to be embedded in S. The subset of FDs in F embedded in a 
decomposition R of schema(R), denoted by F[R], is the set F[R] = U~l F[R;J. • 
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The second desirable property of a decomposition R is that it be dependency preserving 
with respect to F. Informally, R is dependency preserving with respect to F, if the closure of 
the union of the subsets of F that are embedded in the relation schemas Rj E R is equal to the 
closure ofF. 

Definition 4.8 (Dependency preserving decomposition) Let R be a decomposition and let 
F be a set of FDs over R, with schema{R) = schema{R). Then R is a dependency preserving 
decomposition with respect to F if there exists a cover G of F such that G[Rj + = P+, i.e. such 
that all the FDs in G are embedded in R. • 

We observe that G[Rj+ = p+ is true ifand onlyif{P+[R))+ = P+ . 

Example 4.7 Consider a relation schema EMPLOYEE with four attributes: E#, ENAME (N), 
PROJECT (P) and LOCATION (L) together with the set F of FDs over EMPLOYEE, where F = 
{E# --+ schema{R), P --+ L}. 

Let R = {R" R2} be a decomposition of {E#, N, P, L} with schema{R,) = {E#, N, P} and 
schema{R2) = {E#, L}. It can easily be verified that P --+ L ~ p+ [Rj and thus R is not dependency 
preserving with respect to F. 

On the other hand, the decomposition S = {S" S2), with schema{Sd = {E#, N, P} and 
schema{R2) = {P, L} is easily seen to be dependency preserving with respect to F, i.e. F[Rj+ = 
P+. 

Let STUD_POS be a relation schema, describing the linear ordering of students in a class, 
with the three attributes: SNAME (N), SUBJECT (S) and POSITION (P). Let F be a set ofFDs 
over STUD_POS, where F = {NS --+ P, SP --+ N} . It can be verified that for no decomposition 
R of {N, S, PI, where for each Ri in R schema{Ri) is properly contained in {N, S, P), is R 
dependency preserving. • 

The following theorem was proved in [BDB79, LT83, Var84bj. 

Theorem 4.2 Let R be a database schema and F be a set of FDs over R, with schema{R) = 
schema{R). Then the following statements are true: 

1) If R is a lossless join decomposition of schema{R) with respect to F, then there exists S 
E R such that schema{S) is a superkey for R with respect to F. 

2) If R is a dependency preserving decomposition with respect to F, and there exists a 
relation schema S E R such that schema(S) is a superkey for R with respect to F, then R 
is a lossless join decomposition of schema{R) with respect to F. 

Proof. Firstly, we prove (I). By Theorem 3.29 given in Subsection 3.6.4 of Chapter 3 concerning 
lossless join decompositions, we have that CHASE(T(R), F) has a winning row. We prove (1) 
by induction on the minimal number, say k, of chase steps required to produce a winning row 
in CHASE(T(R), F). 

Basis. If k = 0, then the result follows vacuously, since R E R. 

Induction. Assume the result holds when the minimal number of chase steps required to 
produce a winning row is k; we then need to prove that the result holds when the minimal 
number of chase steps required to produce a winning row is k + 1. 
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Suppose that the last chase step applies the nontrivial FD X --+ A E F to rows Wi and Wj 
in the penultimate state of T{R) during the execution of CHASE{T{R), F) and that Wi is a 
winning row. By induction hypothesis F 1= schema{Ri) --+ schema{R) - A holds. In particular, 
F 1= schema{Ri) --+ X holds by the decomposition and union inference rules. The result that 
schema{Ri) --+ schema{R) follows by the transitivity and union inference rules. 

Secondly, we prove (2). Suppose that S E R is a superkey for R with respect to F and that 
X denotes the set of attributes schema{S). Also, let G denote a cover of the set p+ [Rl of FDs 
embedded in R. Then X is also a superkey for R with respect to G, since C+ = p+ due to 
the fact that R is a dependency preserving decomposition. It follows that CLOSURE(X, G) = 
CLOSURE(X, F) = schema(R), where the algorithm CLOSURE that computes X+ is given as 
Algorithm 3.8 in Subsection 3.6.3 of Chapter 3. 

By inspecting the algorithm CLOSURE it can be verified that there exists a sequence of FDs 
in C+, X\ --+ Y\, X2 --+ Y2 , ••. , Xn --+ Yn, satisfying the following property for 1 ::s i ::s n: 

schema{Ro) = schema(S) = X and schema(Ri) = Xi Yi, where Ri-\, Ri E R and Xi S; U;:~ 
schema(Rj)' The result now follows by induction on the number n of relation schemas in R, 
recalling that ifR contains two relation schemas then the result follows by Corollary 3.31 given 
in Subsection 3.6.4 of Chapter 3. 0 

4.3 The Synthesis Versus Decomposition Approaches to 
Relational Database Design 

There are two competing approaches to relational database design: the decomposition 
approach [Cod72al and the synthesis approach [Ber76]. Both approaches start from a relation 
schema R and a set F of FDs over R and obtain a decomposition R of schema{R) possessing 
some desirable properties. (There is an unfortunate double meaning in the usage of the word 
decomposition; a decomposition of schema(R) has already been defined as a database schema 
R, with schema(R) = schema(R), while the decomposition approach discussed in this section 
is a method of obtaining a database schema. The different usages of the term decomposition 
will be clear from context.) 

The decomposition approach is a recursive process which at each step chooses an FD X 
--+ Y E F satisfying certain conditions and then replaces R with two schemas, R\ and R2, 
such that schema(Rd = XY and schema(R2) = schema(R) - (Y-X). The set ofFDs over R\ 
associated with R\ is P+[Rtl and the set of FDs over R2 associated with R2 is P+ [R21. The 
process terminates when each relation schema in the resulting decomposed database schema 
(or decomposition) possesses the desirable properties the database designer is aiming at. 

An inherent difficulty with this approach is that, as shown in Subsection 3.6.6 of Chapter 3, 
computing a cover of p+ [R;] is intractable. Thus in order for this approach to be feasible (i.e. 
polynomial-time computable) the decomposition needs to be carried out together with an 
efficient computation of a cover of p+ [Ri]. Another drawback of the decomposition approach 
is that if we change the order in which the FDs X --+ Yare processed then the resulting database 
schema may also change and the quality of the decomposition may be affected. For instance 
changing the order in which the FDs in F are processed may result in one decomposition 
being dependency preserving and another not being so, or in one decomposition having more 
relation schemas than another (see [Fag77b, Section 4] for a discussion on these issues). 
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The main advantage of the decomposition approach is its simplicity. Another advantage 
is that the resulting decomposition is lossless. This losslessness can be proved by a 
straightforward induction on the cardinality of the resulting database schema, noting that 
when the cardinality of the database schema is two then the result follows by Corollary 3.31 
given in Subsection 3.6.4 of Chapter 3. 

Example 4.8 Let EMP be an employee relation schema, with schema(EMP} = {EN, SAL, CN}, 
where EN stands for employee name, SAL stands for salary and CN stands for child name. In 
addition, let FI = {EN 4- SAL} be a set ofFDs over EMP. 

Using the decomposition approach we obtain the database schema {RI, R2}, with 
schema(RI} = {EN, SAL} and schema(R2} = {EN, CN}. This decomposition is lossless and 
dependency preserving with respect to Fl' • 

Example 4.9 Let DEPT be a department relation schema, with schema(DEPT} = (EN, DN, 
MGR, SEC), where EN again stands for employee name, DN stands for department name, 
MGR stands for manager name and SEC stands for the name of the manager's secretary. In 
addition, let F2 = (EN 4- DN, DN 4- MGR, MGR 4- SEC) be a set of FDs over DEPT. 

If we first choose the FD MGR 4- SEC and then the FD DN 4- MGR we obtain the 
decomposition {RI, R2, R3}, with schema(Rd = (MGR, SEC), schema(R2} = {DN, MGR} and 
schema(R3} = {EN, DN}. This decomposition is lossless and dependency preserving with 
respect to F2. 

On the other hand, if we first choose the FD EN 4- DN and then the FD MGR 4- SEC we 
obtain the decomposition {Rt, Rz, R3}, with schema(Rd = {EN, DN}, schema(Rz} = (MGR, 
SEC) and schema(R3} = {MGR, EN}. This decomposition is lossless but not dependency 
preserving with respect to Fz. • 

The synthesis approach uses the set F of FDs directly in order to obtain a decomposition 
of schema(R} possessing the required desirable properties. Normally, a cover G of F is first 
obtained in polynomial time; such a cover G is more desirable than F, if it removes from F as 
much redundancy as possible. Then a preliminary decomposition of schema(R} is obtained 
by creating a relation schema, Rj, with schema(Rj} = XY, for each FD X 4- Y E G. This 
decomposition is dependency preserving with respect to F, since G is a cover of F. If the 
resulting decomposition is not lossless then a key is added to it thus obtaining a lossless 
decomposition by Theorem 4.2. Finally, improvements are made to the decomposition; for 
example, by removing attributes [BM87) or adding attributes [Sci83). 

The synthesis approach is more complex than the decomposition approach, since heuristics 
such as adding or removing attributes may have to be used in order to obtain the required 
desirable properties. On the other hand, it is not always possible to obtain a decomposition 
which is dependency preserving and also satisfies the required desirable properties (for 
example being in Boyce-Codd normal form), so the improvements made to the initial 
decomposition may destroy some desirable property or properties (which may not be 
required). 

Example 4.10 Assume the same relation schema EMP and the set of FDs FI over EMP as 
in Example 4.8. Using the synthesis approach we obtain the same database schema {Rio Rz}, 
with schema(Rd = {EN, SAL} and schema(R2 } = {EN, CN}, as was obtained by using the 
decomposition approach. • 
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Example 4.11 Assume the same relation schema DEPT and the set of FDs F2 over DEPT as 
in Example 4.9. Using the synthesis approach directly on F2 we obtain the database schema 
{R1, R2, R3}, with schema(Rd := {EN, DN}, schema(R2):= {MGR, SEC} and schema(R3):= {DN, 
MGR}. • 

4.4 Normal Forms 

Normal forms were introduced in order to solve the anomalies and redundancy problems that 
may be present in 1NF relation schemas. Each normal form enforces some desirable properties 
so that, if the relation schema is in that normal form, various problems disappear. We will 
present several normal forms with respect to functional dependencies and one normal formal 
form with respect to functional and inclusion dependencies. We will not deal with more general 
normal forms that take into account other types of integrity constraint. In Subsection 4.4.1 we 
present Second Normal Form (2NF), in Subsection 4.4.2 we present Third Normal Form (3NF), 
in Subsection 4.4.3 we present Boyce-Codd Normal Form (BCNF), and in Subsection 4.4.4 we 
present Inclusion Dependency Normal Form (IDNF). 

Other normal forms which involve other types of integrity constraint have also been 
suggested. For example, Fourth Normal Form (4NF) has been suggested as a normal form for 
FDs and MVDs [Fag77a, Fag77bj. Fifth Normal Form (5NF), also called Project-Join Normal 
Form (PJNF), has been suggested as a normal form for FDs and JDs [Fag79j . Finally, an 
ultimate normal form, called Domain-Key Normal Form (DKNF), which subsumes all of the 
above-mentioned normal forms (apart from IDNF), was suggested by Fagin in [FagSlj. 

All the normal forms incorporate keys and entity integrity into the design process, the 
underlying idea being that every integrity constraint specified for the application in hand 
should be logically implied by the set of keys relevant to the application. IDNF is a normal 
form which incorporates foreign keys and referential integrity into the design process, the 
underlying idea being that every integrity constraint should be logically implied by the keys and 
key-based INDs relevant to the application. For semantic reasons, discussed in Example 4.6 
of Section 4.1, and computational problems arising with respect to the implication problem in 
the presence of circular INDs, which are discussed in Subsections 3.6.S and 3.6.10 of Chapter 3, 
the set of INDs is restricted to be noncircular. 

Relational database design methods that take into account both FDs and MVDs can be 
found in [ZMSl , LieS5, BKS6, Y092a, Y092bj. 

It is worth mentioning that there may be some conflict between obtaining a decomposition 
which is in a certain normal form and the performance of query processing. For example, let 
PARTS be a relation schema, with schema(PARTS) := {PNO, PNAME, QTY} and SUPPLIER 
be a relation schema, with schema(SUPPLIER) := {SNO, PNO, PRICE}. Suppose also that R:= 
{PARTS, SUPPLIER} is a decomposition in a certain normal form. Moreover,letd = {r1, r2} be 
a database over R, where r1 is a relation over PARTS and r2 is a relation over SUPPLIER. Now, 
suppose that the most common query users are interested in is r1 ~ r2. In this case it may be 
better to maintain the information in a single relation over a relation schema whose attribute 
set is schema(PARTS) U schema(SUPPLIER). The act of joining relation schemas together in 
order to increase response time of query processing is called denormalisation. A minimal 
requirement of denormalising two relation schemas is that they join together losslessly with 
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respect to the specified set of FDs. Another reasonable requirement is that of dependency 
preservation, i.e. that the denormalised database schema embeds a cover of the projection 
of the given set of FDs onto the resulting denormalised database schema. Given that the 
normalised database schema is dependency preserving the resulting denormalised database 
schema will also preserve the data dependencies. The trade off between normalisation and 
denormalisation is discussed in [SS821. 

4.4.1 Second Normal Form (2NF) 

Second normal form was first defined in [Cod72al. Intuitively, a relation schema is in second 
normal if it is in first normal form and every non prime attribute is fully dependent on each 
key for the relation schema with respect to its set F of FDs. 

Definition 4.9 (2NF) A relation schema R is in Second Normal Porm (2NF) with respect to a 
set F of FDs over R (or simply in 2NF if F is understood from context) if for every nontrivial 
FD X --+ A E F, either X is not a proper subset of a key for R with respect to F or A is a prime 
attribute. 

A decomposition R is in 2NF with respect to a set F of FDs over R, with schema(R) = 
schema(R), if each Ri E R is in 2NF with respect to p+ [Ri I. (When no ambiguity arises we will 
often say that Ri E R is in 2NF with respect to F to mean that Ri E R is in 2NF with respect to 
P+[R;l.) • 

Let us consider the relation schema EMP2 of Example 4.2 together with its set P2 of FDs. 
EMP2 is not in 2NF, since ENAME --+ SAL is a nontrivial FD, where ENAME is a proper subset 
of the key {ENAME, CNAME} and SAL is not a prime attribute. The reader can verify that the 
decomposition, {EMPi, EM~}, with schema(EMPi) = {ENAME, SAL} and schema(EM~) = 
{ENAME, CNAME} is in 2NF with respect to P2' 

We next give an alternative characterisation of 2NF, which is an immediate consequence of 
Definition 4.9. 

Lemma 4.3 A relation schema R is in 2NF with respect to a set F of FDs if and only if for 
every nontrivial FD X --+ A E F, either X is a superkey for R with respect to F, or at least one 
of the attributes in X is non prime, or A is a prime attribute. 0 

2NF is not usually employed in practice as an end in itself. Rather it can be viewed as an 
intermediate step towards achieving 3NF. 

4.4.2 Third Normal Form (3NF) 

Third normal form was first defined in [Cod72al. Intuitively, a relation schema is in third 
normal if it is in second normal form and there is no nonprime attribute that is transitively 
dependent on a key for the relation schema with respect to its set ofFDs. 
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Defmition 4.10 (3NF) A relation schema R is in Third Normal Porm (3NF) with respect to a 
set F of FDs over R (or simply in 3NF if F is understood from context) if for every nontrivial 
FD X --+ A E F, either X is a superkey for R with respect to F or A is a prime attribute. 

A decomposition R is in 3NF with respect to a set F of FDs over R, with schema(R} = 
schema(R), if each Ri E R is in 3NF with respect to p+ [Rd. (When no ambiguity arises we will 
often say that Ri E R is in 3NF with respect to F to mean that Ri E R is in 3NF with respect to 
P+[Rd.) • 

Let us consider the relation schema EMPI of Example 4.1 together with its set of FDs Pl' 
The reader can verify that EMPI is in 2NF with respect to Pl' On the other hand, EMPI is 
not in 3NF, since DNAME --+ MNAME is a nontrivial FD but DNAME is not a superkey for 
R with respect to PI> and, in addition, MNAME is not a prime attribute. The reader can 
ascertain that the decomposition, {EMPt, EMPi} , with schema(EMPt} = {ENAME, DNAME} 
and schema(EMPi) = {DNAME, MNAME}, is in 3NF with respect to h 

Lemma 4.4 If a relation schema R is in 3NF with respect to a set F of FDs, then it is also in 
2NF with respect to F. 0 

We next proceed to give an alternative characterisation of 3NF. 

Definition 4.11 (Transitively dependent attribute) Let R be a relation schema and F be a set 
of FDs over R. An attribute A E schema(R} is transitively dependent on a set of attributes X 
~ schema(R) with respect to F (or simply A is transitively dependent on X if F is understood 
from context) if there exists a set of attributes Y ~ schema(R) such that F F= X --+ Y, F [;6 Y --+ 
X, F F= Y --+ A, A ¢ X and A ¢ Y (i.e. X --+ A and Y --+ A are nontrivial FDs). • 

Lemma 4.5 A relation schema R is in 3NF with respect to a set F of FDs if and only if every 
attribute that is transitively dependent on a key is prime. 

Proof. We prove the result by contraposition. 

If. Suppose that R is not in 3NF. Then there exists a nontrivial FD X --+ A E F such that X is 
not a superkey and A is not prime. Let K be any key for R with respect to F. We can deduce 
that F F= K --+ X, F [;6 X --+ K and F F= X --+ A. The result follows, since the non prime attribute 
A is transitively dependent on the key K. 

Only if. Suppose that an attribute A E schema(R} is non prime and that A is transitively 
dependent on a key K for R with respect to F. By the definition of transitively dependent it 
follows that there exists a set of attributes X ~ schema(R), such that F F= K --+ X, F [;6 X --+ K 
(which implies that X is not a superkey for R with respect to F) and F F= X --+ A, where A ¢ 
X. Bya straightforward induction on the minimal number of inference rules needed to prove 
X --+ A from F we can deduce that there exists a nontrivial FD Y --+ A E F, where A is non prime 
and Y is not a superkey. The result that R is not in 3NF with respect to F follows due to the FD 
Y --+ A E F. 0 

The following theorem, which was proved in [JF82], shows that testing whether a relation 
schema is in 3NF with respect to a set of FDs is NP-complete. 
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Theorem 4.6 Given a relation schema R and a set F of FDs over R, the problem of deciding 
whether R is in 3NF with respect to F is NP-complete. 

Proof We first show that the problem is in NP. In order to test whether R is in 3NF with 
respect to F, we need to check for each nontrivial FD X ~ A E F whether X is a superkey. 
This can be done in time polynomial in the size of F by using the algorithm CLOSURE, given 
as Algorithm 3.8 in Subsection 3.6.3 of Chapter 3, to compute X+. If X is not a superkey, 
then we need to determine whether A is prime. This problem is in NP, since from part (2) of 
Theorem 3.24 in Subsection 3.6.1 of Chapter 3 we know that the problem of deciding whether 
an attribute A E schema(R) is prime with respect to F is NP-complete. 

To show that the problem is NP-hard we present a polynomial-time transformation from 
the prime attribute problem mentioned above. Thus we would like to decide whether A E 

schema(R) is prime with respect to F. 

Let B, C and D be new attributes not in schema(R) and let S be a new relation schema, with 
schema(S) = schema(R) U {B, C, D}. In addition, let G be a set of FDs over S consisting of F 
together with the following FDs, whose left-hand sides are taken to be reduced (i.e. they are 
minimal with respect to the set G of FDs): 

1) ED ~ schema(S) for each attribute E E schema(R), 

2) schema(R)C ~ schema(S), 

3) BC~ A,and 

4) D~ B. 

From (1) we can deduce that D and each attribute in schema(R) is prime with respect to 
G, since ED is a key for S with respect to G. From (2) we can deduce that C is prime, since 
schema(R)C is a key for S with respect to G. Furthermore, from (4) we can deduce that S is in 
3NF with respect to G if and only if B is prime, since D is not a superkey for S with respect to 
G. 

In order to conclude the proof we show that A is prime with respect to F if and only if B is 
prime with respect to G. 

If Suppose that B is prime with respect to G and thus BY is a key for S with respect to G 
for some set of attributes Y C schema(S) - B. From (4) we can deduce that D tI Y, otherwise 
BY would not be a key for S. Moreover, C E Y, since no FDs in G apart from those in (1) 
functionally determine C non trivially. Therefore, we can rewrite BY as BCZ, with Y = CZ. 
From (2), (3) and the fact that D tI Z we can deduce that Z C schema(R) - A and thus G F= 
BCZ ~ schema(R) - A, since BCZ is a key for S. It follows that F F= Z ~ schema(R) - A, 
since G F= BCZ ~ D can only be derived on using (2). Thus ZA is a key for R with respect to 
F but Z is not, since CZ cannot be a key for S because of (2). The result that A is prime with 
respect to F now follows. 

Only if Suppose that A is prime with respect to F and thus XA is a key for R with respect to 
F for some set of attributes X S; schema(R) - A. From (2) and (3) we can deduce that BCX is 
a key for S with respect to G and thus B is prime with respect to G as required. D 

Third normal form was defined as a property of the relation schema over which the set F 
of FDs is specified and is thus independent of any particular relation rover R. We can also 
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define 3NF for a given relation rover R as follows, recalling that F(r) is the set of all FDs that 
are satisfied in r (see Definition 3.62 in Subsection 3.6.1 of Chapter 3). A relation rover R is in 
3NF ifR is in 3NF with respect to F(r). The surprising result, not withstanding Theorem 4.6, is 
that the problem of testing whether a specific relation rover R is in 3NF can be solved in time 
polynomial in the size of r [DHLM92J. The proof hinges on Theorem 3.27 in Subsection 3.6.1 
of Chapter 3, which states that for relations such as r we can test whether an attribute A E 

schema(R) is prime with respect to F(r) in time polynomial in the size of r, and on the following 
observation. Given an attribute A E schema(R) we can test in polynomial time whether there 
is a nontrivial FD X -+ A E F(r) such that X is not a superkey for R with respect to F(r). We 
conclude this subsection by outlining the proof of this observation. The equality set of r is 
defined as the family of sets of attributes of schema(R) such that Y is in the equality set of r, 
if there are two distinct tuples in r that agree exactly on Y. It can be shown that the closure 
of a set of attributes W of schema(R) with respect to F(r) is the intersection of all the sets of 
attributes that include W in the equality set of r, or schema(R) if no set of attributes in the 
equality set of r includes W. Thus r violates 3NF if and only if A is nonprime and there is a 
set of attributes XA in the equality set of r such that A .;. X and A is in the closure of X with 
respect to F(r) . 

4.4.3 Boyce-Codd Normal Form (BCNF) 

Boyce-Codd Normal Form (BCNF) was first defined in [Cod74J. Intuitively, a relation schema 
is in BCNF ifit is in first normal form and the left-hand side of each nontrivial FD in the given set 
ofFDs is a superkey for the relation schema with respect to this set ofFDs. Historically, BCNF 
should have been called Fourth Normal Form (4NF), since it was proposed as an improvement 
to 3NF. According to Date [Dat92c), in 1973 Boyce had actually called this new normal form 
4NF, but Codd [Cod741 called it 3NF viewing it as an improved normal form that supersedes 
3NF. Since BCNF is stricter than 3NF database researchers began to refer to this new normal 
form by its current name, i.e. BCNF. Another interesting anecdote is that, again according to 
Date [Dat92cj, in 1971 Heath defined 3NF in an equivalent manner to BCNF and thus maybe 
BCNF should have actually been called Heath Normal Form. Then, in 1977 Fagin [Fag77bj 
defined 4NF, a normal form which is stricter than BCNF taking into account both FDs and 
MVDs. Thus the historical opportunity to call BCNF byits rightful name 4NF was permanently 
lost. We have also noticed that database designers often confuse 3NF with BCNF and therefore 
the common statement that practical database design does not go beyond 3NF often means 
that practical database design actually aims for BCNF. 

Definition 4.12 (BCNF) A relation schema R is in Boyce-Codd Normal Form (BCNF) with 
respect to a set F of FDs over R (or simply in BCNF if F is understood from context) if for every 
nontrivial FD X -+ A E F, X is a superkey for R with respect to F. 

A decomposition R is in BCNF with respect to a set F of FDs over R, with schema(R) = 
schema(R), if each Ri E R is in BCNF with respect to F+ [Rd. (When no ambiguity arises we 
will often say that Ri E R is in BCNF with respect to F to mean that Ri E R is in BCNF with 
respect to F+ [Ril.) • 

Let us consider the relation schema ADDRESS of Example 4.3 together with its set of FDs F3 ' 
The reader can verify that ADDRESS is in 3NF with respect to F3. ADDRESS is not in BCNF, 
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since P --+ C is a nontrivial FD but P is not a superkey for R with respect to F3. The reader 
can ascertain that the decomposition, {ADDRESS!> ADDRESSz}, with schema(ADDRESSd = 
{S, C} and schema(ADDRESSz) = {P, C}, is in BCNF with respect to h 

The following lemma shows that BCNF is insensitive to the particular cover of the given set 
F ofFDs. 

Lemma 4.7 A relation schema R is in BCNF with respect to F if and only if for every nontrivial 
FD X --+ A E P+, X is a superkey for R with respect to F. 

Proof The if part is immediate from the definition of BCNF, so it remains to show the only if 
part. Assume that R is in BCNF with respect to F and that X --+ A E P+. We show that X is a 
superkey for R with respect to F. 

We claim that X --+ A E p+ if and only if there exists a subset Y 5; X such that Y is the 
left-hand side of a nontrivial FD in F. The claim follows by a straightforward induction on 
the minimal number of inference rules needed to prove X --+ A from F. The basis case is 
vacuously true, when no inference rules are needed, since in this case X --+ A E F. In the 
induction step there are two cases to consider. In the first case, the last inference rule to be 
used is decomposition which was preceded by augmentation in which case the result follows 
by inductive hypothesis. Similarly, in the second case, the last inference rule to be used is 
transitivity whereupon the result again follows by inductive hypothesis. 

Now, by the above claim there exists Y --+ B E F such that Y 5; X and B !f Y. In addition, Y is 
a superkey for R with respect to F, since R is in BCNF. The result that X is a super key follows 
on using transitivity, since F 1= X --+ Y by reflexivity and F 1= Y --+ schema(R), since Y is a 
superkey. 0 

We leave it to the reader to give a proof similar to the one provided in the above lemma in 
order to show that both 2NF and 3NF are also insensitive to the particular cover of the given 
set F of FDs. The following result can be obtained from the definitions of 3NF and BCNF. 

Lemma 4.8 If a relation schema R is in BCNF with respect to a set F of FDs, then it is also in 
3NF with respect to F. 0 

The following result taken from [DF92] shows one advantage of having only simple keys. 

Lemma 4.9 If a relation schema R is in 3NF with respect to a set F of FDs and every key for 
R with respect to F is simple then R is also in BCNF. 

Proof Assume that R is in 3NF and let X --+ A E F be a nontrivial FD. We need to show that X 
is a superkey for R with respect to F. Now, since R is in 3NF then either X is a superkey for R 
or A is prime. If X is a superkey then no violation of BCNF occurs, so assume that A is prime. 
It follows that A is a key for R, since every key for R with respect to F is simple and thus F 
1= A --+ schema(R). By the transitivity inference rule for FDs we obtain F 1= X --+ schema(R) 
from F 1= X --+ A and F 1= A --+ schema(R). Thus X is a superkey for R as required and R is in 
BCNF. 0 
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In fact the above lemma is also a consequence of the stronger result shown in [YS93, Mok97], 
namely that if a relation schema R is in 3NF with respect to a set F of FOs but is not in BCNF 
with respect to F, then it must have at least two distinct keys which overlap, i.e. such that their 
intersection is nonempty. 

Recall that we have assumed in Definition 3.57 given in Subsection 3.6.1 of Chapter 3 that 
all FDs are standard, i.e. we do not allow FOs of the form'" -+ Y. The next lemma follows 
from the fact that if the cardinality of the set of attributes of a relation schema R is two, then 
the left-hand side of every nontrivial FD in a set F of FDs over R must be a key. 

Lemma 4.10 If Ischema(R)1 ::: 2, then R is in BCNF with respect to any set F of FDs over R. 
o 

A sufficient condition for a relation schema to be in BCNF with respect to a set F of FDs 
over R is now given [TF82] . 

Lemma 4.11 If for all pairs of distinct attributes A, B E schema(R), we have that A rt 
(schema(R) - AB)+, then R is in BCNF with respect to F. 

Proof. We prove the result by contraposition. Suppose that R is not in BCNF and thus by 
Lemma 4.7 there exists a nontrivial FO X -+ A E p+ such that X is not a superkey for R with 
respect to F. It follows that there exists B E schema(R) - XA, since X is not a superkey. The 
result follows , since A E (schema(R) - AB)+ on using the reflexivity and transitivity inference 
ru~ 0 

The above lemma can be strengthened to if and only if, when the cardinality of the shortest 
key for R with respect to F is type(R)-1 [Z092b]. 

We next show that R is in BCNF if and only if it is free from update anomalies and redundancy 
problems. 

Theorem 4.12 The following statements, where F is a set of FDs over a relation schema R, 
are equivalent: 

1) R is in BCNF with respect to F. 

2) R has no redundancy problems with respect to F. 

3) R has no insertion anomalies with respect to F. 

4) R has no modification anomalies with respect to F. 

Proof. By Theorem 4.1 it is sufficient to show that R is in BCNF with respect to F if and only 
if R has no redundancy problems with respect to F. 

If. Suppose that R is not in BCNF and thus for some X -+ A E F, X is not a superkey. Let t\ 
and t2 be two tuples over R such that tdX+] = t2[X+] and for all BE schema(R) - X+, tdB] 
#- t2[B]. (Note that schema(R) - X+ is not empty, since X is not a superkey.) The result that 
R has a redundancy problem follows, since it is evident that {t\. t2} F= F due to the fact that Y 
~ X implies that y+ ~ X+. 
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Only if. Suppose that R has a redundancy problem and as a consequence there exists a 
relation rover R such that r F= F, and for some FD X -j> A E F there exist two distinct tuples 
tI, t2 E r such that tl [XA] = t2 [XA]. It follows that X is not a superkey for R with respect to 
F, since tJ!schema(R) - X] '# t2[schema(R) - X] . The result that R is not in BCNF follows 
immediately. 0 

A more general definition of redundancy in a relation with respect to a set F of FDs was 
given in [Vin98]. Informally, a relation has redundancy in it, if it contains a value that is 
implied by the other values in the relation through its set F of FDs. When a relation has such 
a redundant value then any change to this value will result in the violation of the set F of FDs. 

Consider the relation r over LECTURER shown in Table 4.8, where schema(LECTURER) = 
(ENAME, DNAME, UNIV), together with the set of FDs F = {ENAME -j> DNAME, DNAME 
-j> UNIV}. Then r has redundancy in it, since it satisfies F and changing one of the two 
occurrences of MIT in r to, say UCL, results in the violation of the FD DNAME -j> UNIV. On 
the other hand, if we let rl = 1l'ENAME.DNAME(r) and r2 = 1l'DNAME,uNlv(r), then the reader can 
verify that rl and r2 are free of redundancy. As the ensuing theorem shows it is no coincidence 
that R is not in BCNF with respect to F. 

Table 4.8 The relation T over LECTURER 

ENAME DNAME UNIV 
Paul Computing MIT 

Angela Computing MIT 

Definition 4.13 (Value redundancy) Let r be a relation over a relation schema R that satisfies 
a set F of FDs and let t be a tuple in r. The occurrence of a value t[A], where A E schema(R), 
is redundant in r with respect to F if for every replacement of t[A] by a distinct value v E 

DOM(A) such that v i= t[A], resulting in the new relation r', we have that r' [;t:: F. 

A relation schema R is said to be in Value Redundancy Free Normal Form (or simply VRFNF) 
with respect to a set F ofFDs over R if there does not exist a relation rover R and an occurrence 
of a value t[A] that is redundant in r with respect to F. • 

The following result, presented in [Vin98], shows that given a set F of FDs VRFNF is 
equivalent to BCNF. 

Theorem 4.13 A relation schema R is in BCNF with respect to a set F of FDs over R if and 
only if R is in VRFNF with respect to F. 

Proof. If. Suppose that R is in VRFNF and let X -j> A E F+ be a nontrivial FD. Moreover, 
let r be a relation over R and let tl and t2 be two distinct tuples in r. Now, since t2[A] is not 
redundant in r with respect to F, there exists a value, v E DOM(A), which is distinct from 
t2[A], such that replacing t2[A] by v results in the new relation r', with r' F= F. We claim that 
tl [X] '# t2 [X]. There are two cases to consider. In the first case we have in r that tl [A] = t2 [A]. 
Thus tI[X] '# t2X], otherwise r' [;t:: F, since in r', tl [A] '# t2[A]. In the second case we have in r 
that tl [A] '# t2 [A]. Thus again t) [X] '# t2X], otherwise r [;t:: F. The claim is now substantiated 
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implying that X is a superkey for R with respect to F, and thus R must be in BCNF with respect 
to F as required. 

Only if. Suppose that R is in BCNF with respect to F. Let r be a relation over R, t E r and A E 

schema(R). There are two cases to consider. In the first case A E K for some keydependencyK 
~ schema(R) E KEYS(F). Then replacing t[A) by a value not in ADOM(r) results in a relation 
r' that satisfies F. In the second case for all key dependencies K ~ schema(R) E KEYS(F), 
A >t K, i.e. A is nonprime. Then replacing t[A) by any distinct value v E DOM(A) such that 
v =F t[A) results in a relation r' that satisfies F. 0 

As a corollary of Theorem 4.13 all the statements of Theorem 4.12 regarding the update 
anomalies and redundancy problems are equivalent to R being in VRFNF with respect to F. 
It is interesting to note that Vincent [Vin98) has also shown that, in the presence of FDs and 
MVDs, VRFNF is equivalent to R being in 4NF. Thus a relation schema being in VRFNF with 
respect to a set of data dependencies is a robust indication that this relation schema is free of 
redundancy. 

A special case of BCNF, which is important, arises when a relation schema has a unique 
key with respect to its set of FDs. In this case there is only one choice of primary key and 
thus database design is made easier. We first define a normal form which requires a relation 
schema to have a unique key [BDLM91) . 

Definition 4.14 (UKNF) A relation schema R is in Unique Key Normal Porm (UKNF) with 
respect to a set F of FDs over R (or simply in UKNF if F is understood from context) if the 
cardinality of KEYS(F) is one. 

A decomposition R is in UKNF with respect to a set F of FDs over R, with schema(R) = 
schema(R), if each Ri E R is in UKNF with respect to P+[R;). (When no ambiguity arises we 
will often say that Ri E R is in UKNF with respect to F to mean that Ri E R is in UKNF with 
respect to P+[R;).) • 

Let us define LEFT(X) with respect to a set F of FDs over R, where X ~ schema(R), to be 
the set of attributes in X that are either not present in any of the FDs in F, or are included in 
left-hand sides of FDs in F but not in right-hand sides of such FDs. More formally, assuming 
that F is understood from context, we have 

LEFT(X) = {A E X I A >t (X - A) +). 

Theorem 4.14 A relation schema R is in UKNF with respect to a set F of FDs over R if and 
only ifLEFT(X) is a superkey for R with respect to F, where X = schema(R). 

Proof. We first show by contraposition that LEFT(X) 5; K, where K is a key for R with respect 
to F. If for some attribute A E schema(R), A >t K, then A E K+ and thus A E (X-A)+ by the 
augmentation and decomposition inference rules. It follows that A >t LEFT(X), and therefore 
LEFT(X) ~ K. 

If. Suppose that LEFT(X) is a superkey for R with respect to F. It follows that LEFT(X) is a 
unique key for R due to the fact that for any key K for R LEFT(X) ~ K. 

Only if. Suppose that R is in UKNF and K is its unique key. We claim that K = LEFT(X) 
implying the result. We have already shown that LEFT(X) 5; K and thus it only remains to 
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show that K S; LEFT(X). If A rf. LEFT(X), then A E (X - A)+ and thus X-A is a superkey for R. 
It follows that A rf. K as required, since K is the unique key for R with respect to F. D 

By the above proof if we strengthen the requirement that LEFT(X) be a key for R with 
respect to F, instead of just being a superkey, the result still holds. An immediate consequence 
of the fact that LEFT(schema(R» S; K, for any key K for R with respect to F, is that a prime 
attribute belongs to all the keys for R if and only if it is a member ofLEFT(schema(R». Another 
immediate consequence of the above theorem is that UKNF can be checked in time polynomial 
in the sizes of Rand F by using the polynomial-time algorithm given in Algorithm 3.8 in 
Subsection 3.6.3 of Chapter 3 that computes the closure of a set of attributes with respect to F. 

A relation schema may be in UKNF with respect to a set F ofFDs but not in BCNF with respect 
to F. For example, let EMP be a relation schema with schema(EMP) == {EN, CN, SAL}, where 
EN stands for employee name, CN stands for child name and SAL stands for the employee's 
salary. In addition, let F == {EN ~ SAL} be a set ofFDs over EMP implying that {EN, CN} is 
the unique key (and thus the primary key) for EMP. Thus EMP is in UKNF with respect to F, 
but EMP is not in BCNF with respect to F, since EN is not a key for EMP with respect to F. 
Thus, we must strengthen UKNF if we also require a relation schema to be in BCNF [Bis891. 

Definition 4.15 (ONF) A relation schema R is in Object Normal Form (ONF) with respect to 
a set F of FDs over R (or simply in ONF if F is understood from context) if it is both in UKNF 
and BCNF with respect to F. 

A decomposition R is in ONF with respect to a set F of FDs over R, with schema(R) == 
schema(R), if each Ri E R is in ONF with respect to F+[Rd. • 

We can now show that ONF is equivalent to 3NF and UKNF, so 3NF and BCNF are equivalent 
in this special case. 

Theorem 4.15 A relation schema R is in ONF with respect to a set F ofFDs over R if and only 
ifit is in 3NF and UKNF with respect to F. 

Proof. The only if part of the theorem is an immediate consequence of Lemma 4.8. For the if 
part suppose that R is in 3NF and UKNF and let X ~ A be a nontrivial FD in F. We claim that 
A is nonprime thus implying that X is a superkey for R and therefore R is in BCNF as required. 
Now, by the augmentation and decomposition inference rules A E (schema(R)-A)+ and thus 
there exists a superkey K' for R such that A rf. K'. The result that A is non prime follows, since 
R is in UKNF and thus A rf. K, where K S; K' is the unique key for R. D 

We next consider two theorems pertaining to the computational complexity of testing 
whether a relation schema is in BCNF. The proof of the first theorem follows directly from 
algorithm CLOSURE, given as Algorithm 3.8 in Subsection 3.6.3 of Chapter 3, which computes 
the closure of a set of attributes X with respect to F. 

Theorem 4.16 Given a relation schema R and a set F of FDs over R, the problem of deciding 
whether R is in BCNF with respect to F can be solved in time polynomial in the sizes ofR and 
F. D 
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The second theorem, which is proved in [BB79], shows that testing whether a proper subset 
of a relation schema R is in BCNF with respect to a set F of FDs over R is co-NP-complete; a 
relation schema S, with schema(S) c schema(R), is said to be in BCNF with respect to a set 
F of FDs over R, if S is in BCNF with respect to F+ lSI. This implies that, assuming that P =1= 

co-NP, testing whether R is in BCNF with respect to F is intractable. 

Theorem 4.17 Given a relation schema R and a set F of FDs over R, the problem of deciding 
whether a relation schema S, with schema(S) C schema(R), is in BCNF with respect to F is 
cO-NP-complete. 

Proof We sketch the main idea of the proof. In order to prove the result we show that the 
complement of the above problem, i.e. the problem of whether S violates BCNF is NP-complete. 
Showing that the problem is in NP is easily done by testing whether for a guessed nontrivial 
FD X ->- A over R, XA <; schema(S) and X+ =1= schema(S). 

To show that the problem is NP-hard a polynomial-time transformation from the hitting 
set problem, which is described in the proof of Theorem 3.35 in Subsection 3.6.6 of Chapter 3, 
can be given. Recall the description of the hitting set problem. 

The hitting set problem: Given a family SI , S2, ... , Sn of subsets of a set U, does there exist 
a subset W <; U, such that Vi E {I, 2, . .. , n}, IW n S;I = 1. Such a subset W of U is 
called a hitting set, in other words W is a hitting set if for each i the cardinality of the 
intersection ofW and Sj is one. 

Let R be a relation schema with schema(R) = U U {BI, B2 , ... , Bn, C, D}, where 
{B I , B2 , . ' " Bn, C, D} n U = 0, and let schema(S) be a relation schema with schema(S) = 
U U {C, D}. We define four sets ofFDs, FI, F2, F3 and F4 over R and let F = FI U F2 U F3 U F4 . 

1) FI = {Aj ->- Bj I Aj E Sj for some i E {I , 2, .. . , n}}; this set of FDs captures each 
membership of the form Aj E Sj. 

2) F2 = {AjAk ->- CD I Aj, Ak E Sj for some i E {I, 2, ... , n} andAj =1= Ak}. 

3) F3 = {BIB2 ... Bn ->- C}. 

4) F4 = {CD ->- U}. 

It can then be shown that W is a hitting set of U if and only if S violates BCNF, where 
schema(S) = U U {C, D}. 0 

BCNF was defined as a property of the relation schema over which the set F ofFDs is specified 
and is thus independent of any particular relation rover R. We can also define BCNF for a 
given relation rover R as follows. A relation rover R is in BCNF if R is in BCNF with respect 
to F(r). The surprising result, not withstanding Theorem 4.17, is that the problem of testing 
whether the projection of r onto a proper subset X of schema(R) is in BCNF can be solved in 
time polynomial in the size of r [DHLM92). The proof of this result is similar to that of the 
corresponding polynomial-time algorithm for testing whether a relation r is in 3NF (see the 
discussion at the end of Subsection 4.4.2). 
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4.4.4 Inclusion Dependency Normal Form (lDNF) 

BCNF does not take into account referential integrity which apart from entity integrity is a 
fundamen tal constraint of the relational model. In the same manner that FDs generalise the 
central concept of key, INDs generalise the central concept of foreign key. Herein we consider 
how INDs can be incorporated in to the database design process by considering another normal 
form, called Inclusion Dependency Normal Form (IDNF), that assumes that the semantics of 
the application are described in terms of a set of FDs and INDs. We will show that when a 
database schema is in IDNF with respect to a set ofFDs and INDs then certain problems that 
would have otherwise arisen are solved and, in addition, further redundancy is removed. 

Definition 4.16 (IDNF) A database schema R is in Inclusion Dependency Normal Form 
(IDNF) with respect to a set F of FDs over R and a set I of INDs over R (or simply in IDNF if F 
and I are understood from context) if 

• R is in BCNF with respect to F, and 

• the set I ofINDs is noncircular and key-based. • 
In the special case when all the keys are simple then the INDs are all unary. 

The justification for insisting that I be noncircular and key-based can be found in Section 4.1, 
wherein we showed the problems that arise if I were either circular or not key-based. In 
Example 4.4 we demonstrated that when an IND that is not key-based contains a proper 
superset of a key then redundancy arises, in Example 4.5 we demonstrated that when an IND 
that is not key-based contains a proper subset of a key then there is insufficient information to 
infer key values, and in Example 4.6 we demonstrated that circular INDs give rise to semantic 
anomalies. We now analyse these three examples in more detail showing how they can be 
converted into database schemas in IDNF. 

In the first example removing a redundant attribute and modifying the set of INDs 
accordingly solves the problem. 

Example 4.12 Consider the database schema R = {HEAD, LECT} of Example 4.4 together 
with its set F of FDs and its set I of INDs. The reader can verify that R is in BCNF with respect 
to F and that I is a noncircular set of INDs. On the other hand, R is not in IDNF with respect to 
F and I, since the IND HEAD[HD) <; LECT[LD) is not key-based. The reader can verify that 
the decomposition, {NEW _HEAD, LECT}, with schema(NEW _HEAD) = (H) (i.e. D is removed 
fromschema(HEAD» isin IDNFwith respect toF' = (LECT:L-+ D) and I' = (NEW_HEAD[H) 
<; LECT[Lll, since NEW _HEAD[H) <; LECT[L) is key-based. • 

In the second example adding an attribute and modifying the set of FDs and INDs 
accordingly solves the problem. 

Example 4.13 Consider the database schema R = (EMP, PROn of Example 4.5 together with 
its set F ofFDs and set I ofINDs. The reader can verify that Ris in BCNFwith respect to F and that 
I is a noncircular set of INDs. On the other hand, R is not in IDNF with respect to F and I, since 
the IND EMP[P) <; PROJ(P) is not key-based. Let us assume that an employee working on a 
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project works in one location only. The reader can verify that the decomposition, (NEW _EMP, 
PROn, with schema(NEW _EMP) = {E, P, L'} is in IDNF with respect to P' = {NEW -.EMP: E---+ 
PL'} and [' = {NEW _EMP[PL'] S; PROJ[PL]}, since NEW _EMP[PL'] S; PROJ[PL] is key-based . 

• 
In the third example adding a relation schema and modifying the set of INDs accordingly 

solves the problem. 

Example 4.14 Consider the database schema R = {BOSS}, where BOSS is the schema from 
Example 4.6 together with an empty set F of FDs and the set of INDs I = {BOSS[MGR#] S; 

BOSS[EMP#]}. The reader can also verify that R is not in IDNF, since I is a circular set ofINDs. 
The reader can also verify that the decomposition {EMPS, BOSSES}, with schema(EMPS) = 
{EMP#} and schema(BOSSES) = {MGR#} is in IDNF with respect to F and [' = {BOSSES [MGR#] 
S; EMPS[EMP#]}, since [' is noncircular. • 

Recall the results from Subsection 3.6.11 of Chapter 3 concerning the interaction between 
FDs and INDs. In particular, we repeat the next definition to refresh the reader's memory. 

Definition 4.17 (Interaction between FDs and INDs) A set F of FDs over R is said not to 
interact with of set I of INDs over R, if 

1) for all FDs a over R, for all subsets G S; F, G U I F a if and only if G F a, and 

2) for all INDs f3 over R, for all subsets J S; I, F U J F f3 if and only if J F f3. • 
IfF and I do not interact then the algorithms in database design that use logical implication 

can be implemented more efficiently than would otherwise be the case. In particular, the 
implication problem for FDs on their own is linear time and for noncircular INDs on their 
own it is NP-complete; if the INDs are typed then their implication problem is polynomial 
time and if the INDs are unary then their implication problem is linear time. Taken together 
the implication problem for FDs and INDs is, in general, undecidable and the implication 
problem for FDs and non circular INDs has a lower bound of exponential time complexity. 
When the INDs are unary then the implication problem for FDs and unary INDs is polynomial 
time. (Recall Subsection 3.6.11 of Chapter 3 for more details on the implication problem for 
FDs and INDs.) 

The next result is an immediate consequence of Theorem 3.54 in Subsection 3.6.11 of 
Chapter 3. It shows that IDNF has an additional desirable property, namely that of no 
interaction between the sets F and I ofFDs and INDs, respectively. 

Theorem 4.18 If R is in IDNF with respect to a set F of FDs over R and a set I of INDs over 
R, then F and I have no interaction. 0 

Apart from having the desirable property of there being no interaction between the given 
set of FDs and INDs, we can also justify IDNF in terms of removing attribute redundancy (see 
Definition 4.18) and satisfying a generalised form of entity integrity (see Definition 4.19). 
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Let ~ = F U I, where F is a set of FDs over R and I is a set of noncircular INDs over R. 
Informally, an attribute A in a relation schema R E R is redundant, if whenever d is some 
database over R, which satisfies the given set ~ of FDs and INDs, the following condition 
holds. The relation rEd over R is nonempty and contains an A-value, say t[A] with t E r, 
that is implied by the other values in the database through the set ~. When such an attribute 
as A is redundant then any replacement of the A-value by another value in DOM(A) will result 
in the violation of the set ~ of FDs and INDs. 

Consider the database d = {rl, r2} over R = {MANAGER, EMPLOYEE}, where rl and r2 
are shown in Tables 4.9 and 4.10, respectively, with schema(MANAGER) = {MGR, DEPT} and 
schema(EMPLOYEE) = {EMP, DEPT}. In addition, let F = {EMPLOYEE; EMP ~ DEPT} be 
a set of FDs over R, I = {MANAGER[MGR, DEPT] S; EMPLOYEE[EMP, DEPT]} be a set of 
INDs over R and ~ = F U I. Note that F U I F= MANAGER; MGR ~ DEPT by the pullback 
inference rule. Then DEPT E schema(MANAGER) is a redundant attribute, since d F= ~ and 
changing the occurrence of Computing in rl to any other value v =1= Computing, say Maths, 
results in a database that violates the IND MANAGER[MGR, DEPT] S; EMPLOYEE[EMP, 
DEPT] and thus violates ~. Even if we were to add the tuple <Peter, Maths> to r2, then the 
resulting database, which now satisfies MANAGER[MGR, DEPT] S; EMPLOYEE[EMP, DEPT], 
will violate the FD EMPLOYEE; EMP ~ DEPT and thus will violate ~. On the other hand, if 
we remove the attribute DEPT from schema(MANAGER), then the reader can verify that no 
attribute in either schema(MANAGER) or in schema(EMPLOYEE) is redundant. Intuitively, 
DEPT in schema(MANAGER) is redundant, since its values can be inferred from DEPT in 
schema(EMPLOYEE) due to ~ and the pullback inference rule. 

Table 4.10 The relation T2 over EMPLOYEE 

EMP DEPT 
Peter Computing 
Paul Maths 

Definition 4.18 (Attribute redundancy) An attribute A E schema(R), where R is a relation 
schema in R, is redundant with respect to a set ~ of FDs and INDs over R, if whenever d is a 
database over R that satisfies ~ and rEd is a nonempty relation over R, then for all tuples 
t E r, if t[A] is replaced by a distinct value v E DOM(A) such that v =1= t[A], yielding a new 
database d', then d' ~ ~. 

A database schema R is said to be in Attribute Redundancy Free Normal Form (or simply 
ARFNF) with respect to a set ~ of FDs and INDs over R if there does not exist an attribute A 
in a relation schema R E R which is redundant with respect to ~. • 

Recall the definition of the chase procedure with respect to a set ~ of FDs and INDs from 
Subsection 3.6.8 in Chapter 3. Intuitively a database schema R satisfies generalised entity 
integrity with respect to a set ~ of FDs and INDs over R if whenever a tuple, say t, is added to 
a relation over R in a database dover R as a result of an IND, then prior to t being added to 
the relation, it must be defined on all the values of at least one key for R. 
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Defmition 4.19 (Generalised entity integrity) Let R be a database schema, ~ = F U I be a set 
of FDs and INDs over R, and let dover R be a database that satisfies ~. Suppose that each 
time we add a tuple t to a relation rEd over R, we invoke the chase procedure in order to 
enforce the propagation of insertions of tuples due to the INDs in I. 

Then a tuple t that is added to the current state of r during the computation ofICHASE(d, ~) 
is entity-based, if there exists at least one key K for R with respect to the set of FDs {R : X --+ Y 
I R : X --+ Y E F} such that for all A E K, t[A] is not a new value that is assigned to t as a result 
of invoking the IND rule. 

A database schema R satisfies generalised entity integrity with respect to a set ~ = F U I of 
FDs and INDs over R if for all databases dover R, all the tuples that are added to relations in 
the current state of d during the computation ofICHASE(d, ~) are entity-based. • 

The next theorem gives a complete justification for IDNF in terms of removing redundancy 
and satisfying generalised entity integrity. 

Theorem 4.19 A database schema R is in IDNF with respect to a set ~ consisting of a set F 
of FDs and a set I of noncircular INDs over R if and only if R is in ARFNF with respect to ~, 
all the relation schemas R E R are in VRFNF with respect to the set of FDs {R : X --+ Y I R : X 
--+ Y E F} and R satisfies generalised entity integrity with respect to ~ . 

Proof. We sketch the main ideas behind the proof; the full proof can be found in [LV99]. 

If. Satisfaction of generalised entity integrity implies that I is a superkey-based set of INDs. 
Moreover, R being in ARFNF implies that I must be a key-based set of INDs, otherwise the 
attributes on the left-hand side of a superkey-based IND that do not belong to a key are 
redundant in any such superkey-based IND. The result that R is in IDNF with respect to ~ 
follows by Theorem 4.13, which implies that when each R E R is in VRFNF then R is also in 
BCNF with respect to F. 

Only if. If R is in IDNF with respect to ~ then I is a key-based set of INDs implying that 
R satisfies generalised entity integrity. Moreover, if R is in IDNF with respect to ~ then R 
is in ARFNF due to the following argument. Let A E schema(R) be an attribute and do be 
a database such that the relation rEdo over R has a single tuple t over R containing only 
zeros and all other relations in d are empty. We invoke ICHASE(do, ~) to obtain a database 
d1 satisfying~ . We observe that due to I being noncircular r is not modified by the chase 
procedure. We then replace t[A] in db which is zero, by one, and invoke ICHASE(d1, ~) to 
obtain the new database d2 satisfying~. Again r remains unmodified by the chase procedure 
due to I being noncircular. The database d2 exhibits the fact that A is nonredundant, since by 
Theorem 4.18 F and I have no interaction and thus changing t[A] in d2 back to its original value 
zero results in a new database d3, where ICHASE(d3, ~) = d3 and thus d3 1= ~ as required by 
Definition 4.18. The result now follows by Theorem 4.13 which implies that when each R E R 
is in BCNF with respect to F then each R E R is in VRFNF. 0 

Related normal forms for FDs and INDs and the motivation behind them can be found in 
[CA84, MR86b, MS89a, LG92, MR92a, Mar94]. 
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4.5 Horizontal Decompositions 

All the normal forms discussed in the previous section result in vertical decompositions, i.e. we 
start with a relation schema R and decompose R into further relation schemas whose attribute 
sets are subsets of schema(R). Assuming the decomposition R is lossless this corresponds to 
being able to recover a relation rover R by projecting r onto R and then joining the projections. 

Herein, we briefly discuss the possibility of a horizontal decomposition of a relation schema 
R, i.e. splitting R into two or more relation schemas each having the same attribute set as R. 
In this case a relation rover R will be split into two or more disjoint relations using one or 
more selections and r will be recovered by applying the union operator [Fag79, DP84, GM85b, 
PDGV89]. 

Horizontal decompositions are especially useful in situations when there are exceptions to 
integrity constraints. We will concentrate on the case of exceptions to FDs. Assume a relation 
rover R and an FD X -+ Y over R. If only a few tuples in r cause the FD X -+ Y to be violated, 
then we can partition r into two relations rl and r2, where rl satisfies X -+ Y and r2 violates X 
-+ Y. In order to formalise the notion of a horizontal partition of r we define the concept of 
X-complete relations. 

Defmition 4.20 (X-complete relations) Let R be a relation schema, X be a set of attributes 
included in schema(R), and let r be a relation over R. A relation 5 is X-complete with respect 
to r (or simply X-complete if r is understood from context) if 5 is a subset of r and all the 
X-values of 5 are disjoint from the X-values of r - 5. Symbolically, 'It I E 5, '1t2 E r - 5, tl [X] 
i= t2[X] . • 

We next define the afunctional dependency which formalises the notion of an exception to 
a functional dependency. 

Defmition 4.21 (Afunctional dependency) An Afunctional Dependency over schema R (or 
simply an AFD) is a statement of the form R : X fr Y (or simply X fr Y whenever R is 
understood from context), where X, Y ~ schema(R). 

The AFD X fr Y is satisfied in r, denoted by r F= X fr Y, if for all nonempty X-complete 
relations,s, with respect to r, 5 violates the FD X -+ Y, i.e. 5 Pf: X -+ Y. • 

By the definition of an AFD the AFD X fr Y is satisfied in a relation rover R if for every 
X-value of a tuple in r there exist at least two tuples with this X-value which violate the FD X 
-+ Y. This motivates partitioning a relation r that violates an FD X -+ Y into two relations rl 
and r2 such that rl is the largest X-complete relation with respect to r such that rl F= X -+ Y. 
It can be deduced that r2 = r - rl is the largest X-complete relation with respect to r such that 
r2 F= X fr Y. 

Example 4.15 Let PHONE be a relation schema, with schema(PHONE) = {ENAME, EXT}, 
where ENAME stands for employee name and EXT stands for the extension number of an 
employee's telephone number. In general, we require that the FD ENAME -+ EXT holds. A 
relation r over PHONE that violates the FD ENAME -+ EXT is shown in Table 4.11. 
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The largest ENAME-complete relation r, with respect to r that satisfies the FD ENAME-+ 
EXT is shown in Table 4.12; the relation schema of r, is PHONE" with schema(PHONEd = 
schema(PHONE). The relation r2 = r- r" shown in Table 4.13, is the largest ENAME-complete 
relation with respect to r that satisfies the AFD ENAME fr EXT; the relation schema of r2 is 
PHONE2, with schema(PHONE2) = schema(PHONE). • 

Table 4.11 The relation T over 
PHONE 

ENAME EXT 
Mark 3684 
Dan 3685 
Reuven 3686 
Naomi 3687 
Naomi 3688 

Table4.12 The relation Ti over 
PHONE, 

ENAME EXT 
Mark 3684 
Dan 3685 
Reuven 3686 

Table 4.13 The relation T2 over 
PHONE2 

ENAME EXT 
Naomi 3687 
Naomi 3688 

The horizontal decomposition induced by exceptions to FDs can be described as follows. 
Suppose that we have a relation schema R, an FD X -+ Y over R and assume that the database 
designer knows that relations rover R will not, in general, satisfy X -+ Y. The decomposition 
step induced by such an exception is to split R into two relation schemas, R, and R2, with 
schema(Rd = schema(R2) = schema(R) and to associate the FD X -+ Y with R, and the AFD 
X fr Y with R2. This decomposition process generalises to sets ofFDs and AFDs. 

The important concept of conflict between a set F of FDs over R and a set E of AFDs over R 
needs to be taken into account when decomposing horizontally with respect to exceptions to 
FDs. For example, ENAME -+ EXT and ENAME fr EXT are in conflict, since it cannot be the 
case that both r 1= ENAME -+ EXT and r 1= ENAME fr EXT. Therefore, this requires that 
r be decomposed horizontally in order to avoid this conflict. In this particular example the 
exception could represent employees having more than one telephone. 

Definition 4.22 (Conflict between FDs and AFDs) A set F ofFDs over R and a set E of AFDs 
over R are in conflict if and only if for some AFD X fr Y E E, F 1= X -+ Y. • 

We briefly describe below the main step in horizontally decomposing a relation schema 
with respect to a set of FDs and AFDs. It is assumed that at each stage of the decomposition 
F and E are not in conflict and an FD X -+ Y and its counterpart X fr Yare considered. 
Obviously, adding X -+ Y to F and correspondingly adding X fr Y to E will result in a 
conflict, so the idea is to decompose R horizontally into two relation schemas, one with X 
-+ Y in its set of FDs and the other with X fr Y in its set of AFDs, provided that no conflict 
arises. 

Specifically, during a step of the horizontal decomposition process we consider a set F of 
FDs and a set E of AFDs both over R that are not in conflict. In addition, we consider an FD 
X -+ Y and its counterpart AFD X fr Y such that both F U E ~ X -+ Y and F U E ~ X fr Y 
obtain. From this specification it follows that F U E U {X -+ Y} and correspondingly F U E 
U {X fr Y} are also not in conflict. Thus as a result of this specification we replace R by two 
relation schemas R, and R2, with schema(R,} = schema(R2} = schema(R}, and we replace F U 
E by two sets of data dependencies such that F U E U {X -+ Y} is associated with R, and F U E 
U {X fr Y} is associated with R2' 
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We refer the reader to [DP84, PDGV89j for a sound and complete set of inference rules for 
FDs and AFDs and for a polynomial-time algorithm which solves the implication problem for 
FDs and AFDs. 

4.6 Algorithms for Converting a Relation Schema into Normal 
Form 

So far we have presented the normal forms and the desirable properties that we aim to achieve 
in a database which is in a normal form with respect to a given set of data dependencies. 
We now tackle the problem of how to achieve such a normal form. The solution comes 
in two stages. In the first stage we present an algorithm that can be used to output a 3NF 
or BCNF database schema given a set of FDs over a relation schema R. In the second stage 
we assume that the database schema, say R, is already in 3NF or BCNF and we present an 
algorithm that can be used to transform this database schema into one which is in IDNF 
given a set of FDs and noncircular INDs over R (we can easily relax the definition of IDNF 
such that R is required to be in 3NF rather than the stricter condition of being in BCNF). The 
success of the process of relational database design is dependent on the quality of the database 
schema which is output from these algorithms, so we investigate the desirable properties of 
the database schema output by each algorithm. For 3NF we can achieve a lossless join and 
dependency preserving decomposition but for BCNF we can only guarantee, in general, that 
the output database schema is a lossless join decomposition. The algorithm we present for 
transforming the resulting database schema into IDNF comprises four heuristics which when 
applied iteratively to the database schema result in an output database schema which is in 
IDNF. 

In Subsection 4.6.1 we present a 3NF synthesis algorithm, in Subsection 4.6.2 we present 
a BCNF decomposition algorithm, and in Subsection 4.6.3 we present a heuristic algorithm 
which transforms a decomposition in BCNF into one which is in IDNF. 

4.6.1 A 3NF Synthesis Algorithm 

We have introduced the synthesis approach to relational database design in Section 4.3. Herein 
we present the details of a 3NF synthesis algorithm, which given as input a relation schema 
R and a set F of FDs over R, outputs a database schema R which is in 3NF with respect to F 
and is both lossless and dependency preserving with respect to F. The algorithm consists of 
three steps: the first step preprocesses the input set of FDs in order to transform it into an 
appropriate minimum cover, the second step synthesises each FD in the produced cover into a 
relation schema, and finally the third step ensures that the output database schema is lossless 
by ensuring that the attribute set of one of its relation schemas is a superkey for R with respect 
to the input set of FDs. 

We first give the pseudo-code of an algorithm, designated MINIMISE(R, F), which returns 
a cover of F, which is minimum and such that the right-hand sides and left-hand sides 
of the FDs in the cover are reduced (i.e. they are minimal with respect to F). Recall that 
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Algorithm 3.10 given in Subsection 3.6.5 of Chapter 3, which was designated MINIMUM(F), 
returns a minimum cover ofF. 

Algorithm 4.1 (MINIMISE(R, F» 
1. begin 
2. Min := MINIMUM(F); 
3. for each X ~ Y E Min do 
4. W:=X; 
5. for each A E X do 
6. if Min F= (W -A) ~ X then 
7. W := W - {A}; 
8. end if 
9. end for 
10. Min := (Min - (X ~ Y)) U {W ~ Y}; 
11. end for 
12. for each X ~ Y E Min do 
13. W:=Y; 
14. for each A E Y do 
15. G:= (Min - (X ~ Y)) U {X ~ (W -A)}; 
16. ifG F= X ~ Y then 
17. W:= W - {A}; 
18. end if 
19. end for 
20. Min := (Min - (X ~ Y)) U {X ~ W}; 
21. end for 
22. return Min; 
23. end. 

Next, the pseudo-code of an algorithm, designated SYNTHESISE(R, F), which returns a 
lossless join and dependency preserving decomposition of schema(R) in 3NF with respect to 
a set F of FDs over R, is given below. 

Algorithm 4.2 (SYNTHESISE(R, F» 
1. begin 
2. Min := MINIMI5E(R, F); 
3. Out:= 0; 
4. for each X ~ Y E Min do 
5. let 5 be a relation schema with schema(S) = XY; 
6. Out := Out U {5}; 
7. end for 
8. if Out is not a lossless join decomposition 
9 of schema(R) with respect to F then 
10. let S be a relation schema, where schema(S) 

is a key for R with respect to F; 
11. Out := Out U {S}; 
12. end if 
13. return Out; 
14. end. 
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We leave it to the reader to verify that Algorithm 4.2 executes in time polynomial in the sizes 
ofR and F; we note that by the results in Subsections 3.6.5 and 3.6.1 of Chapter 3, respectively, a 
minimum cover ofF and, respectively, a key for R with respect to F can be found in polynomial 
time in the size of F. 

Theorem 4.20 Given a relation schema R and a set F of FDs over R SYNTHESISE(R, F}, 
whose pseudo-code is given in Algorithm 4.2, outputs a lossless join dependency preserving 
decomposition of schema(R} which is in 3NF. 

Proof. Let R be the database schema output from SYNTHESISE(R, F} and let G be the output 
of MINIMISE(R, F}. Then R is dependency preserving, since G is a cover of F and by line 5 of 
Algorithm 4.2 we have that for each X ~ Y E G there is a relation schema S, with schema(S} = 
XY. It follows by part (2) of Theorem 4.2 that R is a lossless join decomposition of schema(R} 
with respect to G and therefore also with respect to F. 

It remains to show that R is in 3NF with respect to F. Since p+ = G+ we prove the result with 
respect to G. Let S be a relation schema in R and X ~ Y be the FD in G+ [S] that constitutes S 
in line 5 of Algorithm 4.2. By the for loop in Algorithm 4.1 beginning at line 5 and ending at 
line 9, it follows that X is a key for S with respect to G+[S). 

Now assume that S is not in 3NF with respect to G+[S); since S is not in 3NF there exists 
a nontrivial FD W ~ A E G+[S), such that W is not a superkey for S and A is nonprime. It 
follows that A E Y, since X is a key for S with respect to G+ [S]. Moreover, X ~ Wand W ~ X 
if. G+ [S], since W is not a superkey for S. We conclude the proof by arriving at a contradiction 
of the fact that G is the output of MINIMISE(R, F}. 

LetH = (G - (X ~ Y}) U {X ~ Y-A}. It follows thatH F= W ~ A, since G [;t= W ~ Xand 
W ~ A E G+[S) . Furthermore, since W ~ XY -A, H F= X ~ W, and thus by the transitivity 
inference rule H F= X ~ A implying that H F= X ~ Y. Therefore H is a cover of G. By the for 
loop in Algorithm 4.1 beginning at line 14 and ending at line 19, it follows that G could not 
have been output from MINIMISE(R, F}, leading to the desired contradiction. D 

We next demonstrate the synthesis algorithm with a nontrivial example. 

Example 4.16 Consider a relation schema R, with schema(R} = {A, B, C, D, E, G, H, J, K} 
together with a set of FDs F = {A ~ B, B ~ CD, D ~ B, ABE ~ K, E ~ J, EG ~ H, H 
~ G} over R. The reader can verify that MINIMISE(R, F} = F; that is, F is a minimum set 
ofFDs and both its left-hand sides and right-hand sides are reduced. Thus SYNTHESISE(R, 
F} will output R = {RI, R2, R3, R4 , Rs, R6, R7, Rs} with schema(Rd = {A, B}, schema(R2} = 
{B, C, D}, schema(R3} = {B, D}, schema(R4} = {A, B, E, K}, schema(Rs} = {E, n, schema(R6} 
= {E, G, H}, schema(R7} = {G, H} and schema(Rs} = {A, E, G}, where AEG is the key for R 
with respect to F generated at line 10 of Algorithm 4.2. Thus by Theorem 4.20 R is a lossless 
join and dependency preserving decomposition of schema(R} in 3NF with respect to F. We 
observe that R is not in BCNF, since R6 is not in BCNF due to the fact that the FD H ~ G is 
embedded in R6. Moreover, the relation schemas R3 and R7 are redundant, since schema(R3} 
C schema(R2} and schema(R7} C schema(R6}. Such redundant relation schemas can easily 
be removed from R. • 
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Improved algorithms which synthesise database schemas in 3NF can be found in [Ber76, 
BDB79,LTK81, Zan82, BM87). As an example, if two sets XI andX2 of attributes are equivalent, 
i.e. F 1= XI -+ X2 and F 1= X2 -+ XI, then XI and X2 can reside in the same relation schema 
thus reducing the number of relation schemas in a decomposition. Other improvements deal 
with removing redundant attributes from relation schemas. 

4.6.2 BCNF Decompositions 

We have introduced the decomposition approach to relational database design in Section 4.3. 
Herein we present the details of a BCNF decomposition algorithm which, given as input 
a relation schema R and a set F of FDs over R, outputs a database schema R which is in 
BCNF with respect to F and is also a lossless join decomposition of schema{R) with respect 
to F. Whenever a relation schema in the current state of the output database schema violates 
BCNF, the decomposition algorithm removes the cause for this violation ofBCNF by replacing 
the offending relation schema by two child relation schemas each having fewer attributes than 
their parent; these two relation schemas can be joined losslessly to reconstruct their parent. 

The following example shows that it is not always possible to obtain a BCNF decomposition 
which is also dependency preserving . 

Example 4.17 Recall the relation schema STUD_POS from Example 4.7 together with the 
set of FDs {N -+ P, SP -+ N}, which we denote herein by FI; we note that we have made a 
stronger requirement here than in Example 4.7, since we are insisting that SNAME is associated 
with a unique POSITION. It can easily be verified that there does not exist a decomposition 
of schema{STUD_POS) = {N, S, P} which is both dependency preserving and in BCNF with 
respect to Fl . 

As another example, recall the relation schema ADDRESS from Example 4.3 together with 
the set of FDs (SC -+ P, P -+ q, which we denote herein by F2. It can easily be verified 
that there does not exist a decomposition of schema{ADDRESS) = {S, C, P} which is both 
dependency preserving and in BCNF with respect to F2. • 

An exponential time algorithm in the size of F, which decides whether there exists a 
dependency preserving decomposition of schema{R) that is in BCNF, can be found in [Osb79) 
(we note that in [TF82) this problem was shown to be co-NP-hard) . A method of guaranteeing 
a dependency preserving decomposition, which is in BCNF, was proposed in [KM80), wherein 
it was shown that by adding attributes to schema{R} and FDs to F it is always possible to obtain 
a BCNF dependency preserving decomposition of the augmented schema with respect to the 
augmented set of FDs. We illustrate the main idea of the augmentation by using the relation 
schemas and sets ofFDs from Example 4.17. 

Example 4.18 Let schema(NEW _STUD_POS} = {N, S, P, K} and let GI = {K -+ SP, SP -+ K, 
K -+ N, N -+ Pl. A dependency preserving decomposition of schema(NEW _STUD_POS} into 
BCNF is the database schema {RI , R2, R3}, with schema(Rd = {S, P, K}, schema(R2) = {K, N} 
and schema(R3} = {N, Pl. Thus by introducing an additional attribute K, which is a simple 
key, we obtain a dependency preserving decomposition with Gi [STUD_POS) = Fi. 
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Similarly, let schema(NEW.ADDRESS) = IS, C, P, K} and let G2 = (K --+ SC, SC --+ K, K--+ 
P, P --+ q. A dependency preserving decomposition of schema(NEW .ADDRESS) into BCNF 
is the database schema {RI, R2, R3}, with schema(Rd = IS, C, K}, schema(R2) = (K, q and 
schema(R3) = (P, q. Thus by introducing an additional attribute K, which is a simple key, we 
obtain a dependency preserving decomposition with Gi [ADDRESS] = pi. • 

The pseudo-code of an algorithm, designated DECOMPOSE(R, F), which returns a lossless 
join decomposition of schema(R) in BCNF with respect to a set F ofFDs over R, is given below. 

Algorithm 4.3 (DECOMPOSE(R, F» 
1. begin 
2. Out:= 0; 
3. if R is in BCNF with respect F then 
4. Out := Out U {R}; 
5. else 
6. let X --+ Y E F be nontrivial and such that F li= X --+ schema(R); 
7. let RI be the relation schema with schema(Rd = XY; 
8. Out:= Out U DECOMPOSE(RI> P+[Rd); 
9. let R2 be the relation schema with schema(R2) = schema(R) - (Y -X); 
10. Out:= Out U DECOMPOSE(R2, P+[R2]); 
11. end if 
12. return Out; 
13. end. 

The above algorithm, which outputs a decomposition, can be viewed as building a binary 
decomposition tree whose root is labelled by schema(R) and whose leaves are labelled by the 
attributes of the relation schemas in the output decomposition. The internal nodes of the tree 
are the intermediate relation schemas created during the decomposition process. 

It is possible to modify Algorithm 4.3 to output a 3NF decomposition with respect to F 
rather than a BCNF decomposition; we leave this modification to the reader as an exercise. 
This would give us an alternative to the synthesis approach of Algorithm 4.2. 

Example4.19 Consider a relation schema R, with schema(R) = {A, B, C, D, E, F} together 
with the set ofFDs F = {A --+ B, A --+ C, D --+ A, D --+ F} over R. The binary decomposition tree 
associated with the output R of DECOMPOSE(R, F) is shown in Figure 4.1. It can be verified 
that R is the collection of labels of the leaf nodes of the decomposition tree and that R is a 
lossless join BCNF decomposition ofR with respect to F which is also dependency preserving. 

If we replace F by {A --+ BC, D --+ AF}, which is a cover ofF, we will obtain a more succinct 
lossless join and dependency preserving BCNF decomposition, i.e. we obtain a decomposition 
with only two relation schemas. On the other hand, given F, R is unique no matter what FD is 
chosen at line 6 of Algorithm 4.3. The decomposition output from DECOMPOSE(R, F) is not 
always unique as we demonstrate below. • 

In general, Algorithm 4.3 does not execute in time polynomial in the sizes of Rand F, since 
as shown in Theorem 3.35 given in Subsection 3.6.6 of Chapter 3 computing a cover of p+ [R;] 
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Fig 4.1 The binary decomposition tree associated with Example 4.19 

is intractable. This source of inefficiency can easily be removed by changing the computations 
of P+ [Rd and P+[R2l in lines 8 and 10 of DECOMPOSE, respectively, to the polynomial-time 
computations ofF[Rll and F[R2l in the size ofF. The problem in this case is that the algorithm 
may not always output a BCNF decomposition. For example, let F = {A ~ B, B ~ C} be a set 
of FDs over R, with schema{R) = {A, B, C, D}. Then F[R'l = 0, where schema{R' ) = {A, C, D}, 
but P+[R'l = {A ~ C}. It follows that if the FD, A ~ B, is chosen at line 6 of DECOMPOSE, 
then R', which is not in BCNF with respect to P+[R'l, is in the output decomposition. In 
any case this is not the only problem, since the cardinality of the decomposition returned by 
DECOMPOSE{R, F) may be exponential in the cardinality of schema{R), i.e. type(R). 

A polynomial-time algorithm in the sizes of Rand F that outputs a lossless join 
decomposition of schema{R) in BCNF with respect to F can be formulated by using Lemmas 
4.10 and 4.11 in conjunction with Algorithm 4.3 [TF82l. Essentially, if a relation schema, say 
R, in line 3 of the said algorithm is such that Ischema(R)I > 2, then Lemma 4.11 is utilised to 
remove attributes from schema{R), otherwise Lemma 4.10 is utilised. 

Theorem 4.21 Given a relation schema R and a set F ofFDs over R, DECOMPOSE{R, F), whose 
pseudo-code is given in Algorithm 4.3, outputs a lossless join decomposition of schema(R) in 
BCNF. 

Proof. Algorithm 4.3 terminates, since at each recursive call of the algorithm the cardinality 
of the attribute set of the argument relation schema is strictly smaller than the cardinality of 
the attribute set of the argument relation schema at the previous call. 

Let R be the database schema output from DECOMPOSE(R, F). It is easy to verify that R is 
in BCNF with respect to F, since by line 3 of the algorithm a relation schema is added to the 
output database schema if and only if it is in BCNF. 

By Theorem 3.29 given in Subsection 3.6.4 of Chapter 3 concerning lossless join 
decompositions, we have that R is a lossless join decomposition of schema{R) with respect 
to F if and only if CHASE(T{R), F) has a winning row. We leave it to the reader to conclude 
the proof that R is a lossless join decomposition of schema{R) with respect to F by using a 
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straightforward induction on the cardinality of R to show that CHASE(T(R), F) indeed has a 
winning row. 0 

Theorem 4.21 shows that we can always find a decomposition R of schema(R) which is 
lossless and in BNCF with respect to F; as discussed prior to the theorem we can find such an 
R in polynomial time in the size of the input. It is obvious that we would prefer the cardinality 
of R to be as small as possible, since this would imply that less joins need to be performed 
during the processing of queries and also that further redundancy is avoided. For example, let 
schema(R) = {A, B, C} and F = {A -+ BC}. The database schema R = {R} is lossless and in BCNF, 
while the database schemaS = {SI, S2}, withschema(Sd = {A,B} andschema(S2) = {A,C} is also 
lossless and in BCNF. We would normally prefer Rover S due to the above-mentioned reasons. 
So, an algorithm that minimises the number of relation schemas in R, while maintaining its 
losslessness and its being in BCNF, would be very useful during database design in order to 
improve the quality of the resulting database. 

We show the negative result that the problem of finding a minimal cardinality database 
schema that is both lossless and in BCNF is NP-hard. Thus assuming that PTIME # NP we 
cannot find a polynomial-time algorithm to solve this minimisation problem. We begin by 
defining the concept of redundant relation schemas with respect to a set F of FDs. 

Defmition 4.23 (Redundant relation schemas) Let R be a lossless join decomposition of 
schema(R) with respect to a set F ofFDs over R, with schema(R) = schema(R). Then a relation 
schema S is redundant in R with respect to F ifR - IS} is also a lossless join decomposition of 
schema(R) with respect to F. A decomposition R is nonredundant with respect to F if it does 
not contain any redundant relation schemas with respect to F. • 

A similar result to the one stated in the next theorem can be found in [TLJ90j. 

Theorem 4.22 The problem of finding a loss less join and nonredundant decomposition of 
schema(R) that is in BCNF with respect to a set F ofFDs over R, and such that the number of 
relation schemas in R is less than or equal to some natural number k, with k ::: 1, is NP-hard. 

Proof. To show that the problem is NP-hard we give a polynomial-time transformation from 
the vertex cover problem, which is known to be NP-complete (see part (1) of Theorem 3.24 in 
Subsection 3.6.1 of Chapter 3 wherein the superkey of cardinality k problem was shown to be 
NP-complete by using essentially the same reduction). In order to help the reader we repeat 
the description of the vertex cover problem. 

The vertex cover problem: Given a graph (N, E) and a natural number q, does there exist a 
subset M of the node set N, with IMI ::: q, such that for each edge {u, v} E E, at least one 
of u and v belongs to M? 

We construct a relation schema, R, such that schema(R) has one attribute A i for each node 
in N and one attribute Bj for each edge in E; in the following we do not distinguish between 
attributes and the nodes or edges they represent. We then construct a set F of FDs by having 
an FD Ai -+ Bj for each node represented by Ai that is in the edge represented by Bj. In the 
following we let X be the union of all the attributes Bj and let Y be the union of all the attributes 
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Ai. By Theorem 4.14 given in Subsection 4.4.3 it follows that Y is the only key for R with respect 
toF. 

It remains to be shown that M is a vertex cover for (N, E) if and only if schema(R} has a lossless 
join and nonredundant decomposition R which is in BCNF and such that the cardinality of R 
is no more than k, where k = q + 1. 

If. Suppose that R is a lossless join and nonredundant decomposition of schema(R} into 
BCNF with respect to F with cardinality no more than k. By part (I) of Theorem 4.2 there exists 
a relation schema S E R such that schema(S} is a superkey for R with respect to F. Moreover, 
since Y is the unique key for R with respect to F, Y S; schema(S} must hold. 

Let S be any relation schema in R and assume that schema(S} = W. We claim that if there 
is at least one attribute Bj in W then there is exactly one attribute Ai in W, otherwise S is 
redundant. To obtain a contradiction if this were not true there are two cases to consider. 

Case 1. There is no such Ai in W, i.e. Y n W = 0. Then by Theorem 3.29 given in 
Subsection 3.6.4 of Chapter 3 S is redundant in R with respect to F, since CHASE(T(R}, F} 
contains a winning row if and only if CHASE(T(R - {S}}, F} contains a winning row. This is 
due to the fact that no FD in F has an attribute Bj in its left-hand side. 

Case 2. There are two distinct attributes Al and A2 in Y n W. Then due to the fact that no 
FD in F has an attribute Bj in its left-hand side, neither Al E Bj nor A2 E Bj hold. There 

are three further subcases to consider. Firstly, suppose that neither Bj E At nor Bj E Ai. It 
follows therefore that Bj ¥ (AIA2)+' otherwise by the construction of F, AIA2 = Y implying 
that either Bj E At or Bj E Ai leading to a contradiction. (We observe that there are no 
nontrivial FDs in p+ of the form AIA2 ~ A3.) Therefore, Y %: schema(S) implying that S is 
redundant in R with respect to F, since as in Case 1, we have that CHASE(T(R), F) contains a 
winning row if and only if CHASE(T(R - IS)), F) contains a winning row. This is due to the 
fact that all the FDs in p+ [SI are trivial. Secondly, suppose that either Bj E At or Bj E Ai 
holds. Then S is not in BCNF with respect to F, since neither Al E Ai nor A2 E At holds, 
thus leading to a contradiction. Thirdly, suppose that Bj E (AIA2)+ but neither Bj E At nor 
Bj E Ai. Then by the construction of F we conclude that AIA2 = Y and thus either Bj E Ai 
or Bj E Ai in which case S is not in BCNF, thus leading to a contradiction. The claim is now 
proved. 

So, we can form a vertex cover for (N, E) with at most q nodes as follows. IfR contains only 
one relation schema, say S, then schema(S) = Y, and it must be the case that E = 0 implying that 
M = 0. Otherwise, by the above claim R contains a single relation schema S with schema(S} 
= Y and all other relation schemas in R have a single attribute Ai in them. We form M by the 
union of the Ai in the attribute sets of the relation schemas in R - IS}. The result follows by 
the construction ofF, since due to the fact that R is a lossless join decomposition of schema(R} 
with respect to F, we have that X S; M+. 

Only if. Suppose that M = {AI, A2, ... , Aq} is a vertex cover for (N, E). Let R = 
{RI, R2, ... , Rq, Rk} where for all i E {I, 2, ... , q}, schema(Ri} = Ai n (X U {Ai)), i.e. the 
intersection of the closure of Ai with respect to F with the set of attributes X U {Ail, and finally 
schema(Rk} = Y. It can be verified that the database schema R is in BCNF with respect to F. 
This relies on the observations that (i) by the construction of F it is true that for all subsets 
W of X, w+ = W, and (ii) for all proper subsets Z of Y, Z+ n Y = Z. Moreover, it is easy to 
show that R is a lossless join decomposition of schema(R} with respect to F on using the chase 
procedure of Theorem 3.29 given in Subsection 3.6.4 of Chapter 3. 0 
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It is not clear whether the problem stated in Theorem 4.22 is in NP or not. This is due 
to the fact that we can guess a database schema R and check in polynomial time whether 
R is nonredundant with respect to F by using the chase procedure, but as was shown in 
Theorem 4.17 the problem of deciding whether R is in BCNF with respect to a set F of FDs 
over R is, in general, cO-NP-complete. 

4.6.3 How to Obtain a Decomposition in IDNF 

We present some heuristics for obtaining decompositions which are in IDNF with respect to 
a set F of FDs and a set I of INDs both over R. We assume that R is already decomposed into 
BCNF with respect to F by using the decomposition algorithm given in Subsection 4.6.2. 

Our heuristics deal with three problems that can prevent R from being in IDNF: 

1) I has an IND of the form R[XA) S; S[YB), where Y is a superkey for S with respect to F 
and B fj. Y (see Example 4.12 of Subsection 4.4.4); we call this problem the redundant 
attribute problem. 

2) I has an IND of the form R[X) S; sty), where Y is not a superkey for S with respect to F, 
i.e. the intersection ofY with any key for S with respect to F is a proper subset of a key 
for S with respect to F (see Example 4.13 of Subsection 4.4.4); we call this problem the 
missing attribute problem. 

3) I is a circular set of INDs (see Example 4.14 of Subsection 4.4.4); we call this problem 
the circular IND problem. 

Defmition 4.24 (BCNF preserving heuristic) A heuristic is BCNP preserving with respect to 
a database schema R and a set F of FDs together with a set I of INDs both over R (or simply 
BCNF preserving if R, F and I are understood from context) if after the heuristic is applied, 
resulting in the modification of R to R/, F to pi and I to 1', R' is in BCNF with respect to p' . 

• 
HI Heuristic for solving the redundant attribute problem, where R[XA) S; S[YB) E I, Y is a 

superkey for S with respect to F and B fj. Y. In this case A is redundant in R. Thus we 
remove A from schema(R) and replace the IND R[XA) S; S[YB) in I with the IND R[X) 
S; sty)· 

As we showed in Example 4.12, by invoking heuristic HI, we remove the attribute D 
from schema(HEAD) and transform the IND HEAD[HD) S; LECT[LD) into the key-based 
IND HEAD[H) S; LECT[L] (in the actual example we renamed the schema HEAD to be 
NEW _HEAD). The removal of the attribute D from schema(HEAD) does not incur any loss 
of information, since the original relation schema, which includes D, can be inferred via the 
relational algebra query 

H2 Heuristic for solving the missing attribute problem, where R[X) S; sty) E I and Y is not 
a superkey for S with respect to F. Since Y is not a superkey for S with respect to F we 
can find a nonempty set of attributes W S; schema(S) - Y such that YW is a superkey 
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for R with respect to F. We choose one attribute B E Wand add a corresponding new 
attribute, say A, which is not in schema(R), to schema(R). We assume that A is not a 
prime attribute of R with respect to F and that the keys for R with respect to F remain 
unchanged, i.e. if K is a key for R prior to adding A to schema(R) then R: K -+ A E p+ 
after adding A to schema(R). Finally, we replace the IND R[X] ~ SlY] in I by the IND 
R[XA] ~ S[YB] . 

As we showed in Example 4.13, by invoking heuristic H2, we add the new attribute L' to 
schema(EMP) and transform the IND EMP[P] ~ PROHP] into the key-based IND EMP[PL' ] 
~ PROHPL] (in the actual example we renamed the schema EMP to be NEW _EMP). Moreover, 
we add the FD EMP: E -+ L' to F. We note that as a result of invoking H2 we can now losslessly 
join relations over EMP and PROT, after renaming L' to L in schema(EMP), since PL is a key 
for PROT. 

It is evident that repeated application of the heuristics HI and H2 results in a set of INDs 
that is key-based. The next lemma shows that these heuristics are also BCNF preserving. 

Lemma 4.23 The heuristics HI and H2 are BCNF preserving. 

Proof. HI is BCNF preserving, since removing an attribute from schema(R) does not affect 
the property that R is in BCNF with respect to F. H2 is BCNF preserving since the keys for the 
resulting relation schema remain the same after the new attribute is added to schema(R). 0 

The next two heuristics transform I to a noncircular set of INDs by removing cycles from I. 
Prior to invoking them we assume that we have applied heuristics HI and H2 repeatedly until 
I is a set of key-based INDs. 

Definition 4.25 (A cycle ofINDs) A cycle ofINDs in I is either a nontrivial IND R[X] ~ R[Y] 
E I or a sequence of m, with m > 1, distinct INDs in I of the form: RdXd ~ R2 [Y2], R2 [X2] 
~ R3[Y3], ... , Rm[Xm] ~ RdYd, where RI , R2, 00 ', Rm are distinct relation schemas in R. A 
cycle ofINDs in I is proper if for all i E {I , 2, 0 0 0 , m} we have Xi = Yi. • 

Definition 4.26 (Cycle breaking heuristics) A sequence of heuristics, HI , H2 , 0 0 0 , Hb is 
cycle breaking with respect to a database schema R and a set F of FDs together with a set 
I of INDs both over R (or simply cycle breaking if R, F and I are understood from context) 
if, after applying each heuristic in the sequence a finite number of times such that we always 
apply Hi before Hj' when i < j, resulting in the modification ofR to R', F to p' and I to I', the 
set I' is a noncircular set of INDs. • 

Definition 4.27 (Key-based preserving heuristic) A heuristic is key-based preserving with 
respect to a database schema R and a set F ofFDs together with a set I ofINDs both over R (or 
simply key-based preserving ifR, F and I are understood from context) if, after the heuristic 
is applied resulting in the modification of R to R', F to pI and I to I', the set I' is a key-based 
set ofINDs over R' with respect to p'. • 

H3 First heuristic for solving the circular IND problem, where RdXtl ~ R2[Y2], R2[X2] S; 

R3[ Y3], 000' Rm[Xm] S; RI [Yll is a proper cycle in I. Collapse RI andR2 into RI as follows. 
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Firstly, we rename all the attributes in schema(Rz) - Yz to new attributes that are disjoint 
from the attributes in schema(R); the renaming of the attributes is also carried out in 
all the data dependencies in which they appear with reference to R2. Secondly, the 
attributes in schema(R2) - Y2 are added to schema(Rd. Finally, we remove R2 from R 
and rename all references to the relation schema R2 and the attributes Y2 to be to Rl 
and Xl> respectively, in all the data dependencies that they appear in. 

Example 4.20 Consider a database schema R = {EMP, JOB}, with schema(EMP) = {EN, AGE, 
ADR} and schema (JOB) = UNO, JDES, DN}, where EN stands for employee name, AGE stands 
for employee age, JNO stands for job number, JDES stands for job description and DN stands 
for department name. Moreover, consider a set F of FDs over R consisting of the two FDs, 
EN --?- schema(EMP) and JNO --?- schemaOOB), and a set I of INDs over R consisting of the 
two INDs, EMP[EN] S; JOB[JNO] and JOB [JNO] S; EMP[EN]. When invoking heuristic H3 we 
add the new attributes, say JDES' and DN', to schema(EMP), remove the relation schema JOB 
from R and replace the FD JNO --?- schemaOOB} by the FD EMP: EN --?- {IDES', DN'}. We also 
rename JOB to EMP and JNO to EN in the set I of INDs; thereafter it follows that I is empty 
since it contains only trivial INDs when the renaming is completed. It can be verified that the 
resulting database schema is in BCNF and that I is trivially non circular. We note that each 
of the two original relation schemas can be inferred from the new one by a relation algebra 
query involving projection and renaming where appropriate. • 

H4 Second heuristic for solving the circular IND problem, where RI [Xl] S; R2[Y2], R2[X2] S; 
R3[Y3], ... , Rm[Xm] S; RtlYIl is a cycle in I which is not proper. Firstly, we remove the 
attributes in Xl - Yl from schema(Rd, project the set of FDs over the original Rl onto 
the resulting relation schema, and remove RtlXd S; R2[Y2] from I. Secondly, we add a 
new relation schema S to R, an FD to F and two INDs to I as follows. We set schema(S) 
= Xl Y I , noting that since I is key-based we have that Y I is a key for Rl with respect to F, 
and therefore we add the FD S : YI --?- Xl to F. Lastly, we add the INDs S[Xd S; R2[Y2] 
and S[Yd S; RtlYd to I. 

Example 4.21 Consider a database schema R = {EMP}, with schema(EMP} = {EN, MN}, 
where EN stands for employee name and MN stands for manager name. Moreover, consider 
a set F of FDs over R having the single FD, EMP: EN --?- MN, and a set I of INDs over R 
having the single IND, EMP[MN] S; EMP[EN]. When invoking heuristic H4 we remove the 
attribute MN from schema(EMP} and add the new relation schema EMP-MGR to R, with 
schema(EMP-MGR} = {EN, MN}. Furthermore, we remove the FD EMP: EN --?- MN from F 
as a result of the projection in H4 and add to F the FD EMP-MGR: EN --?- MN; we also replace 
the single IND in I by the two INDs: EMP-MGR[MN] S; EMP[EN] and EMP-MGR[EN] S; 

EMP[EN] (see also Example 4.14). It can be verified that the resulting database schema is in 
BCNF and that I is noncircular. Moreover, the original version of the relation schema EMP 
can be losslessly recovered by a relational algebra expression which joins together EMP and 
EMP-MGR. 

Consider a database schema R = {EMP, DEPT}, with schema(EMP} = {EN, DN} and 
schema(DEPT} = {DN, MN}, where EN stands for employee name, DN stands for department 
name and MN stands for manager name. Moreover, consider a set F ofFDs over Rconsisting of 
the two FDs, EMP: EN --?- DN and DEPT: DN --?- MN, and a set I ofINDs over R consisting of the 
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two INDs, EMP[DNj S; DEPT[DNj and DEPT[MNj S; EMP[ENj. When invoking heuristic H4 
we remove the attribute DN from schema(EMP) and add the new relation schema EMP-DEPT 
to R, with schema(EMP-DEPT) = {EN, DN} . Furthermore, we remove the FD EMP: EN --+ DN 
from F as a result of the projection in H4 and add to F the FD EMP-DEPT : EN --+ DN; we also 
replace the IND EMP[DNj S; DEPT[DNj in I by the two INDs: EMP-DEPT[DNj S; DEPT[DNj 
and EMP-DEPT[ENJ S; EMP[ENJ. It can be verified that the resulting database schema is in 
BCNF and that I is noncircular. Moreover, the original version of the relation schema EMP 
can be losslessly recovered by a relational algebra expression which joins together EMP and 
EMP-DEPT. • 

Lemma 4.24 The heuristics H3 and H4 are BCNF preserving, key-based preserving and the 
sequence of heuristics H3, H4 is cycle breaking. 

Proof. Firstly, we show that H3 and H4 are BCNF preserving. H3 is BCNF preserving, since 
Xl and Y2 are equivalent keys in the sense that in any database dover R satisfying F and I we 
have that rrx1 (rl) = rrY2 (r2), where rl and r2 are the relations in dover Rl and R2, respectively. 
Thus the effect of H3 is to merge Rl and R2 together by transforming all references to Y2 to 
be references to Xl and the set of keys for the transformed relation schema is just the result 
of merging together the keys for the old relation schemas Rl and R2. H4 is BCNF preserving 
since we have removed attributes from schema(R\) and, in addition, schema(S) is a subset of 
the original schema(Rd which is known to be in BCNF with respect to F. 

Secondly, it is evident that each application of heuristic H3 or H4 results in a set of INDs 
that is key-based. 

Thirdly, we show that the sequence H3, H4 is cycle breaking. This follows directly from the 
fact that repeated application ofH3 or H4 each results in removing a cycle from I. Moreover, 
no new cycles are introduced by applying either H3 or H4 and the set I of INDs can have only 
a finite number of cycles in it. D 

The next theorem is immediate from Lemmas 4.23 and 4.24 observing that after applying 
HI and H2 a sufficient number of times we obtain a key-based set of INDs. 

Theorem 4.25 Given a database schema R that is in BCNF with respect to a set F ofFDs over 
R and a set I ofINDs over R we can obtain an IDNF database schema by invoking the following 
two steps: 

1) Apply heuristics HI and H2 repeatedly until I becomes key-based. 

2) Apply the sequence of heuristics H3, H4 until I becomes noncircular. D 

The problem of achieving a database schema in normal form with respect to a set ofFDs and 
INDs is considered in [CA84, MR86b, MS89a, MM90, MR92aj. In all these references apart 
from [MR86b j part of the requirement of being in normal form is that each relation schema 
in R also correspond to a particular type of ERD. Thus a database schema which is in such 
an Entity Relationship Normal Form (ERNF) can be readily transformed into an ERD. This 
approach has the advantage that the semantics of the database schema can be presented in 
terms of the ER model, whose semantics are easier for users to understand. 
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4.7 Converting an ERD into a Relational Database Schema in 
IDNF 

It is common practice to produce an ERD as a first step in relational database design. The 
semantics of the application are more visible in the ERD and many database users find it easier 
to work with the ERD rather than directly with the attributes of the database schema and the 
data dependencies over this set of attributes. Herein we present a mapping from an entity 
relationship diagram, D, onto a database schema R together with a set of FDs and INDs over 
R. We will show that R is in IDNF with respect to the set of data dependencies output from the 
mapping. Thus given that a database designer prefers to work with ERDs we can automate 
the process of relational database design once the ERD under consideration is completed. 

One of the problems with this approach is that when an entity type is added to the ERD 
the user needs to specify a primary key (or more generally a set of candidate keys), which 
has the effect of producing a relation schema already in BCNF. However, in order to specify 
the candidate keys the user needs to know the set of FDs that are valid for the application in 
hand. Similarly, the relationship types induce certain key-based INDs but in order for these 
to be specified correctly the user may need to know more about the INDs that are valid for 
the application in hand. Thus it may be possible to utilise the algorithms given in Section 4.6 
during the process of designing an ERD in order to produce a higher quality result. 

For the sake of simplicity of the mapping we will assume that D does not contain any 
recursive relationship types; in fact, a recursive relationship type can always be transformed 
into a nonrecursive one. This is achieved by replacing the entity type involved in the recursive 
relationship type by two distinct entity types each denoting one of the two roles the said entity 
type plays in the relationship type. 

Furthermore, we will assume that the set of non prime (i.e. nonkey) attribute names 
associated with any two entity types in the ERD are disjoint and that the key attributes of each 
entity type (including the entity types involved in built-in relationship types) are explicitly 
represented for each entity type in D. We will call this assumption the disjointness assumption 
for nonprime attributes; this assumption can always be enforced by renaming of attribute 
names. We note that it is still possible for a nonprime attribute of one entity type, say DNAME 
in EMP, to be the same as a prime attribute of another entity type, say DNAME in DEPT. 

With respect to the built-in relationship types we have the following situation. If the 
relationship type is an ID relationship type from an entity type [\ to an entity type [2, then 
we repeat the primary key attributes of [2 in the representation of [\ in D. Similarly, if the 
relationship type is an ISA relationship type from an entity type [\ to an entity type [2, then 
due to the inheritance of attributes we need only repeat the primary key attributes of [2 in 
the representation of [\ in D. In the mapping now described we consider the set of attributes 
associated with an entity type to be the set of attributes explicitly represented in D for that 
entity type. 

Another reasonable assumption that we will make concerns the built-in relationship types 
ID and ISA (see Section 2.4 of Chapter 2). Let B denote the ERD resulting from removing 
from D all non built-in relationship types, and also all attributes and the corresponding edges 
connecting these attributes to their entity types. That is, B is an ERD describing the entity 
types and the built-in relationship types present in D; we call the sub graph B, the inheritance 
lattice induced by D. We observe that B is directed and that, in general, B may not be connected 
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and thus may have islands of connected components. The assumption we make is that the 
inheritance lattice B, which is induced by D, does not contain any directed cycles (or simply 
cycles). We justify this assumption by considering two cases when we have a cycle in the 
inheritance lattice B involving two entity types £1 and £2 . Firstly, suppose that there is an 
ID relationship type between £1 and £2, i.e. £1 ID £2. Thus by the transitivity of ID and ISA 
relationship types we conclude that £2 ID £1 or £2 ISA £1. This leads to a contradiction since, 
due to the fact that there is a cycle involving £1 and £2, we conclude that the primary keys of £1 
and £2 are the same contrary to the definition of an ID relationship type. Secondly, suppose 
that that there is no ID relationship type between £1 and £2 and, by symmetry, that there is also 
no ID relationship type between £2 and £1. Thus by the transitivity of ISA relationship types 
we conclude that £1 ISA £2 and £2 ISA £1 implying that £1 and £2 should be merged, since 
they do not represent distinct entity types. Therefore, in D we can collapse £1 and £2 into a 
single entity type, say £, take the corresponding attribute set E to be the union of the attributes 
sets of £1 and £2, and also adjust the relationship types involving £1 and £2 accordingly so 
that they reference £ instead (see heuristic H3 for solving the proper circular IND problem 
in Subsection 4.6.3). It follows that we are justified in assuming that the inheritance lattice 
B, which is induced by D, does not contain any cycles; we call this assumption the built-in 
relationship type assumption. 

Defmition 4.28 (Mapping entity types) An entity type £ in D is mapped to a relation schema, 
denoted by R(£), with schema(R(£» being equal to the set of attributes associated with £; we 
will assume that all the attributes of £ are single-valued, so that the resulting relation schema 
be in INF. A singleton set of FDs, denoted by F(£), is associated with £, where • 

F(£) = {K ~ schema(R(£» I K is the primary key of £} . 
We observe that in the above definition we assume that the entity type has a single candidate 

key, which bydefault is the primary key. This assumption can be relaxed by allowing additional 
candidate keys, called alternate keys, to be represented in the ERD. Allowing alternate keys to 
be represented will not affect the translation process. 

Definition 4.29 (Mapping cardinality-based relationship types) Let R in D be a relationship 
type from the entity type £1 in D to the entity type £2 in D, with KI being the primary key 
of £1 and K2 being the primary key of £2; R may be a many-to-many, a many-to-one or a 
one-to-one relationship type. 

The relationship type R is mapped to a relation schema, denoted by R(R), with 
schema(R(R» =KI UK2. We assume without loss of generality that KI andK2 are disjoint; ifnot 
we can always enforce this disjointness by adding to each attribute a role name corresponding 
to the entity type it belongs to; see Definition 2.9 in Subsection 2.2.4 of Chapter 2. The following 
set of key dependencies, denoted by F(R), is associated with R: 

• ifR is a many-to-many relationship type, then F(R) = 0, 

• ifR is a many-to-one relationship type, then F(R) = {KI ~ K2}, or 

• ifR is a one-to-one relationship type, then F(R) = {KJ ~ K2 , K2 ~ Kd. 

In addition, a set of two key-based INDs, denoted by I(R), is associated with R, where 

• 
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We observe that when the relationship type is many-to-one or one-to-one, there is no need to 
create an additional relation schema for the relationship type. In the many-to-one case from £1 
to £2 we can add the primary key attributes ofR(£2) to R(£I), renaming attributes if necessary, 
and add a key-based IND from these foreign key attributes to the primary key attributes of 
R(£2); the primary key of R(£d remains the same. The construction for the one-to-one case 
is similar except that it is done in both directions, by considering the one-to-one relationship 
type as a combination of a many-to-one relationship type from £1 to £2 together with another 
many-to-one relationship type from £2 to £1. The problem with this alternative approach is 
that the resulting set of INDs may be cyclic and thus IDNF will be violated. 

Defmition 4.30 (Mapping built-in relationship types) Let R in D be a relationship type from 
the entity type £1 in D to the entity type £2 in D, with KI being the primary key of £1 and K2 
being the primary key of £2; R may be an ID or an ISA relationship type. If R is an ID type 
then K2 C KI and ifR is an ISA type then KI = K2. 

A singleton set of key-based INDs, denoted by I(R), is associated with R, where 

• 
We observe that the INDs produced from mapping relationship types are typed and thus 

by Theorem 3.45 in Subsection 3.6.10 of Chapter 3 their implication problem is polynomial 
time decidable. We now summarise the above three mappings as a mapping from an ERD to 
a database schema together with a set of FDs and INDs. 

Definition 4.31 (The mapping from ERDs to database schemas) We amalgamate the map
pings given above to obtain a mapping from an ERD D to a database schema, R(D), with an 
associated set of FDs, F(D), and an associated set of INDs, I(D), as follows: 

R(D) (R(£) I £ is an entity type in D} U 

(R(R) I R is a cardinality-based relationship type in D), 

F(D) (F(£) I £ is an entity type in D} U 

(F(R) I R is a cardinality-based relationship type in D), and 

I(D) = (I(R) I R is a relationship type in D}. • 
The following theorem shows that the mapping just defined yields a database schema in 

IDNF (see Definition 4.16 in Subsection 4.4.4 for the definition ofIDNF). This has a practical 
implication, since in many IT departments it is common practice to produce an ERD as a 
first step in relational database design and then to use the ERD as the basis for constructing a 
relational database schema. 

Theorem 4.26 Let D be an ERD that satisfies the disjointness assumption for non prime 
attributes and the built-in relationship type assumption. Then R(D) is in IDNF with respect 
to F(D) and I(D). 

Proof. Let R(D) E R be a relation schema. If R, where R stands for R(D), is mapped from 
an entity type then R is in BCNF with respect to F(D), since F(D)[R) contains a single key 
dependency by the disjointness assumption for nonprime attributes. (If we allow alternate keys 
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to be represented in the ERD, it can be shown that R is still in BCNF with respect to F(D).) On 
the other hand, ifR is mapped from a cardinality-based relationship type, then by construction 
R is in BCNF with respect to F(D), since KJ and K2 are assumed to be disjoint. Furthermore, 
all the INDs generated from relationship types, whether they be cardinality-based or built-in, 
are key-based and thus I(D) is a key-based set of INDs. The result that R is in IDNF with 
respect to F(D) and I(D) follows, since it can be verified that I(D) is noncircular due to the 
built-in relationship type assumption. 0 

It can easily be seen that the mappings from R(D), F(D) and I(D) can be carried out in 
polynomial time in the size of D, and can be viewed as an efficient synthesis algorithm. 

Example 4.22 Consider the ERD, D, shown in Figure 2.1 of Chapter 2, concerning a 
computerised book order system; we will ignore the two multi-valued attributes PHONES of 
CUSTOMER and AUTHORS of BOOK. The mapping from D results in the following database 
schema and set of FDs and INDs, where in this case we take R(R) = R: 

1) R(D) = {CUSTOMER, ORDER, INVOICE, BOOK, PLACES, RECEIVES, BILLING, 
SPECIFIES}, with schema(CUSTOMER) = {C#, NAME, ADDRESS}, schema(ORDER) 
= {O#, O-DATE, QTY}, schema(INVOICE) = {I#, I-DATE, VALUE}, schema(BOOK) = 
{ISBN, TITLE, PRICE}, schema(PLACES) = {C#, O#}, schema(RECEIVES) = {C#, I#}, 
schema(BILLING) = {O#, I#} and schema(SPECIFIES) = {O#, ISBN}. 

2) F(D) = {CUSTOMER: C# -+ schema(CUSTOMER), ORDER: 0# -+ schema(ORDER), 
INVOICE: 1# -+ schema(INVOICE), BOOK: ISBN -+ schema(BOOK), PLACES : 0#-+ 
C#, RECEIVES: 1# -+ C#, BILLING: 0# -+ 1#, BILLING: 1# -+ OIl. 

3) I(D) = (PLACES[C#] ~ CUSTOMER[C#), PLACES [0#] ~ ORDER[O#], RECEIVES[C#] 
~ CUSTOMER[C#], RECEIVES[I#] ~ INVOICE[I#], BILLING[O#] ~ ORDER[O#], 
BILLING[I#] ~ INVOICE[I#], SPECIFIES[O#] ~ ORDER[O#), SPECIFIES[ISBN] ~ 
BOOK[ISBN]}. 

The reader can verify that R(D) is in IDNF with respect to F(D) and I(D). • 
Jajodia et al. [JNS83a, JNS83b] consider the problem of when an ERD can be mapped to 

a database schema which is in BCNF without taking INDs into account. They allow general 
n-ary relationship types, which may have attributes of their own, while we have restricted 
ourselves to binary relationship types and we do not allow such relationship types to have 
attributes of their own (see Subsection 2.2.2 of Chapter 2). Several researchers [CA84, DA87, 
MS89a, MM90, MR92a] have also considered the inverse mapping, namely from a database 
schema to an ERD. Given that a database schema is in ERNF (see end of Subsection 4.6.3) 
then it can be mapped to an ERD, which in turn can be mapped back to the database schema. 
Especially for naive users such a mapping may be very useful as an aid to understanding the 
semantics of the database schema. 
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4.8 Discussion 

Relational database design has been at· the forefront of relational database theory since 
its inception in Codd's seminal paper [Cod72a), which introduced 2NF and 3NF, and the 
introduction of BCNF in [Cod74). An informative summary of the state of the art on the 
various normal forms, not taking INDs into account, was given by Kent as early as 1983 
[Ken83a). The concepts pertaining to the various normal forms have infiltrated industry and 
are widely used in practice. Moreover, as we have seen in Section 4.7, relational database design 
can be combined with the higher-level activity of data modelling by using ERDs. It is our view 
that relational database design is a good example of how theory can have an important and 
direct influence on practice. We also feel that recent work on providing semantic justification 
for the various normal forms is of fundamental importance, since it can provide us with an 
explanation of what we actually achieve by the process of database design [Vin94, LV99). 

We now briefly mention how we can reduce query processing overheads by designing acyclic 
database schemas. It is natural to describe a database schema R as a hypergraph, where the 
nodes of the hypergraph correspond to the attributes in the relation schemas of R and each 
hyperedge is the set of attributes of one of the relation schemas in R. Fagin [Fag83) investigated 
various types of acyclicity of relational database schemas when viewed as hypergraphs. (See 
Subsection 3.6.14 in Chapter 3 for the formal definition of an acyclic database schema and 
its hypergraph representation.) Recall Definition 3.98 in Subsection 3.6.14 of Chapter 3 of 
pairwise and join consistent databases. Moreover, recall Theorem 3.73 of Subsection 3.6.14 in 
Chapter 3, where we have shown that a database schema R is acyclic if and only if every pairwise 
consistent database over R is also join consistent. Thus in order to check join consistency 
of a database over an acyclic database schema, we can simply check, in polynomial time in 
the size of the input database, whether it is pairwise consistent or not. In general, when the 
database schema is cyclic then, by Theorem 3.72 of Subsection 3.6.14 in Chapter 3, testing for 
join consistency is an NP-complete problem. 

Let us call the query that involves the computation of the natural join of all the relations in 
the database the database join query. The computation of the database join query is said to 
be monotone if it can be computed in a way such that for all the intermediate stages during 
the computation of the query, the number of tuples in any intermediate result is greater 
than or equal to the number of tuples in the previous intermediate result, i.e. the number of 
tuples in the result of the query increases monotonically. In [GS82, BFMY83) it was shown 
that a database schema is acyclic if and only if the computation of the database join query is 
monotone assuming that the database is pairwise consistent. Thus the database join query 
can be computed efficiently when the database schema is acyclic. If the database schema is 
such that every subset of the database schema is also acyclic then it follows that all natural 
join queries involving one or more relations in the database can be computed efficiently. 

Finally, we refer the reader to [Bis98) for a recent critique on the overall achievements and 
prospects of database design. 

4.9 Exercises 
Exercise 4.1 Given a relation schema R, with schema(R) = {A, B, C, D}, together with a set 
ofFDs F = {A -+ B, A -+ C, A -+ D}, is R in 2NF? Is R in 3NF? Is R in BCNF? 
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Exercise 4.2 Given a relation schema R, with schema(R) = {A, B, C, D} , together with a set 
ofFDs F = {A ~ B, B ~ C, C ~ D}, is R in 2NF? Is R in 3NF? Is R in BCNF? 

Exercise 4.3 Given a relation schema R, with schema(R) = (A, B, C), together with a set of 
FDs F = {AB ~ C, AC ~ B, BC ~ A}, is R in 2NF? Is R in 3NF? Is R in BCNF? 

Exercise 4.4 Given a relation schema R, with schema(R) = (A, B, C), together with a set of 
FDs F = {AB ~ C, C ~ B}, is R in 2NF? Is R in 3NF? Is R in BCNF? 

Exercise 4.5 An FD X ~ A in a set F of FDs over a relation schema R is elementary, if it is 
nontrivial, A is a single attribute and for no proper subset Y C X, is it true that Y ~ A E F+. 
A set F of FDs is elementary if all the FDs in F are elementary. Prove that R is in BCNF with 
respect to a set F of elementary FDs if and only if for every FD X ~ A E F, X is a key for R with 
respect to F [Zan82]. 

Exercise 4.6 Prove that if a relation schema R is in 3NF with respect to a set F of FDs but is 
not in BCNF with respect to F, then it must have at least two distinct keys for R with respect 
to F which overlap, i.e. such that their intersection is nonempty [VS93, Mok97] . 

Exercise 4.7 The definitions of 3NF and BCNF do not mention null values at all, although 
entity integrity insists that the primary key values of tuples in a relation should not contain 
any null values. Show how, in the presence of null values, this restriction has an effect on the 
validity of a 3NF or BCNF decomposition, assuming that the null values are of the type, "value 
exists but is unknown at the present time" [AC84]. 

Exercise 4.8 An MVD X ~~ Y I Z is pure with respect to a set M of FDs and MVDs, if it is 
nontrivial and neither X ~ Y nor X ~ Z are in M+. Prove that if R is in BCNF with respect to 
M, i.e. R is in BCNF with respect to the set of FDs in M+, then for any key K for R with respect 
to the set of FDs in M+ and any pure MVD X ~ ~ Y I Z E M+, YZ S; K (Jaj86]. 

Exercise 4.9 You are given a relation schema R, with schema(R) = {A, B, C, D, E, G}, together 
with a set of FDs F = {A ~ B, CD ~ A, CB ~ D, AE ~ G, CE ~ D}. Synthesise R into a 
lossless join and dependency preserving 3NF decomposition with respect to F. Decompose R 
into a lossless join BCNF decomposition with respect to F. 

Exercise 4.10 Let F be a set of FDs over R that is canonical, nonredundant and such that its 
left-hand sides are reduced. Define an FD digraph Gp = (N, E) for such a set ofFDs as follows. 
The nodes in N are labelled by FDs in F and there is an arc in E from a node labelled X ~ A 
to a node labelled Y ~ B if A E Y. Show that if Gp is an acyclic digraph then R has a lossless 
join and dependency preserving BCNF decomposition with respect to F [Maj92]. 

Exercise 4.11 A relation schema R is in Fourth Normal Form (4NF) with respect to a set M 
of FDs and MVDs, if whenever X ~ ~ Y is a nontrivial MVD in M, then X is a superkey for 
R with respect to the set of FDs in M+. (Recall that an FD X ~ Y is a special case of an MVD 
X ~~ Y.) Prove that 4NF is cover insensitive, i.e. that R is in 4NF if and only if whenever X 
~ ~ Y is a nontrivial MVD in M+, then X is a superkey for R with respect to the set of FDs 
inM+. 
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Exercise 4.12 Prove that if a relation schema R is in 4NF with respect to a set of FDs and 
MVDs M, then it is also in BCNF with respect to the set of FDs in M+. 

Exercise 4.13 Definition 4.13 of value redundancy in Subsection 4.4.3 can be generalised to 
FDs and MVDs, simply by replacing, in this definition, the set F of FDs by a set M of FDs and 
MVDs. Generalise Theorem 4.13 to FDs and MVDs, i.e. prove that a relation schema R is in 
4NF with respect to a set M ofFDs and MVDs over R if and only ifR is in VRFNF with respect 
to M [Vin98j. 

Exercise 4.14 A decomposition R is in 4NF with respect to a set M of FDs and MVDs over 
R, with schema(R) = schema(R), if each Ri E R is in 4NF with respect to the set of projected 
MVDs (PMVDs) that hold in the context of Ri. (See Proposition 3.56 of Subsection 3.6.13 in 
Chapter 3 for the definition of a PMVD.) Propose an algorithm that decomposes a relation 
schema R into a lossless join decomposition of schema(R) that is in 4NF with respect to M 
[Fag77a, Fag77bj. 

Exercise 4.15 Let M be a set ofMVDs over R. Devise an algorithm that obtains a lossless join 
4NF decomposition of schema(R), whose cardinality is less than or equal to the cardinality of 
schema(R) [LT87bj. 

Exercise 4.16 Assume a set M of FDs and MVDs over a relation schema R. Prove that if R is 
in BCNF with respect to the set of FDs in M+ and at least one of the keys for R with respect to 
the set of FDs in M+ is simple, then R is also in 4NF with respect to M [DF92j. (Recall that a 
simple key is a key that is a singleton.) 

Exercise 4.17 Recall that an Armstrong relation for a set of integrity constraints :E is a relation 
which satisfies all the constraints in :E and violates each constraint not in the closure of:E (see 
Definition 3.56 in Section 3.5 of Chapter 3). Discuss how Armstrong relations can be useful 
in relational database design. 

Exercise 4.18 In some applications the stipulation in the definition of IDNF that the set of 
INDs be noncircular seems to be overly restrictive. Give an example supporting this claim. 

Exercise 4.19 A database dover R has an insertion violation with respect to a set of FDs and 
INDs :E = F U lover R if 

1) d F :E, and 

2) there exists a tuple t over R which is compatible with r, where r is the relation in dover 
R, but ICHASE(dU It}, I) ~ :E; dU {t} denotes the database resulting from the insertion 
of t into r. 

A database schema R is free of insertion anomalies with respect to :E if there does not exist 
a database dover R which has an insertion violation with respect to :E. 

Prove that if I is noncircular, then R is free of insertion anomalies with respect to :E if 
and only if:E is a reduced set of FDs and INDs (see Definition 3.78 in Subsection 3.6.12 of 
Chapter 3) and R is in BCNF with respect to F [LV99j. 
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Exercise 4.20 A database dover R has a modification violation with respect to a set of FDs 
and INDs ~ = F U lover R if 

1) d F ~ , and 

2) there exists a tuple U E r and a tuple t over R which is compatible with r - {u}, where 
r is the relation in dover R, but ICHASE((d - {u)) U It}, I) [;6 ~; d - {u} denotes the 
database resulting from the deletion of u from r. 

A database schema R is free of modification anomalies with respect to ~ if there does not 
exist a database dover R which has a modification violation. 

Prove that if I is non circular, then R is free of modification anomalies with respect to ~ if 
and only if R is free of insertion anomalies with respect to ~ [L V99]. 

Exercise 4.21 Suppose that we have a relational database schema that is in IDNF with respect 
to a set of FDs. Propose an algorithm to reverse engineer this database schema into an 
Entity-Relationship Diagram [DA87]. 

Exercise 4.22 Suggest how you would design a Computer-Aided Software Engineering 
(CASE) tool for relational database design, which would allow database designers to iteratively 
improve the quality of their designs. 



s. Incomplete Information in the 
Relational Data Model 

Correct treatment of incomplete information in databases is offundamental importance, since 
it is very rare that in practice all the information stored in a database is complete. There are 
several different types of incompleteness that need to be taken into account. In the first case 
some information in the database may be missing. Missing information generally falls into 
two categories; applicable information, for example, if the name of the course that Iris is taking 
is applicable but unknown, and inapplicable information, for example, ifIris does not have a 
spouse. In both cases the missing information can be modelled by special values, called null 
values, which act as place holders for the information that is missing. Varied interpretations of 
null values within these two categories were listed in [ANS751. In the second case information 
in the database may be inconsistent, for example, if two different ages were recorded for Iris 
when Iris is only allowed to have one age. Inconsistency can normally be detected during 
updates to the database and in such cases it can be avoided. In the third case incompleteness 
involves the modelling of disjunctive information, which is a special case of applicable but 
unknown information. For example, we may know that Iris either belongs to the Computer 
Science department or to the Maths department but we do not know for certain to which 
department she belongs. Disjunctive information can be modelled by a finite set of values, 
called an or-set, one of these values being the true value. That is, Iris's department is a member 
of the or-set {ComputeLScience, Maths}. In the fourth case incompleteness relates to fuzzy 
information. In this case the membership of an attribute value may be fuzzy; namely, it may 
be a number in the interval [0, 11 or a linguistic value such as short, medium or tall. For 
example, Iris's age may be recorded as young and her performance in last year's exam may 
be recorded as 0.7. Fuzzy sets are also able to model the situation where there is uncertainty 
about the membership of a tuple in a relation. For example, we may only know with a 
degree of 0.8 certainty that the tuple recording information about Iris is actually true, i.e. the 
membership of that tuple is 0.8. Finally, we could use a probabilistic approach to incomplete 
information by attaching to each attribute value a probability between 0 and 1 according to 
a known distribution for that attribute domain. This approach allows the use of statistical 
inference during query processing in order to obtain approximate answers. We will further 
discuss the use of probability theory in modelling incomplete information at the end of the 
chapter. 

As relational database systems are now widely available in the commercial world there 
is a growing demand for comprehensive handling of incomplete information within those 
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systems. This has lead researchers to extend the relational model by allowing attribute values 
of tuples to be incomplete; we shall refer to such relations as incomplete relations. 

In Section 5.1 we introduce four different types of null value that cover most situations of 
incompleteness that arise in practice. In Section 5.2 we discuss two fundamental approaches 
with regards to how complete the information in a database is, namely the open world and 
closed world assumptions. In Section 5.3 we formalise the notion of an information lattice of 
types of null value, which allows us to measure the information content of tuples in a relation, 
and formally define the meaning of an incomplete relation. In Section 5.4 we present an 
extension of the relational algebra where we allow a single type of null value representing an 
unknown value from an attribute domain. In Section 5.5 we show how integrity constraints 
can be extended to hold in incomplete relations; we focus on FDs and INDs (see Subsections 
3.6.1 and 3.6.7 of Chapter 3, respectively, for details concerning the satisfaction of FDs and 
INDs in relations). In Section 5.6 we formalise the notion of an or-relation, which allows 
the representation of a disjunction of a finite set of values, and show how the relational 
algebra and integrity constraints can be extended within the context of the or-set approach. 
In Section 5.7 we formalise the notion of a fuzzy relation, based on fuzzy set theory, which 
allows the representation of vague information, and show how the relational algebra and 
integrity constraints can be extended within this approach. In Section 5.8 we discuss the 
related approach of rough sets which addresses imprecision and ambiguity in data rather than 
vagueness. In Section 5.9 we present an alternative approach to dealing with incomplete 
information that uses default values rather than null values. Default values have simpler 
semantics than null values but they do not take into account the information content of a 
relation and thus may lead users to misinterpret answers to queries. In Section 5.10 we deal 
with the problem of updating a relational database in the presence of incomplete information 
by extending the formalism of Subsection 3.2.4 in Chapter 3. 

5.1 Different Types of Null Value 

In order to model the two categories of missing information referred to earlier we introduce 
the following types of null value: 

I} "value exists but is unknown at the present time" or "value is applicable and missing at 
the present time", which is denoted in the database by the distinguished value unk; for 
example, ifIris's age is unknown, then the attribute value for age in the tuple recording 
information about Iris would be unk. 

2} "value does not exist" or "value is inapplicable", which is denoted in the database by 
the distinguished value dne; for example, if Iris does not have a job, then the attribute 
value for job in the tuple recording information about Iris would be dne; we note that 
dne is very useful when filling in forms where some of the categories in the form may 
be filled in as inapplicable. As opposed to unk, the null value dne does not arise due to 
incompleteness of information. Despite this fact dne cannot be treated as just another 
nonnull value; for example, we can record the fact that a person is unmarried by having 
dne as their spouse attribute value but we cannot say that two unmarried people have 
the same spouse. 
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Zaniolo [Zan84] observed that both unk and dne do not provide the most fundamental 
type of null value. There are situations when we may not even know if an attribute value 
exists or not. For example, we may not have any recorded information in the database 
as to whether Hillary is married or not. Another example is that we may not have any 
information recorded in the database as to whether Iris has a job or not. This gives rise 
to the following third basic type of null value. 

3) "no information is available for the value", i.e. it is either unk or dne, which is denoted 
in the database by the distinguished value ni. 

In some cases we have contradictory information, which leads to an inconsistency in 
the database. For this purpose we will make use of the fourth basic type of null value. 

4) "value is inconsistent", which is denoted in the database by the distinguished value 
inc; for example, if a student is only allowed to enrol in one department and for some 
reason we have contradictory information that student number 8 is enrolled both in 
the Computing and Maths departments, then the attribute value for department in the 
tuple recording information about student number 8 would be inc. 

As mentioned before, it is standard practice to detect inconsistencies when the database is 
updated and thus to avoid inconsistent database states. The actual detection of inconsistencies 
will be relegated to the algorithms that maintain the integrity constraints which are defined 
as part of the conceptual database schema. 

At times we will refer to a null value in a generic way without specifying its type; we denote 
such a generic null value by null. This will be convenient when we investigate the fundamental 
semantics which are common to all types of null value. 

Prior to giving the formal definition of an incomplete relation we give a motivating example. 

Example 5.1 In Table 5.1 we show an incomplete relation, say r, over a relation schema, say 
R, where type{R) = 6 and schema{R) = {STUD#, NAME, COURSE, SPS, DEPT, HEAD}. The 
semantics ofR are: a student has a unique student number (STUD#), a name (NAME), belongs 
to one department (DEPT), takes one or more courses (COURSE) and may have at most one 
spouse (SPS). In addition, a department has one head (HEAD) and each course is given by 
one department. • 

Table 5.1 An incomplete relation 

STUDt NAME COURSE SPS DEPT HEAD 
1 Iris Databases dne Computing Dan 
2 Iris Programming dne Computing unk 
3 Reuven Programming Hanna unk unk 
4 Hillary Theory ni Maths Annette 
5 Hillary unk ni Maths unk 
6 Eli ni Naomi ni ni 
7 David Logic Rachel unk unk 

Informally, the extended domain of an attribute A is the domain of A augmented with the 
above four types of null value. 
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Definition 5.1 (Extended domain) Let R be a relation schema and A E schema(R) be an 
attribute, and recall that DOM(A) denotes the countably infinite set of constants that are 
included in the domain of A. In addition, assume that unk, dne, ni and inc are not members 
of DOM(A). Then the extended domain of A, denoted by EDOM(A), is defined by 

EDOM(A) = DOM(A) U funk, dne, ni, inc}. • 
Definition 5.2 (Incomplete relation) An incomplete tuple over a relation schema R is a 
member of the Cartesian product, 

EDOM(A1) x EDOM(A2) x ... x EDOM(Atype(R»). 

An incomplete relation over R is a finite set of incomplete tuples. 

An incomplete tuple is actually a complete tuple if none of its attribute values is null; that is, a 
complete tuple is a special case of an incomplete tuple. Also, an incomplete tuple is consistent 
if none of its attribute values is the null value inc; if at least one of its attribute values is the 
null value inc then the incomplete tuple is inconsistent. 

An incomplete relation is actually complete if all its tuples are complete; note that a complete 
relation is a special case of an incomplete relation. In addition, an incomplete relation is 
consistent if all its tuples are consistent; if at least one of its tuples is inconsistent then it is 
inconsistent. • 

We note that the definition of the projection of a tuple t onto a set of attributes Y S; schema(R) 
remains the same for incomplete relations, i.e. tlY] is the restriction of t to Y. 

Whenever no ambiguity arises we will refer to an incomplete tuple simply as a tuple and to 
an incomplete relation simply as a relation. Furthermore, from now on we will assume that 
relations are consistent unless explicitly stated otherwise. 

If we examine the incomplete relation given in Table 5.1 we will notice that we cannot 
distinguish between different occurrences of a null value in the relation. For example, the 
unk null value appears as the attribute value of the department in the tuples whose student 
numbers are 3 and 7, but it is not necessarily the case that these two students are studying in 
the same department. Another example is the multiple occurrence of ni as the attribute value 
of spouse in the tuples with student numbers 4 and 5. In this case we obviously cannot say that 
these two students are married and even if this were to be the case it would be very unlikely that 
they would both be married to the same person. On the other hand, the occurrences of dne as 
the attribute value of spouse in the tuples with student numbers 1 and 2 can be considered as 
conveying exactly the same semantic information, namely that both of these students are not 
married. 

We can classify the above types of null value as being unmarked nulls, since we do not 
distinguish between different occurrences of the null values as attribute values of tuples in an 
incomplete relation. That is, there is no "mark" to distinguish between different occurrences 
of the same type of null value. Another possibility is to subscript (or index) each occurrence of 
a null value, say null, by an integer i, resulting in nulli, in order to distinguish between different 
occurrences of the null value. Such null values are classified as marked nulls. Consider, for 
example, the incomplete relation shown in Table 5.2, which consists of incomplete tuples with 
marked nulls of type unk. We can infer from the marked nulls that students 1,2 and 3 are 
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studying in the same department and that student 5 and student 6 are taking the same course. 
On the other hand, students 3 and 4 mayor may not be studying in the same department and 
students 6 and 7 mayor may not be taking the same course. We observe that it does not make 
much sense to mark nulls of type dne, since the meaning of the fact that students 1 and 2, in 
the relation shown in Table 5.1, are not married (i.e. that for students 1 and 2 there does not 
exist a spouse) would not be affected in any way by marking the dne null values. In addition, 
if a relation is inconsistent it will not be meaningful in our context to distinguish between 
different occurrences of inc in the relation, since we are assuming that we are able to avoid 
any inconsistencies in the database by integrity constraint maintenance. 

Thus, as the incomplete relation shown in Table 5.2 indicates, it is most meaningful to mark 
nulls of type unk. Furthermore, marked nulls of type unk have a natural logical interpretation 
as Skolem constants [Fit96), i.e. they are constants that are used to eliminate existential 
quantifiers in first-order predicate logic proof theory. Now, let us see what the interpretation 
of marking nulls of type ni can be. Suppose that the attribute value of COURSE, for both 
students 5 and 6 in Table 5.2, is ni3' We would interpret this situation as meaning that the 
course value for students 5 and 6 is either dne or the same marked null unk3• 

Table 5.2 An incomplete relation with marked nulls 

STUDt COURSE DEPT 
1 Databases unk) 
2 Databases unk) 
3 Theory unk) 
4 Logic unk2 

5 unk3 Computing 
6 unk3 Computing 
7 unk4 Computing 

For the rest of this section we will only consider marked and unmarked nulls of type unk. 
The next definition formalises the notion of two values having the same information content 
or being information-wise equivalent; this is known as symbolic equality. This notion is 
important, since semantically, two different occurrences of unk mayor may not be equal but 
they definitely convey the same information content. 

For example, the head of department in the second and third tuples in the incomplete 
relation, shown in Table 5.1, mayor may not be the same since our information is incomplete, 
but in both cases the occurrence of unk conveys the same information, i.e. that the value exists 
but is unknown. 

Defmition 5.3 (Information-wise equivalence) Let A be an attribute in schema(R) and Vi . Vj 

be values in EDOM(A). Then Vi is information-wise equivalence to Vj, written as Vi ~ Vj, if 
and only if Vi and Vj are syntactically identical, i.e. they have the same name. If Vi is not 
information-wise equivalent to Vj, then we write --'(Vi ~ Vj)' • 

Thus, for example, unk ~ unk, unk2 ~ unk2 and Iris ~ Iris, but --.(Iris ~ Hillary), --.(unk 
~ Iris) and --.(unk1 ~ unk2). We note that if Vi and Vj are nonnull values, i.e. they are both 
members of DOM(A), then information-wise equivalence reduces to equality. In Section 5.3 
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we will extend the notion ofinformation-wise equivalence to incomplete tuples and incomplete 
relations. 

In order give a formal treatment of nulls of type unk, we adopt a three-valued logic by 
introducing a third truth-value maybe in addition to the standard two truth-values true and 
false. In a two-valued world equality is a predicate that evaluates to either true or false. Thus we 
redefine equality in the presence of incomplete information to be a predicate which evaluates 
to either true, false or maybe. 

Definition 5.4 (Three-valued equality for nulls) Let A be an attribute in schema(R) and 
Vi, Vj E EDOM(A). Then the following cases define the interpretation of equality in a 
three-valued logic: 

1) If Vi and Vj are both nonnull values then Vi = Vj evaluates to true if Vi ~ Vj holds, 
otherwise it evaluates to false. 

2) unk = unk evaluates to maybe. 

3) unk = unki evaluates to maybe. 

4) unki = unkj evaluates to true if i = j, otherwise it evaluates to maybe. 

5) If Vi is a null value (marked or unmarked) and Vj is a non null value, i.e. Vj is in DOM(A), 
then Vi = Vj evaluates to maybe. • 

Thus, for example, unkll = unkll evaluates to true, Iris = unk evaluates to maybe and Iris 
= Hillary evaluates to false. From now on, whenever we refer to "Vi = V/, in a sentence of the 
form "if Vi = Vj then ... " or in the midst of a formula, then we take it to mean Vi = Vj evaluates 
to true. 

We now discuss the advantages and disadvantages of unmarked and marked null values. 
Marked nulls have the obvious advantage of being more expressive than unmarked nulls, 
since we can distinguish between different occurrences of them depending on the value of 
their mark. Furthermore, there may be circumstances when the database system can deduce 
that two marked nulls are equal and thereby equate their marks. In practice marked nulls 
add complexity to the database system, which then needs to maintain the marks of nulls 
globally throughout the database, and to avoid inconsistencies which would arise if two or 
more marked nulls were inappropriately equated. It is also not clear if the benefit of knowing 
that two occurrences of a null value are equal outweighs the overhead incurred. Unmarked 
nulls have the obvious advantage of being conceptually, theoretically and practically simpler 
than marked nulls. We mention that to date SQL's support for null values includes only the 
unmarked unk null type. 

5.2 The Open and Closed World Assumptions 

When viewing the database as an open world we do not make any assumptions about 
information that is not stored in the database. Thus when making the Open World Assumption 
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(or simply the OWA) we do not utilise the absence ofinformation to infer that this information 
is false. For example, if we consider the relation shown in Table 5.3, then we cannot infer 
that Hillary is not taking a database course and we cannot infer that Hillary is not taking 
a programming course. What we can say is that from the information we have available 
Hillary mayor may not be taking a database course and Hillary mayor may not be taking a 
programming course. Thus under the OW A the database is not expressive enough to infer 
any negative information. 

Table 5.3 A relation illustrating the OWA and CWA 

SNAME COURSE DEPT 
Iris Databases Computing 

Reuven Programming Computing 
Hillary Logic Philosophy 

One possible solution to this problem of negative information is to allow tuples in relations 
to represent negative data. Let us assume for a moment that we have extended the relational 
model to store false information in relations. Thus, for example, if we wanted to store the 
fact that Hillary is not doing a database course, then that fact would be stored explicitly in the 
relation and tagged as false. The problem with this approach is that in most applications there 
would be an overwhelming amount of negative data and thus this solution is not very practical. 
For this reason we will not consider such a solution. Now, in the relation shown in Table 5.3 it 
is standard practice to record the courses that students are taking and assume that these are 
in fact the only courses that they are taking. That is, information not recorded in the database 
is assumed by default to be false. Thus in our example we can infer that Hillary is not taking a 
database course and also that she is not taking a programming course. In this case we say that 
we view the database as a closed world, meaning that we assume that the database has complete 
positive information. Thus when making the Closed World Assumption (or simply the CWA) 
we can utilise the absence of information in order to infer that this absent information is false. 

The importance of the CW A will become obvious in Chapter 9 when we introduce deductive 
databases that extend relational databases to allow intentional information, in the form of 
rules, to be stored as part of the database. For example, we could have a rule stating that if a 
student is not doing the Programming course in the Computing department, then this student 
is doing the Theory course in the Maths department. Under the CW A we can infer that Hillary 
is doing the Theory course in the Maths department and possibly add this fact to the relation 
shown in Table 5.3. On the other hand, we could not infer this fact under the OW A. We will 
also utilise the CW A in the next section when we define the relative content of relations. 

A generalisation of the CW A, which is meant to solve the inconsistency problem arising 
from the CW A when disjunctive information is allowed in the database, can be found in 
[Min88aj. The CWA and its generalisation are further discussed in Chapter 9 in the context 
of deductive databases. 

An interesting suggestion which attempts to merge the CWA and the OW A is given in 
[GZ88j. This is done by adding another type of null value, denoted by open. Consider the 
relation, r, shown in Table 5.4. We interpret r under the CWA except for the DEPT-value of 
the second tuple. Under the CW A we infer that Hillary is the only student taking Logic in the 
Philosophy department and that she is studying only in this department. In fact, under the 
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CW A we can derive the stronger fact, namely that Hillary is the only student studying in the 
Philosophy department and that there is only one department, i.e. the Philosophy department. 
Under the OW A, due to the occurrence of open, we can deduce that Hillary may be taking 
more courses in the Philosophy department apart from Logic. Thus occurrences of open allow 
us to locally open the database. If we add to a relation a tuple of the form, <open, ... , open>, 
consisting solely of occurrences of open, then all the information in the relation is interpreted 
according to the OW A. 

Table 5.4 A relation illustrating the open null value 

SNAME COURSE DEPT 
Hillary Logic Philosophy 
Hillary open Philosophy 

5.3 Introducing Order into the Domain 

In this section we will assume that the only types of null that are available are unmarked. It 
is very natural to view an incomplete relation as containing less information than a complete 
relation, or alternatively, to view a complete relation as containing more information than an 
incomplete relation. 

We formalise what we mean by less informative and more informative by appealing to the 
theory of ordered sets. Taking this approach we will impose a partial order on the extended 
domains of attributes, which we will denote by~. Recall from Subsection 1.9.2 of Chapter 1 
that a partial order such as ~ on a set S is a binary relation on S that is reflexive, antisymmetric 
and transitive. To convey the fact that a partial order is defined on a set it is customary to 
consider the partial order together with the set over which it is defined. The resulting ordered 
pair (S, ~) is called a partially ordered set. 

Thus, if A is an attribute in schema(R} then (EDOM(A), ~) is a partially ordered set. The 
actual ordering is shown pictorially in Figure 5.1, where DOM(A} = {VI, V2, ... , vn}; such a 
diagram is known as a Hasse diagram. We interpret the diagram as follows: el ~ e2 holds if 
and only if el appears "lower" in the diagram than e2 and there is a connecting line between el 

and e2. Furthermore, if el is not information-wise equivalent to e2, then it is not the case that 
e2 ~ e[, which is written as --.(e2 ~ ed. Therefore, in Figure 5.1 we have ni ~ unk ~ Vi ~ inc 
and ni ~ dne ~ inc and for no other two elements in the diagram does this relationship hold. 
In the following we will refer to the partially ordered set (EDOM(A), ~) as the information 
lattice for A. We note that the information lattice for A is actually as its name suggests a 
mathematical lattice. (We refer the reader to Subsection 1.9.2 of Chapter 1 for the definition 
of a lattice.) 

Defmition 5.5 (Less informative and more informative) If VI, V2 E EDOM(A), then VI is less 
informative than V2 (or equivalently, V2 is more informative than VI) if and only if VI ~ V2 . 

• 
We next give an alternative definition of information-wise equivalence for unmarked nulls. 

That is, VI and V2 are information-wise equivalent, i.e. VI ~ V2, if and only if VI ~ V2 and 
V2 ~ VI· 
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Fig 5.1 The information lattice 
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We will now continue to develop our order-theoretic approach to incomplete relations. 

Defmition 5.6 (Less informative and more informative tuples) We extend!; to incomplete 
tuples as follows: where tl and t2 are incomplete tuples over a relation schema R, 

tl !; t2 if and only if VA E schema(R), tdA] !; t2[A]. 

If tl !; t2, then we say that tl is less informative than t2 (or equivalently, that t2 is more 
informative than td. 

We extend information-wise equivalence to incomplete tuples as follows: tl and t2 are 
information-wise equivalent, written tl ~ t2, if and only if tl !; t2 and t2 !; tl' • 

We observe that it is also customary in the literature to say that a more informative tuple 
subsumes a less informative tuple. From Definition 5.6 it follows that 

(EDOM(Ad x EDOM(A I) x ... x EDOM(Atype(R», !;} 

is a partially ordered set. 

Defmition 5.7 (The extended active domain) Let r be an incomplete relation over a relation 
schema R. Then the extended active domain of r with respect to A E schema(R), denoted by 
EACTIVE(r, A), is defined by 

EACTIVE(r, A) = {t[A] I t E r} U {unk, dne, ni, inc}. • 

We observe that the Cartesian product 

EACTIVE(r, Ad x EACTIVE(r, A2) x ... x EACTIVE(r, Atype(R» 

yields a finite set, since Vi E {l, 2, ... , type(R)}, EACTIVE(r, Ai) is finite. The following 
proposition is now obvious. 

Proposition 5.1 Let r be a relation over a relation schema R. Then 

(EACTIVE(r, AI) x EACTIVE(r, A2) x ... x EACTIVE(r, Atype(R», !;} 

is a partially ordered set. o 
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Informally a relation T, over a relation schema R is less informative than a relation T2 over 
R, written T, !; T2, if zero or more of the tuples in T, can be replaced by (or modified to 
become) more informative tuples in order to obtain T2. Prior to giving the formal definition 
ofless informative and more informative relations we provide some motivation. Consider the 
relations, TI> T2 and T3, shown in Tables, 5.5, 5.6 and 5.7, respectively. 

Table 5.5 An incomplete relation " Table 5.6 An incomplete relation '2 Table 5.7 An incomplete relation'3 

PARENT CHILD PARENT CHILD PARENT CHILD 
Jack Jill Jack Jill Jack Jill 
unk unk unk unk unk unk 
Jack unk unk Jill 

First consider T, and T2. The first two tuples in T, match with the first two tuples in T2 . Now 
assume that r, !; r2 holds. In this case the tuple <Jack, unk> must correspond to a more 
informative tuple in r2, i.e. to <Jack, Jill>. However, according to our informal definition 
of more informative relations we obtain r3 and not r2, since the tuple <unk, Jill> does not 
correspond to any tuple in r,. Nonetheless, there is another possibility to consider. The tuple 
<unk, unk> in r, could correspond to the tuple <unk, Jill> in r2. However, then the tuple 
<unk, unk> would correspond to two tuples in r2. Moreover, this contradicts our informal 
definition ofless informative relations, since <unk, unk> would be replaced by two distinct 
tuples in r2 which is not possible. 

There are two possible solutions to this problem. The first solution is to treat less informative 
tuples in a way similar to the treatment of duplicate tuples in complete relations. That is, since 
duplicate tuples are removed from complete relations (recalling that relations are sets), less 
informative tuples are also removed from incomplete relations. An incomplete relation from 
which all less informative tuples have been removed is called a reduced relation. A reduced 
relation is an antichain (see Subsection 1.9.2 of Chapter 1), since no two tuples in a reduced 
relation are comparable with respect to !;. It is easy to check that in our example all of rl> r2 
and r3 reduce to a single tuple <Jack, Jill>. However, it is evident that the process of reduction 
involves a considerable loss of semantics. The tuple <Jack, unk> in r, may denote the fact 
that Jack has another child apart from Jill, the tuple < unk, Jill> in r2 may denote the fact that 
Jill's mother exists but is unknown and the tuple <unk, unk> in either T, or T2 may denote the 
fact that another unknown parent and a child thereof are stored in the relation. For this reason 
we will not advocate reduced relations. We mention that the assumption that relations are 
reduced is common in the database literature mainly due to the fact that, in theory, reduced 
relations are easier to deal with than non-reduced relations. In practice, there does not seem to 
be any justification to reduce relations, not to mention the overhead which would be incurred 
in maintaining such reduced relations. 

The second solution is to admit that according to our informal definition ~(r, !; r2), that 
is, r, is not less informative than r2. Bya similar argument we can deduce that r2 is not less 
informative than r,. Continuing our example we can also deduce that r, !; r3 holds, since both 
<Jack, Jill> and <Jack, unk> could have been replaced by <Jack, Jill>. This corresponds to 
the situation where the occurrence of unk in <Jack, unk> is replaced by Jill; for example, it 
may be the case that Jack actually has only one child. In this case <Jack, unk> turns out to 
be a duplicate of <Jack, Jill>. Similarly, we can deduce that r2 !; r3 holds. Finally, ~(r3 !; rd 
and ~(r3 !; r2) can also be verified. 
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Definition 5.8 (Less informative and more informative relations) We extend ~ to incom
plete relations as follows: where rl and r2 are incomplete relations over schema R, rl ~ r2 if 
and only if there exists a total and onto mapping () from rl to r2 such that "It E rl, t ~ ()(t). 
(See Subsection 1.9.1 of Chapter 1 for the definition of a total and onto mapping.) 

If rl ~ r2, then we say that rl is less informative than r2 (or equivalently, r2 is more 
informative than rl). 

We extend information-wise equivalence to incomplete relations as follows: rl and r2 are 
information-wise equivalent, written rl ~ r2, if and only if rl ~ r2 and r2 ~ rl. • 

It can be verified that the formal definition ofless informative relations corresponds to the 
informal definition given earlier. We note that, when r ~ s, we insist that each tuple in s be 
more informative than some tuple in r and also that for each tuple t E r there is some tuple in 
s that is more informative than t. We make the following interesting observations concerning 
the boundary cases, where rand s are incomplete relations over R: 

1) If r = 0 and s = 0, then r ~ s holds. 

2) If r = 0 and s ::/= 0, then ..... (r ~ s), since () = 0 and thus () is not an onto mapping. 

3) If r ::/= 0 and s = 0, then ..... (r ~ s), since () does not exist in this case. 

The following technical definition is now needed. 

Defmition 5.9 (The set of active incomplete relations) Let r be an incomplete relation over 
schema R. Then the set of active incomplete relations induced by r, denoted by EAREL(r), is 
the set of all subsets of the Cartesian product 

EACTIVE(r, AI) x EACTIVE(r, A2) x ... x EACTIVE(r, Atype(R». • 
We note that EAREL(r) is a finite set, since Vi E (I, 2, .. . , type(R)}, EACTIVE(r, Ai) is a 

finite set. The following proposition states that the set of active incomplete relations induced by 
an incomplete relation r forms a partially ordered set. Its proof follows from the Definition 5.8 
of less informative relations on using composition of mappings. 

Proposition 5.2 Let r be a relation over schema(R). Then (EAREL(r), ~} is a partially ordered 
~ 0 

In the following we will refer to the partially ordered set (EAREL(r), ~} as the information 
ordering. Our interpretation of a more informative relation is a relation that results from 
modifying another relation. In particular, our definition directly caters for the replacement 
(or modification) of tuples, and not for the deletion of old tuples from a relation or the 
insertion of new tuples into a relation. We could amend our definition of less informative in 
the following two ways: 

1) In order to cater for deletions we could relax () in the definition to be a partial mapping 
rather than a total mapping. 
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2) In order to cater for insertions we could relax e in the definition to be an into mapping 
rather than an onto mapping. 

In the first case the deleted tuples in r would not be mapped to any tuple in the more 
informative relation s and in the second case the inserted tuples in s would not have any less 
informative tuples in r mapped to them. Our definition of less informative by using a total 
and onto mapping can be viewed as an application of the CW A. This is due to the fact that a 
more informative relation is viewed as the result of modifying existing information and thus 
each incomplete relation resulting from replacing some null values by nonnull values in a less 
informative relation will not violate the CW A. For example, in the incomplete relation shown 
in Table 5.1, say r, on assuming the CWA we can deduce that there are only seven students 
doing courses at this moment in time. Thus for any incomplete relation s such that r ~ s 
holds there will still be seven tuples, due to our definition being compatible with the CW A. 

Our approach to defining the relative information content of an incomplete relation by 
imposing a partial order on the underlying domains allows us to formalise the notion of the 
possible worlds relative to an incomplete relation r, denoted by POSS(r). Informally, POSS(r) 
is the set of all relations, which are more informative than r and do not contain nulls of type 
ni, unk or inc. On treating dne as having the same information content as some nonnull value, 
we have that POSS(r) is the set of all complete relations which are more informative than r. 

Defmition 5.10 (The set of possible worlds relative to a relation) The set of all possible 
worlds relative to an incomplete relation r over schema R, denoted by POSS(r), is defined 
by 

POSS(r) = (s I r ~ s and "It E s, VA E schema(R), tlA] E EDOM(A) - {ni, unk, inc}}. • 

We note that r is inconsistent if and only if POSS(r) = 0, which fits in with our philosophy 
that in our context inconsistent relations are not meaningful. The following theorem, which 
follows from Definition 5.10 above and Definition 5.8 of less informative relations, captures 
our intuition, namely that an incomplete relation is more informative than another incomplete 
relation if and only if it has less possible worlds. 

Theorem 5.3 The following two statements, where rand s are incomplete relations over 
schema R, are true: 

1) If r ~ s, then POSS(s) ~ POSS(r). 

2) IfPOSS(s) ~ POSS(r) and both ofPOSS(r) and POSS(s) are non empty, then r ~ s. 0 

The next proposition follows directly from the above definition of possible worlds. 

Proposition 5.4 An incomplete relation r over schema R is consistent if and only if r = 0 or 
POSS(r) =f. 0. 0 

Our previous assumption that incomplete relations are consistent unless explicitly stated 
otherwise is justified by Proposition 5.4, since if inconsistency is introduced it is present in all 
possible worlds. 
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We refer the reader to [BJ091, Lib91, Lev92, LL92, LL93a, LL93b, LL94, Lib98j for further 
investigations into the order-theoretic approach to formalising incompleteness in relational 
databases. This approach borrows from the theory of denotational semantics of programming 
languages [Sch86j and from lattice theory [Gra78, DP90j. 

5.4 Extending the Relational Algebra with Null Values 

In this section we will extend the relational algebra so that it is capable of manipulating 
incomplete relations. With the intention of simplifying the definition of the extended algebra, 
throughout this section, the only type of null that we will consider being present in incomplete 
relations will be the unmarked null unk. 

In order to ascertain that our extended algebra is reasonable we will use the notions of 
faithfulness and truth-preservation. An extended operator is faithful ifit returns the same result 
as its corresponding standard operator, when manipulating complete relations. Faithfulness 
provides us with a reference point as to the expressive power of the extended algebra. An 
extended operator is truth-preserving if the intersection of the set of relations belonging to all 
possible worlds induced by the result of applying the said operator to an incomplete relation 
is the same as the intersection of the set of complete relations resulting from invoking the 
corresponding standard operator on all possible worlds of this incomplete relation. Thus if an 
extended operator is truth-preserving then it maintains all the true answers to a query, i.e. all 
the answers that are true in all possible worlds. We note that we could relax truth -preservation 
to possibility-preservation if we allow answers that evaluate to maybe to be included in the 
result of a query. In this case an answer to a query will contain all tuples that evaluate to true 
in at least one possible world. Herein we will only test for truth-preservation which is the 
minimal desirable property of an extended operator. 

Let op be a standard relational algebra operator for complete relations, as defined in 
Subsection 3.2.1 of Chapter 3, and let ope be an extended relational algebra operator (or simply 
an extended operator) for incomplete relations. For simplicity we will assume that op and 
ope are unary operators but obviously the definitions of faithfulness and truth-preservation 
also hold when op and ope are binary operators. In the following we will refer to an 
extended relational algebra expression (or equivalently, an extended query) as a well-formed 
expression composed of a finite number of extended relational algebra operators, whose 
operands are relation schemas which can be treated as input variables to the extended query. 
An extended query Q, having operands Rl , R2,"" Rn, is denoted by Q(Rl, R2 ," " Rn} or 
simply by Q, if Rl , R2, ... , Rn are understood from context. An answer to an extended query 
Q(Rl, R2," " Rn} is obtained by replacing every occurrence of Ri in Q by an incomplete 
relation ri over Ri and computing the result by invoking the extended operators present in 
Qj such an answer to Q will be denoted by Q(rl , r2 , .. . , rn}. We will assume that appropriate 
parentheses are present in Q in order to avoid any ambiguity when computing Q(rl, r2, .. . , r n}. 
At times we will also refer to an answer of an extended query as an extended query (or simply 
a query) when no ambiguity arises. 

We next formally define faithfulness and truth-preservation for unary operators, leaving it 
to the reader to define the analogous definitions for binary operators. 
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Defmition 5.11 (Faithful extended operator) We say that ope is faithful to op if for all 
complete relations r over schema R, op(r) = ope (r). • 

Defmition 5.12 (Truth-preserving extended operator) We say that an extended operator, 
ope, is a truth-preserving extension of a standard operator, op, if for all incomplete relations r 

n{s I s E POSS(ope(r»} = n{op(s) Is E POSS(r)}. • 
Recall that r is consistent by assumption. We note that in [IL84a, Lip84, Imi89] a more 

general definition of truth-preservation was given where an operator in the above definition is 
taken to be a query and an extended operator is taken to be an extended query. This definition 
is more powerful than Definition 5.12, since although we can obtain truth-preservation for 
all the extended operators there are still certain subclasses of extended queries that are not 
truth-preserving. We will illustrate this point later on with examples. 

Definition 5.13 (Extended union) The extended union, Ue, of two incomplete relations rl 
and r2 over schema R is defined by 

• 
We make the small technical comment that the use of the equality sign, "=", in the definition 

above should read "is defined as" and is not to be confused with equality between domain 
values. In some mathematical texts different symbols are used to denote "equals" and "is 
defined as"; in our case we will use the same symbol, i.e. "=", to denote both meanings since 
its use is obvious from context. 

We note that the definition of extended union is essentially the same as the definition of the 
standard union. As an example, let rl and r2 be the two incomplete relations over R, where 
schema(R) = {SNAME, COURSE, DEPT}, shown in Tables 5.8 and 5.9, respectively. The null 
extended union rl Ue r2 is shown in Table 5.10. 

Table 5.8 An incomplete student relation rl 
SNAME COURSE DEPT 

Iris Databases Computing 
Reuven Theory unk 
Hillary unk Philosophy 
Rachel unk unk 

Eli Databases Computing 

Table 5.9 An incomplete student relation r2 
SNAME COURSE DEPT 

Iris Databases Computing 
Reuven unk unk 
Rachel Logic unk 
David unk Maths 
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Table 5.10 The incomplete student relation TI Ue T2 

SNAME COURSE DEPT 
Iris Databases Computing 

Reuven Theory unk 
Reuven unk unk 
Hillary unk Philosophy 
Rachel unk unk 
Rachel Logic unk 
David unk Maths 

Eli Databases Computing 

We leave the proof of the following theorem to the reader. 

Theorem 5.5 Extended union is a faithful and truth-preserving extended operator. 0 

We observe that extended union satisfies a stronger property than truth-preservation, which 
is given by 

POSS(rl Ue r2) = {51 U 52 I 51 E POSS(rl) and 52 E POSS(r2)} , 

implying that extended union is also possibility-preserving. 

Defmition 5.14 (Extended difference) The extended difference, e of two incomplete 
relations r1 and r2 over schema R is defined by 

rl _e r2 = {t I t E rl and jlu E r2 such that either u ~ tor t ~ u}. • 
As an example, the null extended difference rl _e r2 is shown in Table 5.11, where rl and r2 

are the incomplete relations shown in Tables 5.8 and 5.9, respectively. 

Table 5.11 The incomplete student relation TI _e T2 

SNAME COURSE DEPT 
Hillary unk Philosophy 

Eli Databases Computing 

We leave the proof of the following theorem to the reader. 

Theorem 5.6 Extended difference is a faithful and truth-preserving extended operator. 0 

We note that an alternative definition of the extended difference, denoted by _z and 
suggested by Zaniolo [Zan84], is given by 

rl _z r2 = {t I t E rl and jlu E r2 such that t ~ u}. 

Although the definition of _z may seem intuitively more appealing than that of _e, the 
reader can verify that _z is not truth-preserving by setting rl = {<v>} and r2 = {<unk>}. 
In particular, rl _z r2 = rl> but n{51 - 52 I 51 E POSS(rd and 52 E POSS(r2)} = 0. 
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Defmition 5.15 (Extended projection) The extended projection, n e, of an incomplete 
relation r over schema R onto Y S; schema(R) is defined by 

n~(r) = {try] I t E r}. • 
We note that the definition of extended projection is essentially the same as the definition of 

the standard projection. As an example, the extended projection n {COURSE, DEPT} (r1) is shown 
in Table 5.12, where r1 is shown in Table 5.8. 

Table 5.12 The incomplete student relation nlCOURSE.DEPT} (TJ) 

COURSE DEPT 
Databases Computing 

Theory unk 
unk Philosophy 
unk unk 

We leave the proof of the following theorem to the reader. 

Theorem 5.7 Extended projection is a faithful and truth-preserving extended operator. 0 

Let r be an incomplete relation over Rand Y S; schema(R). Then the extended projection 
satisfies a stronger property than truth-preservation, namely 

POSS(n{(r» = (ny(s) Is E POSS(r)}, 

implying that, as well as extended union, extended projection is also possibility-preserving. 

We now define extended selection using a three-valued logic approach, as opposed to 
standard selection which uses the classical two-valued logic approach. Prior to defining the 
semantics of extended selection we define extended selection formulae. 

Defmition 5.16 (Extended selection formula) An extended simple selection formula over a 
relation schema R is either an expression of the form A = a or an expression of the form A = 
B, where A, B E schema(R) and a E EDOM(A). 

An extended selection formula over R is a well-formed expression composed of one or more 
extended simple selection formulae together with the Boolean logical connectives: /\ (and), v 
(or), -. (not) and parentheses. An extended selection formula is called positive if it does not 
have any occurrence of -.. We abbreviate -.(A = a) by A", a and -.(A = B) by A", B. • 

We note that an extended simple selection formula of the form A = B is sometimes referred 
to as an extended restriction. We also note that for simplicity we have only included equality 
(=) as a comparison operator but, in general, we can expect to have :S, <, !; and ~ available in 
an extended simple selection formula. We further note that!; and ~ are not truth-preserving, 
since unk ~ unk evaluates to true while unk = unk evaluates only to maybe. 

Defmition 5.17 (True logical implication, F) Let r be an incomplete relation over R, t be a 
tuple in r and, in addition, let F be an extended selection formula over R. Then t truly logically 
implies F, written t F F, is defined recursively, as follows: 
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1) t FA = a, if t[A] = a evaluates to true using our three-valued equality for nulls. 

2) t FA = B, if t[A] = t[B] evaluates to true using our three-valued equality for nulls. 

3) t F (F), if t F F. 

4) t F F, if F evaluates to true by computing the truth-value of F recursively, using (1), 
(2) and (3) above and the three-valued logic truth tables shown in Tables 5.13, 5.14 and 
5.15. • 

We note that the three-valued truth tables shown in Tables 5.13, 5.14 and 5.15 coincide with 
those of the three-valued logics defined by Lukasiewicz and Kleene [Res69, BB92]. 

Table 5.13 The three-valued truth table for conjunction 

1\ true false maybe 
true true false maybe 
false false false false 

maybe maybe false maybe 

Table 5.14 The three-valued truth table for negation 

true false 
false true 

maybe maybe 

Table 5.15 The three-valued truth table for disjunction 

v true false maybe 
true 
false 

maybe 

true true 
true false 
true maybe 

true 
maybe 
maybe 

Definition 5.18 (Extended selection) The extended selection, ai, applied to an incomplete 
relation r over schema R with respect to a selection formula F over R is defined by 

a$(r) = {t It E rand t F F}. 

The extended selection is called positive if F is a positive extended selection formula. • 

We give three examples of extended selection. The extended selection ail (rl) is shown in 
Table 5.16, where FI is (DEPT = 'Philosophy' or SNAME = 'Rachel') and rl is shown in Table 5.8. 
The extended selection ai2 (rl) is shown in Table 5.17, where F2 is (DEPT "# 'Philosophy' and 
COURSE"# 'Theory') and 'I is shown in Table 5.8. The extended selection ai3 (r4) is shown 
in Table 5.19, where F3 is FIRST = SECOND and the incomplete relation r4 indicating the 
number of courses students did take in their first and second years is shown in Table 5.18. 
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Table 5.16 The incomplete student relation a~l (r1) 

SNAME COURSE DEPT 
Hillary unk Philosophy 
Rachel unk unk 

Table 5.17 The incomplete student relation a~2 (r» 

SNAME COURSE DEPT 
Iris Databases Computing 
Eli Databases Computing 

Table 5.18 An incomplete number of courses relation r 4 

SNAME FIRST SECOND 
Iris 5 5 

Reuven 5 unk 
Hillary 6 6 
Rachel unk unk 

Eli 4 5 

Table 5.19 The incomplete student relation a~J (r4) 

SNAME FIRST SECOND 
Iris 5 5 

Hillary 6 6 

Although all the queries we have just shown are indeed truth-preserving extended selection 
is not, in general, truth-preserving due to the tautology problem. A tautology is a logical 
formula, in our case an extended selection formula, which evaluates to true, no matter what 
data values are present in the tuples of the incomplete relation used, when computing the 
truth-value of the formula. That is, a tautology is an extended selection formula, F over R, 
such that for all incomplete relations rover R and "It E r, t F F. For example, let F be 
the formula (COURSE = 'Databases' or COURSE ::I 'Databases'). Then the tuples <Hillary, 
unk, Philosophy> and <Rachel, unk, unk> will not be included in the answer to the query 
CTp(r)), where rl is the incomplete relation shown in Table 5.8. This is due to the three-valued 
equality rule which evaluates unk = 'Databases' to maybe and thus using the three-valued 
logic truth table for"'" we obtain that unk ::I 'Databases' also evaluates to maybe. Nonetheless 
in all possible worlds S E POSS(rl) Hillary and Rachel are either doing Databases or not doing 
Databases, so these tuples ought to be present in the answer to the query. Another example is 
the formula ....,(DEPT = 'Computing' and DEPT ::I 'Computing'), which evaluates to true for 
all tuples in all possible worlds but will evaluate to maybe for tuples t such that t[DEPT] ~ 
unk on using three-valued logic equality with the aid of the three-valued logic truth tables. 

It follows that extended selection is not truth-preserving in general. Let us assume for the 
moment that all the extended domains are finite and thus POSS(r) is also finite; for instance 
we could assume that POSS(r) is a subset ofEAREL(r), where r is an incomplete relation. In 
this case to obtain a truth-preserving answer to a query involving extended selection we could 
simply evaluate the selection over all possible worlds, i.e. we could let 

CTp(r) = {t I t E rand n{aF(u) I u E POSS({t})) ::10). 
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However, it is easy to see that this approach is not practical, since the number of possible 
worlds is exponential in the number of occurrences of unk in the incomplete relation, 
r. Furthermore, even if we restrict ourselves to propositional logic (that is, we disallow 
quantification over formulae), the complement of the problem of deciding whether a formula 
is a tautology, i.e. the problem of finding whether a formula is satisfiable is known to be 
NP-complete [GJ79]. This is considered to be an indication that this problem cannot be 
solved in polynomial time in the size of the formula involved, i.e. that its computation cannot 
be carried out efficiently. We can stilI console ourselves by the fact that 

n{s I 5 E POSS(O'~(r»} ~ n{O'P(s) I 5 E POSS(r)}, 

i.e. all the answers to a query involving extended selection are true in all possible worlds but 
we may not obtain all the true answers. Furthermore, in some special cases it is possible to 
augment the database query processor with the ability to detect tautologies. We leave the 
proof of the following theorem to the reader. 

Theorem 5.8 The following three statements are true: 

1) Extended selection is a faithful extended operator. 

2) Positive extended selection is truth-preserving. 

3) Extended selection is not, in general, truth-preserving. o 

Definition 5.19 (Extended natural join) The extended natural join (or simply extended 
join), l><Je, of two incomplete relations rl> over schema RI> and r2, over schema R2, is an 
incomplete relation over a schema R, where schema(R} = schema(Rd U schema(R2), defined 
by 

rJ W r2 = {t I 3tJ E rJ and 3t2 E r2 such that t[schema(R J)] ~ tJ and t[schema(R2}] ~ t2 

and tdschema(R' )] = t2[schema(R')] evaluates to true} , 

where R' is a relation schema with schema(R') = schema(RI) n schema(R2). • 
As an example, the null extended join rl l><Je r5 is shown in Table 5.21, where rl and r5 are 

the incomplete relations shown in Tables 5.8 and 5.20, respectively. 

Table 5.20 An incomplete department relation '5 

DEPT HEAD PHONE 
Computing Dan 7214 
Philosophy unk 7116 

Maths Rachel unk 
unk Annette unk 

By utilising the extended join we can define the extended Cartesian product, denoted as 
x e, and the extended intersection, denoted as ne. The extended join reduces to the extended 
Cartesian product when schema(Rd n schema(R2} = Ql and the extended join reduces to the 
extended intersection when schema(Rd = schema(R2)' 

We leave the proof of the following theorem to the reader. 
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Table 5.21 The incomplete relation rl Me r5 

SNAME COURSE DEPT HEAD PHONE 
Iris Databases Computing Dan 7214 
Eli Databases Computing Dan 7214 

Hillary unk Philosophy unk 7116 

Theorem 5.9 Extended join is a faithful and truth-preserving extended operator. 0 

Despite the above result there are situations when the extended projection and extended join 
are combined together to yield a query which is not truth-preserving. Consider the incomplete 
relation r = {<Hillary, unk, Philosophy>} over R, where schema(R) = {SNAME, COURSE, 
DEPT}. Then the reader can verify that rr(SNAME.COURSE} (r) [><Je rr(COURSE.DEPTj (r) = 0, since 
unk = unk evaluates to maybe. However, the occurrence of unk in rr(SNAME.COURSEj(r) :;::: 

{<Hillary, unk>} is the same occurrence of unk in rr(COURSE.DEPTj (r) :;::: {<unk, Philosophy>}. 
Thus, in this case, the two occurrences of unk should be considered equal and the true result 
should be r, i.e. {<Hillary, unk, Philosophy>}. Therefore, we can conclude that if we combine 
extended projection with extended join in queries then the result is not necessarily truth
preserving. 

Ifwe examine the result of the extended join rl [><Je r5 shown in Table 5.21 we will notice that 
unmatched tuples are not represented in this relation. For example, both the tuples, < Reuven, 
Theory, unk> of rl and the tuple <Maths, Rachel, unk> of r5 are not represented in rl [><Je rs. 

In some circumstances we would like to preserve all the information present in the original 
relations. For example, in the joined relation we would like to maintain a record of all the 
students and all the departments whether they appear in the result of the extended join or 
not. Such a generalisation of the extended join operator is called the outer join operator. The 
result of the outer join operator consists of the tuples of the extended join operator unioned 
with the unmatched tuples padded with null values for the attributes not present in each of 
the original two relation schemas. 

Prior to defining the outer join operator we define the pad operator. 

Defmition 5.20 (The pad operator) Let r be an incomplete relation over a relation schema R 
and let S be a relation schema such that schema(R) ~ schema(S). The pad, 8, of r with respect 
to S is defined by 

8(r, S) = {t I 3u E r such that t[schema(R)) :;::: u and VA E schema(S) - schema(R), 

t[A) :;::: unk}. • 

Definition 5.21 (The outer join operator) Let rl over schema RI and r2 over schema R2 be 
incomplete relations. In addition, let 51 and 52 be the incomplete relations over RI and R2, 
respectively, defined by 

1) 51 = rl _e rr:chema(Rl/rl [><Je r2). 

2) 52 = r2 _e rr:chema(R2) (rl [><Je r2). 

The outer natural join (or simply outer join), 1Xl, of r1 and r2 is an incomplete relation over 
a schema R, where schema(R) = schema(Rd U schema(R2), defined by 

r l lXlr2 = (rl [><Je r2) Ue 8(51, R) Ue 8(52, R). • 
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As an example, the outer join r1 [Xlrs is shown in Table 5.22, where r1 and rs are the incomplete 
relations shown in Tables 5.8 and 5.20, respectively. 

Table 5.22 The incomplete relation TJ IXl T5 

SNAME COURSE DEPT HEAD PHONE 
Iris Databases Computing Dan 7214 
Eli Databases Computing Dan 7214 

Hillary unk Philosophy unk 7116 
Reuven Theory unk unk unk 
Rachel unk unk unk unk 

unk unk Maths Rachel unk 
unk unk unk Annette unk 

We conclude the presentation of the extended algebra with the formal definition of the 
extended renaming operator. 

Defmition 5.22 (Extended renaming) Let r be an incomplete relation over schema R, A E 

schema(R) and B ~ schema(R) is an attribute inU. The extended renaming, pe, of A to B in T, 

is an incomplete relation over schema S, where schema(S) = (schema(R) - (A}) U {B}, defined 
by 

PA-> B(T) = (t I 3u E T such that t[schema(R)-{A}) ~ u[schema(R)-{Al) and t[B) ~ u[A)) . 

• 
We leave the proof of the following theorem to the reader. 

Theorem 5.10 Extended renaming is a faithful and truth-preserving extended operator. 0 

Another criterion for measuring the characteristics of an extended algebra is that of 
monotonicity of its extended queries. 

Defmition 5.23 (Monotonic extended queries) An extended query Q(R J, R2, . . . , Rn) is 
monotonic (with respect to ~) when for all incomplete relations T1 and slover Rj, r2 and 
S2 over R2, .. . , Tn and Sn over Rn, if Vi E {l , 2, ... , n}, Ti ~ Si is satisfied, then Q(TJ , T2 , ... , Tn) 
~ Q(SJ, S2 , . . . , Sn) is also satisfied. • 

The intuition behind monotonicity is that the user's view of the database corresponds to 
queries being evaluated over the current state of the database. Thus monotonicity implies that 
increasing the information content of the database also increases the information content of 
the user's view. 

Theorem 5.11 All extended queries of the extended algebra are monotonic. 

Proof The length of an extended query is defined to be the number of occurrences of extended 
algebra operators in the extended query. We now sketch the proof of the result by induction 
on the length of an extended query, say Q = Q(R1 , R2 , .. . , Rn). 
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(Basis) : If the length of Q is 1, then Q is one of the extended algebra operators: extended 
union, extended difference, extended projection, extended selection, extended join, pad or 
extended renaming. The outer join is not included in the list, since it can be considered 
as a query whose length is greater than one. We next prove that extended difference is a 
monotonic operator and leave it to the reader to prove that the other extended operators are 
also monotonic. 

Let rl, r2, 51 and 52 be incomplete relations over schema R satisfying, rl !; 51 and r2 !; 52 . 
We need to show that (rl _e r2) !; (51 _e 52). Now let ()i, for i = 1,2, be the total and onto 
mapping from ri to 5i in the definition of!; such that "It E rio t !; ()i(t). 

Suppose that t E rl _e r2 and thus ()I (t) E SI. It remains to show that ()I (t) E SI _e S2. 

Suppose to the contrary that in fact ()I (t) ¢ SI _e S2. Thus by the definition of _e, 3u E r2 such 
that either 82(U) !; 81 (t), or 81 (t) !; 82(U). It follows that either u !; 81 (t), since u !; 82(U), or 
t !; 82 (u), since t !; 81 (t), holds. 

Now assume that ..... (u !; t) and ..... (t !; u) both hold. Then by the definition of!;, 3 A E 

schema(R) such that t[A] = urAl evaluates to false, i.e. t[A] ;/: urAl holds. This leads to a 
contradiction of the fact that either u !; ()I(t) or t !; ()2(U) holds and thus we conclude that 
either u !; tor t !; u must hold contrary to the above assumption. Consequently t ¢ rl _e r2 
as we have assumed, thus leading to a contradiction of our assumption that 81 (t) ¢ SI _e S2. 

The result, namely that the extended difference is monotonic, now follows. 

(Induction): Assume the result holds when Q is of length k, where k > O. We then need 
to prove that the result holds when the length of Q is k + 1. For simplicity, assume that Q 
has only one operand, say R, and that Q = ope (Qk(R», where Qk(R) is an extended query of 
length k. Now let rand S be incomplete relations over R such that r !; S. Then by inductive 
hypothesis, Qk(r) !; Qk(S), and thus by the basis step Ope(Qk(r» !; Ope(Qk(S», since ope was 
shown to be a monotonic operator. The result that Q(r) !; Q(s) follows. 0 

The above result may seem surprising, since as we will see below the extended difference 
operator is not monotonic with respect to subset. An intuitive explanation of our result is 
that, as we have already noted, less informative than (!;) is compatible with the CWA, which 
limits the amount of information that can be added to an incomplete relation with respect to 
!; and thus enforces mono tonicity. We observe that if we replace less informative than (!;) by 
subset of (S;) in the definition of monotonicity then the above result does not hold, since the 
extended difference operator is not a monotonic operator with respect to subset. For example, 
let rl = {<Hillary, unk, Philosophy>} and r2 = 0. It can easily be verified that rl _e r2 ;:: rl' 
Now, let SI ;:: rl and also S2 ;:: rl. Then rl S; SI and r2 S; 52 both hold. However, 51 _e S2 = 0, 
which implies that _e is not monotonic with respect to subset. 

We commen t briefly on our use of unmarked nulls rather than marked nulls in the definition 
of the extended relational algebra. As we have noted before marked nulls are more expressive 
than unmarked nulls but would add complexity to the database system. As an example of the 
added expressiveness of marked nulls we recall that, when we combine extended projection 
with extended join, extended queries are not necessarily truth-preserving in the presence 
of unmarked nulls. On the other hand, if we allow marked nulls such extended queries 
are truth-preserving, since two marked nulls are taken to be equal if their marks are the 
same. For example, consider the incomplete relation r = {<Hillary, unki> Philosophy>} 
over R, where schema(R) = {SNAME, COURSE, DEPT}. Then the reader can verify that 
7r(SNAME.COURSE} (r) txIe 7r(COURSE.DEPT} (r) = r, as expected. On the other hand, in the presence 
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of negation (~) in extended selection even when we allow marked nulls, extended queries 
may not be truth-preserving a situation associated with unmarked nulls. The culprit is again 
the three-valued equality rule. For example, let F be the formula (COURSE = 'Databases' or 
COURSE "I 'Databases') and consider the extended query aJ(r). Then the answer to this query 
is empty although F is a tautology. 

5.5 Extending Integrity Constraints with Null Values 

The problem of extending integrity constraints, so as to take into account the presence of 
null values, is the problem of redefining the notion of an integrity constraint being satisfied 
in an incomplete relation. Let r be an incomplete relation over schema R. We will assume 
throughout this section that both of the unmarked null types, unk and inc, may be present in 
incomplete relations. If r is inconsistent then r is taken to violate all integrity constraints; thus 
our assumption that a database should not contain inconsistent relations is justified. On the 
other hand, if r is complete then r satisfies an integrity constraint when the standard definition 
of satisfaction for complete relations obtains. In other words, an extended integrity constraint 
will always be defined so that it is faithful to its standard counterpart. We now discuss the two 
main approaches to extending the notion of satisfaction of an integrity constraint in r. The 
first approach insists that the integrity constraint be satisfied in all possible worlds relative 
to r and is called the strong satisfaction approach. The second approach requires that the 
integrity constraint be satisfied in at least one possible world relative to r and is called the 
weak satisfaction approach. The strong satisfaction approach can be viewed as modal logic 
necessity and the weak satisfaction approach can be viewed as modal logic possibility. (For an 
introduction to modal logic see [Che801.) 

We argue that both strong and weak satisfaction arise naturally in the real world. For 
example, assume that the functional dependency (FD) constraining a student to belong to 
only one department is satisfied strongly and that the FD constraining a department to have 
one head is satisfied weakly. We will now show that the difference between strong and weak 
satisfaction has an effect on integrity constraint maintenance, whose task is to ensure that the 
database is in a consistent state after an update has taken place. The strong satisfaction of 
an integrity constraint implies that whenever an occurrence of unk is replaced by a nonnull 
value, the constraint maintenance mechanism does not need to recheck the satisfaction of 
the FD, since the fact that a student belongs to one department holds in all possible worlds. 
On the other hand, the weak satisfaction of an integrity constraint implies that whenever an 
occurrence of unk is replaced by a nonnull value, the constraint maintenance mechanism does 
need to recheck the satisfaction of the FD, since in the resulting possible world a department 
may have more than one head in which case the FD is violated, giving rise to inconsistency. 
Thus strong satisfaction is easier to maintain than weak satisfaction but weak satisfaction 
allows for a higher degree of uncertainty to be represented in the database. 

We will now extend the notion ofFD to incomplete relations. Recall that an FD over schema 
R is a statement of the form R : X --? Y (or simply X --? Y whenever R is understood from 
context), where X, Y 5; schema(R). Also recall that an FD X --? Y is satisfied in a complete 
relation rover R, denoted by r 1= X --? Y, if and only if for all tuples t\ and t2 in r, if t\ [Xl = 
t2[Xj then tdYj = t2[YI. 
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The following definition formally captures our intuition that an FD is strongly satisfied in 
an incomplete relation, say r, if and only if it is satisfied in all possible worlds relative to r. 

Definition 5.24 (Strong satisfaction of an FD) An FD X --+ Y is strongly satisfied (or simply 
satisfied whenever no ambiguity arises) in an incomplete relation rover R, denoted by r F= X 
--+ Y, if and only if'Vs E POSS(r), 5 F= X --+ Y. • 

The following definition formally captures our intuition that an FD is weakly satisfied in an 
incomplete relation, say r, if and only if there exists a possible world relative to r in which this 
FD is satisfied. 

Definition 5.25 (Weak satisfaction of an FD) An FD X --+ Y is weakly satisfied (or simply 
satisfied whenever no ambiguity arises) in an incomplete relation rover R, denoted by r ~ X 
--+ Y, if and only if 35 E POSS(r) such that 5 F= X --+ Y. • 

We observe that if r is a complete relation then both the definitions of strong satisfaction 
and weak satisfaction coincide with the standard notion of FD satisfaction, since in this case 
POSS(r) = {rIo Thus both strong and weak satisfaction of an FD are faithful to the standard 
satisfaction of an FD. 

As an example of the above definitions let r be the incomplete relation over R, shown in 
Table 5.23, where schema(R) = {SNAME, COURSE, DEPT, HEAD}, and let F = {SNAME--+ 
DEPT, COURSE --+ DEPT, DEPT --+ HEAD} be a set ofFDs over R. It can be verified that r F= 
SNAME --+ DEPT, r ~ COURSE --+ DEPT and r ~ DEPT --+ HEAD are all satisfied. 

Table 5.23 An incomplete relation r 

SNAME COURSE DEPT HEAD 
Iris Databases Computing Dan 
Iris Theory Computing unk 

Reuven Theory unk unk 
Naomi Programming Maths Annette 
Joseph unk Maths unk 

Eli Logic unk Brian 

Prior to giving a syntactic characterisation of strong and weak satisfaction we define an 
operator, denoted by lub, which returns the least upper bound of two tuples over R with 
respect to the information lattice. (For the formal definition of the lub of a subset of a partially 
order set see Subsection 1.9.2 in Chapter 1.) 

Definition 5.26 (Least upper bound operator) The least upper bound of two values VI, V2 E 

EDOM(A) is defined as follows: 

2) if V2 ~ VI then lub( VI , V2) = VI; otherwise 
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We extend the lub operator to tuples t[, t2 over R as follows: lub(t[, t2) = t, where t is a tuple 
over R such that 'v' A E schema(R), t[Al = lub(tIlA], t2 [AJ). • 

The following lemma is important, since it gives rise to efficient algorithms for testing 
whether an FD is strongly or weakly satisfied in an incomplete relation. 

Lemma 5.12 The following statements, where r is an incomplete relation over R (which is 
consistent) and X, Y ~ schema(R), are true: 

1) r F= X ~ Y if and only iffor all distinct tuples tl, t2 E r, iflub(tJ!Xl, t2[X]) is consistent, 
then tl [Y - Xl = t2 [Y - Xl evaluates to true on using three-valued logic equality. 

2) r ~ X ~ Yifandonlyif'v'tl, t2 E r, if tl [Xl = t2[Xl evaluates to true on using three-valued 
logic equality, then lub(tdYl, t2 [YJ) is consistent. 0 

When we are modelling an application under development we will consider a set of FDs 
that should be satisfied in any instance of the database. Therefore, we now generalise the 
definition of strong and weak satisfaction of a single FD to a set of FDs. Informally, a set of 
FDs, say F, is strongly satisfied in an incomplete relation, say r, if all the FDs in F are satisfied 
in all possible worlds relative to r. Correspondingly, F is weakly satisfied in r if all the FDs in 
F are satisfied in at least one single possible world relative to r. 

Defmition 5.27 (satisfaction of a set of FDs) A set F of FDs over R is satisfied in a complete 
relation rover R, denoted by r F= F, if and only if 'v' X ~ Y E F, r F= X ~ Y. 

A set F ofFDs over R is strongly satisfied (or simply satisfied whenever no ambiguity arises) 
in an incomplete relation rover R, denoted by r F= F, if and only if'v's E POSS(r), s F= F. 

A set F ofFDs over R is weakly satisfied (or simply satisfied whenever no ambiguity arises) 
in an incomplete relation rover R, denoted by r ~ F, if and only if:3s E POSS(r) such that s F= 
R • 

The above definition gives rise to the problem of whether we can test for satisfaction of a 
set F of FDs over R, in an incomplete relation, r, by testing independently the satisfaction in 
the relation r of each individual FD in the set F. Obviously a positive answer to this problem 
is desirable. 

Definition 5.28 (Additive satisfaction) We will say that satisfaction is additive for a class of 
integrity constraints whenever the following condition holds: 

for all finite sets of integrity constraints b = {aI, a2, .. . , ak} in the class, b is satisfied in 
a relation r (which may be incomplete) if and only if'v'i E {I, 2, ... , k), ai is satisfied in r 
individually. • 

Weak satisfaction is defined in terms of possible worlds. Intuitively, if an incomplete 
relation, r, weakly satisfies a set of data dependencies, b, then there exists a sequence of 
updates, each update modifying a null value to anonnull value, such that the resulting complete 
relation satisfies all the data dependencies ai E b. The problem that arises is that although 
there may exist such a sequence of updates for every single data dependency ai E b, two 
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or more such sequences may lead to different possible worlds. In particular, there may not 
exist a single sequence of updates that leads to one possible world that satisfies all of the data 
dependencies a in ~. From the user's point of view, when r 176 ~, it is natural to view such a 
relation, r, as contradictory. Even if r is a true reflection of the current available information 
the user may still view ~ as contradictory. We call this problem the additivity problem. 

If satisfaction is additive for a given class of integrity constraints then the additivity 
problem does not arise. The following theorem shows the expected result, namely that strong 
satisfaction is additive and the more surprising result that weak satisfaction is not additive. 

Theorem 5.13 The following statements are true: 

1) Strong satisfaction is additive. 

2) Weak satisfaction is not additive. o 

Proof Let r be an incomplete relation over R and let F be a set of FDs over R. 
(Part 1): We need to show that r F F if and only if 'v' X -c>- Y E F, r F X -c>- Y. Now by 

definition r F F if and only if'v's E POSS(r), s F F, and s F F if and only if 'v' X -c>- Y E F, s F X 
-c>- Y. Thus r F F if and only if 'v' X -c>- Y E F, 'v's E POSS(r), S F X -c>- Y. The result now follows 
by the definition of the satisfaction of an FD, since 'v's E POSS(r), S F X -c>- Y if and only if r F 
X -c>- Y. 

(Part 2): We first observe that, by the definition of weak satisfaction of a single FD and a 
set of FDs, it follows that if r p:; F, then 'v' X -c>- Y E F, r p:; X -c>- Y. In order to conclude the 
proof we need to exhibit a counterexample to the statement, if 'v' X -c>- Y E F, r p:; X -c>- Y then 
r p:; F. The result follows by setting r to be the incomplete relation r) shown in Table 5.24 and 
by setting F to be the set of FDs (A -c>- B, B -c>- C). 0 

We exhibit two interesting alternatives to setting rand F as in part (2) of Theorem 5.13. 
Firstly, we can set r to be the incomplete relation r2, shown in Table 5.25, and F to be the set 
of FDs (A -c>- C, B -c>- C) . Secondly, we can set r to be the incomplete relation r3, shown in 
Table 5.26, and F to be the set ofFDs (B -c>- A, AC -c>- B}. 

Table 5.24 The counterexample 
relation ') 

A B C 
0 unk 0 
0 unk 1 

Table 5.25 The counterexample 
relation '2 

A B C 
0 unk 0 
0 0 unk 

unk 0 1 

Table 5.26 The counterexample 
relation '3 

A B C 
0 0 unk 

unk 0 0 
0 1 0 

Let r be an incomplete relation over a relation schema Rand F be a set of FDs over R. We 
now present efficient algorithms for testing whether r F For r p:; F hold. 

Firstly, the pseudo-code of an algorithm, designated STRONG_SAT(r, F) , which given the 
inputs rand F returns an incomplete relation, is presented as Algorithm 5.1. On inspecting the 
algorithm the reader can verify that r F F if and only if STRONG_SAT(r, F) is consistent, on 
using part (1) of Lemma 5.12 and the fact that by part (1) of Theorem 5.13 strong satisfaction 
is additive. It can also be seen that the time complexity of Algorithm 5.1 is polynomial in IFI 
(the cardinality of F), IIFII (the size of F) and Irl (the cardinality of r) . 
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Algorithm 5.1 (STRONG_SAT(r, F» 
1. begin 
2. Tmp:= r; 
3. for each FD X --+ Y E F do 
4. for each pair of distinct tuples tl, t2 E Tmp do 
5. iflub(tl [X], t2[X]) is consistent and tl [Y] '" t2[Y] then 
6. tdY-X] := <inc, . .. , inc>; 
7. t2[Y-X]:= <inc, . .. , inc>; 
8. return Tmp; 
9. end if 
10. end for 
11. end for 
12. return Tmp; 
13. end. 
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Secondly, the pseudo-code of an algorithm, designated WEAK_SAT(r, F}, which given the 
inputs rand F returns an incomplete relation in POSS(r}, is presented as Algorithm 5.2. We 
assume for the purpose of Algorithm 5.2 that UNK = {unkl' unk2, ... , unkq} is a set of marked 
nulls of type unk, where VA E schema(R}, UNK S;; EDOM(A} and q denotes the finite number 
of distinct occurrences of unk in r. We also extend the partial order, less informative than, i.e. 
~, in EDOM(A} as follows: unk; ~ unkj if and only if i ~ j and Vv E DOM(A}, Vunk; E UNK, 
unk; ~ v and --.( v ~ unk;). WEAK_SAT(r, F} is more complex than STRONG_SAT(r, F}, since 
by part (2) of Theorem 5.13 weak satisfaction is not additive and thus a naive approach whereby 
each FD in F is tested independently would not not suffice. We note that WEAK_SAT(r, F} is 
known in the database literature as the chase procedure (see Subsection 3.6.4 of Chapter 3). 
We leave the proof of the correctness of WEAK_SAT(r, F} to the reader; we conclude that r ~ 
F if and only ifWEAK_SAT(r, F} is consistent. It can also be seen that the time complexity of 
Algorithm 5.2 is polynomial in IFI, IIFII and Irl· 

Algorithm 5.2 (WEAK_SAT(r, F» 
1. begin 
2. Tmp := r; 
3. i := 1; 

4. for each A E schema(R} do 
5. for each t E Tmp such that t[A) = unk do 
6. t[A) := unk;; 
7. i:= i + 1; 
8. end for 
9. end for 
10. while 3tl, t2 E Tmp, 3 X --+ Y E F such that tdX] = t2[X) and --.(tdY] ~ t2[Y]) do 
11. tdYJ, t2[Y] := lub(tdYJ, t2[Y]); 
12. end while 
13. return Tmp; 
14. end. 
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Example 5.2 Let r be the incomplete relation shown in Table 5.23 and let F = {COURSE-+ 
DEPT, DEPT -+ HEAD}. WEAK_SAT(r, F) is shown in Table 5.27; it can be verified that 
WEAK_SAT(r, F) is consistent and that r ~ F holds. • 

Table 5.27 The relation WEAK..SAT(r, F) of Example 5.2 

STUD COURSE DEPT HEAD 
Iris Databases Computing Dan 
Iris Theory Computing Dan 

Reuven Theory Computing Dan 
Naomi Programming Maths Annette 
Joseph unk. Maths Annette 

Eli Logic unk2 Brian 

Recall the notions relating to the inference of integrity constraints, which were defined 
in Section 3.4 of Chapter 3, and recall the inference rules for FDs which were presented in 
Subsection 3.6.1 of Chapter 3. We also remind the reader that the set of inference rules FDl, 
FD2 and FD3 is called Armstrong's axiom system, and herein we call the set of inference rules 
FD1, FD2, FD4 and FD5 Lien's and Atzeni's axiom system [Lie82, AM84]. We now specialise 
the definition oflogical implication with respect to strong and weak satisfaction of FDs. 

Definition 5.29 (Strong and weak logical implication) A set F ofFDs over schema R strongly 
implies an FD X -+ Y over R, written F F X -+ Y, whenever for all incomplete relations rover 
R the following condition is true: 

if 'v' W -+ Z E F, r F W -+ Z then r F X -+ Y. 

Correspondingly, F weakly implies X -+ Y, written F f:: X -+ Y, whenever for all incomplete 
relations rover R the following condition is true: 

if'v'W -+ Z E F, r f:: W -+ Zthen r f:: X -+ Y. • 
We note that due to the difference between strong and weak implication we have introduced 

two different notions of logical implication. Thus in order to avoid confusion in the 
presentation of the following results, for each result we will explicitly mention whether the 
result is with respect to weak implication or with respect to strong implication. 

The following result is to be expected and its proof follows along the same lines of the proof 
of Theorem 3.21 given in Subsection 3.6.1 of Chapter 3. (Recall that in Theorem 3.21 we have 
shown that Armstrong's axioms are sound and complete with respect to logical implication 
of FDs in complete relations.) 

Theorem 5.14 Armstrong's axiom system is sound and complete for FDs with respect to 
strong implication. 0 

We define the closure of a set of attributes X ~ schema(R) with respect to a set F ofFDs over 
R and Armstrong's axiom system, denoted as XArm+ (assuming that F in understood from 
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context), by 

xArm+ = U{y I F I- X --+ Y using Armstrong's axiom system}. 

We note that the operator "Arm+" induced by the closure X Arm+ is a closure operator (see 
Definition 3.54 in Section 3.5 of Chapter 3). Furthermore, F I- X --+ Y if and only ifY ~ X Arm+ 

holds. Finally, from the results presented in Subsection 3.6.1 of Chapter 3 it is immediate that 
XArm+ can be computed in time linear in IIFII and thus by Theorem 5.14 it provides an efficient 
solution to the strong implication problem for FDs. 

We now consider soundness and completeness with respect to weak implication. Consider 
the relation r1 shown in Table 5.24. This relation proves that the transitivity rule (FD3) is not 
sound for FDs with respect to weak implication, since both r1 ~ A --+ Band r1 ~ B --+ C hold 
but r ~ A --+ C is violated. Despite this negative result we obtain a sound and complete axiom 
system by dropping FD3 and adding FD4 (union) and FDS (decomposition) to the axiom 
system, thus obtaining Lien's and Atzeni's axiom system. Prior to presenting Theorem 5.15 
we define the closure of a set of attributes X ~ schema(R) with respect to a set F of FDs over 
R and Lien's and Atzeni's axiom system, denoted as X Lien+ (assuming that F in understood 
from context), by 

X Lien+ = U{y I F I- X --+ Y using Lien's and Atzeni's axiom system}. 

We note again that the operator "Lien+" induced by the closure X Lien+ is a closure operator. 
Furthermore, FI- X--+ YifandonlyifY ~ X Lien+ holds. Finally,pArm+ andpLien+ stand for the 
closure ofF with respect to Armstrong's and Lien's and Atzeni's axiom systems, respectively; 
this notation for the closure is used only when it is not obvious from context. 

Theorem 5.15 Lien's and Atzeni's axiom system is sound and complete for FDs with respect 
to weak implication. 

Proof We leave it to the reader to prove that Lien's and Atzeni's axiom system is sound with 
respect to weak implication. We now give the proof of completeness in full, since it is typical 
of such proofs in database theory and it is both highly elegant and instructive. 

We prove completeness by showing that ifF I:f X --+ Y, then F ~ X --+ Y, where F is a set of 
FDs over schema R. Equivalently for the latter, it is sufficient to exhibit an incomplete relation, 
say r, such that V W --+ Z E F, r ~ W --+ Z but r ~ X --+ Y. Let r be the incomplete relation 
over schema R shown in Table 5.28. 

We first show that V W --+ Z E F, r ~ W --+ Z. Suppose to the contrary that there exists an 
FD, W --+ Z E F, such that r ~ W --+ Z. It follows by the construction of r that W ~ X and 
that 3 A E Z n (schema(R) _XLien+ ); this implies that A ¢ XLien+ . By FD2 (augmentation) it 
follows that F I- X --+ ZX, and by FDS (decomposition) it follows that F I- X --+ A. This leads 
to a contradiction, since it follows that A E X Lien+. 

We conclude the proofby showing that r ~ X --+ Y. Suppose to the contrary that r ~ X --+ Y. 
Thus by the construction of r, Y ~ X Lien+ holds. Now, F I- X --+ X Lien+ holds by the definition 
of X Lien+. Therefore, on using FDS (decomposition) it follows that V A E Y, F I- X -+ A holds 
and on using FD4 (union) it follows that F I- X --+ Y holds. This leads to a contradiction, since 
we have derived F I- X --+ Y contrary to our assumption. 0 
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Table S.28 The incomplete relation used in the proof ofTheorem 5.15 

X X Lien+_ X schema(R) _XLien+ 

0".0 unk ... unk 1 " . 1 
0".0 0".0 0".0 

We now present an efficient algorithm that solves the weak implication problem for 
FDs. The pseudo-code of the algorithm, designated WEAK_CLOSE(X, F), given inputs X 
s; schema(R) and a set F of FDs over R, returns XLien+. We leave it to the reader to verify that 
WEALCLOSE(X, F) is correct and that its time complexity is linear in IIFII. 

Algorithm 5.3 (WEAK_CLOSE(X, F)) 
1. begin 
2. CL:= X; 
3. for each W -+ Z E F do 
5. ifW S; X then 
6. CL := CL U Z; 
7. end if 
8. end for 
9. return CL; 
10. end. 

A mixed axiom system for FDs with respect to strong and weak implication was considered 
in [LL98b]. Therein, each FD, in a set of FDs, is qualified as being either a strong FD or a 
weak FD, according to whether its satisfaction in a relation should be strong or weak. For 
example, one mixed inference rule, which takes into account the interaction between these 
two types of FDs, states that if a set of FDs logically implies a strong FD X -+ Y then it also 
logically implies the corresponding weak FD X -+ Y. In modal logic terms, this inference rule 
states that if the constraint is necessary then it is also possible. In [LL98b 1 it is shown that 
the above-mentioned mixed axiom system is sound and complete for a set of strong and weak 
FDs. 

We next introduce two new subclasses ofFDs with a view to solving the additivity problem. 

Informally, a set F of FDs over R satisfies the intersection property if for each attribute A in 
schema(R) there exists at most one FD that functionally determines A and the closure of this 
FD contains all the FDs in the closure of F that functionally determine A. We next formalise 
this subclass of FDs. 

Definition 5.30 (Intersection property) Two nontrivial FDs X -+ A and Y -+ A (i.e. A ¢ X, 
Y) are incomparable if X '1:. Y and Y '1:. x. 

A set F ofFDs satisfies the intersection property if for all attributes A E schema(R), whenever 
X -+ A, Y -+ A E pArm+ are incomparable FDs, then it is also true that X n Y -+ A E pArm+ . 

• 
We define a set F of FDs over R to be reduced iffor all FDs X -+ Y E F, there does not exist 

a proper subset W C X such that W -+ Y E pArm+. 
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The next theorem states that ifF is reduced and satisfies the intersection property, then the 
closure of F with respect to Armstrong's axiom system coincides with the closure of F with 
respect to Lien's and Atzeni's axiom system. Intuitively, this is true due to the fact that the 
intersection property implies that if X ~ A E pArm+, for some nontrivial FD X ~ A, then 
there is an FD W ~ Z E F such that W s;;: X and A E Z; therefore, it is also true that X ~ A 
E pLien+. (A full proof of the theorem can be found in [LL97al.) We observe that if F is not 
reduced then the result does not hold; this can be seen by considering the set ofFDs, {A ~ B, 
AB ~ q, which satisfies the intersection property, since A ~ C is in pArm+ but not in pLien+ . 

Theorem 5.16 If F is reduced and satisfies the intersection property then pArm+ = pLien+. 

o 

The converse of Theorem 5.16 is, in general, false. For example, let F = (A ~ C, B ~ q be 
a set of FDs over R, with schema(R) = {A, B, q. It can be easily verified that pArm+ = pLien+ 

but that F does not satisfy the intersection property, since 0 ~ C <t p+. 

Informally, a set F of FDs over R satisfies the split-freeness property if there do not exist 
two FDs in the closure ofF such that the right-hand side of one FD splits the left-hand side of 
the other FD into two parts. We next formalise this subclass of FDs. 

Definition 5.31 (Split-freeness property) Two nontrivial FDs of the forms XB ~ A and YA 
~ B are said to be cyclic. 

A set F ofFDs over R satisfies the split-freeness property, if whenever there exist cyclic FDs, 
XB ~ A, YA ~ B E pArm+, then it is also true that either Y ~ B E pArm+ or (X n Y)A ~ B 
E pArm+. • 

Definition 5.32 (Monodependent sets ofFDs) A set F of FDs over R is said to be mono
dependent if it satisfies both the intersection property and the split-freeness property. • 

Let us make a slight modification to Definition 5.28 with respect to FDs by saying that 
satisfaction is additive for a class FC of FDs over R if satisfaction is additive for FCed , where 
FCed is the result of replacing each set F of FDs in FC by a reduced cover of F. 

We observe that we cannot relax the condition that the sets of FDs are reduced. Consider 
the relation rl> shown in Table 5.24, and let F = {A ~ B, AB ~ q. It can easily be verified 
that rl "'" A ~ Band rl "'" AB ~ C but rl t76 F. On the other hand, if we let G = (A ~ B, A ~ 
q, i.e. G is a reduced cover of F, then rl t76 A ~ C. There is no loss of generality in assuming 
that sets of FDs, such as F, are reduced, since a reduced cover of F can easily be obtained in 
polynomial time in the size of F. 

The next theorem shows that for FDs the additivity problem is solved when we consider sets 
ofFDs which are monodependent. Assume according to the definition of additive satisfaction 
for FDs, as modified above, that F is a reduced set of FDs over R. 

Intuitively, if for some relation r, we have that V X ~ Y E F, r "'" X ~ Y but r t76 F, then 
we can show that F is not monodependent by induction on the minimum number of times 
the while loop in WEAK_SAT(r, F) is executed in order to ascertain whether WEAK_SAT(r, 
F) is inconsistent. On the other hand, if F is not monodependent then the counterexamples 
shown in Tables 5.25 and 5.26 can be generalised to the two cases when F either violates the 
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intersection property, or respectively, the split-freeness property. (A full proof of the theorem 
can be found in [LL97a].) 

Theorem 5.17 Weak satisfaction is additive for a class FC of sets of FDs over R if and only if 
all the sets of FDs in FC are monodependent. 0 

Many useful properties of monodependent sets of FDs can be found in [Lev95, LL99a] . 
For example, therein we show that the superkey of cardinality k problem and the prime 
attribute problem can both be solved in polynomial time in the size of F (see Theorem 3.24 in 
Subsection 3.6.1 of Chapter 3). In addition, there is a unique optimum cover of F that can be 
found in polynomial time in the size ofF (see Theorem 3.32 in Subsection 3.6.5 of Chapter 3). 
Moreover, ifF is monodependent then every lossless join decomposition R of schema(R} with 
respect to F is also dependency preserving with respect to F (see Section 4.2 of Chapter 4). 

In the presence of incomplete information the notions of key, superkey and primary key 
remain as they were in Subsection 3.6.1 of Chapter 3, the difference being that in the case of 
weak satisfaction our axiom system has changed. Weare now in a position to formalise the 
notion of entity integrity discussed in Subsection 3.6.1 of Chapter 3. In fact, entity integrity 
is only really meaningful in the presence of incomplete information. We first quote Codd's 
definition of entity integrity from [Cod90]: 

"No component of a primary key is allowed to have a missing value of any type". 

Definition 5.33 (Entity integrity) Let K S; schema(R} be the primary key of a relation schema 
R. The entity integrity rule states that: for an incomplete relation, rover R, it is true that for 
all the tuples t E r, t[K] does not contain any null values. • 

For example, if the primary key of the student schema, given in Example 5.1, is STUD# 
then the attribute values of STUD# are not allowed to be null. Thus the relation shown in 
Table 5.1 satisfies the entity integrity rule. We note that according to the entity integrity rule 
any attribute value that is not part of the primary key may have a null value. We further 
note that entity integrity can be viewed as a special case of a more general type of integrity 
constraint, called a null-free constraint, which asserts that certain attributes in schema(R} are 
not allowed to have null attribute values. 

In the presence of incomplete information it can be argued that entity integrity is too strict 
in practice. Assume for the moment that we restrict ourselves to incomplete relations where 
the only type of null value that is used is unk, modelling the fact that a "value exists but is 
unknown at the present time". 

As a first motivating example consider a relation schema R containing the attributes NAME 
and ADDRESS, and assume that {NAME, ADDRESS} is the primary key of R. It can easily 
be seen that the relation, say r, over R shown in Table 5.29 violates entity integrity. Despite 
this fact all the tuples in r are uniquely identifiable, since the problematic third tuple is the 
only tuple having the name Sue Jones. Thus all possible worlds of r have three tuples and 
in all such complete relations,s E POSS(r}, {NAME, ADDRESS} is a superkey in s. (Recall 
from Definition 3.62 in Subsection 3.6.1 of Chapter 3 that K is a key (superkey) in a complete 
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relation 5 over R, if K is a key (superkey) for R with respect to the set F(s) of FDs that are 
satisfied in 5.) 

Table 5.29 A relation showing that entity integrity is too strict 

NAME ADDRESS 
John Smith Hampstead Way 
John Smith HaroldRd 
Sue Jones unk 

So as long as each tuple in a relation r is uniquely identifiable as a distinct entity by the 
nonnull portion ofits primary keyvalues, we can consider the relation to satisfy entity integrity. 
As a second motivating example consider a relation schema R containing the attributes NAME, 
ADDRESS and DOB (date of birth), and assume that {NAME, ADDRESS, DOB} is the primary 
key of R. It can easily be seen that the relation, say r, over R shown in Table 5.30 violates 
entity integrity. Despite this fact all the tuples in r are uniquely identifiable by the nonnull 
portion of their primary key values. Consider the tuples in r pairwise: the first and second 
tuples are distinguishable by their NAME, the first and third tuples are distinguishable by 
their DOB and the second and third tuples are distinguishable by their ADDRESS. As in the 
previous example all possible worlds of r have three tuples and in all such complete relations, 
5 E POSS(r), {NAME, ADDRESS, DOB} is a superkey in s. 

Table 5.30 Another relation showing that entity integrity is too strict 
NAME ADDRESS DOB 

John Smith unk 13/6/95 
Sue Jones Harold Rd unk 

unk Hampstead Way 17112/96 

The examples given above suggest that in relations, which may be incomplete, the notions 
of superkey and key can be generalised. We next formalise such a generalisation which 
was proposed by Thalheim [Tha89al. (In the following we will make use of the index set 
I = {I, 2, ... , n}.) 

Defmition 5.34 (Superkey family) A superkey family K for R is a familyK == {K1, K2, ... , Kn} 
consisting of n, n ~ 1, subsets of schema(R). • 

Informally, a superkey family K is satisfied in a relation rover R if all pairs of distinct tuples 
in r differ on nonnull values with respect to some Kj E K. 

Definition 5.35 (Satisfaction of a superkey family) A relation rover R satisfies a superkey 
family K (alternatively, K is a superkey family in r), written r ~ K, if for all pairs of distinct 
tuples tl, t2 E r, there exists Kj E K, i E I, such that tdKd and t2[Kd are complete (i.e. do not 
contain any null values) and tl [Kj) #- t2[Kj). • 

The reader can verify that for the boundary cases of a relation, say r, containing no tuples or 
a single tuple, the superkey family containing the empty set, i.e. {0}, is always satisfied in r. To 
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avoid these special cases we assume, in the ensuing development of the notion of a superkey 
family, that relations contain at least two tuples. When r contains two or more tuples, then 
{0} is not satisfied in r. 

Definition 5.36 (Nonredundant, irreducible and minimal key families) Let K be a superkey 
family that is satisfied in a relation rover R. We say that K is nonredundant in r, iffor no proper 
subset K' C K, does r satisfy K', i.e. the cardinality of K is minimal. We say that K is irreducible 
in r, iffor no proper subset K; C Ki, i E I, with Ki E K, does r satisfy (K - (Kil) U {K;}, i.e. the 
cardinalities of all the elements in K are minimal. Finally, we say that K is minimal in r (or 
alternatively, K is a key family in r), if it is nonredundant in r and every K E K is a singleton, 
i.e. contains only a single attribute. • 

By our assumption that r contains at least two tuples, we can deduce that a key family in r 
is also irreducible in r. The reader can verify the next lemma. 

Lemma 5.18 IfKis a superkeyfamily in a relation rover R, then there exists a superkeyfamily, 
{{Ad, {Az}, ... , {Am}}, with m 2: 1, that is minimal in r and such that {A" Az , ... , Am} ~ 
UiEI Ki, with Ki E K. 0 

The next proposition states that the notion of a key family is possibility-preserving with 
respect to the standard notion of a superkey, when we restrict our attention to the class of 
relations which satisfy at least one key family. 

Proposition 5.19 Given a superkey family K and a relation rover R, ifK is a superkey family 
in r, then for all S E POSS(r), UiEI K;, with Ki E K, is a superkey in s. 

Proof. Assume to the contrary that K is a superkey family in r but for some 5 E POSS(r), X 
is not a superkey in s, where X = UiEI Ki, with Ki E K. It therefore follows that there are at 
least two distinct tuples in r that are not uniquely identifiable by the nonnull portion of their 
superkey values contradicting Definition 5.35. 0 

We observe that we cannot strengthen Proposition 5.19 to key families. As a 
counterexample, {{NAME}, {ADDRESS}} is a key family in the relation shown in Table 5.29 but 
if we replace unk by Asmuns Hill, then ADDRESS is a key in the resulting complete relation. 
In fact, there are relations which satisfy a key family but in none of their possible worlds is 
the union of the attributes of the elements of the key family a key. For example, {{NAME}, 
{ADDRESS}, {DOB}} is a key family in the relation shown in Table 5.30. However, {NAME, 
ADDRESS, DOB} is a superkey in all of its possible worlds but a key in none of them. To see 
this, in order for {ADDRESS, DOB} not to be a key in one of its possible worlds, the unk in the 
first tuple must be replaced by Harold Rd, but then {NAME, ADDRESS} will be a superkey in 
all the possible worlds emanating from this replacement. 

Weare now ready to generalise entity integrity, which is well defined for incomplete relations 
satisfying key families. 

Definition 5.37 (Generalised entity integrity) A primary key family is a superkey family, 
which is designated by the user. Given a primary key family K, a relation r satisfies generalised 
entity integrity if K is a key family in r. • 
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We now turn our attention to some computational problems related to superkey families. 
The next result is an immediate consequence of Lemma 5.18, since if K is a superkey family 
in r, then {{Ad, (A2L ... , {Am}} must also be a superkey family in r, where schema(R) = 
{AI,A2,···,A m}· 

Corollary 5.20 The problem of determining, given a relation rover R, whether there exists 
a superkey family K for R such that r ~ K can be solved in polynomial time in the sizes of r 
~~ D 

We next show that the problem of finding a key family in a relation can be computed in 
polynomial time. The problem of deciding whether a relation satisfies a superkey family of 
cardinality no greater than some natural number k is NP-complete (see Exercise 5.8). 

Proposition 5.21 If there is a superkey family which is satisfied in a relation rover R, then 
the problem of finding a superkey family K, such that K is a key family in r, can be solved in 
polynomial time in the sizes of rand R. 

Proof. By Lemma 5.18, K = {{Ad, (A2l. . .. , {Am}} isasuperkeyfamilyin r, whereschema(R) 
= {AI , A2, ... , Am}, with m :::: 1. The idea behind an algorithm to compute a key family in r 
is: starting from K, which is a super key family in r, we loop over all the singleton sets {A;} in 
K in some order and remove {A;} from the current state of the superkey family K, ifK - {{A;}} 
is a superkey family in r. The loop will be iterated at most m - 1 times. D 

As a third motivating example for generalising entity integrity, we lift our restriction that unk 
is the only type of null value allowed in incomplete relations by also allowing occurrences of 
dne, modelling the fact that a "value does not exist". Consider a relation schema R containing 
the attributes SS# (social security number), P# (passport number) and NAME. It is possible 
that, as in the relation rover R shown in Table 5.31, for some tuples in r, SS# is nonnull but P# 
is null (see the first tuple in r), and for other tuples in r, P# is nonnull but SS# is null (see the 
second tuple in r). In this case every tuple in r is distinguishable (by nonnull values) either 
by SS# or P#, since each is unique, but entity integrity is violated, assuming that both SS# 
and P# are candidate keys for R and either SS# or P# is the primary key of R. Moreover, on 
using Definition 5.35 there is no superkey family that is satisfied in r and thus {{SS#}, {P#}} 
is not a superkey family in r. Despite this fact, it is important to observe that, due to the 
semantics of dne, the first and second tuples of r represent distinct entities. Thus if at some 
later stage, John Smith of the first tuple acquires a P# it cannot be 2, and if at some later stage, 
John Smith of the second tuple acquires a SS# it cannot be 1. This would not have been the 
case had the null values in r been of type unk, since then there would be a possible world of 
r in which both the tuples in r represent the same entity. One solution, which is consistent 
with Definition 5.35, is to treat dne as having the same information content as some nonnull 
value, implying that <dne> is taken to be a complete tuple. To illustrate the problem with 
this solution, consider the projection of r onto SS# or onto P#. In both cases dne will be 
used for identification purposes, which is contrary to Codd's assertion that tuples should be 
distinguishable by their nonnull values. This solution can be enhanced by insisting that each 
tuple in r must be uniquely identified by its nonnull values on some member of the superkey 
family [LL97bj. 
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Table 5.31 Yet another relation showing that entity integrity is too strict 

SS# P# NAME 
1 dne John Smith 

dne 2 John Smith 

We now turn our attention to the existence of Armstrong relations, in the presence of 
null values of type unk, with respect to strong and weak implication. Firstly, it is obvious 
that FDs enjoy Armstrong relations with respect to strong implication by Theorem 3.21 of 
Subsection 3.6.1 of Chapter 3, since Armstrong's axioms are sound and complete for FDs 
with respect to strong implication. The following theorem shows the companion result for 
FDs with respect to weak implication. (Below we still continue to make use of the index set 
f = {l , 2, . . . , n).) 

Theorem 5.22 FDs enjoy Armstrong relations with respect to weak implication. 

PToof Let F be a set of FDs over R and let the power set P(schema(R» be the set 
{XI, X2 , . .. , Xn) . We now construct n tuples as follows: Vi E f, let ti be an incomplete 
tuple such that ti[X;] = < 0, . . . , 0> , ti [Xf ien+ - X;] = < unk, . . . , unk> and ti[schema(R) 
_Xfien+ ] = < i, . . . , i>. We next construct the incomplete relation ,.Arm over R defined by 

,.Arm = U{ti liE f) . 

We leave it to the reader to show that indeed ,.Arm ~ X ~ Y if and only if F 1= X ~ Y. 0 

We will now extend the notion of an inclusion dependency (or simply an IND) from 
Subsection 3.6.7 of Chapter 3 to incomplete relations, containing null values of type unk, 
in order to formalise the notion of referential integrity. Firstly, we will give some preliminary 
definitions. An incomplete database over R = {R I , R2 , . .. , Rn) is a collection d of incomplete 
relations h , T2 , ... , Tn) such that for all i E f, Ti is an incomplete relation over Ri. An 
incomplete database is said to be a complete database (or simply a database) if for all i E f, Ti 
is a complete relation. 

We can now extend INDs to incomplete relations. Recall that an IND over a database 
schema R is a statement of the form Rd <X> ] S; R2[ < Y> ], where RI , R2 E R and < X> , < Y> 
are sequences of distinct attributes such that X S; schema(R I ), Y S; schema(R2) and IXI = I YI. 
Whenever no confusion arises between a sequence and its underlying set, we will refer to the 
sequence of distinct attributes < Y> , simply as Y. 

Also recall that an IND RI [X] S; R2[Y] is satisfied in a complete relation T over R, denoted 
by T 1= RdX] S; R2 [Y], ifVtl E TI , 3t2 E T2 such that tdX] = t2[Y]' i.e. 1l'X(TI) S; 1l'Y(T2)' 

Defmition 5.38 (Weak satisfaction of an IND) An IND RdX] S; R2[Y] is satisfied in an 
incomplete database dover R, denoted by d ~ RdX] S; R2[Y)' ifVtl E TI , 3t2 E T2 such 
thattdX] !; t2[Y] ' • 

We observe that if d is a complete database then the definition of weak satisfaction of an 
IND coincides with the standard notion ofIND satisfaction. Thus weak satisfaction of an IND 
is faithful to the standard satisfaction of an IND. 
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Defmition 5.39 (The set of possible worlds of a database) We extend POSS to a database, 
d = {rl' r2, ... , rn}, as follows: 

POSS(d) = {{51, 52, ... ,sn} I 51 E POSS(rl) and 52 E POSS(r2) and ... and Sn E POSS(r n)} . 

• 
The following proposition gives a semantic characterisation of weak satisfaction of an IND 

in terms of possible worlds. 

Proposition 5.23 Let dl be a database over Rand R[X] <;::: S[Y] be an IND over R. If dl ~ 
R[X] <;::: S[Y], then 3d2 E POSS(dd such that 7lx(r) <;::: JTy(s), where r E d2 is the relation over 
R E Rand 5 E d2 is the relation over S E R. D 

We note that the converse of Proposition 5.23 does not hold. For example, let dl = {rl' r2} 
be a database over R = {RI, R2}, where rl = {<a, b>} is the relation over Rb with schema(RI) 
= {A, B}, and r2 = {<unk, d>} is the relation over R2, with schema(R2) = {C, D}. Then dl ~ 
RI[A] <;::: R2[C]; however, d2 F= RdA] <;::: R2[C], where d2 = {rl' 52} E POSS(dl ) is a database 
over R, with 52 = {<a, d>} being a relation over R2, and JTA (rl) <;::: JTc(S2). Thus the existence 
of a possible world of a database, say d, that satisfies a standard inclusion dependency is not 
sufficient for a corresponding IND to be weakly satisfied in d. 

This leads to an asymmetry between the definition of weak satisfaction for FDs and INDs. 
We justify our definition of weak satisfaction of an IND by the fact that it faithfully captures 
the notion of subset in the presence of incomplete information. Suppose that employees work 
in departments and that we specify the IND, EMP[DNAME] <;::: DEPT[DNAME], meaning that 
the information pertaining to the department that an employee works for can be found in 
the department relation. Now, it could be that the department of an employee is unknown, 
implying that the DNAME-value could be any value. On the other hand, if the DNAME-value 
is known then this would indicate the existence of nonnull information about the employee's 
department in the department relation. Thus a nonnull value, say v, in the DNAME attribute 
of an employee tuple implies that there must exist a corresponding tuple in the department 
relation with vas its DNAME-value. In this sense an IND is similar to a directional link and 
thus the definition is asymmetric. (Also see Definition 5.41 of referential integrity, given 
below.) 

Definition 5.40 (Weak logical implication) A set I of INDs over a database schema R weakly 
implies an IND RI [X] <;::: R2[X] over R, written I ~ RI [Xl <;::: R2[Yl, whenever for all incomplete 
databases dover R the following condition is true: if'v'RdWl <;::: Rj[Z] E I, d ~ Rj[Wl <;::: Rj[Zl 
then d ~ RI [Xl <;::: R2[Yl. • 

Now recall the inference rules, INDl, IND2 and IND3, for INDs holding in complete 
relations, which were given in Subsection 3.6.7 of Chapter 3. The next result shows that in 
contrast to weak implication of FDs the axiom system for weak implication of INDs remains 
unchanged. 

Theorem 5.24 The axiom system comprising IND1, IND2 and IND3 is sound and complete 
for INDs with respect to weak implication of INDs. 
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Proof We sketch the main idea of the proof. Soundness of the axiom system follows directly 
from the definition of weak satisfaction of an IND. Now, let I be a set of INDs over a database 
schema R and a be a single IND over R such that I If a. In order to prove completeness of the 
axiom system we need to exhibit an incomplete database over R, say d, such that d f; I but 
d f76 a. By the completeness of the axiom system with respect to standard implication ofINDs, 
shown in Theorem 3.37 in Subsection 3.6.7 of Chapter 3, there exists a complete database, say 
d' over R, such that d' 1= I but d' ~ a. The result now follows since weak implication of 
INDs is faithful to the standard implication ofINDs, which means that for complete databases 
weak implication and standard implication coincide; thus we can choose d' as the database d 
showing that d' f; I but d' f76 a. 0 

We note that, although a significant amount of research has been done on the semantics 
of FDs in the presence of incomplete information, to our knowledge very little research has 
been done on the semantics ofINDs in the presence of incomplete information. In [LL97d] we 
have further investigated the interaction between FDs and INDs in the presence of incomplete 
information. Therein we have shown that the pullback inference rule is sound for weak 
satisfaction of FDs and INDs but that the collection inference rule is not. We exhibited a 
sound and complete axiom system for weak satisfaction of FDs and INDs, which replaces the 
collection inference rule by a new inference rule, called null collection. In contrast to the 
undecidability result of the implication problem for FDs and INDs for complete relations, 
we showed that in the presence of incomplete information this decision problem is decidable 
and EXPTIME-complete. Intuitively, this is due to the fact that when we allow null values 
the axiom system is weaker mainly as a result of the fact that transitivity for FDs becomes 
unsound. (See Subsection 3.6.11 of Chapter 3 for details on the interaction ofFDs and INDs 
in complete relations.) 

We have also looked into the additivity problem in the context of weak satisfaction for INDs 
and their interaction with FDs in [LL98a) . We give an example showing why weak satisfaction 
is not additive for INDs, as is the case with FDs. Let d be an incomplete database over Rand 
let I be a set ofINDs over R. Informally, we need to exhibit a counterexample to the statement, 
ifYRdX) £ R2IY) E I, d f; RI [X) £ R2IY), then d f; 1. Let TI , T2 and T3 be the relations shown 
in Tables 5.32, 5.33 and 5.34, respectively, and let d = {Tl, T2 , T3} be a database over R, with R 
= {R, S, T} and schema(R) = <A>, schema(S) = <B> and schema(T) = <C>. Suppose that I 
= {RIA) £ SIB), RIA) £ TIC]}. The result follows, since it can easily be verified that d f; RIA) 
£ S[B) and d f; RIA) £ TIC) but d f76 {RIA) £ SIB), RIA) £ Tlc)}. In ILL98a) we formalise 
the additivity problem for INDs and give necessary and sufficient conditions for its solution 
in the case where the INDs in I are unary. The reader can verify that if we add to the set I of 
INDs one of the INDs, SIB) £ TIC), TIC) £ SIB), SIB) £ RIA) or TIC) £ RIA) and enforce its 
weak satisfaction in d, then the additivity problem would not arise in this case. 

Table 5.32 The counterexample 
relation ') 

I u~k I 

Table 5.33 The counterexample 
relation '2 

tE 
Table 5.34 The counterexample 

relation '3 

EE 
We are now in a position to formalise the notion of referential integrity discussed in 

Subsection 3.6.1 of Chapter 3. 
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Definition 5.41 (Foreign keys and referential integrity) Let R be a database schema and RJ, 
R2 be relation schemas ofR; also let X be a set of attributes in schema(Rl) and K be the primary 
key of R2. 

A referential dependency over R is an IND of the form Rl [Xl ~ R2[KI over R. A referential 
dependency RI [Xl ~ R2 [Kl is satisfied in a database dover R if d ~ Rl [Xl ~ R2 [Kl holds. 

Let RD be a designated set of referential dependencies over R. The referential integrity rule 
asserts that: for a database dover R, all of the referential dependencies Rl [Xl ~ R2 [Kl E RD 
are satisfied in d. The sets of attributes X are called foreign keys of R. • 

We note that referential dependencies can be generalised to key-based INDs, which are 
INDs of the form Rl [Xl ~ R2[K), with K being a candidate key for R2, which is not necessarily 
the primary key of R2. 

5.6 The Or-sets Approach 

When an incomplete relation has tuples containing the attribute value unk, then it has an 
infinite set of possible worlds assuming that attribute domains are countably infinite. Thus 
the null value unk represents the fact that each value in the domain is possible, or equivalently, 
it can be viewed as the disjunction of all the possible domain values. As we have seen this 
approach has the advantage of being relatively simple but in many cases when we have some 
partial information it may be too vague. For example, suppose we have a tuple <Hillary, unk> 
over schema R with schema(R) = {SNAME, COURSE}. The occurrence of unk in this tuple 
implies that we have no knowledge about the course Hillary is taking. Now, suppose that we 
know that Hillary is either taking a course on Databases or a course on Programming. We 
could represent this partial information by a finite set {Databases, Programming} resulting 
in the tuple <Hillary, {Databases, Programming} > . Next assume that this tuple represents 
all the information we have about Hillary. Then this new tuple represents an increase of 
information, since we can now answer the query "Is Hillary taking a Logic course?" with a no 
and the query "Is Hillary taking a Programming course?" with a maybe. On the other hand, 
using the null value unk we would have to answer the query "Is Hillary taking a Logic course?" 
with a maybe. 

Definition 5.42 (Or-sets) A finite set of values, one of which is the true value, drawn from a 
given attribute domain, say DOM(A), is called an or-set over A (or simply an or-set). • 

In other words an or-set over A is a member of the finite power set ofDOM(A). The semantics 
of an or-set {VI , V2, .. . , vm} are as follows: 

1) if m = 0, then the or-set is the empty set 0 representing an inconsistent value, 

2) if m = 1, then the or-set is a singleton representing a known value, and 

3) if m > 1, then the or-set is a set of possible values, where it is unknown which value in 
the or-set is the true value. 
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Therefore an or-set can be viewed as a refinement of the unmarked nulls approach, since 
the unmarked null unk can be viewed as the or-set DOM(A} (assuming that DOM(A) is finite} 
and the unmarked null inc can be viewed as the or-set 0. 

Definition 5.43 (Or-relation) An or-tuple over schema R is a member of the Cartesian 
product, 

P(DOM(Al}) x P(DOM(A2» x .. . X P(DOM(Atype(R»), 

recalling the P is the finite power set operator. An or-relation over R is a finite set of or-tuples. 

An or-tuple over R is a complete tuple if all its attribute values are singleton or-sets, otherwise 
the or-tuple is said to be incomplete. An or-tuple is consistent if none of its attribute values 
is the empty set; if at least one of its attribute values is the empty set then the or-tuple is 
inconsistent. 

An or-relation over R is complete if all its or-tuples are complete. In addition, an or-relation 
is consistent if all its or-tuples are consistent; if at least one of its tuples is inconsistent then it 
is inconsistent. • 

As an example, an or-relation over schema R with schema(R} = {SNAME, COURSE} is shown 
in Table 5.35. This or-relation is inconsistent due to the second or-tuple being inconsistent; 
also we observe that the first and fourth or-tuples are incomplete and the third or-tuple is 
complete. 

Table 5.35 A students and courses or-relation 

SNAME COURSE 
{Iris) {Databases, Theory, Graphics) 

{Reuven) 0 
{Eli) {Logic) 

{Hillary) {Databases, Programming) 

Given a schema R we can specify the constraint that certain attribute values must be 
complete. 

Definition 5.44 ( Or-set domain constraints) An Or-set Domain Constraint (ODC) over 
schema R is a total mapping cp from schema(R) to {COMPLETE, OR}. An ODC cp over R 
is satisfied in an or-relation rover R, denoted by r F= cp, if for all attributes A E schema(R} 
and for all or-tuples t E r, the following condition holds: if CP(A} = COMPLETE then t[A] is 
complete. • 

In the following we will assume that together with a relation schema R we have specified 
an ODC cP over R. We will represent the ODC,p explicitly in schema(R} by superscripting the 
attributes A E schema(R} such that ,p(A) = OR by "or" (when no ambiguity arises we will 
superscript a set of attributes by "or" rather than superscripting each attribute separately). 
At times we will refer to such superscripted attributes as or-attributes to distinguish them 
from other attributes, called complete attributes. In addition, on occasion we will abbreviate a 
singleton such as {v} to v. The or-relation shown in Table 5.35 is depicted again in Table 5.36 
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using our notation for making the ODe explicit. Finally, from now on we will assume that 
or-relations are consistent unless explicitly stated otherwise. 

Table 5.36 The students and courses or-relation with an explicit ODC 

SNAME COURSEor 

Iris {Databases, Theory, Graphics} 
Reuven 0 

Eli {Logic} 
Hillary {Databases, Programming} 

We now redefine the concept ofless informative in the context of or-relations. Intuitively, 
an or-tuple tl over a relation schema R is less informative than another or-tuple t2 over R if 
for all attributes A in schema(R) the or-set t2 [A] is a subset of the or-set tl [A]. That is, having 
less values in an or-set represents having more information, the extreme case being an empty 
or-set representing inconsistency. 

Definition 5.45 (Less informative and more informative or-tuples) Let tl and t2 be or
tuples over schema R. Then tl is less informative than t2 (or equivalently, t2 is more informative 
than td, denoted by tl ~ t2, if and only if VA E schema(R), t2[A] S; tdA]. 

If tl ~ t2, then we say that tl is less informative than t2 (or equivalently, t2 is more informative 
than td. • 

The definition of less informative for or-relations remains the same as that for incomplete 
relations. That is, rl ~ r2 if and only if there exists a total and onto mapping e from rl to r2 
such that Vt E rl, t ~ e(t), where rl and r2 are or-relations over R. We are now ready to define 
POSS(r) in the context of or-relations. 

Definition 5.46 (The set of possible worlds relative to an or-relation) The set of all possible 
worlds relative to an or-relation r over schema R, denoted by POSS(r), is defined by 

POSS(r) = (s I r ~ sand Vt E s, VA E schema(R), t[A] is a singleton}. • 

We note that for or-relations the set POSS(r) is always a finite set, while for incomplete 
relations (with occurrences of unk) POSS(r) is, in general, a countably infinite set. We 
further note that as is the case with incomplete relations if r is inconsistent then POSS(r) 
= 0 and, in addition, Theorem 5.3 and Proposition 504 stated after Definition 5.10 ofPOSS(r) 
for incomplete relations in Section 5.3 also hold for or-relations. 

We will now briefly discuss two approaches to extending the relational algebra in order to 
manipulate or-relations. The first approach is to view an or-set whose cardinality is greater 
than one as the unmarked null value unk and an empty or-set as the unmarked null value 
inc (strictly speaking we will not make use of inc in the extended algebra, since we have 
assumed that or-relations are consistent). Thereafter, we can use the extended algebra, as 
defined in Section SA, without change. A slightly different, but equivalent, approach is to 
assign a unique mark to each occurrence of an or-set (i.e. two occurrences of the same or-set 
will be given two different marks). In this case we can still use the extended algebra, defined 
in Section SA, by considering uniquely marked or-sets simply as different occurrences of 
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unk. The advantage of this first approach is its simplicity and computational efficiency, since 
evaluating an extended algebra expression does not incur a significant overhead compared to 
evaluating the corresponding standard relational algebra expression. On the other hand, the 
disadvantage of this approach is that we do not make use, in the extended algebra, of the fact 
that or-sets are more expressive than the unmarked null unk. 

The second approach makes use of the fact that POSS(r), where r is an or-relation, is a 
finite set and thus to obtain the result of a query we directly compute the query over all 
possible worlds. Let Q(R I, R2, ... , Rn) be a standard relational algebra query. Then the result 
of computing Q with the or-relations, rl over RJ, r2 over R2 , . .. , rn over Rn, as its actual 
parameters, is denoted by QOT (rl , r2 , ... , r n) and is defined by 

QOT (rl, r2, ... , rn) = n {Q(SI , S2 , ... , Sn) I SI E POSS(rl) and S2 E POSS(r2) 

and . .. and Sn E POSS(rn)}. 

We call a query of the form QOT(RI, R2, .. . , Rn) an or-query. The advantage of this approach 
is that, by definition, the resulting extended relational algebra is both faithful and truth
preserving for all possible or-queries QOT . The disadvantage is that computing answers to 
such queries may be prohibitively expensive. That is, the additional expressiveness comes at 
a high computational cost! 

The ensuing example adapted from [Imi89, IV89) gives a concrete illustration of an 
intractable or-query. Let G be a schema with schema(G) = {NODE1, NODE2}, whose instance 
or-relations represent digraphs, recalling the definition of a digraph from Section 2.1 of 
Chapter 2. That is, an instance, say gr, over G has complete tuples of the form <nl , n2> 
representing an arc in a digraph. We assume without loss of generality that there are no 
arcs of the form <n, n> in gr, i.e. gr does not have any loops. Also, let C be a schema with 
schema(C) = {NODE, COLOUROT}, whose instances represent the possible colouring of nodes 
in a digraph. In particular, let gr be an or-relation over G and co be an or-relation over C 
defined by 

co = {<n, {blue, red, green} > I <n, m> E gror <m, n> E gr} . 

That is, for every node n in the digraph gr that participates in an arc, co has tuple of the 
form < n, {blue, red, green} > representing the fact that node n can be coloured in three ways. 
Next, let G3COT(G, C) be the or-query 

1r0(G I><l PNODE->NODEI (C) I><l PNODE->NODE2(C» . 

It can be verified that G3COT (gr, co) # 0, i.e. G3COT (gr, co) = {< > }, if and only if the 
digraph represented by gr is not 3-colourable, i.e. we cannot find a colouring of gr, using only 
three colours, which assigns different colours to nodes which are contained in the same arc. 
(This is due to the fact that if the result of the query is non empty then in all possible worlds, 
POSSe {gr , co}) , gr is not 3-colourable.) However, this is exactly the complement of the graph 
3-colourability problem, which is known to be NP-complete [GJ79). Thus we have a strong 
indication that this query cannot be answered in polynomial time in the size of the or-relations 
involved in the above or-query, i.e. that its computation cannot be carried out efficiently. 
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We are now ready to redefine weak satisfaction of an FD in the context of or-relations; in 
fact, the definition is identical to that of weak satisfaction of an FD in an incomplete relation 
but we repeat the definition for the sake of completeness. 

Defmition 5.47 (Weak satisfaction of an FD in an or-relation) An FD X ~ Y is weakly 
satisfied (or simply satisfied whenever no ambiguity arises) in an or-relation rover R, denoted 
by r ~ X ~ Y, if and only if 3s E POSS{r) such that s F= X ~ Y. • 

For example, it can be verified that the or-relation over schema R, shown in Table 5.37, with 
schema(R) = {SNAME, DEPTor, HEADor}, weakly satisfies the FDs SNAME ~ DEPTor and 
DEPTor ~ HEADor. 

Table 5.37 A students, departments and heads or-relation 

SNAME DEPTor HEADor 

Iris {Computing, Maths} Dan 
Iris {Computing, Economics} {Dan, Hanna} 

Reuven {Computing, Philosophy} {Dan, David} 
Naomi {Maths, Economics} {Annette} 
Naomi {Maths, Computing} {Annette, Dan} 

Having another look at the or-relation, say r, shown in Table 5.37, we note that the knowledge 
that the FDs SNAME ~ DEPTor and DEPTor ~ HEADor are weakly satisfied in r allows us 
to obtain a more informative or-relation as the following argument demonstrates. The FD 
SNAME ~ DEPTor implies that there does not exist a possible world where each ofIris, Reuven 
and Naomi is studying in one department. Thus we can deduce that Iris must be studying in the 
Computing department and Naomi must be studying in the Maths department. Furthermore, 
on using the FD DEPTor ~ HEADor we can deduce that Dan is the head of Computing and 
that Annette is the head of Maths. This deduction process is a generalisation of the chase 
procedure mentioned in connection with Algorithm 5.2, which was designated WEAK_SAT(r, 
F). We now define a similar algorithm in connection with or-relations, where r is an or-relation 
over schema Rand F is a set ofFDs over R. We first redefine the least upper bound (lub) operator 
in the context of or-relations, since it is needed in Algorithm 5,4 given below. 

Definition 5.48 (Least upper bound operator) The least upper bound, lub, of two or-sets 
VI , V2 over an attribute A is defined by 

lub(VI, V2) = VI n V2 . 

We extend the lub operator to or-tuples tl> t2 over R as follows: lub(tl> t2) = t, where t is an 
or-tuple over R and VA E schema(R), t[Al = lub(tdA], t2[A]). • 

Next the pseudo-code of an algorithm, designated OR_CHASE(r, F), which given the inputs 
rand F returns a more informative or-relation, is presented as Algorithm 5,4. It can be shown 
that r ~ OR_CHASE(r, F) and that if the result of OR_CHASE(r, F) is inconsistent then "Is E 

POSS(r), s ft: F, i.e. no possible world in r satisfies F. We observe that lines 9 to 11 of the 
algorithm depart from the standard chase procedure in that it enforces an inequality by a 
backwards test, when the X-values of two tuples cannot be equal if the FD is to be weakly 



330 Chapter 5. Incomplete Information in the Relational Data Model 

satisfied. (The reader should verify that if we lift the restriction in line 9 of the algorithm that 
IXI = 1, then, in general, more than two tuples will need to be considered in such a backwards 
test.) It can also be seen that the time complexity of Algorithm 5.4 is polynomial in IFI. IIFII 
and Irl. 

Algorithm 5.4 (OR_CHASE(r, F)) 
1. begin 
2. Result := r; 
3. Tmp:=0; 
4. while Tmp =1= Result do 
5. Tmp := Result; 
6. if 3 X ~ Y E F, 3tl, t2 E Result such that 

tl [X] and t2 [X] are complete and tl [X] = t2 [X] but tl [Y] =1= t2 [Y] do 
7. tl [YJ, t2[Y] := lub(tl [Y], t2[Y)); 
8. end if 
9. if 3 X ~ Y E F, with IXI = 1, 3t1, t2 E Result such that 

t!lXY] and t2[Y -X] are complete but t!lY -X] =1= t2[Y -X] then 
10. t2[X] := t2[X] - t!lX]; 
11. end if 
12. end while 
13. return Tmp; 
14. end. 

Example 5.3 Let r be the or-relation shown in Table 5.37 and let F = {SNAME ~ 
DEPTor, DEPTor ~ HEADor} . The result of OR_CHASE(r, F) is shown in Table 5.38; it 
can be verified that the result of OR_CHASE(r, F) is consistent and that both r ~ SNAME 
~ DEPTor and r ~ DEPTor ~ HEADor hold. • 

Table S.38 The result of OR 'CHASE{r, F) of Example 5.3 

SNAME DEPTor HEADor 

Iris { Computing} {Dan} 
Iris {Computing} {Dan} 

Reuven {Computing, Philosophy} {Dan, David} 
Naomi {Maths} {Annette} 
Naomi {Maths} {Annette} 

We now make two interesting comments regarding the weak satisfaction of FDs in or
relations; these highlight the difference between the weak satisfaction of FDs in incomplete 
relations and or-relations, respectively. Firstly, let us examine the or-relation, say rl> shown 
in Table 5.39, which violates the FD SNAME ~ COURSEor. It is interesting to note that any 
proper subset of '1 weakly satisfies SNAME ~ COURSEor implying that in order to test weak 
satisfaction of an FD in an or-relation it is not sufficient just to test weak satisfaction with 
respect to pairs of tuples as can be done in incomplete relations (cf. part (2) of Lemma 5.12 
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which shows that weak satisfaction of an FD in incomplete relations can be tested with respect 
to pairs of tuples). We observe that in this case the OR_CHASE is powerful enough to detect 
the violation of the FD. Secondly, let us examine the or-relation, say r2, shown in Table 5.40, 
which violates the FD DEPTor --+ HEAD. Yet again we note that any proper subset of r2 weakly 
satisfies DEPTor --+ HEAD. However, on this occasion the reason for the violation of the FD is 
due to the fact that the cardinality of the or-set {Computing, Maths}, i.e. two, is less than the 
cardinality of r2, i.e. three. All possible worlds in POSS(r2) have three tuples and thus three 
attribute values over DEPTor are needed in order for the FD to be satisfied. We observe that 
in this case the OR_CHASE is not powerful enough to detect the violation of the FD, but if 
we replace the or-set over DEPTor of the first tuple by {Computing} then the OR_CHASE will 
indeed detect the violation of the FD with the assistance of the backwards test. 

Table 5.39 An or-relation violating SNAME ~ COURSEor 

SNAME COURSEor 

Iris {Databases, Graphics} 
Iris {Databases, Logic} 
Iris {Logic, Graphics} 

Table 5.40 An or-relation violating DEPT'JT ~ HEAD 

DEPTor HEAD 
{Computing. Maths} Dan 
{Computing. Maths} Annette 
{Computing. Maths} Brian 

The following consistency problem is central to detecting weak satisfaction in or-relations. 

Defmition 5.49 (The consistency problem) Given a set F of FDs over R and an or-relation r 
over R the consistency problem is the problem of deciding whether r f:> F. • 

In [VN95] the consistency problem was shown to be intractable. 

Theorem 5.25 The consistency problem is NP-complete. 

Proof. We provide a sketch of the proof leaving some of the details out. The problem is 
easily seen to be in NP. Simply guess a possible world s E POSS(r) and test whether s F F in 
polynomial time in the sizes of 5 and F. 

To show that the problem is NP-hard we give a polynomial-time transformation from the 
Monotone 3-Satisfiability (M3SAT) problem, which is known to be NP-complete [G]79j, to 
the problem of determining whether r f:> F. 

M3SAT problem: Given a finite set U of propositional variables and a collection C of clauses 
over U such that each clause contains exactly three unnegated variables or exactly three 
negated variables, is there a satisfying truth-assignment for C (i.e. is C satisfiable)? 

For the transformation we choose F to contain the single FD A or --+ B over R, with schema(R) 
= {Aor, B}. We represent each clause Cj E C by an or-set. If Cj is a positive clause then we 
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represent its three unnegated variables by the or-set {Pi), Pi2, Pi3), and if Ci is a negative clause 
then we represent its three negated variables by the or-set (nil , ni2, ni3). 

We now construct an or-relation rover R containing one tuple for each clause in Ci E C 
such that if Ci is positive then we insert the tuple < (pi), Pi2, Pi3), 0> into r and if Ci is negative 
then we insert the tuple <(nil , ni2, ni3), 1> into r. The reader can verify that C is satisfiable if 
and only if r ~ F. 0 

In [VN95] it was shown that in the following special case the consistency problem can be 
solved in polynomial time. 

Theorem 5.26 Let F be a set of FDs over Rand r be a relation over R. If all the attributes on 
the left-hand sides of FDs in F are complete attributes (i.e. none of them are or-attributes), 
then the consistency problem can be solved in polynomial time in the sizes of rand F. 

Proof. It can be shown that in this case r ~ F if and only if OR_CHASE(r, F) is consistent. 0 

Weak implication ofFDs in the context of or-relations is just a restatement of Definition 5.29 
which replaces incomplete relation by or-relation. The next theorem establishes the fact that 
for FDs holding in or-relations Lien's and Atzeni's axiom system is sound and complete. 

Theorem 5.27 Lien's and Atzeni's axiom system is sound and complete for FDs with respect 
to weak implication in the context of or-relations. 

Proof. We leave it to the reader to prove the soundness of the axiom system. The proof of 
completeness follows along the same lines as the proof of Theorem 5.15, where the relation 
used herein to show completeness is that shown in Table 5.41. 0 

Table 5.41 The or·relation used in the proof ofTheorem 5.27 

X (XLien+ _ X)OT schema(R) _XLien+ 

0." 0 to, I}." to, I} 1.. .1 
0." 0 0." 0 0".0 

In the presence of or-sets the notions of key, superkey and primary key remain as they were 
defined in Subsection 3.6.1 of Chapter 3, the difference being that our notion of satisfaction 
of an FD has changed. We next restate entity integrity in the context of or-relations. 

Definition 5.50 (Entity integrity) Let K ~ schema(R) be the primary key of the relation 
schema R. The entity integrity rule asserts that: for all or-relations, rover R, an ODC ¢ is 
satisfied, where VA E K, ¢(A) = COMPLETE. • 

We note that referential integrity in the context of or-relations can be defined in the same 
way as in Section 5.5 for incomplete relations by using our definition of less informative for 
or-relations. 
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5.7 The Fuzzy Sets Approach 

In the real world we often encounter situations where we can only vaguely specify attribute 
values. Some examples of such vagueness or fuzziness are: John's salary is "high", Jeremy's 
salary is "between 15 to 25 thousand pounds", Jack is "middle aged", Jim's age is "around 35" 
and Jill is "tall". Such fuzzy data cannot be represented by null values such as unk and dne, 
since unk is a place holder for a non-fuzzy or crisp data value and dne is a place holder for the 
non-existence of a crisp data value. 

Given a relation r, each tuple t E r is taken to be true and each tuple t rt r is taken to be false. 
Fuzzy sets (originally proposed in [Zad65] and further developed in [Gog67]) generalise the 
notion of membership in a set by associating with each element in a set a value in the closed 
interval [0, 1] that denotes its grade of membership in the set. The grade of membership is also 
called the possibility measure of a value being in the fuzzy set. We note that the introduction of 
fuzzy sets has led to the development of fuzzy logic which can be viewed as a generalisation of 
many-valued logic [Res69, BB92]. In turn many-valued logic generalises classical two-valued 
logic by allowing other truth-values, such as maybe, in addition to the standard truth-values 
true and false (we observe that three-valued logic is a special case of many-valued logic). 

An example of a fuzzy relation r over LIKES, with schema(LIKES) = {SNAME, COURSE}, 
is shown in Table 5.42. Note that r has an extra column with the heading fir representing the 
membership function (or characteristic function) of the fuzzy relation r. More formally, fir 
is a mapping from all possible tuples over LIKES to [0, 1] giving the grade of membership of 
each possible tuple in the relation r. We note that in accordance with crisp sets (i.e. non-fuzzy 
sets) it is customary to assume that for all tuples t, which are not represented in r, we have 
fir(t) = 0.0, i.e. we can deduce that they are definitely not members of the fuzzy relation r. 
Thus fir tells us how much each student likes the course helshe is taking. We call the tuples 
in a fuzzy relation fuzzy tuples. 

Table 5.42 A fuzzy relation over LIKES 

SNAME COURSE iJ.r 
Iris Databases 0.90 
Iris Graphics 0.45 

Reuven Programming 0.80 
Hillary Logic 1.0 

Zadeh [Zad79] utilised the notion of fuzzy sets to introduce the notion of a possibility 
distribution with the aim of representing approximate concepts such as high-salary, tall-person 
and young-person. For example, small-integer can be described as the fuzzy set 

small-integer = {1.010, 0.9/1, 0.8/2, ... ,0.3/7,0.2/8, 0.1/9}. 

The notation of the form 0.8/2 for members of the above fuzzy set signifies that the grade 
of membership of the integer 2 is 0.8. More formally, a member g/v in a fuzzy set F denotes 
the fact that the grade of membership of v in F is g, i.e. fiF(V) = g. As mentioned before 
it is assumed that any possible value, say i, that is not represented in the fuzzy set F has 
membership grade of 0.0, i.e. fiFCi) = 0.0. In our example, we can deduce that all integers i 
greater that nine have a membership grade of 0.0. 
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A crisp set (or simply a set) can now be defined as a fuzzy set of the form {1.0/l, 1.0/2, 
.. . , 1.0/n}, where the membership grade of each of its members is 1.0; in this case we simply 
represent the set as in the standard way, namely {l, 2, ... , n}. If the crisp set represents a 
range of values, such as 1 to n, we also represent the set as I-n. 

Now, suppose that the crisp set {1O, 15,20,25,30,35, 40} represents the possible salaries 
of employees, where the numbers in the set denote the salary in tens of thousands of pounds. 
Then high-salary can be described as the fuzzy set 

high-salary = {0.2/l0, 0.2/l5, 0.3/20, 0.6/25, 0.8/30, 1.0/35, 1.0/40}. 

Note that the fact that 10 and 15 have the same membership grade of 0.2 and 35 and 40 have 
the same membership grade of 1.0 does not pose any problems. 

We now make the connection between fuzzy sets and the notion of possibility distributions 
[Zad79). A fuzzy set F induces a possibility distribution, which equates the possibility that a 
variable, say x, taking a value v in the universe of discourse of F, with the grade of membership 
of v, i.e. with J1F( v). That is, we can view a fuzzy set as giving us the possibility that x can take 
vas its value. 

We can now extend fuzzy relations to have fuzzy attribute values, which are fuzzy sets, 
in addition to having fuzzy tuples. Let r be the fuzzy relation over STUDENT, shown in 
Table 5.43, where schema(STUDENT) = {SNAME, AGEfuz }. The schema of this relation has a 
fuzzy attribute whose values are fuzzy sets over the domain of AGE; note that fuzzy attributes 
are indicated by superscripting them with "fuz". We now make several observations about r: 

1) All the tuples in r are crisp, i.e. their membership grade is 1.0. 

2) The age value 25 in the first tuple denotes the singleton crisp set {25}. 

3) The fuzzy set {27, 29, 31} is crisp and could also be written as {1.0/27, 1.0/29, 1.0/31}. 
Furthermore, this set is actually an or-set, since its interpretation is that Reuven's age 
is definitely one of 27, 29 or 31. Thus, or-sets are special cases of fuzzy sets. 

4) The age values around-35, young and middle-aged are all fuzzy sets. 

5) The range 24-27 is a shorthand for the fuzzy set (or equivalently, the or-set) {24, 25, 26, 
27}. 

Table 5.43 A fuzzy relation over STUDENT 

SNAME AGE!UZ 

Iris 25 
Reuven {27, 29, 31} 
Hillary around-35 

Eli young 
Saul 24-27 

David middle-aged 

We next introduce proximity relations. These set-theoretic relations are utilised in the 
definition of fuzzy selection as well as the fuzzy satisfaction of an FD. 
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The concept of equality can also be fuzzified, thus general ising three-valued equality for 
nulls and giving rise to proximity relations. A proximity relation over a fuzzy attribute A E 

schema(R) is a fuzzy relation in the domain of A; note that A may be a fuzzy or standard 
attribute. Thus the membership function of a proximity relation over A is a mapping from 
DOM(A) x DOM(A) to [0,1). Whenever the attribute, say A, over which a proximity relation 
is defined is understood from context we will denote such a relation by the equality sign 
"=". Furthermore, if ,.b(V\ , V2) = a, we will say that the proximity between v\ and V2 is 
a. Let us consider the subset of a proximity relation over an attribute, say Att, shown in 
Table 5.44, whose domain is a subset of the natural numbers. For this table we can deduce, for 
example, that p-=(one, one) = 1.0, p-=(one, two) = 0.8 and p-=(one, three) = 0.6. In general, 
a proximity relation is reflexive, i.e. for all u in the domain of the attribute, over which the 
proximity relation is defined, p-=(u, u) = 1.0, and is symmetric, i.e. for all u, v in the said 
domain, p-=(u , v) = p-=(v, u) . On the other hand, a proximity relation is not, in general, 
transitive (thus differing from two-valued equality), since from the fact that p-=(u, v) = x 
and p-=(v, w) = y we cannot, in general, deduce the membership grade of p-=(u , w). Thus, 
in our example, it is not clear how one can deduce that p-=(one, three) = 0.6 from the other 
membership grades given in Table 5.44. 

Table 5.44 A subset of a proximity relation over Att 

p-= one two three 
one 1.0 0.8 0.6 
two 0.8 1.0 0.8 

three 0.6 0.8 1.0 

We will now define an extension of the relational algebra to manipulate fuzzy relations, 
which may have fuzzy tuples and may also have fuzzy attribute values. The definition of a 
fuzzy relational algebra operator (or simply a fuzzy algebra operator) extends the definition 
of a standard algebra operator (see Subsection 3.2.1 of Chapter 3) by characterising the 
membership function of the fuzzy relation resulting from invoking the fuzzy operator. In 
the following we let max(S) denote the maximum value of a set of numbers in the unit interval 
[0, 1) and let mineS) denote the minimum value of a set of numbers in the unit interval [0, 1). 
In addition, let 

REL(R) = DOM(A\) x DOM(A2) x . .. X DOM(Atype(R» 

be the countable set of all possible tuples over a relation schema R. 

Intuitively, the projection of a fuzzy relation maintains the maximum membership grade 
of duplicate projected fuzzy tuples. 

Definition 5.51 (Fuzzy Projection) The fuzzy projection of a fuzzy relation r over schema R 

onto Y ~ schema(R), denoted by 7l'!uz (r), is a fuzzy relation s over schema S with schema(S) 
= Y, characterised by the fuzzy membership function P-s given by 

"It E REL(S) , P-s(t) = max({p-r(u) I U E REL(R) and u[¥) = tl). • 
We observe that although the sets REL(S) and REL(R) are, in general, countably infinite we 

need only consider tuples U E REL(R) such that P-r(u) > 0.0. As an example, let r be the fuzzy 
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relation shown in Table 5.42. The fuzzy projection If{~~ME(r) is shown in Table 5.45; iJ.-r can 
be interpreted as giving the maximum membership grade referring to how much a student 
likes his/her courses. 

Table 5.45 A projection of the fuzzy relation over LIKES 

SNAME /-tr 
Iris 0.90 

Reuven 0.80 
Hillary 1.0 

Intuitively, the union of two fuzzy relations maintains the maximum membership grade of 
the unioned fuzzy tuples. 

Definition 5.52 (Fuzzy union) The fuzzy union of two fuzzy relations r1 and r2 over schema 
R, denoted by r1 Ufuz r2, is a fuzzy relation rover R characterised by the fuzzy membership 
function iJ.-r given by 

• 
As an example, let r1 and r2 be two fuzzy relations over LIKES, shown in Tables 5.42 and 

5.46, respectively. The fuzzy union r = r1 ufuz r2 is shown in Table 5.47. 

Table 5.46 Another fuzzy relation over LIKES 

SNAME COURSE /-tr2 
Iris Databases 0.95 

Reuven Programming 0.40 
Hillary Logic 0.75 
Rachel Databases 0.8 

Table 5.47 The fuzzy relation Tl ufuz T2 over LIKES 

SNAME COURSE /-ts 
Iris Databases 0.95 
Iris Graphics 0.45 

Reuven Programming 0.80 
Hillary Logic 1.0 
Rachel Databases 0.8 

Intuitively, the intersection of two fuzzy relations maintains the minimum membership 
grade of the intersected fuzzy tuples. 

Defmition 5.53 (Fuzzy intersection) The fuzzy intersection of two fuzzy relations r1 and r2 
over schema R, denoted by r1 n fuz r2, is a fuzzy relation rover R characterised by the fuzzy 
membership function iJ.-r given by 

• 
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As an example, the fuzzy intersection r = rl nfuz r2 is shown in Table 5.48, where rl and r2 
are the fuzzy relations over LIKES, shown in Tables 5.42 and 5.46, respectively. 

Table 5.48 The fuzzy relation rl nfuz r2 over LIKES 

SNAME COURSE J1. r2 

Iris Databases 0.90 
Reuven Programming 0.40 
Hillary Logic 0.75 

Intuitively, the difference between two fuzzy relations is defined by the intersection of the 
first fuzzy relation with the complement of the second fuzzy relation, where the complement 
of a fuzzy relation complements its membership function . 

Definition 5.54 (Fuzzy difference) The fuzzy complement of a fuzzy relation r over schema 
R, denoted by .....,fuz(r), is a fuzzy relation s over R characterised by the fuzzy membership 
function J1.s given by 

'<It E REL(R), J1.s(t) = 1 - J1.r(t) . 

The fuzzy difference of two fuzzy relations rl and r2 over schema R, denoted by rl _fuz r2, 
is a fuzzy relation rover R given by 

• 
As an example, the fuzzy difference r = rl _fuz r2 is shown in Table 5.49, where rl and r2 

are the fuzzy relations over LIKES, shown in Tables 5.42 and 5.46, respectively. 

Table 5.49 Another fuzzy relation over LIKES 

SNAME COURSE J1. r2 

Iris Databases 0.05 
Iris Graphics 0.45 

Reuven Programming 0.60 
Hillary Logic 0.25 

Intuitively, the Cartesian product of two fuzzy relations maintains the minimum 
membership grade of the fuzzy tuples in the product. 

Definition 5.55 (Fuzzy Cartesian product) Let rl be a fuzzy relation over Rl and let r2 be a 
fuzzy relation over R2, where Rl and R2 are relation schemas with schema(Rd n schema(R2) 
= 0. The fuzzy Cartesian product of the two relations rl and r2, denoted by rl xfuz r2, is a 
fuzzy relation rover R, where schema(R) = schema(Rd U schema(R2}, characterised by the 
fuzzy membership function J1.r given by 

"It E REL(R), J1.r(t) = min({J1.rl (t[schema(Rd]), J1. r2 (t[schema(R2»))}). • 

Intuitively, the selection of fuzzy tuples from a fuzzy relation with respect to a selection 
formula, say SF, maintains the fuzzy tuples which fuzzily logically imply SF with a threshold 
ofa E [0, 1). 
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Defmition 5.56 (Fuzzy selection) Recall that a simple selection formula over a relation 
schema R is either an expression of the form A = a or an expression of the form A = B, 
where A, B E schema{R), a E DOM{A) and U=" is a proximity relation. 

Let r be a fuzzy relation over Rand t be a tuple in r. We define fuzzy logical implication 
with threshold a E [0, 1], denoted by (a) ~, as follows: 

1) tea) ~ A = a evaluates to true if tL={t[A), a) 2: a; 

2) tea) ~ A = B evaluates to true if tL=(t[A), t[B]) 2: a. 

The fuzzy selection applied to a fuzzy relation r over schema R with respect to a simple 
selection formula SF over R and threshold a, denoted by (a)asF(r), is a fuzzy relation s over 
R characterised by the fuzzy membership function tLs given by 

Vt E REL(R), if tea) ~ SF then tLs(t) = tLr(t), otherwise tLs(t) = 0.0. • 

Fuzzy selection can be extended to well-formed expressions composed of simple selection 
formulae together with the Boolean logical connectives in a straightforward way, where 
disjunction corresponds to fuzzy union (i.e. we take the max of the two membership functions), 
conjunction corresponds to fuzzy intersection (i.e. we take the min of the two membership 
functions) and negation corresponds to fuzzy complement (i.e. we subtract the membership 
function from one). 

As an example, the fuzzy selection (0 .9)asF(r) over STUDENT, with SF = AGEfuz = young, 
is shown in Table 5.50, where r is the fuzzy relation over STUDENT shown in Table 5.43. 
In this example we have assumed that anyone, who is possibly 25 or under, qualifies with a 
threshold of 0.9 as being young (in particular, we assume that tL=(middle-aged, 25) < 0.9 and 
that tL={around-35, 25) < 0.9). 

Table 5.50 The fuzzy relation (O .9)aSF(r) over STUDENT, where SF is AGEfuz = young 

SNAME AGEfuz 

Iris 25 
Eli young 

Saul 24-27 

We observe that fuzzy natural join can now be defined in the standard way by using fuzzy 
Cartesian product, fuzzy renaming and fuzzy selection. (Fuzzy renaming can be defined in 
the same way as standard renaming by maintaining the same membership function.) 

We note that all the operators of the fuzzy relational algebra are faithful to the standard 
relational algebra operators. On the other hand, truth-preservation is not relevant in the 
context of the fuzzy algebra, since we have not defined a possible worlds semantics for fuzzy 
relations. An alternative measure of the reasonableness of the fuzzy algebra is its faithfulness 
to fuzzy set theory [Zad65) and fuzzy approximation theory [Zad79), which is immediately 
evident. The notion of threshold was added to fuzzy selection, since it provides a mechanism 
for the user to put a filter on the output. 
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We next discuss the extension of FDs to fuzzy relations. Firstly, we extend the membership 
function of a proximity relation between tuples as follows: 

JL=(tJ!X], t2[X]) = min(JL=(tJ!A!l, t2[A!l) , JL=(tJ!A2], t2[A2)), " " JL=(t!lAk], t2[Ak))) , 

where X = {AI , A2 , ... , Ak}' 

In the following we assume that attributes are fuzzy unless otherwise stated. 

Definition 5.57 (Fuzzy satisfaction of an FD in a fuzzy relation) An FD X ---+ Y is fuzzily 
satisfied (or simply satisfied whenever no ambiguity arises) in a fuzzy relation rover R, 
denoted by r ~ X ---+ Y, if'v'tl , t2 E r, JL=(tJ!Xj, t2[X]) ~ JL=(tdYj, t2[Y]). • 

We note that if r is a complete non-fuzzy relation, where the proximity relation between 
domain values is just the standard equality relation, then the definition of fuzzy satisfaction 
of an FD coincides with the standard notion of FD satisfaction. Thus fuzzy satisfaction of an 
FD is faithful to standard satisfaction of an FD. 

As an example, let r be the fuzzy relation over SALARY -SCALE, shown in Table 5.51, with 
attributes EXPfuz denoting the (fuzzy) experience of an employee and SALARyfuz denoting 
the (fuzzy) salary of the employee in thousands of pounds. It can intuitively be verified that 
r ~ EXPfuz ---+ SALARYfuz, noting that JL=(10, High) and JL=(2, Low) are close to 1.0 and 
JL=(10, Low) and JL=(2, High) are close to 0.0. (Of course our interpretation of the proximity 
relation is subjective.) 

Table 5.51 A fuzzy relation satisfying the fuzzy FD EXP!uZ -> SALAR Y fuz 

EXP!UZ SALARY!uZ 
2 Low 
10 High 

7-15 around-25 
High High 
Low Low 

Moderate 15 

Fuzzy implication of FDs in the context of fuzzy relations is just a restatement of 
Definition 5.29 of weak logical implication with the replacement of incomplete relations by 
fuzzy relations. The next theorem presented in [RM88j shows that Armstrong's axiom system 
is still sound and complete in the context of fuzzy relations. 

Theorem 5.28 Armstrong's axiom system is sound and complete for FDs with respect to 
fuzzy implication in the context of fuzzy relations, assuming that for all A E schema(R) there 
are at least two values VI, V2 E DOM(A) such that JL= (VI , V2) = o. 

Proof We leave it to the reader to prove the soundness of the axiom system. The proof of 
completeness follows along the same lines as the proof of Theorem 3.21 in Subsection 3.6.1 of 
Chapter 3. 0 

The reader may be surprised to discover that the transitivity inference rule is sound in 
the context of fuzzy relations while it is unsound in the context of incomplete relations and 
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or-relations. Consider the fuzzy relation, say rover R, with schema(R) = {A, B, C, Dfuz }, which 
is shown in Table 5.52; assume that 1k=(0 , 0) = 1.0, 1k=(0, (O, I}) = 0.5 and 1k=(0, 1) = 0.0. 
In the context of either incomplete relations, or-relations or fuzzy relations we have that r 
weakly satisfies the FD A -7 B but violates the FD A -7 C. Now, the FD A -7 Dfuz is also weakly 
satisfied in the context of or-relations, and assuming that we replace {O, I} in the second tuple 
by unk, A -7 Dfuz is also weakly satisfied in the context of incomplete relations. This is 
due to the fact that weak satisfaction in the context of incomplete relations and or-relations 
is defined in terms of possible worlds, which are induced by substitution semantics. Thus, 
transitivity is not sound for either incomplete relations or or-relations, since r weakly satisfies 
both A -7 Dfuz and Dfuz -7 C but it violates A -7 C. On the other hand, A -7 Dfuz is violated 
in the context of fuzzy relations, since (1k=(0 , 0) = 1.0) > (1k=(0 , (O, I}) = 0.5). Thus 
fuzzy satisfaction of FDs is defined in terms of proximity of values rather than in terms of 
possible worlds and therefore the transitivity inference rule is still sound. More specifically, 
if 1k=(tdXj, t2[X]) ::: 1k=(tdYj, t2[Y]) and 1k=(tdYj, t2[Y]) ::: 1k=(tdZ], t2[Z]), then due to 
the transitivity ofless than or equal (:::), it follows that Ik=(t, [X], t2[X]) ::: Ik=(t, [Z], t2[Z]), 

Table 5.52 A fuuy relation 

A B C DJuZ 

0 0 0 0 

0 0 1 {O. I} 

We now discuss two alternative, but related, semantics of fuzzy satisfaction of FDs. We 
begin by defining the fuzzy implication operator. The fuzzy implication between p and q, 
denoted by p =? q, where p, q E [0 , 1], is an operator whose result is given by 

{ I ifp:::q 
p =? q = q if P > q. 

In the first alternative semantics the degree of fuzzy satisfaction is indicated so 
Definition 5.57 is strengthened [CKV94]. 

Definition 5.58 (Fuzzy satisfaction of an FD to degree A) An FD X(A) -7 Y is fuzzily 
satisfied in a fuzzy relation rover R to the degree A E (0, 1], denoted by rCA) ~ X -7 Y, 
ifVt" t2 E r, (1k=(t,[X], t2[X]) =? 1k={tdY], t2[Yj)) 2: A. • 

We note that if A = 1, i.e. the degree offuzzy satisfaction is one, then Definition 5.58 reduces 
to Definition 5.57. 

An interesting inference rule which can be shown to be sound with respect to fuzzy 
satisfaction of a set F of FDs over R, according to Definition 5.58, is given by 

ifFI-X(A) -7 YthenFI-X(A') -7 Y,whereA'::: A. 

It was shown in [CKV94] that Armstrong's axiom system, suitably modified to take the 
degree of fuzzy satisfaction into account, together with the above inference rule, is sound 
and complete for FDs with respect to fuzzy implication according to Definition 5.58 of fuzzy 
satisfaction. 
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As a simple example illustrating Definition 5.58, consider an FD SS# -+ AGE, meaning 
that a person's social security number uniquely determines their age. In the context of fuzzy 
relations the FD SS#fuz (0.9) -+ AGEfuz means that for any two tuples either the degree of 
proximity (or closeness) between the AGEfuz-values of the tuples is greater than the degree of 
proximity between the SS#fuz-values of the tuples, or that the degree of proximity between the 
AGEJuz-values of the tuples is greater than or equal to 0.9. So, for example, let r = {fl, t2, t3} 
be the fuzzy relation shown in Table 5.53, where tl, t2 and t3 are the first, second and third 
tuples, respectively, in r. Also assume that tL=(1234, 1234) = 1.0, tL={nearly-30, 27-29) = 0.9 
and tL=(nearly-30, 26-32) = 0.8. Then {fl, t2}(O.9) ~ SS#fuz -+ AGEfuz but (tl, t3}(0.9) F,t 
SS#Juz -+ AGEJuz. This is due to the fact that the AGEfuz-values of the first two tuples are 
close enough, i.e. at least 0.9, but the AGEfuz-values of the first and third tuples are not close 
enough, i.e. less than 0.9. 

Table 5.53 A fuuy relation 

SS#fuz AGEfuz 

1234 nearly-3D 
1234 27-29 
1234 26-32 

In the second alternative semantics two thresholds are taken into account, so that a 
constraint such as if any two employees have a similar age then these employees have a 
similar salary can be expressed [CV94b). 

Defmition 5.59 (Fuzzy satisfaction of an FD in a fuzzy relation with thresholds (a, f3» An 
FD X(a, f3) -+ Y is fuzzily satisfied in a fuzzy relation rover R, with thresholds a, f3 E (0, 1], 
denoted by rea, f3) ~ X -+ Y, ifVtl. t2 E r, whenever tL=(t1 [X), t2 [Xl) ~ a then it is also true 
that tL=(tdYl, t2 [Yl) ~ f3. • 

An interesting inference rule which can be shown to be sound with respect to fuzzy 
satisfaction ofFDs, according to Definition 5.59, is given by 

if F f- X(a, f3) -+ Y then F I-- X(a', f3') -+ Y, where a' ~ a and f3' :::: f3. 

It was shown in [CV94b) that Armstrong's axiom system, suitably modified to take into 
account the thresholds, together with the above inference rule, is sound and complete for FDs 
with respect to fuzzy implication according to Definition 5.59 of fuzzy satisfaction. 

The following example illustrates Definition 5.59. Let r be the fuzzy relation shown in 
Table 5.56 over a schema with fuzzy attributes GRADEJuz and SALAR Y Juz. Also, suppose that 
the proximity relation over GRADEfuz-values is given in Table 5.54 and the proximity relation 
over SALARyfuz-values is given in Table 5.55. Next let GRADEfuz(a, f3) -+ SALARyfuz 

be an FD meaning that employees with similar grades receive similar salaries. The reader 
can verify that, for instance, r(0.3, 0.4) ~ GRADEfuz -+ SALARyfuz holds according to 
Definition 5.59, r ~ GRADEfuz -+ SALARYJuz is violated according to Definition 5.57, and 
finally r(0.6) ~ GRADEJuz -+ SALARyfuz is violated according to Definition 5.58. 

A discussion of the different semantics of fuzzy satisfaction ofFDs can be found in [BDP94). 
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Table 5.54 The proximity relation over GRADEfuz 

J.L= analyst programmer manager 
analyst 1.0 0.8 0.6 

programmer 0.8 1.0 0.3 
manager 0.6 0.3 1.0 

Table 5.55 The proximity relation over SALAR Y Juz 

J.L= medium 28 high 
medium 1.0 0.7 0.4 

28 0.7 1.0 0.5 
high 0.4 0.5 1.0 

Table 5.56 A fuzzy relation 

GRADEJuz SALARyJuz 

programmer medium 
analyst 28 

manager high 

To conclude this section we show how the notion of an inclusion dependency can be recast 
in the context offuzzy relations. We first define a fuzzy database over R = {R I , R2, ... , Rn} 
in the obvious manner, namely as a collection d of fuzzy relations, {rl, r2 , ... , rn}, such that 
Vi E {I, 2, ... , n}, ri is a fuzzy relation over Ri. Intuitively, an IND RdXI ~ R2[YI is fuzzily 
satisfied in a fuzzy database, say d, with threshold a E (0, II, if for every tuple, say tJ, in the 
fuzzy relation rl over RI there exists a tuple, say t2, in the fuzzy relation r2 over R2 such that 
the proximity between tl and t2 is greater than a and the membership grade of tl is less than 
or equal to the membership grade of t2' 

Definition 5.60 (Fuzzy satisfaction of an IND) An IND RI [XI ~ R2[YI is fuzzily satisfied in 
a fuzzy database dover R with threshold a E (0,1)' denoted by d(a) ~ RdXI ~ R2[Y)' if 
Vtl E rl, 3t2 E r2, such that J.L=(tdX), t2 [Y)) :::: a and ILrl (tl) :::: ILr2 (t2)' • 

We note that if d is a complete non-fuzzy database, where the proximity relation between 
domain values is just the standard equality relation and a = 1.0, then the definition of fuzzy 
satisfaction of an IND coincides with the standard notion of IND satisfaction. Thus fuzzy 
satisfaction of an IND is faithful to standard satisfaction of an IND. Finally, referential integrity 
in the context of fuzzy relations can be defined in the same way as in Section 5.5 for incomplete 
relations by using our definition of a fuzzy IND. 

We close this section by remarking that the topic of fuzzy relations can be extended to deal 
with fuzzy normal forms corresponding to the normal forms defined for complete relations 
in Chapter 4. For further details see [SMF92, CKV961. 

5.8 The Rough Sets Approach 

An approach related to that of fuzzy sets is that of rough sets [Paw821, which addresses the 
imprecision and ambiguity present in a database rather than addressing vagueness as fuzzy 
sets do. 
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Definition 5.61 (Rough relation) Let r be a complete relation over a relation schema Rand 
R be an equivalence relation in r. The ordered pair (r, R ) is called an approximation space. 

Let [t17~. , where t E r (or simply [tj whenever R is understood from context), denote the 
equivalence class of t with respect to R. The equivalence classes of r with respect to Rare 
called its elementary sets and any finite union of elementary sets is called a definable set (or a 
composed set). 

The lower approximation of a set of tuples 5 ~ r with respect to (r, R ), denoted by R(s) , is 
given by 

R(s) = {t I t E rand [tl ~ s}. 

The upper approximation of a set of tuples 5 ~ r with respect to (r, R), denoted by R(s), is 
given by 

R(s) = {t I t E rand [tj n 5 =1= el}. 

The boundary of a set of tuples 5 ~ r with respect to (r, R), denoted by BNDR(S), is the set 
of tuples in R(s) - R(s) . 

A set of tuples 5 ~ r is said to be a rough relation with respect to the approximation space 
(r, R) if its lower approximation is different from its upper approximation (i.e. if its lower 
approximation is properly contained in its upper approximation) . 

A set of tuples 5 is said to be a definable relation (or a crisp relation) with respect to the 
approximation space (r, R) if its lower approximation is equal to its upper approximation . 

• 
As an example, let r be the complete relation shown in Table 5.57 having the attributes 

PATIENT _NO, DISEASE~O and SYMPTOM_NOS, with their obvious meaning. Let R denote 
the equivalence relation of patients having the same disease, i.e. two tuples are in the same 
equivalence class if and only if their DISEASE_NO-value is the same. Now, let 5 consist of the 
first three tuples, i.e. the patients who have symptom 52. Then R(s) consists of the first two 
tuples, while R(s) = r. Thus 5 is a rough relation with respect to the approximation space (r, 
R), since the set of patients having symptom 52 cannot be precisely characterised according 
to the equivalence classes of diseases. If on the other hand, we take 5 to be the first two 
tuples, i.e. the tuples representing patients who have symptom 5" then 5 is a definable relation 
with respect to the approximation space (r, R ), since in this case 5 precisely characterises 
the patients having disease d!. From this example we see that rough sets are very useful in 
classifying objects (or tuples) into indiscernibility classes. 

Table 5.57 A relation recording diseases and their symptoms 

PATIENLNO DISEASE~O SYMPTOM_NOS 

PI dl {51 , 52} 

P2 dl {51 , 52} 

P3 d2 {53 , 52} 

P4 d2 {53 , 54} 

An interesting method of modelling rough relations via the fuzzy membership function of 
a fuzzy relation was presented in [BP94j; this extends their work on rough relations presented 
in [BPB95j . 



344 Chapter 5. Incomplete Information in the Relational Data Model 

Definition 5.62 (Fuzzy rough relation) A relation rover R is a fuzzy rough relation with 
respect to the approximation space (r, R) and a subset of its tuples s S; r, if it is a fuzzy 
relation whose membership function J-I..r is given by 

1) J-I..r(t) = 1, if t E R(s), 

2) J-I..r(t) = 0, if t E r - R(s), and 

3) 0 < J-I..r(t) < 1, if t E BNDR,(s). • 
The tuples in the lower ap,E!oximation of s are considered to be certain tuples, the tuples 

in the boundary of s (i.e. in R(s) - R(s» are considered to be possible tuples whose fuzzy 
membership value is between zero and one and the set of tuples not in the upper approximation 
of s are tuples which are not even possible. Under the above interpretation of rough relations, 
we can use the fuzzy relational algebra of the previous section in order to manipulate fuzzy 
rough relations. 

We next define the rough satisfaction of an FD in a complete relation IZia91]. Intuitively, 
given a relation rover R and an FD X -+ Y over R, the degree of rough satisfaction measures the 
degree of functionality of the FD. In the context of rough satisfaction of an FD, the attributes 
X are called the condition attributes and the attributes Yare called the decision attributes. 

Definition 5.63 (Rough satisfaction of an FD to degree ).,) The X-partition of a complete 
relation rover R, where X S; schema(R), is a partition of r, denoted by Ir, X], such that 
tJ, t2 E r are in the same element in Ir, X] if and only if tJ IX] = t2IX]. In addition, we let 
RIX](s) be the lower approximation of a set of tuples s S; r with respect to the equivalence 
relation induced by Ir, Xl on r. 

The positive region of the Y -partition of r with respect to the X-partition of r, denoted by 
POSr(X, Y) (or simply POS(X, Y) whenever r is understood form context), is given by 

POS(X, Y) = U RIX](y) 
yE[r.Y) 

U {x I x E Ir, Xl and x S; y}. 
yE[r,Y) 

The degree to which a set of attributes Y depends on a set of attributes X in a complete 
relation r, denoted by K(r, X -+ Y), is given by 

IPOS(X, Y)I 
K(r, X -+ Y) = . 

Irl 

An FD X()") -+ Y is roughly satisfied in a complete relation rover R to degree)., E (0,1], 
denoted by r().,) p:; X -+ Y, if K(r, X -+ Y) :::: ).,. • 

Thus K(r, X -+ Y) = 1 if and only if X(l) -+ Y is roughly satisfied in r to degree 1, i.e. X 
functionally determines Y. We note that X(l) -+ Y is roughly satisfied in r if and only if X -+ 

Y is satisfied in r, i.e. r F= X -+ Y. 
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As an example, let r be the complete (nested) relation shown in Table 5.57 and denote 
the four tuples thereof in order of appearance by tl , t2 , t3 and t4 ' The reader can verify 
that r(l} ~ SYMPTOM_NOS --+ DISEASE_NO holds. Now, the DISEASE_NO-partition 
of r is [r, DISEASE_NO] = {{tl , t2}, {t3 , t4}} and the SYMPTOM_NOS-partition of r is 
[r , SYMPTOM.-NOS] = {{tl , t2}, {t3}, {t4}}. Thus, POS(DISEASE_NO, SYMPTOM_NOS} = 
{t. , t2} and K (r, DISEASE_NO --+ SYMPTOM_NOS) = 0.5. It follows that the highest degree 
of rough satisfaction of the FD DISEASE_NO --+ SYMPTOM_NOS is 0.5, i.e. r(0 .5} ~ 
DISEASE-NO --+ SYMPTOM_NOS is the maximal degree for which rough satisfaction holds. 

5.9 The Default Values Approach 

An approach to missing information that has been put forward by Date in [Dat92a] is that of 
using default values instead of null values as place holders for missing information. As an 
example, suppose that John's salary is unknown, then instead of representing John's salary 
by unk we represent his salary by a default value, say "minus one". Obviously, "minus one" 
cannot be a real salary and thus we can interpret "minus one" as an unknown salary. Another 
common example is that of filling a form. Suppose that we have an application form and we 
are required to answer whether we are married or not. A default value of "N/A" or a "dash" 
is normally acceptable as an indication that the question is not applicable in our case. This 
approach of using default values instead of null values seems to correspond more closely to 
the way incomplete information is treated in the real world. (In the rest of this section we will 
only consider default values representing information which is missing but unknown.) The 
claimed advantages of the default values approach as opposed to the null values approach are: 
it is simpler to formalise, easier to understand and has a closer correspondence to the real 
world. Furthermore, we do not not need to depart from the classical two-valued logic to the 
more complex three-valued logic. 

As an example consider the relation over STUDENT, shown in Table 5.58. The value "???", 
which is a member of the domains DOM( COURSE} and DOM(DEPT}, has been distinguished 
as a default value representing the fact that a course, or department, is unknown. In addition, 
the value "-1", which is a member of the domain DOM(GRANT}, has been distinguished 
as a default value indicating that the value of a grant is unknown. Thus the default values 
approach, instead of extending the underlying domain of an attribute, distinguishes a value in 
the domain as a default value. Note that the tuple <???, m, Computing, 3750> is meaningful 
and represents the fact that students who are not recorded in the relation are assumed to be 
members of the Computing department and to receive a grant of 3750 pounds. 

Table 5.58 A student relation with default values 

SNAME COURSE DEPT GRANT 
Iris Databases Computing -1 

Reuven Theory m 3500 
Hillary m Philosophy 4000 
Rachel m m -1 

Eli Databases Computing 4200 
m m Computing 3750 
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It follows that, due to the fact that null values are not allowed in the default values approach, 
the entity integrity rule can simply be dropped. For example, in the above relation if SNAME 
is the primary key of STUDENT then the default value "???" is a primary key value as are 
the values "Iris", "Reuven", "Hillary", "Rachel" and "Eli". Thus there can only be one tuple 
in any relation over STUDENT whose SNAME value is "???". Moreover, since null values are 
not allowed the referential integrity rule can be simplified by omitting any mention of nulls. 
Hence, a foreign key value cannot be a null value and must refer to an existing primary key 
value in the target relation for which it is a foreign key. Furthermore, the relational algebra 
and integrity constraints remain the same as they were defined in Chapter 3 over relations 
without null values. It is worth mentioning that when defining domain constraints one has to 
explicitly take default values into account. For example, if we specify the domain constraint 
that the value of a grant must range between 3000-5000 pounds, then we would take that to 
mean that either the value of a grant is -1 (if its true value is unknown) or its value ranges 
between 3000-5000 (if its value is known). 

Although the default values approach as informally explained above is indeed simpler than 
the null values approach, it has several drawbacks pointed out by Codd in [Cod90], which we 
now discuss. The main problem with the default values approach is that it is semantically 
weaker than the null values approach, since it does not take into account the information 
content of a relation. Let r be the relation over STUDENT shown in Table 5.58 and consider 
the tuple <Rachel, m, m, -1>. The intention is that this tuple has the same meaning as 
the tuple <Rachel, unk, unk, unk>, which uses the null value unk. Now, let QI (r) be the 
query O'FI (r), where FI = COURSE = 'Databases', and let Q2(r) be the query O'F2 (r), where 
F2 = COURSE ::j:. 'Databases'. A user posing these queries will notice that <Rachel, m, m, 
-1> is not in QI (r) but <Rachel, ???, m, -1> is in Q2(r) . How is the user to interpret these 
answers when using default values? A sensible interpretation of these answers is that Rachel 
is definitely not doing the Databases course. This interpretation would be correct if we did 
not have any missing information but due to the fact that we do not know if Rachel is doing 
the Databases course this interpretation is incorrect. Now, suppose that we were using null 
values and extended selection, then in such a case <Rachel, unk, unk, unk> is not either 
in QI (r) or in Q2(r). The interpretation of these answers is that Rachel mayor may not be 
doing the Databases course, i.e. we do not know whether or not she is doing that course. This 
interpretation is intuitively correct, since a tuple is in the result of an extended query only 
if the tuple is definitely true. Thus the null values approach is semantically richer than the 
default values approach precisely for the reason that it formalises the information content of a 
relation in terms of the partial order, less informative than, leading to the definition of the set 
of possible worlds relative to a relation. Furthermore, the use of three-valued logic in the null 
values approach allows us to differentiate between facts which are true, facts which are false 
and facts which are possible. For example, we can distinguish between the fact that Rachel is 
not doing the Databases course and the fact that Rachel mayor may not be doing that course. 
Another important point to make is that, unlike the default values approach, the null values 
approach extends naturally to the semantically richer or-sets and fuzzy sets approaches. 

The absence of powerful enough semantics to handle incomplete information can have 
dire consequences if the handling of incomplete information is relegated to the application 
programs, since this may lead to an inconsistent and unsystematic treatment of incomplete 
information. Our conclusion is that the default values approach does not deal comprehensively 
with the problem of missing and incomplete information; it rather sidesteps the main issues 
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in favour of a simple and realistic solution. As the example above has shown this absence of 
semantics may lead users to misinterpret the meaning of default values in relations. 

The default values approach to incomplete information is not to be confused with default 
logic [Rei80, Bes89j, whose aim is to formalise the common sense reasoning: "in the absence 
of any information to the contrary assume that ... ". For example, if we are given the fact 
that Tweety is a bird then we can deduce by default reasoning that Tweety can fly unless 
we have some evidence to the contrary such as the fact that Tweety is actually a penguin. 
Default reasoning deals nicely with incomplete information, since it relies on the absence of 
information in order to make deductions. We note that the CW A, discussed in Section 5.2, is 
a special case of default reasoning where we deduce that a fact does not hold if it is not stored 
in the database. Default logic relies upon the fact that the real world is far too complex to be 
represented fully and thus at any given moment in time we can only represent an incomplete 
fragment of the real world. We rely on the fact that many aspects of the real world, which are 
not represented, can be inferred by common sense reasoning. With respect to the CW A we 
rely upon the assumption that if data is not represented then it must be false. It is important to 
note that default reasoning is tentative in the sense that when our information about the real 
world increases then conclusions made by default reasoning may be withdrawn. For example, 
if we add to the relation, shown in Table 5.3, the fact that Hillary is doing a database course in 
the Computing department, then under the CW A we withdraw our previous conclusion that 
Hillary is not doing a database course. 

Default logic can assist us in dealing with incomplete information in relational databases 
as the following example shows. Suppose that we have the knowledge that students normally 
receive grants and that the sum they normally receive is 3750 pounds. Thus, with respect to 
the relation, say r, shown in Table 5.58, we can use default logic to deduce that Iris and Rachel 
each receive a grant of 3750 pounds, since we do not have any evidence to the contrary. On 
the other hand, we cannot use this default rule for the other students recorded in r, since 
their grant values are already known. As another example suppose that it is normally the case 
that students are not married; thus in the absence of any other information for a particular 
student, say Rachel, we can record in the database that Rachel is unmarried. In general, 
default reasoning allows us to deduce values for attributes that would otherwise be missing 
or incomplete. This is not always possible or desirable, since the default values are treated 
by the database system in the same manner as other domain values and thus may lead to a 
loss of semantics as in Date's default values approach. Thus default logic does not replace 
the null values approach but rather complements it by allowing us to fill in some gaps in our 
information whenever this is possible. 

S.10 Updating Incomplete Relations 

In this section we deal with the problem of updating a relational database in the presence of 
incomplete information. We will assume the null values approach to incomplete information 
throughout this section with unk being the only available type of null value. Although this 
approach is less expressive than the or-sets or fuzzy sets approach, it will be sufficient to 
highlight the main ideas concerning updating incomplete relations. In the formalism we 
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present for updating incomplete relations, we simplify matters by not taking into account any 
integrity constraints. 

We motivate our presentation of updating incomplete relations with several examples, 
where r is the incomplete relation over STUDENT, shown in Table 5.8. Let our first update be 
that of inserting the set of tuples 5 = «David, Logic, Philosophy>, <Iris, unk, unk>, <Eli, 
unk, Economics>} into r obtaining the incomplete relation shown in Table 5.59. Thus the 
updated relation is given by the extended query r ue 5. It follows that an insert operation is 
realised via the extended union operator and is, therefore, by Theorem 5.5 both faithful and 
tru th -preserving. 

Table 5.59 The incomplete relation onable 5.8 after some insertions 
SNAME COURSE DEPT 

Iris Databases Computing 
Reuven Theory unk 
Hillary unk Philosophy 
Rachel unk unk 

Eli Databases Computing 
David Logic Philosophy 
Iris unk unk 
Eli unk Economics 

Now, let our second update be that of deleting the set of tuples 5 = «Iris, unk, Computing>, 
<Reuven, Theory, unk>, <Eli, Databases, unk>} from r obtaining the incomplete relation 
shown in Table 5.60. Thus the updated relation is given by the extended query r_e 5. Itfollows 
that a delete operation is realised via the extended difference operator and is, therefore, by 
Theorem 5.6 both faithful and truth-preserving. 

Table 5.60 The incomplete relation onable 5.8 after some deletions 
SNAME COURSE DEPT 
Hillary unk Philosophy 
Rachel unk unk 

Now, let our third update be that of modifying the set of tuples 51 = «Reuven, Theory, 
unk>, <Hillary, unk, Philosophy>, <Rachel, unk, unk>}, with 51 ~ r, to be the set of tuples 
52 = «Reuven, Quantum, Physics>, <Hillary, Quantum, Physics>, <Rachel, Quantum, 
Physics>}, obtaining the incomplete relation shown in Table 5.61. Thus the updated relation 
is given by the extended algebra expression (r _e 51) ue 52. It follows that a modification 
operation is realised via the extended difference and extended union operators and it can 
therefore be shown that it is both faithful and truth-preserving on using Theorems 5.5 and 
5.6. 

In what follows we formalise our redefinition of update operations, which were originally 
given in Subsection 3.2.4 of Chapter 3, in the context of incomplete relations. As was done 
in Subsection 3.2.4 of Chapter 3, for simplicity we allow only conjunctions in conditions 
rather than general Boolean expressions and, in addition, we only formalise updates on 
single incomplete relations rather than on incomplete databases, which may contain several 
incomplete relations. 
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Table 5.61 The incomplete relation ofT able 5.8 after some modifications 

SNAME COURSE DEPT 
Iris Databases Computing 

Reuven Quantum Physics 
Hillary Quantum Physics 
Rachel Quantum Physics 

Eli Databases Computing 

The following definition differs from the corresponding one given in Subsection 3.2.4 of 
Chapter 3 only in the replacement of"=" by "~". Let us briefly motivate this replacement by 
a simple example. Suppose the user would like to modify the incomplete tuple <unk, unk, 
Philosophy> over STUDENT to be the complete tuple < Hillary, Logic, Philosophy>. In this 
case, due to the three-valued equality for nulls the user cannot uniquely select the desired 
incomplete tuple for modification using true logical implication (assuming the relation in 
question has more than one student recorded as studying in the Philosophy department). 
Thus we could either allow maybe logical implication, which would select incomplete tuples, 
whose truth-value evaluates to maybe, or we could opt for the simpler solution which is to use 
information-wise equivalence instead of equality in the condition which realises the selection. 
We claim that using information-wise equivalence is better in this case, since the user being 
aware of the relation's incompleteness is specifically interested in the incomplete tuple < unk, 
unk, Philosophy> rather than tuples such as < Hillary, Many-valued-logic, Philosophy> , 
which are maybe equal to <unk, unk, Philosophy> in three-valued logic. 

Definition 5.64 (Extended condition) A simple extended condition over R is either an 
expression of form A ~ a or an expression of the form --.(A ~ a}, where A E schema(R} 
and a E EDOM(A}. An extended condition is a conjunction CI 1\ C2 1\ ... 1\ Cn of simple 
extended conditions Ci , i E {I, 2, . . . , n} . A positive extended condition over R is an extended 
condition of the form Al ~ al 1\ A2 ~ a2 1\ ... 1\ Am ~ am, where {AI , A2, .. . ,Am} S; 
schema(R}. A complete extended condition over R is a positive extended condition over R, 
with {AI , A2, . . . , Am} = schema(R}. 

Let r be an incomplete relation over R, let t be an incomplete tuple in r and in addition let 
C = CI 1\ C2 1\ . . . 1\ Cn be an extended condition over R. Then t satisfies C, written t F c, is 
defined recursively, as follows: 

1) t F A ~ a, ift[A) ~ a is true. 

2} t F --'(A ~ a}, if --.(t[A) ~ a} is true. 

3} t F C, if'v'i E {l, 2, . .. , n}, t F Ci · • 
The following definition differs from the corresponding one given in Subsection 3.2.4 of 

Chapter 3 only by the replacement of the standard relational algebra operators with their 
extended counterparts. 

Definition 5.65 (Extended update) Let r be an incomplete relation over a relation schema R, 
with schema(R} = {AI , A2 • . . . ,An}. An extended update over R is either an extended insertion 
over R, or an extended deletion over R or an extended modification over R. (In the following we 
omit to qualify conditions and updates as being "extended" whenever no ambiguity arises.) 
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An insertion over R is an expression of the form inserte(C), where C is a complete condition 
over R. The effect of an insertion inserte(C) over R on r is defined by 

[ inserte (C) ] (r) = r Ue {t I t 1= C}. 

A deletion over R is an expression of the form deletee(C), where C is a condition over R. 
The effect of a deletion deletee(C) over R on r is defined by 

[deletee(C)](r) = r _e {t I t E rand t 1= C}. 

LetX= {A" A2, ... ,Am} and C =A, ~ ai/\A2 ~ a2/\ . . . /\Am ~ am bea positive condition 
over R. Then the modification of an incomplete tuple t over R with respect to C, denoted by 
[modifl(C)](t), is defined by 

[modifye (C)] (t) = u, where u is an incomplete tuple over R such that VAi E X, u[A;] ~ ai 

and VAi E schema(R) - X, u[A;] ~ t[A;]. 

A modification over R is an expression of the form modifl(C,; C2), where C, is a condition 
over Rand C2 is a positive condition over R. The effect of a modification modifl (C,; C2) over 
R on r is defined by 

[modifl(c,; C2)](r) = (r_e{t I t E randt 1= Cd) ue ([modifye(C2)](t) I t E randt 1= Cd . 

• 
We note that the notion of a transaction defined in Subsection 3.2.4 of Chapter 3 can be 

extended in a straightforward way to be a finite sequence of extended updates. For brevity we 
do not discuss transactions in the context of incomplete information. We now reformulate 
the example updates given above in terms of the operators we have just defined, where r is the 
incomplete relation over STUDENT, shown in Table 5.8. 

With respect to insertion, let C, = SNAME ~ David /\ COURSE ~ Logic /\ DEPT 
~ Philosophy, let C2 = SNAME ~ Iris /\ COURSE ~ unk /\ DEPT ~ unk, and let 
C3 = SNAME ~ Eli /\ COURSE ~ unk /\ DEPT ~ Economics, be three complete 
conditions over STUDENT. The reader can verify that the effect of the extended transaction, 
[inserte(Cd, inserte(C2), inserte(C3)], on r is the incomplete relation shown in Table 5.59. 

With respect to deletion, let C, = COURSE ~ Databases /\ DEPT ~ Computing, and let 
C2 = SNAME ~ Reuven. The reader can verify that the effect of the extended transaction, 
[deletee(C,), deletee(C2)], on r is the incomplete relation shown in Table 5.60. 

With respect to modification, let C, = --.(DEPT ~ Computing), and let C2 = COURSE ~ 
Quantum /\ DEPT ~ Physics. The reader can verify that the effect of the extended transaction, 
[modifye(C,; C2)], on r is the incomplete relation shown in Table 5.61. 

We leave the formal proof of the following theorem to the reader. 

Theorem 5.29 The extended update operators are all faithful and truth-preserving. 0 

We complete this section by briefly making a comment on the expressiveness of our update 
operators. The main problem with incomplete relations is theirinabilityto describe disjunctive 
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information. Or-sets improve upon this situation, since they allow us to express disjunctions 
of the form < Hillary, {Science, Logic}, Philosophy> meaning that Hillary is taking either 
Science or Logic in the Philosophy department. Thus by allowing or-sets we could introduce 
into conditions disjunctions of the form, 

(COURSE = Science V COURSE = Logic), 

and maintain meaningful update operations for these conditions. Nonetheless, even when 
taking the or-sets approach we do not get the full expressive power of disjunctions as the 
following example shows. Suppose that we have a disjunction of the form, < Hillary, Logic, 
Philosophy> v < Hillary, Set-theory, Maths> , meaning that either Hillary is taking Logic in the 
Philosophy department or she is taking Set-theory in the Maths department. As the reader can 
verify such disjunctive tuples cannot be represented by or-sets. Therefore, allowing disjunctive 
tuples in relations would be a natural extension of the or-sets approach. For example, the above 
disjunctive tuple could be represented as the set, {< Hillary, Logic, Philosophy>, < Hillary, 
Set-theory, Maths> }. 

Therefore, if we extend the or-sets approach to allow disjunctive tuples we could introduce 
into conditions disjunctions of the form, 

((COURSE = Logic /\ DEPT = Philosophy) v 
(COURSE = Set-theory /\ DEPT = Maths)), 

thereby allowing conditions to be general Boolean expressions and still maintaining 
meaningful update operations for these conditions. 

5.11 Discussion 

Incomplete information is one of the most important extensions to the basic relational 
model due to the growing demand for the correct handling of such information in real-world 
applications. Most current database systems do not deal with incomplete information in a 
consistent manner with regard to query processing, integrity constraint maintenance, update 
transactions and other DBMS facilities. In this chapter we have outlined a consistent theory 
dealing with either incomplete relations, or or-relations or fuzzy relations. If we include a 
null value such as unk in the database domains then we can model incomplete relations; on 
the other hand, if we allow values of tuples to be or-sets, i.e. finite disjunctions of domain 
values, then we can model or-relations. Finally, if we allow attributes and/or tuples to be 
fuzzy then we can model fuzzy relations. The first of these - incomplete relations - is the 
easiest route for a database system to manage incompleteness. Although or-relations are 
more expressive than incomplete relations this comes at a price, since we are faced with the 
intractability of both query processing and solving the consistency checking problem. Thus 
if we require general efficiency, only a judicious choice of subclasses of or-relations having 
polynomial-time querying and consistency checking can be catered for by the database system 
[IVV95, VN95J. The other option is for the database system to cater for fuzzy relations. In this 
case we gain expressiveness over incomplete relations, and efficiency of query processing and 
consistency maintenance because the fuzzy relations approach does not rely upon the possible 
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worlds semantics; but there is the added complexity in the representation and manipulation 
of fuzzy sets to take into account. The trade-off between higher expressiveness and greater 
efficiency is a problem that all database system implementers face! 

A further extension of the three-valued logic approach to modelling incomplete relations 
is to use a four-valued logic by adding both the null values unk and dne to the database 
domains [Cod90). The null value unk represents missing but applicable information, and 
correspondingly the null value dne represents missing but inapplicable information. The 
obvious advantage is that we enhance the expressiveness of our modelling of incomplete 
information but it may be even more onerous on users to understand the four-valued truth 
tables than to understand the three-valued ones. (See [LL86) for a comprehensive argument 
in favour of supporting the dne null value.) 

In this context Belnap's work [Bel77a, Bel77b) is interesting; therein a four-valued logic 
is proposed with the truth-values: true, false, none (neither true nor false) and both (both 
true and false). Belnap considers the tuples (or facts) stored in a database as information 
that the computer has been told, and thus when a fact is inserted into the database its logical 
interpretation is that the computer has been told that this fact is true. The computer can also 
be told that a fact is false, none or both. Belnap considers truth tables for his four-valued logic, 
which in fact differ from Codd's truth tables. The truth tables for a four-valued logic depend 
on their semantics and there is no universal agreement for their specification [Res69, BB92). 
Belnap also considers entailment between logical sentences, where a logical sentence S, entails 
a logical sentence S2 if the truth-value of S, with respect to the database is less than or equal 
to the truth-value of S2 with respect to the same database (cf. Definitions 5.57 and 5.58). 

If we relax our assumption that only consistent relations are stored in the database, then a 
four-valued logic can be useful in dealing with inconsistent relations. Logics which deal with 
inconsistent information are called paraconsistent; Belnap's four-valued logic, mentioned 
above, is an example of a paraconsistent logic where the truth-value "both" represents 
inconsistent information. A paraconsistent model for relational databases is presented in 
[BS95). In a paraconsistent relation rover R there are two kinds of tuples: those believed to 
be true, denoted by r+, and those believed to be false, denoted by r- , such that r = r+ U r-. 
If r+ n r- = 0 then r is said to be consistent otherwise it is inconsistent. If r contains the set 
of all possible tuples over R (i.e. the Cartesian product of all the attribute domains, assuming 
attribute domains are finite) then r is said to be complete otherwise r is incomplete. If r is both 
consistent and complete then it is said to be total. Note that under the CWA we can interpret 
relations as being total. A relational algebra for paraconsistent relations is defined in [BS95). 

Other data dependencies apart from FDs and INDs have been considered in the context of 
incomplete relations. In particular multivalued dependencies are considered in [Lie79, Lie82) 
and join dependencies were considered in [LL92). The more general classes of tuple generating 
and equality generating data dependencies are considered in [Gra91). 

We conclude with a brief discussion of probabilistic relational databases. A probabilistic 
relation can be defined in the same way as an or-relation (see Section 5.6) with the additional 
requirement that each value in a nonempty or-set be attached a weight; we call such an or-set 
a probabilistic or-set. Thus each value in an or-set is a pair v/w, where v is a domain element 
and w is a natural number. Given a probabilistic or-set s = {vt!w" V2/W2, ... , Vk/Wk}, with 
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k::: 1, the probability of Vj, 1 ::: j ::: k, denoted by PI Vj I s1, is given by 

W' 
Plvjls1= k' , 

Li=IWi 

i.e. the proportion of Wj with respect to the sum of the w;'s. Under this interpretation we 
can view an or-set as a set of equally probable values from a uniform distribution, i.e. such 
that their weights are equal. The interpretation of an empty or-set is that for any value, v, 
PI v I 01 = 1, i.e. with probability one v is inconsistent given the empty or-set. 

Thus a probabilistic relation is a finite set of tuples whose attribute values are probabilistic 
or-sets. As an example consider the probabilistic relation, say r, over R, with schema{R) = 
{SHARE, PRICE}, recording prices of shares obtained from different sources, which is shown 
in Table 5.62; in r we abbreviate a probabilistic or-set of the form {vii} simply by v, since 
in this case the probability that the true value is v is one. In this example, the probability of 
share Sl having price PI is 1/2, having price P2 is 1/3, and having price P3 is 1/6. In addition, 
the probability of share S2 having price PI is 3/4, and having price P4 is 1/4. Thus tuple-wise, 
the probabilities are conditional; for example, given the first tuple the probability of price PI 
is 1/2 and given the second tuple the probability of price PI is 3/4. Assuming that SHARE is a 
COMPLETE-attribute, i.e. its probabilistic or-sets are all singletons such that its single value 
is true with probability one, then SHARE is a key for R which is weakly (probabilistically) 
satisfied in r with probability one, i.e. this key is satisfied in all possible worlds. 

Table 5.62 A probabilistic relation 

SHARE PRICE 
SI {P1/3, P2/2, P311 } 
S2 {P1/3 , P4/1} 

The possible worlds semantics of or-sets carries over in a straightforward manner to 
probabilistic relations, assuming stochastic independence between attribute values and tuples 
in such a relation. As an example consider the probabilistic relation, say r', over RI, with 
schema{RI ) = {MANAGER, DEPARTMENT}, recording the possible managers of departments; 
r' is shown in Table 5.63. The probability that Jack is the manager of the Toy department is 
2/3 x 1/3 = 2/9, and the probability that Jack is the manager of the Carpet department is 
2/3 x 2/3 = 4/9. Similarly, the probability that Joe is the manager of the Toy department 
is 1/3 x 1/3 = 1/9, and the probability that Joe is the manager of the Carpet department 
is 1/3 x 2/3 = 2/9. Furthermore, the probability that Jill is the manageress of the Toy 
department is 2/ 9, and the probability that Jill is the manageress of the Carpet department 
is 1/9. Similarly, the probability that Jane is the manageress of the Toy department is 4/9, 
and the probability that Jane is the manageress of the Carpet department is 2/9. What is 
the probability of a possible world that Jack is the manager of the Toy department and Jill 
is the manageress of the Carpet department? The answer is: 2/9 x 1/9 = 2/81. What 
is the overall probability that Jack is the manager of the Toy department? The answer is: 
(2/9 x 2/9) + (2/9 x 1/9) + (2/9 x 4/9) + (2/9 x 2/9) = 2/9, which as expected agrees 
with the above probability. What is the probability that Joe be a manager of the Carpet 
department and either Jill or Jane be joint manageresses of the Carpet department. The 
answer is: (2/9 x 1/9) + (2/9 x 2/9) = 2/27. 
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Table 5.63 Another probabilistic relation 

MANAGER DEPARTMENT 
{Jack/2, Joe/l} {Toy/I, Carpet/2} 
{JilUI, Jane/2} {Toy/2, Carpet/l} 

A relational algebra for probabilistic relations can be defined in a manner similar to that 
of or-sets, with the provision that the probabilities of tuples in the resulting relations be 
computed according to the stochastic independence assumption. In addition, for selection 
from a probabilistic relation, r, a threshold value, say a E (0, 1), can be specified so that 
tuples appear in the result of a query only if their probability in r is greater than or equal to a. 
Furthermore, weak (probabilistic) satisfaction ofFDs in probabilistic relations can be defined 
as it was defined for or-relations. Weak probabilistic satisfaction can also be defined to a 
degree A E (0,1)' so that a set F ofFDs is probabilistically satisfied in a probabilistic relation, 
r, if there exists one possible world relative to r that satisfies F to a degree whose probability 
is greater than or equal to A. Unfortunately, in general, the computational problems relating 
to the or-sets approach carryover to the probabilistic approach; thus as for or-sets we may 
need to restrict ourselves to polynomial-time subclasses. 

Probabilistic methods can also be utilised for querying relations, which may be incomplete, 
by viewing a relation as a sample whose distribution may also be unknown [Fuh90). In this 
context, given a query, the query processor needs to estimate the probability that a tuple (or 
an object) is a correct and relevant answer to the query. These probabilities can be used to 
rank the answer tuples of a query and/or to eliminate tuples below a specified threshold. An 
early data model which considers a statistical framework for using prior knowledge to query 
incomplete relations was considered in [Won82). 

For a comprehensive survey on the management of probabilistic data see [BGP92) and for an 
investigation of probabilistic data dependencies see [CP87). Some fundamental connections 
between probabilistic and relational concepts are exhibited in [Hil9I). 

The fuzzy and probabilistic approaches to relational databases can be viewed as 
complementary. Suppose that we have a tuple in a relational database recording some 
information about a person named Mary. Then, stating that the probability that Mary is 
young is 0.5 can be interpreted as saying that Mary is either young or not but she is equally 
likely to be either. On the other hand, saying that Mary is fuzzily young, where young is a fuzzy 
set, is taken to mean that the range of possible age values for Mary is restricted and the grade 
of membership of20 (years) in this fuzzy set is much higher than the grade of membership of 
40 (years) in the same fuzzy set. Consider another example; saying that a cup of tea is hot, with 
probability 0.6, means that it is more likely to be hot than not, while saying that a cup of tea is 
fuzzily hot means that it is definitely "hot" and higher temperatures have higher membership 
grades in this fuzzy set. Probabilities can also be fuzzified by considering statements such 
as "it is very likely that Mary is young" and "it is unlikely that the cup of tea is hot". The 
probabilistic and fuzzy approaches can actually be reconciled if we interpret probabilities as 
measures of belief. 

For interesting discussions on probabilistic versus fuzzy reasoning see [Che86), advocating 
the probabilistic side of the fence, and [Zad86), advocating the fuzzy side of the fence. A recent 
survey on different representations and ways of reasoning with imperfect information can be 
found in [Par96). 
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5.12 Exercises 

Exercise 5.1 Discuss the pros and cons of having marked and unmarked nulls in incomplete 
relations, with reference to query processing. 

Exercise 5.2 Suppose that a bank has a relational database which has, amongst other 
relations, a master file relation containing all the customer accounts information, and a 
details file relation containing all the recent transactions of customers such as deposit and 
withdrawal information. A common activity of the bank's IT department is that of generating 
a master-detail report, which collates for each master file tuple all the transactions that this 
customer has carried out. Given that some of the customers may not have any transactions 
recorded in the details file, how can the outer join be useful in generating the report [BuI8?] 
(see Definition 5.21 in Section 5.4). 

Exercise 5.3 We say that an extended operator, ope, is a possibility preserving extension of a 
standard operator, op, iffor all incomplete relations r 

U{s Is E POSS(ope(r»} = U{oP(s) Is E POSS(r)}. 

Redefine all the extended operators of the extended algebra with the intention that they be 
possibility preserving. If this is not possible for an extended operator justify your claim. 

Exercise 5.4 Which of the following equivalences, which are true for complete relations, are 
also true for incomplete relations: 

1) a!p(r) ~ r _e a$(r). 

2) a$l VF2 (r) ~ a$l (r) Ue a$2 (r). 

3) a$1 1\P2 (r) ~ a$l (r) ne a$2 (r). 

Exercise 5.5 Prove the soundness and completeness of Armstrong's axiom system with 
respect to strong implication. 

Exercise 5.6 Let F be a set of FDs over a relation schema R, and let NF(R) be a subset 
of schema(R), constraining incomplete relations rover R not to have null values in the 
projection of r onto NF(R). We define the following additional inference rule for FDs holding 
in incomplete relations: 

NFD3 Null-transitivity: if F I- X -+ Y, F I- Y -+ Z and Y - X ~ NF(R), then F I- X -+ Z. 

Show that Lien's and Atzeni's axiom system together with NFD3 is sound and complete for 
FDs with respect to weak implication in the presence of a null-free constraint NF(R) (AM841 . 

Exercise 5.? Prove that a relation rover R satisfies a superkey family K if and only if, where 
X = UiEI Kj, with Ki E K, for all relations s E POSS(r), the cardinality of the projection of s 
onto X is equal to the cardinality of r, i.e. IJrx(s)I=lrl. 
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Exercise 5.8 Prove that the problem of deciding whether a relation rover R satisfies a 
superkey family of cardinality less than or equal to some natural number k is NP-complete 
[Tha89al. 

Exercise 5.9 Let R be a relation schema such that schema(R) = XYZ, where X, Y and Z are 
pairwise disjoint sets of attributes in schema(R) and let F be a set of FDs over R. Furthermore, 
let r be an incomplete relation over R, rl = lTxy(r) and r2 = lTyz(r). 

We say that r is connected, if r is reduced and for every tuple t E r, t is the outer join of 
t[XY] and t[YZ]. Prove that the following two statements are equivalent [JS90]: 

1) For any connected relation rover R that weakly satisfies F, r = rl txlr2. 

2) Either the FD Y -+ X or the FD Y -+ Z, or both, are in pLien+. 

Exercise 5.10 Consider incomplete relations which, apart from nonnull values, have 
occurrences, only of the null value dne. Suppose we have a relation schema PERSON, 
having three attributes, NAME, ADDRESS and SPOUSE~AME. Now, since a person may 
not have a spouse, relations over PERSON may have dne in their SPOUSE column. Argue 
whether it is a good design principle to replace the relation schema PERSON by two relation 
schemas, one having attributes NAME and ADDRESS and the other having attributes NAME 
and SPOUSE~AME [LL86]. 

Exercise 5.11 Prove that weak satisfaction of FDs in or-relations is not additive. 

Exercise 5.12 Consider an or-relation r = {<a, {bl , b2} >} over R, with schema(R) = {A, 
B}, and a relation s = {<bl , C>, <b2 , c>} over S, with schema(S) = {B, C}. If we naturally 
join rand s, we would expect either <a, bl , c> or <a, b2, c> to be in the result, but not 
both. Explain why neither of the above tuples is in the answer of the or-query, r !XI s. How 
can this problem be alleviated by allowing or-tuples in or-relations, i.e. tuples of the form 
<a, {<bl , C>, <b2 , c>}> representing a disjunction of the subtuples <bl , c> and <b2 , c> 
[Imi89]. 

Exercise 5.13 Prove that if a set F of FDs over a relation schema R satisfies the intersection 
property, then R is in 2NF with respect to F if and only if it is in 3NF with respect to F [LL99a]. 

Exercise 5.14 Recall that a relation schema R is in UKNF with respect to a set F of FDs over 
R, ifits set of keys is a singleton (see Definition 4.14 from Subsection 4.4.3 in Chapter 4). Prove 
that if R is in UKNF with respect to F and F is a monodependent set of FDs, then R is in 2NF 
with respect to F if and only if R is in 3NF with respect to F if and only if R is in BCNF with 
respect to F [LL99al. 

Exercise 5.15 Prove that if all of the keys for a relation schema R with respect to a set F of 
FDs over R are simple, i.e. they are singletons, and F is a monodependent set ofFDs, then R is 
in 2NF with respect to F if and only if R is in 3NF with respect to F if and only if R is in BCNF 
with respect to F [LL99al. 

Exercise 5.16 Prove that if a set F ofFDs over a relation schema R satisfies the split-freeness 
property, then all the keys for R with respect to F have the same cardinality [LL99al. 
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Exercise 5.17 Explain the difference between the possibility measure of a value in a fuzzy set 
and the probability of a value in a set with respect to some distribution function. 

Exercise 5.18 Define and give an example of the notion of a key being fuzzily satisfied to 
degree>.. [CKV96). 

Exercise 5.19 Use your definition from the Exercise 5.18 to define and justify a variant of 
BCNF, called )"-BCNF, for fuzzy relational databases [CKV96). 

Exercise 5.20 Suggest, with a motivating example, how fuzzy sets may be used to enforce 
security levels to classified information in a relational database [She93). 

Exercise 5.21 Explain the difference between vagueness as represented by fuzzy sets and 
imprecision as represented by rough sets. 

Exercise 5.22 Let X -+ Y be an FD over a relation schema(R) and A E X. The attribute A is 
said to be superfluous with respect to X -+ Y and a relation rover R, if POS(X, Y) = POS(X -
{A}, Y). The core of X is the set of attributes given by 

CORE(X, Y) = (A E X I POS(X, Y) =1= POS(X - (A), Y»), 

i.e. CORE(X) is the set of attributes the are not superfluous. 

The set of attributes W ~ X is independent with respect to Y, if for every proper subset Z of 
W, POS(Z, Y) =1= POS(X, Y). The set of attributes W ~ X is a reduct of X, if it is independent 
with respect to Y and POS(W, Y) = POS(X, Y). 

Prove that CORE(X) is the intersection of all the reducts of X [Zia91). 



6. Computable Database Queries and the 
Expressiveness of the Relational Algebra 

One of the fundamental operations a database system needs to carry out is that of processing 
queries. The relational algebra was defined in Section 3.2 of Chapter 3 as a yardstick for the 
expressiveness of a query language for relational databases. The relational algebra on its own is 
not intended to be used as a general purpose database programming language for developing 
applications and as such does not provide the application programmer with iteration and 
recursion facilities. Thus in the context of database application programming the question 
that arises is: what are the possible queries that such a database language can and should be able 
to compute? In this chapter we define and investigate a general notion of a computable query 
in an attempt to answer the question we have just posed. There are essentially two parts to 
our investigation. The first part involves a categorisation of several subclasses of computable 
queries and the second part involves the presentation of a database programming language that 
is complete with respect to computable queries and an investigation of the expressive power of 
the relational algebra and how it can be made more expressive by adding to it iteration and/or 
recursion facilities. Since the early 1980's it was realised that the relational algebra is not 
expressive enough to carry out general database computations. The research into computable 
queries has been instrumental in motivating the necessity to develop more expressive query 
languages for relational databases and laying down the fundamental principles which provide 
the foundations for such development. 

6.1 What is a Computable Database Query? 

As we have shown in Subsection 3.2.1 of Chapter 3 there are many useful queries that the 
relational algebra cannot express such as computing the transitive closure of a relation and 
counting the number of tuples in a relation. In fact, from a computational complexity point of 
view the relational algebra is equivalent to the set of problems checkable in constant time on 
a concurrent parallel random access machine [Imm89]. This computational complexity class 
is very weak and is properly included in the deterministic logspace computational complexity 
class [Imm81, Var82a, Imm87J. Thus it is natural to investigate extensions of the relational 
algebra in order to enhance its computational expressiveness. In particular, our aim is to 
formalise the notion of a computable query. 

There are two fundamental differences between computable queries and Turing
computable mappings (also known as partially recursive functions). The first difference is 
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that Turing-computable mappings are mappings from strings to strings (or alternatively, from 
natural numbers to natural numbers) whilst computable queries are mappings from finite sets 
of objects to finite sets of objects (d. [Gan80]). The second difference is that the objects of 
computable queries are not strings or numbers but abstract objects (d. [Fri71]), in our case 
records (d. [CM91]), which are defined as total mappings from a finite set of attributes to a 
set of domain values. 

We define the semantics of a computable query as a Turing-computable mapping together 
with an encoding from finite sets of records (or simply sets) to strings. Consequently, we 
can evaluate a computable query by encoding the input set into a string, then use this string 
as an input to a given Turing-computable mapping, and finally decode the resulting output 
string to obtain the output set, which yields the result of the computable query. This analysis 
provides clarification of the notion of a computable query by dealing with the problem of 
how a database language can be implemented on a standard Turing machine that does not 
cater directly for mappings from sets to sets. Thus, intuitively, a database query language 
is computationally query complete (or simply query complete) if it can express the set of all 
computable queries. 

Once the formal definition of a computable query is established in Section 6.2 we investigate 
several important subclasses of computable queries in the following section, i.e. Section 6.3. 
Thereafter in Section 6.4 we further our understanding of computable queries by looking 
into the Turing-computable mappings that realise a given computable query. In Section 6.5 
we define the notion of a database language being query complete, and present the database 
query language, QL, from [CH80j. In Section 6.6 we present a fundamental characterisation 
of the expressiveness of the relational algebra. Since the ability to express all the computable 
queries may be more than is needed from a database query language, in Section 6.7 we describe 
how the relational algebra can be made more expressive without making it query complete 
by adding to it a looping mechanism. The motivation for such an extension of the relational 
algebra is that it may be desirable to enhance the expressiveness of the relational algebra, say to 
compute queries such as the transitive closure of a relation (see Subsection 3.2.1 in Chapter 3), 
without making it query complete, since database users rarely require query complete database 
languages. 

6.2 Formalising Computable Database Queries 

For the purpose of this chapter we will consider a slightly different model of a relational 
database. Instead of viewing a database as a set of relations with each relation being a set of 
tuples, we will view a database as being a set of records [CM91j. 

We first recall from Definition 3.1 in Section 3.1 thatU is the countably infinite universe of 
attributes and that V is the countably infinite underlying database domain. 

Defmition 6.1 (A record and a database) Let X be a finite subset of the set of attributes U. 
An X-record (or simply a record whenever X is understood from context) is a total mapping, 
t, from X into V such that 

VA E X, teA) E DOM(A). 
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In the case when X = 0, we take t to be the empty mapping corresponding to the empty 
record, which is denoted by <>. We denote an X-record, t, where X = {AI, A2,"" Am} and 
Vi E {I, 2, ... , m}, t(i) = Vi, with Vi E DOM(Ai), by 

In the following we will abbreviate (Ai: Vi) by Ai : Vi. 

Let RECS denote the countably infinite set of all finite sets of records, where a set of records 
may contain X-records and Y -records, where X # Y. Then a database of records (or simply a 
database) is a member of RECS. • 

The reader can verify that every relational database can be translated into a database of 
records and vice versa; we can assume without loss of generality that whenever Ri and Rj are 
two distinct relation schemas then schema(Ri} # schema(Rj). The notational advantage of 
databases of records is that the schema of the database is encoded in the database itself and, 
in addition, the database can be viewed as a single relation containing variable length records 
[LL95aj. 

Example 6.1 In Table 6.1 we show a database of records, say EMP. The translation of EMP 
into a relational database d comprising three relations r" r2 and r3 is shown in Tables 6.2, 6.3 
and 6.4. The semantics of EMP are: an employee has a NAME, earns a SALary, works in one 
DEParTment and may have at most one SPouSe. In addition, a DEPT has one ManaGeR and 
a MGR has one SECretary. • 

Table 6.1 The database of records EMP 

{<DEPT: Computing, 
<DEPT: Computing, 
<DEPT: Computing, 
<DEPT: Maths, 
<DEPT: Maths, 
<DEPT: Computing, 
<DEPT: Philosophy, 

DEPT 

NAME: Iris, SAL: 20>, 
NAME: Reuven, SAL: 25, 
NAME: Brian, SAL: 30, 
NAME: Naomi, SAL: 22, 
MGR : Naomi, SEC: Sophia>, 
MGR: Brian, SEC: Rachel>, 
MGR : Dan, SEC: Naomi>} 

Table 6.3 The relation '2 

NAME SAL SPS 
Computing Reuven 25 Hanna 
Computing Brian 30 Annette 
Maths Naomi 22 Sophia 

SPS : Hanna>, 
SPS: Annette>, 
SPS : Sophia>, 
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Table 6.4 The relation 73 

DEPT MGR SEC 
Maths Naomi Sophia 
Computing Brian Rachel 
Philosophy Dan Naomi 

We let CHAR be a finite and nonempty set of characters (the alphabet) and STR be the 
countably infinite set of strings over CHAR. Furthermore, we let TC denote the set of all 
Turing-computable mappings (also known as partially recursive functions) from STR to STR; 
see Subsection 1.9.4 of Chapter I for the necessary background material from the theory 
of computing. (Recall that we denote the composition of two mappings g and f by the 
juxtaposition fg off and g.) 

6.2.1 Encodings and Oecodings 

Herein we investigate in depth the semantics of encodings, an area which has been hitherto 
neglected in the database literature, and then formally define a computable query by making 
use of encodings. Informally, an encoding of a set of records consists of two components: an 
ordering function, which orders the records in the set as well as the values of each record in 
the set, and an isomorphism, which maps the values in the records of the set to strings. A 
decoding, which is the inverse of an encoding, also has two components: the inverse of the 
said isomorphism and a mapping which forgets the order imposed by the aforesaid ordering 
function used in the encoding. Since, in general, there may not be an algorithm to convert any 
two encodings into each other, we restrict the set of en co dings to a set of mutually convertible 
encodings, which is a set of encodings that are algorithmically convertible to a given standard 
encoding [G}79] . It follows that our (restricted set of) encodings are "reasonable" in the 
sense of [G}79]. An important class of encodings, called free encodings, whose isomorphism 
maps record values to a corresponding natural string representation, is also defined. In a free 
encoding the isomorphism has the same semantics as the identity mapping on record values. 

Definition 6.2 (Encoding) An encoding is a mapping from RECS which maps each database 
of records S E RECS to an (ordered) list of (ordered) lists of ordered pairs. 

More specifically, an encoding Q is a mapping from RECS to a restricted subset of STR, 
which is the composition e¢ of an ordering function, ¢, together with a namingfunction, e. 

Given an input S the ordering function, ¢, converts each record in S into a list of ordered 
pairs and then orders the resulting set of lists of pairs into a further list as follows: 

1) ift = <AI: vl,A2: V2,·· .,Am: vm>, with t E S, then¢«AI : vl,A2 : V2, ... ,Am: 
vm» = [(B I, WI), (B2, W2), ... , (Bm, wm)], such thatAj = Bj and Vj = Wj if and only if 
(Aj: Vj) is mapped onto thejth ordered pair in ¢(t), where i,j E {I, 2, ... , m}; and 

2) ifS= (tl, t2 ,"" tnJ ::!len¢(S) = [UI, u2, . .. , un], with¢(tj) = uj,ismappedasdescribed 
in (1), if and only if tj is mapped onto the jth record in ¢(S), where i,j E {I, 2, . . . , n}. 

The naming function, e, is a one-to-one mapping that converts the attributes and values of 
records in S into strings in STR which do not contain any delimiters in the fixed set, {[,],(,),,} . 
The mapping e is extended to ¢(S) as follows: 

e([(AI , VI) , (A2, V2)," " (Am, vm))) = [(e(Ad , e(vd) , (e(A2) , e(V2», ... , (e(Am), e(vm))) . 
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We denote the set of encodings of databases in RECS by ENC and denote the range of ENC 
by LISTS; we call the elements of LISTS databases of lists. • 

DefInition 6.3 (Decoding) A decoding is a mapping from LISTS to RECS which maps a 
database of lists in LISTS onto a database of records in RECS. 

More specifically, a decoding, Q-I, is a mapping from LISTS to RECS, which is the 
composition ye- I of the inverse e- I of a naming function e together with the forgetful 
function, y. 

The forgetful function y maps a database oflists into a set of records simply by ignoring or 
forgetting the ordering imposed by the list structure representing the records in the database. 
Furthermore, the inverse mapping e- I converts all the strings in a database of lists to their 
original attributes and values, thus yielding an ordered database of records. 

We denote the set of decodings of databases of lists in LISTS by DEC. Given an encoding 
Q = e¢ E ENC, Q-I = ye- I E DEC is called its decoding. • 

We now define a special encoding, called a standard encoding, which allows us to formalise 
the notion of what we call a reasonable encoding. 

Defmition 6.4 (A standard encoding) Assume that X is an ordering function corresponding 
to some fixed lexicographical ordering of the set U U '0 of attributes and domain values. 
Furthermore, assume that L is a naming function that maps the attributes and values in U U '0 
into some fixed values, which are considered to be their natural representation, that is, VA E 

U, L(A) = "A" and "Iv E '0, L(V) = "v". The encoding LX is called a standard encoding. • 

We need to restrict the above definition of encodings so that we consider only encodings 
which can be algorithmically converted to a standard encoding. 

DefInition 6.5 (Mutually convertible encodiogs) An encoding Q E ENC is said to be 
mutually convertible to the encoding LX if both the compositions Q(LX)-I (observe that 
(LX)-I = YL- I ) and (LX)Q-I are Turing-computable mappings. • 

From now on we will assume that all the encodings in ENC are mutually convertible to LX. 
We leave the proof of the following proposition to the reader. 

Proposition 6.1 All encodings QI, Q2 E ENC are mutually convertible. o 

Thus all encodings are equivalent in the sense that they can all be algorithmically converted 
into each other. It is also useful to insist that any encoding of a database of records can be 
converted into another one in polynomial time in the size ofthe input database of records, but 
such a restriction is unnecessary in our context. In practice, it is also important that encodings 
be precise in the sense that naming functions, e, do not pad the input database of records S 
with extraneous characters. 

A free encoding is one which maps attributes and values to their natural representation. 
Free encodings are useful, since users will easily be able to interpret their output. 

Defmition 6.6 (Free encoding) An encoding Q = e¢ is said to be free if e = L. • 
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Example 6.2 In Table 6.5 we show a free encoding of the database of records, EMP, shown 
in Table 6.1 and in Table 6.6 we show an encoding of EMP which is not free. • 

Table 6.S A free encoding of EMP 

[[(DEPT, Computing), (NAME, Iris), (SAL,20»), 
[(DEPT, Computing), (NAME, Reuven), (SAL,25), (SPS, Hanna»), 
[(DEPT, Computing), (NAME, Brian), (SAL,30), (SPS, Annette»), 
[(DEPT, Maths), (NAME, Naomi), (SAL,22), (SPS, Sophia)], 
[(DEPT, Maths), (MGR, Naomi), (SEC, Sophia], 
[(DEPT, Computing), (MGR, Brian), (SEC, Rachel)], 
[(DEPT, Philosophy), (MGR,Dan), (SEC, Naomi»)) 

Table 6.6 An encoding of EMP which is not free 

[[(l, COMPUTING), (2, IRIS), (3,20) ], 
[(l, COMPUTING), (2, REUVEN), (3,25), (4, HANNA»), 
[(1, COMPUTING), (2, BRIAN), (3,30), (4, ANNETTE»), 
[(l, MATHS), (2,NAOMI), (3,22), (4, SOPHIA»), 
[(1, MATHS), (5,NAOMI), (6, SOPHIA)], 
[(l, COMPUTING), (5, BRIAN), (6, RACHEL»), 
[(1, PHILOSOPHY), (5, DAN), (6, NAOMI»)) 

6.2.2 Definition of Computable Database Queries 

We begin this subsection with an example of some computable database queries. 

Example 6.3 The following queries over the database of records EMP of Example 6.1, shown 
in Table 6.1, are intuitively computable. 

1) Project EMP onto the set of attributes {DEPT, NAME}. 

2) Select from EMP the records whose DEPT -value is Computing. 

3) Return the nth record in EMP (with respect to an encoding of EMP) if IEMPI :=:: n, 
otherwise return { < > }. 

4) Select from EMP the records, t, where t has n attributes. 

5) Return {<>} if IEMPI :=:: n, otherwise return 0. 

6) Select from EMP all records tj such that there exists another record tj in EMP such that 
tj =1= tj and both tj and tj contain a common attribute value pair, say (A : v) . • 

Informally, a computable database query l' is a mapping from RECS to RECS that can be 
computed via a Turing-computable mapping 8 from LISTS to LISTS by encoding the input 
database of records S to l' via an encoding Q and decoding the output database oflists from 8 
via the decoding Q-l. Figure 6.1 shows the commutative diagram describing the semantics of 
a computable database query, where CQ denotes the set of all computable database queries. 
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CQ 
RECS RECS 

ENC DEC 

LISTS __________ • LISTS 

TC 

Fig 6.1 Commutative diagram describing the semantics of CQ 

Defmition 6.7 (Computable database query) A mapping T from RECS to RECS is a 
computable database query (or simply a computable query or a query) if 

38 ETC, 3Q E ENC such that r = Q- 18Q. 

As an abbreviation to the above equation we say that r is realised via 8 and Q; at times we 
simply say that r is realised via 8 meaning that 3Q E ENC such that r is realised via 8 and Q . 

• 
Example 6.4 The reader can verify that all the queries given in Example 6.3 are in fact 
computable according to Definition 6.7. • 

The next proposition shows that if a computable query r is realised via 8 and Q then for any 
other encoding Qi E ENC we can effectively find a Turing-computable mapping 8i such that r 
is realised via 8i and Qi. 

Proposition 6.2 Let r E CQ. Then VQi E ENC, 38; ETC such that r is realised via 8i and Qi. 

Proof. Assume that r is realised via 8 and Q. Let 8i = QiQ- 18QQi l • By Proposition 6.1 and 
the fact that TC is closed under composition of mappings it follows that 8; ETC. Therefore, r 
is realised via 8; and Q; as required. 0 

Our definition of a computable query differs from the standard definition given in [CH80j 
and [A V90j, wherein a computable queryis defined directly as acomputable mapping from sets 
to sets without detailing the encoding and decoding process. Moreover, another nonstandard 
feature of a computable query is that, in addition to encoding attribute values of tuples, we also 
encode the attribute names of values. Research in the area of computable database queries 
can be found in [CH80, VS89, AV90, AV91a, AV91b, DM92, HS93, Saz93, Van93a, LL96aj. 
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6.3 Subclasses of Computable Database Queries 

Herein we define various subclasses of computable queries and investigate the relationships 
between these subclasses. 

6.3.1 Order-Independent Computable Queries 

Informally, a computable database query r that is realised via Q = 8¢ is order-independent 
if its computation does not depend on the ordering function ¢. That is, intuitively r is 
order-independent if the diagram shown in Figure 6.1 commutes for all encodings Qi = 8i¢i E 

ENC with 8 = 8i. 

Prior to defining order-independent computable queries we define order-independence as 
a property of the Turing-computable mapping 8 that realises r. 

Defmition 6.8 (Order-independent Turing-computable mapping) A Turing-computable 
mapping 8 E TC is order-independent if 

"IQi = 8¢i E ENC, "IQ = 8¢ E ENC, 8Qi = 8Q. 

Hereafter we let OITC denote the set of all order-independent Turing-computable mappings . 

• 
We observe that in the above definition Qjl = y8- 1 = Q-1 holds and thus it is true that 

-1 < - 1 < 
Qi oQi = Q OQ. 

Defmition 6.9 (Order-independent computable query) A computable query r E CQ is 
order-independent if 38 E OITC such that r is realised via 8. 

Hereafter we let OI denote the set of all order-independent computable queries. • 

We observe that in Example 6.3 only query (3) is not order-independent and thus OI is a 
proper subset of CQ. 

6.3.2 Isomorphism-Independent Computable Queries 

Informally, a computable database query r that is realised via Q = 8¢ is isomorphism
independent if its computation does not depend on the naming function 8. That is, intuitively 
r is isomorphism-independent if the diagram shown in Figure 6.1 commutes for all encodings 
Qi = 8i¢i E ENC with ¢ = ¢i. 

Prior to defining isomorphism-independent computable queries we define isomorphism
independence as a property of the Turing-computable mapping 8 that realises r. 

Definition 6.10 (Isomorphism-independent Turing-computable mapping) 
computable mapping 8 E TC is isomorphism-independent if 

"IQi = 8i¢ E ENC, "IQ = 8¢ E ENC, 8i- 188i = 8-188. 

A Turing-
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Hereafter we let IITC denote the set of all isomorphism-independent Turing-computable 
mappings. • 

We observe that in the above definition it is true that Qi l 8Qi = Q-18Q. 

Definition 6.11 (Isomorphism-independent computable query) A computable query T E 
CQ is isomorphism-independent if 38 E IITC such that T is realised via 8. 

Hereafter we let II denote the set of all isomorphism-independent computable queries. • 

We observe that in Example 6.3 only queries (1) and (2) are not isomorphism-independent 
and thus II is a proper subset of CQ. 

6.3.3 Encoding-Independent Computable Queries 

Informally, a computable database query T that is realised via Q is encoding-independent 
if its computation does not depend on any particular encoding Q. That is, intuitively T is 
encoding-independent if the diagram shown in Figure 6.1 commutes for all encodings Q E 
ENe. 

In essence encoding-independence with respect to computable queries means that, in 
practice, the same query executed on two distinct machines, whether they be different or 
not, will yield the same result irrespective of how the query is represented internally within 
each machine. 

Definition 6.12 (Encoding-independent computable query) A computable query T E CQ is 
encoding-independent if 

38 ETC such that 'v'Q E ENC, T = Q- 18Q. 

Hereafter we let EI denote the set of all encoding-independent computable queries. • 

We observe that in the above definition it is true that 'v'Qi, Qj E ENC, Qi l 8Qi = Qt8Qj. 

Therefore, EI is a subset of both or and II. In fact, EI is a proper subset of both or and II, since 
in Example 6.3 queries (1) and (2) are in or but not in EI and query (3) is in II but not in EI. 
We now show that EI is the intersection of or and II. 

Theorem 6.3 EI = or n II. 

Proof. EI ~ or n II, since EI C or and EI C II as noted above. 

It remains to show that or n II ~ EI. Let T E or n II be a computable query which is both 
order-independent and isomorphism-independent. Now,let8 E IITC be a Turing-computable 
mapping and Q E ENC be an encoding such that T is realised via 8 and Q; 8 and Q exist due to 
that fact that T E II. Let 8' be the mapping 8QQ-l. Now,8' ETC, since by Proposition 6.1 Q 

is mutually convertible to itself. Furthermore, 8' E OITC, since the mapping QQ-l effectively 
reorders the encoded input so that it be suitable for 8. Thus T is realised via 8'. 

In order to conclude the proofwe need to showthat'v'Qi, Qj E ENC,QiI8' Qi = Qt8' Qj. That 

is, we need to show that T is realised via 8' and any encoding Q in ENC. Let Q = e¢, Qi = ei¢i 
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and Qj = ej¢j; Qil8' Qi = yei-18e¢ye-lei¢i = yej- 18e¢ye-1ej¢i, since by the definition of 

lITC 8' E lITC due to the fact that 8 E IITC. Thus, yet8e¢ye-lej¢i = yet I'ie¢ye-lej¢j = 

Qj- 18' Qj, since 8' E OITC. The result that T E EI follows as required. 0 

An interesting corollary to the above proof is that any isomorphism-independent 
computable query T can be made to be encoding-independent by "hard-wiring" the ordering 
function into the Turing-computable mapping that realises T. 

A generic computable query is one which commutes with every one-to-one mapping from 
records to records, which is the composition of an encoding and a decoding. The next 
definition formalises this notion. 

Definition 6.13 (Generic computable query) 
where rJ = Qi1Q2 and QI, Q2 E ENC. 

A computable query T is generic if rJT = TrJ, 

• 
The notion of encoding-independence is closely related to the notion of genericity as the 

following theorem asserts. 

Theorem 6.4 A computable query, T, is encoding-independent if and only if T is order
independent and generic. 

Proof If Suppose that T is realised via 8 and Ql E ENC, where 8 E OITe. We need to show 
that T = Qi l 8Ql = Q;18Q2, where Q2 E ENC. 

Let rJ = Qi1Q2' Then rJ-ITrJ = T, since T is generic. Therefore r = Q;IQIQi18QIQiIQ2' 

Thus T = Q;18e2¢, since Q21 QIQil = Q21 and QIQil Q2 = e2¢ for some ordering function 
¢, where Q2 = e2¢2. The result that T = Q2 18Q2 follows, since 8 E OITe. 

Only if Suppose that T is realised by 8 and Q. Thus, by the definition of encoding
independence T = Q-18Q = rJ- 1Q-18QrJ. The result follows, since rJT = rJrJ- 1Q-18QrJ 

Q-18QrJ = HJ. 0 

We next summarise the benefits of encoding-independent queries . 

• The order of records in the database does not influence the result of the query . 

• The result of the query is independent of the representation of the attributes and values 
in the database. 

The concept of encoding-independence is related to the concept of data independence 
discussed in Section 1.6 of Chapter 1. If a database query is in EI, then the result of the query 
is unaffected by the physical representation of the database. 

We close this section by indicating how the concept of encoding-independence can be 
weakened to allow a finite set C of attributes and values to be mentioned explicitly in a query. 

Recall from Definition 6.4 that the naming function I maps attributes and values to their 
natural representation. An encoding Q = e¢ is said to be a C-encoding ifVc E C, e(c) = I(C), 
i.e. any constant in C can be identified by its natural representation. Intuitively, a computable 
query r is C-encoding-independent if the diagram shown in Figure 6.1 commutes for all 
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C-encodings. When C = 0 then the notion of C-encoding-independent reduces to the notion 
of encoding-independent. We denote the set of all C-encoding-independent computable 
queries by C-EI. 

The reader can verify that, with respect to Example 6.3, query (1) is (DEPT, 
NAME}-encoding-independent and query (2) is (DEPT, Computing}-encoding-independent. 
In practice we would require C to include at least the attribute names and domain values in 
the database over which we are querying; that is, with respect to the latter, C should include at 
least all the constants in the active domain of the database. We leave it to the reader to verify 
that all the results in Sections 6.2 and 6.3 could be recast in terms of C-encodings rather than 
general encodings. 

6.4 An Equivalence Relation on Computable Queries 

The aim of this section is to add to our understanding of computable queries by investigating 
an equivalence relation on the set CQ of computable queries; two such queries are related 
if they are realised via the same Turing-computable mapping, say 8. In particular, we are 
interested in the cardinality of the equivalence class of a computable query, realised via 8 and 
some encoding, with respect to the said equivalence relation; this equivalence class is denoted 
by /').{, . In the case when I/').{' 1 = 0, there is no computable query r such that r is realised via 8 
and some encoding. On the other hand, when I/').{' 1 = 1 and r is realised via 8 and all possible 
encodings in ENC, then r corresponds to an encoding-independent computable query. 

Defmition 6.14 (/').{,) Let 8 ETC. Then /').{, = {r 1 3Q E ENC such that r is realised via 8 and 
Q} . That is, /').{, is the set of all computable queries that are realised via 8 and some encoding . 

• 
The following theorem is proved using Rice's theorem (see Theorem 1.2 in Subsection 1.9.4 

of Chapter 1). 

Theorem 6.5 The two decision problems: is I/').{' 1 = O? and is I/').{' 1 = 1 ? are undecidable. 

Proof. On using Rice's theorem we need to show that the sets, CLo and CLI> of Turing
computable mappings, 8, such that I/').{, 1 = 0 and I/').{, 1 = I, respectively, are both nontrivial. 
That is, CLi =f: 0 and CLi =f: TC, for i = 0, 1. We prove the result by exhibiting 80, 8 1 ETC, 
such that 80 E CLo and 81 E CLI' 

Let 80 be a Turing-computable mapping that removes all the delimiters in the fixed set 
{[.],(,),,} from its input and then halts. It can easily be verified that 1 /').{'o 1 = 0, since V Q E ENC, 
Q-180Q is not in RECS. 

Let 81 be a Turing-computable mapping that returns [[]] (i.e. it returns the string 
representing the singleton containing the empty record) if its input is an encoding of a set 
containing an even number of records, and returns [] (i.e. it returns the string representing the 
empty set of records) otherwise. (We could have also chosen the Turing-computable mapping 
that realises query (4), (5) or (6) from Example 6.3 to be 8d It can easily be verified that I/').{'II 
=1. D 
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The following theorem shows that either I Ll81 = 0 or I Ll81 = 1 or I Ll81 = w recalling that 
w is the set of all natural numbers. Our interpretation of this interesting result is that it is 
not possible to obtain a finer partition of the class of computable queries with respect to 
the Turing-computable mappings that realise them, without putting restrictions on the set of 
encodings. 

Theorem 6.6 If I Ll81 > 1, then I Ll81 = w. 

Proof. SupposethatlLl81 = n, where n > l,withn E w. Then3el , '12 ,···, en EENCsuchthat 
Ti is realised via 8 and Qi and Vi, j E {I , 2, . .. , n}, Ti "# Tj . In order to obtain a contradiction 
to ILl81 = n, we use a diagonalisation argument to construct a computable query Tn+l E Ll8 
such that Vi E {I , 2, . .. , n}, Tn+l "# Ti . 

Byour assumption that ILl81 = n, 3SI , S2, ... , Sn-l E RECS such that Vi E {I , 2, ... , n-l} , 
Ti(Si) "# Ti+l (Si). Without loss of generality letSn E RECS be a database of records that satisfies 
el(SI) = '11 (Sn) and e2(SI) = e2(Sn). 

We construct an encoding en+l E ENC such that Tn+l is realised via 8 and en+l as follows. 
Assume without loss of generality that Vi E (I , 2, ... , n-l} ,en+l (Si) = ei(Si), anden+l (Sn) = 
e2(Sn). The result that Vi E {I, 2, ... , n}, Tn+! "# Ti then follows. 0 

6.S Computational Query Completeness 

We would like to utilise our notion of a computable database query to design expressive query 
languages. Relational completeness of a query language is only a minimal requirement for 
such a language, since there are many useful computable queries such as transitive closure 
and counting the number of tuples in a relation which are not expressible in the relational 
algebra. (See Definition 3.21 of relational completeness in Subsection 3.2.1 of Chapter 3.) We 
will further discuss the expressive power of the relational algebra in Section 6.6. 

The set of all computable queries, CQ, is too expressive as a measure of the expressiveness 
of a database query language (or simply a query language), since databases are unordered 
collections of objects. Thus we should require all expressible queries to be at least order
independent. The class of order-independent computable queries, 01, may also be considered 
to be overly expressive, since it requires fixing a naming function. On the other hand, the 
class of encoding-independent computable queries, EI, is not expressive enough, since in 
practice the user would like to be able to refer to attributes and values which are present in 
the database. Therefore, we use the notion of C-encoding-independent queries as a measure 
of the computational completeness of a query language. 

Definition 6.15 (Computational query completeness) A database query language is compu
tationally query complete (or simply query complete) if it expresses exactly the union of all 
the classes, C-EI, of all C-encoding-independent computable queries, for some finite set C of 
attribute names and domain values. 

When C is restricted to be a finite set of attribute names only (i.e. C does not include domain 
values) then we say that the query language is computationally attribute query complete (or 
simply attribute query complete). • 
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In the above definition if we require that C = 0, then a query language is query complete if 
it expresses exactly the class, EI, of all encoding-independent computable queries. 

In the following let us disregard the differences between relational databases and databases 
of records recalling that every relational database can be translated into a database of records 
and vice versa. When a query language is attribute query complete the user can explicitly 
refer to attribute names in queries. Therefore in this case, without any loss of generality, the 
naming function used to encode a database can always encode a finite set, {AI, A2, ... ,Am}, of 
attribute names as the finite set of natural numbers, {1, 2, ... , m}, and the ordering function 
used to encode a database can always order the pair (i, Vi) before the pair (j, Vi) if and only if 
i < j. (See Table 6.6 for such an encoding.) This technicality is useful, since it allows us to view 
X-records as tuples over a relation schema R, with schema(R) = X. (Recall from Definition 3.3 
in Section 3.1 of Chapter 3 that attribute names can be referred to in the fixed order induced 
by the mapping, att.) 

We now describe the query language QL [CH80], where dover R is taken to be the input 
database to a QL program (recall from Definition 3.9 in Section 3.1 of Chapter 3 that ADOM(d) 
is the active domain of d). 

Definition 6.16 (The syntax of QL) The syntax of QL is defined as follows: 

• (YI,Y2, ... j is a countable set of generic variables. 

• The set of terms in QL is defined inductively as follows: 

1) The equality relation E, a relation reli and a generic variable Yi, with i ::: 1, are 
terms. 

2) (el n e2), (--.e), (e t), (e t) and (e ~) are terms, where e, el and e2 are terms. 

• The set of programs in QL is defined inductively as follows: 

1) Yi ~ e is a program, where Yi is a generic variable and e is a term. 

2) (PI; P2) and while Yi = 0 do P, are programs, where Yi is a generic variable and 
P, PI and P2 are programs. • 

Prior to giving the formal semantics of QL programs we give informal descriptions of the 
operators of QL which appear in the definition of the set of terms: 

1) n is the intersection operator. 

2) --. is the complementation operator. 

3) t is the extension operator, which extends a relation with an additional column. 

4) t is the projection operator, which projects out the first column of a relation. 

5) ~ is the permutation operator, which exchanges the values in the last two columns of a 
relation. 
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Definition 6.17 (The semantics of QL) The semantics of terms are defined as follows: 

• E = {(v, v) I v E ADOM(d)} is the equality relation. 

• reli is the relation ri over a relation schema Ri, if the input database d contains a relation 
ri over Ri, otherwise reh is the empty set over the relation schema with the empty set of 
attributes. 

• The value of a generic variable Yi is a relation; Yi is initialised to be the empty set over 
the relation schema with the empty set of attributes. The relation schema of the value 
of Yi may change during the computation of a QL program. 

• Let the value of e be a relation rover R, with type(R) = m, the value of el be a relation 
rl over RI and the value of e2 be a relation r2 over R2. 

- If RI = R2, then the value of (el n e2) is rl n r2, otherwise it is the empty set over 
the relation schema with the empty set of attributes. 

- The value of (....,e) is 5 - r, where 5 is the Cartesian product of ADOM(d) with itself 
m times. 

- The value of(e t) is the relation (<VI , V2, ... , Vm , v> I <VI, V2 , . .. , Vm > E rand 
v E ADOM(d)}. 

- The value of (e ,!.) is the relation {<V2, V3, ... , Vm > I <VI, V2, ... , Vm > E r} if 
m::: I, otherwise the value of (e ,!.) is defined to be the empty relation. 

- Thevalueof(e~)istherelation{<vl, V2, ... , Vm , Vm- I> I <VI , V2 ,· ··, Vm-I, Vm> 

E r} if type(R) = m > I, otherwise the value of (e ~) is r. 

The semantics of QL programs are defined as follows: 

• The value of Yi *"" e is the result of assigning the value of e to Yi. 

• The value of (PI; P2) is the result of sequentially composing PI and P2; we omit 
parentheses whenever no ambiguity arises. 

• The value of while Yi = 0 do P is the result of iterating P while the value of Yi is equal to 
the empty set; if the while loop terminates, then the value of the program P is the value 
of Yi, otherwise it is undefined. • 

The proof of the next theorem can be found in [CH80 J. 

Theorem 6.7 The query language QL is attribute query complete. o 

Using the extension and projection operators we can simulate counting in QL as follows. 
The term, ((E ,!.) ,!.), whose value is equal to {< >} represents the natural number zero. Let 
<i> be the representation of the natural number i. Then adding one to <i> is given by <i> t. 
Similarly, subtracting one from <i> is given by <i> ,!.. 

We next give some examples of QL programs. 
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Example 6.5 Let el and ez be terms, where the value of el is a relation TI over RI and the 
value of ez is a relation TZ over Rz. If RI = Rz, then the union of el and ez, denoted by el U ez, 
is defined by 

Assume that PI and Pz are programs and that YI and yz are generic variables that do not 
appear in PI or in Pz. The following program gives the expected semantics to the statement, 
if Yi = 0 then PI else Pz: 

YI *- Yi; 
yz *- «(E ,j..) ,j..) ,j..); 
whileYI = 0 do (PI ;YI *- E; yz *- E); 
while yz = 0 do (Pz ; yz *- E). 

We observe that « (E ,j..) ,j..) ,j..) = 0. Using the above semantics of an if statement we can 
simulate iterating a program P while Yi ;f. 0 with the following QL program, where YI is a 
generic variable that does not appear in P: 

ifYi = 0 thenYI *- E else YI *- «(E ,j..) ,j..) n 
while YI = 0 do (P; if Yi = 0 thenYI *- E else YI *- «(E ,j..) ,j..) ,j..». • 

Another example of an abstract query language which was shown to be attribute query 
complete is the geneTic machine [A V91b]. The generic machine is based on extending the 
relational algebra with Turing-machine capability. An example of a query language which 
was shown to be query complete is detDL (deterministic transformation language) [AV90]. 
Finally, another example of a query language which was also shown to be query complete is 
an extension of Datalog presented in [AV91a], which allows the heads of rules to be negative 
literals. 

An important difference between the semantics of QL and detDL is in the way these query 
languages simulate counting. As we have seen above QL simulates counting by using the 
extension operator (t) in order to simulate addition and the projection operator (,j..) in order 
to simulate subtraction. On the other hand, detDL simulates counting by generating (or 
inventing) new values, not in the active domain of the input database, by using a construct 
called with new. The invented values are generated nondeterministic ally. Furthermore, the 
invented values are not allowed to appear in the result of a query ensuring that the result of 
the query is deterministic. 

A distinguished value, say Yo, is chosen to represent the natural number zero and another 
distinguished value, say V*' is chosen as a placeholder which allows detDL to determine how 
many natural numbers have already been generated. At any stage during the execution of 
a detDL program a finite sequence of values, Yo, VI, ... , Vn, have already been generated 
representing the natural numbers {O, 1, ... , n}. In order to indicate the linear ordering Vo < 
VI < ... < Vn, these values are stored in a binary relation, T (j), over a relation schema Rw, 
with schema(R,v) = {NI' Nz}. The relation T w is shown in Table 6.7. Whenever addition is 
performed on the value, vn,such that <Vn, V*> E T(j), then a new value, Vn+l> is generated, and 
Tw is replaced byT,v - {<vn, v*>} U {<vn, Vn+I>, <Vn+l, v*>}. 
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Table 6.7 The relation r w 

NI N2 

Vo VI 

VI V2 

.. . . . . 
Vn-l Vn 

Vn V* 

6.6 The Expressive Power of the Relational Algebra 

Let us assume that the relational algebra includes only the basic set of relational operators, that 
is, union, difference, projection, selection, natural join and renaming. In selection we allow 
only simple selection formulae of the form A = B, where A and B are attributes. The reader 
can verify that all queries of the relational algebra are C-encoding-independent computable 
queries for some finite set C of attributes. As we have already mentioned in Subsection 3.2.1 
of Chapter 3 the relational algebra cannot express the transitive closure operation, which is 
a C-encoding-independent computable query. Furthermore, the relational algebra cannot 
count the number of tuples in a relation or determine whether the number of tuples in a 
relation is even or odd; both these queries are encoding-independent computable queries. 
It therefore follows that the relational algebra is not an attribute complete query language. 
The fundamental reason for the limited expressiveness of the relational algebra is its lack of a 
looping mechanism (such as a while loop or a recursion facility) and its inability to simulate 
counting. Still, the relational algebra has become an important yardstick for measuring the 
expressiveness of a query language. Thus it is important to pinpoint the expressive power of the 
relational algebra, which is the objective of this section. In particular, we give a characterisation 
of the set of relations that can be computed as answers to a relational algebra query with respect 
to an input database. 

Let d be a database over the database schema R, let E be a relational algebra expression 
(or equivalently, a relational algebra query) over the database schema R and let E(d) be the 
answer to E with respect to d (see Definition 3.20 in Subsection 3.2.1 of Chapter 3). We now 
define the basic information of a database to be the set of all relations that can be obtained by 
a relational algebra query over that database. 

Definition 6.18 (The basic information of a database) The basic information of a database d 
over R, denoted by BI(d), is the set of all relations, r, for which there exists a relational algebra 
expression E such that E(d) = r. • 

Thus the basic information of d measures the expressive power of the relational algebra with 
respect to a database d. The operators of the relational algebra (as restricted at the beginning 
of this section) do not reference explicitly the values in the database, but rather only equality or 
inequality of values is expressed in relational algebra queries. This motivates us to investigate 
the connection between the basic information of a database and the mappings from values in 
the active domain of the database to themselves that leave the database unchanged. Such a 
mapping that leaves the database unchanged is called an automorphism of the database and 
the set of all automorphisms of a database is called the cogroup of the database. 
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Defmition 6.19 (An automorphism of a database) Let d = {r" rl, . .. , rn} be a database over 
R, r = {t" tl, ... , tk} be a relation over R E Rand t = <v" Vl , . . . , Vm> be a tuple in r. An 
automorphism of d is a one-to-one mapping, ifJ, from V onto V, where V ~ D is a set of domain 
values, extended to tuples, t, relations, r, and databases, d, as follows: 

• ifJ(t) = ifJ( <V" Vl, . .. , vm » = <ifJ(v,) , ifJ(Vl) , ... ,ifJ(vm»· 
• ifJ(r) = ifJ({t, , tz,·· · , tk)) = {ifJ(t,) , ifJ(tl) , · · · , ifJ(tk)}· 

• ifJ(d) = ifJ({r" rl , · · · , rn)) = {ifJ(rd, ifJ(rl), ... , rp(rn)}. • 
Definition 6.20 (The cogroup of a database) The cogroup of a database, d, denoted by CG(d), 
is the set of all automorphisms of d. • 

The next definition shows how the cogroup of a database can be represented by a relation. 

Definition 6.21 (The cogroup relation of a database) The cogroup of a database, d, can be 
expressed as a relation, r, over a relation schema R, called the cogroup relation of d as follows: 

• Ischema(R)I = IADOM(d)1 = I{v" vz, .. . , vq}l, and 

• < rp(v,) , ifJ(V2), . . . rp(Vq) > E r if and only if rp E CG(d). • 
From now on, for simplicity, we will not distinguish between the cogroup of a database, d, 

and its cogroup relation; we will denote both by CG(d). Observe that the cogroup relation of 
d is uniquely defined up to the linear order imposed on ADOM(d) and the attribute names of 
its database schema. 

Example 6.6 The cogroup relation, CG(d), of a database d = {r} , where the relation r is shown 
in Table 6.8, is shown in Table 6.9. The latter relation is obtained by applying Algorithm 6.1 
~~ . 

Table 6.8 The relation r 

EMP SEC MGR 
john jane john 
jeff john jenny 

john jill john 
Jenny John Jeff 

Table 6.9 The cogroup relation of {r} 

A B C D E 
John Jeff Jenny Jane Jill 
John Jenny Jeff Jane Jill 
John Jeff Jenny Jill Jane 
John Jenny Jeff Jill Jane 

We can now prove that the cogroup relation of d is included in the basic information of d. 
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Lemma 6.8 CG(d) E BI(d). 

Proof. We prove the result when d = {r} is a singleton; we leave it to the reader to generalise 
the result when d may contain more than one relation by constructing a database with a single 
relation resulting from taking the Cartesian product of all the relations in the database. 

Assume that r is a relation over R with Ischema(R)I= m, Irl= k and IADOM(r)l= q. 
The pseudo-code of an algorithm, designated CONSTRUCLCG(r), which returns the unique 
cogroup relation of d (up to a permutation of its attribute names) over a relation schema, 
whose cardinality is q, is presented in the following algorithm. The reader can verify that 
CONSTRUCT _CG(r) returns a relational algebra expression whose answer with respect to {r} 
is the cogroup relation CG({r)) of r. 

Algorithm 6.1 (CONSTRUCT _CG(r» 
1. begin 
2. rk := PAm ..... Bm ( . .. (PAI ..... BI (r» .. . ) x ... X PAm ..... Bkm ( .•. (PAI ..... Bkm-m+1 (r» . . . ); 
3. t := the tuple in rk that is the concatenation of all the tuples in r; 
4. Ecg := rk; 
5. foreachiE{I,2, . . . ,mk-l}do 
6. for each j E {i + 1, i + 2, .. . , mk} do 
7. if t[Bj] = t[Bil then 
8. Ecg := O"Bi=B/Ecg); 

9. else 
10. Ecg := O"Bi#/Ecg); 

11. end if 
12. end for 
13. end for 
14. X:= a set of q attributes such that 3t E Ecg with UBi EX t[B;] = ADOM(r); 
15. Ecq := nx(Ecg); 
16. return Ecg; 
17. end. 

Theorem 6.9 r E BI(d) if and only if ADOM(r) S; ADOM(d) and CG(d) S; CG({r}). 

Proof. We only sketch the proof. 

o 

If. Suppose that ADOM(r) S; ADOM(d) and CG(d) S; CG({r)) . We then need to show that 
r = E(d) for some relational algebra expression E. Let t be a tuple in r and let R be the relation 
schema of r. We know by Lemma 6.8 that CG(d) E BI(d). Furthermore, for all attributes A 
E schema(R), t[A] is a value in each tuple of CG(d). Thus t is a member of the answer to a 
relational algebra expression, say Et, with respect to CG(d). The expression Et is composed 
of a Cartesian product for each repeated value in t, appropriate renamings so that the schema 
of the output corresponds to R and a projection onto the set of attributes schema(R). All the 
tuples in Et(CG(d» are of the form ifJ(t), where ifJ E CG(d) S; CG( (r}) and thus all the tuples in 



6.7. Adding a Looping Mechanism to the Relational Algebra 377 

Er(CG(d» are members of r. Thus on letting E be the relational expression UrErEr, it follows 
that E(d) = r as required. 

Only if If r E BI(d), then by Definition 6.18 r = E(d) for some relational algebra expression 
E. The result that ADOM(r) S; ADOM(d) and CG(d) S; CG({r}) follows by induction on the 
number of relational algebra operators appearing in E. D 

The above theorem was first proved in [Ban78, Par78j; a full proof can also be found in 
[AD93j. An alternative representation of the cogroup relation as a nested relation can be 
found in [AGV89j. 

6.7 Adding a Looping Mechanism to the Relational Algebra 

The reason that the relational algebra is not expressive enough to express transitive closure 
queries is its lack of a looping mechanism. One possible extension suggested in [AU79j is to 
add a fixpoint operator to the relational algebra. The fixpoint operates on a relational algebra 
query, Q, with respect to a database d, by iterating Q with respect to d until no changes occur in 
the result of the query Q. More formally, we define the result of the fixpoint of Q with respect 
to d, denoted by FIX(Q(d», by using the auxiliary query Qi, where i 2: 0 is a natural number, 
as follows: 

1) Qo(d) = Q(d), 

2) Qi+l (d) = Qi(d) U Q( Qi(d»; and 

3) FIX(Q(d» = Qk(d), where k 2: 0 is the least natural number such that Qk(d) = Qk+l(d). 

A query of the form FIX( Q(d» is called a fixpoint query. We observe that fixpoint queries 
as we have defined them are inflationary, since the intermediate results Qi are increasing 
for i 2: O. We show that the cardinality of FIX(Q(d» is polynomial in the size of the input 
database, d. Let s be the size of d, i.e. the number of symbols needed to encode d, and let m 
be the number of attributes in the schema of the relation resulting from answering the query. 
Then I FIX( Q(d» I ::::: sm, which is polynomial in the size of the input database. 

Let ARC be a binary relation representing the arcs of a digraph. Then the following fixpoint 
query computes the transitive closure of the digraph: 

FIX(ARC U (Jl'{A,B) (PB--->-dARC) I><l PA--->-dARC)))). 

Instead of incorporating the fixpoint operator into the relational algebra, it has been 
suggested that we add an explicit looping mechanism to the algebra such as the while loop 
of the query language, QL. Such a while loop is unbounded, since it is not guaranteed to 
terminate, resulting in polynomial space computations in the size of the input database. In 
order to bound the number of iterations of a loop by a polynomial in the size of the input 
database, a bounded looping mechanism can be added to the relational algebra. Adding a 
bounded looping mechanism, such as the for loop introduced below, provides us with a query 
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language of intermediate expressive power between the relational algebra augmented with the 
fixpoint operator and QL. 

Defmition 6.22 (For loop) Let Yi be a generic variable and P be a QL program. Then the 
construct 

forYi do P, 

called afor loop, is also a QL program. 

The semantics of the for loop are defined as follows, where ri is the value of Yi : 

• The program P is executed n times, where n is the cardinality of ri upon entry to the for 
loop; when the for loop terminates the value of P is the value of Yi. • 

We leave it to the reader to verify that the for loop does not add any expressive power to QL, 
since it can be simulated in QL by a while loop that counts the number of times the for loop 
is executed and exits the while loop after a specified number of iterations. On the other hand, 
if we replace the while loop in QL by the for loop, then QL would not be an attribute query 
complete database query language, since intuitively QL's computations may be unbounded 
and non terminating, as opposed to the computations of the for loop restriction of QL which are 
always bounded and terminating. More precisely it can be shown that the for loop restriction 
of QL computes exactly the set of primitive recursive queries (see Subsection 1.9.4), which are 
a proper subset of the set of computable queries [ehaBl). 

For the purpose of extending the relational algebra with a for loop mechanism we will 
restrict QL as follows. 

Defmition 6.23 (ForQL) A variable is typed if the similarity type of its relation schema is 
fixed and cannot change during the computation of a program. If a typed variable is assigned 
a relation over a relation schema with a different similarity type then the empty set is assigned 
to this variable. 

ForQL is the query language which restricts QL by assuming that all variables are typed, 
that the terms of the language are relational algebra expressions (as defined at the beginning 
of Section 6.6) and that instead of the while loop we have the for loop for Yi do P, where Yi is a 
typed variable. • 

Bya similar argument to the fixpoint, it can now be shown that the time complexity ofForQL 
programs is bounded by a polynomial in the size of the input database. We note that if we lift 
the restriction that variables be typed, then we cannot, in general, bound the time complexity 
of such QL programs to a polynomial in the size of the input database, since a nested for loop 
which uses the same generic variable can lead to a computation which is exponential in the 
size of the input database. 

Assume that r is a relation over R, with schema(R) = {A,B} and that the input database to 
the next QL program is d = {r}, i.e. that the value of reI in the QL program is r. Also, assume 
that the schema of the equality relation E is R. The following ForQL program uses a for loop 
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in order to compute the transitive closure of r: 

Y ~ JrA(E) x JrB(E); 
YI ~ rei; 
forydo 

(Y2 ~ YI U (Jr{A.BI(PB ..... C(yI) [Xl PA ..... c(rel))); 
YI ~Y2 ; 

Y ~YI) . 
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The next ForQL program shows that by using a for loop it is possible to test whether the 
cardinality of a relation is even. In the ForQL program we assume that Jr A (E) represents logical 
truth and 0 represents logical falsity: 

Y ~ reI; 
YI ~ JrA(E) ; 
forydoYI ~ (~YI)' 

When the above program terminates,YI is non empty, i.e. it represents logical truth, if and 
only if Irl is even. In [CH82) it was shown that testing whether the cardinality of a relation is 
even cannot be expressed by the relational algebra augmented with the fixpoint operator. It 
follows that adding a bounded looping mechanism to the relational algebra results in a query 
language that is strictly more expressive than the language resulting from adding the fixpoint 
operator to the relational algebra. Still, some natural queries such as checking whether two 
relations rl and r2 have equal cardinality, i.e. checking whether I rll = I r21, cannot be expressed 
in ForQL, i.e. it cannot be expressed by the relational algebra augmented with a bounded 
looping mechanism [Cha88). 

In [AV91a] it was shown that Datalog, whose programs may be recursive and contain rules 
having negative literals in their body (see Subsection 3.2.3 of Chapter 3), is equivalent to 
the relational algebra augmented with a fixpoint operator, in the sense that they both express 
exactly the same set of computable queries. This set of computable queries is a proper subset of 
the set of all polynomial-time computable queries, since as noted above determining whether 
the cardinality of a relation is even is not amongst such queries. 

Definition 6.24 (Ordered relational database) A relational database dover R is an ordered 
relational database (or simply an ordered database) ifR contains a designated binary relation 
schema, SUCC, such that the relation r in dover SUCC defines a linear ordering on the set of 
active domain values, ADOM(d). • 

We observe that SUCC is isomorphic to a finite fragment of the successor relation on the 
natural numbers. We further note that an ordered database induces a lexicographical ordering 
on the tuples of each relation in d. The next fundamental theorem, which characterises the 
computational expressiveness over ordered databases of the relational algebra augmented 
with a fixpoint operator, was shown in [Var82a, Imm86] (see also [AHV95b, Chapter 17]). 

Theorem 6.10 Over ordered databases, the relational algebra augmented with a fixpoint 
operator expresses exactly the set of all polynomial-time computable queries. 
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Proof We briefly sketch the proof leaving the reader to consult the above references for 
the full proof. We have already shown that the algebra augmented with a fixpoint can only 
express computable queries which can be evaluated in polynomial time in the size of the input 
database, so it suffices to show that it can express all such computable queries. 

Let Q be a polynomial-time computable query. The idea is to simulate the Turing machine 
TM that computes Q with a fixpoint query. Firstly, we can encode TM's input tape by utilising 
the lexicographical ordering of the tuples of the relations in d. Secondly, we can encode an 
instantaneous description ofTM, after the ith computation step, by using the lexicographical 
ordering to encode i and by having distinguished attributes whose values encode the current 
state ofTM's finite state control and the current position of its head. The next move function 
can then be encoded via an algebraic expression, which given the current state and position 
of the finite state control performs the next computation step of TM. That is, the currently 
scanned symbol is overwritten, the head of the finite state control moves either left (add one) 
or right (subtract one) and a transition of state is effected. We assume that TM halts if and 
only if no more state transitions can be effected or the maximum number of computation 
steps has been performed. Thus the fixpoint operator is needed in order to repeat the next 
move function until TM halts. 0 

The next corollary follows from the previous theorem and the fact that Datalog, whose 
programs may be recursive and contain rules having negative literals in their body (see 
Subsection 3.2.3 of Chapter 3), is equivalent to the relational algebra with a fixpoint and 
less expressive than the relational algebra with bounded looping; we note that these three 
query languages can only compute queries whose time complexity is polynomial in the size 
of the input database. 

Corollary 6.11 Over ordered databases, the relational algebra augmented with a fixpoint 
operator, the relational algebra augmented with a bounded for loop mechanism and Datalog 
are all equivalent and express exactly the set of all polynomial-time computable queries. 0 

As mentioned prior to Definition 6.22 augmenting the relational algebra with a while loop 
as in QL results in polynomial space computations in the size of the input database. For the 
purpose of extending the relational algebra with a while loop mechanism, we will restrict QL 
to allow only typed variables as follows. 

Definition 6.25 (WhileQL) WhileQL is the query language which restricts QL by assuming 
that all variables are typed, and that the terms of the language are relational algebra expressions 
(as defined at the beginning of Section 6.6). • 

Thus WhileQL is the query language resulting from restricting QL in the same manner as 
the query language ForQL given in Definition 6.23, apart from maintaining the while loop, 
while Yi = 0 do P, rather than swapping it with a for loop as in ForQL. It can be shown that 
WhileQL's computational power is included in the set of polynomial space queries [CH82j. 
(See PSPACE in Subsection 1.9.4 of Chapter 1.) This inclusion is proper, since, for example, 
WhileQL is not expressive enough to determine whether the cardinality of a relation is even 
or odd. Moreover, it can be shown that over ordered relational databases WhileQL expresses 
exactly the set of all polynomial space queries [Var82aj. 
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WhileQLcan be further extended with integer arithmetic by augmenting it with the following 
constructs: 

• A countable set {C1 , C2, ... } of counter variables distinct from typed variables, whose 
values are natural numbers. 

• Assignment statements of the form Ci *- Ci + 1 and Ci *- Ci - I, which increment and 
decrement a counter variable c;, assuming that counter variables are initialised to O. We 
assume that if Ci has the value 0, then Ci *- Ci - 1 leaves Ci unchanged. 

• Tests of the form while Ci = 0 do P, which terminate when the counter variable Ci has a 
value other than O. 

Let us call the extension ofWhileQL with integer arithmetic as defined above WhileInt. The 
query language WhileInt is still not attribute query complete, since it still cannot determine 
whether the cardinality of a relation is even or odd. It can be viewed as providing an interface 
between a Turing-complete programming language and a first-order query language such as 
SQL, where SQL statements can be embedded in the statements of the programming language. 
(See also the recent Java Database Connectivity (JDBC) approach for executing SQL statements 
from within a Java program [HCF97j.) It is evident that the expressive power of WhileInt 
properly includes that of WhileQL, since the ability to manipulate counters gives Turing
machine capability to the language (see Subsection 1.9.4 of Chapter 1) and thus over ordered 
relational databases WhileInt is attribute query complete. 

The class of computable queries that can be expressed by the query language WhileInt is 
robust as can be seen by its equivalence to the class of computable queries expressed by two 
other query languages, which we now briefly describe [AV93j . 

The first query language is called a relational machine. Such a machine consists of a Turing 
machine and a relational store which holds a finite set of relations over a fixed set of relation 
schemas partitioned into input relations and output relations. The tape of the Turing machine 
is initially empty. The head of the relational machine can move left and right and can write 
on the tape in accordance with the state transitions of a standard Turing machine transition 
function with the following extensions. The machine can check whether the input relations 
in the relational store satisfy a relational algebra query, i.e. return a non empty result, and the 
machine can also assign to an output relation in the relational store the result of computing 
a relational algebra query on the input relations in this store. In both cases the number of 
typed variables in any relational algebra query is bounded by some constant. The relational 
machine accepts its input relations if and only if it reaches its halting state. Its output can 
then be found in the output relations in the store. 

The second query language is an effective fragment of the infinitary logic L~lt)' The first 
subscript indicates that conjunctions and disjunctions can be taken over arbitrary, possibly 
infinite, sets of formulae and the second subscript indicates that only finite quantifier blocks 
are allowed. The superscript indicates that every formula can only have a finite number k of 
variables, for some natural number k, with k ~ 1. 

The formulae of the infinitary logic L~lt) over a database schema R constitute the smallest set 
of formulae containing relational algebra expressions over R having at most k typed variables 
and closed under the usual logical connectives and quantifiers of first-order logic and, in 
addition, are closed under conjunction and disjunction of arbitrary sets of formulae. That is, 
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in the in finitary logic L~w the disjunction V <1> and the conjunction /\ <1>, where <1> is a set 
containing an infinite number offormulae, are both well defined. The semantics of the logical 
connectives including arbitrary conjunctions and disjunctions are the standard ones. 

We can now define the formulae of the infinitary logic over a database schema R by 

00 

L~w=UL~. 
k=l 

For more details on the model theory of infinitary logic see [BF85] and for recent research 
on infinitary logic in finite model theory see [KV92a, KV92b, AVV95, DLW95]. 

In order to define the effective fragment of the above infinitary logic, we say that a set S of 
databases over R is recursively enumerable if there exists a recursive enumeration d1, d2 , • . . 

of all databases over R such that a database d is in S if and only if there is some database which 
is isomorphic to d and belongs to the enumeration. (See Subsection 1.9.4 of Chapter 1 for an 
overview of recursively enumerable languages or sets.) 

The effective fragment of infinitary logic is now defined as the set of formulae in L~w whose 
set of finite models is recursively enumerable. The proof of the next theorem can be found in 
[AVV95] . 

Theorem 6.12 The following three query languages express the same class of computable 
queries over a database schema R: 

1) WhileInt. 

2} Relational machines. 

3} Effective fragment of infinitary logic. 

Proof. We only sketch the proof. 

The equivalence of (1) and (2) follows from the equivalence between Turing machines and 
counter machines (see Subsection 1.9.4 of Chapter 1). 

To show that part (2) implies part (3), let S be the set of all databases over R that are accepted 
by some relational machine M and let dES. Intuitively, a computation of M that accepts d 
can be described by a formula in L~w for some natural number k, due to the way in which a 
relational machine interfaces with the relational algebra. It follows that the set of databases 
S that are accepted by M can be described by a formula in the effective fragment of infinitary 
logic, which is a countably infinite disjunction of a recursive set of formulae in L~w' 

Finally, to show that part (3) implies part (2) suppose that cp is a formula over R in the 
effective fragment of infinitary logic. It can be shown that given a relational database dover 
R, there exists an ordered relational database d' over a database schema R' and a formula 1/J 
over R' in the effective fragment of in finitary logic such that d is a model of cp if and only if d' 
is a model of 1/J. We can now use this fact to encode d' on the tape of a relational machine M. 
The relational machine M utilises its Turing-machine capability to accept d', if and only if d' 
is a model of 1/J, by a recursive enumeration of those databases over R' which are models of 
1/J. 0 
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6.8 Discussion 

In this chapter we have introduced and developed the fundamental concept of a computable 
database query, which does not feature prominently in most of the current textbooks on 
database theory. Although the development is theoretical in nature, the subclass of computable 
queries implemented has an effect on the degree of portability of the database, in the sense 
that two queries may yield the same result on different machines if and only if they are 
C-encoding-independent. The notion of encoding-independence is thus strongly related to 
the notion of physical data independence, which is one of the fundamental reasons that 
relational databases are successful in practice. In addition, we have presented the concept of 
a database language which is query complete; such a language allows for both attribute names 
and domain values to be mentioned in queries. This concept refines the notion of attribute 
query complete, which allows only attribute names to be mentioned in queries. 

The notion of computable queries has interested database researchers since the beginning of 
the 1980's and provides a link between relational database theory and the theory of computing. 
It also provides a firm basis for developing database programming languages possessing 
greater computational expressive power than the relational algebra. 

Pioneering work on the computational complexity of various query languages can be found 
in [Fag74, AU79, Cha81, Imm81, CH82, Var82a). More recent research in this area can be 
found in [Imm86, BG87, Imm87, Cha88, Imm89, AV90, AV91a, AV91b, AV92, AV93, Fag93, 
A V95, A VV97). 

6.9 Exercises 

Exercise 6.1 SQL3 is the emerging standard, which is to replace SQL2 [DD93, Mel96) (see 
Subsection 3.2.2 of Chapter 3 and Section 10.2 of Chapter 10). One of the features of SQL3 is 
the addition of procedural constructs to SQL2 including assignment, conditional and looping 
statements. Thus SQL3 is computationally query complete. Argue for the usefulness of these 
features of SQL3 and its potential impact on database programming. 

Exercise 6.2 Aggregate functions provide an important and useful extension to the basic 
operators of the relational algebra (see Definition 3.24 in Subsection 3.2.1 of Chapter 3). 
Suggest how such an extension affects the expressive power of the relational algebra [Klu82, 
AB95). 

Exercise 6.3 It is a standard assumption in relational database theory that domain elements 
are taken to be unordered. In practice domain elements are defined to be either strings or 
numbers and thus tuples in relations have a natural lexicographical ordering that can be 
utilised by the DBMS. Argue whether it is reasonable for the DBMS to use such an ordering 
when processing queries and how such an ordering can be taken into account in the definition 
of a computable database query. 

Exercise 6.4 Discuss, with a motivating example, the connection between physical data 
independence and encoding-independent computable queries. 
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Exercise 6.5 Recall Definition 6.25 of the query language WhileQL. WhileQL is the result of 
augmenting the relational algebra with an unbounded while loop mechanism as in QL, with 
the restriction on generic variables that they be typed. Prove that WhileQL cannot determine 
whether the cardinality of a relation is even or odd [CH82j. 

Exercise 6.6 Recall that the query language Whilelnt extends the query language WhileQL 
with integer arithmetic. Prove that when all the relation schemas of relations in the input 
database to a Whilelnt program are monadic, i.e. contain a single attribute, then the resulting 
program is equivalent to a relational algebra query [A V95j. 

Exercise 6.7 Discuss the significance of Theorem 6.10 and Corollary 6.11 in Section 6.7 with 
respect to the implementation of database programming languages. 

Exercise 6.8 Suggest a parallel model of computation for relational algebra queries, where 
given an input database d, such a model has available a polynomial number of processors in 
the size of d in order to speed up the computation [Imm89j. 

Exercise 6.9 It has been suggested that it is useful to add to query languages an operator that 
selects a tuple from a relation at random. Discuss this suggestion with a concrete example 
[ASV90j. 



7. Temporal Relational Databases 

The evolution of a relational database over time is not captured by the standard relational 
data model we have presented in the previous chapters. For example, the inventory of items 
in a warehouse changes over time as items are shifted from and to the warehouse, and the 
details of employees that work in a company change over time as the database is updated with 
new employees joining the company and old employees leaving the company. Many other 
scientific, financial and business applications have a substantial temporal element associated 
with them including applications that involve time series analysis. Although time can be 
modelled within the standard relational model, this cannot be done in a straightforward 
and unified manner, since there is no inherent support for temporal data. Thus due to the 
importance of recording and manipulating temporal information, there is a need for a cohesive 
and consistent extension of the standard relational model to handle such temporal data. The 
research into temporal databases has been an active subarea of relational database theory for 
well over a decade now. In order to merge and encompass the main proposals for temporal 
relational database query languages, there has been a recent comprehensive specification of a 
temporal extension of SQL, termed TSQL2. In this chapter we formalise a temporal extension 
of the relational model, which provides a basis for understanding the way in which time can 
be seamlessly incorporated into the data structures, the algebra and the fundamental integrity 
constraints ofrelational databases. 

We now briefly outline the contents of the sections that follow. In Section 7.1 we provide 
motivation for modelling time in relations through an example. In Section 7.2 we provide 
a taxonomy of the various interpretations of time and introduce the notions of rollback and 
historical relations. In Section 7.3 we formalise the notion of a historical relation, which allows 
us to store the valid time history of tuples in relations. In Section 7.4 we extend the relational 
algebra so that it can manipulate historical relations and deal with time attribute values that 
are time intervals. In Section 7.5 we define the notion of historical completeness of a temporal 
extension of the relational algebra and state the result that the historical relational algebra 
presented in Section 7.4 is complete. In Section 7.6 we give a brief overview of TSQL2, and 
in Section 7.7 we extend the fundamental notion of a key so as to hold in historical relations. 
Finally, in Section 7.8 we briefly discuss the issue of schema evolution when, in addition to 
the database relations, the schema is also allowed to change over time. 

7.1 The Importance of Modelling Time 
Suppose that we are storing the information about the current salaries of employees in a 
relation '0, over EMP _NOW, with schema(EMP _NOW) = {ENAME, SAL}, as it is shown in 

385 
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Table 7.1. This relation does not supply us with any past information about employees' 
salaries or with any future information about these salaries. The relation ro provides us only 
with a snapshot of the information about employees' salaries, in particular only the present 
information is made available. Let us first concern ourselves with past (or historical) and 
present (or current) information, without referring to the future. 

Table 7.1 The relation TO over EMP _NOW 

ENAME SAL 
Reuven 25 

Dan 11 
Eli 20 

Naomi 20 

In order to store past or historical information about employees' salaries we could redesign 
the relation schema EMP _NOW and obtain a schema EMP, having the attributes ofEMP _NOW 
andan additional attribute called DATE. A relation rl over EMP is shown in Table 7.2. Although 
this relation captures the historical information which is needed it is not sufficient unless 
direct support for time-based attribute domains is made available. Thus, for example, it is 
not possible to pose a query asking for the current salary of an employee unless the notion 
of "current time" is known to the database system. Also, queries such as: in the overlapping 
years of two employees' salary history, which one of them earned a higher salary and when, 
are awkward to pose in the relational algebra. Such queries view an employee's salary history 
as a set of intervals, where each interval such as [1992, 1993] records the years in which an 
employee earned a particular salary. The relational model does not support interval data; in 
fact, if we allow intervals into the model then relations would violate INF. Support for defining 
data types involving dates and times and for querying information over these types has been 
considered important enough for including DATE and TIME as built-in data types in the SQL2 
standard (a detailed description of these features can be found in [DD93, Chapter 17)). 

Table 7.2 The relation TJ over EMP 

ENAME SAL DATE 
Reuven 22 1992 
Reuven 22 1993 
Reuven 25 1994 

Dan 8 1991 
Dan 8 1992 
Dan 11 1994 
Eli 20 1990 
Eli 20 1993 
Eli 20 1994 

Naomi 18 1993 
Naomi 20 1994 

Now, suppose that we extend relation schemas to historical relation schemas so that such 
schemas contain a special historical attribute, denoted by T, whose domain is interval-based. 
The semantics of the T -values of a tuple over a historical relation schema are that this interval 
represents the time points (or dates) when this tuple was valid. A distinguished time point, 
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denoted by now, represents the fact that the tuple is valid at the current time. A historical 
relation r2 over EMpH, with schema(EMpH) = {ENAME, SAL, DATES_INT), is shown in 
Table 7.3, where DATES_INT is a historical attribute. There are several advantages in the 
representation of the historical information in r2 as opposed to the representation in rl> 

shown in Table 7.2. Firstly, r2 is less redundant than r1, since the cardinality of r1 is 11 while 
the cardinality of r2 is only 8. Secondly, querying r2 is easier than querying r1 assuming that we 
extend the relational algebra with special purpose comparison operators to deal with intervals. 
Finally, the current time is made explicit by using the distinguished time point now. Thus r2 

need not be updated until a salary changes, while r1 will have to be updated in 1995 even if all 
the salaries remain the same. 

Table 7.3 The historical relation r2 over EM pH 

ENAME SAL DATES_INT 
Reuven 22 [1992,1993) 
Reuven 25 [1994, now) 

Dan 8 [1991,1992) 
Dan 11 [1994, now) 
Eli 20 [1990,1990) 
Eli 20 [1993, now) 

Naomi 18 [1993,1993) 
Naomi 20 [1994, now) 

Another example of a historical relation r3 over MGRH, with schema(MGRH) = {MNAME, 
DNAME, DATES_INT), is shown in Table 7.4. In this relation there is an overlap between 
the dates when Reuven and Hanna were managers of the Computing department. Time can 
be considered as adding a third dimension to relations. A standard relation (or a snapshot 
relation) can be viewed as a two-dimensional table, where its columns represent attributes 
and its rows represent tuples. A historical relation can be viewed as a three-dimensional cube, 
the third dimension being time. Thus a snapshot relation can be viewed as a two-dimensional 
slice of a historical relation. 

Table 7.4 The historical relation r3 over MGRH 

MNAME DNAME DATES_INT 
Reuven Computing [1992,1993) 
Hanna Computing [1993, now) 

Dan Arts [1991,1992) 
Eli Economics [1990,1991) 

Sara Economics [1992,1992) 
Eli Economics [1993, now) 

Naomi Medicine [1993, now) 

In order to benefit from historical relations we extend the relational algebra to cater for 
interval-based attribute values. The semantics of such an extension are based on temporal 
logic. Temporal logic is an extension of classical logic whose aim is to overcome the 
awkwardness of classical logic in capturing temporal relationships and giving semantics to 
statements involving temporal reference [RU71). Apart from the area of databases temporal 
logic is widely employed in the area of specification and verification of concurrent programs 
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[Eme90, MP92]. In addition, temporal logic is employed in the area of artificial intelligence 
in order to formalise effective temporal reasoning mechanisms [A1l83]. A more recent 
application of temporal logic in the area of information systems is in form ali sing navigation 
semantics in Hypertext databases [SFR92, LL99c]. A comprehensive survey of the research on 
the role of time in information systems up until the early 1980's can be found in [BADW82j. 

7.2 A Taxonomy of Time in Databases 

Herein we discuss various interpretations of time. We have already mentioned standard 
relations as being snapshots of information. A snapshot relation represents only the current 
state or instance of the stored information. When an update transaction takes place such 
as changing an employee's salary, the state of the snapshot relation changes and the past 
state becomes inaccessible as soon as the transaction commits (see Section 8.1 of Chapter 8). 
The time as it is viewed by the database system with respect to the changes that are made to 
snapshot relations via transactions is called transaction time. A relation which allows access 
to the relation states prior to the commitment of transactions is called a rollback relation. 

The simplest way to view a rollback relation is via the concept of timestamping (see 
Section 8.7 of Chapter 8). We assume that the system has a clock which records the current 
system time. A rollback relation, say r, is initially empty when it is created. Thereafter, 
whenever a tuple is inserted into r it is timestamped with the current system time as it is being 
inserted into r. On the other hand, whenever a tuple is deleted from r it is not physically 
deleted, but rather it is times tamped with the current system time indicating when it was 
deleted from r. (Recall from Subsection 3.2.4 of Chapter 3 that a modification of a tuple in a 
relation can be viewed as a deletion followed by an insertion.) 

In a similar way to recording temporal information in a historical relation we can record 
the timestamps of tuples in a rollback relation by adding a special transaction attribute to 
the relation schemas of rollback relations, whose domain is interval-based. For simplicity 
we will represent transaction time by natural numbers. An interval [i,j] over the transaction 
attribute of a tuple, t, in a rollback relation r, where i and j are transaction times and i ::: j, 
represents the fact that t was inserted into r at transaction time i and was deleted from r at 
transaction time j. We use the distinguished time point now to represent the fact that the 
tuple is currently present in r. That is, if the interval [i, now] is the value of the transaction 
attribute of a tuple t in r, then t was inserted into r at transaction time i and is still currently 
present in r. An example of a rollback relation rover EMPR, with schema(EMpR) = (ENAME, 
SAL, TIMES_INT), is shown in Table 7.5. The snapshot relation induced by r which contains 
only the tuples that are currently present in r is shown in Table 7.1. 

As opposed to transaction time recorded in rollback relations, historical relations record 
valid time; that is, the time as it is in the real world. To illustrate the difference between 
valid time and transaction time consider the tuples, t, = <Reuven, 22, [1992, 1993] > and t2 = 

< Reuven, 25, [1994, now]> in the historical relation over EM pH shown in Table 7.3 and the 
tuples, t3 = <Reuven, 22, [1, 2] > and t4 = <Reuven, 25, [3, now] > in the rollback relation 
over EMPR shown in Table 7.5. The tuple tt indicates that Reuven earned 22 between 1992 
and 1993 and the tuple t2 indicates that Reuven has earned 25 from 1994 up until now. The 
tuple t3 indicates that the fact that Reuven earned 22 was inserted at time 1 and deleted at time 
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Table 7.5 The rollback relation rover EMPR 

ENAME SAL TIMES-.lNT 
Reuven 22 [1,2] 
Reuven 25 [3, now] 

Dan 8 [0,1] 
Dan 11 [4, now] 
Eli 20 [I, now] 

Naomi 18 [2,3] 
Naomi 20 [4, now] 

A, A2 ... 
A, A2 ... An t, 

t, t2 

t2 t3 

t3 t4 

I-
transaction time 

Fig 7.1 The semantics of rollback relations 

2 and the tuple t4 indicates that the fact that Reuven has earned 25 was inserted at time 3 and 
has not been deleted. It may not be the case that the transaction times 1,2 and 3 are identical 
to the valid times, 1992, 1993 and 1994, respectively. This is due to the fact that although 
Reuven earned a particular salary at a particular valid time the transaction that recorded 
this information may not have actually happened at identically the same valid time. Thus, 
for example, the fact that Reuven was earning 22 from 1992 to 1993 may have been actually 
inserted into the relation in 1993 (which is transaction time 1) and not in 1992, when this 
salary became the then current salary. On the other hand, the valid time now is the same as 
the transaction time now. Thus if the information in both the rollback and historical relations 
is up-to-date, then the snapshot relation induced by the rollback relation will be identical to 
the snapshot relation induced by the historical relation. 

A relation which supports both valid time and transaction time is called a temporal relation. 
As already mentioned a relation which supports only transaction time is called a rollback 
relation and a relation which supports only valid time is called a historical relation. Finally, a 
relation which supports neither valid time nor transaction time is called a snapshot relation. 
The semantics of rollback relations is depicted in Figure 7.1 and the semantics of historical 
relations is depicted in Figure 7.2. 

With the emergence of new mass media storage technologies, such as optical disks, the cost 
associated with storage overheads of maintaining temporal relations compared to snapshot 
relations is becoming affordable. In addition, new implementation techniques for temporal 
data mean that the physical organisation and query processing of such relations can be carried 
out efficiently. 

Apart from valid time and transaction time there is another type of time, called user-defined 
time. As opposed to valid and transaction time, user-defined time is not interval-based, it 
simply records a time point such as a date. An example of user-defined time is a birthdate of 
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Fig 7.2 The semantics of historical relations 
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an employee or the date an employee was hired. In order to support user-defined time the 
database system needs to support the appropriate date types. 

From now on we will restrict ourselves to historical relations which record valid time without 
any reference to the future. We mention that it is also possible to record information that may 
be valid in the future; for example, if an employee is expected to get a salary rise in a year's time 
this can be recorded in a way similar to that of recording historical data. The approach that we 
take is a tuple-based one; that is, we record the valid time of tuples in a historical relation. For 
example, the interval [1992,19931 in the tuple, < Reuven, 22, [1992, 19931 > of Table 7.3, refers 
to the whole entity represented by this tuple. A finer-grained approach associates time with 
individual attributes. For example, we could have historical attributes associated with both 
DEPT _NAME and SAL for an employee's relation schema containing attributes DEPT _NAME 
and SAL, recording both the change in time of an employee's department and salary. 

An orthogonal issue in representing time is the granularity of time itself. For example, if we 
are recording the date an employee earned a particular salary, then we can record this date in 
years only (as we have done in the above examples), but we could be more accurate if we also 
record the month and even the day together with the year. The granularity of time actually 
used depends on the application, the finer the granularity the more accurate the information. 
For example, if we are recording the price of items in a shop, then a granularity which is finer 
than that of years may be needed. 

Finally, we mention that a time-based domain may be discrete or continuous. In the discrete 
model such a domain is isomorphic to the set of natural numbers and hence it is a countable 
domain. Thus in the discrete model time is not dense in the sense that given two times tl 
and t2 we cannot always find a third time, say t3, between t\ and t2. For most data processing 
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applications such as recording information about employees it is natural to employ a discrete 
time model. This justifies our choice of using a discrete time model. In the continuous model 
the time-based domain is isomorphic to the set of real numbers and hence it is an uncountable 
domain. Thus in the continuous model time is dense in the sense that given two times tl 

and t2 we can always find a third time, say t3, between tl and t2 . If we are recording physical 
phenomena such as the weather it may be more appropriate to employ a continuous time 
model. 

7.3 Historical Relations 

We now extend snapshot relations to historical relations. The formalisation is based on the 
extension of a relation schema to contain a historical attribute whose domain is interval-based. 
Each interval in such a domain is an ordered pair of time points contained in a time domain 
(see Definition 7.1) which is a linearly ordered set. 

We recall the definition of chain or equivalently linear order from Subsection 1.9.2 of 
Chapter 1. 

Defmition 7.1 (Time domain) A countable set T is a time domain if (T, <) is a chain. We 
call the elements ofT time points (time points are also referred to in the temporal database 
literature as chronons). We assume that T contains a distinguished top element, denoted by 
now, i.e. for all vET - {now}, v < now. • 

We assume that the time points in a time domain are all of the same granularity. The issue 
of time granularity was discussed in Section 7.2. By refining the granularity, say from years to 
exact dates and times, we can obtain more accurate historical information. In our examples 
we have chosen the granularity of time to be years. 

Definition 7.2 (Interval) Let T be a time domain and x and y be time points in T. We denote 
the set of all consecutive time points between x and y, with respect to the linear order <, 

including x and y by Ix, y). Such a set is called a closed interval in T (or simply an interval in 
Twhen no ambiguity arises). Formally, the interval Ix,y] in T is defined by Ix,y] = {v I v E 
T and x ~ v ~ y}. An interval of the form Ix, x] is called a single-point interval. We can 
abbreviate the notation of a single-point interval Ix, x] simply to x. 

We utilise two operators from and to, which given an interval [x ,y] in T as input return the 
least value, x, and the greatest value, y, of [x, y], respectively. That is, from([x, y]) = x and 
to(lx,y]) = y. • 

Definition 7.3 (Relationships between intervals) Let [XI, yd and [X2, Y2] be two intervals. 
The following ways in which two intervals can be related were given by Allen [A1l83]: 

1) The interval [XI, yd overlaps with the interval [X2 , Y21 if XI ~ X2 ~ YI ~ Y2; if XI = X2 
and YI = Y2 then the intervals are equal; on the other hand, if XI = X2 but y, < Y2 
then [x" YI] starts the interval [X2, Y2], and finally if x, < X2 but y, = Y2 then [x" y,] 
is finished by the interval [X2, Y21. 
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Fig 7.3 Relationships between intervals 

2) The interval [XI, yd is during the interval [X2, Y2] if X2 < XI ::: YI < Y2. 

3) The interval [Xl, yd meets with the interval [X2, Y2] if X2 - YI = 1. 

4) The interval [xI,yd is before the interval [X2,Y2] if X2 - YI > 1. • 
A diagram showing the ways in which intervals are related is shown in Figure 7.3. 

Defmition 7.4 (Historical domain and attribute) A historical domain H over a time domain 
T (or simply a historical domain H ifT is understood from context) is the set of all intervals I 
in T such thatfrom(I) -=1= now. 

A historical attribute T is a distinguished attribute, whose domain, DOM(T), is a historical 
domain. • 

The reason for the restriction on historical domains so that their first component cannot 
be now is to make sure that all intervals have a lower bound; recall that now is the top element 
of time domains and thus is unbounded if the time domain is infinite. Thus we allow now to 
extend into the future until it is replaced by another time point. The intervals of time domains 
are also referred to in the temporal database literature as lifespans indicating a period of time 
over which an object (in our case the object will be a tuple) is defined. 

Definition 7.5 (Historical relation schema) A historical relation schema is a relation schema, 
RH, where exactly one of the attributes in schema(RH) is historical. A historical database 
schema RH is a finite set {Rf, Rf, ... , R~} of historical relation schemas. • 

Historical relation schemas are not in INF, since historical domains are not atomic. In fact, 
the internal structure of intervals allows us to give the desired semantics to historical relations. 

From now on we will assume that H is a historical domain over a time domain T. 
Furthermore, we will assume that RH is a historical relation schema, where T E schema(RH) 
is a historical attribute, with DOM(T) = H, and that RH = {Rf, Rf, ... , R~} is a historical 
database schema, where VRf E RH, T; E schema(Rf) is a historical attribute, with DOM(T;) 
=H. 
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Defmition 7.6 (Historical relation) A historical tuple (or simply a tuple) over a historical 
relation schema RH with schema(RH) = {A 1, A2 , ... , Am} is a member of the Cartesian product 

DOM(A 1) x DOM(A2) x ... x DOM(Am), 

where T = Ai for some Ai E schema(RH). 

A historical relation ~ over RH is a finite set of historical tuples over RH. A historical 
database dH over R H is a set {rf, rf, .. . , r~} such that each 1 E dH is a historical relation 
over RH E RH . 

I 

When no ambiguity arises we refer to a historical relation rH over RH simply as the relation 
rover R and to a historical database dH over RH simply as the database dover R. • 

Examples of historical relations are shown in Tables 7.3 and 7.4. 

From now on we will assume that r is a historical relation over R. The above definition 
of a historical relation and a historical database are the same as the definitions of a relation 
and a database which are not historical. The difference manifests itself by the fact that each 
historical tuple in a historical relation, over R, has one attribute value over T which is an 
interval. The term historical relation is justified by the semantics of now as being the top 
element of a time domain, on assuming that now actually represents the current valid time. 

7.4 A Historical Relational Algebra 

Let us assume that the (non-historical) relational algebra includes only the basic set of 
relational operators; that is, union, difference, projection, selection, natural join and renaming. 
There are two basic approaches to defining a historical relational algebra. In the first 
approach the historical algebra retains the semantics of the relational algebra treating historical 
attributes in the same manner as non-historical attributes. The selection operator is then 
extended with the less than comparison operator, <, in order to compare single-point intervals 
which are linearly ordered. Finally, new historical operators are introduced to deal with time. 
In the second approach the basic relational operators are extended directly to deal with time. 

Herein we take the first approach which retains the semantics of the relational algebra 
operators and adds new operators to deal with time. In order to motivate the new historical 
operators we remind the reader of the NEST and UNNEST operators defined in Subsection 1.7.4 
of Chapter lover nested relations. Assuming only one level of nesting the NEST operator 
transforms a flat relation into a nested relation and the UNNEST operator transforms a nested 
relation into a flat relation. 

The historical operators fold and unfold [LJ88, Lor93) are analogous to NEST and UNNEST, 
respectively. The fold operator transforms a historical relation into a relation whose historical 
attribute values are maximal intervals, by removing intervals which are during other intervals 
and unioning intervals which overlap. The motivation for defining fold is to compress the 
lifespan of a tuple into as few historical tuples as possible, i.e. to remove redundancy in the 
representation of historical information. On the other hand, the unfold operator transforms 
a historical relation into a relation whose historical attribute values are single-point intervals. 
The motivation for defining unfold is to decompress the historical information so that it can 
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be manipulated by selection augmented with < in the same manner as snapshot relations are 
manipulated (a single-point interval [x, x] can be viewed as the single value x). 

We also add another historical operator, called instantiate, which replaces the distinguished 
constant now by the current time and its inverse which replaces the current time by now. The 
motivation for defining instantiate is that now is unbounded and thus when manipulating 
historical information we often want to put an upper bound on the attribute values of historical 
attributes. 

We will refer to the historical relational algebra defined in this section as the Historical 
Relational Algebra (or simply the HRA). The reader will find a comprehensive survey on 
temporal relational algebras in the survey paper by McKenzie Jr. and Snodgrass [MS91]. 

Let R be a historical relation schema, with historical attribute T, and let X = schema(R) -
T. Informally, the unfolding of a historical relation rover R is the set of all tuples t which agree 
on the X-values of some tuple u in r and such that the T-value of t is a single-point interval 
contained in the T -value of u. Unfolding a historical relation can be viewed as decompressing 
the historical information contained in the tuples of that relation. 

Definition 7.7 (Unfold operator) The unfolding, iJ,(r), of a historical relation rover R is 
defined by 

iJ,(r) = {t I 3u E r, 3v E u[T] such that u[X] = t[X] and to(u[T]) f=. now 
and t[T] = [v , vll u {t I t E rand to(t[T]) = now} . • 

Example 7.1 Let r over DEPTH, with schema(DEPTH) = {ENAME, DNA ME, T}, be the 
historical relation shown in Table 7.6. The historical relation iJ,(r) is shown in Table 7.7. • 

Table 7.6 The historical relation r over DEPTH 

ENAME DNAME T 
Reuven Computing [1991,1992] 
Reuven Computing [1993, now] 

Susi Computing [1994, now] 
Dan Arts [1990,1992] 
Dan Languages [1993, now] 
Eli Economics [1991,1992] 
Eli Economics [1994, now] 

Naomi Medicine [1990,1990] 
Naomi Medicine [1991,1994] 

Informally, the folding of a historical relation rover R is the result of repetitively removing 
from r all tuples t\ whose X-value agrees with that of another tuple t2 and such that the T -value 
of t\ is during the T -value of t2 as well as replacing the two tuples t\, t2, which agree on their 
X-values and such that the T -value of t\ overlaps or meets with the T -value of t2, by a single 
tuple whose T -value is the union of their intervals. Folding a historical relation can be viewed 
as compressing the historical information contained in the tuples of that relation. 
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Table 7.7 The historical relation J1-(r) over DEPTH 

ENAME DNAME T 
Reuven Computing [1991,1991] 
Reuven Computing [1992,1992] 
Reuven Computing [1993, now] 

Susi Computing [1994, now] 
Dan Arts [1990,1990] 
Dan Arts [1991,1991] 
Dan Arts [1992,1992] 
Dan Languages [1993, now] 
Eli Economics [1991,1991] 
Eli Economics [1992,1992] 
Eli Economics [1994, now] 

Naomi Medicine [1990,1990] 
Naomi Medicine [1991,1991] 
Naomi Medicine [1992,1992] 
Naomi Medicine [1993,1993] 
Naomi Medicine [1994,1994] 

Definition 7.8 (Fold operator) The folding, vCr), of a historical relation rover R is defined 
algorithmically as the output of Algorithm 7.1, designated FOLD{r). The pseudo-code of 
FOLD{r), which given as input a historical relation rover R returns the unique historical 
relation vCr), is presented as the following algorithm. 

Algorithm 7.1 (FOLD{r» 
1. begin 
2. Result := r; 
3. Tmp:= 0; 
4. while Tmp "# Result do 
5. Tmp := Result; 
6. for each tl, t2 such that tl [X) = t2 [X) but tl [T) "# t2 [T) do 
7. if tllT) is during t2 [T) then 
8. Result := Result - {td; 
9. end if 
10. if tl [T) overlaps or meets with t2[T] then 
11. t:= a tuple over R with t[X] = tllX] = t2[X], 

from(t[T]) = from (tllT]) and to{t[T]) = to{t2[T]); 
12. Result:= {Result - (tl, t2}) u {t}; 
13. end if 
14. end for 
15. end while 
16. return Result; 
17. end. 

Note that v{p.(r» = vCr) but in general r "# vCr). 

• 

Example 7.2 The historical relation v(r), where r is the historical relation shown in Table 7.6, 
is shown in Table 7.8. • 
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Table 7.8 The historical relation v(r) over DEPTH 

ENAME DNAME T 
Reuven Computing [1991, now] 

Susi Computing [1994, now] 
Dan Arts [1990,1992] 
Dan Languages [1993, now] 
Eli Economics [1991,1992] 
Eli Economics [1994, now] 

Naomi Medicine [1990,1994] 

The next historical relational algebra operator allows us to substitute all the occurrences of 
now with the current valid time. 

Definition 7.9 (Instantiate operator) The instantiation, 8(T), of a historical relation rover 
R, whose historical attribute is T, is defined to be the relation resulting from replacing 
the occurrence of now in an interval of any tuple t in r by the domain value in DOM(T) 
corresponding to the valid current time. 

In order for 8(r) to make sense in the context of a historical relation we must assume that 
the current valid time is always greater than or equal to the largest time point in an interval of 
any tuple in r. . 

The inverse of the instantiate operator of a historical relation rover R, denoted by 8- 1 (T), 
is thus also well defined; r 1 (r) is the historical relation resulting from substituting all 
occurrences of the current valid time in any tuple in r by the distinguished value now. • 

The reason that the instantiate operator is necessary is that intervals of the form [v, now] 
are infinite, since we have defined now to be the top element of the domain of a historical 
attribute T. By instantiating a historical relation and then unfolding it we obtain a historical 
relation such that all its historical attribute values are single-point intervals of the form [v , v] 
(or simply v), which can easily be manipulated by the standard relational algebra operators 
defined in Subsection 3.2.1 of Chapter 3. 

A recent comprehensive exposition on the semantics of now in temporal databases can 
be found in [CDI+97] . A pessimistic interpretation of now will give a negative answer to 
the query, "Will Reuven be employed in the Computing department next year?". In this 
approach now is a variable which can only refer to the current valid time. In the HRA we 
can enforce this interpretation by always instatiating a historical relation prior to querying 
it with a selection. On the other hand, an optimistic interpretation of now such as forever, 
will give a positive answer to the above-mentioned query, and to any query on the future 
employment of Reuven. Our semantics of now, as an end point of an interval, are compatible 
with this optimistic approach. An intermediate approach is to interpret now as until changed 
[WJL93]. Using the until changed approach we acknowledge the fact that, for example, 
Reuven will eventually retire or leave the company, and therefore Reuven cannot be employed 
forever. In order to make this interpretation more precise we could introduce indeterminate 
instants, resulting in intervals such as [1997,2000 rv 2050], indicating that one of [1997,2000], 
[1997,2001], . . . , [1997,2050] is the true interval but at the moment we do not know which 
one. 
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Example 7.3 Let s be the historical relation over DEPTH, shown in Table 7.8, and assume that 
the current valid time is 1994. The historical relation 8(s) over DEPTH is shown in Table 7.9 
and the historical relation 8-1(8(s» over DEPTH is shown in Table 7.10. • 

Table 7.9 The historical relation o(s} over DEPTH 

ENAME DNAME T 
Reuven Computing [1991,1994) 

Susi Computing [1994,1994) 
Dan Arts [1990,1992) 
Dan Languages [1993,1994) 
Eli Economics [1991,1992) 
Eli Economics [1994,1994) 

Naomi Medicine [1990,1994) 

Table 7.10 The historical relation o-I(o(s)) over DEPTH 

ENAME DNAME T 
Reuven Computing [1991, now) 

Susi Computing [1994 , now) 
Dan Arts [1990,1992) 
Dan Languages [1993, now) 
Eli Economics [1991,1992) 
Eli Economics [1994, now) 

Naomi Medicine [1990, now) 

All the standard relational algebra operators defined in Chapter 3 are considered to be part 
of the historical relational algebra with the provision that when a standard operator is applied 
to a historical relation then intervals are considered to be atomic values. In order to make 
the historical relational algebra more expressive, we also extend simple selection formulae 
by allowing expressions of the form T < v and 1j < 72, where T, 1j and 72 are historical 
attributes. {The expression, T ~ v, is an abbreviation of the selection formula (T < v) v 
(T = v), and similarly the expression, 1j ~ 72, is an abbreviation of the selection formula 
(1j < 72) v (1j = 72).) The comparison operator, <, in combination with equality (=) 
allows us to compare single-point intervals with respect to the linear order on time domains 
in historical queries. (For simplicity we assume that < and = are generic in the sense that they 
operate on any time domain.) 

When we compare intervals (which may not be single-point) we can only use equality, since 
we consider intervals to be atomic values. A further extension to simple selection formulae 
which allows us to compare intervals (which may not be single-point) in a general manner is to 
allow expressions of the form Top [VI , V2) and 1j op 72, where op is one of the relationships: 
overlaps, meets, during or before. Such an extension is convenient but does not add expressive 
power to the algebra, since by using instantiate and unfold we can always reduce any interval 
to a finite set of single-point intervals. 

We now give some examples of historical relational algebra queries which illustrate the 
above definitions. Let r be the historical relation over DEPTH shown in Table 7.6. 
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The query "Retrieve the employees who were working in 1993" is given by 

lrENAME(aT =1993(J,.l.(8(r)))). 

The query "Retrieve the employees who were working before 1993" is given by 

lrENAME(aT <1993(J,.l.(8(r)))). 

The query "Retrieve the employees who were working during 1992 and 1993" is given by 

Let HUSBAND and WIFE be historical relation schemas with schema(HUSBAND) = {Cm, 
T} and schema(WIFE) = {Cm, T}, representing the years during which husbands and their 
wives were studying for their first degree; the attribute cm is a unique identifier for each 
husband and wife couple. Furthermore, let rl be a historical relation over HUSBAND and r2 

be a historical relation over WIFE. The query "Retrieve the couples and the years in which 
both husband and wife were studying for their first degrees" is given by 

7.S Historical Relational Completeness 

Herein we briefly discuss the concept of relational completeness of a query language in the 
context of historical relations. Recall Definition 3.21 in Chapter 3 which stated that a query 
language is relationallycomplete if it is at least as expressive as the relational algebra. Thus, the 
HRA is a relationally complete query language, since it includes the basic relational algebra 
operators. However, the HRA is not just relationally complete, since it also enables us to 
manipulate historical information, and thus we need some further criterion to measure its 
expressiveness. 

In order to measure the expressiveness of an algebra with respect to the manipulation of 
historical information we can give semantics to historical algebra queries in terms of temporal 
logic. In particular, linear temporal logic serves this purpose, where relative to a given time 
point, the previous temporal operator is used to refer to the time point just prior to the present 
one, and the since temporal operator is used to refer to an interval in the past [Eme90, MP92j. 
Correspondingly, relative to a given time point, the next temporal operator is used to refer to 
the next time point in the future and the until temporal operator is used to refer to an interval 
in the future [Eme90, MP92j. 

Suppose that A and B are (non-historical) relational algebra queries which are either true 
(i.e. their answer contains one or more tuples) or false (i.e. their answer is empty) with respect 
to a snapshot relation at some time point Xj . 

• The definition of previous A is given by 
previous A is true at time point Xj if A is true at the time point just prior to Xj. 

• The definition of next A is given by 
next A is true at time point Xj if A is true at the time point just after Xj. 
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• The definition of A since B is given by 
A since B is true at time point Xj if B is true at some past time point relative to Xj' say Xi, 

and A is true throughout the whole interval [Xi, Xj] • 

• The definition of A until B is given by 
A until B is true at time point Xj if B is true at some future time point relative to Xj' say 
Xi, and A is true throughout the whole interval [Xj , xd . 

A historical relational algebra is said to be historically relationally complete if it is equivalent 
to a first-order linear temporal logic with the temporal operators, previous, since, next and 
until. As with the relational calculus the semantics of such a first-order temporal logic must 
be restricted to finite models. It is interesting to note that in [AHV95a, AHV96, TN96] it was 
shown that it is not sufficient to enhance the standard relational algebra only with the future 
temporal operators next and until, since we then obtain a strictly less expressive relational 
algebra than the one where, in addition, we have the past temporal operators previous and 
since. In particular, the query, "is there a time point, say Ti, at which a given relation contains 
exactly the same tuples as it had in the first time point, say TI, when the relation became 
nonempty, and such that TI < Ii?", is not expressible with the future temporal operators only 
but is expressible by using both the past and future temporal operators. 

If we enhance the relational algebra with the above temporal operators then all the 
interaction of the resulting query language with the historical domain of relations is implicit 
and encapsulated within the temporal operators. In this approach, which we call the temporal 
operators approach, the historical attributes are essentially hidden from the user. As opposed 
to the temporal operators approach, an alternative approach is to enhance the relational 
algebra by adding to it a binary less than operator for comparing time points, wherein time is 
referenced explicitly. The resulting logic is a first-order logic with equality and linear order. 
This approach, which we call the linear order approach, was taken in the HRA defined in 
Section 7.4, where we use the less than comparison operator, <, to explicitly compare two 
time points. 

In [AHV95a, AHV96, TN96] it was shown that a historical relational algebra defined by using 
the temporal operators approach is strictly less expressive than a historical relational algebra 
defined by using the linear order approach. In particular, the query, "are there two distinct 
time points at which a given relation contains exactly the same tuples?", is not expressible in 
a HRA of the temporal operators approach but is expressible in a HRA of the linear order 
approach. 

We leave it to the reader to verify the following theorem. 

Theorem 7.1 The HRA is historically relation ally complete. o 

The reader can find more details regarding historically relationally complete query 
languages, both algebras and calculi, in [TC90, GM91, CCT93] and also in [KSW90]; the 
latter deals with the problem of representing infinite temporal information. It is interesting 
to note that historical completeness does not take into account the support needed to manage 
and analyse time series data [SMDD95] (see [Cha96] for an introduction to time series). 
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7.6 TSQL2 

Herein we give a brief overview of TSQL2 [Sn095j, which is an upwards compatible temporal 
extension of SQL2 [DD93j. The rationale for defining TSQL2 is the growing demand for 
consistent and cohesive DBMS support for temporal relations. TSQL2 is an attempt to 
consolidate the main proposals for temporal relational query languages that have been 
developed. We summarise, mainly through examples, TSQL2's support of temporal data 
types, its support of specifying time points at different granularities and the ability to change 
the granularity of time points, its support of both valid and transaction time, and its querying 
facility over temporal relations. 

In TSQL2 dates and times can be specified as one of three temporal data types: DATE, TIME 
and TIMESTAMP. A literal over one of these data types is called a datetime. An example of a 
date time literal of type DATE is given by 

DATE '1996-08-23' 

An example of a datetime literal of type TIME is given by 

TIME '12 :44:20' 

An example of a datetime literal of type TIMESTAMP is given by 

TIMESTAMP '1996-08-23 12 :44 :20' 

TSQL2 also supports two data types for specifying intervals. The first data type INTERVAL 
specifies a duration of time with known length but without any specific starting or ending 
datetimes. An example of a literal specifying an interval of two months is given by 

INTERVAL '2' MONTH 

An example of a literal specifying an interval of two hours, two minutes and two seconds is 
given by 

INTERVAL '2:02:02' HOUR TO SECOND 

The second data type for specifying an interval is PERIOD, which defines a duration of time 
with a starting and ending datetime. An example of a literal specifying a period of one month 
is given by 

PERIOD '[1997-08-01 - 1997-09-01]' 

An example of a literal specifying a period of one month down to the granularity of seconds 
is given by 

PERIOD '[1996-08-0101:10 :00 - 1996-09-0123:30:59]' 

TSQL2 also supports arithmetic operations, such as addition and subtraction, between 
datetime literals and between interval and period literals. Moreover, comparison operators 
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between datetimes and between periods, which implement the semantics of Allen's operators, 
i.e. overlaps, meets, during and before, are supported in TSQL2 (see Definition 7.3). 

Moreover, TSQL2 supports multiple calendars such as the Gregorian calendar and the 
Lunar calendar. In addition, TSQL2 allows users to specify time points in different ways. For 
example, three different ways of specifying August 1, 1998 are: 

DATE '1998-08-01' 
DATE 'August 1, 1998' 

DATE '01/08/98' 

TSQL2 also supports the distinguished datetime now, which is treated as a variable that is 
assigned the current datetime during query and update processing (see Definition 7.1). 

Time points (called instants in TSQL2) can be specified at different granularities; for 
example, salary increases are typically measured to the granularity of years, birthdates are 
typically measured to the granularity of days and lecture timetables are typically measured 
to the granularity of minutes. TSQL2 provides two operators SCALE and CAST which allow 
users to change the granularity of instants. Several examples that illustrate the semantics of 
SCALE are given below. 

SCALE(DATE '1996-08-21' AS YEAR) = '1996' 
SCALE(DATE '1996-08-21' AS MONTH) = '1996-08' 
SCALE(DATE '1996-08-21' AS DAY) = '1996-08-21' 
SCALE(DATE '1996-08-21' AS HOUR) = '1996-08-21 00' ~ '1996-08-21 23' 
SCALE(DATE '1996-08-21' AS MINUTE) '1996-08-21 00:00' ~ '1996-08-21 23 :59' 
SCALE(DATE '1996-08-21' AS SECOND) = '1996-08-21 00:00 :00' ~ '1996-08-21 23:59:59' 

The symbol ~, in the last three examples above, means that the scaling of the datetime to the 
granularity of hours results in an indeterminate instant, with the exact hour being somewhere 
in between 00 and 23. Several examples that illustrate the semantics of CAST are given below. 

CAST(DATE '1996-08-21' AS YEAR) = '1996' 
CAST(DATE '1996-08-21' AS MONTH) = '1996-08' 
CAST(DATE '1996-08-21' AS DAY) = '1996-08-21' 
CAST(DATE '1996-08-21' AS HOUR) = '1996-08-21 00' 
CAST(DATE '1996-08-21' AS MINUTE) '1996-08-21 00:00' 
CAST(DATE '1996-08-21' AS SECOND) = '1996-08-21 00:00:00' 

As can be seen from the above examples the behaviour of CAST is the same as that of 
SCALE when converting from a finer granularity to a coarser granularity or one that has the 
same granularity. On the other hand, when converting from a coarser granularity to a finer 
granularity then a determinate instant is produced which is the first instant in the specified 
granularity. 

TSQL2 supports both valid time and transaction time. Herein we concentrate on TSQL2's 
support of historical relations, i.e. temporal relations which record past valid time only. 

In TSQL2 we can define a historical relation over the historical relation schema EMPH with 
the TSQL2 create table statement as follows: 
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CREATE TABLE EMP 
(ENAME CHAR(30), 
SALARY DECIMAL(5), 
PRIMARY KEY (ENAME» 

AS VALID STATE; 
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The keywords AS VALID STATE define the table to be a historical relation recording valid 
time. In addition, we can define a historical relation over the historical relation schema 
DEPTH, with the TSQL2 create table statement as follows: 

CREATE TABLE DEPT 
(ENAME CHAR(30), 
DNAME CHAR(20), 
PRIMARY KEY (ENAME» 

AS VALID STATE; 

We now introduce the flavour of TSQL2 queries over the historical relations we have just 
created via some examples. 

The query asking for the employees who earned more than 15 in any year of their 
employment is given by 

SELECT SNAPSHOT ENAME 
FROM EMP(ENAME, SAL) (PERIOD) AS E 
WHERE E.SAL > 15 

The keyword SNAPSHOT specifies that a snapshot relation, i.e. a standard relation, is 
returned. The keyword PERIOD specifies that the EMP table should be folded or using TSQL2's 
terminology that it be coalesced. The keyword AS defines a correlation name which is an alias 
for a relation schema; in this case E is an alias for EMP. 

The query asking when did Reuven work in the Computing department is given by 

SELECT VALID(D) 
FROM DEPT(ENAME, DNAME) (PERIOD) AS D 
WHERE D.ENAME = 'Reuven' AND D.DNAME = 'Computing' 

The keyword VALID specifies that a period representing the valid time of the tuples in the 
answer relation be returned. 

The query asking how many years did employees work and in which departments is given 
by 

SELECT SNAPSHOT ENAME, CAST(VALID(D) AS INTERVAL YEAR) 
FROM DEPT(ENAME, DNAME) AS D 

The CAST operator converts valid time periods into intervals of years and the SNAPSHOT 
keyword specifies that the resulting relation is a standard one, noting that attributes in standard 
relations can have a temporal data type. 

The query asking for the department that Dan worked in immediately after he left the Arts 
department is given by 
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SELECT SNAPSHOT ENAME 
FROM DEPT(ENAME, DNAME) (PERIOD) AS El E2 
WHERE El.DNAME = 'Arts' AND E2.DNAME < > 'Arts' 
AND El.ENAME = 'Dan' AND El.ENAME = E2.ENAME 
AND VALID(EI) MEETS VALID(E2) 
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The query asking for the employees of the Computing department who earned more than 
10 and when these employees earned such a salary is given by 

SELECT E.ENAME, INTERSECT(VALID(E), VALID(D)) 
FROM EMP(ENAME, SAL) AS E, DEPT(ENAME, DNA ME) AS D 
WHERE E.ENAME = D.ENAME AND DNA ME = 'Computing' AND SAL > 10 
AND VALID(E) OVERLAPS VALID(D) 

A critical evaluation of TSQL2 is given in [ART95], where clarifications and suggested 
modifications to TSQL2 are discussed. Issues concerning the completeness of TSQL2 are 
discussed in [BJS95]. 

7.7 Historical Key Dependencies 

The notion of key dependency is fundamental to the relational model and thus it must be 
extended to the temporal relational model. (See Definition 3.61 from Subsection 3.6.1 of 
Chapter 3 for the notion of key in the relational model and Definition 4.1 from Section 4.1 
of Chapter 4 for the notion of key dependency.) Herein we will consider the meaning of a 
historical key dependency being satisfied in a historical relation r over a historical relation 
schema R with historical attribute T. 

Let S be a (non-historical) relation schema such that schema(S) = schema(R) - {T}. A key 
dependency for R is a statement of the form, K ---* schema(S), where K is a subset of schema(S). 
Intuitively, K ---* schema(S) is satisfied in r if the key dependency K ---* schema(S) is satisfied 
in the projection onto schema(S) of all the partitions of the unfolding of r according to its 
single-point intervals, and K is a minimal set of attributes satisfying this condition. In other 
words, this means that the key dependency K ---* schema(S) is satisfied in all snapshot relations 
induced by the time points recorded in r. 

Defmition 7.10 (Historical key) Let r be a historical relation over R, with historical attribute 
T, S be a relation schema such that schema(S) = schema(R) - {T} and K S; schema(S). Then 
K ---* schema(S) is a historical key dependency for r if for all v E JrT(l'i(J.L(r))) the following 
two conditions hold: 

I) uniqueness: Jrschema(S) (aT =v(J.L(r))) satisfies the FD K ---* schema(S); and 

2) minimality: for no proper subset X C K is X ---* schema(S) a historical key dependency 
for r. 

A set of attributes K S; schema(S) is a historical key for rover R if K ---* schema(S) is a 
historical key dependency for r. • 
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Example 7.4 The unique historical key for the historical relation over EMPH shown in 
Table 7.3 is {ENAME}. The unique historical key for the historical relation over MGRH 
shown in Table 7.4 is {MNAME}. The unique historical key for the historical relation over 
DEPTH shown in Table 7.6 is {ENAME}. • 

There is an overhead in checking whether a set of attributes K is a historical key for a historical 
relation compared with checking whether K is a key for a relation which is not historical. The 
overhead is linear in the number of time points (or equivalently single-point intervals) in 
JTT(p,(r}). (See Check_Primary_Key(r, X), which checks whether X is a primary key of r; the 
pseudo-code for Check_Primary_Key(r, X} is given as Algorithm 3.6 in Subsection 3.6.1 of 
Chapter 3.} In practice checking whether K is a historical key can be done incrementally when 
the historical relation is updated. 

Wijsen [Wij95] distinguished between two types of historical key dependency (or more 
generally historical functional dependency). As an example of the first type consider the 
historical key ENAME for DEPTH, which states that at all time points an employee works in 
a single department. Assuming that an employee works in the same department at all times 
then we have an example of a temporal key. As an example of the second type let us add the 
attribute RANK to the historical relation schema EMpH, denoting the rank of an employee 
in the department he/she works in. Then, stating that at any two consecutive time points the 
{ENAME, SALARY}-value of an employee uniquely determines the employee's RANK and, 
in addition, that {ENAME, SALARY} is a key at the current time, i.e. now, is an example 
of {ENAME, SALARY} being a dynamic temporal key. Intuitively, {ENAME, SALARY} is a 
dynamic temporal key if the rank of an employee changes only when their salary changes from 
one time point to the next time point. 

The notion of a foreign key can also be extended to historical relations, essentially by 
asserting that the standard notion of referential integrity is satisfied at all time points recorded 
in the historical database. More general integrity constraints, which specify that a first-order 
formula is satisfied at all past time points recorded in the database, are discussed in [Ch094j. 

We close this section by referring to [Via87, Via88j wherein a dynamic version of the FD is 
investigated in the context of rollback relations. Let us call the state of a relation prior to the 
commitment of a transaction an old relation and the state of a relation after the transaction 
is committed a new relation. Then a Dynamic FD (or simply a DFD) specifies the evolution 
of an FD from an old relation to a new relation. Let us assume that the EMP ~OW relation 
schema has an additional attribute PERFORM, which records the current performance of an 
employee as recorded in the employee's last assessment. Then a DFD from old PERFORM and 
old SALARY to new SALARY specifies that an employee's new salary is uniquely determined 
by his/her previous performance and his/her old salary. In the above-mentioned papers Vianu 
also discusses the effect of the age of tuples on a given set ofFDs with respect to a set ofDFDs, 
which constrain the transition from old relations to new relations. The age of a tuple is defined 
to be the number of times that the tuple has been modified since it was originally inserted 
into the relation. This leads to the notion of a set of tuples having survivability k if this set of 
tuples can be validly modified k times, according to a set ofDFDs, and still satisfy a given set 
of FDs and any new FDs which are logically implied by these DFDs. 
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7.8 Schema Evolution 

So far we have not allowed the schema of relations to change over time, but in practice as 
an application evolves so does its database schema. For the purpose of discussing schema 
evolution it is more convenient to view a temporal database as a nonempty finite sequence, 
k ::: I, of indexed pairs, namely 

Each indexed pair (Ri, di)i, i E {I, 2, ... , kJ, which is called a version, consists of a database 
schema Ri and a snapshot database (or simply a database) di over Ri, with i being the 
timestamp associated with the pair. The set {I, 2, .. . , k} is the set of timestamps associated 
with the temporal database; each timestamp represents the transaction time associated with 
the relevant version. Thus a version denotes the database together with its schema as they are 
at a particular transaction time during the evolution of the database. 

Let us consider two consecutive versions (R; , d;); and (Rj, dj)j, withj = i + 1. If these two 
versions are identical then no change has occurred between transaction times i and j. On 
the other hand, if Ri = Rj but d; ::j:. dj, then the database schema has not changed between 
transaction times i and j but the database has been updated. Finally, if R; ::j:. Rj and thus 
also di ::j:. dj, then the database schema has evolved between transaction times i andj, which 
implies that the database has also been updated correspondingly. Therefore, a temporal 
database consisting of a sequence of versions supersedes the notion of a rollback database 
(i.e. a set of rollback relations) by allowing both the database schema and the database to 
change over time. In the rest of the section we will concentrate on the situation when the 
schema evolves, i.e. where R; ::j:. Rj; see Subsection 3.2.4 of Chapter 3 which defines an update 
language for the relational model, for the situation when R; = Rj but d; ::j:. dj. (Hereafter when 
the database consists of a single relation r over a relation schema R, we will write (R, r); as a 
shorthand for ({R}, (r})i.) 

The following types of schema evolution operations are possible at transaction time i: 

1) Change the domain of an existing attribute in a relation schema R E Ri. 

2) Rename the name of an attribute in a relation schema R E R;. 

3) Add a new attribute to a relation schema R E Ri. 

4) Remove an existing attribute from a relation schema R E Ri. 

5) Add an empty relation over a new relation schema, R if. R;, to the database di . 

6) Remove an existing relation r and its associated relation schema R E Ri from the database 
di. 

The semantics of the above operations can be formalised in terms of a mapping which 
transforms (Ri, d;); into (Rj, dj)j, where j = i + 1. To illustrate these semantics, consider the 
relation rover EMP, where schema EMP consists of the attributes ENAME (employee name), 
SAL (employee salary in pounds sterling) and EXT (employee phone extension). Viewed at 
transaction time, say 1, we have the version (EMP, rh, shown in Table 7.11. 
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Table7.11 The version (EMP, rlJ 
ENAME SAL EXT 
Reuven 22 6712 

Dan 10 6704 
Eli 20 3684 

Naomi 20 7214 

Now, suppose that we would like to change the domain of SAL from pounds sterling to 
Ecu (European currency unit). Then the transformation from (EMP, r)1 to (EMP, rah at 
transaction time 2 can be defined in terms of an update routine which converts all the salaries 
of employees in r from pounds sterling to Ecu, resulting in ra. Next suppose that we would 
like to rename the attribute ENAME to be called EMP _NAME. Then the transformation from 
(EMP, rah to (EMPa, rah at transaction time 3 renames ENAME in schema(EMP) such that 
schema(EMPa ) = (schema(EMP) - {ENAME}) U {EMP_NAME}, and leaves Ta unchanged. 
Next, assume that we would like to add a new attribute, called EMAIL (email address), to 
EMPa, so the transformation from (EMPa, rah to (EMPb , rb)4 at transaction time 4 adds this 
attribute to schema(EMPa ) such that schema(EMPb) = schema(EMPa ) U {EMAIL}, and then 
extends ra by an additional column for this attribute, resulting in rb, initially having a null 
value as the EMAIL-value of the extended tuples; the resulting version at transaction time 4 is 
shown in Table 7.12. 

Table 7.12 The version (EMPb. rb)4 

EMP~AME SAL EXT EMAIL 
Reuven 26.8 6712 null 

Dan 12.2 6704 null 
Eli 24.4 3684 null 

Naomi 24.4 7214 null 

Thereafter in further versions, the actual email addresses of employees will replace the null 
values. Suppose that the company decides to supply each employee with a mobile phone and 
as a result to remove the attribute EXT from schema(EMPb). Then the transformation from 
(EMPb, rb)4 to (EMP e, re)s at transaction time 5 deletes EXT from schema(EMPb) such that 
schema(EMP c) = schema(EMPb) - {EXT}, and replaces rb by its projection onto schema(R) 
- {EXT}, thus yielding re. The company then decides to create a new relation over a relation 
schema, MGR, to store information about managers. Then (EMPe, re)s is transformed into 
({EMPe, MGR), {Te, S})6 at transaction time 6, where s is the new relation in the database over 
MGR. Initially s is empty, and eventually it will be populated with the relevant information 
about managers. Finally, the company has decided to fire all of its managers as a result of 
restructuring and thus ({EMPe, MGR), Ire, S})6 is transformed to (EMPe, reh at transaction 
time 7. 

We refer the reader to [Rod92] for an annotated bibliography on schema evolution and to 
[Rod96] for a recent survey of the area. Schema evolution in the context of TSQL2, where 
timestamping attributes are proposed, is discussed in [Sn095, Chapter 22] and in [DGS97j, 
and for schema evolution in the context of object-oriented database systems see [ZCF+97, 
Part VIj. Finally, the problem of evolving a set of data dependencies, and in particular a set of 
FDs, was discussed at the end of Section 7.7. 
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7.9 Discussion 

Handling temporal information is a natural extension of the basic relational model capabilities. 
Although the formalism we have presented deals only with historical data such as maintaining 
the salary history of employees, it can also cater for future data such as yearly salary increases 
and bonuses for employees. One of the main current challenges for temporal databases is 
to solve the physical database problem of efficient storage and retrieval of temporal data. If 
large volumes of temporal data are to be available online, then it must be organised efficiently. 
This also has had an impact on logical database design; the effect of temporal databases on 
normalisation theory is discussed in [JSS92, Wij95). A comprehensive collection of papers 
on temporal database issues is [TCG+93). The field of temporal relational databases is still 
an active and evolving area of research. For instance, it was recently shown that a point
based approach, which does not use intervals, is expressively equivalent to the interval-based 
approach [Tom96). A temporal extension of SQL founded on the point-based approach is 
proposed in [Tom97) . 

We did not mention spatial databases [SA95], which are required in Geographic Information 
Systems (GISs), but there is a close connection between temporal and spatial information. 
See [RU71, Van83) for the logical aspects of spatial information as opposed to temporal 
information. From a practical point of view spatial databases are mainly concerned with 
the description and manipulation of geometric data consisting of points, lines, rectangles, 
polygons and more general surfaces. A recent investigation of the expressive power of queries 
for spatial databases based on first-order logic over the set of real numbers can be found in 
[PVV94). An alternative semantics for spatial databases based on topological relationships 
between regions such as disjointness, overlap, equality, containment and meet, can be found 
in [PSV96). 

7.10 Exercises 

Exercise 7.1 A historical relation r over a historical relation schema RH is in First Historical 
Normal Form (lHNF) if r = v(J./.(r}), i.e. r remains unchanged when we unfold r and then fold 
it. Give an equivalent definition of IHNF in terms of the relationship between the intervals 
over H for any two tuples in a historical relation r. Provide justification for the desirability of 
lHNF (JSS92). 

Exercise 7.2 Generalise Definition 7.10 of a historical key to that of a Historical Functional 
Dependency (HFD). 

Exercise 7.3 Use your definition of an HFD from Exercise 7.2 to define a generalisation of 
BCNF for historical relations [JSS92). 

Exercise 7.4 TSQL2 supports the built-in operators BEGIN and END, where BEGIN(P} returns 
the starting date time of the period P and END(P} returns the ending datetime of the period 
P. Show how Allen's overlaps operator can be implemented in TSQL2 using BEGIN and END 
[Sno95, Chapter 8). 
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Exercise 7.5 TSQL2 supports indeterminate instants such as '1996-03' r..., '1996-11', 
meaning that the exact month in 1996 is somewhere between March and November. In 
addition, a probability distribution can be specified for such an indeterminate instant, 
indicating the likelihood of each possible instant. Suggest, via an example, how this TSQL2 
feature can be used to retrieve tuples that are more probable [Sn095, Chapter 18). 

Exercise 7.6 Suggest the meaning of the aggregate functions MIN, MAX and COUNT 
operating on datetime literals [Sn095, Chapter 20) . (See Subsection 3.2.1 of Chapter 3 for 
a formalisation of aggregate functions in the context of the relational algebra.) 

Exercise 7.7 Optimisation of historical queries is more difficult than optimisation of 
snapshot queries mainly due to the fact that historical relations grow monotonically with 
the number of transactions. Suggest how the fact that time is linearly ordered can be used by 
a historical query optimiser [LM93). 

Exercise 7.8 A temporal relation, as opposed to a historical relation, can store information 
about the future, in addition to storing information about the past. Suggest how the data 
model for historical relations can be extended to cater for temporal relations. For example, it 
would be useful to be able to store the information that a supervisor meets his project students 
once a week at a specified time (see [KSW90)). 

Exercise 7.9 Suggest how spatial data can be represented via the framework of historical 
relations by adding the new basic data type coordinate, representing a point, say (x , y), in 
two-dimensional space (see [SA95)). 



8. Concurrency Control 

So far we have not addressed the problems relating to concurrently accessing a database in a 
multi-user environment. In the real world single-user databases on microcomputer systems 
are not adequate to meet the needs of many organisations and companies. Often more than one 
user may wish to read or update the database simultaneously. This can lead to an inconsistent 
database. As with any information, ifit is not accurate for whatever reason, its value is reduced 
and it may cause problems for the user. The usefulness of a database system depends on the 
reliability of its data at all times. For example, a database system which allowed two people 
to book the same seat on an airline flight, with the resulting confusion and likely customer 
dissatisfaction, would be oflittle use indeed, unless of course the airline has a deliberate policy 
of double booking a certain percentage of seats. 

Concurrent access control is required when two or more users have concurrent access to a 
database system. This requirement is increased when simultaneous access is permitted and 
where update of data is relatively unrestricted. Modern database systems, such as aircraft 
reservation systems and banking systems, rely upon fast access to information. Delay in 
accessing data is simply unacceptable. Hence, serial operation allowing only one user at a 
time to access data at any given time is not acceptable. Support for concurrent usage of a 
database system is needed and expected. 

The concept of a transaction is central to the explanation of concurrency. A transaction 
is a logical unit of work that transforms a database from one consistent state to another, 
without being required to preserve consistency at all intermediate points in the transformation. 
Transactions are required to be atomic, which means that either all the operations within a 
transaction must be executed to completion or none at all. For example, the transfer of money 
out of one account and into another in a banking database involves two distinct operations, 
namely debit and credit, within the transfer transaction (see Algorithm 8.1). Yet either both 
are performed to completion and the transfer is successful, or the transaction is terminated 
and the transfer fails. The atomicity requirement ensures that one operation of a funds transfer 
transaction cannot alter the data in one of the two accounts without completing the transfer. 
This requirement helps to maintain the consistency of the database by ensuring that in the 
event of a transaction failure, the database is returned to a state such that it could be considered 
that the transaction never started. In fact, consistency of the database could be maintained in 
this case via Algorithm 8.2 (in our case for i = 2), which should yield the same result prior to 
the invocation of Algorithm 8.1 and after its successful completion. 

In Section 8.1 we describe how the concurrency control problem arises. In Section 8.2 
we deal with serialisability and in Sections 8.3, 8.7 and 8.8 we present three different 
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approaches, respectively, for enforcing serialisability, namely locking, timestamp ordering 
and serialisation graph testing. In Sections 8.4 and 8.5 we deal, respectively, with the 
corresponding problems of deadlock and lock granularity, and in Section 8.6 we briefly 
consider the software component of a DBMS that manages locks, i.e. the lock manager. 

Algorithm 8.1 (Funds Transfer Transaction) 
1. begin 
2. read(Accounts[accountl), balancel}; 
3. read(Accounts[account2), balance2}; 
4. read(amount}; 
5. newBalancel := balance 1 - amount; 
6. write(Accounts[accountl), newBalancel}; 
7. newBalance2:= balance2 + amount; 
8. write(Accounts[account2], newBalance2}; 
9. commit; 
10. end. 

Algorithm 8.2 (Total Balance) 
1. begin 
2. total Balance := 0; 
3. for i iterating though all account numbers 
4. read(Accounts[i], balance}; 
5. totalBalance := totalBalance + balance; 
6. end for 
7. output(totaIBalance}; 
8. commit; 
9. end. 

8.1 Manifestations of Concurrency Control 

In the following we assume that the database is partitioned into data items (or simply items). 
The nature and the size of a data item are chosen by the system designer. In the relational 
model a large data item could be a relation and a small data item could be a single tuple or 
even a component thereof. 

In the context of concurrency control there are only four essential operations pertaining 
to a transaction; namely read, write, commit, and abort. A transaction ends with a commit if 
all the changes made to a database instance are to become permanent. If a transaction ends 
up with an abort all the aforesaid changes are to be undone, and we refer to such a situation 
by saying that the transaction is rollbacked. We call this model of transaction operations the 
Read/Write (RW) model. 

The justification for employing this low level approach to transactions is that it deals only 
with the fundamental DBMS operations and thus is independent of the conceptual model, i.e. 
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the relational model. The RW model is also the most widely accepted model for reasoning 
about database concurrency issues. An alternative approach is to employ the conceptual 
model of transactions presented in Subsection 3.2.4 of Chapter 3, which we hereafter call the 
Insert/Delete/Modify (IDM) model [VV92]. The IDM model is semantically richer than the RW 
model and thus there is more scope for transaction processing optimisation than in the RW 
model by utilising Theorem 3.8 given in the above-mentioned subsection. On the other hand, 
the formalisation of concurrency control in the context of the IDM model is more complex. 

The following definition formalises transactions by considering only their essential 
operations. 

Defmition 8.1 (Transaction) A transaction is a sequence T of transaction operations (or 
simply operations) such that 

1) the positions of T are filled with one of: read(T, x), write(T, x), commit(T), abort(T), 
where x is a data item (when T is understood from context then we abbreviate the above 
to: read(x), write(x), commit and abort, respectively); 

2) commit(T) occurs in T if and only ifT is not aborted; 

3) if either commit(T) or abort(T) occurs in T, then it occurs in the last position ofT. 

The operations of a transaction T are often referred to as the elementary steps of T. The 
readset of a transaction T is the set of data items T reads, and the writeset ofT is the set of data 
items T writes. • 

A useful yardstick by which transactions can be evaluated is known as the ACID test. 
Transactions pass the ACID test if they possess the following qualities: 

• Atomicity. Each transaction must have no observable intermediate states. Hence, even 
if the transaction amends a data item many times to achieve its final update, then 
these changes should not be visible to any other transaction. This is equally true if the 
transaction does not alter the database or if it fails . 

• Consistency. The database is assumed to be in a consistent state at the start of a 
transaction and at the end of it, whereby consistency refers to the database satisfying a 
set of integrity constraints. 

• Isolation. A transaction should not have any unintended side-effects. For example, if 
the sole action of a transaction is intended to transform data item A into data item B, 
then it should not transform, as a side-effect, another data item C into data item D. 
Moreover, a transaction should be seen as if it were in single-user mode. 

• Durability. If a transaction changes data item A into data item B then this change should 
also last, i.e. be persistent, until another transaction wishes to update B. In the short 
term, this means that an update should at least persist until the end of its transaction 
without being overwritten by another transaction. In the longer term, this guideline 
means that updates must be written to some form of permanent storage. 
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The term concurrency should not incline the reader to assume that different transactions are 
actually being carried out simultaneously. Assuming that there is only one central processing 
unit in a database system, then only one operation can be carried out during one machine 
cycle. Many processor operations or machine cycles may be needed to carry out just one 
database transaction. The execution of two database transactions can however be interleaved, 
with the processing of one transaction being started but not completed before the execution 
of the other transaction begins. Indeed the execution of a transaction may depend upon the 
processing of another concurrent transaction. In a multiprogramming environment, with 
processor time shared among several concurrent transactions, access control is necessary. 
We next give a succinct yet general definition of concurrency control. 

Defmition 8.2 (Concurrency control) Concurrency control is the activity of coordinating the 
actions of transactions that operate concurrently, access shared data, and therefore potentially 
interfere with each other. • 

Transactions interleaving their access to a database can result in interference. The problem 
of avoiding this interference is termed the concurrency control problem. A concurrency con trol 
algorithm is used to regulate the interleaving of concurrent transactions. This ensures that all 
transactions are executed atomically and that no interference takes place between transactions. 

We next consider various manifestations of the concurrency control problem. Data held in 
a database system must be correct and reliable to sustain user confidence. Unless controls are 
maintained on concurrent access to data, inconsistencies arise which undermine the integrity 
of the data and render the database virtually useless. Executing concurrent transactions 
without controls gives rise to classic anomalies which need to be addressed. There now 
follows an explanation of these anomalies. 

The best known of these anomalies is the lost update anomaly. This occurs where two 
concurrent transactions read the same data, modify it, and write a value back to the database. 
Depending upon the order in which operations are processed, interference between the two 
transactions may result in one of the updates being ignored by the database system (see 
Table 8.1). The contents of such a table are referred to as a transaction history (cf. schedule, 
Definition 8.3). 

Table 8.1 Example of the lost update anomaly 

Steps Transaction TJ Transaction T2 Values 
1 read{A); 200 
2 read{A); 200 
3 A:=A +30; 
4 write{A); 230 
5 A:= A * 2; 
6 write{A); 400 
7 commit; 
8 commit; 400 

As can be seen from Table 8.1, the net result is incorrect and the work performed by 
transaction T2 is lost. The value written by transaction T2 at step 4 has been lost. At step 8 
A = 400, whereas it should be 460, on the assumption that T2 should precede Ti> or 430 if Tl 
should precede T2. 
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Another anomaly closely related to the lost update anomaly is the inconsistent retrieval 
anomaly (see Table 8.2). In this situation interference between two or more concurrent 
transactions may result in retrieval of data which is inconsistent with the values held in the 
database. The data items, A and B, are initialised to 100 and 200, respectively. Transaction TJ 
is a transfer of money from A to B, and transaction T2 calculates the total of A and B. 

As can be seen from Table 8.2, the total calculated for A and B at step 12 (A + B = 250) is 
inconsistent with the values of A and B written to the database at step 11 (A = 50, B = 250). 

Table 8.2 Example of the inconsistent retrieval anomaly 

Steps Transaction T( Transaction T2 Values 
1 read(A); 100 
2 A:=A - 50; 
3 write(A); 50 
4 read(A); 50 
5 read(B); 200 
6 read(B); 200 
7 C :=A+B; 
8 write(C); 250 
9 B:= B + 50; 
10 write(B); 250 
11 commit; 
12 commit; 

The next anomaly is known as the uncommitted dependency anomaly. This arises if 
one transaction T2 is allowed to retrieve or update data that has been updated by another 
transaction Tl> where TJ has not yet been committed. There is always the possibility that 
TJ will never be committed, but that it will be rolled back instead. Therefore, transaction T2 
might then process data which do not exist in the database (see Table 8.3). A is initialised to 
100. As can be seen from Table 8.3, the value of A written by T2 was based on processing by 
Tl> which was subsequently aborted. 

Table 8.3 Example of the uncommitted dependency anomaly 

Steps Transaction T( Transaction T2 Values 
1 read(A); 100 
2 A:=A + 50; 
3 write(A); 150 
4 read(A); 150 
5 abort; 
6 A:=A * 2; 
7 write(A); 300 
8 commit; 

The final anomaly, known as the cascading abort anomaly, arises as a result of aborting 
transactions. Having started executing a transaction can either run to a natural completion and 
commit, or terminate its execution and abort. When a transaction is committed, its operations 
are written to permanent storage in the database and the database system guarantees that 
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the effects of the transaction will not subsequently be nullified. An abort is the premature 
termination of a transaction, caused either by the user or by the database system. 

The issue faced by a database system is what action to take if a transaction is aborted. 
An abort can vary from only impinging ul'on one transaction to affecting a large number of 
transactions. For example, if a transaction has utilised, and is therefore dependent on data 
values written by an aborted transaction, then the dependent transaction must also be aborted 
in order to maintain the consistency of the data within the database (see Table 8.4). Again A 
is initialised to 100. 

As can be seen from Table 8.4, transaction T2 is dependent on a value written by the aborting 
transaction T" consequently T2 must also be aborted. 

Table 8.4 Example of the cascading abort anomaly 

Steps Transaction TI Transaction T2 Values 
1 read(A); 100 
2 A:=A *2; 
3 write(A); 200 
4 read(A); 200 
5 A:= A + 30; 
6 write(A); 230 
7 abort; 
8 ... 

This type of knock-on effect is caused by a transaction aborting which requires one or more 
other transactions to also abort. The cascading abort anomaly can be more problematic than 
might appear from the example of Table 8.5, which shows one of the less obvious knock-on 
effects, namely that of transaction T2 being forced to abort notwithstanding the fact that it has 
not written the data item read from transaction TI • 

Table 8.S Another example of the cascading abort anomaly 

Steps Transaction TI Transaction T2 Values 
1 read(A}; 100 
2 A:= A* 2; 
3 write(A}; 200 
4 read(A}; 200 
5 read(B) lOO 
6 B:= B + 30; 
7 write(B); l30 
8 abort; 

Whilst the situation in Table 8.5 is somewhat contrived and could have been avoided by a 
better programming technique, so that transaction T2 does not read information prematurely, 
it demonstrates quite clearly the need for a mechanism to closely monitor abort operations. 

The database system must be capable of establishing exactly what effect an abort will have 
on the database. This requirement is part of what is known as the recovery problem. It 
is generally handled by a recovery algorithm, which monitors and controls the execution 
of transactions to ensure that the effects of any aborted transactions are removed from the 
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database. Surprisingly, it is not uncommon to find one fifth of the database system code 
dedicated to recovery [Cru84J. 

8.2 Serialisability 

In general, it is only safe to allow two transactions to interleave their database operations, if they 
do not operate on the same data. However, this is not always the case since two transactions 
can sometimes update the same data without any harmful side-effects. If a transaction update 
operation is merely incremental (for example, A := A + 2), and another transaction update 
operation is decremental (for example, A := A - 2), then it would not matter in which order 
the update operations were performed. These transactions are effectively commutative and 
are said to be serialisable. Consider the following pair of transaction histories, where we 
abbreviate two consecutive steps such as A := A - 2; write(A) to the single step write(A - 2): 

Steps Transaction TJ Transaction Tz 
1 read(A); 
2 write(A + 2); 
3 read(A); 
4 write(A - 2); 

Steps Transaction T J Transaction Tz 
1 read(A); 
2 write(A - 2); 
3 read(A); 
4 write(A + 2); 

For each of these transaction histories, at the end of step 4, data item A would have the same 
value. However, this example of non-conflicting update operations on the same data is an 
exception rather than a general rule. Consider the case where TJ's operation is, for example, 
A := A * 3, and Tz's operation is A := A + 3, then the order of execution becomes important. 
In fact, the transaction history 

Steps Transaction TJ Transaction Tz 
1 read(A); 
2 write(A * 3); 
3 read(A); 
4 write(A + 3); 

is obviously not equivalent to the transaction history 

Steps Transaction TJ Transaction T2 
1 read(A); 
2 write(A + 3); 
3 read(A); 
4 write(A * 3); 

Since interleaving of these operations can yield different results, they are said to be non
serialisable. Read operations on the same data item do not conflict with one another and 
are always serialisable. However, any transaction history that includes an update operation 
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may not be serialisable, and is treated initially as non-serialisable from the point of view of 
concurrent access control strategies. 

In a multitasking environment several transactions may be executed concurrently. The 
database system must control the interaction among transactions in order to maintain the 
consistency of the database. Ideally, to produce the desired result, concurrent transactions 
should behave as if they were executed in a serial manner. A concurrent execution of 
transactions is serialisable if interleaved execution of the transactions has the same effect as 
some sequential execution; see, for example, Table 8.6, where A and B are initialised to 100 and 
200, respectively, and the serial execution of Tl and Tz has the same effect as their interleaved 
execution; in fact, the two schedules of Table 8.6 are conflict-equivalent (see Definition 8.6). 

Table 8.6 A serial and interleaved execution of two transactions, TI and T2 

Steps Transaction T1 Transaction T2 Values 
1 read(A); 100 
2 A :=A+30 
3 write(A); 130 
4 read(B); 200 
5 B:= B + 50 
6 write(B); 250 
7 commit; 
8 read(A); 130 
9 A:=A+ 50; 
10 write(A) 180 
11 read(B); 250 
12 B:= B + 50; 
13 write(B); 300 
14 commit; 

Steps Transaction T1 Transaction T2 Values 
1 read(A); 100 
2 A:= A + 30; 
3 write(A); 130 
4 read(A); 130 
5 A :=A+ 50; 
6 write(A); 180 
7 read(B); 200 
8 B:= B + 50; 
9 write(B); 250 
10 read(B); 250 
11 B:= B + 50; 
12 write(B); 300 
13 commit; 
14 commit; 

The execution sequence of read and write operations in a transaction or a transaction 
history is called a schedule. A schedule represents the chronological order in which transaction 
operations are executed in a database. We next proceed to define formally a schedule of a set 
of transactions, and then a serial schedule. 

Hereafter we let T = {TI , T2, ... , Tn} be a set of transactions. 
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Definition 8.3 (Schedule) A schedule for T is a sequence, say s, of the elementary steps of 
the transactions in T satisfying the following conditions: 

1) every elementary step of every transaction appears exactly once in s; 

2) elementary steps in s occur in exactly the same relative order that they occur in the 
transactions. • 

In the following the terms operations and elementary steps (or simply steps) of a transaction 
will be used interchangeably. 

Defmition 8.4 (Serial schedule) A schedule s for T is serial if there exists a permutation 
Til' Ti2, ... , Tin of T such that s consists of all the elementary steps of Til' followed by all the 
elementary steps of Ti2' and so on, and ending with all the elementary steps of Tin ' • 

8.2.1 Serialisability Theory 

Serialisability theory allows us to prove whether or not a transaction schedule is serialisable. 
We begin by introducing the concepts of conflict and conflict-equivalent schedules. 

Definition 8.5 (Conflicting operations) Two operations of two distinct transactions are in 
conflict ifboth of them involve the same data item and at least one of them is a write operation. 

Let T be a set of transactions and let s E SCHED(T), where SCHED(T) denotes the set 
of schedules for T. The conflict relation of s, designated by conf(s), over OP(T), the set of 
operations of the transactions in T, is defined by 

conf(s) = {(o , 0') I 0,0' E OP(T), 0 occurs before 0' in s, and 0 , 0' are in conflict). • 

Defmition 8.6 (Conflict equivalence) Two schedules S,5 E SCHED(T) are conflict
equivalent (or simply equivalent), written s =c s', if conf(s) = conf(s'). • 

Consider the transaction schedules Sl, S2, S3 and S4, presented in Tables 8.7, 8.8, 8.9 and 8.10, 
respectively. Both A and B are initialised to 200; transaction TI debits the balance of A with 
50 and credits the balance of B with 100, while transaction T2 credits the balance of B with 50 
and reduces the balance of A by 90%. 

On examination of the schedules Sl and S2, shown in Tables 8.7 and 8.8, respectively, we 
observe that both conf(sl) and conf(s2) consist of the set of pairs 

{(read(hA), write(hA}}, (write(hA), read(hA}}, (write(T\>A), write(T2,A}}, 

(read(hB), write(T2,B}}, (write(hB), read(T2,B}}, (write(TI>B), write(T2,B))). 

On the other hand, on examination of the schedule S3, shown in Table 8.9, we see that 
conf(s3} consists of the set of pairs 

{(read(T2,A), write(TI>A», (write(T2,A), read(TI>A», (write(T2,A), write(hA», 

(read(T2,B), write(TI>B», (write(T2,B), read(hB», (write(T2,B), write(hB»). 
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Table 8.7 Schedule 51 

Steps Transaction T1 Transaction T2 Values 
1 read(A); 200 
2 A:=A - 50; 
3 write(A); 150 
4 read(B); 200 
5 B:= B + 100; 
6 write(B); 300 
7 read(A); 150 
8 A:=A*O.l; 
9 write(A); 15 
10 read(B); 300 
11 B := B + 50; 
12 write(B); 350 

Table 8.8 Schedule 52 

Steps Transaction T\ Transaction T2 Values 
1 read(A); 200 
2 A:= A-50; 
3 write(A); 150 
4 read(A); 150 
5 A:=A*O.l; 
6 write(A); 15 
7 read(B); 200 
8 B:= B + 100; 
9 write(B); 300 
10 read(B); 300 
11 B:= B + 50; 
12 write(B); 350 

Furthermore, on examination of the schedule 54, shown in Table 8.10, conf(s4) consists of 
the set of pairs 

{(read(Tj,A), write(hA», (write(Tj,A), read(hA», (write(Tj,A), write(hA», 

(read(T2,B), write(Tj,B», (write(T2,B), read(Tj,B», (write(T2,B), write(Tj,B»}. 

Thus 51 =, 52, SI =1=, 53, and 51 =1=,54 notwithstanding the fact that in schedules 51 and 54 the 
final values produced for A and B are the same. 

Definition 8.7 (Conflict-serialisability) A schedule 5 E SCHED(T) is conflict-serialisable (or 
simply serialisable), if there exists a serial schedule So E SCHED(T) such that 5 =c So. • 

Prior to establishing the fundamental theorem of conflict-serialisability, we define the 
conflict digraph of a schedule 5 E SCHED(T). 

Definition 8.8 (Conflict digraph) Let T be a set of transactions. The conflict digraph of 5 is 
the digraph res) = (T, E), where (Ti, Tj) E E, if Ti =f. Tj and some operation of Ti is in conflict 
with some operation of Tj. • 
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Table 8.9 Schedule S3 

Steps Transaction T\ Transaction T2 Values 
1 read(A); 200 
2 A :=A * 0.1; 
3 write(A); 20 
4 read(B); 200 
5 B:= B + 50; 
6 write(B); 250 
7 read(A); 20 
8 A:=A- 50; 
9 write(A); -30 
10 read(B); 250 
11 B:= B + 100; 
12 write(B); 350 

Table 8.10 Schedule S4 

Steps Transaction T\ Transaction T2 Values 
1 read{A); 200 
2 A:= A-50; 
3 write{A); 150 
4 read(B); 200 
5 B :=B+ 50; 
6 write(B); 250 
7 read{B); 250 
8 B := B + 100; 
9 write{B); 350 
10 read{A); 150 
11 A:=A*O.I; 
12 write{A); 15 

For example, the conflict digraph of both 51 and 52 is given in Figure 8.1 (a), while the conflict 
digraph of 53 is given in Figure 8.1 (b) and the conflict digraph of 54 is given in Figure 8.1 (c). 

Theorem 8.1 A schedule 5 E SCHED(T) is conflict-serialisable if and only if res) is acyclic. 

Proof. Assume that res) is acyclic. Since the vertices of an acyclic digraph can be sorted in 
topological order, we can list the elements ofT, i.e. Tl , T2, . .. , Tn, in such a way that i < 
j if there exists an arc from Ti to Tj in res) . Consider the serial schedule, say So, resulting 
from concatenating the sequence of operations of the set of transactions {Tl, T2,"" Tn} 
topologically sorted. 

We next show that 5 =c So. Let OP(Ti) stand for the set of operations in transaction h If 
(0,0') E conf (5), where 0 E OP(Ti) and 0' E OP(Tj), then there exists an arc in r(5) and thus 
i < j. Hence, in So the operations of Ti precede those of Tj and therefore (0,0') E conf(so). 
Correspondingly, if (0, 0' ) E conf(so), then i < j. The implication of this is that 0,0' are 
conflicting operations in 5 and consequently (0, 0') E conf(s). Since conf(s) = conf(so), it 
follows that 5 =c So. 

Conversely, assume that 5 is a conflict-serialisable schedule. Let So be a serial schedule such 
that 5 =c 50. If r(s) = (T, E) is cyclic, then there must exist a sequence of transactions, say Tio' 
Til' Til"'" Ti~' such that (Tiq, Tiq+l) E E, 0 .:s q .:s J-t - 1, and (Ti~' Tio) E E. This leads to a 
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Tl T2 .• ----... 

(a) (b) (c) 

Fig 8.1 Conflict digraphs 

contradiction, because in the serial schedule So the operations of Till follow those of Tio as a 
result of the path Tio -+ Til -+ ... Till_2 -+ Till_I' whilst the operations of Til' precede those 
of Tio as a result of the arc (Til" Tio) E E. Thus f(s) must be acyclic. 0 

A more natural view of schedule serialisability would be based on view-equivalence, which is 
a form of equivalence less stringent than that of conflict-serialisability given in Definition 8.7. 

Consider two schedules 5, S' E SCHED(T). The schedules 5 and S' are said to be view
equivalent if the following three conditions are satisfied: 

1) For each data item x, if Tj reads the initial value of x in 5, then Tj must, in 5', also read 
the initial value of x, namely IR(s) ::: IR(s') (see Definition 8.9). 

2) For each data item x, if Tj executes read(x) in 5, and that value was produced by Tj (if 
any), then Tj must, in s', also read the value of x that was produced by Tj. 

3) For each data item x, the transaction (if any) that performs the final write(x) in 5 must 
also perform the final write(x) in 5', namely FW(s) ::: FW(s') (see Definition 8.9). 

Conditions 1 and 2 ensure that each transaction reads the same values in both schedules s 
and 5' and, therefore, performs the same computation. Condition 3, together with conditions 
1 and 2, ensures that both 5 and 5' result in the same final database state. 

It is easy to verify that schedules 51 and 52 of Tables 8.7 and 8.8, respectively, are view
equivalent, whilst schedules 51 and 53 of Table 8.9 are not view-equivalent. 

Definition 8.9 (Set of initial reads and final writes) Given a schedule 5, we denote by IR(s), 
the set of initial reads, which comprises the first operations read(Tj, x) for every data item x 
for which such an operation exists. Correspondingly, FW(s), the set ofJinal writes, comprises 
the final operations write(Tb x) for every data item x for which such an operation exists. • 

In the context of view-equivalence in a schedule 5, Tj reads a data item x from Tj, i =I 
j, if read(Tj, x) E OP(Tj) follows write(Tj, x) and no operation write(Tk, x) exists between 
write(Tj, x) and read(Tj' x) for any transaction Tk participating in s. 

The concept of a transaction reading a data item from another transaction allows us to give 
a more concise definition of view-equivalence as follows. In essence conditions (1) and (2) 
above coalesce. 
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Defmition 8.10 (View-equivalence) Let h Tj E T and 5, 5' E SCHED(T). The schedules 5 

and 5' are view-equivalent, denoted by 5 =v 5', if 

1) Tj reads from Ti in 5 if and only if Tj does this in 5' also; and 

2) FW(s) = FW(s'). • 
We observe that a pair of schedules can be view-equivalent but not conflict-equivalent. 

Theorem 8.2 For all 5,5' E SCHED(T), if 5 =c 5' then 5 =v S. 

Proof. Assume that 5 and 5' are conflict-equivalent. If Tj reads from Ti in 5, then for some data 
item A write(Ti, A) E OP(Ti), read(Tj' A) E OP(Tj), with the latter following the former with 
no write(Tk> A) between them. Hence (write(Ti, A), read(Tj, A)) E conf(s) = conf(s') and in 
5' there is no write(Tk>A) between write(Ti' A) and read(Tj, A). Consequently, in 5' Tj reads 
from Ti. The reverse can be proved similarly. This proves (1) of Definition 8.10. 

Assume that write(T/, A) is the last write of data item A in s. If in 5' the last write of data 
item A, write(TI', A), is different, I #- 1', then write(TI', A) would come after write(h A) in 5'. 

Consequently, (write(T/, A), write(TI', A)) E conf(s'). Since conf(s) = conf(s'), in 5 write(TI', 
A) would follow write( T/> A), which contradicts the fact that write(T/> A) is the last write of the 
data item A in s. This proves (2) of Definition 8.10 0 

The concept of view-equivalence leads to the concept of view-serialisability. We say that a 
schedule 5 E SCHED(T) is view-serialisable if it is view-equivalent to a serial schedule. The 
formal definition now follows. 

Defmition 8.11 (View-serialisability) A schedule 5 E SCHED(T) is view-serialisable, if there 
exists a serial schedule So E SCHED(T) such that 5 =v So. • 

It has been shown by Papadimitriou [Pap79) that testing for view-serialisability is an NP
complete problem. On the other hand, testing for conflict-serialisability is a polynomial-time 
problem. This is realised by applying Tarjan's depth-first algorithm [Tarn) to res) and then 
identifying at least one back edge (arc), which signifies the existence of a cycle. 

A more general notion of serialisability than view-serialisability is that of final-state 
serialisability. We say that two schedules are final-state equivalent if they satisfy condition 
(2) of Definition 8.10, i.e. for any input state of the database the resulting output states from 
these two schedules,s and S, are identical. A schedule is final-state serialisable if there is some 
serial schedule which is final-state equivalent to it. To verify the generality of this notion, the 
reader can construct a schedule which is final-state serialisable but not view-serialisable. It 
was shown in [Pap79) that the problem of testing whether a schedule is final-state serialisable 
is NP-complete. 

We motivate the next type of serialisability via an example. Consider the schedule 5 induced 
by the transaction history shown in Table 8.11, which is final-state serialisable but neither 
conflict-serialisable nor view-serialisable. For the sake of simplicity, assume that the database 
contains only two distinct data items A and B. Moreover, let us partition the database into 
two subdatabases one containing the data item A and the other containing the data item B; for 
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example, in the context of a distributed database each subdatabase may be stored at a physically 
different site. Let us construct two 5ub5chedule5, 51 and 52, which partition the schedule 5 in 
accordance with the data items in each respective subdatabase. In this case SI contains steps 
1 and 2 and 52 contains steps 3 and 4. It is evident that both SI and 52 are conflict-serialisable. 
In general, if a situation such as this arises then we say that s is predicatewise serialisable 
[RMB+98]. 

Table 8.11 A schedule which is final-state serialisable 

Steps Transaction Tl Transaction T2 
1 write(A); 
2 read(A); 
3 write(B); 
4 read(B); 

The concept of the execution of a schedule assumes that the database is left in a consistent 
state. Thus in the case of predicatewise-serialisability the best that we can guarantee is that 
after the execution of each subschedule the resulting subdatabase is consistent. However, in 
general, this does not guarantee that the database as a whole is consistent. Thus in order 
for predicatewise-serialisability to make sense we must impose further conditions so that 
sub database consistency implies database consistency. In [RMB+98] several such conditions 
are given. 

By definition a transaction preserves database consistency, hence a serial execution of 
transactions also preserves consistency. Since every serialisable execution has the same effect 
as a serial execution, we conclude that a serialisable execution must indeed preserve database 
consistency. It makes sense therefore for a database system to permit serialisable executions. 

There are various approaches to enforcing serialisability. The two most commonly used 
approaches are locking mechanisms and timestamp ordering. Other non-locking techniques, 
such as serialisation graph testing, also merit consideration; this technique is considered in 
some detail in Section 8.8. 

We close this section with a discussion of serialisability in the context of the IDM model, 
which was mentioned at the beginning of Section 8.1. A schedule is serialisable in the IDM 
model, if it is equivalent to some serial schedule, i.e. for all input databases the schedule has 
the same effect on the database as the effect of the execution of the transactions in some serial 
order. (Recall Definition 3.42 of a transaction and its effect on a relation, and Definition 3.43 
of equivalent transactions, which were both given in Subsection 3.2.4 of Chapter 3.) It has 
been shown by Vianu and Vossen [VV92] that testing for serialisability in the IDM model is 
an NP-complete problem. A polynomial-time testable subclass of schedules are the schedules 
that are locally serialisable. A schedule is locally serialisable if, on repetitive invocation 
of the commutativity rules for pairs of consecutive updates, we obtain a serial schedule. 
(The commutativity rules for pairs of updates were given in [KKPV87, KV91]; for example, 
we can insert two tuples in any order, and we can delete two sets of tuples in any order.) 
Local-serialisability in the IDM model is analogous to conflict-serialisability in the RW model, 
in the sense that two updates that are not commutative can be viewed as conflicting. This 
observation gives rise to a polynomial-time test for local-serialisability based on the concept 
of a local conflict digraph, which is analogous to the conflict digraph in the RW model. An 
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interesting result, shown in [VV92], is that in the IDM model, if we restrict updates to be 
only insertions and deletions, i.e. we disallow modifications, then serialisability becomes 
polynomial-time testable. As a final remark we note that, due to the fact that the IDM model is 
defined within the relational model, we are also able to use knowledge of integrity constraints, 
such as functional dependencies, for the purpose of testing serialisability. 

8.3 Locking 

Building on the serialisability concept that concurrent execution of transactions should have 
the same result as a serial execution, then some form of control is required to enforce 
serialisability. By ensuring that access to data is in a mutually exclusive manner, we can 
guarantee that, while one transaction has access to a data item, no other transaction can 
modify that particular data item. The most widely used mechanism for enforcing mutually 
exclusive access to data is locking. 

Over time many refinements to the general idea oflocking data items have been developed, 
with a variety of locking modes currently in use. These modes oflocking are the subject of this 
section. 

Although there are various modes in which data items may be locked, typical locking 
mechanisms have two basic modes of lock: shared and exclusive. If a transaction TJ obtains 
a lock in shared mode on a data item, then TJ can read but not update the data item, whilst 
if TJ obtains a lock in exclusive mode on a data item, then TJ can both read and update the 
data item. In other words a shared lock permits other transactions to read the same data item 
concurrently, but prevents any updating of this data item. 

Definition 8.12 (Well-formed transaction) A transaction is considered to be well-formed if 
it always locks a data item in shared mode before reading it and in exclusive mode before 
updating the data item. Two transactions are in conflict if they want to lock the same data 
with two incompatible modes oflock. • 

Locking has a number of problems associated with it. The problem of deadlock is perhaps 
the most undesirable side-effect of locking and its resolution represents an important area 
of concurrency control theory. Deadlock is caused by a cyclical wait of transactions holding 
resources required by other transactions and waiting in turn for resources held by these other 
transactions. Another problem is the lock granularity problem, which is the size of the data 
item (sub tuple, tuple, relation, or an entire database) to be locked. Clearly, it is undesirable to 
lock an entire database or relation when a transaction intends, for example, only to access one 
value in a particular tuple of that relation. Both of theses important issues will be discussed 
further in Sections 8.4 and 8.5, respectively. 

Whilst locking is the most widely used strategy to prevent undesirable interleaving, it should 
not be assumed that it is the best approach in all contexts. Clearly, in single-user databases 
there is no risk of conflicting access, so locking is not needed. Similarly, reference databases 
such as bulletin boards and technical reference databases allow concurrent read access only. 
Therefore, the use of locks in such databases would impose an overhead on the DBMS's 
performance, without being necessary to maintain the integrity of the database. Finally, 



424 Chapter 8. Concurrency Control 

because data in a distributed database is stored over multiple sites or nodes, the management 
of access to data items by locking may prove to be an inefficient and expensive approach. 

We next consider various types oflock. We begin with exclusive locks. The simplest and 
most commonly used lock strategy to prevent non-serialisable transactions from corrupting 
one another is the exclusive lock. Exclusive locking gives a transaction an exclusive hold on 
the data item it wishes to access or update, not allowing any other transaction to access that 
data item for the duration of the lock. By prohibiting competing updates the transaction 
knows that its own read or update will be executed safely, and by preventing competing read 
operations the locking transaction guarantees that other transactions will be unaffected if it 
decides to update the locked data item. 

Exclusive locking works on the idea that a transaction locks a data item on access and that 
another transaction wanting to access that data item must wait for the lock to be released. So 
if transaction TJ holds an exclusive lock on a tuple t, then a request from transaction T2 for a 
lock on t will cause T2 to go into a wait state until TJ releases its lock on t. When a transaction 
wishes to update a data item it automatically acquires an exclusive lock on it. 

A lock can be thought of as a control block that includes the identity (ID) of the locked data 
item and the ID of the transaction holding the lock. The locking mechanism in a DBMS is 
implemented by means of a lock manager. The lock manager maintains a lock table where it 
records the locks that are currently operational on any data item. A transaction begins with 
the DBMS searching for the required data item in the database. If the data item is already 
locked then the lock manager instructs a component, called the transaction scheduler (see 
Figure 8.9), to place the requesting transaction in a wait queue until the required lock or locks 
become available. The lock manager then provides the necessary locks for the transaction to 
proceed. Next the read and write operations are executed. Exclusive locks are retained until 
the transaction ends with a commit or abort. Early releases of locks can lead to the type of 
concurrency control problems discussed in Section 8.1. 

We now discuss some problems associated with exclusive locking. Exclusive locking ensures 
serialisability and solves the lost update, inconsistent retrieval and cascading abort anomalies 
(see Table 8.12). In Table 8.12 rx(A) stands for "request exclusive lock on data item A", un(A) 
stands for "unlock data item A" and A is initialised to 200. As can be seen from this table 
the lost update problem exemplified in Table 8.1 has been rectified by the use of locks, with a 
noticeable loss of concurrency. 

Unfortunately, if we depend solely on exclusive locking, then all these anomalies are solved 
at the expense of greatly reducing the level of concurrency. Moreover, the overheads incurred 
by operating the lock manager may have a detrimental effect on the performance of the DBMS 
in terms of processing speed and storage space required for the lock table. 

We note at this point that the exclusive locking mechanism described above is prone to the 
following problems: 

• Difficulties in ascertaining the appropriate data items to lock. 

• Dangers of premature lock release. 

• Blocking of resources via deadlock. 

• Lack of concurrency because access to data items is restricted to single transactions. 
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Table 8.12 Illustration of exclusive locking 

Steps Transaction TJ Transaction T2 Values 
1 rx(A); ... granted 
2 read(A); 200 
3 rx(A); .. .fail 
4 A :=A *2; ... wait 
5 write(A); ... wait 400 
6 un(A); ... wait 
7 commit; ... wait 
8 rx(A); ... granted 
9 read(A); 400 
10 A:= A + 30; 
11 write(A); 430 
12 un(A); 
13 commit; 

It is also worth mentioning at this juncture that many reputable database products make 
use of exclusive techniques to ensure serialisability. 

We next look at shared locks. In a database environment transactions that query data 
items without updating them are common. A shared lock can be applied to a data item 
when a transaction only wishes to read that data item, with the certain knowledge that another 
transaction is not going to change the data item during the read operation. No other transaction 
can gain an exclusive lock to update a data item if another transaction already holds a shared 
lock on that data item. (We call such modes of lock, in this case shared and exclusive, 
incompatible.) Two or more transactions can, however, hold shared locks on the same data 
item simultaneously without any danger of interference between transactions. This helps to 
alleviate the loss of concurrency resulting from the dependence solely on exclusive locks. 

We now define the notion of compatibility matrix in the context of a given set oflock modes. 

Definition 8.13 (Compatibility matrix) Assume that a transaction Ti requests a lock of mode, 
say ml> on a data item A on which another transaction Tj, i '# j, currently holds a lock of mode, 
say m2. If transaction Ti can be granted immediately a lock of mode ml on data item A, 
notwithstanding the fact that Tj has a lock of mode m2 on A, then we say that mode ml is 
compatible with mode m2, otherwise ml is incompatible with m2. The compatibility relation 
can be represented by a matrix, called the compatibility matrix. • 

In order to read a data item a transaction must first request a lock on the data item in shared 
mode. If the data item is already locked by another transaction in an incompatible mode, 
the requesting transaction must wait until all incompatible locks have been released. While 
shared locks on the same data item are compatible with each other, neither a shared and an 
exclusive lock nor two exclusive locks are permitted (see Table 8.13). A shared lock on a data 
item may require upgrading to an exclusive lock when a read operation needs to progress to 
an update operation, but can do so only if there are no other shared locks on the data item 
(see Table 8.14). 

In Table 8.14 rs(A) stands for "request shared lock on data item A" and A and B are both 
initialised to 200; this table illustrates the upgrade from shared lock to exclusive lock at 
step 8. If there are other. shared locks on the said data item, the transaction must wait for 
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the incompatible locks to be released before an upgrade of the lock to exclusive mode can 
proceed. As a result of this waiting period, deadlock remains a potential problem. 

Table 8.13 A lock compatibility matrix of shared and exclusive locks 

SHARED EXCLUSIVE 
SHARED YES NO 

EXCLUSIVE NO NO 

As well as being used in conjunction with exclusive locks, shared locks are employed almost 
exclusively in certain situations. Such a situation might arise, for example, in a statistical 
database of census data, where many people may wish to query the database simultaneously 
while few changes to the data will be required. In general, statistical databases allow statistical 
output only, without permitting the user to access the underlying data. In this situation 
there is little danger of interference, in which case speed may take precedence over safety, 
thus allowing the operating system to schedule simultaneous read requests as and when it is 
required. 

Table 8.14 Example showing the use of shared and exclusive locks 

Steps Transaction Tl Transaction T2 Values 
1 rs(A); ... granted 
2 read(A); 200 
3 rs(A); ... granted 
4 read(A); 200 
5 rs(B); ... granted 
6 read(B); 200 
7 rx(A); ... fail 
8 rx(B); ... granted ... wait 
9 B:=B+ 100; ... wait 
10 write(B); ... wait 300 
11 un(B); ... wait 
12 un(A); ... wait 
13 commit; 
14 rx(A); ... granted 
15 A :=A*3; 
16 write(A); 600 
17 un(A); 
18 commit; 

A DBMS using shared locks suffers from a tendency to produce an increased number of 
deadlocks, while exclusive locking results in a lower degree of concurrency. In an attempt to 
limit these difficulties some DBMSs employ an additional promotable lock, called the update 
lock. An update lock on a data item indicates that a transaction may want to update the data 
item on which it has such a lock. Thus any transaction that intends to update a data item 
must first acquire an update lock on it. Subsequent update of the data item will promote the 
update lock to an exclusive lock when this is required. This reflects more closely the read/write 
requirements of many transactions, where a data item is read prior to being updated. Shared 
locks are compatible with update locks, but update locks are not compatible with shared 
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locks; thus in this case compatibility is not symmetric. Neither are update locks compatible 
with other update locks or exclusive locks (see Table 8.15). A transaction cannot obtain an 
exclusive lock on a data item which has been locked in update mode by another transaction. 
We note that a transaction may not be safe from anomalies if it writes data items after reading 
other data items locked in update mode by another transaction. 

Table 8.15 Update lock compatibility matrix 

SHARED UPDATE EXCLUSIVE 
SHARED YES NO NO 
UPDATE YES NO NO 

EXCLUSIVE NO NO NO 

Once a transaction has acquired an update lock on a data item, the transaction is guaranteed 
to be able to update that data item eventually. By inspecting Table 8.16, where two concurrent 
transactions TJ and T2, with TJ using an update lock and T2 using a shared lock, are accessing 
the same data item, we see that promotion of the update lock at step 4 is not granted because 
T2 holds a shared lock on data item A. When the shared lock is released, the update lock is 
promoted automatically to an exclusive lock at step 6. In this table ru(A) stands for "request 
update lock on data item A", update(A) stands for "request to promote update lock to exclusive 
lock on data item A" and A is initialised to 200. 

Table 8.16 Example of update and shared lock modes 

Steps Transaction T1 Transaction T2 Values 
1 ru(A); ... granted 
2 rs(A); ... granted 
3 read(A); 200 
4 update(A); 
5 ... wait un(A); 
6 write(A * 2); 400 
7 un(A); 

If a transaction acquires an update lock on a data item, but does not subsequently update 
that data item, then the update lock can be downgraded to a shared lock. In general, update 
locking allows slightly more concurrency than direct exclusive locking. 

In the context of what follows by database we mean the entire database which is assumed 
to be composed of exactly a fIxed number of areas. In essence the areas constitute a partition 
of the database. 

When we change a data item we are implicitly, by association, changing the tuple (record), 
relation (table/ftle), area and database containing the data item. The level at which a data item 
is locked is referred to as locking granularity (see Section 8.5). Fine granularity is locking, for 
example, at tuple level, while locking at relation or database level is called coarse granularity. 
It is necessary to control the effects of fIne granule locking on coarse granules in order to 
identify any potential conflicts. To this end we defIne a hierarchy of granularities whereby 
small granularities are nested within larger ones. The hierarchy can be defIned graphically by 
a rooted tree, whose highest level, i.e. the root node, represents the entire database, and the 
lowest level, i.e. the leaf nodes, represent the tuples in the relations of the database. 
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The aforesaid control can be achieved by giving each higher level lock an associated intent 
lock, in order to indicate where small granules are nested within larger ones. For example, 
each shared lock at fine granularity acquires an intent shared lock at all higher levels in the 
database. Thus, the transaction scheduler (see Figure 8.9) in the DBMS can ensure that there 
are no locks on ancestors of a data item that implicitly lock the data item in a conflicting 
mode before a request to lock the data item is granted. In Table 8.17 (see [BK91J) we use the 
abbreviations: S = Shared, X = Exclusive and I = Intent; this table presents the compatibility 
matrix involving the intent lock. 

Table 8.17 Intent lock type compatibility matrix 

x S IS SIX IX 
X NO NO NO NO NO 
S NO YES YES NO NO 
IS NO YES YES YES YES 

SIX NO NO YES NO NO 
IX NO NO YES NO YES 

There is an intent lock associated with each shared and exclusive lock. An Intent Shared (IS) 
lock implies that explicit locking is being done at a lower level in the database with shared locks 
only. Similarly, an Intent Exclusive (IX) lock implies that locking with shared or exclusive 
locks is being done at a lower level. Finally, a Shared Intent Exclusive (SIX) lock signifies that 
within the data item locked explicitly by a shared lock, explicit exclusive locking takes place 
at a lower level. Prior to granting a shared lock on a data item, say a sub tuple, the DBMS 
must first set an intent shared lock on the database, area, relation, and tuple, for example, that 
contain the data item (see Table 8.18). 

In Table 8.18 we assume a hierarchy (rooted tree) consisting of four levels of nodes. Below 
the root node (the highest level) are nodes of type area; each area has nodes of type relation 
as its children and contains exactly those relations which are its children nodes. No relation 
resides in more than one area. Finally, each relation has nodes of type tuple as its children. 
As before each relation comprises exactly those tuples that are its children nodes and no tuple 
resides in more than one relation. It is further assumed that area 1 contains relation 1. Thus, 
in the context of this table, T2 and T4 are attempting incompatible locks at the database level, 
while T2 and T3 are requesting incompatible locks at the relation level. So T2 must wait for T3 
and T4 to commit. 

The intent locking protocol can be summarised as follows: 

1) All locks should be acquired in a top-down (root-to-Ieat) order. 

2) Prior to requesting a shared or intent shared lock on a node (level), all ancestor nodes 
must be locked with intent exclusive or intent shared locks. 

3) Prior to requesting an exclusive, shared intent exclusive, or intent exclusive lock on a 
node (level), all ancestors must be locked with intent exclusive or shared intent exclusive 
locks. 

4) All locks should be released in bottom-up (leaf-to-root) order. 

Intent locking enables the DBMS to tell whether other transactions are already changing 
the relation containing the data item being accessed. It also tells the database system 



8.3. locking 

Transaction TJ := Read tuple 1 in relation 1 
lock the database with intent shared lock 
lock area 1 with intent shared lock 
lock relation 1 with intent shared lock 
lock tuple 1 with a shared lock 

Transaction T2 := Write tuple 2 in relation 1 
lock the database with intent exclusive lock 
lock area 1 with intent exclusive lock 
lock relation 1 with intent exclusive lock 
lock tuple 2 with an exclusive lock 

Transaction T3 := Read all tuples in relation 1 
lock the database with intent shared lock 
lock area 1 with intent shared lock 
lock relation 1 with a shared lock 

Transaction T4 := Read the entire database 
lock the database with a shared lock 

Table 8.18 Implementation of intent locking showing the order and levels of locks 
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whether an ancestor of the data item has an exclusive lock granted to another transaction. 
This enhanced locking mechanism affords more concurrency and may also reduce locking 
overheads, particularly in applications that include a mix of short transactions, which access 
only a few data items, and long transactions, which access an entire relation or a set of 
relations. Intent locking facilitates relatively simple upgrades from shared to exclusive locks 
and is employed in DBMSs to alleviate some of the concurrency loss and deadlock problems 
that are caused by using only shared and exclusive locks. 

We next look at the problem of how to allocate locks. We consider three ways of allocating 
locks, namely: 
Transaction scheduling. Transaction scheduling is a static approach to the allocation oflocks. 
The idea is simply that a transaction requests locks on all the data items it may need, before it 
starts executing. If it is not granted all of its requested locks then it is queued. The problems 
with this approach are: 

• Maintaining the queue and on each commit checking whether any waiting transaction 
can have its set of desired locks granted. 

• Dealing with priority requests and hence the additional overheads of keeping a priority 
queue. 

• The possibility of livelock, whereby a transaction may be unlucky enough never to have 
a high enough priority to be granted its full set of desired locks. Avoiding livelock adds 
complexity to the DBMS. 

• The difficulty of determining in advance of processing which locks are needed. For 
safety, it may be necessary to lock too much of the database, thereby reducing 
concurrency. 

Transaction rejection. An alternative to transaction scheduling is simply to reject any 
transaction that cannot immediately obtain the locks it requires and retry at a later time. 
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Although this approach has less overheads than transaction scheduling in maintaining queues, 
it is prone to livelock, when several transactions are waiting to access a locked data item 
and access is granted in a random manner. In order to make a rejection policy workable, 
a mechanism is required to coordinate retries. Like the transaction scheduling approach, 
transaction rejection suffers from uncertainty about the set of desired locks and is only viable 
for batch run tasks. 

Dynamic lock allocation. An alternative to the static allocation of locks we have so far 
considered is to grant locks dynamically on a need to access basis, as the locks are required. 
The important advantage of this approach is that it increases concurrency and throughput by 
locking data items only if a lock is required. However, the benefits of dynamic lock allocation 
are only fully realised if the locks are not prematurely released; this requirement can be met by 
employing a two-phase locking policy. This locking policy is analysed in the next subsection. 

8.3.1 Two-Phase Locking Policy 

Any transaction that releases a lock and then goes on to acquire another lock always runs the 
risk of producing incorrect results (see Table 8.19). Data items A and B are both initialised 
to 200. As can be seen from Table 8.19 transaction T2 updates data item A after transaction 
T, releases its lock at step 4. Hence transaction T, could be incorrect as it is based on an 
earlier out of date read of data item A. So a transaction should not release any lock until it 
has acquired all the locks necessary to complete its processing. This strategy is known as 
Two-Phase Locking (2PL), whereby the set of locks of each transaction has a growing phase 
for acquiring locks and a latter shrinking phase (or release phase) when it is safe to release its 
locks. 

Table 8.19 Two transactions not obeying the two-phase locking policy 

Steps Transaction T\ Transaction T2 Values 
I rs(A}; ... granted 
2 read(A}; 200 
3 rx(A}; ... fail 
4 un(A}; .. . wait 
5 rx(A}; .. . granted 
6 read(A}; 200 
7 A := A+ 100; 
8 write(A); 300 
9 un(A}; 
10 commit; 
II rx(B}; ... granted 
12 read(B}; 200 
13 B := B + 150; 
14 write(B}; 350 
15 un(B}; 
16 commit; 

One solution to the problem identified in Table 8.19 is to ensure that all transactions in a 
schedule follow a set of rules, called a locking protocol, which indicates when a transaction may 
lock and unlock each data item. Basic two-phase locking ensures that a transaction cannot 
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request any locks after it has released a lock. During the growing phase of this protocol new 
locks are acquired, while locks are only released during the shrinking phase. In order to make 
basic 2PL work in practice, shared locks may be released at any time during the shrinking 
phase, but exclusive locks must be held until the transaction commits; these two rules preserve 
serialisability and guarantee the isolation of transactions. 

Theorem 8.3 Every schedule that obeys the basic 2PL protocol is conflict-serialisable. 

Proof. Assume that a schedule s, which satisfies the basic 2PL protocol, is not 
conflict-serialisable. Then there must exist in r(s) a cycle Til' Til" .. , Tip, Til' with P > 1. 
That is to say, two conflicting operations exist in any two consecutive transactions Tik, Tik+ I, 1 
.::: k .::: p - 1, and in Tip, Til' Consequently an un(Tik' x) in Tik is followed by either a read lock 
on a data item x or a write lock on x in Tik+I' 1 .::: k .::: p - 1, and an unlock operation in Tip is 
followed by a locking operation in Til' Thus un(Til' x) is followed by a locking operation in 
Til; however, this contradicts the basic 2PL protocol. 0 

Two-phase locking is the most widely used of the locking mechanisms employed in DBMSs. 
Unfortunately, the basic 2PL protocol described above restricts the number of possible 
transaction schedules and is prone to deadlock. A number of refinements of the protocol 
have been suggested to overcome these shortcomings, thereby resulting in aggressive and 
conservative implementations. 

The most aggressive 2PL protocol implementation requires each transaction to request a 
lock on each data item immediately prior to reading or updating the data item. This approach 
increases concurrency by liberalising the approach to locking, at the expense of increasing 
the possibility of conflicting operations. In contrast to the aggressive approach, the most 
conservative 2PL protocol implementation requires each transaction to request all its locks at 
the beginning of the transaction. This approach removes the possibility of conflicting locks, 
but in doing so it decreases the level of concurrency and increases the level of transaction 
queuing. The requirement to pre-declare all locks means that the full read and write sets of a 
transaction must be known in advance of any processing. 

Determining the most suitable version of 2PL for a particular application depends upon 
the frequency of conflict between concurrently executing transactions. At low conflict levels 
aggressive schedules require few operations to be rejected, while conservative schedulers 
avoid rejecting operations at high conflict levels by deliberately delaying transactions until all 
required locks are available. There is currently no precise set of rules available for tailoring 
a scheduler to the performance specification of an application; thus intuition, trial and error, 
and experience play an important role. In practice, however, a refined version of the basic 
2PL, called strict 2PL, which requires all locks to be released at the commit or abort stage of a 
transaction, is mostly used. 

Locking on its own does not ensure a consistent database or efficient use of resources. The 
performance of a particular locking mechanism can be evaluated in terms of the ACID test 
and the following three criteria: 

Throughput. The number of transactions that successfully complete, and therefore the average 
time taken for each successful transaction. This provides a crude guideline to the effectiveness 
of a database system. 
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T4 •• -------- T3 

Fig 8.2 Circular wait of transactions resulting in deadlock 

Fairness. Does each transaction have an equal chance of completion? If only a subset of all 
users have successful transactions then the other users will not be very satisfied by the database 
system. 

Cost. A database may exhibit high throughput and fairness, but still be costly in terms of 
memory and processing overheads. 

As an epilogue we mention the recent study of Thomasian [Th093] pertaining to the 
performance of 2PL. In this work it is shown that system performance is determined by 
the fraction of transactions that are blocked, i.e. transactions that are waiting due to the denial 
of a lock request. In particular, if this fraction exceeds a certain value then thrashing occurs, 
i.e. throughput drops when the number of transactions in the database system is increased. 

8.4 Deadlock 

Deadlock or deadly embrace is an error condition in which processing cannot continue because 
two elements of the process are waiting for an action from the other. In our context it results 
from two or more transactions requesting resources, resulting in a circular wait situation (see 
Figure 8.2). 

Deadlock is an undesirable side-effect of locking. The most simple and by far the most 
common deadlock situation arises when one transaction has locked a data item that is needed 
by another transaction which has done exactly the same thing with a different data item (see 
Table 8.20). In this case transaction TJ is waiting for a data item held by transaction T2 , which 
in turn is waiting for another data item held by transaction TJ, thus resulting in a circular wait. 

Table 8.20 Example of a deadlock situation 

Steps Transaction T\ Transaction T2 
1 rx(A); ... granted 
2 rx(B); ... granted 
3 rx(B); .. .fail 
4 ... wait rx(A); .. .fail 
5 ... wait ... wait 
6 ... wait ... wait 

We next consider the conditions that induce deadlock. Four necessary conditions leading 
to deadlock are presented. All four conditions must obtain for deadlock to occur. The 
four conditions are: mutual exclusion, hold and wait, no pre-emption, and the circular wait 
exhibited above. Mutual exclusion involves at least one data item being held in exclusive 
mode. For the hold and wait condition to be satisfied there must exist a transaction that is 
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holding at least one data item and is waiting to access additional data items that are being 
held by other transactions. No pre-emption implies that a data item can only be released 
voluntarily by the transaction holding it, after the transaction has completed its task. Finally, 
for the circular wait condition to be satisfied there must exist a set of waiting transactions T" 
T2, . .. , Tn such that T, is waiting for a data item held by T2, T2 in turn is waiting for a data item 
held by T3 etc., and finally Tn is waiting for a data item held by T,. All techniques designed 
to deal with deadlock attempt to prevent one of these conditions arising, thus eliminating the 
possibility of deadlock occurring. 

Deadlock may occur for different reasons; herein we discuss only four types of deadlock, 
namely: circular deadlock, conversion deadlock, distributed deadlock, and phantom 
deadlock. 

Circular deadlock. Of the estimated 2% maximum of transactions that result in deadlock 
[GHOK81] circular deadlock accounts for approximately one in twenty. As a result of a 
circular wait arising among two or more transactions, processing is brought to a standstill 
(see Figure 8.2). In fact, this type of deadlock rarely involves more than two transactions. 
However, if it is not remedied it will eventually bring the whole database system to a halt. 

Conversion deadlock. A deadlock may also arise when a single data item is accessed by 
two transactions and incremental claims are accepted (see Table 8.21). When a read lock is 
converted to a write lock the read lock must be maintained to satisfy the requirements of2PL. 
Conversion deadlock is in turn part of the circular wait type of deadlock, emanating from lock 
conversion. 

It is often unclear in advance of transaction initiation whether a write operation will be 
required, and it is also undesirable to exclusively lock a data item until this is absolutely 
necessary. Hence lock conversion and its associated deadlocks are a common occurrence. 

Table 8.21 Example of deadlock reSUlting from lock conversion 

Steps Transaction T, Transaction T2 Values 
1 rs(A); ... granted 
2 read(A); 200 
3 rs(A); ... granted 
4 read(A); 200 
5 rx(A); .. .fail 
6 rx(A); ... fail 
7 ... wait ... wait 
8 ... wait ... wait 

Distributed deadlock. In the context of a distributed database, with data items and processing 
spread over different sites, deadlock between transactions at different sites cannot be detected 
from an individual site. Each site has access only to the local Waits-For-Graph (WFG) (see 
next section) which identifies circular wait cycles at that site. A global deadlock detector 
is required to combine the various local WFGs in order to identify a global deadlock (see 
Figure 8.3). The global deadlock detector can be run periodically at a chosen site to monitor 
distributed deadlocks. However, this incurs additional communications overheads resulting 
from joining together the local WFGs at the different sites. 
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Fig 8.3 Distributed deadlock over two sites 

Phantom deadlock. Adding to the complexity of distributed deadlock detection is the 
possibility of a phantom deadlock being identified. For instance, if transaction T\ aborts 
because of a system failure such as a failed buffer, then a deadlock detected between, say, 
transactions T\ and T2, no longer exists. However, the global deadlock detector may not be 
aware of T\ 's abort so it unnecessarily aborts T2 to break the phantom deadlock between the 
two transactions. 

There are two general approaches to dealing with deadlock: deadlock prevention which aims 
to avoid deadlock by preventing it from occurring in the first place, and deadlock detection 
which aims to identify the deadlocks that have arisen and then force one transaction to release 
its locks so that the other transactions involved in the deadlock can proceed. This means that 
one transaction is aborted. In practice, deadlocks rarely involve more than two transactions, 
so the volume of rollbacks resulting from deadlock detection is limited. 

8.4.1 Deadlock Detection 

Deadlock detection methods are used in database systems that allow deadlock to occur. The 
goal of detection is to identify any deadlocks that have occurred, and to determine precisely 
those transactions and data items involved in a deadlock so that the deadlock can be eliminated 
from the database system. Two methods of deadlock detection are widely used, namely: 

1) Waits-For-Graphs (WFGs): data item allocation and request digraphs, and 

2) Timeout Methods: timeout detection, lock count detection, and deadline detection. 

Waits-for-graphs. Detection of deadlock via WFGs involves identifying a cyclical wait 
in a digraph of transaction interdependence. A detection algorithm can be invoked at 
different intervals, depending on how frequently we expect deadlocks to occur and how 
many transactions will be affected. The frequency of deadlock will depend on the degree 
of interaction among transactions. To maintain a WFG and run a deadlock check for each 
lock may be too expensive in terms of processor and time overheads. The alternative is to run 
a less frequent check; for example, once per hour or when CPU utilisation drops below 40% 
or when a transaction times out [ACL87j. 

To detect deadlock the database system examines the WFG to identify and eliminate from the 
digraph of transaction interdependence all transactions that can complete without deadlock 
(see Figure 8.4). Digraph reduction can be performed in any order. The transactions that 
cannot be removed from the digraph constitute the deadlocked transactions (see Figure 8.5). 

Timeout methods enable the transaction scheduler (see Figure 8.9) to detect delays in 
processing, so that no transaction is blocked permanently. 
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Timeout detection. Timeout detection is a commonly used method, and is based on setting 
a clock on all lock requests by transactions. If a lock exceeds the specified time period, the 
database system assumes that deadlock may have occurred and action is taken. This action 
might simply be to assume deadlock and abort the transaction with the result that transactions 
which are waiting, but not deadlocked, may be aborted (see Figure 8.6). By using a longer 
timeout period the problem of unnecessary aborts is reduced; deadlocks may build up as 
timeout detection will take longer. Consequently, the timeout period must be finely tuned so 
that "must" abort transactions are actually deadlocked and moreover deadlocks are identified 
without unnecessary delay. A refinement of the basic timeout approach could be, instead of 
aborting delayed transactions, to check for deadlock by running a WFG. 

Lock count detection. This method keeps a count of the number of times a transaction makes 
an unsuccessful lock request. If the counter reaches a specified limit then deadlock is assumed 
(see Figure 8.7). 

Deadline detection. Deadline detection is another variation on the timeout approach. Each 
transaction is given a specification of the length of time required to complete processing. If 
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this specified time is exceeded, the database system assumes a deadlock has occurred (see 
Figure 8.8). 

The problem with all timeout methods of deadlock detection is tuning the clock or counter. 
On the one hand, if the timeout period is too short then transactions which are not in deadlock 
will be aborted unnecessarily. On the other hand, if the timeout period is too long then the 
response efficiency of the database system will be reduced as deadlocked transactions are left 
holding data items. 

8.4.2 Deadlock Prevention 

If one of the four necessary conditions for deadlock is eliminated, then it is impossible for 
deadlock to occur. Therefore, all techniques employed to prevent deadlock endeavour to 
eliminate one of these conditions. For example, to prevent deadlock by ensuring that the 
hold and wait condition never arises, a protocol can be used which requires each process to 
request and be allocated all of its data items before it starts execution, so a transaction that 
holds all the data items needed must be allowed to complete; the no pre-emption condition 
can be eliminated by enforcing the rule that if a transaction is refused access to a data 
item then it must release all the data items it currently holds, so that only the transaction 
holding the disputed data item is allowed to proceed. Or a transaction may be aborted and 
restarted if there is a risk that a deadlock might occur. All of these approaches eliminate the 
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DEADLOCK ....--

Fig 8.6 Timeout detection 

possibility of deadlock arising; thus the problems of deadlock detection and resolution are 
avoided. 

We next consider the implementation of two deadlock prevention strategies: 

Transaction scheduling, whereby transactions are scheduled for execution so that two 
transactions will not be executed concurrently if their data requirements conflict. This requires 
that each transaction's data requirements are known prior to execution time through explicit 
declaration or analysis of the program. As the precise requirements of a transaction are 
not generally known until run-time, this approach to scheduling tends to be unnecessarily 
pessimistic. Transaction scheduling is in fact a locking mechanism in which the lockable unit 
is an entire set of tuples and locks are applied at program initiation time instead of during 
execution. 

Transaction rejection, whereby deadlock prevention requires the database system to reject 
any lock request that could cause deadlock because a lock cannot be granted immediately. 
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This approach is more flexible than choosing a transaction for rollback, since the rejected 
transaction may wait for a short time and then try again. If repeated retries fail, the transaction 
can then be rolled back in an orderly fashion. 

Finally, another way of preventing deadlock is to assign an arbitrary linear ordering (see 
Subsection 1.9.2 of Chapter 1) to the data items, and thereafter require that all transactions 
acquire their locks according to this ordering. The following theorem establishes this assertion. 

Theorem 8.4 Let:s be an arbitrary linear ordering imposed on the data items and assume 
that all transactions acquire their locks according to this ordering. Then no deadlock can 
occur. 

Proof. Let T = {Tl> T2 , •• . , TpJ be a set of deadlocked transactions and let A il :s Ai2 :s .. . ::S 
Aim be the data items involved in the deadlock, namely each transaction Ti in T is waiting for 
some other transaction in T to unlock a data item, say Aiv' amongst A = {Ail ' Ai2' .. . , Aim}' 
We may assume that each Tj in T holds a lock on at least one of the data items Aiv E A, 
1) = 1, 2, . . . , m, otherwise we could remove Tj from T and still have a deadlocked set of 
transactions. Assume that Tk E T is waiting for a lock on Ail' where Ail is the least element 
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in A. It follows that Tk cannot hold a lock on any of the data items Aiv E A, with v '" 1. This 
leads to a contradiction. D 

In a centralised database system preventing deadlock is frequently too costly in terms of 
resource overheads; thus deadlock detection and resolution is the standard approach. The 
opposite tends to be the case in the context of a distributed database system. In general, 
prevention may be used if there is a high probability that the database system will suffer from 
frequent deadlocks. If there is a low occurrence of deadlock then detection and recovery may 
be preferred to deadlock prevention. 

Deadlock prevention is the ideal theoretical solution to the deadlock problem in the sense 
that prevention must be considered better than cure. However, the restrictions imposed on the 
database system by deadlock prevention can be difficult to accept and consequently deadlock 
avoidance is more acceptable. 
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The reader is referred to [IMBO 1 for a comprehensive overview of deadlock and its associated 
problems in the general context of the management of resources in computer systems. 

One issue related to the use of timeout methods, which needs to be addressed, is what to do 
with locks already granted when a transaction times out. It seems unnecessarily wasteful to 
remove locks on data items that no other transactions wish to access. In fact, only transactions 
holding data items requested by other transactions merit rollback. All other transactions could 
be allowed a delayed retry. Such modifications could give timeout methods more flexibility 
and compensate to some degree for the imprecise approach to deadlock detection. 

Finally, when we use WFGs to detect deadlock, all transactions, which remain after digraph 
reduction, are aborted; however, aborting one transaction may be sufficient to break the 
deadlock. The detection algorithm, therefore, should be able to identify a minimum set of 
transactions that need to be aborted in order to eliminate deadlock. 

8.5 Lock Granularity and Lock Manager 

Lock granularity is the size of the data item to be locked. The granularity oflocks is significant 
for the performance of a database system. Locking an entire relation, or a database is viewed 
as coarse granularity while locking a data item which is a tuple or sUbtuple is viewed as fine 
granularity. 

The lock granularity required by a transaction will depend on the operation being 
performed: To update a single tuple, only the relevant tuple need be locked, whilst multiple 
tuple deletion or update could require a whole relation to be locked. Since different 
transactions have different characteristics and requirements, it is desirable that the database 
system provide a range of locking granules, called multi-granularity locking. 

Not surprisingly, there is a trade off between providing multi-level granularity and the 
processing costs involved. We can improve the efficiency of the locking mechanism by 
considering the granularity of the locks to be applied. However, the overheads incurred 
by the database system in managing multi-granularity locking can outweigh the performance 
gains. Moreover, in order to provide multi-granularity locking it is necessary to use a lock 
instance graph so as to control the potential conflict oflocks. 

The larger the data items locked, the easier it is for the database system to administer the 
locks. Coarse granularity incurs low locking overheads, since there are fewer locks to manage; 
however, it reduces concurrency as operations are more likely to conflict. Thus transactions 
have a better chance of completing successfully at the expense of forcing more transactions 
to wait. 

Locking smaller data items results in less contention among users since there are fewer 
conflicting lock requests. Fine granularity locks improve concurrency by allowing a 
transaction to lock only those data items it needs to access. However, it involves higher 
overheads, since more locks are requested and the lock table is larger (see Table 8.22 and 
Figure 8.10). The overheads consist of maintaining the lock table and status oflocks as well 
as the I/O time spent on lock setting and releasing. It is interesting to note that the standard 
unit of update in a database system is a page, so all lock granules will require I/O operations 
which reflect this. 
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The RW model of transactions advocates a static view of a database. In reality, when delete 
and insert operations are supported, a database is dynamic as its size can change over time. 
Taking a dynamic view of a database the phantoms problem may arise. 

Consider a database having two relations rl and r2 . Relation rl stores information about 
employees including their salary, and relation r2 stores aggregate information per department 
about the employees recorded in rl such as their average salary. Suppose that a transaction 
TI checks whether the aggregate salary recorded in r2 for the Computer Science department 
is consistent with the information about the individual employees recorded in rl who work in 
Computer Science. Moreover, assume that TI first locks all the tuples in rl of employees who 
work in Computer Science and thereafter locks the tuple in r2 referring to Computer Science. 
Next, suppose that a second transaction T2 inserts a new tuple into rl for an employee who 
works in Computer Science, and then, prior to TI locking the tuple in r2 referring to Computer 
Science, T2 locks this tuple and updates it with the new aggregate value. In this case TI's 
aggregate information will be inconsistent, since it did not take the new employee tuple into 
account. In addition, it can be verified that TI and T2 obey the two-phase locking protocol. 
The new employee tuple which was inserted into rl by T2 is called a phantom tuple, because 
from TI's point of view this tuple did not exist but despite this fact its presence affects the 
consistency of the database. 

A solution to the phantoms problem, proposed by Eswaran et al. [EGLT76], is to use 
predicate locking. In our example, TI would lock all Computer Science employee tuples over 
Rio where RI is the relation schema of rl. Thus all tuples over RI whose department value is 
Computer Science, whether they be in rl or not, would be locked and therefore, under 2PL, 
T2 would not be able to commence until TI has completed. Assuming that the attribute in 
schema(Rd which refers to the department in which an employee works is DEPLNAME, 
then the predicate (or equivalently, selection formula; see Definition 3.13 in Subsection 3.2.1 
of Chapter 3), which locks all the Computer Science employees is: DEPT _NAME = 'Computer 
Science' . . To test whether two predicates conflict we need to test if there exists a tuple that is 
satisfiable by both predicates. Testing such conflicts is more expensive than testing read/write 
conflicts. The complexity of maintaining predicate locks was considered in [HR79], wherein 
it was shown that the problem is in general NP-complete. 

Multi-granularity locking allows each transaction to use locking levels that are most 
appropriate for its mode of operation. In a simple approach this might mean that long 
transactions use coarse granularity and short transactions use fine granularity. In this way, 
long transactions do not waste time setting many locks and short transactions do not block 
others by locking data items that will not be accessed. 

Long transactions, also known as long-duration transactions or Long-Lived Transactions 
(LLTs), are transactions that by their nature take a substantial amount of computer time 
relative to other transactions and may lock data items for long periods. For example, one of 
the features of Computer Aided Design (CAD) is that of several groups of designers working on 
the same project, whose details are stored in a shared database; different groups of designers 
submit different transactions, which need to cooperate amongst themselves but may also have 
conflicts [KKB90] . Taken separately the transactions of each group are short-lived but taken 
together they form a single LLT. As another example, transactions that require human input, 
as in an airline reservation system, are generally LL Ts, since there may be several inputs to 
the database over a prolonged period of time while the human is logged onto the system. The 
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problem is accentuated, since human interaction considerably slows down the throughput of 
the database system. 

LL Ts lead to major performance problems, since they tend to lock large portions of the 
database, causing other transactions, waiting to access data items locked by LLTs, long delays. 
There is also potential conflict between an LLT and other transactions, when the LLT writes to 
many data items, causing additional scheduling and deadlock problems. Thus LLTs are also 
more likely to abort than short-lived transactions, enhancing the need to relax the atomicity 
requirement for an LLT. 

Considering the airline reservation example, suppose that a human wishes to interactively 
make several seat reservations on flights in a single transaction T. Each such seat reservation 
can be viewed as a sub transaction Ti of T. As a whole T may require to lock a large portion of 
the database, but taken separately each Ti would require locking only the data items related 
to the flight, say Pi, which is accessed by Ti . Although T can commit only if all the T/s 
have completed successfully, for scheduling purposes we can allow the subtransactions, say 
Tl, T2, . .. , Tn, to be interleaved in any way with other transactions. Such an LLT is called 
a saga [GS87j or, when several levels of subtransactions are allowed, a nested transaction 
[BBG89j. 

One problem we are now faced with is the situation where the subtransactions Tl , T2, .. . , T k> 
with k < n, have all committed and subtransaction Tk+) aborts. Since, T), T2, .. . , Tk> have 
already committed and the database could have been modified in the meanwhile by other 
transactions we cannot simply rollback these transactions. Instead we execute compensating 
transactions, say C) , C2 , . .. , Ck> which are transactions whose purpose is to undo the effects of 
T), T2 , .. . , Tk . Each Ti in T must have a compensating transaction Ci attached to it, which was 
defined prior to scheduling T; compensating transactions are usually user-defined as opposed 
to rollback which is automatically generated by the system using the log files. As an example, 
assume that a saga T reserves n seats on flights, Fi, via sub transactions, Ti, 1 ::::: i ::::: n, i.e. 
each sub transaction reserves a single seat on a flight. In this case, if Tk+) , with k < n, aborts, 
then the compensating transactions C) , C2, .'" Ck will be scheduled, where each Ci cancels 
the reservation made by h with 1 ::::: i ::::: k. 

Two-phase locking, introduced in Subsection 8.3.1, is the most common locking protocol 
which enforces serialisability. An improvement in the presence ofLLTs is the altruistic locking 
protocol proposed by Salem et al. [SGS94j . Intuitively, altruistic locking provides a transaction 
with a third operation, called donate, in addition to the lock and unlock operations. A data item 
that is locked but no longer accessed by a transaction may be donated by this transaction, thus 
allowing other transactions to simultaneously lock it. The donating transaction may continue 
to acquire new locks, and therefore altruistic locking is not necessarily two-phase. 

Prior to defining the altruistic locking rules we define the notion of being in the wake of 
another transaction. A transaction TJ is in the wake of another transaction T2 with respect to 
a data item x, if Tl locks x and x was donated by T2. A transaction TJ is in the wake of another 
transaction T2 if T) is in the wake of T2 with respect to some data item; a transaction cannot 
be in the wake of itself. A transaction T) is completely in the wake of another transaction T2 , 
if Tl is in the wake of T2 with respect to all the data items TJ has locked. 
Altruistic locking rule 1. Two transactions may simultaneously hold a lock on the same data 
item only if one of the transactions has first donated the data item to the other transaction. 

Altruistic locking rule 2. If transaction TJ is in the wake of another transaction T2, then T) 
must be completely in the wake of T2 until T2 executes its first unlock operation. 
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Exercise 8.9 requires you to prove that a locking protocol based on the altruistic locking 
rules leads to serialisable schedules. Returning to the airline reservation system, consider an 
LLT consisting of subtransactions, TI. T2 • ... • Tn, where each Ti involves reserving a single 
seat on a flight Pi, and thus locking all the data items relating to h Furthermore, assume 
that no two distinct subtransactions access the same flight. In this case T can donate its locks 
relating to Pi once Ti has completed. When subtransaction Tko withk ::: n, has completed, 
then a transaction which accesses only flights in PI. P2 • ...• Pk can execute concurrently with 
T. The altruistic locking rules we have presented do not distinguish between a read lock and 
a write lock. A generalised altruistic protocol which caters for separate read and write locks 
is considered in [SGS94). 

The level of concurrency is strongly influenced by the size of the data items that can be 
identified and locked. The choice of locking granularity represents a trade off between 
concurrency and overheads. That is to say, the increased overheads of maintaining fine 
granularity versus the possible loss of concurrency due to coarse granule locking. The choice 
of granularity depends on the type of applications being run and the way applications utilise 
the database system. 

8.6 Lock Manager Implementation 

A database system typically comprises a number of interrelated modules designed to satisfy the 
functional requirements of database operations. These modules will in all likelihood include: 

• a transaction manager, 

• a lock manager, 

• a transaction scheduler (or simply a scheduler), 

• a recovery manager and 

• a cache memory manager 

The above modules appear in the diagram of Figure 8.9. Herein the recovery manager and 
cache manager together are referred to as the data manager. 

The lock manager performs lock and unlock operations, while the transaction manager 
feeds the transaction scheduler. In practice, the transaction scheduler is usually implemented 
as a combined operation of the lock manager and transaction manager. 

When the transaction manager receives a read/write request from a transaction, it sends 
the appropriate lock instruction to the lock manager. The lock manager sets the lock and 
acknowledges that it is set, so the transaction manager can send the read/write operation to 
the data manager. 

The lock manager maintains a table oflocks to support the lock and unlock operations as 
shown, for example, in Table 8.22. 

In processing a lock, the lock manager attempts to set the specified lock by adding an entry 
in the lock table. If another transaction holds a conflicting lock, then the lock manager does 
not add the requested lock to the lock table, but enters it in a queue of waiting requests. An 
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Fig 8.9 Diagram of the core components of a centralised DBMS 

Table 8.22 Example of a lock table 

TRANSACTION-ID DATA-ITEM LOCK-MODE WAITING TRAN-ID 
4846 A READ 4848 
4847 B WRITE 
... .. . ... ... 

unlock operation releases the specified lock and grants any waiting lock requests that are now 
unblocked (see Figure 8.10). A locking protocol defines the restricted sequence of steps a lock 
manager may perform (see Figure 8.1l). 

Two situations may arise when it is necessary to abort a waiting lock request. Firstly, if a 
deadlock occurs and the transaction which initiated the waiting lock request is aborted, then 
the lock request will also be aborted. Secondly, when a timeout parameter facility is provided 
and a lock request is waiting for longer than the set timeout parameter, then the lock request 
will be aborted. 
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The two main considerations for the lock manager with respect to computational effort 
are the number of instructions and I/O operations needed to implement lock requests. To 
increase the speed of locking and unlocking operations the lock manager can be optimised 
for special cases that occur frequently, such as setting non-conflicting locks or releasing all 
locks of a transaction simultaneously. This latter optimisation is achieved by linking together 
all lock entries for each transaction in the lock table. Thus, all locks for a transaction can be 
released simultaneously as soon as the acknowledgement of commit is received. 

In practice, the lock table operates as a temporary file that the database system may keep 
in main storage while the database is actually used. Often the lock table is implemented as a 
hash file (see Exercise 1.5 from Chapter 1) with the data item identifier as key, because hash 
files are especially fast for content-based retrievals. The table should be protected against 
corruption; for example, by including it as part of the operating system, or in a protected area 
of the database system. In addition, the lock table should only be accessible to those programs 
that implement lock and unlock instructions. 

In conclusion a lock manager provides the facilities necessary to perform locking operations. 
The implementation of a lock manager will vary from database system to database system. 
The factors which affect the implementation will include the protocols employed, available 
lock modes, and lock granularity. Since locking operations are performed with extremely 
high frequency, it is therefore important to consider carefully how locks are managed. 

8.7 Timestamp Ordering 

A timestamp is a unique identifier set at the start of a transaction, which allows chronological 
ordering of transactions to be determined. The timestamp can be as simple as the value of a 



446 

PROCESS flOWCHART 

I 
the lock is 
available 

• 
ACQUIRE 

THE LOCK 

the lock 
becomes 
available 

+ 
ACQUIRE 
THE LOCK 

request a lock 

I 
I 

the lock is 
unavailable 

1 
wait 
wait 
wait 

I 

the lock 
is still 

unavailable 

• 
ABORT 

THE REQUEST 

Chapter 8. Concurrency Control 

Fig S.11 Process flowchart showing the logic underpinning a locking protocol 

counter, incremented at the start of each transaction. Such a simple implementation, however, 
suffers from two weaknesses. Firstly, the maximum value of the counter is the maximum 
integer value of a particular computer. Secondly, in a distributed database environment, 
transactions initiated at different sites may be granted the same timestamp by the distinct 
counters of the processors at the different sites. 

A more practical approach to timestamp ordering is to employ the values of the computer's 
clock as timestamps. The computer clock has a finer incremental scale and is also less likely to 
crash. To produce a unique timestamp in a distributed database system, such systems usually 
combine the computer's clock value as the major component, together with a site identifier as 
the minor component. Consequently, although two or more transactions may have the same 
clock value, the physical requirement that they started from different sites means that the site 
identifier is different, thus the composite value is unique. 

Following this latter approach to timestamp ordering, the values of timestamps are drawn 
from a totally ordered domain. The following definition of timestamp ordering follows that 
given in [BG81). 

Definition 8.14 (Timestamp ordering) Timestamp ordering is the method of scheduling 
whereby each transaction is assigned a unique timestamp and conflicting operations (see 
Definition 8.5) from different transactions are scheduled to execute in timestamp order. • 
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The next theorem shows that adhering to the timestamp ordering method of Definition 8.14 
results in serialisable schedules. 

Theorem 8.5 If s is a schedule that obeys the timestamp ordering method of Definition 8.14, 
then s is conflict -serialisable. 

Proof. Assume that a schedule s, which satisfies the timestamp ordering method. is not 
conflict-serialisable. Then there must exist in res) a cycle Til' Ti2" ..• Tip, Til' with P > 1. 
That is to say, two conflicting operations exist in any two consecutive transactions Tip Tik+l' 
1 ~ k ~ P - 1. and in Tip, Til' According to the timestamp ordering method the timestamp 
of Tik is strictly less than the timestamp of Tik+l' 1 ~ k ~ P - 1. and the timestamp of Tip is 
strictly less than that of Til' Thus the timestamp of Til is strictly less than the timestamp of 
Til; however, this contradicts the timestamp ordering method. 0 

Let Ti, Tj be two transactions with timestamps ti, tj, respectively. If ti < tj then Ti is said to 
be older than Tj; if ti > tj then Ti is said to be younger than 1). 

Timestamp ordering is an alternative to locking as a mechanism for concurrency control. 
It is used primarily but not exclusively in distributed databases. Timestamp ordering allows 
several users to apparently access the database simultaneously. while maintaining the integrity 
of the data. As long as no two transactions are accessing the same data item. there is no danger 
of transaction conflict or data corruption. When conflicting operations are being performed 
by a database system. then timestamp ordering will prevent anomalies such as the lost update 
by stopping a transaction writing to a data item that has already been read by a younger 
transaction. 

Timestamp ordering prevents concurrent access problems by ensuring serialisability of 
transactions. as was shown in Theorem B.S. Timestamps are set at transaction start and every 
operation by the transaction is associated with that start time. To maintain the integrity of 
the database. every time a transaction tries to read or write to a data item. its timestamp 
is compared to that of the data item being read or written. Depending on the temporal 
relationship between the two timestamps. the transaction will either be processed or rolled 
back. and in the latter case the transaction may restart with a new timestamp. That is. a 
transaction, say T, with timestamp tl canno.t write to a data item with a read time of t2. if 
t2 > tl' If T makes such an attempt. then it is out of date and therefore must abort and be 
restarted. Similarly. T cannot read a data item with a write time of t2. if t2 > tl' Again if T 
makes such an attempt, then it is out of date and therefore must abort and be restarted. Only 
on transaction completion or restart is a timestamp released. 

We next present five rules which have been identified for timestamp ordering mechanisms 
by Ceri and Pelagatti [CP84aj. These rules are: 

Rule 1. Every transaction is assigned a globally unique timestamp when it is initiated at its 
site of origin. (This assumes a distributed computing environment.) 

Rule 2. Each data item in the database carries the timestamp of the last transaction to have 
read it (read timestamp) and the last transaction to have written to it (write timestamp). 

Rule 3. Each read and write operation takes the timestamp of its issuing transaction. 

Rule 4. For a transaction to read a data item, its timestamp must not be less (older) than the 
last write timestamp of the data item. Otherwise. the transaction is aborted and restarted with 
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a new timestamp. When the transaction has read the data item, the data item then takes the 
timestamp of that transaction as its latest read timestamp. 

Rule 5. For a transaction to write to a data item, its timestamp must not be less than either of 
the data item's read or write timestamps. Otherwise, the transaction is aborted and restarted 
with a new timestamp. When the transaction has written to the data item, then the data item 
takes the timestamp of that transaction as its latest write timestamp. 

Rule 4 above ensures that read/write synchronisation is maintained, while Rule 5 ensures 
write/write synchronisation; in combination these two rules guarantee that conflicting 
transactions are serialisable. While not enforced by the rules, it is worth stating here that 
best practice would require that write operations are not written to the physical database 
until commit is executed. Thus, transaction restart does not require physical rollback of the 
database. 

8.7.1 Timestamp Ordering Implementation 

A number ofimplementation algorithms have been suggested for concurrency control by using 
the timestamp ordering method, whereby every pair of conflicting operations is executed in 
timestamp order. We briefly present an overview of three of them. (For algorithmic details 
the reader is advised to consult [BHG87j .) 

Basic timestamp ordering. This is essentially the implementation of the five basic rules given 
above. Although these rules ensure serialisability of transactions, they do not guarantee 
atomicity. Rules 4 and 5 are usually modified in basic timestamp ordering implementations, 
so that write operations pre-write to a buffer (write-buffer). (See cache manager in Figure 8.9.) 
The physical update of the database is only executed when the transaction has been committed. 
Thus, the two-phase commit policy is adhered to by modifying these two rules. (Two-phase 
commit is a protocol that allows a set of autonomous processes or agents to eventually all 
commit or all abort; see [BHG87, BN97j for details on the two-phase commit protocol.) 

Rule 4a. For a transaction to read a data item, its timestamp must not be less (older) than 
the last write timestamp of the data item. Otherwise the transaction is aborted and restarted 
with a new timestamp. If a transaction's timestamp is greater (younger) than the data item's 
last write timestamp, then the read is executed provided there are no outstanding pre-writes 
of the data item with a timestamp greater (younger) than that of the read operation. If there 
are pre-writes outstanding, the read operation is placed in a buffer (read-buffer) until the 
transaction(s) issuing the pre-write(s) is (are) committed. 

Rule Sa . For a transaction to pre-write to a data item, the transaction's timestamp must not 
be less (older) than either of the data item's last read or write timestamps. Otherwise the 
transaction is aborted and then restarted. If the transaction's timestamp is greater (younger) 
than both the data item's said timestamps, then the pre-write is executed and the data, with 
its timestamps, is written to the buffer. 

Rule Sb. A transaction's write operation to a data item will always be executed, but if a 
pre-write on the data item with an older timestamp is still outstanding, the write operation 
will be buffered until the execution of the outstanding pre-write has been completed. 

While basic timestamp ordering completely overcomes the deadlock problem, by never 
blocking transactions, it can suffer from frequent transaction restarts. 
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Conservative timestamp ordering. This method, which is applicable in the context of a 
distributed database, prevents the numerous transaction restarts experienced by the basic 
timestamp ordering, but at the expense of a lower degree of concurrency. Unfortunately, in 
solving the problem of restart, the level of concurrency is adversely affected. The method 
requires that: 

• Each transaction has a home site from where it was initiated and its execution is 
controlled. 

• All sites must guarantee that transactions will commit in timestamp order; this is done 
in order to prevent older transactions from attempting to write to a data item after a 
younger transaction, thus resulting in restart. 

• A queue of read and write requests must be maintained, with at least one read and one 
write operation buffered at all times. 

As operation requests are received, the following protocol is employed: 

• If the timestamp of a read request is less (older) than that of the first data item in 
the write-buffer, then the read operation is executed. Otherwise, the read operation is 
buffered in the read-buffer until that write is executed. 

• For a write request to be executed, the buffers must not contain any read or write requests 
with a lesser (older) timestamp. Otherwise, the new request must be buffered in the 
write-buffer until the above condition is met. 

These rules ensure that all transactions are processed in strict timestamp order, by forcing 
young requests to wait for older requests to complete. A problem with this conservative 
timestamp mechanism is that if no read or write requests are sent for a long period of time 
the buffers (read or write) may become empty, thus causing the database system to hang. To 
prevent this problem from arising, timestamps for null requests must be sent to the buffers 
periodically to ensure the database system continues to function. Moreover, since transactions 
are permitted to wait, deadlock may occur. 

Thomas's Write Rule (TWR) [Th0791. This is also known as the ignore obsolete write rule; 
TWR provides an important modification to the basic timestamp ordering technique. The 
rule allows a write operation to be acknowledged as completed, while ignoring to write the 
data item to the database, provided that the transaction timestamp is less than that of the last 
write timestamp of the data item. This is allowable because if the last write timestamp of the 
data item is after the proposed write operation and the read timestamp of the data item is 
before the proposed write operation, then the proposed write operation is obsolete and can 
be ignored. 

Prior to stating Thomas's write rule we introduce some relevant notation. Assume that 
Tj issues the operation write(A). Let ts(Tj) denote a unique fixed timestamp associated with 
transaction Tj. In addition, we associate with each data item, say x, two timestamp values 
(referred to earlier), namely R_ts(x), which denotes the largest (youngest) timestamp of any 
transaction that has successfully executed read(x), and W _ts(x), which denotes the largest 
(youngest) timestamp of any transaction that has successfully executed write(x). 
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Thomas's write rule states: 

1) If ts(Tj) < R_ts(x), then write(h x) is rejected. 

2) If ts(Tj) < W _ts(x) , then Tj is attempting to write an obsolete value of x. Thus the write 
operation is ignored. 

3) Otherwise the write operation is executed and W_ts(x) := ts(Tj). 

After careful consideration it can be seen that Thomas's write rule utilises view serialisability 
by essentially deleting obsolete write operations from those transactions that issue them 
[BHG87]. 

Thomas's write rule deals with the timestamp issue of how to treat unsynchronised write 
operations. It does, however, give rise to an interesting, counter-intuitive situation; consider 
the following transaction history, where start Tj, for i = 1,2, stands for "initiate transaction 
T/'. 

Steps Transaction T( Transaction T2 
1 start T(; 
2 start T2; 
3 write{A); 
4 read{A); 
5 write{A); 

Under TWR case 1 the write at step 5 must be rejected because it conflicts with the read at 
step 4, even though there is no direct conflict with the said read as the latter reads the value 
written at step 3. Moreover, the write operation at step 5 would have been ignored under 
TWR case 2. There is an implicit priority ordering between these two rules, with the absolute 
reject rule taking precedence over the softer ignore rule. If we were to reverse the priority, it 
would make perfect sense not to reject a write which has already been earmarked as an ignore 
write. 

Timestamp ordering provides an alternative concurrency control strategy to locking. It 
ensures that the processing of transactions is equivalent to a specific (time-based) order 
of execution. In addition, it does not incur the overheads associated with maintaining a 
lock register. The fact that transactions do not need to wait means that deadlock is not a 
problem. 

On the downside, timestamp ordering may suffer from livelock due to automatic transaction 
restarts. This problem can be managed by allowing a limited number of restarts before aborting 
the transaction, with an error message being sent to the user. There is also the substantial 
overhead of recording the timestamp of each data item. However, since such recording is 
held in a table and changes constantly, the overhead can be kept to a minimum by purging 
the table regularly of obsolete data items. 

Each timestamp ordering implementation has its advantages and disadvantages, and 
different system designers will have their own preferences. The choice of implementation is 
therefore difficult to comment on meaningfully. The end product requirements will, however, 
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have a strong influence on the implementation choice, such as the use of multi-version 
timestamp ordering [Ree83] for systems with an expected high probability of transaction 
restarts. More generally, we can safely say that timestamp ordering offers a viable means 
of ensuring data integrity, whilst not incurring excessive overheads and is particularly cost 
effective in a distributed database environment. 

8.8 Serialisation Graph Testing 

We already know that transaction scheduling and serialisability can be achieved by using 
locking or timestamp ordering. Serialisation Graph Testing (SGT) is an alternative approach 
to transaction scheduling which ensures serialisability. 

An SGT scheduler maintains a serialisation digraph (see Definition 8.8) of the transactions 
it is executing. The node set of this digraph includes nodes for all active transactions, namely 
transactions that have started and have not yet become committed or aborted, and the arcs 
between the nodes represent dependencies that have been generated by a request to schedule 
potentially conflicting operations. A cycle in the digraph indicates that the transactions are 
not serialisable. As the scheduler sends new operations to the data manager, the serialisation 
digraph is updated by the scheduler. SGT maintains serialisability by preventing any cycles 
from forming in the serialisation digraph. The digraph has a node for every active transaction, 
including recently committed transactions. 

We next describe briefly two versions of SGT, namely Basic SGT and Conservative SGT. 

Basic SGT. On receiving a request via the transaction manager, a basic SGT scheduler adds, if 
one does not exist already, a node to the serialisation digraph if the requesting transaction is 
new. An arc is then added from all the other transactions currently represented by the digraph 
for every previous operation that conflicts with the scheduled operations of the requesting 
transaction. A conflict arises if the serialisation digraph becomes cyclic. If the resulting 
digraph is cyclic, then the scheduling of transactions would be non-serialisable. Therefore, the 
scheduler rejects the offending transaction by sending an abort instruction to the data manager. 
All scheduled operations of the offending transaction are removed from the scheduled queue. 
When the data manager acknowledges the abort, the node of the offending transaction is 
deleted from the serialisation digraph as well as all arcs incident with it. Ifthe resulting digraph 
is acyclic, then the new transaction is scheduled once all previous conflicting operations have 
been acknowledged by the data manager. 

We illustrate basic SGT by considering the transaction history 

Steps Transaction T1 Transaction T2 
I read{A); 
2 read{A); 
3 write{A); 
4 write{A); 

At step 1 the digraph consists of a single node labelled by TJ and the said queue of waiting 
operations contains <read(Tb A»; at step 2 the digraph comprises two nodes TJ and T2 and 
the queue of waiting operations contains <read( TJ, A), read(T2, A»j at step 3 the digraph is as 
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at step 2 together with the arc (Th T2) and the queue of waiting operations contains <read(Th 
A), read(T2, A), write(T2, A». The third entry in the queue is a potential read-write conflict; 
at step 4 the digraph is as at step 3 together with the arc (T2, Td. A cycle has arisen, so TI 
is aborted, since it is the transaction that caused the cycle at step 4. After step 4, the digraph 
consists of a single node labelled by T2 and the queue of waiting operations contains <read(T2, 
A), write(h A» . 

To detect conflicts with previously scheduled operations the database system maintains 
the readset and writeset of every transaction (see Definition 8.1). The scheduler can delete 
information about a terminated transaction only if the transaction could not be involved in a 
future cycle of the serialisation digraph. A safe rule for deleting nodes from the serialisation 
digraph is one such that information about a transaction may be discarded as soon as that 
transaction has terminated and its associated node has no incoming arcs in the serialisation 
digraph. 

Conservative SGT. A conservative SGT scheduler does not reject any operations, but delays 
(or blocks) them as in 2PL and timestamp ordering. It works by having each transaction pre
declare its readset and writeset by attaching them to the start operation. When a transaction 
start, say start Ti, is received by the scheduler it saves the T;'s readset and writeset. A node 
labelled by Ti is then created in the serialisation digraph and an arc (Tj, Ti) is added from every 
node 1j in the serialisation digraph to Ti whenever there exists a conflicting operation between 
1j and Ti. The scheduler must also maintain for each data item x, a queue, say queue[x], of 
delayed operations that access the data item x. All conflicting operations in queue[xl are kept 
in an order consistent with the order of operations indicated by the arcs in the serialisation 
digraph. For example, if (Th T2) is an arc in the serialisation digraph, then TI's operation to 
read(x) will be closer to the head of the queue than T2'S operation to write(x), so that TI's 
read operation will be dequeued before T2's write operation. The order of non-conflicting 
operations in queue[xl is not significant. 

An operation at the h~ad of a particular queue may only be sent to the data manager by the 
scheduler if the operation is ready. There are two conditions for readiness: 
Condition 1. Any operations already sent to the data manager that conflict with the aforesaid 
operation at the head of the queue must have been acknowledged by the data manager. This 
condition ensures that the data manager processes conflicting operations in the order that 
they were scheduled. 

Condition 2. For every transaction TI that directly precedes a transaction T2 in the serialisation 
digraph, with a pair of conflicting operations, TI's operation has already been sent to the 
scheduler. 

Condition 2 enables the scheduler to avoid abort operations by ensuring that the execution 
is equivalent to a serial execution of TI followed by T2 . So if TI's read(x) conflicts with T2'S 
write(x), then the read(x) must be scheduled first. So if T/s write(x) is received before TI's 
read(x) it must be delayed. Otherwise, TI's read(x) would have to be rejected when it is 
eventually received, as it would create a cycle in the serialisation digraph involving TI and T2. 

When the scheduler receives T2'S write(x) from the transaction manager or an 
acknowledgement of TI's read(x) from the data manager, it will check to see if the head 
of the queue is ready. If so, it dequeues the operation at the head of the queue and sends it to 
the data manager. The scheduler will then keep repeating this process with the new head of 
the queue until the queue is emptied or the head thereof is not in a state of readiness. 
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Finally, we mention that Hadzilacos and Yannakakis [HY89] derived necessary and 
sufficient conditions for when it is safe to remove a completed, i.e. not active, transaction 
(which is equivalent to deleting a node from the serialisation digraph) in several versions 
of conflict-digraph-based schedulers. It is also shown therein that, in general, the problem 
of deciding whether a transaction cannot be safely removed from the conflict digraph is 
NP-complete. 

8.9 Discussion 

Concurrency control is a huge subarea in the context of database systems and research on 
this topic continues unabated [Ku096, AJR97, RMB+98]. Specialised textbooks on the subject 
have been written and we refer the reader to [Cas81, Pap86, BHG87, GR93, BN97]; a recent 
collection of papers dealing with the practical issues pertaining to performance of concurrency 
control algorithms is [Kum96]. Herein we have looked at concurrency control primarily 
from the point of view of the relational model; concurrency control techniques need to be 
modified when applied to other models such as an object-oriented data model (see for example 
[GNS93]). 

We next briefly indicate the support for concurrency control within SQL2 [DD93]. 
Transactions are sequences of SQL statements, which terminate either with a COMMIT or 
a ROLLBACK statement, with their intended meaning. A transaction is initiated implicitly 
within an application program when no other transaction is in progress within the same 
program, and individual SQL statements are the primitive operations of such a transaction. 
By default SQL transactions are SERIAUZABLE but various relaxations of serialisability are 
possible. A recent critique of SQL's support for concurrency control has raised some serious 
problems with the standard regarding its ambiguity and lack of support for locking [BBG+95]. 

We have not considered recovery, which is the topic referred to the process of restoring 
a database to a consistent instance after some system failure, be it hardware or software, 
rendering the current instance of the database inconsistent. Recovery is an important topic and 
is closely related to concurrency control. In [Had88] and [AVA +94], respectively, reliability 
and recovery issues are dealt with in great detail. In this respect we mention ARIES (Algorithm 
for Recovery and Isolation Exploiting Semantics) [MHL +92], which is a relatively new and 
important recovery algorithm that has been implemented in some current database systems. 
In [Ku096] a model and verification of a data manager based on ARIES is presented. 

We close the discussion with a brief historical account. The notion of serialisability was 
introduced by Gray et al. [GLPT75]. In that seminal paper, issues related to lock granularity 
according to a lock hierarchy from the entire database level down to the tuple level, and 
the compatibility of various lock modes were also discussed. A central paper to the theory 
of serialisability and two-phase locking is [EGLT76], where conflict-serialisability and the 
basic 2PL protocol were introduced, and Theorems 8.1 and 8.3 were proved. In that paper 
the phantoms problem was also raised and predicate locking was introduced as a solution 
to the problem. Other early papers dealing with the theory of serialisability and locking 
are [SLR76, BSW79]. In [PBR77, Pap79] is was shown that testing view-serialisability and 
final-state-serialisability are both NP-complete problems, strengthening the case of adhering 
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to conflict-serialisability. The technique of detecting deadlock via cycles in the Waits-For
Graph stems from an early paper by Holt [Holnj, who considered the general problem of 
deadlock detection and prevention in operating systems. Timestamp ordering was introduced 
by Thomas in his seminal paper [Th079j, and an early investigation of serialisation graph 
testing was carried out by Casanova in his monograph [CasSlj. 

We have seen that serialisability can be achieved by the three methods of locking 
(2PL), timestamp ordering (TO) and serialisation graph testing (SGT). The techniques we 
have presented are pessimistic in the sense that the scheduler checks the possibility of 
nonserialisability after each operation it receives and makes an immediate decision whether 
to accept, reject or block the operation. A different optimistic approach can be used which, 
rather than check each operation as it comes, accepts all operations for the time being and 
makes a final decision regarding whether to commit or abort a transaction at the time when the 
transaction is ready to commit. Such an optimistic scheduler [KRSlj is also called a certifier. 
Optimistic schedulers maximise throughput of transactions when the probability of conflict 
between any two transactions is low. 

We note that we have mainly dealt with the case of concurrency control in a centralised 
multi-user environment but have occasionally also discussed the case of a distributed database 
(see Section IO.S of Chapter 10). An early survey concentrating on concurrency control in 
distributed database systems can be found in [BGSlj. 

8.10 Exercises 

Exercise 8.1 Construct an example of two schedules involving three transactions such that 
the schedules are view-equivalent but not conflict-equivalent. 

Exercise S.2 Consider a transaction model where each transaction is a sequence of lock and 
unlock operations. We denote the operation that a transaction T locks a data item x by 10ck(T, 
x), and the operation that T unlocks x by unlock(T, x); whenever T is understood from context 
we abbreviate these operations to lock(x) and unlock(x), respectively. 

Each data item locked must subsequently be unlocked, and whenever a data item is locked 
by a transaction no other transaction can either read or write it until it is unlocked by the said 
transaction. Moreover, whenever a transaction locks a data item, say x, it modifies the value 
of x, and the value that x has when unlocked is essentially unique. Consider the following 
algorithm. 

Input: A schedule s for the set {Ti> T2, ... , Tk} of transactions. 
Output: Yes if s is serialisable, No otherwise. 
Method: Construct a digraph G, where the node set ofG is given by {Ti> T2,"" Td. The set 
of arcs of G is constructed as follows: (Tj, Tj) is an arc of G, if there exists in 5 an unlock( Tj, x) 
followed by a lock(Tj, x). If G has a cycle then s is not serialisable, otherwise perform a 
topological sort to obtain a serial order for the set transactions. 

Prove the correctness of the above algorithm and apply it to the schedule of transactions 
Ti> T2, T3 and T4 given below. 
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Steps T\ T2 T3 T4 
1 lock(A); 
2 lock(A); 
3 lock(B); 
4 unlock(A); 
5 lock(A); 
6 unlock(B); 
7 lock(B); 
8 unlock(A); 
9 lock(B); 
10 lock(A}; 
11 unlock(B); 
12 lock(C); 
13 unlock(A); 
14 lock(A}; 
15 unlock(A); 
16 unlock(B}; 
17 unlock(C); 

Exercise 8.3 A blind write in a transaction T is a write operation at step, say i, to a data item 
that is not preceded in T, at any previous step j < i, by a read operation to the same data item. 
Prove that if transactions do not have any blind writes, then a schedule is conflict-serialisable 
if and only if it is view-serialisable [Pap86]. 

Exercise 8.4 A subschedule S' of a schedule s of a set of transactions T is the subsequence of 
the elementary steps of s formed by the elementary steps of a subset of the transactions in T. 

Prove that a schedule s is conflict-serialisable if and only if all its subschedules S' are view
serialisable [Yan84]. 

Exercise 8.5 Use your solution of Exercise 8.4 to prove that a locking policy ensures view
serialisability if and only if it ensures conflict-serialisability [Yan84]. 

Exercise 8.6 Consider a relational database consisting of N tuples. Assume that there are 
n + 1 transactions and that each transaction comprises m + 1 operations. Each operation 
picks randomly a tuple from the set of N tuples and locks it. At the last step the transaction 
commits, releasing all its locks. Each step takes one time unit, unless the transaction has to 
wait for a lock held by another transaction in which case the step completes when the holding 
transaction commits. Assume that nm « N (nm is very small compared to N), i.e. most of 
the database is unlocked most of the time. 

Estimate the probability that a single lock request will wait, and show that the probability a 
particular transaction, say T, waits in its lifetime is approximately nm2/(2N). Show that the 
probability that T participates in a cycle oflength two is approximately nm4/(4N2), and the 
probability that any transaction deadlocks is approximately n2m4 /(4N2) [GR93]. 

Exercise 8.7 A schedule of the elementary steps of a set of transactions, such that the rules 
pertaining to locks are obeyed, is called a legal schedule. Consider the transactions T} and T2. 

Find in how many legal ways they can be scheduled. Identify the serialisable schedules 
assuming that whenever a data item is locked by a transaction its value is modified. 
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lock(B); 
unlock(B); 
lock(A); 

unlock(A); 

Exercise 8.8 Show that testing whether a schedule obeys the basic 2PL protocol can be done 
in polynomial-time [Pap79j. 

Exercise 8.9 Prove that a schedule which obeys a locking protocol which enforces the 
altruistic locking rules, given towards the end of Section 8.5, is serialisable. 

Exercise 8.10 Discuss the advantages and disadvantages of locking versus timestamp 
ordering. 

Exercise 8.11 Prove that the Ceri and Pelagatti timestamp ordering rules produce serialisable 
executions. 

Exercise 8.12 Construct examples to demonstrate the applicability of Thomas's write rule in 
all three of its cases. 

Exercise 8.13 Consider the transaction history 

Steps Transaction Tl Transaction T2 
1 start T1; 

2 start T2; 
3 read(A); 
4 write(A); 
5 write(A); 

Assume that in TWR Case 2 takes precedence over Case 1. Discuss the implications of such a 
change with respect to the above transaction history. 

Exercise 8.14 Let T be a transaction, whose timestamp is t, attempting to perform an 
operation X on a data item, whose read time and write time are, respectively, tT and two 
Consider the algorithm 

Algorithm 8.3 
1. begin 
2. if X = read and t ::: tw then 
3. if t > tT then tT := t; 
4. end if 
5. if X = write and t ::: tT and t ::: tw then 
6. if t > tw then tw := t; 
7. end if 
8. if X = read and t < tw or X = write and t < tT then abort(T); 
9. end. 
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Show that the above algorithm produces serialisable executions, and apply it to the following 
schedule 

Steps T\ T2 T3 T4 
1 read(A}j 
2 read(A}j 
3 write(B}j 
4 write(A}j 
5 read(B}j 
6 read(B}j 
7 read(A}; 
8 write(C); 
9 write(A}; 

on the assumption that the timestamps of Tl to T4 are, respectively, 

(a) 310, 320, 330, and 340. 
(b) 260,270,280, and 290. 

The read time and write time of each data item is initialised to zero. 

Exercise 8.15 Consider the safe rule for deleting nodes from the serialisation digraph in the 
context of the basic SGT. Justify the rationale for it. 

Exercise 8.16 Show that the conservative SGT scheduler, described in Section 8.8, produces 
serialisable executions. 

Exercise 8.17 In the context of the conservative SGT show that Condition 2 of readiness need 
only consider transactions Ti which directly precede transaction Tj. 
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We have already introduced deductive databases in Subsection 1.7.5 of Chapter 1 and have 
formalised the rule-based deductive database language, Datalog, in Subsection 3.2.3 of 
Chapter 3. The investigation of deductive databases, also known as logical databases, has 
been one of the most significant and prolific strands in database theory in the last decade. We 
now discuss the motivation for researching deductive databases. 

The primary motivation is that logic provides us with a formal and unifying foundation 
for a data model. In fact, relational databases can be viewed as finite models for a first-order 
language, whose predicate symbols are the relation symbols of the database schema and whose 
constants are the domain values. By using a logic formalism the expressive power of relational 
query languages can be extended with deductive capabilities. In particular, the rule-based 
language Datalog is a significant extension of the relational algebra and calculus. Logic has 
the advantage of providing an abstract and high-level declarative specification language for 
expressing knowledge; it is a precise, well-understood and unambiguous language. 

Related to the above motivation for investigating deductive databases is the fact that the 
relational algebra has limited expressiveness. In particular, the relational algebra has no 
iteration or recursion facilities. An early result, which was discussed in Subsection 3.2.1 of 
Chapter 3, is that the transitive closure of a relation cannot be expressed within the relational 
algebra [AU79). In Section 6.7 of Chapter 6 we discussed how to augment the relational 
algebra with iteration (the for loop) and with recursion (the fixpoint) so as to gain extra 
expressive power. The relational algebra is a procedural language and therefore it is natural 
to investigate an alternative declarative query language such as Datalog in order to achieve 
this higher expressiveness. 

We next recall that due to Proposition 3.4, from Subsection 3.3.2 of Chapter 3, we need only 
consider safe Datalog programs, which we refer to simply as Datalog programs. Moreover, 
general Datalog programs may be recursive and may contain rules having negative literals in 
their body. We further recall Theorem 3.18, from Subsection 3.3.2 of Chapter 3, which shows 
the equivalence of the relational algebra and nonrecursive Datalog. As a direct consequence 
of this theorem, the definition of the semantics, MEANING(P), of a Datalog program P, and 
the definition of the semantics of fixpoint queries, we can state the following fundamental 
result. 

Proposition 9.1 Datalog is equivalent to the relational algebra augmented with a fixpoint 
operator, i.e. they both express exactly the same set of polynomial-time computable queries. 

o 

459 
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This proposition justifies basing a deductive database model on Datalog. Recall the 
semantics ofDataloggiven by Algorithm 3.4 in Subsection 3.2.3 of Chapter 3, i.e. MEANING(P}, 
where P is a Datalog program. Informally, MEANING(P} is the inflationary jixpoint ofP, which 
is obtained as follows. As an intermediate step, the immediate consequence of the current 
state of the result, say I, is computed by concurrently finding all the safe substitutions e for 
clauses C in P such that C is true with respect to e and I, and then all the facts eeL) are added 
to the result, where L is the head of C. This process is iterated until no more facts can be added 
to the current state of the result by invoking the intermediate step. By Proposition 9.1 the 
maximum number of iterations necessary in order to obtain the fixpoint is polynomial in the 
size of CONST(P), namely the set of constants appearing in P. 

In addition, recall that SCHEMA(P} is the set of all relation schemas whose relation symbols 
appear as literals of rules in P, and that DB(P} denotes the initial database ofP, i.e. the relations 
induced by the set of facts in P. 

As an example, recall the Datalog program, TC, which computes the transitive closure of a 
binary relation, FAMILY: 

TC(Xl, X2) : - FAMILY(xl, X2). 
TC(Xl, X3) : - FAMILY(xl, X2), TC(x2, X3). 

Moreover, assume that the Datalog program also contains some FAMILY facts such as: 

FAMILY(Abraham, Isaac}. 
FAMILY (Isaac, Jacob}. 

The semantics of the Datalog program TC, obtained by computing MEANING(TC}, is a set 
of FAMILY and TC facts, i.e. a database with two relations over FAMILY and TC, respectively. 
The FAMILY relation, which comprises the FAMILY facts ofTC, is an extensional relation (or 
a conceptual relation), and the TC relation, which comprises the TC facts that can be inferred 
from TC, is an intensional relation (or a view relation). 

In general, MEANING(P) of a Datalog program, P, contains both the extensional and 
intensional relations, where the extensional relations comprise the facts which are present 
in P and the intensional relations comprise the facts that can be inferred from P. 

We now state three implicit assumptions that are made with respect to the underlying data 
model [Rei841: 

• The Unique Names Assumption (UNA), which states that any two constants in CONST(P) 
are equal if and only if they are syntactically identical, i.e. they are have the same name. 
(See Definition 3.2 in Section 3.1 of Chapter 3.) 

• The Domain Closure Assumption (DCA), which states that the only available constants 
are those that are explicitly mentioned in P, i.e. CONST(P). (This assumption manifests 
itself in the semantics of Datalog programs, since we consider only safe substitutions 
when computing MEANING(P).} 

• The Closed World Assumption (CWA), which states that facts that are not present in 
the current state of the database are assumed by default to be false. (This assumption 
manifests itself in the semantics of Datalog programs via the definition of the truth of 
clauses with respect to safe substitutions.) 
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It is interesting to note that the CW A as stated above would not be valid if we further extend 
Datalog so as to allow facts which are disjunctions of literals, such as 

AGEOack, 21) v AGE(Jack, 23}. 

The reason for this is that given the said disjunction we cannot be certain whether AGE(Jack, 
21) is true or whether AGE(Jack, 23} is true, and so under the CWA we are forced to conclude 
that both AGE(Jack, 21) and AGE (Jack, 23} are false. Thus we have derived a contradiction 
and the database is deemed to be inconsistent. A generalisation of the CWA which handles 
disjunctions correctly is given in [Min88al. In the above example, under the generalised 
CWA we can deduce that either AGE(Jack, 21) is true or that AGEOack, 23) is true, which is 
intuitively what we would expect. 

Prior to outlining the contents of the sections that follow, we introduce the important 
distinction between extensional and intensional database predicates. For a Datalog program 
P, let us call a predicate which is the head of a nontrivial rule in P an intensional database (or 
IDB) predicate, and all the other predicates in P extensional dftabase (or EDB) predicates. 
In addition, let EDB{P} be the set of facts in P over EDB predicates and IDB{P} be the set of 
facts in P over IDB predicates together with the nontrivial rules in P, i.e. IDB{P} is given by P 
- EDB{P}. Given a Datalog program P, the set EDB{P} of facts can be considered as the input 
database to P. 

In Section 9.1 we formalise the model-theoretic semantics of Datalog programs. While 
the semantics of Datalog programs that do not have any negation in them, called definite 
Datalog programs and often referred to as pure Datalog programs, are undisputed, when 
we allow negation in the body of Datalog rules various proposals have been put forward. 
In the course of Section 9.1 we present these different semantics and discuss their relative 
merits. In Section 9.2 we investigate the expressive power of Datalog in terms of the set 
of computable queries that it can express according to the semantics used to compute the 
meaning of programs. In Section 9.3 we discuss the problem of proving whether two Datalog 
programs are equivalent in the sense that their meanings coincide for any given input set 
of facts. The solution to the equivalence problem has implications for query optimisation, 
since we prefer programs that do not have any redundant clauses in them. In Section 9.4 we 
investigate an extension of definite Datalog, called Datalog not-equal, that includes equality 
and inequality as built-in predicates. The significance of Data log not-equal is that its programs 
are monotonic, i.e. if we add more facts to the input of such a program P, then the output from 
P will contain at least as many facts as it did before the inclusion of the extra facts in the input 
of P. In Section 9.5 we discuss the important issue of updating a deductive database, which 
can be seen as an extension of the view update problem presented in Section 3.8 of Chapter 3. 
Finally, in Section 9.6 we discuss another important issue, i.e. that of defining and maintaining 
integrity constraints in deductive databases. 

9.1 Model-theoretic Semantics of Datalog 

A natural interpretation of the semantics of a Datalog program is via model theory. (We refer 
the reader to Subsection 1.9.3 of Chapter 1 for the relevant background in first-order logic.) 
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Thus we can associate with every Datalog program, P, a first-order language, C(P), whose 
constants are those present in CONST(P) and whose relation symbols are those present in 
SCHEMA(P). We can then associate with P a family {Mil of finite Herbrand interpretations. 
Each such interpretation Mi is a set of facts that can be viewed as a database di over 
SCHEMA(P) such that the active domain, ADOM(di), of di is a subset of CONST(P). (In 
the following we write di and Mi interchangeably.) In order to make clear the notion of a 
Herbrand model for a Datalog program we define the notion of satisfaction. 

Definition 9.1 (Satisfaction of a clause by an interpretation) A Herbrand interpretation M 
of P, (or equivalently, the database dover SCHEMA(P», where P be a Datalog program, 
satisfies a clause C, written M F C (or equivalently, d F C), if one of the following conditions 
is true: 

1) C is a positive ground literal (or a fact) ofthe form Land L E M . 

2) C is a negative ground literal of the form ....,L and M ~ L. 

3) C is a rule of the form L : - L1, L2, ... , Ln and for all safe substitutions B for C such that 
for all i E J, where J = {l, 2, ... , n}, M F Li, it is also the case that M FL.. 

Defmition 9.2 (Herbrand model for a Datalog program) A Herbrand interpretation M of 
P is a Herbrand model ofP (or simply a model ofP) if for all clauses C in P, M F c. 

A model M of P is minimal if no proper subset of M is a model of P, and a model M is 
least ifit is included in every other model ofP. (Thus ifP has a least model then it has a unique 
minimal model, since a least model is also minimal; on the other hand P may have more than 
one minimal model and thus no least model.) • 

In general, a Datalog program has many Herbrand models, since if M is a Herbrand model 
of P, then by the definition of satisfaction any superset of M is also a Herbrand model of 
P. Our first result states that the inflationary fixpoint of a Datalog program P is a Herbrand 
modelofP. 

Lemma 9.2 MEANING{P) is a Herbrand model ofP. 

Proof. The result follows from the definition of satisfaction of a clause by an interpretation 
and the definition ofMEANING(P). We leave the details to the reader. 0 

Definition 9.3 (Defmite Datalog program) A Datalog program is definite if the bodies of all 
its rules do not contain any negative literals or equality formulae. • 

For example, the Datalog program computing the transitive closure, which was given in the 
introduction to this chapter, is definite. 

There is no loss of generality in allowing equality formulae in the bodies of rules, since the 
equality formula x = y (written in prefix notation = (x ,y» can be defined by the definite 
Datalog program given by 

EQ(x , x) . 
= (x, y) : - EQ{x, y). 
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Fig 9.1 The dependency graph of PI 

We note that the rule defining EQ is not safe, but due to Proposition 3.4 of Subsection 3.2.3 
in Chapter 3, there exists a safe Datalog program whose meaning is identical. That is, EQ will 
be defined only with respect to the set of constants in CONST(P). 

It is well known that when a Datalog program is definite then it has a least Herbrand model, 
which is the intersection of all Herbrand models ofP [VK76, Apt90, NM90j; this result utilises 
the celebrated Knaster-Tarski fixpoint theorem [Tar55j. Building upon this result it can be 
shown that the fixpoint semantics of a definite Datalog program P coincide with the least 
model semantics of P [VK76, Apt90, NM90j (cf. [KP91]). Th~s definite Datalog programs 
have a very elegant model-theoretic characterisation. 

Lemma 9.3 
ofP. 

IfP is a definite Datalog program then MEANING(P) is the least Herbrand model 
o 

Unfortunately, when negative literals are allowed in the body of a rule then a least model 
does not always exist. We give several examples that illustrate the problems that arise with 
the model-theoretic semantics in the presence of negation. Assume a university database 
having the following entities: people (modelled by the unary predicate PERS), employees 
(modelled by the unary predicate EMP), lecturers (modelled by the unary predicate LEC), 
teaching assistants (modelled by the unary predicate TA), students (modelled by the unary 
predicate STUD) and people having a PhD degree (modelled by the unary predicate PHD). 

The following Datalog program, denoted by PI, states that a typical lecturer who is not a 
student tends to have a PhD degree. 

TA(Wilfred). 
LEC(Mark). 
PHD(x) : - LEC(x), -,STUD(x). 

The dependency graph of PI is shown in Figure 9.1. (We have augmented the construction 
of the dependency graph by labelling arcs, (R 1, R2), as being negative whenever the literal Rl 
is negative.} PI has two minimal Herbrand models. The first model is given by 

TA(Wilfred}. 
LEC(Mark}. 
PHD(Mark). 

In this model Mark has a PhD degree and is therefore not a student. The reader can verify 
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Fig 9.2 The dependency graph of P2 

that MEANING(P) corresponds to the above model. The second model is given by 

TA(Wilfred). 
LEC(Mark). 
STUD(Mark). 

In this model Mark is a student and therefore does not have a PhD. The first model seems 
more natural than the second one, since under the CW A we can deduce that ...,STUD(Mark) 
is true. Therefore, we should give priority to minimising the STUD facts rather than the PHD 
facts. 

The following Datalog program, denoted by P2, states that a typical teaching assistant who 
does not have a PhD degree tends to be a student. 

TA(Wilfred). 
LEC(Mark). 
STUD(x) : - TA(x), ...,PHD(x). 

The dependency graph of P2 is shown in Figure 9.2. P2 also has two minimal Herbrand 
models. The first model is given by 

T A(Wilfred). 
LEC(Mark). 
STUD(Wilfred). 

In this model Wilfred is a student and therefore does not have a PhD degree. The reader 
can verify that MEANING(P) corresponds to the above model. The second model is given by 

TA(Wilfred). 
LEC(Mark). 
PHD(Wilfred). 

In this model Wilfred has a PhD degree and is therefore not a student. In analogy to the 
argument that the first model of PI is more natural than its second one, we can also argue 
that the first model of P2 is more natural than its second model. In this case, we should give 
priority to minimising the PHD facts rather than the STUD facts. We observe that in P2 the 
priorities of the predicates STUD and PHD are reversed. 
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The following Datalog program, denoted by P3, states that a person who is not an employee 
is a student and a person who is not a student is an employee. 

PERS(Dan). 
STUD(x) : - -.EMP(x). 
EMP(x) : - -.STUD(x). 

The dependency graph of P3 is shown in Figure 9.3. P3 has two minimal models Ml = 
(PERS(Dan), STUD(Dan)} and M2 = (PERS(Dan), EMP(Dan)}. Both of these models differ 
from MEANING(P), which is the union of the two asserting that Dan is both a student and an 
employee. It follows that in this case MEANING(P) is not a minimal model. It is not clear, 
given P3, which of Ml or M2 is a more natural model. 

The following Datalog program, denoted by P4 , states that a person who is not recorded as 
an employee is in fact an employee. 

PERS(Dan). 
EMP(x) : - -.EMP(x). 

The dependency graph of P4 is shown in Figure 9.4. P4 has a least model M = (PERS(Dan), 
EMP(Dan)}, which coincides with MEANING(P). 

The following Datalog program, denoted by Ps, assumes the nonempty binary predicate 
ARC (modelling the arcs of a digraph), a binary predicate TC (modelling the transitive closure 
of the digraph) and a binary predicate COMP (modelling the complement of the transitive 
closure of the digraph). TC and COMP are defined by the following three rules: 

TC(Xl , X2) : - ARC(Xl , X2). 
TC(Xl, X3):- ARC(Xl , X2), TC(X2 , X3). 
COMP(Xl, X2) : - -.TC(Xl , X2). 
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ARC -O~COMP 
Fig 9.5 The dependency graph of Ps 
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Fig 9.6 The dependency graph of the modified version of Ps 

The dependency graph of Ps is shown in Figure 9.5. Indeed in one of the minimal models of 
Ps the predicate COMP stores the complement of the transitive closure TC of the digraph being 
modelled. This preferred model is the one that gives priority to minimising the TC facts rather 
than the COMP facts. Unfortunately, the inflationary semantics of Ps, i.e. MEANING(Ps), do 
not coincide with the intended semantics of Ps. The reader can verify that in MEANING(Ps), 
COMP is the Cartesian product of the node set of the digraph being modelled. In [AV91a) 
it was shown how the complement of the transitive closure of a digraph can be computed 
using inflationary semantics with the aid of two auxiliary predicates, which we call COpy 
and NOT-LAST. COPY duplicates the TC facts which were added to the resulting database 
in the previous iteration of the while loop in MEANING(P). On the other hand, NOT -LAST 
duplicates the same TC facts unless all the TC facts that can be added are already in the resulting 
database, i.e. TC has reached its fixpoint. The modified inflationary version of Ps is given by 
the following rules: 

TC(Xl, X2) : - ARC(Xl, X2). 
TC(Xl, X3) : - ARC(Xl, X2), TC(X2, X3). 
COPY(Xl, X2) : - TC(Xl, X2). 
NOT -.LAST(Xl, X2) : - TC(Xl , X2), ARC(X3, X4), TC(X4, xs), --.TC(X3 , xs). 
COMP(Xl, X2) : - --.TC(Xl, X2), COPY(X3, X4), --.NOT -.LAST(X3, X4) . 

The dependency graph of the modified version of Ps is shown in Figure 9.6. 
The following Data[og program, denoted by P6, is intended to describe the nodes that are 

reachable and unreachable from a node, a, in a digraph modelled by the predicate ARC. 

ARC(a, b). 
ARC(c, d). 
REACHABLE(a). 
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ARC - REACHABLE0 ~ UNREACHABLE 

Fig 9.7 The dependency graph of P6 

MOVE 
___ " JJi 

Fig 9.8 The dependency graph of P7 

REACHABLE(X2) : - REACHABLE(xJ), ARC(Xl, X2). 
UNREACHABLE(x) : - ..... REACHABLE(x). 

467 

The dependency graph of P6 is shown in Figure 9.7. Indeed, as in Ps, one of the minimal 
models of P6 captures the intended semantics. This preferred model is the one that gives 
priority to minimising the REACHABLE facts rather than the UNREACHABLE facts. As in 
Ps the inflationary semantics of P6, given by MEANING(P6), does not capture the intended 
semantics. We leave it to the reader to verify that the intended semantics of P6 can be captured 
by modifying P6 in a way similar to the modification of Ps by adding to it two predicates COpy 
and NOT-LAST. 

The following Datalog program, denoted by P7, assumes the nonempty binary predicate 
MOVE and a unary predicate WIN. It models a two-person perfect information game between 
two players, where a fact MOVE(a, b) describes a legal move from position a to position b for 
a player in position a, and a fact WIN(a) asserts that a player in position a wins the game. The 
rules of the game are such that a player loses if he/she is in a position from which there is no 
legal move; an example of such a game is nim [Bea89]. We observe that MOVE can be viewed 
as a digraph, and that cycles in this digraph model positions from which neither player can 
win. 

WIN (x) : - MOVE(x, y), ..... WIN(y). 

The dependency graph of P7 is shown in ~igure 9.8. For example, consider the four facts 
describing the legal moves of a game given by 

MOVE(a, b). 
MOVE(b, c). 
MOVE(d, b). 
MOVE(d, e). 
MOVE(e, e). 
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The intended semantics of this initial database of P7 are that position b is winning, positions 
a and c are losing, while positions d and e are neither winning nor losing, i.e. they are drawing. 
It is evident that MEANING{P} does not produce this intended meaning. Moreover, since a 
position may not be winning or losing, we need to allow for facts to be undefined as well as 
true or false. Thus Herbrand interpretations and models need to be extended so that they be 
partial, i.e. allow for undefined facts. 

We now describe some specific model-theoretic semantics of negation, apart from the 
inflationary semantics [KP9I), which is the semantics we have attached to MEANING{P}. A 
detailed survey of the semantics of negation in Datalog can be found in [Bid9I, Via97b) . In 
particular, we will describe stratified program semantics [CH85, ABW88, Lif88, Van88, Apt90), 
semipositive program semantics [ABW88), perfect model semantics [Prz88a, Prz88b, AB88, 
Apt90, PP90), stable model semantics [GL88, Cos95, Sch95), well-founded model semantics 
[Bry89, Prz89, Ros89, PP90, Prz90, Prz9I, VRS9I, Prz92, Van93b, Sch95) and default logic 
semantics [BF9Ia, BF9Ib) (see also [CEG94) and cf. [Rei80, Rei87, Bes89]). 

For a subset of the clauses C of P, we designate the set of predicates which are heads of the 
rules in C as the set of the predicates defined by C. {Recall that a fact is a trivial rule having an 
empty body.} Intuitively, a stratification of P is a partition, {PI, P2 , ... , PsI, of P into layers 
Pi, called strata, which can be constructed as follows. All the clauses in C which define a given 
predicate belong to the same stratum. In addition, every rule in P, whose head is H, imposes 
the following constraints on the stratification of P. Firstly, the clauses in P which define the 
positive literals in the body of the rule belong to the same or a lower stratum than the stratum 
of H. Secondly, the clauses in P which define the negative literals in the body of the rule belong 
to a lower stratum than the stratum of H. It follows that a definite Datalog program has a 
stratification with a single stratum. The formal definition is now given. 

Defmition 9.4 {Stratification of a Datalog program} A stratification of a Datalog program P 
is a partition of P into a number oflayers, {PI , P2, .. . , PsI, called strata as follows. 

For every rule 
H :-AI,A2 ... , Am , ~BI' ~B2 " '" ~Bq 

in P, with m, q ::: 0, where the Ai'S are the positive literals of the rule and the ~B;'s are the 
negative literals of the rule, we have that 

1) the set of clauses in P which define H all belong to the same stratum; 

2} for all i E (I, 2, ... , m), stratum(Ai} ::: stratum(H}; and 

3} for all i E (I , 2, ... , q), stratum(Bi} < stratum(H}, 

where stratum(L} = i if the clauses in P which define a predicate L belong to Pi. • 
A Datalog program may have zero or more stratifications. The Datalog programs P3, P4 

and P7 do not have any stratifications. A stratification for Ps which has two strata is such that 
the first stratum consists of the first two rules of Ps and its ARC facts, and the second stratum 
consists of the third rule of Ps. Another stratification for Ps which has three strata is such that 
the first stratum consists of the ARC facts, the second stratum consists of the first two rules 
of Ps and the third stratum consists of the third rule of Ps. Similarly, stratifications for PI, P2 
and P6 can also be constructed. 
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Recall Definition 3.29 of the dependency graph of a Datalog program, say P, which was given 
in Subsection 3.2.3 of Chapter 3. For each rule in P we have an arc from Rl to R2 if Rl is the 
relation symbol of a literal in the body of the rule and R2 is the relation symbol of its head. Let 
us augment the construction of the dependency graph by further labelling arcs as positive or 
negative according to whether the literal RI in the body of the rule is positive or negative. 

Defmition 9.5 (Stratified Datalog program) A Datalog program P is stratified if the 
dependency graph of P does not have a cycle containing an arc with a negative label. • 

Note that we can safely assume that stratified Datalog programs do not contain equality 
formulae, since as we have seen above, equality formulae can be defined by a definite Datalog 
program containing the predicate EQ and an inequality of the form x =j:. y (written in prefix 
notation =j:. (x, y») can defined by using negation, namely 

=j:. (x, y) : - ~EQ(x, y). 

On using Definition 9.5 it can be verified that, from the example Datalog programs given 
above, PI , P2 , Ps and P6 are stratified whilst P3, P4 and P7 are not stratified. 

The following theorem was shown in [ABW88]. 

Theorem 9.4 A Datalog program P is stratified if and only if there exists a stratification of P. 
o 

The reader can verify that it can be decided in polynomial time in the size of a Datalog 
program P whether P is stratified or not, and if it is stratified then a stratification of P can 
also be obtained in polynomial time in the size ofP (see [Tarn, AHU83] for efficient digraph 
algorithms). 

Intuitively, the meaning of a stratified Datalog program P is obtained by first stratifying 
P and then iteratively computing MEANING( Q), where Q is the union of the meaning of the 
previous strata and the current stratum. 

Definition 9.6 (The meaning of a stratified Datalog program) The pseudo-code of an algo
rithm, denoted by STRATIFIED..MEANING(P), which realises the meaning of a stratified 
Datalog program P is presented as the following algorithm. • 

Algorithm 9.1 (STRATIFIED.MEANING(P)) 
1. begin 
2. Result := 0; 
3. Compute a stratification (PI, P2, ... , Psl of P; 
4. for i = 1 to s do 
5. CurP := Result U Pi; 
6. Result:= Result U MEANING(CurP); 
7. end for 
8. return Result; 
9. end. 
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In order to define the model-theoretic semantics of a stratified Datalog program P we 
define the concept of a perfect model. We first define the relative priorities amongst the 
relation symbols in P. 

Let P be a stratified Datalog program. We say that a relation symbol Rj has a lower priority 
in P than a relation symbol Ri if there is a path in the dependency graph of P from Rj to Ri 
having at least one negative arc. 

For example, in the program PI STUD has lower priority than PHD and in P2 the converse 
is true. In addition, in Ps TC has lower priority than COMP and in P6 REACHABLE has lower 
priority than UNREACHABLE. In all these programs it is natural to minimise the predicates, 
whose relation symbols have lower priority, as much as possible, even at the expense of 
enlarging predicates whose relation symbols have higher priority. 

Intuitively, a perfect model for a stratified program P is a Herbrand model that minimises 
the relations over relation schemas whose symbols have a lower priority. 

Definition 9.7 (Perfect model) Let P be a stratified Datalog program and MI and M2 be 
two distinct Herbrand models of P. We say that MI is preferable to M2 with respect to P, if 
for all facts in M I - M2 having relation symbol Ri> there exists a fact in M2 - M I having 
relation symbol R2 such that R2 has a lower priority than RI' 

We say that M is a perfect model of P if M is a Herbrand model of P and there are no 
Herbrand models of P which are preferable to M with respect to P. • 

The following fundamental result was shown in [Prz88a, Prz88b J. 

Theorem 9.5 ' The following statements, where P is a stratified Datalog program, are true: 

1) Every perfect model of P is a minimal model. 

2) There is a unique perfect model ofP. 

3) STRATIFIED_MEANING(P) is a perfect model ofP. 

Proof. For part (1) if .1\1 1 ~ M2 then it follows that M I is preferable to M2 implying the 
result. 

For part (2) assume that there are two perfect models, MI and M 2 , such that each is 
preferable to the other. It follows that M I and M2 are incomparable with respect to subset, 
since both M I - M2 and M2 - M I must be nonempty. 

Let RI be the relation symbol of a fact in MJ - M2. Then there is a relation symbol 
R2 of a fact in M2 - MJ such that R2 has a lower priority than Rl> since MI is preferable 
to M 2. However, M2 is also preferable to MJ and thus there is a relation symbol R3 of a 
fact in MJ - M2 such that R3 has a lower priority than R2. Moreover, since P is stratified 
RJ, R2 and R3 are pairwise distinct. Continuing this argument it follows that both M I and 
M2 are infinite Herbrand models having an infinite number of relation symbols, leading to a 
contradiction, since P has only a finite number of clauses. 

For part (3) it can be verified that for every Herbrand model M of P STRATI
FIED-.MEANING(P) is preferable to M, since Algorithm 9.1 minimises relations over relation 
schemas whose symbols have a lower priority. The result now follows by part (2). 0 
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We urge the reader to verify the above theorem with respect to the example Datalog programs 
PI, P2 , Ps and P6 above. 

The next corollary follows from the uniqueness of the perfect model semantics. 

Corollary 9.6 If P is a stratified Datalog program then STRA TIFIED..MEANING(P) is 
independent of the stratification ofP. 0 

The class of semi positive Datalog programs is a proper subclass of the class of stratified 
Datalog programs and a proper superclass of the class of definite Datalog programs. 

Definition 9.8 (Semipositive Datalog program) A Datalog program P is semipositive if 
whenever a negative literal appears in the body of a rule in P, then the relation symbol of 
this literal is not the relation symbol of any literal which is the head of a nontrivial rule in 
P. (We assume that equality formulae of the form x = y and thus inequalities of the form 
-'(x = y), which are abbreviated to x i= y, are allowed as literals in the body of rules of 
semipositive Datalog programs.) • 

We note that allowing equality formulae as literals in the body of rules of semipositive 
Datalog programs is equivalent to assuming that EQ is an EDB predicate representing equality 
such that EQ(v, v) is a fact in the EDB if and only if v E CONST(P). If we do not allow 
equality formulae in semipositive Datalog programs, then inequality cannot be expressed in 
semipositive Datalog. 

The reader can verify that the stratified Datalog programs PI and P2 , given above, are 
semiposltlve. On the other hand, the stratified Datalog programs Ps and P6 are not 
semipositive, since TC in Ps appears in a negative literal in the body of a rule and also in 
the head of a rule and similarly for REACHABLE in P6. 

It can be verified that each stratum in the stratification of a stratified Datalog program is 
in fact semipositive. Thus an alternative definition of a stratified program is as a sequence of 
semipositive programs that partition the original program. We observe that a semipositive 
Datalog program can be transformed into a program with no negative literals by replacing each 
negative literal-.L in P by the complement of Lin P with respect to CONST(P). This is consistent 
with the interpretation of a Datalog program via the CWA (closed world assumption). 

The next theorem follows from the fact that a semipositive Datalog program has a 
stratification consisting of a single stratum. 

Theorem 9.7 If P is a semipositive Datalog program then STRATIFIED..MEANING(P) = 
MEANING(P) is a least Herbrand model ofP. 0 

We now formalise the notions of Herbrand base and Herbrand program of a Datalog 
program, both of which will be utilised below. 

Defmition 9.9 (Herbrand base and Herbrand program) The Herbrand base of a Datalog 
program P, denoted by H(P), is the set of all facts of the form R( VI, V2, . . . , Vk) such that 
R is in SCHEMA(P), type(R) = k and {VI . V2 • .. . , Vk} is a subset of CONST(P). (The set of 
constants CONST(P) is also known as the Herbrand universe of P.) 
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The Herbrand program of P, denoted by 1t(P), is the Datalog program resulting from 
applying all possible safe substitutions e to the clauses C in P. Formally, 1t(P) is a given by 

1t(P) = {e(C) I C is a clause in P and e is a safe substitution for C in Pl . • 

We observe that although 1t(P) does not contain any variables it is still a Datalog program; 
1t(P) is also known as the ground instance ofP and the clauses in P are known as the ground 
clauses ofP. 

Consider the Datalog program P7 together with a single MOVE fact, given by 

MOVE(a, b). 
WIN(x): - MOVE(x,y), --'WIN(y) . 

Its Herbrand program 1t(P7) is given by 

MOVE(a, b). 
WIN(a) : - MOVE(a, a), --.WIN(a). 
WIN(a):- MOVE(a, b), --.WIN(b). 
WIN(b) : - MOVE(b, b), --'WIN(b). 
WIN(b) : - MOVE(b, a), --.WIN(a). 

Due to the fact that Datalog programs, such as P3 , P4 and P7, are not stratified, there have 
been proposals to extend the model-theoretic semantics of Datalog to a more general class of 
programs. We next proceed to define such an extension in the form of stable model semantics 
for Datalog programs. 

Informally, the stable transformation of the Herbrand program of a Datalog program P, 
with respect to an interpretation M of P, removes from H(P) any ground clause that is not 
satisfied by M due to a negative ground literal, --.L, in the body of the clause such that M 
satisfies L, and then removes all negative literals from the remaining ground clauses in 1t(P). 

Defmition 9.10 (Stable transformation) For an interpretation M of a Datalog program P, 
the stable transformation of the Herbrand program 1t(P) of P, with respect to M, denoted by 
S(P, M), is the Datalog program obtained by 

1) deleting each rule in 1t(P) that has a negative literal--.L in its body, where L E M, and 

2) removing all negative literals in the bodies of the remaining rules in 1t(P). • 

The stable transformation of S(P7, {MOVE(a, b), WIN(a))) is given by 

MOVE(a , b). 
WIN(a) : - MOVE(a, b). 
WIN(b) : - MOVE(b, b). 

On the other hand, the stable transformation of S(P7, (MOVE(a , b), WIN(b))) is given by 
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MOVE(a, b). 
WIN(a) : - MOVE(a, a). 
WIN(b) : - MOVE(b, a). 
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The next lemma is an immediate consequence of Lemma 9.3, since S(P, M) is a definite 
Datalog program. 

Lemma 9.8 Given a Datalog program P, MEANING(S(P, M)) is a least model of S(P, M). 
o 

A stable model for a Datalog program P is a set of facts M such that M is the least fixpoint 
of the stable transformation of1t(P) with respect to M. 

Definition 9.11 (Stable model) If M = MEANING(S(P, M)) for an interpretation M of a 
Datalog program P, then we say that M is a stable model of P and that P has stable model 
semantics. IfP has a unique stable model then we say that P has unique stable model semantics . 

• 
We leave it to the reader to verify that the unique stable model of P7 above is {MOVE(a, b), 

WIN(a)}, implying that a is the only winning position for this initial database of P7. The 
reader can verify that as long as the digraph induced by the MOVE facts describing the game 
does not have any cycles, then P7 has a unique stable model semantics. Thus stable model 
semantics covers only win-lose games, where an outcome of a draw is not possible. 

Apart from P3 and P 4 all the other example Datalog programs given earlier have unique stable 
model semantics. The reader can verify that P3 has two stable models {PERS(Dan), EMP(Dan)} 
and {PERS(Dan), STUD(Dan)) and that P4 has no stable models, since S(P4, {PERS(Dan))) 
= {PERS(Dan), EMP(Dan)} and S(P4, {PERS(Dan), EMP(Dan))) = {PERS(Dan)}. Therefore, 
stable model semantics is not defined for all Datalog programs as is the case for inflationary 
semantics. On the other hand, it is debatable whether programs such as P3 and P4 have a 
"natural" meaning. 

The following result, which appeared in [GLSS], shows that stable model semantics include 
perfect model semantics as a special case. 

Theorem 9.9 If a Datalog program P is stratified then it has unique stable model semantics 
and its unique stable model coincides with the unique perfect model of P. 0 

We now describe a recent generalisation of the concept of a model to a three-valued 
formalism, which allows facts to be unknown (or undefined) apart from true and false. This 
gives rise to an alternative semantics of negation in a Datalog program, thus giving meaning 
to all Datalog programs. 

A Herbrand interpretation, say M, is two-valued or total, since the facts that are in Mare 
taken to be true and the facts that are not in M are taken to be false. The underlying idea 
in generalising the stratified and stable model semantics of Datalog programs is to consider 
three-valued Herbrand interpretations [FitS5, KunS7]. 
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Defmition 9.12 (Three-valued Herbrand interpretations) A three-valued Herbrand inter
pretation of a Datalog program P (also called a partial Herbrand interpretation of P) is a pair 
(T, F), where T and F are disjoint subsets of the Herbrand base B(P) of P, called, respectively, 
the true and false sets of the interpretation. T contains all the facts which are true in the 
interpretation, F contains all the facts that are false in the interpretation and U = B(P) - (T 
U F) contains all the facts that are unknown (or undefined) in the interpretation. 

rfU = 0 then the three-valued interpretation reduces to the standard two-valued Herbrand 
interpretation (also called total Herbrand interpretation), whence T U F = B(P). • 

We now generalise the concept of satisfaction of a clause in an interpretation to satisfaction 
in a partial interpretation. 

Defmition 9.13 (Satisfaction of a clause by a partial interpretation) A partial Herbrand in
terpretation M = (T, F) ofP, where P be a Datalog program, satisfies a clause C, written M ~ 
C, if one of the following conditions is true: 

1) C is a positive ground literal (or a fact) of the form Land LET. 

2) C is a negative ground literal of the form -.L and L E F. 

3) C is a rule of the form L : - LI, L2, ... , Ln and for all safe substitutions 8 for C such that 
for all i E I, where I = {I, 2, ... , n}, M ~ Li, it is also the case that M ~ L. • 

Definition 9.14 (Three-valued Herbrand model of a Datalog program) A partialinterpreta
tion M = (T, F) of a Datalog program P is a three-valued Herbrand model of P (also called a 
partial Herbrand model ofP, or simply a partial model of P) if for all clauses C in P, M ~ C. 

A partial model reduces to a total model ifU = 0. • 

Intuitively, a partial model is minimal if it minimises its true set and maximises its false set. 

Definition 9.15 (Minimal partial models of a Datalog program) We say that a partial model 
MI = (TI , PI) ofP is extended by a partial model M2 = (T2, P2) ofP if TI is a subset of T2 

and PI is a superset of P2• 

A partial model M is minimal if it is extended by all other partial models of P. • 

Prior to defining the well-founded meaning of a Datalog program, we generalise the concept 
of truth of a clause with respect to a partial interpretation, and correspondingly define the 
new concept of falsity of a clause with respect to a partial interpretation. 

Defmition 9.16 (Truth of a clause with respect to a partial interpretation) A literal L in the 
body of a clause C in a Datalog program P is true with respect to a substitution 8 for C and a 
partial interpretation M = (T, F) ofP, if one of the following conditions is satisfied: 

1) e (L) is a ground atomicformula of the form R( VI, V2, ... , Vk) and R( VI, V2, ... , Vk) E T. 

2) 8(L) is an equality, v = v, where v is a constant. 

3) e (L) is a ground literal of theform -.R( VI, V2, ... , Vk) and R( VI, V2, ... , Vk) E F. 
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4) eeL) is a negative literal of the form, ..... (Vj = Vj), where Vi and Vj are distinct constants, 
i.e. Vi i= Vj. 

A clause e in a program P is true with respect to a substitution e for e and a partial 
interpretation M of P, if each of the literals in the body of e is true with respect to e and M . 

• 
Defmition 9.17 (Falsity of a clause with respect to a partial interpretation) A literal L in the 
body of a clause e in a Datalog program P is false with respect to a substitution e for e and a 
partial interpretation M = (T, F) ofP, if one of the following conditions is satisfied: 

1) eeL) is a ground atomicformula of the form R( VI , V2, .. . , Vk) and R( VI, V2 , ... , Vk) E F. 

2) eeL) is an equality, VI = V2, where VI and V2 are distinct constants. 

3) e (L) is a ground literal of the form ..... R( VI, V2, .. . , Vk) and R( VI, V2, .. . , Vk) E T. 

4) eeL) is a negative literal of the form, -.(v = v), i.e. V i= v, where V is a constant. 

A clause e in a program P is false with respect to a substitution e for e and a partial 
interpretation M of P, if at least one of the literals in the body of e is false with respect to e 
andM. • 

Intuitively, the well-founded meaning of a Datalog program is a partial model obtained by 
starting from the empty partial interpretation and iteratively deriving all the facts currently 
known to be true or false. 

Definition 9.18 (The well-founded meaning of a Datalog program) The pseudo-code of an 
algorithm, denoted by WELLFOUNDED..MEANING(P), which realises the well-founded 
meaning of a Datalog program P is presented as the following algorithm. • 

Algorithm 9.2 (WELLFOUNDED..MEANING(P» 
1. begin 
2. Res_True:= 0; 
3. Res_False := 0; 
4. Tmp_Res := ({ <>}, {<>)); 
5. while Tmp_Res i= (Res_True, Res_False) do 
6. Tmp-R.es := (Res_True, Res_False); 
7. ltecTrue:= 0; 
8. ltecFalse := B(P); 
9. Tmp_lter:= ({<>}, {<>)); 
10. while Tmp_lter i= (ltecTrue, ltecFalse) do 
11. Tmp_lter:= (ltecTrue, ltecFalse); 
12. ImT := 0; 
13. for all clauses e in P and safe substitutions e for e 

such that e is true with respect to e and (Res3rue U ltecTrue, Res_False) do 
14. ImT := ImT U {e(L»), where L is the head ofe; 
15. end for 
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16. lteLTrue := lteLTrue U ImT; 
17. ImF:= 0; 
18. for all facts G E B(P) do 
19. if for all clauses C in P and safe substitutions e for C 

such that G = e(L), where L is the head of C, 
C is false with respect to e and (Res_True, Res_False U IteLFalse) then 

20. ImF := ImF U {G}; 
21. end if 
22. end for 
23. IteLFalse := IteLFalse n ImF; 
24. end while 
25. Res_True:= Res_True U IteLTrue; 
26. Res_False := Res_False U lteLFalse; 
27. end while 
28. return (Res_True, Res_False); 
29. end. 

Algorithm 9.2, which was formulated in [Prz88a, PP90j, is known as the iterated least 
jixpoint of P. An alternative, yet equivalent, formulation of the well-founded meaning of 
P, which is known as the alternating jixpoint, is given in [Van93bj. WELLFOUNDED 
_MEANING(P) outputs a partial model, (Res_True, Res_False), which is constructed iteratively 
using a temporary partial model (IteLTrue, IteLFalse) . Algorithm 9.2 contains two while 
loops. The outer while loop beginning at line 5 and ending at line 27 constructs the partial 
model (Res_True, Res_False), and the inner while loop beginning at line 10 and ending at line 
24 constructs the partial model (IteLTrue, IteLFalse) given the current state of the partial 
model (Res_True, Res_False). 

Intuitively, IteLTrue contains new true facts which can be derived from P assuming the 
current state of (Res_True, Res_False), and IteLFalse contains new false facts which can be 
derived from P also assuming the current state of (Res_True, Res_False). The current state of 
the partial model (IteLTrue, lteLFalse) is iteratively extended during each computation of 
the second while loop (see lines 16 and 23). The current state of the partial model (Res_True, 
Res_False) increases monotonically after each computation of the second while loop by adding 
lteL True to Res-Irue at line 25, and by adding IteLFalse to Res_False at line 26. 

As with the inflationary meaning of a Datalog program the well-founded meaning is also 
defined for all Datalog programs. Thus all the example Datalog programs given earlier have 
a well-founded meaning. The reader can verify that both WELLFOUNDED_MEANING(P3) 
and WELLFOUNDED~EANING(P4) are equal to ({PERS(Dan)}, 0). In addition, the well
founded meaning of the rest of the example Datalog programs, apart from P7, coincide with 
their unique stable model semantics. With respect to P7, when we consider games where 
a draw is not possible, i.e. games whose induced digraph is acyclic, then its well-founded 
meaning coincides with the unique stable model semantics. On the other hand, if we consider 
games where a draw is possible, i.e. games whose induced digraph may contain cycles, then 
the well-founded meaning is defined. Its set of true facts contains the winning positions, its 
set of false facts contains the losing positions and its set of undefined facts contains the set of 
drawing positions. In contrast, such a game with draws does not have unique stable model 
semantics. 
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Part (1) of the next theorem was shown in [Prz89j and parts (2) and (3) were shown in 
[VRS91]. 

Theorem 9.10 The following statements, where P is a Datalog program, are true: 

I) WELLFOUNDED~EANING(P) is a minimal partial model. 

2) IfP is stratified then WELLFOUNDED~EANING(P) = STRATIFIED~EANING(P). 
3) IfWELLFOUNDED~EANING(P) is a total model, then such a model is a unique stable 

model. 0 

The following example program, taken from [VRS9Ij, shows that the converse of 
part (3) of Theorem 9.10 does not, in general, hold. Thus it may be the case that 
WELLFOUNDED~EANING(P) is not a total model but there exists a unique (total) stable 
model for P. 

Let Ps be the following Datalog program, where A, Band C are propositions (i.e. zero-place 
predicates). 

A:-....,B. 
B :-....,A. 
C :-....,c. 
C:-....,B. 

The reader can verify that ({A, C}, {B}) is a total model of Ps (i.e. A and Care 
true and B is false), which is a unique stable model of Ps. On the other hand, 
WELLFOUNDED~EANING(Ps) = (0, 0), i.e. all of A, Band C are undefined. 

Intuitively, a preferred model for a Datalog program P is a partial model that minimises 
the true facts of relations over relation schemas whose symbols have a lower priority and 
maximises the false facts of relations over relation schemas whose symbols have a lower 
priority. 

Definition 9.19 (Preferred model) Let P be a Datalog program and M I = (TI , Fj) and 
M2 = (T2 , F2) be two distinct partial models of P. We say that M I is preferable to M2 with 
respect to P, if 

1) for all true facts in TI - T2 having relation symbol Rj, there exists a true fact in T2 - TI 

having relation symbol R2 such that R2 has a lower priority than Rj, and 

2) for all false facts in F2 - FI having relation symbol RI, there exists a false fact in FI - F2 
having relation symbol R2 such that R2 has a lower priority than RI' 

We say that Mis a preferred model ofP if M is a partial model ofP and there are no partial 
models ofP which are preferable to M with respect to P. • 

The following fundamental result, which shows the connection between preferred models 
and the well-founded meaning of a Datalog program, P, was shown in [Prz89j. In the theorem 
we take the intersection of two partial models (TI , FI) n (T2, F2) to be the partial model 
(TI n T2, FI n F2). 
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Theorem 9.11 Let P be a Datalog program and M = WELLFOUNDED-.MEANING(P). Then 
M is a preferred model, which is the intersection of all preferred models of P. D 

The well-founded semantics of a Datalog program is seen to generalise the stable and 
stratified semantics, whilst giving programs a more "natural" meaning than the inflationary 
semantics. We note that the stable model semantics can be extended to a three-valued stable 
model semantics, which coincides with the well-founded semantics of Datalog programs 
[Prz90, Prz92) . As we shall see in the next section the expressive power of the well-founded 
semantics is equivalent to that of the inflationary semantics. From a practical point of view 
the stratified semantics, although less expressive than the well-founded and stable semantics, 
seems the most "natural" due to its straightforward and elegant formalisation via the unique 
perfect model. 

We close this section with a brief and informal description of an alternative approach 
whereby negation is viewed via default logic. In this approach a Datalog program becomes 
a positivist default theory consisting of a set of facts, a set of positivist default rules and a 
set of closed world (or CWA) default rules. Let us transform the example program PI into 
a positivist default theory. The facts TA(Wilfred) and LEC(Mark) remain as they are in the 
positivist default theory for PI' The rule 

PHD(x) : - LEC(x), ...... STUD(x). 

becomes the positivist default rule 

LEC(x) : M ...... STUD(x) 

PHD (x) 

where M is read as "it is consistent to assume". 

In this positivist default rule LEC(x) is called the prerequisite of the rule, STUD(x) is called 
the justification of the rule and PHD(x) is called the consequent of the rule. Informally, the 
semantics of this rule are as follows. Given a safe substitution () for the variables in the default 
rule, we say that the positivist default rule is true in a partial Herbrand interpretation (T, F) 
for the Datalog program under consideration if PHD«(} (x» E T whenever LEC((} (x» E T and 
STUD«(}(x» ¢ T. In general, a positivist default rule may have a conjunction of prerequisites 
and a conjunction of justifications. We say that a Herbrand interpretation M is an extension 
of a positivist default rule, if for all safe substitutions () for the variables in the rule, the rule is 
trueinM. 

In addition, the positivist default theory for PI has the following four CW A default rules, 
one for each predicate in PI, namely 

: M ...... STUD(x) 
...... STUD(x) , 

: M ...... PHD(x) 
...... PHD(x) , 
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: M-.LEC(x) 
___ ...c...:..., and 

-.LEC(x) 

: M-.TA(x) 

-.TA(x) 

Each CW A default rule is of the form 

: M-.PRED(Xl, X2, ... , Xk) 

-.PRED(Xl, X2, ... , Xk) , 
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where PRED is a predicate symbol in the Datalog program under consideration. The 
occurrence of PRED(Xl , X2, . .. ,xd in the numerator of the rule is called the justification 
of the rule and the occurrence of PRED(Xl, X2, .. . , Xk) in the denominator of the rule is 
called the consequent of the rule. (We note that CW A default rules are normal defa ult rules 
[ReiSO, BesS9] .) 

Given a safe substitution e for the variables in a CW A default rule, we say that the CW A 
default rule is true in a partial Herbrand interpretation (T, F) for the Datalog program under 
consideration ifPRED(e(Xl, X2, . .. , Xk)) E F whenever PRED(e(Xl, X2, ... ,xk)) Ii T. 

Thus positivist default rules allow us to infer positive facts and CW A default rules allow us to 
infer negative facts. In [BF91a, BF91b] it was shown that the default logic model semantics of a 
Datalog program P can be given appropriate stratified program semantics which coincide with 
the perfect model semantics ofP. Moreover, the more general result that the default logic model 
semantics coincides with the stable model semantics ofP was shown in [BF91a, BF91b, SI93]. 

For extensions of Datalog which add to its expressive power see [Lae90, AV91a]. 
Moreover, for an extension of Datalog, which allows disjunction (v) in the heads of rules, 
see [LMRS9, LRM91, EGM97]. The following disjunctive Datalog program solves the 
3-colourability problem, which is known to be NP-complete [GJ79], showing that disjunctive 
definite Datalog is more expressive than definite Datalog under minimal model semantics. 

RED(x) v GREEN(x) v BLUE(x). 
NOTCOLOURED : - ARC{Xl, X2), RED{xd, RED(X2). 
NOTCOLOURED : - ARC(Xl, X2), GREE~{Xl)' GREEN{X2). 
NOTCOLOURED : - ARC(Xl, X2), BLUE{xd, BLUE(X2)' 
COLOURED v NOTCOLOURED. 

The intuitive semantics of the above program are described as follows. The first rule assigns 
each node in the input digraph to one of the three possible colours. The second, third and 
fourth rules define the situations when the assignment of colours to the nodes of the input 
digraph is an illegal colouring. Finally, the fifth rule states that the digraph is either coloured 
or not coloured. Since we are only interested in minimal model semantics, in the result of 
computing the meaning of this program, with any initial database for the arcs of the input 
digraph, COLOURED will be true if and only if the input digraph is 3-colourable. 

We do not discuss the proof-theoretic semantics ofP, where P is a Datalog program; such 
semantics lead to a top-down approach when we compute the meaning of P in contrast to 
the bottom-up approach of the fixpoint computation. The reader can consult [VK76, AVS2, 
Apt90, CGT90, NM90] for details of the proof-theoretic approach in the context of logic 
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programming. An extension of the CW A, which specifically caters for stratified databases, 
leading to a proof-theoretic evaluation of the meaning ofP, when P is stratified, can be found 
in [SI88]. For a more general discussion on the merits of the proof-theoretic approach versus 
the model-theoretic approach we refer the reader to [NG78, Rei84] . 

9.2 Expressive Power of Datalog 

One of the fundamental motivations for investigating deductive databases is that of enhancing 
the expressive power of the relational algebra. Herein we measure the expressive power of 
Datalog in terms of the set of computable queries that it can express under a given semantics. 
We will not provide full proofs of any of the results in this section but rather refer the reader 
to the relevant references. 

We will use the following terminology to denote the various semantics of Datalog examined 
in Section 9.1: 

1) Definite Datalog denotes the semantics of Data log programs P in terms ofMEANING(P), 
when P is a definite Datalog program, and is undefined when P is not a definite Datalog 
program. 

2) Inflationary Datalog denotes the semantics of Datalog programs P in terms of 
MEANING(P}. 

3) Stratified Datalog denotes the semantics of Datalog programs P in terms of 
STRA TIFIED~EANING(P), when P is a stratified Datalog program, and is undefined 
when P is not a stratified Datalog program. 

4) Semipositive Datalog denotes the semantics of Datalog programs P in terms of 
STRATIFIED~EANING(P), when P is a semipositive Datalog program, and is 
undefined when P is not a semipositive Datalog program. 

s) Stable Datalog denotes the semantics of Data log programs P in terms of the intersection 
of all stable models of P if P has at least one stable model, and is undefined when P has 
no stable models. 

6) Well-founded Datalog denotes the semantics of Datalog programs P in terms of 
WELLFOUNDED~EANING(P}. 

Recall the definition of an ordered relational database, containing a designated binary 
relation SUCC, which is a successor relation that linearly orders the active domain of the 
database (see Definition 6.24 in Section 6.7 of Chapter 6). In the context of a Datalog program 
P the relation SUCC is a predicate which defines a linear order on CONST(P); we will use the 
less than predicate, x < y (or equivalently, < (x, y», with its natural meaning, i.e. x < y if the 
pair (x, y) is in the transitive closure of SUCC(x, y}. (By default we will assume that databases 
are unordered.) 

Definition 9.20 (Equivalent Datalog semantics) We say that two Datalog semantics are 
equivalent if they express exactly the same set of computable queries. Correspondingly, we 
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say that a Datalog semantics is included in another Datalog semantics if the set of computable 
queries expressed by the first semantics is included in the set of computable queries expressed 
by the second semantics. If the inclusion is proper we say that the first semantics is properly 
included in the second semantics. • 

We observe that inclusion is a partial order on Datalog semantics, and thus one semantics 
is equivalent to another if and only if they are both included in each other. 

The next two theorems establish the inclusion and equivalence relationships that exist 
amongst the various types of Datalog programs encountered so far. 

Theorem 9.12 The following statements concerning Datalog semantics are true over 
unordered databases: 

1) Nonrecursive Datalog is properly included in stratified Datalog. (It is sufficient to 
assume that EQ is an EDB predicate representing equality.) 

2) Definite Datalog is properly included in semipositive Datalog. 

3) Semipositive Datalog is properly included in stratified Datalog. 

4) Stratified Datalog is properly included in inflationary Datalog. 

5) Inflationary Datalog is equivalent to well-founded Datalog. 

6) Well-founded Datalog is included in stable Datalog. 

Proof. Part (1) is immediate, since the transitive closure of a relation can not be expressed in 
nonrecursive Datalog. 

For part (2) we utilise the fact that definite Datalog programs can only compute monotonic 
(increasing) computable queries. Let P be a definite Datalog program and r be a relation, over 
R, in the initial database DB(P) ofP such that type(R) = n. Let pi be the semipositive Datalog 
program resulting from adding the following rule to P. 

It follows that the complement of a relation in DB(P) can be expressed by a semi positive 
Datalog program. The result follows, since computing such a complement is a nonmonotonic 
computable query and thus cannot be expressed by a definite Datalog program. 

Let 5-stratified Datalog be the subset of stratified Datalog whose programs have 
stratifications with at most 5 strata. Part (3) follows from [Dah87, KoI91], where it was 
shown that if 51 < 52 then 51-stratified Datalog is properly included in 52 -stratified Datalog. 
(See example program Ps, which cannot be expressed by a semipositive Datalog program; Ps 
computes the complement of the transitive closure of a digraph.) 

For part (4) see [KoI91]' where a game-theoretic argument was used to prove the result. 
(See example program P7, which is closely related to the game used in [KoI91] in proving the 
result. Essentially, stratified Datalog is not expressive enough to distinguish between winning 
and losing positions in the game modelled by P7.) 
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Part (5) follows from the fact that both inflationary Datalog and well-founded Datalog 
are equivalent to the relational algebra augmented with a fixpoint operator by the result in 
[AV91a, KP91] and [VRS91, Van93b], respectively. (See Section 6.7 of Chapter 6.) 

For part (6) see [Sch95]. 0 

Theorem 9.13 The following semantics of Data log are all equivalent over ordered databases: 

1) Inflationary Datalog, 

2) Well-founded Datalog, 

3) Stratified Datalog and 

4) Semi positive Datalog, together with the additional two unary predicates MIN and MAX, 
such that MIN(c) is true if and only ifYc' E CONST(P) such that c i= c', c < c' (i.e. cis 
the minimal element in CONST(P», and MAX(c) is true if and only ifYc' E CONST(P) 
such that c i= c', c' < c (i.e. c is the maximal element in CONST(P». 

Proof (1) is equivalent to (2) by part (5) ofTheorem 9.12; in [Pap85, BG87] it was proved that 
(4) is equivalent to (1) (see also Theorem 6.10 in Section 6.7 of Chapter 6); (3) is equivalent to 
(4) by part (3) of Theorem 9.12 and the fact that stratified Datalog over ordered databases can 
express MIN and MAX by 

MIN(x) : - .....,PREV(x). 
PREV(x) : - SUCC(y, x). 
MAX(x) : - .....,NEXT(x). 
NEXT(x) : - SUCC(x, y). 

where PREY and NEXT are unary predicates such that PREV(x) is true if x has a predecessor 
and NEXT(x) is true if x has a successor. 0 

It is interesting to note that the semipositive rules given by 

MIN (x) : - """SUCC(y, x). 
MAX(x) : - .....,SUCC(x, y). 

do not define MIN(x) and MAX(x) correctly, since """SUCC(v, v) is true for all constants v E 

CONST(P). 

Corollary 9.14 Inflationary Datalog, well-founded Datalog, stratified Datalog and semipos
itive Datalog with MIN and MAX predicates (as defined in the statement of Theorem 9.13) 
are all equivalent over ordered databases and express exactly the set of all polynomial-time 
computable queries. 0 

We note that over ordered databases semipositive Datalog, with MIN and MAX, allows us 
to express universal quantification by iterating over all the constants in CONST(P) from MIN 
to MAX, which explains the above equivalence between stratified Datalog and semi positive 
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Datalog. Both semipositive Datalog and stratified Datalog subsume the relational algebra, 
which is essentially first-order logic defined over finite structures. 

Recall from Subsection 1.9.4 of Chapter 1 that co-NP is the complement of NP (NP is 
the class of all Turing-computable mappings whose time complexity is nondeterministically 
polynomial in the size of the input). The following result, which characterises the expressive 
power of stable Datalog, was shown in [Sch95) (see also [MT91)). 

Theorem 9.15 Stable Datalog expresses exactly the set of all co-NP computable queries. 0 

Suppose that we allow function symbols in predicates of ru~es of Datalog programs and 
thus Herbrand universes may be infinite. A typical example of the use of function symbols is 
shown in the following Datalog program, which uses a function symbol suee in order to define 
the natural numbers: 

NAT(O). 
NAT(suee(x» : - NAT(x). 

Another typical example is the following Datalog program, also using the function symbol 
suee, which defines the set of even natural numbers: 

EVEN(O). 
EVEN(succ(x» : - --.EVEN(x). 

The following interesting result was shown in [Sch95) . 

Theorem 9.16 Over the class of infinite Herbrand universes (generated by a finite number 
of constants and function symbols) stable Datalog and well-founded Datalog have the same 
expressive power. 0 

See [AB88, Apt90, MNR92, Sch95) for more results on Datalog programs which may have 
function symbols in their predicates. 

9.3 Equivalence Between Datalog Programs 

Informally, two Datalog programs are equivalent if whenever their sets of input facts are 
equal then their meanings coincide over a designated output relation schema. Thus the set 
of facts present in a Datalog program P is considered to be its input database and the set 
of facts generated by the program via MEANING(P) is considered to be its output database. 
An important issue which we discuss in this section is the problem of deciding whether two 
Datalog programs are equivalent. This is a significant problem confronted in optimising 
Datalog programs. On the one hand, we may be able to optimise a Datalog program by 
finding an equivalent program which is obtained by removing redundant rules and redundant 
literals from the bodies of rules in the original program; such an optimised program is more 
compact and thus likely to reduce the computation time of MEANING(P). On the other hand, 
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we may be able to optimise a Datalog program by finding a nonrecursive program which is 
equivalent to the original program, and thus allowing us to compute its meaning without any 
recursion via NEW -MEANING(P) instead of via MEANING(P). (For the detailed description 
of NEW -MEANING(P) see Algorithm 3.5 in Subsection 3.2.3 of Chapter 3.) 

It turns out that the equivalence problem is undecidable for the restricted class of 
nonrecursive Datalog programs (or equivalently, the relational algebra) and also for the 
restricted class of definite Datalog programs. In addition, it is also an undecidable problem 
to test whether there exists a nonrecursive Datalog program which is equivalent to a given 
recursive program. On the positive side there are some useful subclasses of Datalog 
programs for which the equivalence problem is decidable; we present some of these subclasses 
below. 

Prior to the ensuing definition the reader is advised to recall the definition of the set of 
extensional database facts EDB(P) and the definition of the set of intensional database facts 
IDB(P). 

Defmition 9.21 (The result of applying a Datalog program) A database d is said to be 
compatible with P, where P is a Datalog program, if it contains a finite set of facts whose 
relation symbols are those ofthe EDB predicates ofP. We denote by P(d) the Datalog program 
resulting from replacing EDB(P) in P by d, i.e. P(d) = (P - EDB{P)) U d and thus EDB{P{d)) 
= d and IDB{P(d)) = IDB{P). 

Given a Datalogprogram P, a predicate R in IDB{P) and a database dwhich is compatible with 
P, the result for R of applying P to d, denoted by P(d, R), is the set of facts in MEANING{P{d)) 
whose relation symbol is R (or alternatively the relation over R in MEANING{P{d))) . • 

We now formalise the notion of equivalence. 

Defmition 9.22 (Equivalent Datalog programs) Let P and Q be Datalog programs, and let R 
be an IDB predicate of P and S be an IDB predicate of Q such that type{R) = type{S). We say 
that P is equivalent to Q if for every database d which is compatible with both P and Q, we 
have that P{d, R) = Q{d, S). The equivalence problem for a class of Datalog programs is the 
problem of deciding whether two Datalog programs in the class are equivalent. • 

We next mention some results for subclasses of nonrecursive Datalog programs (or 
equivalently, the relational algebra). A relational algebra query is said to be conjunctive if 
it is a finite composition of selections with only simple selection formulae, projections and 
joins (conjunctive queries are also called select-project-join expressions). A relational algebra 
query is monotonic if it is a finite composition of unions, selections with only simple selection 
formulae, projections and joins. 

Theorem 9.17 The following statements are true: 

1) The equivalence problem for conjunctive queries is NP-complete [CM77, ASU79j. 

2) The equivalence problem for monotonic relational algebra queries is nf -complete 
[SY80j . (Recall from Subsection 1.9.4 of Chapter 1 that nf is a computational complexity 
class in the second level of the polynomial hierarchy.) 
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3) The equivalence problem for nonrecursive Datalog is undecidable [IL84bJ. (The result 
is proved by a reduction from the word problem for finite semigroups, defined in 
Subsection 1.9.4.) 0 

In view of the undecidability of the equivalence problem for relational algebra expressions, 
which may contain the difference operator, it follows that equivalence is also undecidable for 
stratified Datalog. So we now consider a subclass of definite Datalog programs, called chain 
Datalog programs. 

Definition 9.23 (Chain Datalog program) A Datalog rule is a chain rule if it is of the form 

where n :::: 2 is a natural number. A Datalog program is a chain Datalog program (or simply 
a chain program) if all its nontrivial rules are chain rules. • 

We observe that a chain rule is equivalent to the (n - I)-way project-join query (with a 
suitable renaming of attributes if necessary) given by 

(9.1) 

The following theorem establishes an equivalence between a chain Datalog program and a 
(possibly countably infinite) union of conjunctive queries. Thus given a database d, which is 
computable with a chain program P, andan IDB predicate R ofP, there exists a set {PI, P2, ... } 
of conjunctive queries such that 

P(d, R) = PI (d, R) U P2(d, R) U .... 

Theorem 9.18 A chain program (and in fact any definite Datalog program) is equivalent to 
a (possibly countably infinite) union of conjunctive queries. 

Proof. We sketch the construction of a union of conjunctive queries that is equivalent to P, 
where P is a chain program. (A similar construction obtains for any definite Datalog program.) 

Consider a fact, say R( VI, V2, ... , Vq), that is generated after the kth iteration of the while 
loop in Algorithm 3.4 of Subsection 3.2.3 implementing MEANING(P), which is thereafter 
added to the current state of Result. If k = 0 then this fact is already in P, and if k = 1 then 
this fact can be generated by the project-join query shown in (9.1), where RJ, R2, . .. , Rn-I 
are all EDB predicates. Inductively, assume that all the facts that are generated before the kth 
iteration can be output by a union of conjunctive queries. 

By the definition of a chain rule it must be the case that R(VI, V2, ... , vq ) is generated 
during the kth iteration by the project-join query shown in (9.1), where some of the predicates 
RI, R2,"" Rn-I may be IDB predicates. The result now follows by induction hypothesis, 
since we can replace each such IDB predicate, Ri(Xi, Xi+l), in this project-join query, where 
i E {I, 2, ... , n - I}, by a conjunctive query. 0 

The next corollary is an immediate consequence of the above proof. 
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Corollary9.19 IfP is a chain program and {PI, P2, . . . } is a set of conjunctive queries whose 
union is equivalent to P, then each Pi, with i E {I, 2, ... }, is a chain rule. 0 

Recall the definition of a context-free grammar from Subsection 1.9.4. Informally, a context
free grammar is a set of production rules of the form A ~ ct, where A is a nonterminal symbol 
and ct is a (possibly empty) string of terminal and nonterminal symbols; one of the nonterminal 
symbols is designated as the start symbol. The language generated by a context-free grammar 
G, with start symbol S, is the set of all terminal strings that can be generated from the production 
rules of G starting from S. 

Definition 9.24 (The context-free grammar of a chain program) Given a chain program P 
and an IDB predicate, R, ofP we convert P into a context-free grammar, denoted by G(P, R), 
as follows: 

1) Replace each EDB predicate by a terminal symbol. 

2) Replace each IDB predicate by a nonterminal symbol, with the symbol replacing R being 
the start symbol S. 

3) Replace each chain rule 

R'(Xl, xn) :-R1(XI, X2), R2 (X2 , X3),···, Rn-I(Xn- l, xn) 

by a production rule, 
S' ~ SIS2 ... Sn-I, 

where S' is the symbol replacing R' and Si is the symbol replacing Ri, with E 

{I, 2, ... , n - I}. • 

For example, the chain program computing the transitive closure can be converted into the 
context-free grammar given by 

T~f, 

T~ Tf, 

where T replaces TC andf replaces FAMILY. Another context-free grammar corresponding 
to an alternative implementation of the transitive closure is given by 

T~f, 

T~fT. 

Finally, the reader can verify that yet another context-free grammar corresponding to 
another implementation of the transitive closure is given by 

T~f, 

T~ TT. 

We can now prove the undecidability of the equivalence problem for definite Datalog 
programs as a corollary of the undecidability of the equivalence problem for chain Datalog 
programs [UU92, Shm931. 
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Theorem 9.20 The problem of deciding whether two chain Datalog programs are equivalent 
is undecidable. 

Proof. We reduce the problem of whether two context-free grammars are equivalent to the 
problem of the equivalence of two chain Datalog programs. Let GI and G2 be two context-free 
grammars. We construct two chain programs PI and P2 by invoking the inverse of the 
transformation given in Definition 9.24. We note that the inverse of this transformation is 
well defined, since the variables in a chain rule can be implied once the predicate symbols in 
the head and the body of the rule are known and, in addition, the variables in a chain rule can 
always be renamed without altering its meaning. Thus GI is equivalent to G2 if and only if PI is 
equivalent to P2 • The result follows, since the problem of whether two context-free grammars 
are equivalent, i.e. generate the same formal language, is undecidable [Har78, HU79j. 0 

We next define a useful subclass of Datalog programs, where the recursion is limited to at 
most one literal in the body of rules. Such programs often arise in practice. 

Definition 9.25 (Linear and bilinear Datalog programs) A Datalog rule is recursive if the 
relation symbol of the head of the rule is also the relation symbol of one or more literals 
in the body of the rule. A Datalog program is recursive if at least one of its rules is recursive. 

A Datalog rule is linear recursive if the relation symbol of the head of the rule occurs as the 
relation symbol of exactly one literal in the body of the rule. A Datalog program is linear if all 
of its recursive rules are linear recursive. 

Similarly, a Datalog rule is bilinear recursive if the relation symbol of the head of the rule 
occurs as the relation symbol of exactly two literals in the body of the rule. A Datalog program 
is bilinear if all of its recursive rules are either bilinear recursive or linear recursive and at 
least one of its recursive rules is bilinear recursive. • 

We note that our use of the term "recursive" rule is sometimes referred to as directly 
recursive rule [ZYT90j. A more general definition of a recursive rule would make use of the 
dependency graph of the Datalog program under consideration, calling a rule recursive if the 
relation symbol of the head of the rule is involved in a cycle in the dependency graph. There 
is no loss of generality in our definition, since the reader can verify that by replacing a literal, 
which is the head of a rule, by its body with a suitable renaming of variables, we can always 
transform a recursive rule under the more general definition into a recursive rule according 
to Definition 9.25. 

The rule given by 

is bilinear recursive but not linear recursive, while the rule given by 

is linear recursive. 

The next corollary, whose proof is essentially the same as the proof of Theorem 9.20, is 
an immediate consequence of the fact that the problem of whether two linear context-free 
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grammars are equivalent is undecidable [Har78, HU79]. (A context-free grammar is linear if 
the right-hand sides of its production rules contain at most one nonterminal symbol.) 

Corollary 9.21 The problem of deciding whether two linear chain Datalog programs are 
equivalent is undecidable. 0 

The following result, which implies that given a recursive definite Datalog program the 
problem offinding whether there exists an equivalent linear recursive definite Datalog program 
is undecidable, was shown in [FS92j. 

Theorem 9.22 It is undecidable whether a bilinear recursive definite Datalog program has 
an equivalent linear recursive definite Datalog program. 0 

A simple recursive Datalog program is a definite Datalog program with two nontrivial rules, 
one which is bilinear recursive and the other, which is not recursive, representing the base 
case of the recursion. 

Definition 9.26 (Simple recursive Datalog program) A Datalog program P is simple recur
sive if P is definite, has only one IDB predicate R, and only two nontrivial rules of the form 

R(x) : -5(x). 
R(x) : -R(Yl), R(Y2), 51 (ZI), 52(Z2), ... , 5k(Zk). 

where x, Yl, Y2 and Zi, for i E {I, 2, ... , k}, are sequences of variables. The first rule is called 
the basis rule of the simple recursive Datalog program. • 

Consider a digraph with coloured arcs. Suppose that there are two relations, redarc and 
bluearc, in the initial database (recall Definition 3.35 in Subsection 3.2.3 of Chapter 3); 
REDARC(x,y) means that the arc from a node x to a node y is red and BLUEARC(x,y) 
means that the arc from a node x to a node y is blue. The Datalog program P given by 

PATH(Xl, X2):- REDARC(x1. X2). 
PATH(Xl, X2) : - PATH(x1. X3), BLUEARC(X3 , X4), PATH(x4, X2). 

is simple recursive, and can be seen to define paths consisting of alternating red and blue arcs 
and ending in a red arc. 

The following results were shown in [RSUV89, Sar89, Sar95j. 

Theorem 9.23 The following statements are true: 

1) The problem of deciding whether a simple recursive Datalog program has an equivalent 
linear recursive definite Datalog program is NP-hard. 

2) For a simple recursive Datalog program, where in Definition 9.26 x is a sequence of 
distinct variables and all of the predicate symbols S1. S2, ... , Sk are distinct, the problem 
of deciding whether such a program has an equivalent linear recursive definite Datalog 
program can be decided in polynomial time in the size of the input program. 0 
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We refer the reader to [Nau88, RSUV89, Sar89, Sar90, ZYT90, IW91, FS92, Sar95] for further 
results concerning linear recursive definite Datalog programs, and to [CGKV88, AC89, Var89a, 
GMSV93, Shm93, Shm95] for further results concerning the undecidability and decidability 
of the equivalence problem for Datalog programs. 

For semipositive Datalog programs the following result was obtained in [LMS93]. 

Theorem 9.24 The following statements are true: 

1) The equivalence problem for semipositive Datalog programs whose EDB predicates are 
all unary is decidable. 

2) The equivalence problem for semipositive Datalog programs whose IDB predicates are 
all unary is undecidable. 0 

It is interesting to note that in [CGKV88] it was shown that the equivalence problem for 
definite Datalog programs, whose IDB predicates are all unary, is decidable. The result of 
Theorem 9.24 also holds with respect to the related problem of satisfiability, which is the 
problem of determining whether for some IDB predicate R of P the result for R of applying P 
to a database compatible with P, namely P(d, R), is nonempty [LMS93, MS94] . 

A variation of the equivalence of Datalog programs in which IDB predicates are also 
considered to be part of the input is called uniform equivalence [Sag87] . That is, when 
considering uniform equivalence we modify the definition of a database compatible with a 
Datalog program P to include facts whose relation symbols may be those of either EDB or IDB 
predicates. Consider the following three rules: 

TC(XI , X2): - FAMILY(x\, X2) . 
TC(XI, X3): - FAMILY(XI , X2) , TC(x2 , X3) ' 
TC(XI, X3) : - TC(XI, X2), TC(x2 , X3). 

Let TCI denote the first and second rule and TC2 denote the first and third rules. Both TCI 
and TC2 are equivalent chain programs computing the transitive closure of FAMILY. However, 
it can be verified that TCI and TC2 are not uniformly equivalent, since we can construct a 
compatible database (as modified above), d, which contains no FAMILY facts but two TC facts 
generating a third TC fact using the last rule. 

The following result, which can be proved utilising the chase procedure of Subsection 3.6.4 
with generalised chase rules, was established in [Sag87] . 

Theorem 9.25 The problem of deciding whether two definite Datalogprograms are uniformly 
equivalent is decidable. 0 

Informally, a Datalog program is bounded if the number of iterations of the while loop 
invoked when computing its meaning is less than some fixed natural number independently 
of the input database. Boundedness is a desirable property, since if a Datalog program is 
bounded then its recursion is independent of the input database and, as will be shown, it is in 
fact nonrecursive and thus can be computed via a relational algebra expression. 
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DefInition 9.27 (Bounded Datalog program) A Datalog program P is bounded with respect 
to an IDB predicate R ofP (or simply bounded ifR is understood from context) if there exists 
a natural number k depending on P such that for all databases d, which are compatible with 
P, P(d, R) can be computed with at most k iterations of the while loop in Algorithm 3.4 of 
Subsection 3.2.3 implementing MEANING(P(d». • 

As a historical note we mention that the notion of boundedness has been introduced in 
the context of the universal relation model (see discussion at the end of Section 2.4), where 
it was shown that a universal relation can be constructed via a relational algebra expression 
if and only if the set of data dependencies associated with the relation schema are bounded 
[MUV84, Sag88]. (Intuitively a set of data dependencies is bounded if, when they are viewed 
as a set of production rules, the universal relation can always be constructed with at most k 
applications of the set of data dependencies to the original database.) 

The next proposition shows an important connection between boundedness and 
nonrecursiveness of Datalog programs. 

Proposition 9.26 If a Datalog program is bounded then it is equivalent to some nonrecursive 
Datalog program. 

Proof. We prove the result by contraposition. Assume that for a recursive Datalog program 
P there does not exist an equivalent nonrecursive Datalog program. Furthermore, assume 
that for some database d, which is compatible with P, P(d, R) is computed with k iterations 
of the while loop in Algorithm 3.4 implementing MEANING(P(d». Then we can always find 
a database d', which is compatible with P, where d' properly contains d, and such that P(d', 
R) cannot be computed with less than k + 1 iterations of the while loop in Algorithm 3.4 
implementing MEANING(P(d'» . D 

Consider the linear recursive definite Datalog program given by 

BUYS(Xl, X2) : - LIKES(Xl, X2). 

BUYS(Xl, X3) : - TRENDY(Xl), BUYS(x2 , X3) ' 

In this case BUYS in the second rule can be replaced by LIKES resulting in a nonrecursive 
Datalog program which is equivalent to the original program. Now, consider the linear 
recursive definite Datalog program (which is just the transitive closure program with its 
relation symbols renamed) given by 

BUYS(Xl, X2) : - LIKES(Xl, X2) . 

BUYS(Xl , X3) : - LIKES(Xl, X2), BUYS(X2 , X3). 

This Datalog program is inherently recursive, i.e. there does not exist a nonrecursive 
program which is equivalent to it, due to the fact that the transitive closure cannot be expressed 
within the relational algebra. 

The problem of whether a definite Datalog program is bounded or not is called the 
boundedness problem. The next theorem was proved in [GMSV93] by a reduction from 
the halting problem for two-counter machines defined in Subsection 1.9.4. 
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Theorem 9.27 The bounded ness problem is undecidable. o 

In [Var88a) it was shown that boundedness is still undecidable with respect to linear 
recursive definite Datalog programs with a single binary !DB predicate (see also [HKMV9l)). 
Furthermore, in [Abi89) it was shown that boundedness is still undecidable with respect to a 
definite Datalog program with a single recursive rule. 

In [GMSV93) a variation of boundedness of definite Datalog programs, in which !DB 
predicates are also considered as part of the input, called uniform boundedness, is considered. 
It was shown therein that uniform boundedness is also undecidable (see also [HKMV9lJ). 
(Contrast this result with that of Theorem 9.25 which states that the problem of deciding 
whether two definite Datalog programs are uniformly equivalent is decidable.) 

We next define another subclass of linear recursive Datalog programs. 

Definition 9.28 (Basis linear recursive DataIog program) A Datalog program P is basis 
linear recursive if P is a linear recursive definite Datalog program, having only one !DB 
predicate R, and only two nontrivial rules of the form 

R(x) : -QI (YI) , Q2(Y2) , . . . , Qm(Ym) . 
R(x) :-R(y), SI(Z.), S2(Z2) , · · · , Sk(Zk). 

where x, y, Yj and Zit withj E {l, 2, ... , m} and i E {l , 2, .. . , k}, are sequences of variables. 
As with simple recursive Datalog programs, the first rule is called the basis rule of the basis 
linear recursive Datalog program. The second rule is the recursive rule. • 

The following decidable cases are of interest. 

Theorem 9.28 The following statements are true: 

l) The boundedness problem is decidable for definite Datalog programs whose !DB 
predicates are all unary [GMSV93) . 

2) The boundedness problem is decidable for chain Datalog programs [Kan90). (The result 
follows, since it is decidable whether a context-free grammar is finite [Har78, HU79) .) 

3) The boundedness problem for basis linear recursive Datalog programs whose only !DB 
predicate symbol is binary is NP-complete [Var88a). 

4) For basis linear recursive Datalog programs, where in Definition 9.28 x is a sequence of 
distinct variables, the basis rule has a single literal in its body and the recursive rule has 
two literals in its body, the boundedness problem can be decided in polynomial time in 
the size of the input program [Nau89). 0 

Further subclasses of definite Datalog programs for which boundedness is decidable were 
investigated in [Ioa85, Sag88, Cos89, Sar95). 

As a special case of Proposition 9.26 we can deduce that if a definite Datalog program 
is bounded then it is equivalent to some nonrecursive Datalogprogram (or alternatively, 
equivalent to some relational algebra query). In [Cos89) it was conjectured that the converse 
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is also true, i.e. if a definite Datalog is equivalent to some nonrecursive Datalog program then 
it is bounded, or alternatively by contraposition, if a definite Datalog program is unbounded 
then it is not equivalent to any nonrecursive Datalog program. This result was settled in 
[AG94]. 

Theorem 9.29 A definite Datalog program is bounded if and only if it is equivalent to some 
nonrecursive Datalog program if and only if it is equivalent to a monotonic relational algebra 
query (i.e. to a finite composition of unions, selections with only simple selection formulae, 
projections and joins). 0 

The next corollary follows from Theorem 9.29 and the fact that the transitive closure of a 
relation can be expressed by an unbounded definite Datalog program. 

Corollary 9.30 The transitive closure of a relation cannot be expressed by any relational 
algebra query. 0 

Surprisingly, Theorem 9.29 cannot be strengthened to general Datalog programs and thus 
the converse of Proposition 9.26 does not always hold. 

Suppose that the input database includes the predicates SUCC, MIN and <, with their 
intended meaning, and an additional unary predicate INP containing a single constant v. Let 
Q(INP, SUCC, MIN, <} be a Datalog program which defines a zero-place predicate OUT to 
be true, if whenever < is a linear order with a minimal element and SUCC is consistent with 
<, then for every x, with x < v, there exists y such that SUCC(x. y}. (SUCC is consistent 
with <, if < is the transitive closure of SUCC.) We leave it to the reader to verify that Q(INP, 
SUCC, MIN, <} can be defined via a nonrecursive Datalog program (i.e. a relational algebra 
expression). An unbounded Datalog program, which computes Q(INP, SUCC, MIN, <) but 
is not equivalent to any definite Datalog program, was exhibited in [AG94]. 

Another problem of interest is that of determining the equivalence of a given recursive 
definite Datalog program to a given nonrecursive Datalog program. Let us call this 
equivalence problem the definite nonrecursiveness equivalence problem. The definite 
nonrecursiveness equivalence problem is different from the boundedness problem for definite 
Datalog programs, which by Theorem 9.29 is the problem of the existence of some equivalent 
nonrecursive Datalog program, and by Theorem 9.27 its solution is undecidable. In [CV92] it 
was shown that the definite nonrecursiveness equivalence problem is decidable with a triply 
exponential time lower bound. (It is claimed in [CV92] that their result also extends to the 
decidability of determining whether a given Datalog not-equal program is equivalent to a 
given nonrecursive Datalog program; see Section 9.4.) We note that this decidability result 
cannot be extended to semipositive Datalog programs, since by part (3) of Theorem 9.17 the 
equivalence problem for nonrecursive Datalog programs is undecidable. 

Due to the high intractability of the definite recursiveness equivalence problem, some 
special cases of this problem were investigated in [CV92, CV94a], namely the equivalence 
of a given recursive definite Datalog program to a given union of conjunctive queries. In 
[CV92) it was shown that for linear recursive Datalog programs the definite nonrecursiveness 
equivalence problem is EXPSP ACE-complete. It was also shown that for linear recursive 
definite Datalog programs, whose IDB predicates are all unary, the definite nonrecursiveness 
equivalence problem is PSPACE-complete, and for recursive definite Datalog programs, with 
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a single recursive rule, whose IDB predicates are also all unary, the definite nonrecursiveness 
equivalence problem is NP-complete. 

Despite the above undecidability and intractability results, in practice it is desirable to 
optimise a Datalog program as far as possible. That is, given an input program we would 
like to find an equivalent program which can be computed more efficiently than the original 
input program. Some of the well-known optimisation techniques are semi-naive evaluation 
[BR86, U1l89, CGT90, AHV95bj and magic sets [Ram88, U1l89, CGT90, BR91, AHV95bj. The 
underlying idea of the semi-naive evaluation is to avoid duplication in the generation of new 
facts when computing the meaning of a program. On the other hand, the underlying idea of the 
magic sets technique is to transform the input Datalog program into a more efficient program 
by essentially evaluating selection conditions as soon as possible (see [U1l89, CGT90, AHV95b j 
for more details on optimisation issues). 

The connection between context-free grammars and definite Datalog programs has been 
instrumental in obtaining some of the above results. Of particular interest are Datalog queries 
that can be implemented efficiently using parallel algorithms. Several classes of definite 
Datalog programs, such as programs that have the polynomial fringe property are discussed 
in [UV88, Ull92j. A definite Datalog program P has the polyn6mial fringe property if there 
is a polynomialfCn), where n is the size of the input database, such that for any fact PCal, a2, 
... , ak) that can be derived from P there is a proof tree whose fringe, i.e. its set of leaves, 
is not greater thatfCn). A proof tree for peal, a2, ... , ak) with respect to P is a tree whose 
root is peal, a2, .. " ak), whose leaves are facts and such that the children of any internal 
node PiCaip ai2' ... , aik) are the facts in the body of a rule in the Herbrand program ofP (see 
Definition 9.9), whose head is PiCail' ai2' ... , aik)' 

9.4 Datalog Not-Equal 

As we have seen in the previous sections a great deal of research effort has gone into studying 
the properties of definite Datalog. Definite Datalog programs are monotonic, in the sense that 
given a definite Datalog program P, an !DB predicate R of P, and two databases d l and d2 

which are compatible with P, we have that if d l is a subset of d2 then P(dl> R) is also a subset of 
P(d2 , R). Thus any nonmonotonic query such as computing the complement of the transitive 
closure of a digraph cannot be expressed by a definite Datalog program. (In general, recursive 
and also nonrecursive Datalog programs are nonmonotonic.) 

Definite Datalog does not constitute the largest class of monotonic Datalog programs. So it 
is natural to extend the expressiveness of definite Datalog without sacrificing monotonicity. 
In this section we introduce such an extension. 

Definition 9.29 (Datalog not-equal program) A Datalog not-equal program is an extension 
of a definite Datalog program which allows equality and inequality formulae to appear in the 
bodies of rules. An equality formula has the form x = y and an inequality formula, which 
is the negation of an equality formulae, has the form x =1= y (this form is an abbreviation of 
--.(x = y»). • 

Intuitively, a homomorphism is a mapping between the active domains of two databases 
which preserves their structure. 
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Defmition 9.30 (Preservation under extensions and homomorphisms) Let P be a Datalog 
program and dl , d2 be two databases that are compatible with P; as usual we let ADOM(d) 
denote the active domain of a database d. (We assume without loss of generality that 
CONST(IDB(P» is a subset of ADOM(d), i.e. that ADOM(d) contains all the constants in 
IDB(P).) 

The database d2 is an extension ofthe database db if ADOM(dl) is a subset of ADOM(d2) and 
dl is the restriction of d2 to ADOM(dl)(i.e. ifafactRi(vl, V2, ... , Vk) isin d2 and {VI, V2, ... , Vk} 
is a subset of ADOM(dl) then it is also the case that Ri(VI, V2, ... , vk) is in dl ). 

An IDB predicate R of P is preserved under extensions if whenever d2 is an extension of 
db we have that P(d2, R) is a superset of P(db R). A Datalog program is preserved under 
extensions if all its IDB predicates are preserved under extensions. 

A homomorphism is a mapping h from ADOM(dl) to ADOM(d2) such that for all EDB 
predicates Ri of P, Ri(VI, V2, ... , Vk) E dl implies that Ri(h(VI), h(V2), ... , h(Vk» E d2. 
A homomorphism h is one-to-one whenever h is one-to-one. (For the purpose of a 
homomorphism we include the built-in equality and inequality predicates together with the 
EDB predicates when appropriate.) 

An IDB predicate R of P is preserved under homomorphisms if whenever h is a 
homomorphism,R(vl, V2, ... , Vk)EP(dbR)impliesthatR(h(vl), h(V2), ... , h(Vk» EP(d2,R). 
A Datalog program is preserved under homomorphisms if all its IDB predicates are preserved 
under homomorphisms. • 

A homomorphism that is not one-to-one is a mapping that identifies constants in the active 
domain of the database. We observe that a Datalog program is monotonic if and only if it 
is preserved under extensions and one-to-one homomorphisms. In other words, a Datalog 
program is monotonic if and only if the result relation does not decrease when adding constants 
to the active domain of the database and adding facts to the relations in the input database. 
We leave the proof of the next proposition to the reader. 

Proposition 9.31 The following statements are true: 

1) Definite Datalog programs are preserved under extensions and homomorphisms. 

2) Datalog not-equal programs are preserved under extensions and one-to-one 
homomorphisms (but do not necessarily preserve homomorphisms which are not 
one-to-one). 

3) Semipositive Datalog programs are preserved under extensions (but do not necessarily 
preserve one-to-one homomorphisms). 0 

The following Datalog not-equal program, which we denote by pTCN, computes all paths 
in a digraph, from a node labelled Xl to a node labelled X2, which do not go through a node 
labelled by some constant v. 

TCN(XI, X2, v) : - ARC(XI, X2), Xl i= v, X2 i= v. 
TCN(XI,X2, v):- ARC(XI, X3), TCN(x3,x2, v),x\ i= v. 

It can be verified that the Datalog not-equal program pTCN does not preserve 
homomorphisms that are not one-to-one, since we cannot identify the constant v with any 
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other distinct constant. For example, let d = {ARC(l, 2), ARC(2, 3») be a database that is 
compatible with pTCN and let v be the constant 1. Then pTCN (d, TCN) = {TCN(2, 3, I)}. Now, 
let d' = {ARC(l, 1), ARC(l, 3)} be another database that is compatible with pTCN. It follows 
that pTCN does not preserve homomorphisms, since the mapping that takes 1 to 1,2 to 1 and 
3 to 3 is a homomorphism, but {(I, 3, I)} is not in pTCN (d', TCN), which is equal to the empty 
set. We can now deduce by part (I) of Proposition 9.31 that pTCN cannot be computed by any 
definite Datalog program. 

The following semipositive Datalog program, which we denote by P, computes the 
complement of an EDB predicate R (we assume an additional EDB predicate S so that, in 
general, CONST(P) =f. 0}. 

COMP(x} : - ....,R(x). 

We verify by a counterexample that P does notl'reserve ~ne-to-one homomorphisms. Let 
d = {S(1)} be a database that is compatible with P. Then P(d, COMP) = {COMP(l)}. Now, 
let d' = {R(1}, S(l)} be another database that is also compatible(with P. It follows thatP does 
not preserve one-to-one homomorphisms, since the one-to-one mapping that takes 1 to 1, 
is a one-to-one homomorphism, but COMP(1) is not in P(d', COMP}, since P(d', COMP) is 
equal to the empty set. We can now deduce by part (2) of Proposition 9.31 that P cannot be 
computed by any Datalog not-equal program. 

The next result establishes a hierarchy amongst definite Datalog, Datalog not-equal and 
semipositive Datalog in terms of proper inclusion. 

Theorem 9.32 The following statements are true concerning Datalog semantics: 

1) Definite Datalog is properly included in Datalog not-equal. 

2} Datalog not-equal is properly included in semipositive Datalog. (It is sufficient to 
assume that EQ is an EDB predicate representing equality.) 0 

It may be conjectured that all monotonic polynomial-time computable queries can be 
computed by Datalognot-equal programs, but this is not the case. We now exhibit a monotonic 
query that cannot be expressed in Datalog not-equal. 

Given a digraph G and two distinguished nodes m and n in the node set of G, we call the 
problem of deciding whether G contains a path of even length from m to n the directed even path 
problem. The directed even path problem is monotonic and was shown to be NP-complete in 
[LM89]. 

Obviously, if PTIME =f. NP, then the directed even path problem cannot be expressed by a 
Datalog not-equal program, since only polynomial-time queries can be expressed in Datalog 
not -equal. However, the proof that the directed even path problem cannot be expressed by any 
Datalog not-equal program does not depend on the conjecture that PTIME =f. NP. As a note, 
in [ACY91] a problem known as linear constraints, which is a monotonic polynomial-time 
query, was shown to be inexpressible in Datalog not-equal. 

We now describe a pebble game, played on two databases, which can be used to prove 
that a Datalog program is not expressible as a Datalog not-equal program [LM89, KV95]. In 
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particular, we can apply this technique to prove that the directed even path problem cannot 
be expressed by a Datalog not-equal program. 

For the purpose of the next definition we say that a database d is k-compatible with a Datalog 
program P, for some natural number k, if the cardinality of ADOM(d) - CONST(IDB(P)) is 
at least k. (It is possible in this case for the database schema of d to contain lOB relation 
symbols.) 

Defmition 9.31 (Existential k-pebble game) In the existential k-pebble game there are two 
players I and II, playing on two databases d l and d2 , respectively, that are k-compatible with 
a Datalog program P. 

Each player has k distinct pebbles. In particular, PI, P2, ... ,Pk are the pebbles of player I 
and ql, q2, ... , qk are the pebbles of player II. 

The game is played on the active domains of d l and d2• Initially no pebbles are placed on 
ADOM(d l ) and ADOM(d2). The game consists of several rounds and each round proceeds as 
follows. 

In each round player I picks up some pebble, say Pi. If Pi has already been placed on 
a constant in ADOM(dd, then player I removes Pi from ADOM(dd. Player II responds 
by removing the corresponding pebble qi from ADOM(d2). On the other hand, if Pi has 
not yet been placed on a constant in ADOM(dd, then player I places Pi on some constant 
in ADOM(dd, say ai. Player II responds by placing the corresponding pebble qi on some 
constant in ADOM(d2), say bi. It is assumed that the constants ai and bi are free, in the sense 
that currently no pebbles are placed on them. 

After each round let ¢ be the mapping that takes each constant ai in ADOM(d l ), which has 
a pebble Pi on it, to the constant bi in ADOM(d2), which has the corresponding pebble qi on 
it. In addition, we require that ¢ maps the constants in CONST(IDB(P» to themselves (this 
extra condition allows us to use constants in Datalog programs). 

Player I wins the round if ¢ is not a one-to-one homomorphism between the restriction of 
d l to the domain of ¢ (i.e. to the constants ai and CONST(IDB(P») and the restriction of d2 

to the range of ¢ (i.e. to the constants bi and CONST(IDB(P))). On the other hand, player II 
wins if the game goes on indefinitely, i.e. player I can never win a round in the game. (In this 
case player II is said to have a winning strategy.) • 

As noted in [KV95] if we relax the winning condition of player I in an existential k-pebble 
game so that ¢ is not a homomorphism, then we can utilise Lemma 9.33 below in order to show 
that a Datalog program is not expressible as a definite Datalog program. (In this modified 
existential k-pebble game player II may sensibly choose, during any round, to place more than 
one pebble on the same constant.) 

For the purpose of the next lemma we say that a database d is k-compatible with a Datalog 
program P and an lOB predicate R of P, if by removing from d all the facts in dover R we 
obtain a database that is k-compatible with P, i.e. d is k-compatible with P and R if d is the 
union of a database that is k-compatible with P together with some facts over the lOB predicate 
R. Moreover, we say that a database d, which is k-compatible with P and R, satisfies P if r = 
P(d - {r}, R), where r is the set of all facts in dover R, i.e. d satisfies P if, in addition to the EDB 
facts in d, d contains exactly all the facts over R which are generated byMEANING(P(d - {r))). 
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The next result, whose proof can be found in [KV95), states that we can utilise the existential 
k-pebble game to show that a Datalog program P is not expressible as a Datalog not-equal 
program. 

Lemma 9.33 Let P be a Datalog program having an IDB predicate R. If for every natural 
number k there are two databases d} and d~, which are k-compatible with P and R, such that 
d~ satisfies P but d~ does not satisfy P, and player II can win the existential k-pebble game 
on d~ and d~, then the Datalog program P is not expressible as a Datalog not-equal program. 

o 

We now apply Lemma 9.33 to the directed even path problem. 

Theorem 9.34 The directed even path problem cannot be expressed byany Datalog not-equal 
program. 

Proof. A usual we model a digraph G bya binary predicate ARC, such thatARC(vI, V2) means 
that there is an arc from VI to V2 in the arc set of G. Assume the existence of a Datalog program 
P which defines a zero-place IDB predicate OUT to be true, if there is a path of even length 
between two distinguished nodes, say m and n, in the digraph G, which is modelled by ARC. 
(Thus for the purpose of this proof we assume that PTIME = NP holds contrary to common 
belief.) 

Let d} be a database that is k-compatible with P and OUT such that d} satisfies P, i.e. aUTO 
is in d}, and the digraph modelled by d}, say G}, has a directed path of even length between 
nodes m and n, with m # n. Moreover, let d~ be a database that is k-compatible with P and 
OUT such that d~ does not satisfy P, i.e. aUTO is not in d~, and the digraph modelled by d~, 
say G~, does not have a directed path of even length between m and n. 

If k = 1 then we can easily construct Gl and G~ as follows. The digraph Gl comprises just 
a single directed path oflength two from m to n, while the digraph G~ comprises just a single 
directed path of length three from m to n. If player I puts his pebble on m or n, then player II 
responds by putting his pebble on m or n, respectively. Otherwise, if player I put his pebble 
on the other node in Gl, then player II responds by putting his pebble on one of the two other 
nodes in G~. 

If k = 2 then we can construct Gi and G~ as follows. The digraph Gi consists of a single 
directed path of length eight from m to n. On the other hand, the digraph G~ consists of a 
single directed path oflength five from m to n, together with a cycle of length three starting 
and ending at the fourth node from m. 

The idea behind the construction of G~ is that it has a walk oflength eight between m and 
n, which is not a path. Thus player II can win each round by traversing this walk in the same 
manner that player I traverses the single directed path of Gi. Since each player has only two 
pebbles player I cannot detect the cycle oflength three and thus loses the game. 

We leave it to the reader to complete the proof by using a similar construction for each 
k > 2. The result follows on applying Lemma 9.33. 0 

More results concerning Datalog not-equal programs can be found in [LM89, ACY91, Afr94, 
KV95). As a historical note, pebble games such as that of Definition 9.31 originate from [Ehr61) 
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and are also known as back-and-Jorth games or Ehrenfeucht-Fraisse games. In the context 
of database theory such games are normally used to show that a particular computable query 
is not expressible within a given query language. The original version of the k-pebble game 
consists of k moves by each player; two moves one by each player constitute a round. In each 
round player I can choose to place a pebble on a constant in either ADOM(d1) or ADOM(d2), 

and player II must place a pebble on a constant in the opposite active domain (i.e. if player I 
places a pebble on a constant in ADOM(dd then player II must respond by placing a pebble 
on a constant in ADOM(d2 ) and vice versa). In the original version of the game the players 
cannot remove pebbles once they are placed on a constant and a game consists of exactly k 
rounds. Player II wins the game if the induced mapping between the pebbled constants is 
an isomorphism between the restrictions of d1 and d2 , respectively, to the pebbled constants, 
otherwise player I wins. Player II is said to have a winning strategy if this player can always 
win the game no matter how player I moves. Player I is known as the spoiler and player II is 
known as the duplicator. 

Let Q be a computable query. A similar result to Lemma 9.33 can be shown for the original 
pebble game referred to above with respect to the relational algebra. Specifically, if for every 
natural number k there are two databases d~ and d~ such that d~ satisfies Q but d~ does not, 
and player II has a winning strategy for the game on d~ and d~, then Q cannot be expressed 
within the relational algebra (or equivalently, by any nonrecursive Datalog program). This 
technique can be used to show that certain queries, such as computing the transitive closure 
of a graph or testing whether a graph is connected, are not expressible within the relational 
algebra. The reader should consult Subsection 1.9.5 of Chapter 1 for more details on the use 
of Ehrenfeucht-Fraisse games for proving inexpressibility results. 

9.S Updates in Deductive Databases 

In Subsection 3.2.4 of Chapter 3 we have defined an update language for relational databases 
based on the notion of a transaction, which is a composition of one or more update operations. 
Here we consider only the primitive operations of insertion and deletion of facts, ignoring the 
modification operation which can be defined as a deletion followed by an insertion. In the 
context of a Datalog program P, we denote the insertion of a factJ into P by insert(j, P), and 
correspondingly we denote the deletion of a fact J from P by delete(j, P). 

The update problem is to determine the outcome of op(j, P), where op is either insert or 
delete, in terms ofthe update that has to be effected on the extensional database ofP, EDB(P). 
Logically we view P as a first-order theory over the first-order language £(P) associated with 
P, and the semantics of P are viewed in terms of the Herbrand model of P generated by the 
evaluation of the fixpoint ofP (Le. the semantics ofP consist of its set of facts together with the 
set of all IDB facts which can be generated from P when computing MEANING(P». By viewing 
a Datalog program in this way we consider both extensional and intensional predicates to be 
first-class citizens of the database. If we insert or delete a fact over an EDB predicate then 
the semantics of updating EDB(P) are the same as those considered in Subsection 3.2.4 of 
Chapter 3, since EDB(P) is essentially a relational database. On the other hand, when we 
insert or delete a fact over an IDB predicate, then we need to consider two situations. 



9.5. Updates in Deductive Databases 499 

We say that an IDB predicate R of Pis nonrecursive, respectively recursive, if the restriction 
of the dependency graph G ofP to the predicates R' ofP, such that there is a directed path from 
R' to R in G, is acyclic, respectively cyclic. If we insert or delete a fact over a nonrecursive IDB 
predicate R of P, then the semantics of updating EDB(P) are the same as those considered in 
Section 3.8 of Chapter 3, since a nonrecursive Datalog program is equivalent to a relational 
algebra expression. In this case we are faced with the familiar view update problem for 
relational databases. On the other hand, the problem of inserting or deleting a fact over a 
recursive IDB predicate R of P is a new problem. We term the problem of inserting or deleting 
a fact over an IDB predicate (which may be recursive or nonrecursive) the view update problem 
for deductive databases. 

We illustrate the problems that we face in solving the view update problem for deductive 
databases with two examples. Let EMP be a binary predicate modelling a company's permanent 
employees and the departments they work in, MGR be a binary predicate modelling the 
company's departments and their managers and TMP be a binary predicate modelling 
temporary employees and their direct managers. The definite Datalog program, EMG, which 
outputs a binary predicate modelling employees and their managers is given by 

EMG{Xl , X3):- EMP{Xl, X2), MGR{X2 , X3). 
EMG{Xl , X2) : - TMP{Xl, X2). 

The IDB predicate EMG is nonrecursive and thus defines a view which can be constructed 
by a relational algebra expression (the union of TMP together with a projection of the join of 
EMP and MGR). 

Assume that the fact MGR(Computing, Steve) is in EDB(P). We can effect an insertion of 
the IDB fact EMG(Saul, Steve) either by adding the fact EMP{Saul, Computing) to EDB(P) or 
by adding the single fact TMP{Saul, Steve) to EDB{P). Thus in the absence of any additional 
information this insertion is ambiguous. 

Furthermore, assume that EMP(Saul, Computing) and MGR(Computing, Steve) are in 
EDB{P). We can effect the deletion of the IDB fact EMG(Saul, Steve) either by deleting the fact 
EMP(Saul, Computing) from EDB(P) or by deleting the fact MGR(Computing, Steve) from 
EDB(P). Thus in the absence of any additional information this deletion is ambiguous. 

As another example, we again consider the recursive definite Datalog program, TC, which 
computes the transitive closure of FAMILY: 

TC(Xl, X2) : - FAMILY{Xl , X2) . 
TC(Xl, X3) : - FAMILY(Xl , X2), TC(X2 , X3.). 

Assume that FAMILYUulia, Sara) is an EDB fact. Then inserting the IDB fact TCUulia, 
Tamara) can be effected ei ther by inserting F AMIL Y (J ulia, Tamara) in to ED B(P) or by inserting 
FAMILY(Sara, Tamara) into EDB(P). Furthermore, assume that FAMILY(Dan, Iris) and 
FAMILY(Iris, David) are two EDB facts. Then deleting the IDB fact TC(Dan, David) can 
be effected either by deleting FAMILY(Dan, Iris) from EDB(P) or by deleting FAMILY (Iris, 
David) from EDB(P). In both cases, namely the insertion of TCUulia, Tamara) or the deletion 
ofTC(Dan, David), in the absence of any additional information the update is ambiguous. 
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Following [AT91, AT92j we provide a declarative semantic framework for such updates on 
lOB predicates based on the notion of minimal change. An equivalent operational semantics 
for such updates can also be found in [AT91, AT92j (see also [TomSS, Dec90]). 

Defmition 9.32 (Potential results for insertions and deletions) Let P be a Datalog program 
and f be a fact over an lOB predicate R of P. A potential result for the insertion insert(f, P) is 
a Datalog program Q such that 

1) f is in MEANING(Q), and 

2) MEANING(P) is a subset ofMEANING(Q). 

A minimal potential resultQ for the insertion insert(f, P) is a potential result for this insertion 
such that there is no other potential result <1 for this insertion such that MEANING(Q') is a 
proper subset of MEANING( Q). 

A potential result for the deletion delete(f, P) is a Datalog program Q such that 

1) f is not in MEANING(Q), and 

2) MEANING(P) is a superset ofMEANING(Q). 

A maximal potential result Q for the deletion delete(f, P) is a potential result for this deletion 
such that there is no other potential result (f for this deletion such that MEANING«(f) is a 
proper superset of MEANING(Q). • 

Defmition 9.33 (Satisfiable facts) Let P be a Datalog program and f be a fact over an lOB 
predicate R of P. The fact f is satisfiable by P if there exists a database d, which is compatible 
with P, such thatf is in P(d, R). 

The fact satisfiability problem is the problem of deciding whether a given fact is satisfiable 
by a given Datalog program. • 

Not all facts are satisfiable by a Datalog program as the next example shows. Consider an 
EDB predicate NEW -EMP, which records the names of new employees in a company database. 
The lOB predicate DEFAULT _DEPT defined below assigns such new employees by default to 
the Computing department. 

DEFAULT _DEPT(x, Computing) : - NEW _EMP(x). 

The reader can verify that for any constant y the fact DEFAULLDEPT(y, Mathematics) is 
un satisfiable by the above Datalog program. 

Although by Theorems 9.20 and 9.24 the equivalence problem for semi positive Datalog is 
undecidable, the following result was shown in [LMS93j. 

Theorem 9.35 The fact satisfiability problem for semi positive Datalog is decidable. 0 

The decidability of the fact satisfiability problem for definite Datalog programs was shown 
in [Shm93j. In [LMS93j it was shown that, in general, the fact satisfiability problem for Datalog 
programs is undecidable. 
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The next proposition shows that the concepts of potential result for insertion and fact 
satisfiability are equivalent. 

Proposition 9.36 There exists a potential result for the insertion insertlf, P) if and only iff 
is satisfiable by P, where P is a Datalog not-equal program. 0 

Although the only if part of Proposition 9.36 is true for general Datalog programs, the if 
part is false for semipositive Datalog programs when they are nonmonotonic. 

Recall the following semi positive Datalog program, denoted by F, which computes the 
complement of an EDB predicate R. 

CONSTANT(1). 
R(l). 
COMP(x) : - -.R(x). 

Due to the nonmonotonicity ofF there is no potential result for insert(COMP(l), F), since 
as long as R(l) is in EDB(F) we cannot insert COMPO) into F. On the other hand, COMPO) 
is obviously fact satisfiable by F, since COMPO) is in F({CONSTANT(l)}, COMP). 

As the reader can verify from the previous examples, namely those defining the !DB 
predicates EMG and TC, in general there may be several minimal potential results for an 
insertion and correspondingly there may be several maximal potential results for a deletion. 
We define an update to be deterministic if it is not ambiguous in the following sense. 

Definition 9.34 (Deterministic updates) An insertion insertlf, P) is deterministic if it has a 
unique minimal potential result. Correspondingly, a deletion deletelf, P) is deterministic if it 
has a unique maximal potential result. • 

Consider any !DB predicate R of a Datalog not-equal program P, which is defined by one 
nontrivial rule such that all the predicates of the literals in its body are EDB predicates. Then 
the insertion insert(R( VI, V2, ... , Vk), P) is deterministic. On the other hand, the insertion 
insert(TCOulia, Tamara), TC) is nondeterministic. In fact, the reader can verify that every 
insertion of a fact into TC is nondeterministic; similarly, every insertion of a fact into EMG is 
also nondeterministic. These two statements obtain provided the inserted fact is not already 
in TC and in EMG, respectively. 

The deletion delete(TC(Dan, Iris), TC) is deterministic, since the only way it can be effected 
with a maximal potential result is by deleting the fact FAMILY(Dan, Iris) from the EDB. On 
the other hand, the deletion delete(TC(Dan, David), TC) is nondeterministic. 

We leave it to the reader to verify that if a definite Datalog program allows deterministic 
updates then it must be bounded. In other words, if a definite Datalog program is not bounded 
then it does not, in general, allow deterministic updates. On the other, as was shown for the 
definite Datalog program EMG, the fact that a definite Datalog program is bounded does not 
imply that it allows deterministic updates. In order to test whether an insertion of a fact 
into a Datalog program P is deterministic, we need to check whether the intersection over i of 
MEANING(Pi) of all its potential results Pi for this insertion is a model of some potential result 
for the insertion. Correspondingly, in order to test whether a deletion of a fact from a Datalog 
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program P is deterministic we need to check whether the union over i of MEANING(Pi} of all 
its potential results Pi for this deletion is a model of some potential result for the deletion. 

The problem of dealing with nondeterministic updates can be solved in several ways. One 
approach is to provide procedures for disambiguating the update according to some criteria 
which assign priority to one of the potential results of an update in preference to another. 
For example, we may prefer to minimise the number of update operations; note that such 
a criterion on its own does not always disambiguate an update. Another approach is to 
disambiguate an update with the aid of an appropriate user dialogue. A different approach 
is to generalise the notion of a fact by allowing disjunctions and negations of facts, and then 
to add the disjunction of all the potential updates to P as the unique update [RN89]. Using 
this general semantics deletion of a fact J is interpreted as making -1 true in MEANING(P}. 
Thus deleting FAMILY(Dan, Iris} or deleting FAMILY(Iris, David} from EDB(P} is represented 
logically by adding ......,FAMILY(Dan, Iris} v ......,FAMILY(Iris, David) to P. Similarly, inserting 
FAMILYOulia, Tamara) or FAMILY{Sara, Tamara) into EDB{P) is represented logically by 
adding FAMILYOulia, Tamara) v FAMILY{Sara, Tamara) to P. 

An overview of different approaches to the problem of updating deductive databases can be 
found in [Win88a, Win95]. In [FUV83,FKUV86, Var86j a more generalframework for updates 
is considered based on revising the underlying first-order theory of a deductive database. An 
approach which uses dynamic logic [Tha89b j to formalise the update semantics of deductive 
databases is given in [MW88b, Man89, NT89j. An interesting operational semantics of updates 
in deductive databases in terms of abduction was considered in [KM90j. The underlying idea 
is that in order to insert a fact J we need to explain J in terms of possible hypotheses on the 
abductable (i.e. assumable) EDB predicates. Correspondingly, in order to delete J we need to 
explain the negation, -1, ofJ. A recent approach is that of Reiter [Rei92a), who considers the 
situation calculus [MH69j as a basis for database updates. In this context the infamous frame 
problem arises, which is the problem of leaving unchanged the state of the database that is 
unaffected by a given update. For example, if we update an employee's salary this should not 
affect the employee's address or the employee's department. Another recent approach to the 
update problem based on the philosophy of minimal change is that ofKatsuno and Mendelzon 
[KM91aj (see also [KM91b]) in the context of the broader subject of belieJrevision [Gar88a]. 
Finally, an update semantics tailored specifically for incomplete deductive databases (see 
Chapter 5) based on the possible-world approach is investigated in [AG85, Heg87, Win88bj. 

9.6 Integrity Constraints in Deductive Databases 

In Sections 3.4, 3.5, 3.6 and 3.7 of Chapter 3 we have dealt with integrity constraints in relational 
databases. In terms of deductive databases a Datalog program consists of an EDB and an !DB 
and thus it is natural to consider integrity constraints which are defined on both the EDB 
and the !DB. We take integrity constraints to be first-order sentences (or equivalently, closed 
first-order formulae), i.e. first-order formulae having no free variables. 

We do not deal with the problem of inferring whether an integrity constraint holds in an 
!DB predicate given a set of constraints defined over EDB predicates. Even if we restrict 
ourselves to nonrecursive Datalog programs (i.e. to the relational algebra) and to FDs as 
integrity constraints, the problem of deciding whether an FD holds in an !DB predicate is 
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undecidable; if we drop the difference operator from the relational algebra then the problem 
becomes decidable but it is still intractable (see [Klu80, KP82, IITK84J). Consider next a 
definite Datalog program P and a set ofFDs defined over the EDB predicates ofP. The problem 
of determining whether an FD holds over an IDB predicate of P was proved in [AH88a] to be, 
in general, undecidable; the proof was obtained by a reduction from the Post correspondence 
problem defined in Subsection 1.9.4. (In [LMS93] it was shown that satisfiability is undecidable 
for a Datalog not-equal program P given a set of FDs defined over the EDB predicates of P; 
recall that satisfiability is the problem of determining whether for some IDB predicate R of 
P the result of applying P to a database compatible with P, namely P(d, R), is nonempty; see 
Definition 9.21.) 

Hereafter we will mainly restrict ourselves to integrity constraints defined only over EDB 
predicates, i.e. we consider a relational database dover R; d can be viewed as a Datalog program 
consisting only of EDB facts. Essentially we will study a general type of data dependency, 
formalised as a first-order sentence; this was briefly mentioned at the end of Section 3.6 of 
Chapter 3. Recall from Subsection 3.2.3 of Chapter 3 that an atomic formula is either a predicate 
formula of the form R(YI,Y2, ... ,Yk) or an equality formula of the formYl = Y2. Herein we 
assume that all the y;'s are variables ranging over the underlying database domain. 

Definition 9.35 (Data dependency) A data dependency is a first-order sentence of the form 

where for all j E {1, 2, ... , n), Aj is a predicate formula and B is an atomic formula (recall that 
=} stands for logical implication and /\ stands for logical and, i.e. conjunction). 

We assume that for all i E {1, 2, ... , m), Xi appears in at least one of the A/s and that there 
is at least one Aj' i.e. n :::: 1. If B is a predicate formula then the data dependency is called 
a Tuple Generating Dependency (abbreviated to TGD). Correspondingly, if B is an equality 
formula then the data dependency is called an Equality Generating Dependency (abbreviated 
to EGD). 

We say that a data dependency is over a database schema R, if for all relation symbols R 
mentioned in the predicate formulae of the data dependency there is a corresponding relation 
schema R in R. For the rest of this section we assume that all data dependencies are over a 
database schema R. • 

We observe that a TGD can be viewed as a definite Datalog rule. The difference between 
the two is that a Datalog rule is used to generate an IDB predicate, while a TGD is used to test 
whether certain tuples have been generated (an EGD is used to test whether some equality is 
satisfied). 

For example, let R = {EMP, DEPT) be a database schema modelling employees and the 
departments they work in. Furthermore, let schema(EMP) = {ENAME, DNAME), where att( 1) 
= ENAME models an employee's name and att(2) = DNAME models the department's name, 
and let schema(DEPT) = {DNAME, MNAME), where att(1) = DNAME models a department's 
name and att(2) = MNAME models the manager's name of the department. Suppose that 
the constraints specified over R are the FDs: EMP : ENAME -+ DNAME, DEPT: DNAME -+ 
MNAME and DEPT: MNAME -+ DNAME, and the JD I><l(EMP, DEPT]. 
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The FD EMP : ENAME --+ DNAME is represented by the EGD 

The FD DEPT: DNAME --+ MNAME is represented by the EGD 

The FD DEPT: MNAME --+ DNAME is represented by the EGD 

Let ED be an lOB predicate defined by the rule 

Then the JD IXI[EMP, DEPT) is represented by the TGD 

Another interestingTGD that can be represented is that of a binary relation being transitively 
closed. For example, constraining FAMILY to be transitively closed can be represented by the 
TGD 

('lxI , X2, x3)«FAMILY(Xl , X2) /\ FAMILY(X2 , X3» =} FAMILY(Xl , X3» . 

We call such a TGD a Closure Dependency (CD); see [GSS89) for an axiom system for FDs 
and CDs and a discussion on the implication problem for FDs and CDs. 

A more general definition of a data dependency is given in [Fag82b, BV84a, BV84c, FV84a, 
Var88b), which allows existential quantifiers over variables that appear in the atomic formula, 
B, appearing on the right-hand side of the implication. It is customary to call data dependencies 
as given in Definition 9.35 having no existential quantifiers full. On the other hand, when 
allowing at least one existential quantifier we call such data dependencies embedded. 

The definitions of satisfaction and logical implication are essentially identical to those in 
Section 3.5 of Chapter 3. 

Defmition 9.36 (Data dependency satisfaction) Consider a relational database dover R; in 
the context of deductive databases d can be viewed as a Datalog program consisting only of 
facts. We say that d satisfies a data dependency a, written d 1= a, if d is a Herbrand model of a 
with respect to the first-order language containing the relation symbols in R and the constants 
in the active domain of d. 

As usual, when ~ is a set of data dependencies, we say that d satisfies ~, written d 1= ~, if 
Va E ~ , d 1= a . A set of data dependencies ~ over R is said to be satisfiable if there exists a 
database dover R such that d 1= ~. • 

For the sake of completeness we repeat the definition of logical implication for data 
dependencies. 
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DefInition 9.37 (Logical implication) We say that a set of data dependencies Lover R 
logically implies a single data dependency a over R, written L F= a, whenever for all databases 
dover R the following condition is true: 

if d F= L holds then d F= a also holds. • 
Assume that a set L of data dependencies is specified by the database designer. This gives 

rise to a particular class of databases, i.e. the set of all databases that satisfy L, which we 
denote by SA T(L) . On the other hand, suppose that we are given a class of databases, say r, 
satisfying certain preservation properties such as the property of closure under intersection 
or containment. Then it is of interest to know whether there exists a set of data dependencies 
L such that r = SAT(L) . If such a set L exists then we say that r is axiomatisable by L. 
Following [MV86] we characterise axiomatisability of a class of databases by the preservation 
properties it satisfies. (We assume that all classes of databases are closed under isomorphisms; 
an isomorphism from a database d1 over R to a database d2 over R is a homomorphism h 
from ADOM(d1) to ADOM(d2 ) that is one-to-one and onto, implying that its inverse is a 
homomorphism from ADOM(d2) to ADOM(d1).) 

DefInition 9.38 (Axiomatisable classes of databases) A class r of databases is said to be 
axiomatisable by data dependencies (respectively, by TGDs or by EGDs) if there exists a 
set L of data dependencies (respectively, TGDs or EGDs) such that r = SAT(L). • 

An important application of axiom at is ability relates to user views, which are defined by IDB 
predicates. Specifically, we would like to know whether the set L is still satisfied in the user 
view, i.e. whether or not the user view is in SAT(L). By knowing the preservation properties 
of SAT(L) we may be able to give a quick answer to such a question. 

Definition 9.39 (Empty and trivial databases) A database is empty if all its relations are 
empty and is trivial if all its active domains are singletons and all its relations contain only a 
single tuple. • 

The reader can verify the next lemma. 

Lemma 9.37 Empty and trivial databases satisfy any set of data dependencies. o 

Intuitively, a data dependency is domain independent if in order to test its satisfaction by 
a database, d, only the constants in the active domain of d need to be considered. 

Definition 9.40 (Domain independent data dependencies) Recall that a database dover R 
has an underlying countably infinite domain, which we denote by DOMj(R) where j is a 
natural number; in general, DOM/A) =1= DOMk(A), for j =1= k. When we want to emphasise the 
fact that DOM/R) is the underlying domain of d we will refer to d as the pair (d, DOM/R». 

A data dependency a is domain independent whenever (d, DOMj(R» F= a if and only if (d, 
DOMk(R» F= a. • 

The reader can verify the next lemma, which follows from the fact that if we view data 
dependencies as rules, then given a database d such values will not generate any new constants 
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which are not in ADOM(d). (See Subsection 3.3.1 of Chapter 3 for the related concept of domain 
independent queries.) 

Lemma 9.38 Data dependencies are domain independent. o 

Prior to the next definition the reader is advised to recall Definition 9.30 of an extension of 
a database. 

Definition 9.41 (Preservation under extensions, containment and intersections) A data 
dependency ct is preserved under extensions if whenever a database d. over R is an extension 
of a database d2 over Rand d l 1= ct, then it is also the case that d2 1= ct. 

A database d l over R contains a database d2 over R, if for all R E R, r2 ~ rl, where r2 and rl 

are the relations over R in d2 and db respectively. 

A data dependency ct is preserved under containment if whenever a database d l over R 
contains a database d2 over Rand d l 1= ct, then it is also the case that d2 1= ct. 

The intersection of two databases d l and d2 over R, denoted by d l n d2, is the database over 
R, such that for all R E R, rl n r2 is the relation in d l n d2 over R, where rl and r2 are the 
relations over R in dl and d2 , respectively. 

A data dependency ct is preserved under intersections if whenever d l and d2 are databases 
over R such that d l 1= ct and d2 1= ct, then it is also the case that d l n d2 1= ct. • 

The reader can verify the next lemma by inspecting Definition 9.35 and noting that by 
Lemma 9.3 the intersection of two Herbrand models for a definite Datalog program P is also 
a Herbrand model ofP. 

Lemma 9.39 Data dependencies are preserved under extensions and intersections, and EGDs 
are preserved under containment. 0 

Intuitively, a set of data dependencies ~ allows unique minimal insertions if whenever dis 
a database that satisfies ~ and a set of facts is inserted into d, then there is a unique database 
d' containing the database resulting from the insertions such that d' satisfies :E. 

Defmition 9.42 (Unique minimal insertions) Recall from Section 9.5 that insert(j, d) 
denotes the insertion of a fact (or equivalently, a tuple) into a relation in the database d. 
Let insert(F, d), where F is a finite set of facts, denote the database resulting from a sequence 
of insertions of the form insert(j, d) for all f E :F. (Note that the database insert(F, d) does 
not depend on the order in which the facts f are inserted into d.) 

A set of data dependencies ~ allows unique minimal insertions if for every database d 
such that d 1= :E, and for all finite sets of facts F, there exists a unique minimal database d' 
containing insert(F, d) such that d' is an extension of d and d' 1= :E. • 

The reader can verify that the next lemma is a direct consequence of Lemma 9.3, since TGDs 
can be viewed as definite Datalog rules. 

Lemma 9.40 Data dependencies allow unique minimal insertions. o 
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Intuitively, a data dependency ex is preserved under duplicating extensions if whenever a 
database d satisfies ex and d is augmented with an extra copy of itself, where a constant in dis 
renamed to a new constant in the copy, then the resulting database also satisfies ex. 

Definition 9.43 (Duplicating extensions) Let d be a database over R, VI E ADOM(d) be a 
constant and V2 <I- ADOM(d) be another constant. Also, let h be a one-to-one and onto 
homomorphism, i.e. an isomorphism, from ADOM(d) to (ADOM(d) - {VI}) U {V2} such that 
it is the identity on ADOM(d) -{vd and h(vI) = V2· 

The database d' over R is a duplicating extension of d if ADOM(d') = ADOM(d) U {V2} and 
for all rEd over R, the relation r' E d' over R is given by r' = r U her). 

A data dependency ex is preserved under duplicating extensions if whenever dl and d2 are 
databases over R such that dl F ex and d2 is a duplicating extension of db then it is also the 
case that d2 F ex. • 

The reader can verify the next lemma. 

Lemma 9.41 TGDs preserve duplicating extensions. o 

We now define the closure properties of a class of databases r corresponding to the 
preservation properties introduced in Definition 9.41. 

Definition 9.44 (Closure properties) Let r be a class of databases. r is said to be domain 
independent whenever (d, DOMj(R» E r if and only if (d, DOMk(R» E r. r is said to be 
closed under extensions if whenever d l E rand d l is an extension of d2 then d2 E r. r is 
said to be closed under containment if whenever d l E rand d l contains d2 then d2 E r. r 
is said to be closed under intersections if whenever d l , d2 E r then d l n d2 E r . r is said to 
be closed under insertion updates if whenever d l E rand F is a finite set of facts then there 
exists a unique minimal database d2 containing insert(F, dd such that d2 is an extension of 
d l and d2 E r, provided there is an extension of d l in r containing insert(F, d l ). r is said to 
be closed under duplicating extensions if whenever d l E rand d2 is a duplicating extension 
of dl then d2 E r . • 

The only if part of the next theorem follows from the preservation properties of data 
dependencies; the proof of the if part can be found in [MV86]. 

Theorem 9.42 The following statements are true: 

1) A class r of databases is axiomatisable by data dependencies if and only if it contains 
a trivial database, is domain independent and closed under extensions and insertion 
updates. 

2) A class r of databases is axiomatisable byTGDs if and only if it contains a trivial database, 
is domain independent and closed under intersections and duplicating extensions. 

3) A class r of databases is axiomatisable by EGDs if and only if it contains a trivial database, 
is domain independent and closed under containment and insertion updates. 0 
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Definition 9.45 (Projection and join of database classes) We say that a class of databases r 
is over a relation schema R, ifit contains only databases having single relations over R; without 
any loss of generality we will consider a database d = {r} simply as the relation r. 

If r is a class of databases over R, then the projection of r onto a set of attributes X ~ 
schema(R) is the set ofrelations {1l'x(r) IrE r}. 

If rl is a class of databases over RI and r2 is a class of databases over R2, then the join of 
r l and r2 is the set of relations {rl txl r2 I rl E r) and r2 E r2}. • 

The next corollary is a direct consequence of part (1) of Theorem 9.42. 

Corollary 9.43 The following statements are true: 

1) If a class r of databases over a relation schema R is axiomatisable by data dependencies, 
then any projection of r is also axiomatisable by data dependencies. 

2) If two classes of databases rl, r2 over a relation schema RI are axiomatisable by data 
dependencies, then their join is also axiomatisable by data dependencies. 0 

Although a class of databases may be axiomatisable by a set of data dependencies, say 
~, Theorem 9.42 does not guarantee that ~ is a finite set. A further investigation of 
axiomatisability of a class of databases by a finite set of data dependencies, called finite 
axiomatisability, can be foundin [Hu184, MV86] (see also [Mak87j). In particular, it was shown 
in [Hu184] that both statements of Corollary 9.43 are false when we replace axiomatisability 
by finite axiom at is ability. Intuitively, to formalise finite axiomatisability we need to add the 
condition that the class of databases r is n-local for some natural number n, which implies 
that the number of variables in any data dependency in ~ is bounded above by n. A class 
of databases r is said to be n-local, if for a given database d2 , whenever r contains all the 
databases dl such that d2 is an extension of dl and the cardinality of ADOM(dl) is at most n, 
then r also contains d2. 

It is possible to generalise further the notion of data dependency given in Definition 9.35 
by allowing a data dependency to be any first-order sentence whose basic building blocks 
are atomic formulae and such that no constants appear in the sentence. Let us call such a 
generalised data dependency, which is restricted to be domain independent (according to 
Definition 9.40), an integrity constraint. The problem of whether there exists a database 
which satisfies a set ~ of integrity constraints is called the satisfiability problem. In general, 
the satisfiability problem is undecidable [Man90]; see [BDM88] for an algorithm which tests 
satisfiability by trying to generate a database satisfying ~ (due to the undecidability of the 
satisfiability problem this algorithm may not terminate). Due to the said undecidability 
result it is debatable whether such a generalisation of data dependencies is useful in 
practice. 

The problem of checking whether a particular database satisfies ~ when an update is 
performed is considered in [Nic82, LST87]. An extension of the approach to the update 
problem, in the context of a definite Datalog program, to include the specification of a set 
of FDs, defined over the IDB predicates, is considered in [Tor94] . As was mentioned at the 
beginning of Section 9.6 the problem of determining whether P(d, R) satisfies a set of FDs is, 
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in general, undecidable given that d satisfies a set of FDs defined over the EDB predicates of 
a Datalog program, P. 

We have implicitly assumed that integrity constraints are static, which means that their 
satisfaction is only determined by the current state of the database. Alternatively, we may wish 
to consider dynamic integrity constraints whose satisfaction is determined by the transition 
of the database from one state to another during an update operation. For example, we 
may wish to assert that an employee's salary never decreases, i.e. when a salary is updated 
its new value is not less than the old value. Maintaining such dynamic integrity constraints 
can be dealt with naturally within a historical database (see Section 7.7 of Chapter 7) by 
viewing dynamic integrity constraints as static integrity constraints over historical relations. 
Alternatively, Nicholas and Yazdani an [NY78] suggest that we augment the database with 
temporary relations, called action relations, which hold the previous state of the database 
prior to an update, in order that the state transition can be expressed as a static integrity 
constraint over the augmented database. 

We finally mention Reiter [Rei92b] who uses a modal logic formalism [Tha89b] to 
distinguish between knowledge about the external world (the real world) and what the database 
knows about the external world. For example, we may know that there exists an employee in 
the sales department but the database may not know who that employee is. Such an approach 
is especially useful in the context of incomplete information [Lev84]. 

9.7 Discussion 

Deductive databases enhance the expressive power of relational databases with the ability to 
express recursion (for example, the transitive closure) and the general facility to define and 
manipulate views via rules. The Datalog language has been central to the development of the 
deductive database model as a declarative and logic-based query and update language. 

Definite Datalog programs (i.e. programs without negation) have a well-defined semantics 
in terms of the unique minimal model of the program, which is equivalent to the fixpoint 
semantics of the program. Definite Datalog also has an equivalent and fairly straightforward 
proof theory [VK76, Hod93]. (For a novel semantics of Datalog which is based on Petri net 
theory [Pet8l] see [DL9l].) When we add negation to Datalog programs the situation is not 
as straightforward, since we lose the minimal model semantics but we can recover from this 
difficulty via the perfect model semantics of stratified Datalog programs. As we have seen, 
further enhancements to the semantics of Data log have been proposed, since stratified Datalog 
programs do not give semantics to the full class of Datalog programs. 

Most of the deductive database research has concentrated on the query language aspect 
of the model, stressing various optimisation techniques of queries [Ull88]. An area we have 
not touched upon is that of giving semantics to aggregate functions in Datalog; several recent 
such proposals can be found in [RS92, Van92, CM93]. There has been less research in the 
important areas of updates and integrity constraints in deductive databases. In particular, the 
area of data dependencies, which has been very instrumental in the broad area of relational 
database design, may have a similar effect on the design of deductive database. 

As deductive database technology is reaching maturity several prototype systems have 
been implemented [RU95]. Since the basic technology is already available, it seems likely 
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that existing relational database systems will enhance their capabilities with deduction via 
the provision for defining and executing rules. For a historical perspective on the area of 
deductive databases see [Min88bl. 

9.8 Exercises 

Exercise 9.1 Consider the following normal form for a deductive database P: P is in deductive 
normal form if none of its rules are redundant and, in addition, none of the literals in the body 
of its rules are redundant. What is the problem with the definition of deductive normal form 
in terms of being a database design goal? 

Exercise 9.2 Suppose that a Datalog program P has an IDB predicate TC that computes 
the transitive closure of some binary EDB predicate R. Now, consider transforming P into a 
program Q by removing TC from the IDB and adding a new predicate TCR to the EDB together 
with the corresponding closure dependency that asserts that TCR is the transitive closure of 
R. Discuss the advantages and disadvantages of the Datalog program P versus the Datalog 
programQ. 

Exercise 9.3 Consider the following Datalog program, P, given by 

MOVE(a, b). 
MOVE(b, c) . 
MOVE(d, d). 
WIN(x) : - MOVE(x, y), ...... WIN(y) . 

What is the well-founded meaning of P? In your answer give the details of the 
intermediate states of the variables Res_True and Res_False during the computation of 
WELLFOUNDED~EANING(P). 

Exercise 9.4 Assume a binary EDB predicate CHILD, where CHILD(Tamara, Mark) means 
that Tamara is the child of Mark, and a binary IDB predicate SG, where SG(Sara, Mark) means 
that Sara and Mark are of the same generation. Consider the following rules, which define SG 
and a unary predicate QUERY: 

SG(x" X2) : - CHILD(x" X3)' CHILD(X2, X4), SG(X3, X4)' 
SG(x, x). 
QUERY(x) : - SG(Mark, x). 

Let us call the Datalog program, which contains the EDB predicate CHILD and the IDB 
predicates SG and QUERY, P. Consider the Datalog program Q, consisting of the EDB predicate 
CHILD and the IDB predicates SGM, MAGIC and QUERY, given below: 

SGM(x" X2) : - MAGIC(x,), CHILD(x" X3), CHILD(x2 , X4) , SGM(X3, X4). 
SGM(x, x) : - MAGIC(x). 
MAGIC(Mark). 
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MAGIC(xI) : - MAGIC(x2), CHILD(X2 , XI)' 
QUERY(x) : - SGM(Mark, x). 

S11 

Suppose that we would like to compute the answer to the Datalog query, : - QUERY(x). 
Show that the Datalog programs P and Q are equivalent in the sense that for all databases, 
which contain CHILD facts, the answer to the above query is the same with respect to either 
PorQ. 

The transformation from P to Q is called the magic set optimisation method [BR91j. Argue 
why the magic set method is indeed a query optimisation technique. 

Exercise 9.5 Assume that we have two EDB unary predicates STUD and LECT, where 
STUD(Wilfred) means that Wilfred is a student and LECT(Tony) means that Tonyis a lecturer. 
We can assign each student to a single tutor using the following Datalog program P: 

In the above program the predicate CHOICE is a built-in predicate, which nondeterminis
tically chooses a subset of the <XI, X2> tuples that are true in the meaning ofP such that there 
is a functional dependency from the XI values to the X2 values, i.e. from students to tutors. 

Consider the following Datalog program, which finds the students that are enrolled for at 
least one course, with ENROL and COURSE being EDB predicates, where ENROL(Wilfred, 
Databases) means that Wilfred is enrolled in the Databases course and COURSE(Databases, 
Computing) means that the Databases course is taught in the Computing department: 

QUERY(xI) : - ENROL(XI, X2), COURSE(X2. X3). 

Suggest how the choice predicate can be used to optimise the above Datalog program, given 
a query: - QUERY(x) [NT89, GPSZ91). 

Exercise 9.6 Let us define a term to be either a variable, a constant or an expression of the 
form f(tl, t2 , ... , tm ), where each ti is a term and f is a function symbol having m arguments. 
Furthermore, let us define an atomicformula to be an expression of the form R(tt. t2 , ... , tn) or 
of the form tl = t2, where each ti is a term. We also extend a fact to be either an atomic formula 
of the form R( CI, C2, . .. , cn), called a relational fact, or of the form f (CI , C2 , ... , Cn-t) = Cn, 
called a functional fact, where each Ci is a constant. Finally, we extend Datalog programs such 
that atomic formulae are extended as above. For example, an extended Datalog program may 
contain the following functional facts and rules with their obvious meaning: 

EMPOohn). 
DEPTOohn) = Computing. 
MGR(Computing) = Jack. 
COMP(x) : - EMP(x), DEPT(x) = Computing. 
MGR(xI) = X2 : - EMP(XI), MGR(DEPT(xI)) = X2. 

A set of facts is said to be consistent if whenever it contains two functional facts of the 
formf(cl, C2,·.·, Cn-I) = c~ andf(cI , C2 , " " cn- d = c~, then c~ = c~. The meaning of an 
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extended Datalog program P, i.e. MEANING(P), is modified accordingly, so that MEANING(P) 
is defined if the resulting database of facts is consistent, and undefined otherwise. 

Show that given an extended Datalog program P, the program P can be transformed into a 
Datalog program Q, having no function symbols, together with a set of FDs F over schema( Q) 
such that MEANING(P) is consistent if and only if MEANING(Q) satisfies F [AH88aJ. 

Exercise 9.7 Assume that we have a ternary EDB predicate ARC describing a labelled digraph, 
where ARC(nl , n2, c) means that there is is an arc from node nl to node n2 having a cost c, 
where c ::: 0 is a real number. Now, let P be the following Datalog program: 

PATH(Xl, Direct, X2 , X3) :- ARC(Xl, X2, X3). 
PATH(Xl, X2 , X3, X4) :- SHORT(Xl, X2, xs), ARC(X2, X3, X6), X4 = Xs + X6· 
SHORT(Xl, X2, X3): - X3 = MIN(x4), ARC(Xl, X2, X4)' 

We assume that '+' is a built-in operator with its usual meaning of addition, and the 
aggregate function MIN is a built-in operator that computes the minimum of a multiset of 
facts (a multiset is a set which may contain duplicates). Thus, intuitively the above program 
computes the minimum cost path between two nodes in the digraph represented by the 
predicate ARC. 

Give model-theoretic semantics to the above Datalog program, which includes an aggregate 
function, in terms of its minimal models (RS92, CM93j. 

Exercise 9.8 Let us extend Datalog with update predicates of the form +R(Yl, Y2, ... , Yn), 
-R(Yl,Y2, .. . ,Yn), where R is an EDB predicate. The meaning of +R(Yl,Y2, . . . ,Yn) is 
to insert the fact R(Yl , Y2 , ... ,Yn) into the EDB and, correspondingly, the meaning of 
- R(YI , Y2 , . .. , Yn) is to delete the fact R(Yl, Y2, .. . ,Yn) from the EDB. 

For example, assume a ternary EDB predicate EMP, where EMP(John, Computing, 30) 
means that John works in the Computing department and earns 30 thousand pounds 
sterling. The following Datalog program increases all the salaries of employees working 
in the Computing department by 20%: 

RAISE(Computing) : - EMP(X3, Computing, xd, X2 = Xl X 1.2, 
-EMP(X3, Computing, xd, +EMP(X3, Computing, X2). 

Give model-theoretic semantics to the above Datalog program in terms of minimal models, 
where the + and - operators correspond to actions that transform the database from one 
state to another [NK88, NT89j. 

Exercise 9.9 Suppose that we extend Datalog by allowing lists as arguments in atomic 
formulae, as, for example, in the following Datalog program: 

SIBLlNGOohn, Mary). 
CHILDREN(John, (Jack, Jill, Joe)). 
CHILDREN(Mary, [Mark, Mel, Moe)). 
COUSIN(Xl , X2):- CHILDREN(x3, Ld, CHILDREN(x4, L2), 

MEMBER(Xl , Ld, MEMBER(X2, L2), SIBLlNG(X3, X4) . 
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We assume that MEMBER(x, L) is a built-in predicate which is true if x is a member of the 
list L (see [NT89] for more details on how lists can be used in Datalog programs). 

Discuss the merits and demerits of extending Datalog with lists. 

Exercise 9.10 Design a Datalog program to manipulate a family tree, where the EDB contains 
at least a binary predicate PARENT such that P ARENT(Mary, Mel) means that Mary is the 
parent of Mel, and a predicate PERSON which maintains all the personal information of the 
people stored in the family tree database [NT89]. You are allowed to use aggregates and lists 
in your Datalog program rules. 

Exercise 9.11 Suggest an architecture for implementing a deductive database system on top 
of a relational database management system [RU95]. 



10. Extensions to the Relational Data 
Model and Recent Directions 

So far we have covered the relational data model in detail including an extension to incorporate 
time into the model. In this final chapter we will briefly survey various extensions of the 
relational model which have been under development in recent years, and we will briefly 
overview some new directions that are being researched. 

The relational model has already gained acceptance in the market place to such a degree 
that many database users expect their database systems to be relational by default. With the 
acceptance of the relational model users are demanding new facilities which are not directly 
supported by the model. Such facilities include support for deduction mechanisms (see 
Chapter 9), complex non-first normal form data, object-oriented features and production 
rules. The availability of database systems on a wide variety of computer platforms has meant 
that there is a growing demand for the use of databases in non-business applications, such as: 
office automation, computer-aided design (CAD), multimedia, text retrieval, expert systems 
and scientific applications such as: geographical and statistical analyses. This demand is a 
motivating factor for extending the relational model to provide new facilities such as the ones 
we have just mentioned. 

In Section 10.1 we give an overview of nested relational databases, in which relations are 
not necessarily in first normal form. In Section 10.2 we give an overview of object-oriented 
databases, taking the object-relational approach via an extension of relational databases. 
In Section 10.3 we give an overview of graph-based databases and present a graph-based 
model, called the hypernode model, which represents objects as labelled nested digraphs. In 
Section 10.4 we give an overview of active databases, in which production rules, also known 
as event-condition-action rules, are added to the database system. 

An emerging field in the broad area of information systems is that of hypertext (or more 
generally hypermedia), whose aim is to provide database support for networks of "electronic 
documents" which are logically linked together. Hypertext is concerned with authoring, 
managing, designing and navigating through the electronic documents of such networks. The 
vision of virtual electronic libraries is becoming a reality and hence there is a strong need for a 
formal data model of hypertext. Although it would be naive to consider a data model of such 
an electronic library to be an extension of the relational model, relational database theory 
can provide inspiration for the development of such a data model. In Section 10.5 we give an 
overview of hypertext databases. 

515 
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A hypertext database can be viewed as an instance of a semistructured database in the 
sense that such a database does not come with a separate schema, since it does not have a 
regular structure. Although the digraph representing a hypertext database is unstructured, 
individual pages may have some structure attached to them. For instance, pages which are 
HTML documents have some structure attached to them in the form of informational tags, 
but these are insufficient for the purpose of constructing a relation schema over the document 
space. Semistructured data is often self-describing in the sense that its internal structure, 
when it exists, can be inferred from the data itself. In Section 10.6 we give a brief overview of 
semistructured databases. 

The area of Knowledge Discovery and Data mining in databases (KDD) is one of the most 
exciting and fast growing of the recently developing areas in the database field. The term 
knowledge discovery refers to the overall process offinding nontrivial and previously unknown 
knowledge in data whereas the term data mining refers to the application of specific methods 
and algorithmic techniques which extract patterns from data. KDD brings together the three 
areas of databases, machine learning and statistics. In Section 10.7 we give an overview of the 
underlying concepts involved in knowledge discovery and data mining. 

In Section 10.8 we briefly mention other important areas in the database field that are being 
currently researched and in Section 10.9 we conclude that the synergy of the database field 
with other active areas in computer science will lead to further important advances in database 
theory. 

10.1 Nested Relational Databases 

We have already introduced nested relations in Subsection 1.7.4 of Chapter 1. We refresh 
the reader's memory with an example of a nested relation shown in Table 10.1. The attribute 
PNAME is atomic, while the attributes (HOBBY)* and (CHILD, AGE)* are relation-valued. 
We enclose relation-valued attributes by '(' and ')*', in order to differentiate them from 
atomic attributes. Thus, PNAME-values are atomic, while (HOBBY)*-values are relations 
over a relation schema with attribute HOBBY and (CHILD, AGE)*-values are relations over 
a relation schema with attributes CHILD and AGE. We observe that relation-valued attribute 
values can be empty, i.e. their value can be the empty set, 0. For example, Jack does not have 
any hobbies and Carl does not have any children. 

Table 10.1 A nested relation r 

I PNAME ,,(HOBBY)* ,,(CHILD I AGE)* " 
Jack Jill 8 

Jacob 10 
John 12 

Carl chess 
checkers 
bridge 

Miriam photography Maria 6 
reading 
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We next extend the notion of an attribute to nested relations. 

Defmition 10.1 (Attribute, atomic and relation-valued) An attribute is defined recursively 
by: 

1) An element A E U is an attribute, also called an atomic attribute. 

2) If X is a finite set of attributes then (X)* is an attribute, also called a relation-valued 
attribute. • 

The definition of a relation schema and database schema remain unchanged. A relation 
schema R having a relation-valued attribute (X)* E schema(R) is called a nested relation 
schema. Correspondingly, if schema(R) has no relation-valued attributes then R is also called 
a flat relation schema. Moreover, a database schema having no nested relation schemas is 
also called a flat database schema, otherwise it is called a nested database schema. 

We now extend the notion of the domain of an attribute to nested relations. 

Defmition 10.2 (Attribute domain, atomic and relation-valued) The domain of an attribute 
is defined recursively by: 

1) For an atomic attribute, A, the domain of A, denoted by DOM(A), is given by DOM(A) 
~ D, recalling that D is the underlying database domain. 

2) For a set of attributes, X = {AI, A2, ... ,An}, the domain of X, denoted by DOM(X), is 
given by 

DOM(X) = DOM(Al) x DOM(A2) x . .. x DOM(An), 

where x is the Cartesian product operator. 

3) For a relation-valued attribute, (X)*, where X is a set of attributes, the domain of (X)*, 
denoted by DOM«X)*), is given by DOM«X)*) = P(DOM(X», where P is the finite 
power set operator. • 

An interesting argument for the inclusion of relation-valued attributes in the relational 
model is given in [DD92b J. Therein, it is argued that if we interpret a domain as a data type, 
which can have potentially arbitrary complexity, then we should also allow relation-valued 
attributes as a special kind of data type. This is quite convincing realising that SQL supports 
domains such as character strings and dates, which can be viewed as aggregates of simpler 
data types, i.e. single characters and day, month and year, respectively (see also Section 3.7 of 
Chapter 3). 

The definition of a relation and a database remain unchanged. A relation over a flat relation 
schema is also called a flat relation and a relation over a nested relation schema is called a 
nested relation. Moreover, a database having no nested relation is also called a flat database, 
otherwise it is called a nested database. 

Retaining the notation of relation schema, relation, database schema and database is 
convenient since it encapsulates both the flat and nested worlds. It is interesting to note 
that in Codd's seminal paper, wherein he introduced the relational data model [Cod70), the 
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original definition of a relation does not assume that a relation schema is in INF. The restriction 
to first normal form comes after the definition of a relation. Of course, if Codd had not defined 
INF who knows if the relational data model would be as successful as it is? In any case INF 
simplifies the model considerably, and only in the 1980's when relational database theory was 
already well understood did database researchers tackle the problem of formalising the nested 
relational model. 

The definitions of the relational algebra operators given in Subsection 3.2.1 of Chapter 3 
remain valid for both flat and nested relations. The only difference between flat and nested 
relations with respect to these definitions is that equality of relation-valued attribute values 
is taken to be equality between relations rather than between atomic values; this difference 
does not affect the definitions. The nested relational algebra extends the relational algebra 
with three additional operators, NEST and UNNEST, which restructure relations, and empty, 
denoted by A, which creates a nested relation with a single relation-valued attribute, which is 
empty. We first define NEST, which transforms a nested relation into a "more deeply" nested 
relation. 

Definition 10.3 (NEST) Let r be a relation over Rand Y S; schema(R). Then NESTy(r) is a 
relation over S, with schema(S) = (schema(R) - Y) U {(Y)*}, which is defined by 

NESTy(r) = (t I 3w E r such that t[schema(R) - Y] = w[schema(R) - Y] and 

t[(Y)*] = (u[Y] I u E rand u[schema(R) - Y] = t[schema(R) - Y]}} . 

• 
We next define UNNEST, which transforms a nested relation into a "flatter" nested relation. 

Definition 10.4 (UNNEST) Let r be a relation over Rand (Y)* E schema(R). Then 
UNNEST(y)*(r) is a relation over S, with schema(S) = (schema(R) - {(Y)*}) U Y, which is 
defined by 

UNNEST(y)*(r) = {t 13w E rsuch that t[schema(R) - {(Y)*}] = wlschema(R) - {(Y)*}] 

and tlY] E wl(Y)*]}. • 

Some examples of NEST and UNNEST were given in Subsection 1.7.4 in Chapter 1. Let r 
be the nested relation shown in Table 10.1. The nested relation UNNEST(HOBBy)*(r) is shown 
in Table 10.2 and the nested relation UNNEST(CHILD,AGE)*(r) is shown in Table 10.3. The flat 
relation given by 

UNNEST (HOBBY)* (UNNEST (CHILD.AGE)* (r» = UNNEST (CHILD.AGE)* (UNNEST (HOBBY)* (r» , 

is shown in Table 10.4. 

The definition of A now follows. 

Definition 10.5 (Empty) Let R be a relation schema. Then ARO is a nested relation over a 
relation schema R', with schema(R') = {(schema(R»*}, containing a single tuple t satisfying 
tl (schema(R»*] = 0. (Note that the only parameter of the A operator is a relation schema.) 

• 
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Table 10.2 The nested relation UNNEST (HOBBY)' {r} 

I PNAME I HOBBY II (CHILD I AGE)* II 
Carl chess 
Carl checkers 
Carl bridge 
Miriam photography Maria 6 
Miriam reading Maria 6 

Table 10.3 The nested relation UNNEST (CHILD. AGE)' (r) 

I PNAME II (HOBBY)* II CHILD I AGE I 
Jack Jill 8 
Jack Jacob 10 
Jack John 12 
Miriam photography Maria 6 

reading 

Table 10.4 The flat relation emanating from r 

PNAME HOBBY CHILD AGE 
Miriam photography Maria 6 
Miriam reading Maria 6 
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We can create a tuple for Jack over a schema having the attributes, PNAME and (HOBBY)*, 
with an empty set component for (HOBBY)* as follows. Let R be a relation schema with 
schema(R) = {HOBBY}. Then the nested relation {<Jack>} XARO is shown in Table 10.5. 

Table 10.5 A nested relation with a tuple having no hobbies 

PNAME II (HOBBY)* II 
I Jack II II 

We will refer to the flat relational algebra as the basic set of relational operators, that is, 
union, difference, projection, selection, natural join and renaming. Let us assume that apart 
from NEST, UNNEST and A the nested relational algebra includes only the operators of the 
flat relational algebra. 

In [PV88] the following question was posed and answered with respect to the expressive 
power of the nested relational algebra: are nested relational algebra queries, whose operands 
are flat relation schemas and such that the schema of answers to such queries is also flat, more 
expressive than queries expressed in the flat relation algebra? 

The following theorem proved in [PV88] shows that the answer to the above question is 
negative. Thus as long as the input and output to nested relational algebra queries is flat, 
then the expressive power of the nested relational algebra is equivalent to that of the flat 
relational algebra. So the power of the nested relational algebra lies in its ability to represent 
and manipulate nonflat data rather than in its ability to pose additional queries that cannot 
be expressed in the flat relational algebra. 

Theorem 10.1 Let d be a flat database, Q be a nested relational algebra query and Q(d) be the 
answer to Q such that Q(d) returns a flat relation. Then there exists a flat relational algebra 
query q, such that Q(d) = q(d). 0 
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We now discuss some of the fundamental properties of the NEST and UNNEST operators. 
Readers can convince themselves that the UNNEST operator is commutative, i.e. 

UNNEST (X)* (UNNEST (Y)* (r» = UNNEST (Y)* (UNNEST (X)* (r) ), 

where r is a nested relation over Rand (X)* and (Y)* are relation-valued attributes in 
schema(R). Therefore, the nested relation r has a unique flat relation emanating from it, which 
can be obtained by a sequence of UN NEST operations. Due to the commutativity of UN NEST 
all such sequences of UN NEST operations result in the same flat relation [TF86, VF88). 

The pseudo-code of an algorithm, designated UNNEST*, which given the input nested 
relation rover R returns the flat relation emanating from r, is presented as the following 
algorithm. 

Algorithm 10.1 (UNNEST*(r» 
1. begin 
2. Rel:= r; 
3. Sch:= R; 
4. while there exists a relation-valued attribute in schema(Sch) do 
5. choose any relation-valued attribute (Y)* E schema(Sch); 
6. Rel:= UNNEST(y)*(Rel); 
7. schema(Sch) := (schema(Sch) - {(Y)*}) U Y; 
8. end while 
9. return Rel over Sch; 
10. end. 

We now demonstrate that the NEST operator is not commutative. Let s over S be the 
flat relation shown in Table 10.6, where schema(S) = {A, B, q. Then the nested relation 
NESTB(NESTc(s» is shown in Table 10.7 and the distinct nested relation NESTc(NESTB(S» 
is shown in Table 10.8. The following proposition characterises the situation when two NEST 
operations commute [JS82, FV84b, TF86, VF88). 

Proposition 10.2 Let r be a relation over R, with X and Y being disjoint sets of attributes in 
schema(R) and Z = schema(R) - XY. Then NESTy(NESTx(r» = NESTx(NESTy(r» if and 
only iffor each distinct pair oftuples, t) and t2 in NESTy(NESTx(r» or in NESTx(NESTy(r», 
whenever tdZ) = t2[Z), then td(X)*) n t2[(X)*) = 0 and td(Y)*) n t2[(Y)*) = 0. 0 

Table 10.6 The flat relation s 

A B C 
0 0 0 
0 0 1 
0 1 0 

Table 10.7 The nested relation 
NESTB(NESTds)) 

I A II (B)* II (C)* II 

I : II 0 II ! II 

Table 10.8 The nested relation 
NESTdNESTB(S)) 

I A II (B)* II (C)* II 

I : II : II 0 II 

Finally, as was demonstrated in Table 1.6 of Subsection 1.7.4 in Chapter I, an UNNEST 
operation cannot always be reversed with a NEST operation and thus we may lose information 
when unnesting. Recall that this problem was called the INF normalisability problem and it 
can be solved by introducing the keying operator. We give two additional examples of this fact. 
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Let rover R be the nested relation shown in Table 10.9, where schema(R) = {A, (B)*) . Then 
the distinct nested relation NESTB(UNNEST(B)*(r», say r', is shown in Table 10.10. Also, let 
r be the nested relation shown in Table 10.1. Then obviously both UNNEST(HOBBy)*(r) and 
UNNEST(CHILD,AGE)*(r) lose information, since the tuples with empty components over the 
relation-valued attributes, (HOOBY)* and (CHILD, AGE)*, respectively, are not represented 
in the unnested relation. 

Table 10.9 The nested relation r Table 10.10 The nested relation r' 

A II (B)* II I A 1\ (B)* II 

I II 
o 

II I II 0 II 

We assume that the concept of a functional dependency (FD) remains the same as defined in 
Subsection 3.6.1 of Chapter 3, where relations now may be flat or nested. As mentioned above 
the only difference between nested and flat relations with respect to their definitions is that 
equality of relation-valued attribute values is taken to be equality between relations rather 
than between atomic values; this difference does not affect the definitions. The following 
proposition characterises the situation when an UNNEST operation does not result in any 
loss of information [TF86, VF88]. 

Proposition 10.3 Let r be a nested relation over R, with (Y)* E schema(R). Then 

r = NESTy(UNNEST(y)*(r», 

if and only if 

1) "It E r, t[(Y)*] oj:. 0; and 

2) r satisfies the FD X -+ (Y)*, where X = schema(R) - {(Y)*). o 

An important subclass of nested relations is now defined, wherein the atomic attributes of 
the schema are superkey values at each level of the nested relation. 

Defmition 10.6 (Hierarchical relation) Let r be a relation over R. Then r is a hierarchical 
relation if and only if 

1) r satisfies X -+ schema(R), where X is the set of atomic attributes in schema(R); and 

2) for each tuple t E r and for all relation-valued attributes (Y)* E schema(R), t[(Y)"'] is a 
hierarchical relation over a relation schema whose attribute set is Y. • 

The reader can verify that the nested relation shown in Table 10.1 is a hierarchical relation. 
Another example of a hierarchical relation, with two levels of nesting, is shown in Table 10.11. 

Hierarchical relations satisfy both the desirable properties formalised in Propositions 10.2 
and 10.3, namely the NEST operator is commutative, and the UNNESToperator does not cause 
any loss of information, provided that all the relation-valued attribute values are nonempty. 
Hierarchical relations can also be viewed as a normal form for nested relations, in the sense 
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Table 10.11 A hierarchical relation 

I A III (B II (C)*)* III 
1 2 4 

5 
3 5 

2 2 4 
6 

3 4 
4 

that superkey dependencies are explicitly represented in the nested relation. (More details on 
the design of nested relational databases can be found in [OY87b, AFS89, MNE96j.) 

Defmition 10.7 (The tree induced by schema(R» The tree induced by R, denoted by 
TREE(schema(R», is defined recursively as follows: 

1) If schema(R) contains no relation-valued attributes then TREE(schema(R» consists of 
a single node labelled by schema(R). 

2) If X is the set of atomic attributes in schema(R) and {(Yd*, .. . , (Yd*} = schema(R) 
- X is the set of relation-valued attributes in schema(R), then the root node, say n, of 
TREE(schema(R» is labelled by X, and n has one child node ni for each (Yi)* such that 
ni is the root node ofTREE(Yi), 1 :::: i:::: k. 

We assume that the labels of nodes in TREE(schema(R» are pairwise disjoint; this 
assumption corresponds to the URSA (see Definition 3.6 in Section 3.1 of Chapter 3). The path 
set of a relation schema R is a family of sets oflabels one for each leaf node in TREE(schema(R»; 
each such set consists of the union ofthe labels of nodes in one of the paths ofTREE( schema(R» 
from a leaf node to the root node. • 

The next theorem characterises hierarchical relations over R in terms of the flat relations 
satisfying the join dependency induced by the path set ofTREE(schema(R». The proof of the 
theorem can be found in [OY87b, Lev92j. 

Theorem 10.4 The following two statements are equivalent: 

1) r is a hierarchical relation over R, such that the empty set does not occur as a value in r 
over a relation-valued attribute. 

2) UNNEST*(r) satisfies the acyclic JD txl[Pj, where P is the path set ofR. o 

The theorem that follows gives some interesting interactions between nested relations and 
FDs. (More details on interactions between data dependencies and nested relations can be 
found in [FSTV85j.) 

Theorem 10.5 Let r be a relation over R and X, Y, Z s; schema{R). The following statements 
are true: 

1) NESTz{r) satisfies the FD X -+ (Z)*, where X = schema(R) - Z. 
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2) Assuming that XY n Z = 0, r satisfies the FD X --+ Y if and only ifNESTz(r) satisfies the 
FD X --+ Y. 

3) Assuming that X n Z = 0, r satisfies the FD X --+ Z if and only if 

(i) NESTz(r) satisfies the FD X --+ (Z)*; and 

(ii) Vt E NESTz(r), t[(Z)*] is a singleton. o 

One of the reasons the UNNEST operator may cause loss of information is that a nested 
relation may have empty attribute values over relation-valued attributes. The empty set allows 
us to model information in situations such as a person having no hobbies or no children. These 
situations can also be modelled in flat relations provided we extend attribute domains with 
the following distinguished null value. Let dne be a distinguished null value denoting the fact 
that a "value does not exist"; see Chapter 5 for more details on the semantics of null values. 
Using dne as a HOOBY or CHILD attribute value we can model the fact that a person does 
not have any hobbies or any children, respectively. Therefore, we can adopt the convention 
that when we unnest an empty relation-valued attribute value over (X)*, where X is a set of 
atomic attributes, we obtain a tuple over X whose A-value is dne for each A in X. Conversely, 
when nesting dne we obtain 0. As an example of this convention the flat relation, shown in 
Table 10.12, results from unnesting the nested relation shown in Table 10.1. If we modify 
NEST and UNNEST to adopt this convention then there will be no loss of information during 
unnest operations due to empty relation-valued attribute values. 

Table 10.12 A flat relation with the dne null value 
PNAME HOBBY CHILD AGE 
Jack dne Jill 8 
Jack dne Jacob 10 
Jack dne John 12 
Carl chess dne dne 
Carl checkers dne dne 
Carl bridge dne dne 
Miriam photography Maria 6 
Miriam reading Maria 6 

Nested relations can be viewed in the wider context of complex object types. It is assumed 
that a collection of atomic object types are available, where the values of each such atomic 
type are taken from an atomic domain. An object type can now be defined as a tree whose 
leaves represent atomic object types, and whose internal nodes represent the application 
of either the tuple construct, which aggregates its children object types into a tuple, or the 
set construct, which groups its single child object type into a set. Thus a nested relation 
type is a special case of a complex object type, where the root of the tree represents a tuple 
construct, each child node of a node representing a tuple construct either represents a set 
construct or an atomic object type, and the single child node of a node representing a set 
construct represents a tuple construct. One aspect of the study of complex object types is 
that of query and update languages which generalise the nested relational algebra. Another 
important aspect of the study of complex objects is that of comparing the information capacity 
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of complex object types that may have been obtained as a result of restructuring another 
complex object type. Intuitively, one object type is absolutely dominated by another object 
type if for all sufficiently large finite subsets S ~ 1) we can construct at least as many objects 
of the second type as of the first type, where S is a superset of the active domains of all the 
constructed objects; the active domain of an object is the set of all atomic values used to 
construct that object. Moreover, one object type is query dominated by another object type 
if any query over a collection of objects of the first object type can be translated into a query 
over a collection of objects of the second object type. In [Hu186] it was shown that query 
dominance implies absolute dominance and thus query dominance is a stronger criterion of 
information capacity, but the converse implication does not always hold. The information 
capacity of two object types is absolutely equivalent (query equivalent) if both object types 
absolutely dominate (query dominate) each other. Restructuring operations which preserve 
absolute equivalence were investigated in [HY84, AH88b] and it was shown that two complex 
object types are absolutely equivalent if and only if they can both be reduced to a normal 
form complex object type, which is based on some natural restructuring operators (see also 
[HuI86]). 

Recently, itwas shown in [VL97] that two nested relation schemas over hierarchical relations 
are absolutely equivalent and, in this case are also query equivalent, if and only if the 
sets of MVDs induced by the acyclic JDs of their respective path sets are equivalent. An 
additional characterisation of absolute equivalence for two nested relation schemas Rl and 
R2 over hierarchical relations, shown in [VL97], is now briefly described. Let compress be a 
restructuring operator which coalesces two nodes nl and n2, when n2 is the only child of nl> 
in TREE(schema(Rl}} or TREE(schema(R2}}. Assume that we apply compress repetitively to 
the said trees. Then the information capacities of the object types represented by these two 
trees are absolutely equivalent if and only if, after the aforesaid repetitive application of the 
compress operator, the resulting trees are isomorphic whenever the corresponding unions 
of the labels of the nodes in theses two trees, representing the underlying attributes of their 
nested relation schemas, are identical. 

The study of complex object types also lays the foundations for integrating persistent 
database types into programming languages which allow application programmers to 
explicitly define and manipulate complex object types. A survey of complex object data 
types was presented in [Hu187] and a collection of papers on various issues concerning nested 
relations and complex objects can be found in [AFS89]. 

10.2 Object-Oriented Databases 

We have already introduced object-oriented databases in Subsection 1.7.6 of Chapter 1. Our 
point of view there was that the structural part of an object-oriented data model can be the 
same as that of the network data model. Here we take a different view, namely that relational 
databases and object-oriented databases can be unified by extending the relational model. 
One possible such extension is to let the data structures of the object-oriented data model 
to be complex objects or nested relations. This is consistent with the view that the structure 
of objects should not be restricted in any way. Taking this view the attributes of objects are 
defined recursively using simple and complex object constructors. Simple object constructors 
define attributes of type integer, real, string or Boolean, and complex object constructors define 
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attributes of type tuple, set, bag, list or array of objects. In the nested relational model the only 
complex object constructor is that of a set consisting of tuples of objects, which is sufficient 
for most applications. 

Herein we take a simpler view by extending (flat) relations with explicit object identity. Let 
us assume that in addition to the set of attributesU there is a countably infinite set of attributes 
I, which is disjoint from U. We call the attributes in I object attributes to distinguish them 
from attributes in U. The domain of all object attributes in I is a countably infinite set of 
object identifiers, 0, which for simplicity is assumed to be the set of natural numbers w. We 
next define how to add explicit object identifiers to a relation. 

Defmition 10.8 (The object identification operator) The object identification, id(s, A), of a 
relation s over S with respect to the object attribute A is a relation over R, with schema(R) = 
schema(S) U (A} such that 

1) each tuple in 5 is extended to be a tuple over R, 

2) id(s, A) has the same cardinality as 5, and 

3) id(s, A) 1= A ~ schema(R), i.e. A is a simple key for R. 

The attribute A is called an object identifying attribute ofR. A relation over a relation schema 
having one or more object identifying attributes is called an object relation. A collection of 
object relations is called an object database. • 

We observe that a relation schema can have more than one object identifying attribute, 
although in practice one such attribute is sufficient for the purpose of implementing object 
identity. We assume that when a tuple is added to an object relation rover R, with object 
identifying attribute A, then an appropriate A-value for this tuple such that A is a simple 
key for R, i.e. such that r 1= A ~ schema(R), is created by the DBMS. Furthermore, once an 
object identifier is created it cannot be modified. We also note that, given an object relation r 
over R, schema(R) can have object attributes which are not object identifying attributes. Such 
attributes are object identifying attributes of other relation schemas and serve the purpose of 
referencing tuples (or objects) in the object relations over those relation schemas. 

As an example {r[, rz} is an object database where the object relation r[ over EMP is shown 
in Table 10.13 and the object relation rz over DEPT is shown in Table 10.14. In this example 
EID is the object identifying attribute of EMP and DID is the object identifying attribute of 
DEPT. In addition, DID in EMP is an object attribute referencing DID in DEPT and MID in 
DEPT is an object attribute referencing EID in EMP. We observe that once a relation schema 
has an object identifying attribute it can be declared as the primary key of the schema. 

Table 10.13 The object relation r[ over EMP Table 10.14 The object relation r2 over DEPT 
EID ENAME DID DID DNAME MID 

1 Iris 6 6 Computing 2 
2 Reuven 6 7 Maths 4 
3 Brian 7 8 Economics 5 
4 Naomi 7 
5 Naomi 8 
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A desirable property of object identifiers is that they allow sharing. For example, in the 
object relation rl, shown in Table 10.13, the first and the second tuples and the third and fourth 
tuples share the same department by referencing the same DID. This allows tuples (or objects) 
to be referenced in a straightforward manner. In addition, any update to a referenced tuple 
does not have any effect on the reference, since as we noted earlier object identifiers cannot be 
modified. Sharing through references also highlights the importance of referential integrity 
constraints. 

We now extend Armstrong's axiom system for FDs with an additional inference rule to take 
object identifying attributes into account. 

Defmition 10.9 (Identity inference rule for FDs) Let F be a set of FDs over schema R. The 
identity inference rule for FDs is given by 

FD8 Identity: if A is an object identifying attribute, then F f-- A -+ schema(R). • 
We leave the proof of the next theorem to the reader; it is similar to the proof of Theorem 3.21 

in Subsection 3.6.1 of Chapter 3 (see also [LL95a)). 

Theorem 10.6 Armstrong's axiom system augmented with FD8 is a sound and complete 
axiom system for FDs being satisfied in object relations. 0 

It is our view that it is straightforward to cater for object identifying attributes within 
existing relational DBMSs. In [Van93a] it was shown that nested relations can be represented 
using object relations. It was also shown therein that the relational algebra augmented with 
object identification operating on object relations can simulate the nested relational algebra 
operating on nested relations. Therefore, object relations also cater for complex objects. 

We have already briefly discussed the notion of an inheritance lattice in Subsection 1.7.6 of 
Chapter 1 (see the inheritance lattice depicted in Figure 1.8). For simplicity we assume that 
a class type specifies only an object type, i.e. we ignore any methods associated with the class 
type. Thus in our context an object type is simply a relation schema, which may contain one 
or more object attributes. We now formalise the notion of an inheritance lattice. 

Defmition 10.10 (Inheritance lattice) We define a partial order in the set of relation schemas, 
denoted by ~, as follows: 

RI ~ R2 if and only if schema(RI) ;2 schema(R2), 

where RI and R2 are relation schemas. When RI ~ R2 then we say that RI is a subclass of R2, 
or alternatively, that R2 is a superclass of RI . 

The inheritance lattice is a finite set of relation schemas, denoted by R, partially ordered 
by ~ and having a bottom element (i.e. a least element), which we denote by ..1.. • 

It follows that the inheritance lattice is a lattice in the sense of the formal definition of 
a lattice given in Subsection 1.9.2 of Chapter 1. We denote the top element of R (i.e. its 
greatest element) by T; normally T is taken to be the schema with the empty set of attributes. 
Moreover, the least upper bound (or the join) of relation schemas RI, R2 E R, denoted by 
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T 

PERSON 

PHD_STUDENT 

~ 

Fig 10.1 An inheritance lattice 

RJ UR2, is a relation schema R3 such that schema(R3) = schema(RJ) n schema(R2); the relation 
schema R3 = RJ U R2 is called a generator of RJ and R2' 

Example 10.1 Recall the inheritance lattice depicted in Figure 1.8, with n = {OBJECT, PER· 
SON, STUDENT, EMPLOYEE, RA}. Assume that schema(OBJECT) = 0, schema(PERSON) = 
{NAME, ADDRESS, AGE}, schema(STUDENT) = {NAME, ADDRESS, AGE, DEPARTMENT}, 
schema(EMPLOYEE) = {NAME, ADDRESS, AGE, SALARY} and schema(RA) = {NAME, 
ADDRESS, AGE, DEPARTMENT, COURSE, SALARY}. It follows that RA I:::; EMPLOYEE, 
RA I:::; STUDENT, STUDENT I:::; PERSON, EMPLOYEE I:::; PERSON and PERSON I:::; OBJECT. 
Furthermore, STUDENT U EMPLOYEE = PERSON, RA =.1 and OBJECT = T. • 

We now give an example of inserting a relation schema into an inheritance lattice. 

Example 10.2 Let n = {T, PERSON, PHD.STUDENT, .l} be an inheritance lattice, 
where schema(PHD.STUDENT) = schema(STUDENT) U {SUBJECT}. Additionally, let 
BSLSTUDENT be a relation schema, with schema(BSLSTUDENT) = schema(STUDENT) 
U {MAJOR}. 

The inheritance lattice n is shown in Figure 10.1. The result of inserting BSLSTUDENT 
into n is shown in Figure 10.2. We note that inserting BSC.STUDENT into the inheritance 
lattice triggers the additional insertion of STUDENT into the lattice, since STUDENT = 
PHD.STUDENT U BSC.STUDENT. • 

We now give an algorithm, designated INSERT(n, R), for inserting a relation schema R into 
an inheritance lattice n, which was presented in [MS89b]. Intuitively, whenever a relation 



528 Chapter 10. Extensions to the Relational Data Model and Recent Directions 

Fig 10.2 Inserting BSCSTUDENT into the inheritance lattice ofFigure 10.1 

schema, say R, is to be inserted into the lattice R and the least upper bound ofR with another 
relation schema in the lattice, say S, is not already in the lattice, then a generator R U S of R 
and S is also inserted into the lattice. More efficient implementations ofINSERT(R, R) than 
Algorithm 10.2 are considered in [MS89b]. 

Algorithm 10.2 (INSERT(R, R)) 
1. begin 
2. R := R U {R}j 
3. COMP:=0j 
4. for each S E R do 
5. if R u S 1. R then 
6. COMP := COMP U {S}j 
7. end if 
8. end for 
9. if COMP #- 0 then 
10. for each S E COMP do 
11. T:= Ru Sj 
12. INSERT(R, T); 
13. end for 
14. end if 
15. return Rj 
16. end. 

There are several important data modelling issues that we have not addressed such as the 
semantics of types and classes, view maintenance, schema evolution, concurrency control, 
object-oriented database design and object-oriented database programming languages. 
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Several books have already been written on object-oriented databases [Kim90, ZM90, 
GKP92, Kh093, KM94) and their number is growing. Moreover, a substantial part of several 
books is devoted to object-orientation in databases; see [Kim95a, Part IA), [KL89b, Part 
3) and [DLR95). We refer the reader who is interested in furthering their knowledge on 
object-oriented data models and concepts to the papers [ABD+89, Bee90, LP9l, Ban92, 
Van93a). Furthermore, articles that are concerned with extending the relational model to 
cater for object-orientation can be found in [SS90, Van93a, Kim95b). An interesting proposal 
to extend values of relations to be queries, which allows modelling of complex objects, is 
suggested in [SAH87). 

A recent book [SM96) specifically explores the marriage of relational databases with object 
technology resulting in object-relational database systems. An object-relational DBMS can 
be defined as one which supports SQL3 [DD93, MeI96); SQL3 is discussed below. Since the 
SQL3 standard is still evolving, four fundamental characteristics of object-relational DBMSs 
are identified in [SM96j; they are: (i) the ability to add to the database system user-defined 
data types and functions operating on these types (this can be viewed as an abstract data type 
facility), (ii) the ability to construct complex object types via general purpose type constructors, 
(iii) the ability to define supertypes and subtypes together with the support of inheritance from 
supertype to subtype, and (iv) support for active database rules or alternatively triggers (see 
Section lOA). 

A recent attempt is to try and merge together the concepts of object-oriented and deductive 
databases in order to gain the best of both worlds [AK89, KL89a, KW89j. This approach has 
been encouraged by the formation of a biennial international conference devoted solely to 
deductive and object-oriented databases. 

An interesting comparison between object-oriented and deductive databases can be found in 
[U1l9lj. Ullman essentially argues that deductive database systems will eventually dominate, 
due to their declarativeness and their upwards compatibility with relational database systems. 
As we have shown in this section, it is possible to build an object-oriented database system as 
an extension of a relational database system. Furthermore, as was shown in [AK89, KL89a, 
KW89), it is possible to give logical foundations to deductive query languages that incorporate 
object-oriented concepts such as object identity. 

We next present some salient features of the support for object-orientation in the emerging 
SQL3 standard [Ku193, Mat96j . SQL3 has a mechanism that allows database users and 
application programmers to extend the type system of the DBMS with User-Defined-Types 
(UDTs) and User-De fined-Functions (UDFs). We introduce this facility via some examples. 

An example of creating a UDT ADDRESS is given by the SQL3 statement: 

CREATE TYPE ADDRESS 
(number INTEGER, 
street CHAR(30), 
city CHAR(20), 
postcode CHAR(7)); 

An example of creating a UDT PERSON is given by the SQL3 statement: 
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CREATE TYPE PERSON 
(name CHAR(30), 
home ADDRESS, 
birthda te DATE, 
text VARCHAR(512), 
picture BLOB(lM»; 

We note that DATE and BLOB (Binary Large Object) are built-in data types and that the 
UDT PERSON is a complex object type, since ADDRESS is a UDT. 

An example of creating a UDF age, which returns the age of a person, is given by the SQL3 
statement: 

CREATE FUNCTION age (p PERSON) RETURNS INTEGER 
RETURN YEAR(CURRENLDATE) - YEAR(p.birthdate); 

END FUNCTION 

We have assumed the existence of two built-in functions: CURRENT _DATE, which returns 
today's date, and YEAR(d), which returns the year, given a date d. 

An example of creating an EMPLOYEE UDT as a subtype of PERSON is given by the SQL3 
statement: 

CREATE TYPE EMPLOYEE UNDER PERSON 
(salary INTEGER, 
project CHAR(3), 
location ADDRESS); 

As a subtype of PERSON, the UDT EMPLOYEE inherits all the attributes and functions 
which have been defined over PERSON. 

The following SQL3 statements define tables (i.e. relations) over PERSON and EMPLOYEE: 

CREATE TABLE PEOPLE OF PERSON; 
CREATE TABLE EMPLOYEES OF EMPLOYEE; 

Each row in the PEOPLE table is an instance of the UDT PERSON, and correspondingly 
each row in the EMPLOYEES table is an instance ofUDT EMPLOYEE. Moreover, each row in 
such an instance has a unique object identifier that is assigned to it when the row is created. 

We also mention that SQL3 has extensive support for active rules, also referred to as triggers, 
in order to improve the maintenance of database integrity. Apart from the object-relational 
extensions in SQL3, procedural language constructs have also been added to SQL, thus making 
SQL3 a computationally complete database language. Hence using these procedural constructs 
UDFs can realise any computable database query. In addition, SQL3 supports recursive 
execution of SQL select statements and thus transitive closure queries can also be formulated 
naturally in SQL3. It is important to note that SQL3 has been designed in such a way that it is 
upwards compatible with the current SQL2 standard [DD93J. 
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We close this section with a brief discussion of the Object Database Management Group 
(ODMG) proposal for an Object-oriented Database Management System (ODBMS) standard 
[Cat96, CB97j. The main goal of the standard is to provide a means of source code portability 
for database application programs through the integration of object-oriented database 
capabilities with object-oriented programming language capabilities. This is achieved by 
the ODBMS making database objects appear as programming language objects in existing 
object-oriented programming languages such as C++, Java and Smalltalk. The proposal is 
realised via an Object Definition Language (ODL) and an Object Query Language (OQL). 
Moreover, the proposal defines the standard binding of both C++, Java and Smalltalk to the 
ODBMS, showing how ODL and OQL can be invoked from within an application program. 
OQL has been designed in such a way that its syntax is compatible with that of the SQL standard 
in the hope that SQL3 and OQL will converge in the future. We next give two examples of data 
definitions in ODL. 

An example of creating a type PERSON is given by the ODL statement: 

class PERSON 
(extent persons 
key name) { 
attribute string name; 
attribute set<string> nick-names; 
attribute struct Address 

{string street, string city, string postcode} address; 
attribute enum sex {male, female}; 
relationship PERSON married_to; 
relationship set<CHILD> children 

inverse CHILD:: parent; }; 

The keyword class indicates that a type definition, i.e. schema definition, follows. The class 
specifies the characteristics of the objects of the type that are visible to users of the objects. 
The keyword extent declares a name given to the current collection of objects of the type in 
the database. The ODMG object model distinguishes between literals which are constants 
that do not have object identifiers such as the atomic literals string and integer, and objects 
having unique identifiers which are retained throughout their lifetime. The keyword key is 
followed by a list of candidate keys for the type, whose scope is the extent of the type. The 
keywords attribute and relationship allow users to model the state of objects in terms of the 
properties they possess. An attribute is defined over a single type while a relationship is defined 
between two types. Attribute types are literals, namely atomic literals, collection literals such 
as set < string>, structured literals having a r~cord format such as Address or an enumeration 
of literals such as sex; ODL also supports the built-in structured literals date, interval, time 
and timestamp. In a relationship the keyword set indicates that a set of objects are associated 
with any object of the defined type. For example, in the relationship children a person may 
have zero or more children, and in the relationship married_to a person can be married to at 
most one other person. The keyword inverse allows the user to traverse a relationship in the 
opposite direction; for example, parent is the inverse relationship of children. Operations can 
also be defined as part of the class; such operations specify the behaviour of objects. 

An example of creating a type EMPLOYEE as a subtype of PERSON is given by the ODL 
statement: 
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class EMPLOYEE extends PERSON 
(extent employees) { 
attribute integer salary; 
attribute string location; 
relationship DEPARTMENT worksjn 

inverse DEPARTMENT :: employs; 
relationship set<PROJECT> involvedjn 

inverse PROJECT :: has_staff; }; 

As a subtype of PERSON, the type EMPLOYEE inherits all the attributes and relationships 
which have been defined for PERSON. 

Finally, we give some examples of queries in OQL. The OQL query 

SELECT struct(name: p.name, address: p.address) 
FROM persons p 
WHERE p.sex = 'male' AND COUNT(p.children) > 1 

retrieves into a structure the names and addresses of persons who are male and have more 
than one child. We note the use of the aggregate function COUNT. 

The OQL query 

SELECT P .married_to.address. postcode 
FROM persons p 
WHERE p.address.city = 'London' 

retrieves the postcodes of spouses of people who live in London. An expression using the 
dot notation of the form, p.married_to.address.postcode, is called a path expression. Path 
expressions provide us with a means to navigate from an object to the data item we are 
interested in. In this example the path expression, p.married_to.address.postcode, results in 
the postcode of the address of the person married to p. We note that in the relational model 
such a query would involve a join of persons with itself assuming the relationship married_to 
was modelled by a foreign key attribute in PERSON. 

The OQL query 

SELECT p.name 
FROM employees.involvedjn p 
WHERE p.haLstaff.worksjn.name = 'Computer Science' 

retrieves the names of projects of employees working in the Computer Science department, 
assuming that PROJECT and DEPARTMENT both have an attribute called name. 
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One of the important measures of performance of a database system is user productivity. With 
the growing demand for complex object databases, as discussed in Sections 10.1 and 10.2, there 
is a need for database user interfaces which are easier to use and which represent the data in a 
more intuitive way. This need is accentuated in view of the availability of more sophisticated 
query languages for complex objects and the ability to express recursion in query languages 
as in Datalog. One way to address the problem is to base the data model on graph theory 
in the hope that its visual representation will closely match its intuitive semantics. Such a 
graph-based data model is built upon the traditional network and hierarchical data models 
which were presented in Subsections 1.7.2 and 1.7.3 of Chapter 1. Thus in addition to having 
a natural user interface a graph-based data model can address the problem of representing 
complex objects. 

Here we give a summary of the hypernode data model, which supports object identity and 
arbitrarily complex objects [LPB+93, PL94, LL95bl. Rather than having a single database 
digraph, a hypernode database consists of a finite set of interconnected digraphs, called 
hypernodes; see Section 2.1 of Chapter 2 for the definition of a digraph. More specifically, a 
hypernode is an equation of the form G = (N, E) such that (N, E) is its digraph and G is its 
unique defining label. 

In Figure 10.3 we illustrate part of a simple hypernode database, which models a simple 
airline reservation system. The hypernode, whose defining label is $AIRLINES, contains the 
defining labels of other hypernodes which describe the various airlines, and the hypernode, 
whose defining label is $PASSENGERS, contains the defining labels of other hypernodes which 
describe the booking information pertaining to passengers. The hypernode with defining label 
$FLIES represents a relationship telling us with which airline a particular passenger is flying. 
We note that labels are denoted by strings beginning with "$". 
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Fig 10.4 Some passengers in the hypernode database 

In Figure 10.4 we show the details of some of the passenger hypernodes. Given an arc 
(u. v) in such a hypernode, we call u the anchor of the arc and v its destination. The anchor, 
u, denotes an attribute name and the destination, v, denotes an atomic value (which is an 
attribute value). We note that attribute names are denoted by strings of uppercase letters 
possibly containing the underscore character, and atomic values are denoted either by strings 
containing at least one lowercase letter, or by strings surrounded by double quotes. 

We observe that the attribute name DEPENDENT in a passenger hypernode is used to 
reference other passengers who in some unspecified way depend on this passenger; for 
example, $PASS2 and $PASS3 may depend on $PASS1 to drive them to the airport. These 
references between hypernodes can be viewed conceptually as a part-of relationship or 
alternatively as encapsulating the data represented in the referenced hypernodes. We use 
the distinguished atomic value null to indicate that a "value exists but is unknown". We note 
that we can also model incomplete information of the type "value does not exist" by isolated 
attribute names. For example, if we delete the arc (DEPENDENT, null) and the node null from 
the digraph of the hypernode, whose defining label is $PASS3, our interpretation changes 
from "$PASS3 has a DEPENDENT which is unknown" to "there does not exist a DEPENDENT 
of$PASS3". This interpretation of isolated attribute names corresponds to the Closed World 
Assumption (CW A), which was discussed in Section 5.2 of Chapter 5. 

We assume the following two disjoint countable domains of constants are available. Firstly 
we have a domain of Labels L whose elements are denoted by strings beginning with a "$" (when 
no ambiguity arises we also use the uppercase letter G to denote a label). Secondly we have 
a domain of Primitive nodes P which is partitioned into two disjoint domains one of Atomic 
Values, AV, and the other of Attribute Names (or simply attributes), AN. We denote atomic 
values either by strings containing at least one lowercase letter, or by strings surrounded by 
double quotes, and we denote attributes by strings of uppercase letters possibly containing 
the underscore character. We also assume that the domain of atomic values A V contains a 
distinguished value null meaning "value exists but is unknown". 
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Definition 10.11 (Hypernode) A hypernode is an equation of the form 

G = (N, E), 

where GEL is termed the defining label of the hypernode (or simply the label of the hypernode 
when no ambiguity arises) and (N, E) is a digraph, termed the digraph of the hypernode (or 
simply the digraph of G), such that N ~ (L UP). • 

We use the following terminology for a digraph (N, E). An arc (u, v) E E is said to be incident 
with each of its two nodes u and v. We also say that u is adjacent to v and that v is adjacent 
from u. The in degree of a node u EN is the number of nodes adjacent to u and the outdegree of 
u is the number of nodes adjacent from u. A node with no incident arcs is said to be isolated. 

We impose the following three syntactic restrictions on the arcs of a hypernode, G = (N, E): 

E1 the indegree of nodes u E (AN n N), i.e. of nodes that are attributes, is zero; 

E2 the outdegree of nodes u E (A V n N), i.e. of nodes that are atomic values, is zero; and 

E3 if (u, v) E E and u E (L n N), i.e. the anchor node of the arc is a label, then v E (L n N), i.e. 
the destination node of the arc is also a label. 

In order to explain the motivation behind the above restrictions we recall the ER model 
described in Chapter 2, which asserts that the real world can be described by entities (or objects 
which in our case are hypernodes), which are in turn represented by a set of attributes and 
their values, and by relationships between entities. 

We observe that an arc set of a digraph can be viewed as a (binary) relation on the nodes 
which are incident on its arcs. Thus, the semantics of restriction El are that attributes cannot 
be in the range of the relation induced by the arc set. Furthermore, an arc whose anchor is 
an attribute represents an attribute-value pair (i.e. a property) whose destination node is its 
value, the value being either an atomic value or a label. Thus, when an arc is incident with 
an attribute this attribute must be the anchor of the arc. The semantics of restriction E2 are 
that atomic values cannot be in the domain of the relation defined by the arc set. Thus, when 
an arc is incident with an atomic value this value must be the destination of the arc. Finally, 
the semantics of restriction E3 are that when a label (which is an anchor) is in the domain of 
the relation defined by the arc set, then the destination node of an arc incident with the said 
anchor is also a label. That is, this arc represents a relationship between two hypernodes, i.e. 
between two objects. Thus, a relationship between two hypernodes can be represented by an 
arc which is incident with their defining labels. We observe that conceptually this kind of 
relationship can be viewed as a referential relationship. 

It can easily be verified thatthe hypernodes shown in Figures 10.3 and 10.4 satisfy restrictions 
El, E2 and E3. As was discussed above these hypernodes model part of a simple airline 
reservation system detailing information about passengers and indicating with which airline 
a particular passenger is flying. We note that each arc in the hypernode with the defining label 
$FLIES in Figure 10.3 represents a referential relationship and that each arc in the passenger 
hypernodes of Figure 10.4 represents an attribute-value pair. 

Defmition 10.12 (Hypernode database) A hypernode database (or simply a database), say 
HD, is a finite set ofhypernodes satisfying the following two conditions: 
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HI no two (distinct) hypernodes in HD have the same defining label; and 

H2 for any label, say G, in the node set of a digraph of a hypernode in HD there exists a 
hypernode in HD whose defining label is G. • 

We note that condition HI above corresponds to the entity integrity requirement of the 
relational model, since each hypernode can viewed as representing a real-world entity. In 
object-oriented terminology labels are unique and serve as system-wide object identifiers, 
assuming that all of the hypernodes known to the system are stored in a single database. 
Similarly, condition H2 corresponds to the referential integrity requirement of the relational 
model, since it requires that only existing entities be referenced. This implies that a relationship 
between two hypernodes can also be represented in terms of a reference from one hypernode to 
the other (rather than a reference via an arc between two labels in the digraph of a hypernode). 
We observe that conceptually this kind of relationship can be viewed as a part-of relationship, 
which provides the hypernode model with inherent support for data encapsulation. (See 
Subsection 3.6.1 of Chapter 3 for the definitions of entity and referential integrity.) 

It can easily be verified that the hypernodes shown in Figures 10.3 and lOA comprise a 
portion of a hypernode database (if we add hypernodes for $PASS5, $P ASS6, $EA, $BA, $DA 
and $AI, whose node sets do not include any new labels, we would then have a database 
satisfying conditions HI and H2). We note that by condition HI each hypernode representing 
one of the objects in the database has a unique label. Furthermore, the defining labels of the 
passenger hypernodes are part-of the hypernode with the defining label $P ASSENGERS. Thus, 
by condition H2 there must be one hypernode in the database for each passenger. 

The Hypernode Accessibility Graph (HAG) of a hypernode G = (N, E) E HD (or simply 
the HAG of G, whenever HD is understood from context) is the digraph telling us which 
hypernodes in HD are part-of (or encapsulated in) the hypernode with the defining label G, 
when considering part-of as a transitive relationship. 

DefInition 10.l3 (Hypernode accessibility graph) The HAG of G, denoted by (NG, EG), is the 
minimal digraph which is constructed from hypernodes in HD as follows: 

1) G ENG, and G is a distinguished node called the root of (NG, EG), and 

2) if G' E NG and G' = (N', E') E HD (such a hypernode must exist by condition H2), then 
(L n N') ~ NG and Yu' E (L n N'), (G', u') E EG. • 

The HAG of G can be viewed as describing a composite object [Kim90]. We note that, in 
general, the HAG of G may be cyclic. In Figure 10.5 we illustrate the HAG of $PASSl, where 
the hypernode with defining label $PASSI is shown in Figure IDA. We note that the HAG of 
$PASSI is cyclic and thus $PASS4 is part-of$PASSl and $PASSI is part-of$PASS4, indicating 
that $PASSI and $PASS4 depend on each other. 

We note that we have assumed that hypernodes are untyped, i.e. we do not put any further 
constraints on the structure of hypernodes. Thus, hypernodes are dynamic in the sense 
that nodes and arcs in hypernodes can be updated subject only to all of the above syntactic 
restrictions. In this approach we do not classify entities according to the entity set to which 
they belong but rather consider entities to be classless (see [U1l9l]), i.e. belonging to a single 
set of entities. In particular, all the available hypernodes are members of a single database. 
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We now briefly illustrate a procedural query and update language for the hypernode model, 
called HyperNode Query Language (HNQL). For this purpose we assume a countable domain 
of variables denoted by strings beginning with uppercase letters from the end of the alphabet 
followed by a natural number; the domain of variables is disjoin t from the domains of labels 
and primitive nodes. Variables in HNQL are untyped, i.e. their values range over the union 
of the domains oflabels and primitive nodes. Although variables in HNQL are untyped there 
is a provision for adding a type checking component to HNQL, whose semantics we now 
briefly describe. The hypernode model can utilise a typing system based on the structural 
similarity of graphs. Simply, types ofhypernode enforce the allowable structure ofhypernodes 
to be instances of those types. For example, instances cannot contain types of nodes or 
arcs not contained in their type definitions. More formally, we say that there must exist a 
homomorphism from nodes in the instance to nodes in the type definition which maps each 
node in the instance to a node in the type definition, and each arc in the instance to an arc 
in the type definition, while preserving the adjacency of the nodes in the arcs of the instance. 
Typing gives us a means of defining database schemas and of enforcing further constraints on 
the structure and content ofhypernodes. A formal investigation of how to declare hypernode 
types and how to type check hypernodes can be found in [PL94) . For the purpose of this 
section it is sufficient to assume that if a type is associated with a hypernode in the database 
then that hypernode must conform to its type. 

We introduce the flavour ofHNQL via two simple examples but first give the meaning of 
the relevant HNQL operators and predicates. We assume that HD is a hypernode database 
and that all the operators we define are to be evaluated with respect to HD. We denote by 
LABELS(HD) the set oflabels appearing in the hypernodes ofHD. We also assume that the 
label $NULL fj. LABELS(HD) is reserved in order to return an error code when necessary. 
Notationally, we will use strings beginning with the lowercase letter, v, to denote either a label 
or a primitive node and strings beginning with the uppercase letter G to denote labels only. 

The following five operators update hypernodes in HD: 

1) inserLnode(G, v) returns G ifG = (N, E) E HD, and as a side effect v is inserted into N, 
i.e. N := N U {v}; otherwise $NULL is returned. 
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2) delete_node(G, v) returns G ifG = (N, E) E HD and "Iv' EN there is no arc (v, v') E E or 
(v', v) E E, and as a side effect v is deleted from N, i.e. N:= N - {v}; otherwise $NULL is 
returned. 

3) inserLarc(G, VI> V2) returns G ifG = (N, E) E HD and VI> V2 EN, and as a side effect (VI> 

V2) is inserted into E, i.e. E := E U (VI, V2); otherwise $NULL is returned. 

4) delete_arc(G, VI> V2) returns G if G = (N, E) E HD and (VI> V2) E E, and as a side effect 
(VI> Vl) is deleted from E, i.e. E:= E - (VI> Vl); otherwise $NULL is returned. 

5) rename_node(Gold, Gnew) returns Gnew if Gold E LABELS(HD) and Gnew ¢ LABELS(HD), 
and as a side effect all occurrences of GOld in the hypernodes of HD are replaced with 
Gnew; otherwise $NULL is returned. 

The following two operators add or remove hypernodes from HD: 

1) createO returns an arbitrary new label G such that G ¢ (LABELS(HD) U {$NULL}), and 
as a side effect G = (0, 0) is added to HD, i.e. HD := HD U {G = (0, 0)}. 

2) destroy(G) returns the label G if G = (N, E) E HD and for no hypernode G' = (N', E') E 
HD is it true that G EN', and as a side effect G = (N, E) is removed from HD, i.e. HD:= 
HD - {G = (N, E)}; otherwise $NULL is returned. 

The following three predicates provide membership tests for a node, an arc or a defining 
label in HD: 

1) v E nodes(G) returns true if G = (N, E) E HD and v EN; otherwise false is returned. 

2) (VI, Vl) E arcs(G) returns true ifG = (N, E) E HD and (VI, Vl) E E; otherwise false is 
returned. 

3) G E dbO returns true ifG = (N, E) E HD; otherwise false is returned. 

We also allow the two equality tests: VI = Vl for nodes and (VI, V2) = (V3 , V 4) for arcs, 
which return true or false as the case may be. 

We define a simple condition to be either a membership test or an equality test. A condition is 
now defined to be either a simple condition, the parenthesising of a condition used for grouping 
purposes, the negation of a condition, say cond, denoted by !cond, or the conjunction of two 
conditions, say cond l and cond1 , denoted by cond l &cond1• 

The following three nondeterministic operators can be used to arbitrarily choose a node, 
an arc or a defining label in HD: 

1) any-Ilode(G) returns an arbitrary node V E N if G = (N, E) E HD and N =1= 0; otherwise 
$NULL is returned. 

2) any _arc(G) returns an arbitrary arc (VI , Vl) E E if G = (N, E) E HD and E =1= 0; otherwise 
($NULL, $NULL) is returned. 

3) anyJabelO returns an arbitrary label G such that G = (N, E) E HD, ifHD =1= 0; otherwise 
$NULL is returned. 
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We assume that all variables in HNQL have a current value, which is either a label or a 
primitive node; these are always initialised to have the value $NULL. Thus, we extend our 
earlier notation to allow strings beginning with the letters v or G to denote the current value 
of a variable when appropriate. We now define an assignment statement to be an expression 
of the form 

lvalue := Tvalue, 

where lvalue is a variable or a pair of variables, and Tvalue is a constant, or a variable, or any 
of the possible pairs of these two, or one of the HNQL operators defined so far. 

The semantics of an assignment statement are that the current value of lvalue becomes the 
result of evaluating Tvalue on the current state of the hypernode database, HD (and possibly 
updating HD as a side effect). We note that evaluating a constant on HD returns the constant 
itself and that evaluating a variable on HD returns its current value. We assume that if the 
assignment is undefined, for example, when trying to assign a pair of constants to a variable, or 
a constant to a pair of variables, then lvalue is assigned the value $NULL or ($NULL, $NULL), 
respectively. 

HNQL statements are composed sequentially using the semi-colon symbol as a statement 
separator. The keywords TB and TE denote transaction begin and transaction end, 
respectively. They serve to delimit compound statements in analogy to the begin and end 
keywords in Pascal. The for loop, beginning with the keyword fot-all, provides HNQL with 
a bounded looping mechanism (see Section 6.7 in Chapter 6 for a discussion on looping 
constructs). HNQL also has available an unbounded looping mechanism beginning with the 
keywords while changes do, which repeatedly executes a given compound statement on the 
current state of the hypernode database HD until no further changes are effected on the current 
state ofHD. 

The first example is an HNQL program, shown below, that selects the names of passengers 
who are flying on flight number "BA2l2" and puts them into a new hypernode whose label is 
$RESULT. 

1. Xl:= createO; 
2. X2:= rename(Xl, $RESULT); 
3. X2:= inserLnode($RESULT, NAME); 
4. for_all Xl E nodes($PASSENGERS) do 
5. if (FLIGHT _NO, "BA2l2") E arcs(Xl) then 
6. for_all (Yl, Y2) E arcs(Xl) do 
7. TB 
8. ifY! = NAME then 
9. TB 
10. X2:= inserLnode($RESULT, Y2); 
11. X2:= inserLarc($RESULT, NAME, Y2); 
12. TE 
13. TE 

The second example is an HNQL program, shown below, that modifies flight number 
"BA2l2" to "BA345" for all passengers in the database. 
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1. for_all Xl E nodes($PASSENGERS} do 
2. for_all (Yl, Y2) E arcs(Xl} do 
3. TB 
4. if (Yl, Y2) = (FLIGHLNO, "BA2l2") then 
5. TB 
6. X2:= delete_arc(Xl, Yl, Y2}; 
7. X2:= delete_node(Xl, Y2}; 
B. X2 := inserLnode(Xl, "BA345"}; 
9. X2 := inserLarc(Xl, Yl, "BA345"}; 
10. TE 
11. TE 

The details of the semantics of HNQL programs can be found in [LL95b] and a detailed 
description of a rule-based counterpart ofHNQL, called Hyperlog, can be found in [PL94] . In 
[LL95b) and [PL94), respectively, it was shown that HNQL and Hyperlog are query complete 
languages (see Section 6.5 of Chapter 6 for the definition of query completeness). 

We next summarise the main features of the hypernode model; it is based on a nested graph 
structure which is simple and formal. In addition, it has the ability to model arbitrary complex 
objects in a straightforward manner. Moreover, the hypernode can provide the underlying 
data structure of an object-oriented data model. Finally, hypernodes can enhance the usability 
of a complex objects database system via a graph-based user interface. 

Apart from the hypernode model there have been several other proposals for graph-based 
data models. The earliest proposals for graph-based formalisms were the network and 
hierarchical data models which were presented in Subsections 1.7.2 and 1.7.3 of Chapter 1. 
These data models were not designed to solve the usability problem for database systems but 
rather addressed fundamental data modelling issues which were unresolved at the time. As 
a result, the potential visual representation of these data models was not utilised to the full 
through the development of user-friendly interfaces for them. Moreover, the network and 
hierarchical data models are not fully data independent and thus do not have the flexibility 
that the hypernode model has in modifying the structure of the database. An early proposal 
for a graph-based data model as a user interface, which incorporates semantic notions into 
the relational model, can be found in [BorBO]. 

A digraph can easily be represented in the relational model as a binary relation. An 
interesting proposal, which builds on this fact, is to extend SQL with the ability to query 
such binary relations [BRS90). More specifically, SQL is extended with an appropriate syntax 
such that the set of all paths in a digraph that satisfy a given condition can be queried. 

A recent data model, called Logical Data Model (LDM), which caters for arbitrary complex 
objects through tuple, set and disjoint union type constructors, is described in [KV93). LDM 
comes equipped with a query language based on first-order logic which has an equivalent 
counterpart algebra. LDM can be viewed as an object-oriented generalisation of the relational, 
network and hierarchical data models. 

More recent proposals for graph-based data models are Graph-Oriented Object Database 
(GOOD) [GPV90, PYA +92), GraphLog [CM90, CCM92, CM93) and Multimedia Object 
Retrieval Environment (MORE) [LZ96). In all of these models the database consists of a 
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single digraph, as opposed to a hypernode database which consists of a finite set of digraphs. 
This unique feature of the hypernode model permits data encapsulation and the ability to 
represent each real-world object in the database separately. 

GOOD generalises the functional data model [Shi81) by expressing both the database 
schema and the database instance as a digraph and by the provision of a graph-based query 
language. GOOD embeds semantics into the nodes and arcs of the database digraph, nodes 
being printable or non-printable and arcs being single-valued or multi-valued. GOOD's query 
language is based on the notion of a pattern. Patterns are matched against the database digraph 
and return subgraphs of the database digraph that correspond to the patterns. 

Graphlog is a query language operating on a database digraph which corresponds to a 
semantic network [Gri82) . The arcs in this digraph represent predicates. Graphlog queries 
are formulated as digraphs whose arcs are annotated with predicates, transitive closures 
thereof or, more generally, regular expressions. These query digraphs are matched against 
the database digraph and return subgraphs thereof. 

Both GOOD and Graphlog label their arcs. This is a useful facility which allows us to 
express relationships between nodes. Arc labelling can be modelled in the hypernode model 
by including all the arcs which have the same label in a single hypernode whose defining label 
is the common label of the arcs. For example, the set of labelled arcs 

$REFI --'J>$LINKS_TO $DOC1 
$REF2 --'J> $LINKS_TO $DOC2 
$REF3 --'J> $LINKS_TO $DOC3 

are represented by the hypernode shown in Figure 10.6. 

We conclude this section by mentioning another graph-based data model, called Graph 
Storage System (GRAS), whose data structure comprises attribute graphs [LS88). Attribute 
graphs are digraphs whose nodes represent objects which may have attached attributes, 
and whose labelled arcs represent binary relationships between objects. In GRAS paths in 
attribute graphs represent derived relations. GRAS comes equipped with a query language, 
called Programmed Graph Rewriting System (PROGRESS), whose semantics are defined in 
terms of graph transformations [Sch90). The basic building blocks of graph transformations 
are subgraph tests and graph rewriting rules. Subgraph tests are conditions which test the 
occurrence of a subgraph within the database digraph, and graph rewriting rules are graph 
transformations which search for certain subgraphs within the database digraph and replace 
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each such subgraph with another one. Subgraph tests and graph rewriting rules are composed 
into complex graph transformations via control flow diagrams. 

10.4 Active Databases 

So far we have assumed that the database system is passive, i.e. queries and updates to the 
database are submitted to the system via users and application programs. Consider the 
example of an inventory control system, where items need to be reordered when the stock 
falls below a critical quantity. In a passive database an application program needs to be 
written that polls the database periodically to check the various stock levels and to initiate a 
reordering process when appropriate. Such an application program is active in the sense that 
the program initiates an action when the environment is in a certain state; in the case of the 
inventory control system when the stock is low. The problems in writing a specific program 
for each active application are: 

• If the polling is frequent then the program may be inefficient, on the other hand if the 
polling is not frequent enough then the program might not react at the correct time. 

• A different program needs to be implemented for each active application, so the 
maintenance of such software is expensive. 

• Active applications have some common semantics, which can be catered for in a uniform 
and efficient way by the DBMS. 

The solution to this problem is to make the database system active by adding to it a 
component which polls the database for certain specified events and acts when appropriate 
conditions are satisfied. Such production rules are known as Event-Condition-Action rules (or 
simply ECA rules or just rules). 

An important application for active databases is that of enforcing integrity constraints 
[CW90j. As an example, suppose that employees' salaries have an upper limit. Then an 
ECA rule can prevent any update to an employee's salary, which exceeds the limit. Similarly, 
entity and referential integrity can be efficiently implemented by using appropriate ECA 
rules. Another significant application is that of incremental maintenance of user views 
[CW91j, which is a proposed solution to the view update problem discussed in Section 3.8 of 
Chapter 3. 

We present an active database model which extends the relational model by adding to it a 
production rule language. A program in this language is a set ofECA rules. We now elaborate 
on the notions of event, condition and action. 

An event is a change in the database state which occurs asynchronously, as a result of an 
update operation (insert, delete or modify; see Subsection 3.2.4 of Chapter 3 for the semantics 
of updates). The update operation is part of a transaction against the database. Other database 
operations such as transaction commit and transaction abort are also considered to be events 
(see Chapter 8 for the semantics of these operations). 
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The above events are primitive and can be used to form composite events by taking the 
disjunction of two events, the negation of an event and the sequential composition of two 
events. An event can now be either primitive or composite. 

Informally, a composite event maps an event history to another event history that contains 
only the events that are satisfied according to the manner in which the composite event was 
constructed. An event history is a sequence of primitive events, i.e. it is a linear ordering of 
primitive events. 

More specifically, let 1t be an event history. The meaning of a disjunction of two events el 

and e2 with respect to 1t is the largest subset o£1t such that either el or e2 occur in this subset. 
The meaning of the negation of an event e with respect to 1t is the largest subset of 1t such 
that e does not occur in this subset. The meaning of the sequential composition of event el 

and event e2 with respect to 1t is the largest subset of 11. such that el occurs before e2 in this 
subset. Thus if the meaning of an event e with respect to 1t is 1t itself then 1t satisfies e. 

An event is a regular expression and thus a finite automaton can be constructed that accepts 
an event history if and only if this history satisfies the event. A formal treatment of composite 
events can be found in [GJS92j (See Subsection 1.9.4 in Chapter 1 for the formal definition of 
regular expressions and finite automata). 

A condition is an integrity constraint (specified as a relational algebra expression, or 
alternatively, an SQL query) that must be satisfied, i.e. be non empty or equivalently true, 
with respect to a database state. A mechanism is available which allows the relations in a 
condition to refer either to the database state prior to the occurrence of an event or after the 
occurrence of an event; by default it is assumed that the current database state is the state of 
the database after an event has occurred. Apart from data dependencies, such as functional 
dependencies and inclusion dependencies, conditions can express transition constraints; for 
example, stating that an employee's salary always increases with years of service. 

An action specifies an update operation to be carried out on the current database state. Most 
production rule languages allow more general actions such as specifying a rollback operation 
to abort the current transaction. Since an action may be an update operation, it may trigger 
other ECA rules, which in turn may trigger further ECA rules. 

The syntax of an ECA rule is: 

ON Event occurrence 
IF database state satisfies Condition 
THEN execute Action 

The semantics of an ECA rule are that when the event specified in the ON clause occurs, 
then the rule is activated. Thereafter, if the condition specified in the IF clause is satisfied 
with respect to the database state after the update associated with the event is carried out on 
the current database state, then the action specified in the THEN clause is executed. In the 
THEN clause we can refer to the database state prior to the occurrence of the event by using 
the keyword previous. When a rule is activated the process of checking the IF part of the rule 
and executing the THEN part when appropriate will be referred to as firing the rule. 

We give several examples, using an informal update syntax and a database comprising two 
relations the first over EMPLOYEE, with schema(EMPLOYEE} = {ENAME, DNAME, SALARY}, 
and the second over DEPARTMENT, with schema(DEPARTMENT} = {DNAME, MGR}. 
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The first example specifies that an employee's salary cannot decrease. 

ON modify to EMPLOYEE.SALARY 
IF EMPLOYEE.SALARY < previous EMPLOYEE. SALARY 
THEN rollback 

The second example specifies that if a department's name is modified then the corresponding 
name in the tuples of the employee relation is also changed to the new name. 

ON modify to DEPARTMENT.DNAME 
IF EMPLOYEE.DNAME = previous DEPARTMENT.DNAME 
THEN modify EMPLOYEE.DNAME = DEPARTMENT.DNAME 

The third example specifies that if an employee who is also a manager is fired then the 
manager of the department managed by that employee becomes unknown. 

ON delete from EMPLOYEE 
IF DEP ARTMENT.MGR = previous EMPLOYEE.ENAME 
THEN modify DEPARTMENT.MGR = unk 

Let P be a program, i.e. a finite set of ECA rules. In general, the events of different ECA 
rules are not mutually exclusive, so it is possible that two or more rules are activated at any 
given time. In order to resolve such conflicts the rules in P can either be ordered and then the 
activated rules are executed according to this predefined order, or alternatively the activated 
rules can be executed concurrently. 

The semantics of processing a program P, with respect to a set of integrity constraints I and 
a database state d, are presented in the following algorithm. 

Algorithm 10.3 (EXE(P, I, d» 
1. begin 
2. prev:= d; 
3. while at least one rule in P is activated do 
4. let S be the set of all the activated rules in P; 
5. deactivate all the rules in S; 
6. fire all the rules in S concurrently; 
7. if the current state of d does not satisfy I then 
8. return prev; 
9. end if 
10. end while 
11. return the current state of d; 
12. end. 

We note that, in general, EXE(P, I, d) may not terminate, since, for example, one rule may 
delete a certain tuple from a relation and another rule may insert the same tuple into this 
relation. In the special case that none of the actions of any of the rules in P change the active 
domain of the database and actions involve only insertions then termination is guaranteed, 
since the current state of d is monotonically increasing towards a fixpoint. 
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We can construct a digraph for a program P, called the triggering graph ofP, such that the 
nodes of the digraph are the rules in P and there is an arc from one rule to another rule if the 
first rule can trigger the second one. In this case it can be shown that if the triggering graph 
of P is acyclic then EXE(P, I, d) always terminates [AWH92j. When the triggering graph is 
cyclic then, in general, we cannot decide whether EXE(P, I, d) will terminate or not. 

More details on the semantics of rule evaluation can be found in [HJ91, WCL91, SKdM92j. 

I t is also possible to specify differen t coupling modes for a given ECA rule, which determine 
the timing of the execution of the rule relative to the database transaction, say T, that caused 
the event in the ON clause of the rule to be activated. EC-coupling mode determines when 
the condition specified in the IF clause of the rule is tested for satisfaction relative to T. 
Correspondingly, CA-coupling determines when the action of the THEN part of the rule is 
executed relative to T. Two possible coupling modes are: 

1) immediate - test the condition, respectively execute the action, immediately when the 
event occurs even ifT has not terminated; and 

2) deferred - test the condition, respectively execute the action, only after T has terminated. 

More on the different execution models can be found in [MD89, GJ91, SPAM91j including a 
third coupling mode in which the condition, respectively the action, is evaluated in transactions 
which are separate from T. 

An important application of production rules is that of integrity constraint maintenance 
[CW90j. Assume that an update is made to the current database state and that a set of integrity 
constraints I needs to be enforced. Furthermore, we assume that the database is always 
required to be in a consistent state. A constraint a E I may be an FD (for entity integrity 
maintenance), an IND (for referential integrity maintenance), a domain dependency, or any 
other type of constraint. Now, if the state of the database, after the update has been carried 
out, is inconsistent, i.e. a or any other constraint in I is violated, then what actions should 
the database system initiate in order to "repair" the database state, i.e. to transform it into a 
consistent state, namely into one that satisfies a and all the other constraints in I. The standard 
approach is to rollback the database into a consistent state and then abort the transaction which 
updated the database. An alternative approach, which uses production rules, is to allow the 
definition ofECA rules whose actions automatically correct the inconsistency by transforming 
the database into a consistent state. 

For example, if we are maintaining entity integrity and a key dependency is violated, for 
example due to an insertion of a new EMPLOYEE tuple with an existing primary key, then 
the action can be to delete the offending tuple from the EMPLOYEE relation thus maintaining 
consistency. As another example, if we are maintaining referential integrity and a key-based 
IND is violated, for example due to the insertion of a new EMPLOYEE tuple whose department 
is nonexistent, then the action can be to insert a tuple having the new department name and 
an unknown manager into the DEPARTMENT relation thus maintaining consistency. 

It is shown in [CW90j that for a general class of integrity constraints, defined as SQL queries, 
rule templates can be automatically derived which assist the user in defining the necessary ECA 
rules needed in order to maintain such integrity constraints. Each rule template enumerates 
the update operations and conditions that may cause the constraint to be violated, th us forming 
the ON and IF clauses of a potential ECA rule. 
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Another important application of production rules is that of incremental view maintenance 
[CW91j. Assume that a view is a relation that is defined as the result of a relational algebra 
query (or equivalently, an SQL query); we refer to this query as the view definition. 

Views may be materialised, i.e. they are physically stored in the database, or virtual, i.e. 
they are computed each time the user poses a query over them; we assume that views are 
materialised. The view maintenance problem is the problem of correctly updating the view 
when an update is performed on one of the relations of the database (called a base relation) 
that is referenced in the query that forms the view. A simple but inefficient solution is to 
completely rematerialise the view. Consequently an efficient way of dealing with this problem 
is to update only those portions of the view that have been changed due to the update carried 
out on the base relation. In other words, we need to formulate the necessary ECA rules that 
are activated by updates to the base relations such that when certain conditions are satisfied 
implying that the view needs to be updated, then the appropriate action, which corresponds 
to the update of the materialised view, is executed. 

Suppose that the user has specified a set of key dependencies over the relation schemas 
of the base relations in the database and that a view has been defined. Let V be the set of 
attributes over the relation schema which defines the view. The set of attributes referenced 
by V, denoted by REF(V), is defined as the largest set of attributes that includes V and all 
attributes in the view definition that are equated to constants, and such that 

1) if in the view definition an attribute A of a relation schema Ri is equated to an attribute 
in REF(V), then A E REF(V); and 

2) ifREF( V) includes a key for R;, then schema(Ri) ~ REF(V). 

A base relation schema Ri is said to be safe in V if REF( V) includes a key, say K, for Ri. 

It can now be shown that if d is a database and ri E d is a base relation over Ri then 
insertions, deletions and modifications carried out on ri can be reflected incrementally in the 
view, provided that Ri is safe in V. Consider an insertion of a new tuple t into rio Since t is 
not in ri prior to the update, then t[Kj cannot be in the projection ofthe view onto K. Thus we 
insert into the view only the tuples resulting from applying the definition of the view to the 
database d, where ri E d is replaced by It}. A similar argument follows when the update is a 
deletion or a modification. 

It follows that when Ri is safe in V, then for every update of a base relation ri over Ri, an ECA 
rule can be automatically generated that incrementally reflects the update in the view. When 
Ri is not safe in V then, in general, only insertions can be updated incrementally, otherwise 
the view needs to be fully rematerialised. 

Assume that ENAME is the primary key of EMPLOYEE and that DNAME is the primary key 
of DEPARTMENT; it follows that DNAME in EMPLOYEE is a foreign key referencing DNAME 
in DEPARTMENT and thus inducing a referential integrity constraint. Now, let EMP-MGR 
be a materialised view which is defined as the projection onto ENAME, DNAME and MGR of 
the join of EMPLOYEE and DEPARTMENT, i.e. 

IT(ENAME,DNAME,MGR} (EMPLOYEE tx:J DEPARTMENT). 

It follows that REF(EMP-MGR) = {ENAME, DNAME, SALARY, MGR} and thus both 
EMPLOYEE and DEPARTMENT are safe in the view EMP-MGR. Now, suppose that we insert 
some new employee tuples. Then the generated ECA rule is given by 
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ON insert into EMPLOYEE 
IF true 
THEN insert into EMP-MGR 

where EMP-MGR.ENAME = inserted EMPLOYEE.ENAME AND 
EMP-MGR.DNAME = inserted EMPLOYEE.DNAME AND 
EMP-MGR.DNAME = DEPARTMENT.DNAME AND 
EMP-MGR.MGR = DEPARTMENT.MGR 
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where the keyword inserted means that we are only referring to the tuples that were inserted 
into the current state of the database. Note that when we insert a tuple into EMPLOYEE we use 
the DNAME in order to obtain the MGR ofthe DEPARTMENT. Next, suppose that a manager 
of a department is modified. Then the generated ECA rule is given by 

ON modify DEPARTMENT.MGR 
IF EMP-MGR.DNAME = modified DEPARTMENT.DNAME 
THEN EMP-MGR.MGR = modified DEPARTMENT.MGR 

where the keyword modified means that we are only referring to the modified tuples in the 
current state of the database. Note that the IF clause of the rule guarantees that the correct 
tuples are updated, since DNAME is the primary key of DEPARTMENT. Finally, suppose that 
an employee is deleted. Then the generated ECA rule is given by 

ON delete from EMPLOYEE 
IF EMP-MGR.ENAME = deleted EMPLOYEE.ENAME 
THEN delete EMP-MGR 

where the keyword deleted means that we are only referring to the tuples that were deleted 
from the current state of the database. Note that the IF clause of the rule guarantees that the 
correct tuples are deleted, since ENAME is the primary key of EMPLOYEE. 

Overviews of active databases can be found in [Cha89, DD91, Han92, DHW95), and for a 
recent annotated bibliography of the subject see [JF95). Finally, a recent collection of papers 
covering both the theory and applications of active databases can be found in [WC96]. 

10.5 Hypertext Databases 

Traditional text which comes in book form is a linear sequence of words, defining the order in 
which the text should be read. In order to make the reading easier words are combined into 
sentences, sentences are combined into paragraphs, paragraphs into sections and sections 
into chapters. In addition, a table of contents and an index are normally supplied so as to help 
the reader find quickly some specific piece of information he/she is looking for without the 
need to read the whole document. It it also common in textbooks for the authors to provide 
a diagram, which we call a chapter dependency diagram, suggesting groups of chapters which 
should be read together in a certain order, according to a particular topic that they cover. For 
example, Figure 10.7 depicts a possible chapter dependency diagram for reading this book. 
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Fig 10.7 Chapter dependency diagram 

A dependency diagram is a simple form of hypertext. Hypertext organises documents in 
a nonsequential (or nonlinear) order. It presents the reader with several different options of 
reading a document, the choice of how to read the document being made by the reader at the 
time of reading. Let us call a textual unit of information a page. A hypertext database consists 
of a set of pages which are linked together according to the author's specification. Thus a 
hypertext database is a digraph, where the nodes are the pages and the arcs are the links. 

For example, Figure 10.8 shows a simple hypertext database consisting of five pages and 
several links between them. You can start reading (or browsing) the text at any page. Say you 
started at page PI. Once you have browsed through page PI you have a choice either to go to 
page P2 or page P3. If you go to page P2, you then have the option of either going to page P4 or 
page P5. Assume you have chosen to go to page P4. Once you have finished browsing through 
page P4 you have a single option which is to go back to page PI. The process of traversing 
links and following a trail of information in a hypertext database is called navigation (or 
alternatively link following). Every link connects two nodes, the node we start at is called the 
anchor node (or simply the anchor) and the node we finish at is called the destination node (or 
simply the destination) . Most hypertext systems will also have a backtracking facility which 
allows the reader to go back to the previously read page. In our example, we could backtrack 
from page P4 to page P2 and from page P2 back to page PI. Backtracking is useful since 
it allows the reader to reexamine pages and then to choose a different sequence of pages to 
follow, i.e. to choose a new trail of information to navigate through. 

As another example, consider the World Wide Web (WWW), which is undoubtedly the 
largest hypertext database available [For94). A lower bound of 320 million WWW pages has 
been recently estimated which is anticipated to grow ten-fold over the next few years [LG98). 
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Without going into any detail, each unit of information on the WWW is known as a resource, 
and each resource has a unique identifier describing where the resource resides and how to 
retrieve it. (The mechanism used is that of a Unified Resource Locator, or simply URL, which 
specifies the type of resource and a unique path for locating it.) Every WWW user has a home 
page, which is a hypertext page authored by the user, providing information and links created 
by the user. Thus the home page essentially connects the information provided by the user to 
the larger body of information available on the WWW, via the links that can be followed from 
the home page. Any other user visiting this home page can follow these links. Figure 10.9 
shows how a home page is linked to other pages. In this example, Mark's home page is linked 
to the Computer Science home page and to several papers. 



550 Chapter 10. Extensions to the Relational Data Model and Recent Directions 

Authors ofWWW pages can create document pages using the Hypertext Markup Language 
(HTML) [Ar094J. HTML provides the facilities for formatting a document, including images 
in documents, linking a document to other documents and interacting with user input through 
forms. A recent proposal of a markup language, which supersedes HTML, is the Extensible 
Markup Language (XML) [MFDG98J . XML is a metalanguage that allows you to design your 
own document types, with their individual structure, as opposed to HTML, which is a regular 
markup language in the sense that it defines a specific way of describing the information 
content of document pages. In particular, HTML caters for the report style document type with 
headings, paragraphs, lists and the like, with some provision for hypertext and hypermedia. 
XML allows you to customise the information according to the application, in order to cater for 
many classes of document where the markup is descriptive and the tags are more informative 
than just for formatting purposes as in HTML. (There is a large amount of online information 
on the WWW concerning XML and its recommended standard.) 

Th us hypertext breaks the traditional view of text as a linear sequence of chapters, sections 
and paragraphs. In hypertext a document, or more generally a collection of documents, is 
organised as an arbitrary digraph of interlinked pages. Creating hypertext can be viewed as 
a dynamic process whereby readers can also take on the role of authors by adding their own 
pages and links to the database. The example of the WWW is very instructive in this case, 
since it can be viewed as a continuously evolving hypertext database. 

Hypertext nodes are not, in general, restricted to contain text and may contain different 
multimedia objects such as graphics, sound and video. In this more general context hypertext 
has been called hypermedia but herein we will prefer the original term hypertext. 

Hypertext is a vastly developing area, which has gained a lot of momentum in the last ten 
years. As mentioned above the WWW has created some real challenges for hypertext, since 
the need to efficiently organise and navigate through the rapidly growing volume of available 
information is quite urgent. Another impetus for hypertext is the current wide availability 
of CD-ROM (Compact Disk-Read Only Memory) as a hardware device for storing large 
amounts of text and multimedia data. For example, several encyclopaedias are available on 
CD-ROM for which hypertext provides the technology for organising and navigating through 
the information. 

We now demonstrate that the hypernode model possesses a number of features which make 
it a natural candidate for being a formal model for hypertext. In order to do so we slightly 
extend the hypernode model by allowing arcs (i.e. links) to be labelled. The labels of links 
allow us to store meta-information about these links in hypernodes having these defining 
labels. 

Firstly, a hypernode is a digraph structure with two built-in link types. The first link type 
is the arc representing a referential relationship and the second link type is the encapsulating 
label representing a part-of relationship. Furthermore, attributes allow us to give additional 
semantics to nodes in the node set of a hypernode, which can be considered to be properties 
of the hypernode to which the node set belongs. In fact, hypernodes can model arbitrary 
complex objects. In order to support text directly we can assume that the domain of atomic 
values is actually a domain of textual fragments over which full-text retrieval operations are 
possible; the domain of atomic values can readily be extended to accommodate any multimedia 
object. In Figure 10.10 we show part of a hypertext database, called PAPERS, which stores 
online papers from scientific journals. In particular, the figure shows an overview diagram 
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Fig 10.10 Part of a hypertext database 

of the papers that are adjacent to $PAP1 (i.e. $PAP7 and $PAP3) and adjacent from $PAP1 
(i.e. $PAPll, $PAP4 and $PAP1S); we assume that $PAP1 is currently being browsed. The 
hypernodes encapsulated in $IN1, $IN2, $OUTl, $OUT2 and $OUT3 are annotations oflinks. 
An annotation of a link provides meta-information about the link such as the name of the 
creator of the link, the date it was created and the subject matter of the link (see Figure 10.11 
for the details of the annotation $OUTl). In addition to the annotation $OUTl, Figure 10.11 
shows the hypernode $P AP 1, which is currently being browsed and two of its encapsulated 
hypernodes, $AUTH1 (showing the details of one of the authors of the paper) and $TEXTl 
(which contains the actual text of the paper). 

Secondly, the hypernode model can provide for browsing and declarative querying facilities 
via HNQL (more on database browsing in the context of the hypernode model can be found in 
[PL94]). HNQL can also cater for authoring via its update facilities. Finally, within the context 
of the hypernode model we can reason about integrity constraints in a hypertext database (in 
[LL9Sb] it was shown how functional dependencies can be incorporated into the hypernode 
model). In summary we view hypertext as a promising application of the hypernode model. 

An important aspect of hypertext is that the reader be permitted to customise the 
presentation of the information in the database [Ash94]. The basic requirement is the ability 
to create annotations to the main text. Annotations are electronic footnotes, which contain 
some relevant piece of text created by the reader, that are accessed by a link from the main text. 
A more general requirement is to allow readers to create their own personal links between 
pages, inducing a personal nonlinear ordering on the database. Such a facility is important, 
since the built-in links may not be sufficient for the user's purposes. 

Links can either be hard (equivalently static) or soft (equivalently dynamic). A hard link 
is one, which given the anchor node, explicitly specifies the address of the destination node. 
A soft link is one, which given the anchor node, implicitly specifies the address(es) of the 
destination node(s) via a script that computes the set of destination nodes at the time the 
link is followed. The advantage of soft links is that the addresses of the destination nodes 
are not fixed and thus the dangling link problem is avoided. A dangling link is one which is 
referencing a page at a nonexistent address. 

The stale URL problem [St095] is the problem of a link pointing to a nonexistent URL, when 
the URL of a WWW page is modified but the link remains unchanged. In effect a stale URL 
is a dangling link. Current practice is to manually redirect the reader to the new URL by 
creating an additional page which contains a link to the new URL. A more attractive approach, 
suggested by Stotts [St095], is to provide the information about the new URL in an HTML file 
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Fig 10.11 Some of the hypernodes in the hypertext database 

which is periodically read by the browser instructing it to automatically redirect the link when 
it is accessed. 

An attempt to formally describe the abstractions found in hypertext systems is the Dexter 
hypertext reference model (or simply the Dexter model), so named because it was originally 
proposed at a workshop which was held in 1988 at the Dexter Inn in New Hampshire [HS94aj . 
The Dexter model attempts to define a common terminology for hypertext databases and to 
serve as a reference for the development of hypertext systems. 

The architecture of a hypertext system can be described by the following three layers: 

• The run-time layer, which describes the basic tools for accessing, viewing and 
manipulating hypertext databases. 

• The storage layer, which describes the hypertext database (also referred to as the 
hypertext network) in terms of nodes and links, and the mechanisms whereby the 
nodes and links are "glued together" to form a hypertext database. 

• The within-component layer, which describes the contents and structure within the 
nodes and links of the hypertext database. This layer is actually not elaborated in the 
Dexter model and it is assumed that other models will deal with the particular document 
types and data structures needed for the application under consideration. 
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The Dexter model contains two interfaces: 

• The anchoring interface between the storage and the within-component layers. This 
interface provides the mechanisms for addressing (or referring to) the locations or items 
of individual components . 

• The presentation specifications interface between the run-time and storage layers. This 
interface provides the mechanisms for encoding the information about how components 
in the database are presented to the user. 

We briefly elaborate on the layers of the Dexter model. The fundamental entity in the 
storage layer is the component, which is defined recursively as either an atom, a link or a 
composite entity made out of other components. Atomic components are the nodes of the 
database and their structure is described in the within-component layer. Links are components 
that describe relationships between other components. Each component in the database 
has a Unique Identifier (UID), by which it is accessed. UIDs are primitive entities and are 
assumed to be unique across the whole hypertext database. In order to be able to create a link 
within a substructure of a component, it is necessary that the anchor of the link has a unique 
identifier (anchor id), which locates a specific region in that component. An anchor is thus 
uniquely specified by a UID together with an anchor id. With each component there is an 
associated component information, which describes the properties of the component other 
than its contents, in the form of attribute-value pairs. The storage layer also includes update 
operations, which insert, delete and modify a component. In addition, there are operations 
for retrieving a component, given its UID and anchor id. 

The fundamental concept in the run-time layer is the instantiation of a component, which 
determines how the component is to be presented to the user. When a component is 
instantiated it is assigned a unique instantiation identifier. The anchors of a component 
are instantiated together with their component; an instantiation of an anchor is known as a 
link marker. Thus a link marker refers to the presentation of the link in the viewed document. 
The instantiated components are made available to the user for viewing and editing and 
subsequently they are written back into the storage layer. A hypertext session defines the 
boundaries of a transaction initiated by an instantiation of one or more components. 

A formal specification of the Dexter model in the formal specification language Z [SpiBB) 
was undertaken in [PSV94). Such a specification is a prerequisite to implementing a hypertext 
system based on the Dexter model. We mention that an earlier reference model for hypertext, 
called the Hypertext Abstract Machine (HAM) model, which is similar to the Dexter model, is 
described in [eGBB). 

One of the main unsolved problems confronting hypertext is the navigation problem, 
namely the problem of having to know where you are in the database digraph representing the 
structure of a hypertext database, and knowing how to get to some other place you are searching 
for in the database digraph. In [LL99c) we investigated this problem by defining a formal 
model for hypertext based on nodes and links and a query language, based on propositional 
linear temporal logic [Eme90), which allows the user to specify a set of trails to be retrieved 
from the hypertext database. The main result therein is that the computational problem of 
finding whether there exists a trail in the database which satisfies an arbitrary user query is, 
in general, NP-complete. This implies that it would be useful to devise approximate solutions 
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to the navigation problem which are computationally feasible. A preliminary investigation 
of a probabilistic approach, which can utilise statistical information about trails that were 
traversed in the past in order to speed up query processing, was undertaken in [LL99b]. 
Other formal models of hypertext, which deal with the navigation problem, can be found in 
[Gar88b, CM89, AK90, BK90, AS92, SFR92, MW95]. 

Apart from querying the database users are most often browsing through pages of the 
hypertext database by following links. During this process they may become "lost in hyper 
space" [Con8?], meaning that they become disoriented in terms of what to do next and how 
to return to a previously browsed page. In other words, readers may lose the context in which 
they are browsing and need some orientation tools to assist them in finding their way. The 
browser is the component of a hypertext system that helps users search for the information they 
are interested in by graphically displaying the relevant parts of the database and by providing 
contextual and spatial cues with the use of orientation tools. 

A simple orientation tool is the link marker which acts as a signpost to tell the user what 
links can be immediately followed and what links have just been passed. Maps and webs give 
the user a more global context by displaying to them links which are at a further distance 
than just one link from the current position. Maps can be displayed using a fisheye-view 
that selects information according to its degree-oj-interest, which decreases as the page under 
consideration is further away from the currently browsed page [TD92]. A set of tools that 
aid the construction of maps by performing a structural analysis of the database digraph is 
described in [RBS94]. A more sophisticated orientation tool is the guided-tour which actively 
guides users through the database digraph by suggesting interesting trails that the user can 
follow [MI89]. Another useful orientation tool is the book mark, allowing the reader to mark 
a page which can be returned to on demand when feeling lost [Ber88]. The reader may also 
mark pages which were already visited in order to avoid repetition; such marks are called 
bread crumbs [Ber88]. 

A recent emerging subarea is that of adaptive hypertext and hypermedia [Bru96, BKV98], 
whose aim is to build a model of an individual user using a hypertext system and apply this 
model for the purpose of adapting the system to that user. A useful distinction is between 
adaptive presentation which deals with adapting the contents of a page according to the 
user's knowledge and goals, and adaptive navigational support, whose aim is to help the 
user find the most relevant trails to follow by adapting the choice of links that the user can 
traverse. 

Most adaptive presentation techniques deal with text adaptation which is concerned with 
tailoring the contents of a page to a particular user. Thus the content of a page changes 
according to the user browsing it. An effective technique used to implement adaptive 
presentation is that of conditional text. The text in a page is divided into several chunks, 
each one being associated with a relevant condition. 

The most common techniques for adapting link presentation are: direct guidance which 
aims at suggesting the "best" link to follow, adaptive ordering which sorts the links according 
to some criteria which are useful to the user, hiding which restricts the number of allowable 
links by hiding links that are not relevant to the navigation session, and annotation which 
augments the links with useful comments relating to the pages that can be reached by following 
them. 
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The main features that are candidates for adaptation are now outlined: 

• The user's knowledge of the subject dealt with in the hypertext page. 

• The user's goals; for example, is the user mainly interested in learning about a particular 
subject, or simply searching for some specific information. 

• The user's background, such as the user's profession, and the user's experience regarding 
the structure of the hypertext system used. 

• The user's preferences; for example, the user may prefer certain pages and links and 
may prefer one presentation mode over another. 

A recent challenge for adaptive hypertext research is that of managing personalised views, 
where such a view consists of the subset of the hypertext system relevant to the user. Related 
to this is the problem of creating adaptive web sites [PE98j (see also [JFM97]), where a web site 
can be viewed as a localised collection oflogically interrelated pages. The goal of such adaptive 
web sites is to automatically improve both their organisation and presentation by using the 
information from log files of users who have visited the pages of the site under consideration. 

Finally, we briefly discuss Information Retrieval (IR) issues which are crucial to the efficient 
querying of a hypertext database. IR is based on a full-text search of the contents of pages in 
the database for keywords specified by the user. Typically a query is a conjunction (and) of 
keywords but, in general, a query may contain other Boolean operations such as disjunction 
(or) and negation (not). Pages which match the query are usually sorted by a score which is 
assigned to each page according to how well they match the query. Matching of a query can be 
assisted by weighting the keywords according to some statistical relevance properties, and by 
preferring pages whose links can be followed to reach other similar pages relevant to the query. 
The term number ofhits in a page indicates the number of keywords that are matched in that 
page; the number of hits may also include synonyms and related keywords in the page. In the 
context of hypertext, the integration of query-based retrieval and browsing strategies which 
include the links was investigated in [CT89j. Their model is based on a Bayesian inference 
network which includes dependencies between hypertext nodes and between concepts. For a 
survey on automatic IR techniques for measuring the similarity between textual documents, 
see [Sa191j, and for a recent description of a prototype of a large scale WWW search engine, 
which incorporates some novel search techniques, see [BP98j. 

The reader can find surveys dealing with hypertext in [Con87, Hal88, SW88, FC92j. Two 
recent books on the subject are [Nie90, Rad91) . 

We close this section with a brief mention of the historical roots of hypertext. The inspiration 
for Hypertext comes from the memex machine proposed by Bush [Bus45) (see also [NK89j). 
The memex is a "sort of mechanized private file and library" which supports "associative 
indexing" and allows navigation whereby "any item may be caused at will to select immediately 
and automatically another". Bush emphasises that "the process of tying two items together 
is an important thing". In addition, by repeating this process of creating links we can form a 
trail which can be traversed by the user, in Bush's words "when numerous items have been 
thus joined together to form a trail they can be reviewed in turn". Hypertext can be viewed as 
the formalisation and realisation of Bush's original vision. 
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The term "hypertext" was coined by Ted Nelson in 1965 [NeISO]. Nelson considers "a 
literature" (such as the scientific literature) to be a system of interconnected writings. The 
process of referring to other connected writings, when reading an article or a document, is 
that of following links. The links between documents are not always visible but they exist and 
can be made concrete. 

Nelson's vision is that of creating a repository of all the documents that have ever been 
written and thus achieving a universal hypertext database. In [NeISO] Nelson discusses 
the design of this hypertext system, which he calls Xanadu. In Xanadu all documents 
are potentially interconnected, and thus the fundamental elements of Xanadu are not just 
documents but links as well. A link is a connection between parts of text and is created by a 
user of the system. Nelson distinguishes between several types of literary link: 

1) the jump-link, corresponding to a footnote or a related item, 

2) the quote-link, corresponding to a quotation from another document, 

3) the correlink, which places a segment of one document next to a segment of another 
document in order to structure a document, and 

4) the equilink, which links two versions of the same document. 

Nelson refers to a document as containing both text and links. The boundaries of a document 
are defined by its owner. Xanadu is thus a collection of documents and links between them. 
It can be viewed as a generalised memex system, which is both for private and public use. 
In Xanadu all versions of a document are maintained and linked together by equilinks. The 
system automatically keeps track of equilinks, and thus a full historical record of all versions 
of any document is made available. 

Nelson views his system as a network of distributed documents that should be allowed to 
grow without any size limit and such that users, each corresponding to a node in the network, 
may link their documents to any other documents in the network. Nelson's vision is in fact 
materialised to a large degree in WWW,since he also views his system as a means of publishing 
material by making it available on the network. 

There is also an important connection between hypertext and semantic networks. Semantic 
networks store factual knowledge in terms of nodes and associative connections between nodes 
in the form oflinks. Seminal work by Wood [Wo07S] was instrumental in clarifying the notion 
of a link. Wood distinguishes between assertionallinks which make an assertion about the 
world, i.e. express a fact, and structural links which set up the subparts of a proposition 
or description. In addition, Wood also distinguishes between intensional nodes representing 
descriptions of the entities as opposed to extensional nodes which represent information about 
the entities themselves. Rada [Rad91] advocates viewing a hypertext database as a semantic 
network where a link provides the meaning of a relationship between two nodes. 

10.6 Semistructured Databases 

A hypertext database can be viewed as an instance of a semistructured database in the sense 
that such a database does not come with a separate schema due to its irregular structure. 
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Although the digraph representing a hypertext database is unstructured, individual pages in 
the network may have some structure attached to them. For instance, pages which are HTML 
documents have some structure attached to them in the form of informational tags, but these 
are normally insufficient for the purpose of constructing a relation schema over the document 
space. Semistructured data is often self-describing in the sense that its internal structure, when 
it exists, can be inferred from the data itself. 

Semistructured data is naturally modelled in terms of digraphs which contain labels giving 
semantics to its underlying structure. Such databases subsume the modelling power of flat 
relational databases, nested relational databases and object-oriented databases. For the 
purpose of this section we will use the hypernode model, defined in Section 10.3, as our 
data model for semistructured data. The hypernode model is well suited for this task as it is a 
graph-based data model that supports both complex objects of arbitrary structure and cyclic 
references between such objects. Moreover, in the hypernode model it is easy to embed the 
schema information in the database, since appropriate attribute names can be used for this 
purpose. 

Example 10.3 below shows a fragment of a semistructured (hypernode) database. We have 
chosen to represent the hypernode database textually rather than graphically, since in this 
case such a representation is more economical and easier to comprehend. We use indentation 
to represent a part-of relationship between a parent hypernode and the child hypernodes 
encapsulated in the parent. In object terminology the child hypernodes are subobjects of 
the parent hypernode object. For example, the contents of the child hypernode labelled $1 
follow after the arc COUNTRY ~ $1, which is contained in its parent hypernode labelled 
$Europe_HoteLGuide. As another example, the child hypernode labelled $1.1.3 follows after 
the arc HOTEL ~ $1.1.3, which is contained in its parent hypernode labelled $1.1. We have 
used the dot notation to make the object subobject relationship more transparent. Using 
such a conven tion for labels could be useful for query optimisation and consistency checking 
purposes. We note that we could represent the database in a more compact manner if we 
embed semantics into the labels of hypernodes. For example, instead of the arc COUNTRY 
~ $1, we could have COUNTRY ~ $U.K. and remove the arc NAME ~ "U.K." after it in the 
hypernode labelled by $1. However, this approach has the disadvantage that we cannot reuse 
such labels as $U.K. elsewhere in the database due to the uniqueness oflabels. Moreover, we 
would lose the convenience of the dot notation for labels. 

Apart from the need to bring to bear database technology in the organisation, maintenance 
and querying of hypertext databases or more specifically WWW data, there are several other 
motivating applications demonstrating the need for semistructured databases. 

Data integration is the activity of combining data from several heterogeneous databases. 
For example, we may want to integrate a relational database with an object-oriented database, 
both of which store statistical information on student enrolment. The process of integrating 
the two database schemas, say into a relational database schema, could turn out to be a 
very time-consuming activity which is fraught with problems due to the incompatibility of 
the two database systems. In the semistructured approach we do not attempt to integrate 
the two schemas, but rather we embed the schema information in the database itself by 
using a simple but expressive data model such as the hypernode model. As another 
example, we may wish to integrate several relational databases storing information about 
the retail prices of second hand cars. We do not expect that all retailers will use the same 
database schema; for example, some retailers may store in their database information about 
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Example 10.3 (A semistructured database) 
$EuropeJioteLGuide 

COUNTRY --> $1 
NAME --> "U.K." 
CITY --> $1.1 

NAME --> London 
HOTEL --> $1.1.1 

NAME --> "Hotel Good" 
ADDRESS --> "High Street" 
CATEGORY --> S-star 
PRI CE --> expensive 
NEAR_TO --> $1.1.2 

HOTEL --> $1.1.2 
NAME --> "Hotel Very Good" 
NEAR_TO --> $1.1.1 

HOTEL --> $1. I.3 
NAME --> "Hotel Bad" 
ADDRESS --> "Low St." 
CATEGORY --> 2-star 

CITY --> $1.2 
NAME --> Glasgow 
HOTEL --> $1.2.1 

NAME --> "Hotel Rough" 
COUNTRY --> $2 

NAME --> France 
CITY --> $2.1 

NAME --> Paris 
HOTEL --> $2.1.1 

NAME --> "Hotel Luxury" 
ADDRESS --> "Town centre" 
CATEGORY --> 50 -plus 

CITY --> $2.2 
NAME --> Nice 
HOTEL --> $2.2.1 

NAME --> "Hotel Far" 
ADDRESS --> "Far Lane" 
PRI CE --> cheap • 

the service history of the car and/or its previous owner, while others may not store such 
information. In this case the various databases may also use different formats for recording 
prices and dates, which makes the integration even more difficult. Integrating all these 
databases, without any loss of information, into a single one with a unified database schema 
would, as in the previous example, be time-consuming and fraught with problems, so the 
semistructured approach which essentially maintains the original contents of each database 
is attractive. 

Another motivating example is that of modelling scientific data such as genome data 
which does not have a regular structure. In such cases it is hard to design a relational or 
object-oriented database schema that will capture all the semantics of the application. In a 
semistructured database we can easily adapt to such diversity in the structure of the data by 
embedding the schema information in the database itself. 

Finally we mention the need for browsing through a database without having to know the full 
details of the database schema. For example a dealer, not knowing the database schema, would 
like to know which databases record the service history of their cars. As another example, we 
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would like to find all tuples in the database which mention some car manufacturer regardless 
of any attribute information. Such queries are difficult if not impossible in most conventional 
database systems but do not pose any problems in a semistructured environment. 

Since we use the hypernode model as our model for semistructured data we could simply 
use HNQL, described in Section 10.3, as our query language. Moreover, since HNQL is query 
complete, is has the full expressive power needed to query such a database. Despite this fact 
there are several extensions of HNQL which would enhance its applicability to querying and 
updating semistructured databases. 

In practice primitive nodes should be typed according to a predefined set of primitive data 
types such as string, integer, real and Boolean. Primitive nodes may also be typed according 
to more complex types such as date, various measurement units such as kilometres and miles, 
or pounds sterling and French francs. To ease the querying when data is not strictly typed we 
perform coercion between data types, which for example returns true for equality conditions 
such as 10.0 = 10, 10 = "10" and 20/11/97 = "20 November 1997". 

Path expressions provide a navigational tool in a semistructured database, which allow us 
to query information along a path in the Hypernode Accessibility Graph (abbreviated HAG, 
see Definition 1O.l3), rooted by a specified label according to a sequence of attribute names 
each being present in the hypernode defined by its respective label along the path. Formally, 
a path expression is a sequence, L.AJ.A2 ... An, where L is a label of a hypernode in a database 
HD, and AI, A2, ... ,An are attribute names. A data path matching such a path expression is 
a sequence, LI.L2 . . . Ln, where LI, L2, . . . , Ln are labels ofhypernodes in HD, such that 

1) LI = Land LI.L2 ... Ln is a walk in the HAG of L (recall that the nodes in a walk may 
not be distinct; see Definition 2.2 of Section 2.1), 

2) Ai is an attribute in the node set of the hypernode labelled by Li> for i = 1, 2, .. . , n, and 

3) Ai ~ Li+1 is an arc in the arc set of the hypernode labelled by Li, fori = 1, 2, .. . , n - 1. 

For example, the data path $Europe_HoteLGuide.$1.$1. 1.$ 1. 1.1 matches the path 
expression $Europe_HoteLGuide.COUNTRY.CITY.HOTEL.PRICE, since COUNTRY E 

nodes($Europe_HoteLGuide), COUNTRY ~ $1 E arcs($Europe_HoteLGuide), CITY E 

nodes($l), CITY ~ $1.1 E arcs($I), HOTEL E nodes($1.1) HOTEL ~ $1.1.1 E arcs($1.1) 
and PRICE E nodes($1.1.1). This demonstrates how we can retrieve the hotel prices from 
the semistructured database of Example 10.6. Using the style of the Lorel query language 
[AQM+97], we can retrieve from our database of Example 10.6 all the information on expensive 
hotels in London, by the query 

SELECT $Europe_HoteLGuide.COUNTRY.CITY.HOTEL 
WHERE $Europe_HoteLGuide.COUNTRY.CITY.HOTEL.PRICE = 'expensive' 

AND $Europe_HoteLGuide.COUNTRY.CITY.NAME = 'London' 

We can also use wildcards in path expressions, when we do not know at what level in the 
HAG of, say $Europe_HoteLGuide, the attribute information for, say CITY, appears. For 
instance, we can retrieve the names of hotels having a 5-star category, by the query 

SELECT $Europe_HoteLGuide. * .HOTEL.NAME 
WHERE $Europe_HoteLGuide.*.HOTEL.CATEGORY = '5-star' 
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In the above query the wildcard in the select clause causes any data path of the form 
$Europe_HoteLGuide.L2 ... Ln-I.Ln, with HOTEL E nodes(Ln_I), HOTEL --+ Ln E arcs(Ln_ l ) 

and NAME E nodes(Ln), to be considered. Similarly, the wildcard in the where clause causes 
any data path of the form $Europe_HoteLGuide.L2 ... Ln-I.Ln, with HOTEL E nodes(Ln_ d, 
HOTEL --+ Ln E arcs(Ln-d and CATEGORY E nodes(Ln), to be considered. 

Path expressions are extended to generalised path expressions by allowing a regular 
expression (see Subsection 1.9.4) to replace an attribute name in a path expression. Thus 
as in the example above, we can also use the wildcard operator, denoted by *, in a generalised 
path expression; this operator is also called the Kleene closure operator. (We observe that 
the wildcard operator can lead to an infinite number of data paths being considered and 
thus in practice cycles in the HAG of the initial label must be detected.) In addition, we can 
use the union operator, denoted by +, in generalised path expressions, where for example 
L.Ao.(AI + A2) matches a data path L.L' in the HAG of L such that Ao E nodes(L), Ao --+ L' E 

arcs(L) and either Al E nodes(L') or A2 E nodes(L'). For a more concrete query, we can 
retrieve either the price or category of hotels in the U.K. by the query 

SELECT $Europe_HoteLGuide.COUNTRY .... HOTEL.(PRICE + CATEGORY) 
WHERE $Europe_HoteLGuide.COUNTRY.NAME = ·U.K.' 

Two recent surveys on the issues in the emerging field of semistructured databases can be 
found in [Abi97] and [Bun97]. The problems of integrating and querying heterogeneous 
information in the context of a semistructured database are discussed in [QRS+95] and 
in a more general context in [HuI97]. The particular problems concerning biological data 
are discussed in [DOB95]. A solution to the data integration problem in the form of an 
object-relational extension is given in [LR096]. The more traditional multidatabase approach 
to schema integration is reviewed in [KCGS95] with respect to relational and object-oriented 
databases. An overview of the Lightweight Object Repository Language (Lore!) query language 
and its semistructured data model is given in [AQM+97], and details of its rival query 
language Unstructured Query Language (UnQL) and its underlying data model are presented 
in [BDHS96]. Schema discovery is important for semistructured databases, since it can assist 
the user in posing meaningful queries and browsing through the database. In addition, the 
discovered schema can be useful in query optimisation via the creation of path indices and the 
identification of data paths which give empty query results. Foundations of schema discovery 
in the form of dynamic generation of structural summaries of the information contained 
in semistructured databases, called representative objects, and their implementation, called 
DataGuides, were investigated, respectively, in [NUWC97] and [GW97]. A discussion of 
several important issues regarding the specification of views for semistructured databases was 
presented in [AGM+97]. Finally, a recent investigation which formalises a measure which 
allows us to test whether two semistructured databases have the same information content is 
presented in [Lev98]. 

10.7 Knowledge Discovery and Data Mining 

The area of knowledge discovery and data mining in databases (KDD) is one of the most 
exciting recently developing areas in the database field. The term knowledge discovery refers 
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to the overall process of finding knowledge in data and the term data mining refers to the 
application of specific methods and algorithms which extract patterns from data. KDD brings 
together the three areas of databases, machine learning and statistics. In this short section we 
explain the underlying concepts involved in KDD and give a simple example in the context of 
mining data dependencies in a relational database. Our treatment of the subject is discursive 
rather than theoretical, mainly because the theory of KDD is still in its infancy. 

The need for KDD arises from the overwhelming number of available databases both in the 
business and scientific sectors. Examples of business data are: information resulting from 
bar coding goods, information resulting from credit card purchases and financial market 
information. Examples of scientific data are: the Humane Genome database project and 
NASA's Earth Observing System which is predicated to generate vast amounts of remotely 
sensored image data from satellites. Traditional ad hoc database queries can provide useful 
and informative answers, but they are not, on their own, capable of extracting knowledge and 
analysing patterns in the data. KDD provides us with the tools which automatically analyse a 
database in order to find and mine for nuggets of useful knowledge. 

Knowledge discovery is defined more precisely as the process of extracting nontrivial, 
potentially useful and understandable patterns which are implied from a given database. 

Fayyad, Piatetsky-Shapiro, Smyth and Uthurusamy further formalise the concept of 
knowledge.discovery [FPSSU96, Chapter 1) using the following notions: 

1) A dataset (or database) d is defined as a set offacts, or tuples, each over a given relation 
schema. 

2) A pattern is an expression E in some language which describes a subset d[E) of a dataset d. 
A pattern is nontrivial if it is a more concise representation than the simple enumeration 
of the set d[E) of facts it describes. 

3) A certainty measure C(E, d) is a measure of how well the pattern E describes d[E). 

4) An interesting pattern is one which is nontrivial, useful and understandable from the 
user's point of view; to make the notion of interesting more precise it is possible to 
attach a measure to it. 

A pattern that is interesting and whose certainty measure is above some predefined threshold 
is called knowledge. We can now define data mining more precisely as the step in the knowledge 
discovery process involving the particular methods and algorithms used to extract knowledge. 

The KDD process involves the following steps: 

1) Understanding the application and collecting the relevant prior knowledge. 

2) Creating or selecting the dataset on which knowledge discovery is to be performed. 

3) Data cleaning, i.e. removing any detected noise or outliers from the dataset which 
correspond to errors in the data. Deciding how to handle missing and irrelevant data. 

4) Data reduction and projection, i.e. reducing the number of variables under consideration 
and transforming the data in order to find the useful features which represent the data. 

5) Choosing the data mining methods to be used for the chosen data mining tasks and 
executing them on the input dataset. 
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6) Interpreting the mined knowledge output from the previous step, and iterating any 
previous steps if necessary. 

7) Consolidating the output discovered knowledge, i.e. using this knowledge to our benefit. 
This may involve using the discovered knowledge in an application or simply producing 
a document detailing the results. 

The KDD process can be further abstracted in the three main steps of data preparation, 
data mining operations and data presentation. Data mining methods consist of the following 
three components: 

1) Model representation, which is the language for describing the patterns we are mining 
for; for example, decision trees, rules and Bayesian networks are representation models. 

2) Model evaluation, which is the estimate on how well an extracted pattern meets the 
criteria of being knowledge; for example, statistical significance and simplicity with 
respect to some known patterns can be used for evaluation. 

3) Search, which is the process of finding a solution, in the form of a pattern, by examining 
prospective solutions in the search space. Normally, heuristic searching techniques are 
used, since the search space is, in most KDD applications, too large for an exhaustive 
search to be computationally feasible. Heuristic search methods include probabilistic 
algorithms which utilise samples from the data set during their execution. 

The main goals of data mining methods are prediction and description. Prediction involves 
using some attributes of the database schema to predict certain values of other attributes. 
Description involves finding patterns which can be considered to be knowledge. The goals 
of data mining are achieved by the following tasks: classification, regression, clustering, 
summarisation, dependency modelling and time series modelling. 

A related area to KDD that has recently attracted a great deal of attention is that of On
Line Analytical Processing (OLAP) [CCS93], rather than the traditional On-Line Transaction 
Processing (OLTP). OLAP concerns the co-existence of transaction intensive databases and 
decision support systems. OLAP arises from the requirement for multidimensional data 
analysis tools in order to complement currently available DBMS tools. The activities of such 
analytic tools against the database constitute a transaction, whose duration may be an order 
of magnitude longer than a standard database transaction. OLAP transactions interact with 
historical data in addition to snapshot data and are typically made up of numerous "what-if' 
and "why" queries. In order to support OLAP the query language must provide facilities 
for calculation, aggregation and data manipulation across any number of data dimensions. 
A specific generalisation of the SQL GROUP BY operator, briefly introduced at the end of 
Subsection 3.2.2 of Chapter 3, is the data cube operator [GCB+97]. Given a set of n attributes, 
the data cube operator computes a GROUP BY query for each of the 2" possible combinations 
of the attributes and summarises the results in a single table. Fast algorithms for computing 
the result of applying the data cube operator are presented in [AAD+96]. 

The challenge of integrating OLAP into a relational database system can be addressed by 
developing dedicated OLAP servers that in teract with the database in order to store and retrieve 
data multidimensionally. The database with which an OLAP server interacts is called a data 
warehouse [Inm96, Kim961. This term broadly refers to a database which contains a collection 
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POS Fact 

ITEM Dimension 
STORE Dimension STORE_KEY 

ITEM_KEY 

STORE_KEY QTY_SOLD 
ITEM_KEY 

r-- r-- NAME 
CITY TOTAL]RICE 

CATEGORY 
REGION DATE_SOLD 

UNICPRICE 

Fig 10.12 The star schema for POS 

of subject-oriented, integrated and historical data. Examples of data warehouses are: large 
collections of scientific data and historical enterprise data such as sales data. 

As an example of an OLAP application consider sales data, which has accumulated over a 
period of time, detailing various products and the stores in which they were sold. A typical 
OLAP query might ask to find the sales volume of each product type in each store. This 
query may be refined by asking for a breakdown of the sales per month during the last 
year. OLAP queries should also be able to analyse relationships which are inherent in the 
data; for example, we may like to know whether there is a connection between the volume 
of sales of particular products and the district of the shop in which they were sold. Queries 
should also be capable of aggregating data according to hierarchical time periods and different 
perspectives such as sales by product or by district of store. In addition, OLAP queries should 
be able to carry out complex calculations, which may also be predictive in nature, such as 
the expected profits per product. (See [CD97) for a recent overview of data warehousing and 
OLAP technology). 

In order to build a data warehouse the database system used should support a 
multidimensional data model at the conceptual level. Most data warehouses use a star join 
schema (or simply a star schema) [Kim96, Red98) to represent the multidimensional data 
model. (See [GL97) for a proposal of a higher level mutlidimensional data model and a query 
language for it, which could in principle be implemented on top of a relational database.) A 
star schema is a database schema which resembles a star, having a central relation schema, 
called the fact table, and surrounding relation schemas, called the dimension tables. For each 
dimension table in the star schema the fact table contains a distinct foreign key referencing 
the primary key of the dimension table. The amalgamation of all the foreign keys of the fact 
table yields its primary key, which is composite assuming that there are at least two dimension 
tables. In terms of entity-relationship modelling, the fact table expresses a many-to-many 
relationship amongst the dimension tables, The fact table contains the core information 
on the data being analysed and the dimension tables contain further properties of the core 
data. The motivation behind the design of star schemas is that in data warehousing we 
are primarily interested in efficient query processing rather than in efficient updating via 
transaction processing [OG95). 

As an example of a star schema, consider a point-of-sales data warehouse of a retail business 
with many outlets, whose fact table is POS, with schema(POS) = {STORE_KEY, ITEM_KEY, 
QTY _SOLD, TOT ALP RICE, DATE_SOLD}, and dimension tables are STORE and ITEM, with 
schema(STORE) = {STORE_KEY, CITY, REGION} and schema(ITEM) = {ITEM_KEY, NAME, 
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CATEGORY, UNILPRICE}j see Figure 10.12. The relation over the fact table of this data 
warehouse contains one tuple for each item sold on a particular datej the granularity of time is 
fIxed for all such tuples and may be one day in this case. On the other hand, the relation over 
the store dimension contains one tuple for each store of the business, and the relation over 
the item dimension contains one tuple for each item supplied. The size of the relation over 
the fact table is typically much larger than the size of any of the relations over its dimension 
tables. Assume that the granularity of time is a single day, that the data warehouse stores 
the point-of-sales information over a year, and that there are 100 stores in the business each 
selling approximately 1000 different items per day, out of a possible 10,000 items. Then the 
relation over the fact table contains approximately 36.5 million tuples, the relation over the 
STORE dimension contains 100 tuples, and the relation over the ITEM dimension contains 
10,000 tuples. 

Data warehousing has also recently revived the area of view updates, since a data warehouse 
can be defIned as a materialised view [GM95], which mayalsocontain aggregate data [MQM97]. 
The problem that arises when a view is materialised is the view maintenance problem, 
which is the problem of consistently updating the materialised view when the underlying 
database relations are updated (see the discussion at the end of Section 3.8 in Chapter 3). 
View maintenance of IDB predicates of Datalog programs is considered in [DT92, DR97]. 
More specifically, the problem of whether a view, which materialises the transitive closure 
predicate, can be updated via a nonrecursive Datalog program, referred to as the maintenance 
in fIrst-order problem, is tackled. In [DT92] it is shown that when the updates involve the 
insertion of edges to the underlying graph then the view can be maintained in first-order, 
and in [DR97] it is shown that when adding certain constraints on node costs the view can 
still be maintained in fIrst-order. Monitoring the updates carried out on the underlying 
database can be done via an active database component (see Section lOA) as discussed in 
[ZHKF95]. 

For surveys elaborating on the issues of KDD we have touched upon, and a wide selection 
of papers on KDD see [PSF91, CT93, HS94b, FU95, CHY96, FPSSU96, FU96]. A recent 
introductory book to KDD is [WI98]. 

As an example of KDD in relational databases we mention the following functional 
dependency inference problem (FD inference problem): 

Given a relation r over a relation schema R fInd a cover of the set of all FDs that are satisfIed 
in r. 

More formally, let r be a relation over Rand dep(r) be defIned by 

dep(r) = {X ~ Y I X, Y s; schema(R) and r 1= X ~ Y}. 

Then the FD inference problem is the problem of fInding a cover of dep(r)j note that r is an 
Armstrong relation for dep(r) (see Subsection 3.6.2 of Chapter 3). 

The following naive algorithm solves the FD inference problem. 
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Algorithm 10.4 {INFER{r, R}} 
1. begin 
2. F:= 0; 
3. for each subset X S; schema{R} do 
4. for each attribute A E schema{R} - X do 
5. if r F= X -+ A then 
6. F := F U {X -+ A}; 
7. end if 
8. end for 
9. end for 
10. return F; 
11. end. 
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This algorithm is obviously not practical, since it considers all the subsets of schema{R). 
Mannila and Riiiha have developed several improved algorithms for solving the FD inference 
problem that can be used in practice [MR86a, MR87, MR94] (see Exercise 10.29 for one 
such algorithm). In [MR92b] they have shown that, in general, the FD inference problem is 
exponential in the number of attributes, type{R), of schema{R}. Therefore no algorithm exists 
which in all cases will solve the FD inference problem efficiently. An extension of the inference 
problem to inclusion dependencies (the IND inference problem) was considered in [KMRS92). 
The computational complexity of the IND inference problem is at least NP-complete for general 
INDs, but can easily be shown to be polynomial in type{R) for unary INDs, since there are at 
most type{R)2 possible unary INDs over R. 

Example 10.3 Let r be the relation shown in Table 10.15, over R, with ENAME (E), DNAME 
(D) and MGR (M) being the attributes in schema(R). The reader can verify that F = {D -+ M, 
M -+ D, E -+ D} is a cover of dep(r). • 

Table 10.15 A sample relation 

ENAME DNAME MGR 
Miriam Computing Eli 
Naomi Computing Eli 

Susi Mathematics Cyril 

Due to the exponential computational complexity of the FD inference problem the following 
approximate FD inference problem is appropriate: 

Given a relation r over a relation schema R find a set of FDs F over R such that, with high 
probability, F is close to a cover of dep{r). 

In [AT94, KM95) the approximate FD inference problem is investigated using the framework 
of Probably Approximately Correct (PAC) learning [VaI84). Therein, according to the 
probability and closeness desired, sample sizes with respect to the input relation and schema 
are derived which solve this problem. For related approaches to the dependency inference 
problem see [Zia91, MGB93, PSM93, SF93, Sch93, BeI95a). 

Finally, we mention Inductive Logic Programming (ILP) which is a subarea of machine 
learning, whose goal is to induce first-order logic formulae from a set of training examples 
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and background knowledge [MD94, Dze96]. The training examples consist of positive and 
negative facts, and the background knowledge is expressed in the form of first-order logic 
formulae. Any induced logic formula in conjunction with the background knowledge should 
be complete, i.e. it should logically imply the positive facts, and it should be consistent, i.e. it 
should not logically imply the negative facts. In other words, an induced logic formula should 
explain all of the positive facts and none of the negative facts. In the context of KDD, an 
instantiation ofILP can be viewed as the inference of a nontrivial rule for a Datalog program 
such that the head of the inferred rule has the same predicate symbol as the training examples. 
In the context of Datalog, the background knowledge is a Datalog program and the training 
examples are a separate set of facts, partitioned into positive and negative facts for the purpose 
of the learning algorithm. As an example, consider a Datalog program with the background 
knowledge being two unary predicates male and female, and a single binary predicate parent. 
The ILP task could be to infer the binary predicate daughter given some positive and negative 
daughter facts. Another more challenging example, which was tackled in [BM94, Mor94], is 
that of learning playing strategies to solve chess endgames. 

In a nonmonotonic setting for ILP the set of positive facts of the training examples is 
considered to be part of the background knowledge and the set of negative facts of the training 
examples is empty. Such negative facts, i.e. facts which should be false, are derived via the 
CWA (closed world assumption). 

10.8 Other Areas 

There are several important areas in the database field which we would like to mention but 
have not been covered as such in the book. 

Firstly, the issues concerning the presentation of multimedia information are very 
important, including apart from text, also other media such as graphics, video, sound, 
and animation. In order to manage such multimedia information, tools need to 
be developed that store and retrieve such information efficiently. Furthermore, the 
Human-Computer-Interaction (HC!) problem for multimedia databases poses new problems 
in the development of user interfaces for databases. A survey on the issues and current 
approaches to integrating multimedia information into database technology is presented in 
[CK95]. An interesting approach for giving semantics to query evaluation in a multimedia 
system, which utilises fuzzy set theory, can be found in [Fag96]. A recent collection of papers 
on the state of the art in the area of managing multimedia data is [ABH97]. 

Secondly, the use of high performance parallel computing technology is being utilised in 
order to speed up processing of large amounts of data. One of the problems confronting the 
use of such technology is that of devising efficient parallel join algorithms. In particular, such 
an algorithm needs to partition the relations being joined into buckets so that each bucket is 
processed in parallel. For a survey on parallel relational database systems see [Omi95]. 

A fundamental area which we did not cover in this book is that of managing distributed 
relational databases [CP84a, 6V91, GH95]. A distributed relational database is a collection of 
relational databases, called sites, which are connected via a communication network. Since 
all the sites share the same data model, i.e. the relational model, the distributed database 
is homogeneous. The fundamental principle underlying a distributed relational database is 
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that as far as the users are concerned the database system behaves exactly like a standard 
nondistributed relational database system (see [Dat95, Chapter 21]). That is, the fact that the 
database is distributed should be transparent to its users. A common example of a distributed 
database is that of an airline reservation system, where each individual office has access to 
part of the reservation information, which is distributed according to the home countries of 
the airlines. To users of such a reservation system the actual distribution details should be 
completely transparent. 

Two important issues during the design of a distributed relational database are those of 
fragmentation and replication of data. Fragmentation is the problem of dividing a relation 
amongst the various sites at which it is to be stored. For example, in the airline reservation 
system we may store the information about British Airways flights at the London site and 
the information about Quantas flights at the Sydney site. From the users' point of view the 
fragmentation of this relation is transparent. Replication is the problem of duplication of 
tuples in a relation in two or more sites. For example, we may wish to replicate some of 
the information concerning Quantas flights in Europe at the London site. Again from the 
users' point of view the replication of tuples of this relation is transparent. The decisions 
relating to fragmentation and replication of the data clearly have an effect on the efficiency 
of query processing. The problems confronting distributed query processing and transaction 
management are different from those encountered in the nondistributed case, since in many 
cases the communication costs of transferring data between sites over the network will be the 
overriding cost that needs to be minimised. 

A special type of distributed system which is widely used is that of a client/server system. In 
such a system some of the sites are clients (the frontend) and others are servers (the backend). 
The database resides on the servers and the applications are run on the clients. 

Another recent challenge to distributed database systems is that of mobile computing [IB92, 
GH951. In such an environment users will be operating small portable computers, which will 
be able to communicate with each other, possibly via a large database server. For example, 
a minicab firm would like to keep track of all their cabs with the aid of a distributed mobile 
database, where each minicab is considered to be a site with its own mobile computer and local 
database. Each local database may contain the current location and destination of the minicab, 
and information about the customers it has served during the day. In a mobile distributed 
database the information is rapidly changing and thus it is update-intensive. For example, 
the current location and passenger information of a minicab is ever changing. Therefore, we 
may have to accept errors due to the data being out of date, and thus a margin of error may 
have to be attached to the answer of certain queries. In addition, if the data is being acquired 
from different sources then there may also arise the problem of dealing with inconsistencies 
in the database [Lev961. 

Database technology has moved a long way since the inception of relational databases in 
the 1970's. Although the relational data model is currently dominating the database market 
place there are many operational non-relational database systems which are still in current 
use. Such systems are either legacy databases such as hierarchical or network databases, 
or newer database systems such as object-oriented databases, whose underlying model is 
incompatible with the relational one. In order to operate in such aheterogeneous environment, 
in which several different databases are available, a multidatabase system is needed, which 
provides a unified data model to users of the various databases. Such a database system 
is also known as a federated database system, since each database system in the federation 
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maintains its autonomy, i.e. its local operation remains unchanged, but agrees to share part of 
its information with other database systems in the federation. For a survey on the problems 
confronting multidatabase systems and the interoperatabilityoflegacy databases see [Kim95a, 
Part II). 

10.9 What Lies Beyond? 

Relational database technology has developed rapidly in the last two decades, and has reached 
its current maturity by utilising the rich underlying mathematical foundations that were 
developed in academia. The basic theory of relational databases has reached a relatively 
stable state but as can be seen from the various extensions presented in this chapter, relational 
database theory is still a very fluid and active subject. The synergy of database theory with 
other areas in computer science, such as machine learning and statistics in the knowledge 
discovery subarea and information retrieval in the hypertext subarea, is leading to important 
advances in the field. 

We expect that relational database theory will continue to be a major influence on the 
development of DBMSs by providing sound modelling criteria and efficient algorithms for 
implementing them. The theory also has the role of clearly mapping the boundary between 
problems that have tractable solutions and problems that do not. In addition to stating which 
problems are intractable, such as proving NP-completeness for a given problem, the theory 
has the important role of discovering important subclasses of the problem that can be solved 
efficiently, i.e. in polynomial time in the size of the input. Moreover, approximation algorithms 
may be viable in cases where the problem is intractable and we expect that heuristic techniques 
such as: hill climbing, simulated annealing, tabu search, genetic algorithms, neural networks 
and probabilistic algorithms will be used. 

10.10 Exercises 

Exercise 10.1 It has been proposed in [SPS87] that the nested relational model act as an 
internal level between the conceptual and physical levels of the DBMS, so that relations can be 
hierarchically clustered as nested relations. Discuss how such an internal level can be useful 
in the optimisation of flat relational queries at the conceptual level, and how it is related to 
the concept of denormalising a database schema. 

Exercise lO.2 Assume that we extend the definition of a simple selection formula to allow 
expressions of the form (X)* ~ (Y)*, where (X)* and (Y)* are relation-valued attributes in 
a nested relation schema R. Given a tuple t in a nested relation rover R, t logically implies 
(X)* ~ (Y)*, if t[ (X)*) ~ t[ (Y)*) evaluates to true. Such formulae are called extended simple 
selection formulae. 

Show how the division operator of the relational algebra (Definition 3.18 in Subsection 3.2.1 
of Chapter 3) can be expressed in a simpler manner in the nested relational algebra by using 
one level of nesting and extended simple selection formulae. 
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Exercise 10.3 The power set algebra comprises the nested relational algebra augmented with 
a power set operator, which given a nested relation rover R, returns a nested relation r' over 
R', with schema(R'} = {(schema(R}}*), where r' contains the set of all subsets of r. 

Show that the power set algebra is strictly more expressive than the nested relational algebra; 
for example, you can show that the transitive closure can be expressed in the power set algebra 
but not in the nested relational algebra [HuI87j. In addition, show that either the nest or the 
difference operator is redundant in the power set algebra, in the sense that the expressiveness 
of the power set algebra is not diminished when either the nest or the difference operator is 
removed from it [GV91j. 

Exercise 10.4 The nest and unnest operators of the nested relational algebra allow us to 
restructure nested relations according to a suitable schema. For example, we may want to 
know the set of courses that a given student takes, or alternatively the set of students that take 
a particular course. Illustrate the problems in restructuring hierarchical relations, when the 
information content of a hierarchical relation r is represented by the flat relation UNNEST*(r}. 
Suggest how the information content of a hierarchical relation may be better represented by a 
flat database emanating from r, such that each flat relation in this database can be computed 
from r via a nested relational algebra expression [AB86, Hu190j. 

Exercise 10.5 Given a flat relation rover R, where schema(R} = {AI, A2, ... , Am, BI , B2, 
... , Bn }, and a natural number k, prove that the problem of finding a nested relation s over 
S, where schema(S} = {AI, A2, ... , Am, (BI)*, (B2)*, ... , (Bn)*), such that UNNEST*(s} = 
rand s has at most k tuples, is NP-complete [Tak89j. (Hint: To establish NP-hardness, 
give a polynomial-time transformation from the minimum disjunctive normal form problem 
[GJ79j.) 

Exercise 10.6 Let r be a relation over a relation schema R, with schema(R} = XYZ, where X n 
Y = 0 and Z = schema(R) - XY. Show that the following statements are equivalent [FSTV85j: 

I} X -+-+ Y I Z holds in r. 

2} X -+ (Y)* holds in NESTy(r). 

3} X -+ (Z)* holds in NESTz(r}. 

4) X -+ (Y)*(Z)* holds in NESTy(NESTz(r». 

5) X -+ (Y)*(Z)* holds in NESTz(NESTy(r». 

Exercise 10.7 Let R be a nested database schema and let schema(R) denote the set of all 
atomic attributes appearing in the nested relation schemas ofR. Then R is said to be in Nested 
Normal Form (NNF) with respect to a set M of MVDs over schema(R), if the path set, P;, of 
each nested relation schemaRj E Ris in 4NF with respect to M, and, in addition, M F I><l [{Pdj. 
(A relation schema R is in Fourth Normal Form (4NF) with respect to a set M of MVDs, if 
every MVD X -+ -+ Y in M is trivial.) Justify the definition of NNF in terms of the FDs that 
are satisfied in the nested relations in databases over NNF schemas, with reference to BCNF. 

Exercise 10.8 The object identity of a tuple can be implemented as the physical address of 
the tuple, or alternatively, as a surrogate, which is a unique identifier that is generated by the 
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DBMS and is independent of the physical address of the tuple [KC86]. Discuss the advantages 
of each implementation strategy, and argue that, when using surrogates, object identifiers 
should be globally unique within the database rather than just locally unique within a relation. 

Exercise 10.9 An important feature of an object-oriented database (that we have not delved 
into) is the facility to introduce user-defined data types as attribute domains, in addition to 
the standard attribute domains of numbers and strings. Such a facility should allow database 
programmers to define new data types and the operations on these types [OH86, Sto86). 
(See also the discussion in Section 3.7 of Chapter 3.) For example, in a geographic database 
which needs to manipulate spatial data, we may need to define a data type, called region, and 
operations such as; whether two regions are adjacent and whether one region is contained in 
another. Assuming that the operations for user-defined data types can be implemented in a 
computationally complete database query language, suggest how such data types can be used 
in an extended relational algebra. 

Exercise 10.10 Summarise the features that make a database system object-oriented, and 
discuss the viability of extending a relational database system to support these features [SM96]. 

Exercise 10.11 Recall the definition of an ISA relationship in the ER model, which was 
presented in Definition 2.12 in Section 2.4 of Chapter 2. Suggest how the semantics of ISA 
relationships can provide a basis for extending the relational algebra with an inheritance 
facility and describe what benefits are gained by such an extension. 

Exercise 10.12 Suggest a declarative rule-based query language for the hypernode model 
[PL94j. 

Exercise 10.13 Design a user interface for the hypernode model. 

Exercise 10.14 Suggest a normal form for hypernodes, wherein a hypernode database is 
replaced by a single hypernode and such that there is no loss of information in the normal 
form representation; two hypernodes having the same information content should have the 
same normal form hypernode [Lev98]. 

Exercise 10.15 A hypernode database HD is said to be acyclic if for all defining labels, G, 
of hypernodes in HD, the HAG of G is acyclic, otherwise HD is cyclic. Argue with examples 
whether cyclic hypernode databases are more expressive than acyclic ones. 

Exercise 10.16 A workflow management computer system describes the flow of control 
between multiple processing steps, which may execute on different servers and such that the 
duration of the activities being modelled may be long-running. You are given the following 
outline specification of a workflow management hospital information system. A patient 
arrives at the hospital and is admitted. Then the patient is examined by a physician and the 
physician may prescribe several tests to be carried out at certain dates. In addition, the patient 
may be required to be hospitalised and thus a room must be assigned to this patient and a daily 
routine be arranged which includes meals and daily checkups. When the results of the tests 
arrive, then the physician must assess them and reexamine the patient. As a result further 
tests may be prescribed. When the patient is released, then the administrative records must 
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be updated for billing purposes. Demonstrate how such a system could be implemented by a 
program ofECA rules [DHL90, DHL91]; you may use pseudo-code where appropriate. 

Exercise 10.17 Assume that P is a program consisting of a finite set of ECA rules and let :::J be 
a partial order on the rules in P such that Ri :::J Rj implies that the rule Ri has a higher priority 
than the distinct rule Rj' in the sense that if both Ri and Rj are activated at the same time, then 
Ri is fired before Rj. Two distinct rules Ri and Rj are non-prioritised if neither Ri nor Rj has a 
higher priority than the other. 

We say that P is confluent, if the final database state resulting from processing the rules in P 
is independent of the activation order of the set of non-prioritised rules in P. Furthermore, we 
say that two distinct rules Ri and Rj commute if the database state, resulting from activating 
Ri first and Rj second, is the same as the database state resulting from activating Rj first and 
Ri second. 

Show that if all pairs of distinct rules in P commute then P is confluent. Since some of the 
rules in Pare priori tis ed, insisting that all pairs of distinct rules commute is too conservative a 
condition for confluence to hold. Consider the following algorithm, where T(R) is a function 
which returns the set of all rules, including the rule R, that can be triggered by R. 

Algorithm 10.5 (PAIRS(P, Ri, Rj)} 
1. begin 
2. SI := {Ri}; 
3. S2 := {Rj}; 
4. while SI or S2 are modified do 
5. SI := SI U (R E P IRE T(R 1) for some RI E SI and 

R :::J R2 for some R2 E S2 and R =1= Rj}; 
6. S2 := S2 U (R E P IRE T(R2) for some R2 E S2 and 

R :::J RI for some R1 E 51 and R =1= R;}; 
7. end while 
8. return (SI, S2); 
9. end. 

Show that P is confluent if for every pair of distinct non-prioritised rules Ri and Rj in P, 
when (51, S2) is returned by PAlRS(P, Ri, Rj), then every pair of rules RI E 51 and R2 E S2 
commutes [A WH92] . 

Exercise 10.18 A State-Transition Diagram (STD) [You89] is a diagram used in software 
engineering analysis, which describes the time-dependent behaviour of a system under design. 
An STD can be viewed as a finite automaton augmented with the ability to produce an output 
on change of state; such a finite automaton is called a Mealy machine [HU79]. Give an outline 
of how the semantics of a program consisting of a finite set of ECA rules can be described by 
using Mealy machines. (See Subsection 1.9.4 in Chapter 1 for a formal definition of a finite 
automaton.) 

Exercise 10.19 Suggest how a hypertext database may be formalised as a finite automaton 
and how such a formalisation can be used to specify the semantics of browsing [SFR92, LL99c]. 
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Exercise 10.20 Develop a query language for hypertext databases based on temporal logic 
[BK90, SFR92, LL99cl. 

Exercise 10.21 In this exercise we investigate the definition of a relevance function for links 
in a hypertext database, in order to facilitate the computation of fisheye-views [TD921. 

Let G = (N, E) be a digraph representing a hypertext database and assume that all links 
(n, m) in E have a natural number attached to them, denoted by rel(n, m), which represents 
the relevancy of the arc from the user's point of view; in addition, let max]el denote the 
maximal relevance of any link in E. Also, denote the ith path from a node n to a node m in the 
transitive closure of G by [n , mli, where the paths from n to m are indexed in some manner. 

The path-dependent a priori relevance of the ith path, [n , m Ii, denoted by apr([n , m I i), is a 
real number, defined by 

l} apr([n, nli) = 1. 

2) apr([n, m]i) = rel(n , m)/max]el, if [n , m]i is the single arc (n, m) in E. 

3) apr([n, m]i) = apr([n,p]j) x apr([p, m]k), where ([n,p]j) is the path resulting from 
removing the last arc (p, m) from [n, m]i and [p, mh is the last arc of the path [n, mJi. 

(For more details on the transitive closure operation, see Definition 3.22 in Subsection 3.2.1 
of Chapter 3). 

Finally, we define the path-independent a priori relevance of a link (n, m) in the transitive 
closure ofG, denoted by APR(n, m), as follows: 

l} APR(n, n) = 1. 

2) APR(n , m) is the maximum of apr([n, m]i) over all paths [n, mli in G. 

3) APR(n, m) is undefined if there is no path from n to m in G. 

Prove that APR(n, m) :::: APR(n, p) andAPR(n, m) = APR(n, p) x APR(p, m), where all the 
paths from n to m contain the node p. What are the shortcomings of the function APR? 

Exercise 10.22 Show how a semistructured database can be formalised as a nondeterministic 
finite automaton, where labels and atomic values correspond to states of the automaton and 
attribute names correspond to transitions of the automaton from a given state to another 
state. (See Section 1.9.4 of Chapter 1 for more on deterministic and nondeterministic finite 
automata.) 

A DataGuide for a semistructured database represented by a nondeterministic finite 
automaton, M, is defined as a deterministic finite automaton which is equivalent to M. Give 
an equivalent definition of a DataGuide in terms of how its path expressions relate to the 
semistructured database over which it is defined [GW97, NUWC971. In addition, using 
an example database, demonstrate the utility of DataGuides as an aid for formulating and 
processing queries. 

A minimal DataGuide for a semistructured database represented by a nondeterministic 
finite automaton M is one which has a minimal number of states. Discuss the desirability of 
minimal DataGuides by using an example database. 
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Exercise 10.23 Propose an update language for semistructured databases. 

Exercise 10.24 The view maintenance problem is the problem of correctly updating a view 
when an update is performed on one of the relations of the underlying database (see Section 10.4 
and the discussion at the end of Section 3.8 in Chapter 3). A view is self-maintainable with 
respect to an update if it can be maintained without accessing the database relations. We 
define an SP view to be a view formed from relation algebra expressions involving only 
selection, projection and renaming over a single relation, and an SP] view to be a view formed 
from relational algebra expressions involving only selection, projection, (natural) join and 
renaming. 

1) Show that all SP views are self-maintainable with respect to insertions. 

2) Show that an SP] view that involves the join of two or more distinct relations is not, in 
general, self-maintainable with respect to insertions. 

3) Show that an SP view is self-maintainable with respect to deletions from a relation ri 
over Ri, if some key K for Ri is included in the view definition, or K is equated to a tuple 
of constants in a selection formula defining the view. 

4) Show that an SP] view is self-maintainable with respect to deletions from a relation ri 
over Ri, if for each occurrence of Ri in a join in the view definition, either some key K for 
Ri is included in the view definition, or K is equated to a tuple of constants in a selection 
formula defining the view. 

5) An attribute in a relation schema Ri is exposed in a view, if, in the view definition, it is 
either involved in some selection formula or is a join attribute. Show that an SP view 
is self-maintainable with respect to modifications of unexposed attribute values of a 
relation ri over Ri, if some key for Ri is included in the view definition. 

6) Show that an SP] view is self-maintainable with respect to modifications of unexposed 
attribute values of a relation ri over Ri, if for each occurrence of Ri in a join in the view 
definition, some key for Ri is included in the view definition. 

Exercise 10.25 Discuss with an example how historical relations can be utilised in the process 
of building and maintaining a data warehouse. (See Chapter 7 for details on historical relational 
databases.) 

Exercise 10.26 Argue for the claim that the fact table of a star schema is naturally in a high 
normal form, i.e. 3NF or BCNF, while it is a waste of time to normalise the dimension tables 
of a star schema into such a high normal form. 

Exercise 10.27 Design a star schema for an electronic mail order book store. 

Exercise 10.28 Let r be a relation over R and X -+ Y be an FD over R. We say that an FD X 
-+ Y is E-bad in r if 

I {t E r I there exists U E r such that t[X) = u[X) and try) # u[Y]} I 
Irl 

where 0 < E < 1, recalling that I rl denotes the cardinality of a relation r. 

> E, 
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Show that if the FD X ~ Y is E-bad in r, then algorithm GOOD{r, X ~ Y, m), given below, 
returns NO with probability of at least 1-8, where 0 < 8 < 1 [AT94, KM95]. (In the algorithm 
we let m = (l/E)ln(l/8), where In stands for the natural logarithm and fml denotes the least 
natural number greater than or equal to m.) 

Algorithm 10.6 (GOOD{r, X ~ Y, m» 
1. begin 
2. repeat f m 1 times 
3. t := random tuple from r; 
4. if there exists a tuple u E r such that t[X] = u [X] and try] =F u [Y] then 
5. return NO; 
6. end if 
7. end repeat 
8. return YES; 
9. end. 

Exercise 10.29 In this exercise we investigate an algorithm for mining the FDs in a relation 
r over a relation schema R [MR94]. 

Let lhs{r, A), where A E schema{R), denote the set of all left-hand sides, X, ofFDs such that 
dep{r) F= X ~ A and for no proper subset Y C X is it true that dep{r) F= Y ~ A. Now, given 
two tuples t and u in r we define the agreement set of t and u, denoted as agree(t, u), by 

agree(t, u) = {B E schema(R) I t[B] = u[BJ). 

The disagreement set of the tuples t and u, denoted as disagree(t, u), is defined by 

schema(R) - agree(t, u). 

The necessary set of an attribute A E schema{R) with respect r, denoted as nec(r, A), is 
defined by 

nec(r, A) = {disagree(t, u) - {A} I t, u E r and A E disagree(t, u)}. 

Finally, we define the collection of all sets X in nec(r, A) that are not supersets of other sets 
in nec(r, A), denoted by min_nec(r, A), as 

min_nec(r, A) = {X E nec(r, A) I there does not exist Y E nec{r, A) such that Y eX}. 

A database hypergraph, say H, over a relation schema R is a collection of subsets of 
schema{R); we assume that H is simple, that is to say, if X, Y E H and X ~ Y then X = 
Y. A subset T of schema{R) is a transversal of H, if for all sets of attributes X E H, T n X 
=F 0. A minimal transversal T ofH is a transversal such that no proper subset T' C T is also a 
transversal of H. The collection of all minimal transversals ofH is denoted by TRANS{H). 

Prove that lhs(r, A) = TRANS{min_nec(r, A». 

Exercise 10.30 Argue that due to the additivity problem Algorithm lOA is not sufficient for 
the purpose of inferring the set of FDs that are weakly satisfied in an incomplete relation 
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[L V97J. (See Section 5.5 of Chapter 5 for the formalisation of the additivity problem for FDs 
holding in incomplete relations.) 

Propose a solution for the FD dependency inference problem in incomplete relations [L V97J. 
(Hint: consider the maximal subsets G of P+ with respect to Armstrong's axiom system such 
that r ~ G if and only if for all X -+ Y E G, r ~ X -+ Y.) 

Exercise 10.31 In this exercise we investigate data mining association rules such as 90% of 
the customers that buy bread and jam also buy butter [AIS93, SON95, AMS+96j. 

Let R be a relation schema having attributes {AI, A2, ... ,Am} such that the domain of all 
the attributes Ai E schema(R) is {O, I} . The attributes Ai E schema(R} are called items, and 
sets of attributes X S; schema(R) are called itemsets. A relation rover R is a finite set of tuples 
over R, which are also called transactions. With each transaction t E r we associate an itemset 
X S; schema(R), such that for all i = 1,2, . . . , m, Ai E X if and only if trAil = 1. We say that 
X is an itemset of r to mean that X is an itemset associated with a transaction t E r. 

An association rule (or simply a rule) is an implication of the form X ::::} A, where X is 
an itemset, A is an item, and A fj. X. The rule X ::::} A is satisfied in a relation rover R with 
confidence c, if at least c% of the item sets of r that contain X also contain A. The rule X ::::} A 
has support s in the relation r, if at least s% of the item sets of r contain XA. 

The problem of data mining association rules in a relation rover R is to generate all the 
rules that are satisfied in r with confidence c and support s. 

Discuss the significance of the support of a rule in a relation. Show that ifXB ::::} A is satisfied 
in r with support s, then X ::::} A is also satisfied in r with support s, and show that the reverse 
implication does not necessarily hold. In addition, show that if X ::::} A is satisfied in r with 
confidence c, then XB ::::} A is not necessarily satisfied in r with confidence c, and show that 
the reverse implication does not necessarily hold. 

Exercise 10.32 Devise an algorithm for data mining association rules, which were defined in 
Exercise 10.31, with confidence c and support s. (Hint: The support of a set of attributes X S; 
schema(R) in a relation r, over R, is the percentage of itemsets in r that contain X. It follows 
that X ::::} A is satisfied in r with confidence c, if the support of XA divided by the support of 
X multiplied by 100 is greater than or equal to c.) 
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external level. see database schema, view 

fact, 22, 116 
delete, 512 
functional, 511 
insert. 512 
relational, 511 
table, 563, 573 
undefined, 468,474,512 

falsity of a clause, 475 
family of sets, 32 
family tree, 10 I 
FD, see functional dependency 
field, see attribute 
file, 59 

hashed, 60, 445 
indexed, 59 
sequential, 59 

final-state 
equivalent, 421 
serialisability, 421 
serialisable, 421 

final write, 420 
FIND statement, 14 
finite automaton, 543,571 

deterministic, 40 
nondeterministic, 572 

finite validity, 53,135 
finitely controllable, 54 

first-order 
language, 38, 56 

definable, 56 
theory, 38,498 

fish eye-view, 554, 572 
fixpoint, 23,379,459 

alternating, 476 
inflationary, 122,377,460 
iterated, 476 
operator, 57 
query, 377 

flat database, see database, normalised 
flat database schema, see database schema, normalised 
flat relation, see relation, normalised 
flat relation schema, see relation schema, normalised 
floor, 35 
fold operator, 395 

algorithm, 395 
for loop, 378,459 
forest type, 16 
formula, 36 

atomic, 36, Ill, 116,503 
closed, 37, 502 
finitely satisfiable, 53 
finitely valid, 53 
ground atomic, 116 
predicate, 116, 503 
satisfiable, 36-38 
selection, 94 
simple selection, 94 
sub formula, 112 
unsatisfiable, 36,37 
valid, 36, 38, 304 
well-formed, 112 

ForQL, 378 
fourth generation languages, 10 
frame problem, 502 
free variable, 112 
from operator to operator, 391 
frontend, 567 
full-text retrieval. 550 
function, 31,69 

argumen t. 31 
bijection, 32 
characteristic, 31 
codomain, 31 

image, 31 
into, 31 
membership, 333 
one-to-one, 31 
onto, 31,32 
projection. 32, 33 
restriction, 31 
successor, 45 
symbol, 36, 511 
total, 31 
zero, 45 
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functional dependency, 145, 149, 150, 151, 158, 309, 423, 521 
approximate, 565 
canonical, 240 
compatibility with join dependency, 206 
cyclic, 233 
dynamic, 404 
elementary, 283 
embedded, 167,232 
historical, 404,407 
incomparable, 233,316 
inference problem, 564, 565 
monodependent, 317,356 
n-standard, 187 
nonstandard, 151 
projection, 167 
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functional dependency-cant. 
redundant, 148 
satisfied, 155 
standard, 151 
strong, 316 
unary, 214 
weak, 316 

fuzzy 
database, 342 
logic, 333 
set, 333 

game, 476 
back-and-forth, 498 
Ehrenfeucht-Fraiss~, 55, 498 
existential pebble, 496 
infinitary pebble, 56 
round, 496,498 
two-person perfect information, 467 
win a round, 496 
winning strategy, 55,57,496,498 

game theory, 481 
generalisation, 61 
generator, 527 
generic machine. 373 
geographic information systems, 407 
GET statement, 17 
GIS, see geographic information systems 
glb, see lower bound, greatest 
Godel's completeness theorem. 53 
GOOD, see graph-oriented object database pattern 
Graham reduction algorithm, 205 
granularity, 440 

coarse, 427 
fine, 427 
hierarchy, 427 
locking, 427 

granularity of time, 390 
graph, 30, 63, 69, 328 

3-colourable, 328 
acyclic, 63 
attribute, 541 
bipartite, 69 
connected, 55, 56, 58, 63 
cyclic, 63 
cyde, 63 
dependency, 117, 328, 463, 464, 469 
directed, 30, 63 

acyclic, 35,283 
algorithm, 469 
bipartite, 30 
subdigraph, 63 

forest, 64 
nested structure, 540 
network, 64 
path, 56,63 
planar, 58 
structural similarity, 537 
subgraph, 63 
theory, 33, 533 
tree, 63 
triggering, 545 
walk, 63,497,559 

graph storage system, 541 
graph-oriented object database pattern, 540, 541 
Graphlog, 541 
GRAS, see graph storage system 
ground 

clause, 472 
instance, 472 

growth independence, 9 

HAG, see hypernode, accessibility graph 
HAM, see hypertext, abstract machine 
hang, 449 
hashing algorithm, 60 
Hel, see human·computer-interaction 
Herbrand 

base, 39,471 
program, 471 
universe, 38,471 

Herbrand interpretation, 39, 474 
finite, 462 
partial, 474 
three-valued, 474 
total, 473,474 
two-valued, 473,474 

Herbrand model, 39,462,498 
least, 39,462 
minimal, 39,462 
preferable, 470 
three-valued, 474 

heuristic 
BCNF preserving, 274 
cycle breaking, 275 
key-based preserving, 275 
missing attribute problem, 274 
technique, 568 

HFD, see functional dependency, historical 
hierarchical model, see data model, hierarchical 
hierarchical navigation. 17 
hierarchical path, 17 
higher priority rule, 571 
historical relational completeness. 398 
historically relationally complete, 399 
hits, 555 
hitting set problem, 168, 259 
HNQL, see HyperNode, query language 
hold and wait, 432 
homogeneous distributed database, 566 
homomorphism, 31,234,494,537 
HTML, see hypertext markup language 
human-computer-interaction. S66 
hypergraph, 204-206,282 

connected, 206 
connected components, 206 
path, 205 
transversal, 574 

Hyperlog, 540 
hypermedia, 2, SIS, 550 
hypernode, 82, 536 

accessibility graph, 536, 559 
data model, 550 
database, 535, 570 

acyclic, 570 
cyclic, 570 

defining label, 535 
digraph, 535 
query language, 537 
type, 537 
untyped, 536 

hypertext, 2, SIS, 550 
abstract machine, 553 
network, 552 
reference model, 552 
session, 553 

hypertext markup language, 550 

IDB, see database, intensional 
IDM model, see insert/delete/modify model 
IDNF, see normal form, inclusion dependency 
ignore obsolete write rule, 449 
ignore rule, 450 
ILP, see inductive logic programming 
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immediate consequence operator, 122 
impedance mismatch problem, 10,27 
implementation, 26 
implication. finite. 48 
implication problem, 54,85,147,178 

FD and AFD, 266 
functional dependency, 160 
multivalued dependency, 194 

inclusion dependency, 145,149,169,171,275 
Armstrong database. 176 
circular, 170, 171 
cyclic, 275 
inference problem. 565 
key-based, 169,172,243,260,325,545 
n-ary, 187 
noncircular, 171,178,260 
nonredundant, 232 
proper circular, 175,177,178 
proper cyclic, 275 
superkey-based, 172 
typed, 178,207 
unary, 178,187,260,565 

IND. see inclusion dependency 
index, 59 
indexed set, 32 
induced logic formula 

complete, 566 
consisten t, 566 

inductive logic programming, 565 
inference 

algorithm, 565 
logarithm, 574 

inference rule. 147 
attribute introduction, 180, 181 
augmentation, lSI, 192 
chase functional dependency, 162, 184 
chase inclusion dependency, 184 
collection, 181,324 
complementation, 190,192 
decomposition, 151,192 
embedded union, 200 
functional dependency, 184 
generalisation. 193 
identity, 526 
inclusion dependency. 184 
k-cycle, 182 
many-to-one, 214 
mixed pseudo-transitivity, 193 
null collection, 324 
one-to-one, 214 
permutation, 180 
projection and permutation. 172 
projection for embedded multivalued dependencies, 199 
pseudo-transitivity, 151 
pullback, 181,243,324 
reflexivity, 151,172,192,214 
subset, 192 
substitutivity, 174 
transitivity, 151, 172,192,214 
unbounded, 202 
union, 151,192 

information 
basic, 374 
capacity, 523 
component, 553 
content, 560, 570 
heterogeneous, 560 
imprecise, 357,617 
incomplete, 347,509 
lattice, 288,310 
ordering, 297 
system, 388 

temporal, 399 
information retrieval. 555 
information-wise equivalence. 349 

relation, 297 
tuple, 295 

inheritance, 26.61,529 
attribute, 78 
lattice, 278,526 
multiple, 26,78 
single, 26 

initial read. 420 
insert algorithm, 528 
insertJdelete/modifymodel, 411 
insertion, 126 

anomaly, 284 
extended, 349 
violation, 241,284 

instant, 401 
indeterminate, 396,401,408 

instantiate operator, 394,396 
integrity, 7 

entity, II, 157,261,318,320,332,346,536,542,545 
generalised, 261,263 
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referential, 11,12,60,96,157,172,243,325,342,346,526, 
536, 542, 545 

integrity constraint, 145,461,502,508,509 
class, 146 
derived, 147 
dynamic, 145,509 
enforcing. 542 
maintenance. 545 
referential, 546 
static, 145,509 

integrity part, see data model, network, see data model, 
hierarchical 

interaction between functional and inclusion dependencies, 
170,179,261 

no, 186 
interface, 26, 553 

anchoring, 553 
operation, 26 
presentation specification, 553 

interleaving. 415 
internalleve1, see database schema, physical 
interpretation, 38,53, 108 
intersection. 29,92, 97 

anomaly, 196 
extended, 305 
fuzzy, 336 
relational algebra operator, 1l0, 119 

intersection property, 196,233,316,356 
interval, 391 

closed, 35,391 
open, 35 
semi-closed, 35 
single-point, 391 

interval-based approach, 407 
IR. see information retrieval 
isolation, 411 
isomorphism, 32 
item, 575 
itemset, 575 

Java, 531 
Java database connectivity, 381 
JD, see join dependency 
JDBC, see Java database connectivity 
join. see join. natural 

algorithm, 97 
attribute, 96 
consistency, 207 
extended, 305 
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join-cant. 
natural. 96.97.110.119.207.209.305.355 
outer, 306,355 
plan. 209 
relational algebra operator. 110. 119 
tree, 209 

join consistent database. 282 
join dependency. 150.200.201 

acyclic, 204 
binary. 203 
compatibility with functional dependencies. 206 
embedded. 211 
projected. 211 

jump-link. 556 

k-aryaxiomatisation, 181 
KDD. see knowledge discovery and data mining 
key. 73.153.154.237. 249. 531 . see key. historical 

algorithm. 157. 158 
alternate. 74. 153.279 
candidate. 10.73. 153 
composite. 74, 153 
dependency. 232.240 
foreign. 10. II . 145. 156. 157. 172. 237. 243. 249. 325. 346. 

404. 546 
historical, 403 
minimal, 73 
primary. 10.11.74.145.153.318.346.545. 546 
simple. 73. 153 
subkey. 230 
superkey. 318 
surrogate. 74 
temporal. 404 

key family 
irreducible, 320 
minimal. 320 
nonredundant, 320 
primary. 320 

keying operator. 22. 520 
Kleene closure operator, 560 
Kleene star of a language, see closure, of a language 
Knaster-Tarski fixpoint theorem. 463 
knowledge. 561.566 
knowledge discovery and data mining, 516, 560 

label. 534 
language. 40. 49. 85 

declarative. 85 
linear-time. 49 
procedural . 85 
rule-based. 459 
update. 91 

language accepted by DFA. 40 
lattice. 35. 294 

complete, 35 
information. 294.295 
inheritance, 26 
meet-irreducible. 231 

layer. 552 
run-time, 552 
storage, 552 
within-component, 552 

LDM. see data model. logical 
less informative 

relation. 297.327 
tuple. 295.327 
value. 294 

lexicographical ordering. see order. lexicographic 
lifespan. 392 
lightweight object repository language. 560 
linear constraint. 495 
linear context-free grammar, 487 

linear order approach. 399 
linear temporal logic. 398 

first-order. 399 
linearly ordered set, see order, linear 
link 

assertional. 556 
dangling. 551 
directional, 323 
dynamic. 551 
following. 548. 556 
hard. 551 
marker, 553 
soft. 551 
static. 551 
structural, 556 

link presentation 
adaptive ordering. 554 
annotation, 554 
direct guidance. 554 
hiding. 554 

list. 512 
literal. 23. 38. 116 

atomic, 531 
collection. 531 
enumeration, 531 
ground. 116 
negative, 116 
positive, 116 
redundant, 483 
structured, 531 

literature. 556 
livelock. 429.450 
LLT, see transaction, long-lived 
local conflict digraph. 422 
lock. 454 

allocation. 429 
altruistic, 442.456 
count detection, 435 
dynamic allocation, 430 
exclusive. 423.424 
granularity, 410,423,440,453 
hierarchy. 453 
incompatible. 428 
instance graph. 440 
intent, 428 
intent exclusive, 428 
intent shared. 428 
manager. 410.424. 440.443 
mode. 423 
multi-granularity, 440 
predicate. 441.453 
protocol. 428. 430. 445. 446 
shared. 423.425 
shared intent exclusive. 428 
table. 443 
update. 426 

logic 
default. 59. 347 
dynamic. 502 
first-order. 381.483.565 
flxpoint. 57. 59 
four-valued. 352 
fuzzy. 59 
infinitary, 57,381 
Kleene. 303 
Lukasiewicz, 303 
many-valued. 333 
modal. 59.316.509 
nonclassical, 59 
non monotonic, 59 
programming, 480 
propositional linear temporal, 553 
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logic-coni. 
second-order. 57 
temporal. 59.387.572 
three-valued. 59. 292.303.333 
variable-confined, 56 

logical connective, 35, III 
logical consequence. 38 
logical database. see database. deductive 
logical implication, 94, 146, 505 

fuzzy. 338 
maybe. 349 
strong. 314 
true. 302 
weak. 314.323 

logicalleveJ. see database schema. conceptual 
LOGSPACE. 52.57 
LOGTIME. 52 
looping mechanism. 377 

bounded. 377.539 
unbounded. 377.539 

Lorel. see lightweight object repository language 
lossless join, see decomposition.lossless join 
lost in hyperspace, 554 
lower bound. 34 

greatest. 34 
lub. see upper bound. least 

M3SAT. see monotone 3-satisfiability 
machine learning. 561 
magic set. 493. 511 
manipulative part. see data model . network, see data model. 

hierarchical 
map. see function 
mapping. see function 
marked nulls. 290. 308. 355 
master-detail report, 355 
Mealy machine. 571 
meaning of a Datalog program. 122.469 

algorithm. 122. 124.469.475 
inflationary, 476 
well-founded. 476 

member typc, see record type. member 
membership grade. 333 
membership problem for data dependencies in views. 218 
memex machine, 555 
methods. 26. 526 
minimal change. 500 
minimal complement, 224 
minimal key. see key 
minimal transversal, 574 
minimal view update, 235 
minimum algorithm, 166 
minimum disjunctive normal form problem, 569 
missing attribute problem. 274 
missing information, 73 
mobile computing. 567 
modal logic 

necessity. 309 
possibility. 309 

model. 36. 38. 53 
evaluation. 562 
minimal. 470.474. 512 
partial. 474 
perfect. 470 
preferred. 477 
representation, 562 
stable. 472.473 
total. 474 
well-founded. 475 

model theory. 461 
finite. 52. 382 

modification. 126 
anomaly. 285 
extended. 349 
violation. 241.285 

modus ponens, 38 
monoid, 48 
monotone 3-satisfiability. 331 
monotonic program, 461 
MORE, see multimedia object retrieval environment 
more informative 

relation, 297 
tuple. 295. 327 
value. 294 

multidatabase. 560. 567 
multidimensional data. 562 
multimedia. 2. 566 
multimedia object retrieval environment, 540 
multiset. 29 
multivalued dependency. 150.189.190.352 

conflict-free. 196.197 
context. 190 
degenerate. 195 
embedded. 191 
extended conflict-free. 199 
full. 193 
interaction-free, 197 
left-reduced. 198 
lhs-closed. 199 
nonredundant, 194 
nonstandard. 196 
nontransferable. 198 
projected. 204. 284 
reduced. 198 
right-reduced. 198 
standard. 191 
trivial. 191 
unary. 203 

mutual exclusion, 432 
MVD. see multivalued dependency 

n-ary relation. 31 
naming function, 362 
navigation, 548, 553 
ND. see numerical dependency 
NEST operator. 20.393.518.569 
nested relational algebra, 20 
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nested relational model, see data model, nested relational 
network model, see data model, network 
network traversal, 13 

query language. 14 
NFA, see nondeterministic finite automaton 
nim. 467 
NNF, see normal form, nested 
no information is available, see nulls, ni 
no pre-emption, 432 
node 

adjacent. 535 
anchor. 534. 548 
destination, 534 
extensional, 556 
incident. 535 
indegree. 535 
intensional, 556 
isolated, 535 
outdegree. 535 
primitive, 534 
reachable. 466 
unreachable. 466 

nondeterministic finite automaton, 41 
nondeterministic Turing machine, 45 
non-prioritised rule, 571 
nonrecursive Datalog program, 117 



Index 

normal form. 237.249 
attribute redundancy free. 262 
Boyce-Codd. 188.249.253 
deductive. 510 
domain-key. 249 
entity relationship, 277 
fifth. 249 
first. 19.88.212.249.518 
first historical, 407 
fourth. 249.253.283.569 
inclusion dependency. 249. 260.261 
nested. 521.569 
non-first. 515 
object. 258 
project-join. 249 
second. 249.250 
third. 249. 251. 266 

synthesis algorithm, 266 
unique key, 257 
value redundancy free, 256 

NP. 49 
co-NP. SO. 259. 483 
NP-complete. 50.154. 155.166. 168.178.208.219.252.272. 

305.321.328. 331 . 356. 421.422.441.453.479. 484. 491 . 
495.569 

NP-hard. 50. 272. 488 
NpNP• 51 
PTIMENP • 51 

NPTIME. see NP 
NTM, see nondeterministic Turing machine 
nugget. 561 
null-free constraint, 355 
null value, see nulls 
nulls. 11.219.287.289 

applicable. 287 
dne. 11, 156 
inapplicable. 287 
inc. 289.295.619 
ni. 289 
open, 294 
unk. 11.156.321 

numerical dependency. 231 

object, 25,531.535 
attribute, 525 
classes. 213 
complex. 25. 533 
composite. 536 
database. 525 
identification operator. 525 
identifying attribute. 525 
identity. 25. 525. 533. 569 
relation, 525 
representative, 560 
subobjects. 557 
type. 4.526 

object database management group. 531 
object definition language. 531 
object-orientation, see data model, object-oriented 
object-oriented database management system. 531 
object query language. 28.531 
object SQL. 28 
ODBMS. see object-oriented database management system 
~OC, see domain constraint, or-set 
ODL. see object definition language 
ODMG. see object database management group 
of the order of. see big-O notation 
OFD. see ordered functional dependency 
OLAP. see on-line analytical processing 
OLTP. see on-line transaction processing 

ONF. see normal form. object 
on-line analytical processing, 562 
on-line transaction processing. 562 
open world assumption. 288. 292 
operation, 26 

conflicting. 417 
operator 

monotonic, 101 
non monotonic. 10 1 
transitive closure, 101 

OQL. see object query language 
or-set, 287 
order. 33. 34. 294. 383 

lexicographic. 34. 383 
linear, 438 
partial. 33. 294 

ordered functional dependency. 234 
ordering function, 362 
orientation tools 

book mark. 554 
bread crumb. 554 
guided-tour. 554 
map. 554 
web. 554 

OSQL. see object SQL 
OTM. see Turing machine. orade 
overflow area, 60 
overview diagram. 550 
OW A. see open world assumption 
owner type, see record type, owner 

PAC. see probably approximately correct 
pad operator. 306 
page. 548 

home, 549 
similar, 555 

pair 
coordinate, 30 
ordered. 30 

pairwise consistent database, 282 
pairwise disjoint sets. 30 
paraconsistent. 352 
parallel 

algorithm, 493 
computing, 566 
join algorithm, 566 
relational database, 566 

partial relationship. see relationship, optional 
partially ordered set. see order. partial 
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partially recursive functions. see Turing-computable. mapping 
parts explosion problem, see bill of materials problem 
path 

expression, 532, 559 
indices, 560 
set. 522 

pattern. 561 
interesting. 561 

PC, see personal computer 
persistent database type, 524 
persistent data. 4 
personal computer. 1.59 
Petri net. 509 
phantom 

problem. 441. 453 
tuple. 441 

physical level. see database schema. physical 
PINF. see normal form. project-join 
playing strategy. 566 
PMVD. see multivalued dependency. projected 
point-based approach. 407 



620 

pointer 
chasing. 13. 227 
currency. 14 

polynomial 
hierarchy. 50.51.484 
many-to-one reducible. 50 
time. 271 

polynomial algorithm. 52 
polynomial fringe property. 493 
positive selection formula, 94 
positivist default theory. 478 
possibility 

distribution, 333 
measure. 333. 357 
preserving. 355 

possible world. 298. 323. 327. 502 
Post's correspondence problem, 48 
potential result, SOO 

for deletions, 500 
for insertions, 500 
maximal. 500 
minimal. 500 

power set 
algebra. 569 
operator, 569 

predicate, 22 
binary. 465 
calculus. 36 
nonrecursive. 499 
recursive, 499 
symbol. 22.23. 36 
unary. 489 

predicatewise, 422 
serialisability. 422 

prediction. 562 
preservation under 

containment, 505, 506 
duplicating extension. 507 
extension. 494. 506 
homomorphism. 494 
intersections. 505.506 

pre-write, 448 
prime attribute, see attribute. prime 
primitive domain, see domain 
primitive recursive query, 378 
probabilistic 

data management. 354 
or-set. 352 

probabilistic approach. 287 
probability. 357 
probably approximately correct. 565 
problem 

intractable. 52 
tractable. 52 

problem satisliability. 489 
programmed graph rewriting system. 541 
programming language. 10. 524 

computationally complete. 45 
object-oriented. 27 

PROGRESS. see programmed graph rewriting system 
project-join mapping. 201 
projection. 90.93 

extended. 302 
fuzzy. 335 
of a set of functional dependencies. 245 
relational algebra operator. 109.118 

projection join database class. 508 
Prolog. 23. 115 
proof of an integrity constraint. 147 
proof tree fringe. 493 
property. 55 
propositional calculus. 35 

proximity relation. 334. 335 
PSPACE. 49. 57. 380 

PSPACE-complete. 50. 178.492 
PTIME. 49. 57 
pushdown automaton. 42 

QL. 371 
complementation operator, 371 
extension operator, 371 
intersection operator, 371 
permutation operator, 371 
program. 371 
projection operator, 371 
semantic, 371 
semantics, 372 
term. 371 

quantifier. 111 
existential, 36 
relativised. 138 
universal. 36. 482 
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query. 113. 365. see relational algebra. query. see SQL. query 
answer. 100.108.113.124 
C-encoding-independent. 368 
computable. 359.365.383.480 
conjunctive. 484.485 
Datalog. 124 
domain independent, 138 
encoding-independent. 367 
generic. 368 
isomorphism-independent. 367 
monotonic, 484 
or. 328 
order-independent. 366 
processing. 359. 567 
recursive, 24 

query complete. see computationally query complete 
query dominated. 524 
query equivalent. 524 
query language. 85.91 

embedded. 10 
relational completeness. 100 
rule-based. 85 

query optimisation 
logical. 228 
physical. 228 

quote-link. 556 

random access. 60, 384 
read operation, 410 
read-buffer. 449 
readiwrite model. 410 
readset. 411 
ready operation. 452 
reconstruction map. 210 
record. 12.59.360 

database. 360 
identity. 12 
member. 12 
owner, 12 
tree, 16 
variable length. 361 

record type. 12. 16 
leaf. 16 
member, 12 
owner, 12 
root, 16 
virtual. 16 

recovery. 7.453 
algorithm. 414 
manager. 443 

recursive Datalog program. 117 
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recursive function 
partially, 45 
primitive, 45 
totally, 45 

recursively decidable language, see Turing-decidable language 
recursively enumerable language, see Turing-enumerable 

language 
reduced set ofFDs and INDs, 186 
redundancy problem, 238-240,242,255 
redundant attribute problem, 274 
referential dependency, 325 
register machine, see two-counter machine 
regression, 562 
regular 

expression, 41,543,560 
language, 41 
sets, 41 

relation, 3, 36, 86, 89, 90 
action, 509 
Armstrong. 148,158,322 
base, 546 
complete, 290, 352 
complex object, 25 
connected, 356 
consistent, 290, 352 
deletion-viable, 195 
extensional, 460 
flat, 19 
fuzzy, 288, 333 
fuzzy rough, 344 
hierarchical, 521,569 
historical. 385,389,393 
incomplete, 288, 290, 290, 352 
inconsistent, 290,352 
insertion-viable, 195 
intensional, 460 
nested, 19,90,377,517,526 
normalised. 90 
or, 326 
probabilistic, 353 
reduced, 296 
rollback, 385, 389, 404 
set-theoretic, 68 
shallow, 20 
snapshot, 386-389,402 
symbol, 36 
temporal, 389, 408 
transition, 42, 4S 
union-compatible. 91 
X-complete, 264 

relation schema, 3,88, 167,405 
historical, 392 
multilevel, 230 
nested, 517 
normalised, 88 
redundant, 205,272 
relation, 3 

relation symbol 
higher priority, 470 
lower priority, 470 

relational algebra, 85,91,100,140,142,145,359 
expression, 100,217,543 
expressive power, 374 
flat, 519 
historical, 385, 393, 394 
nested, 518, 526 
query, 100,374 

relational calculus. see domain, relational calculus 
relational data file, 227 
relational database schema, acyclic, 282 
relational DBMS, 1 
relational extension data model. 515 

relational information language, 227 
relational machine, 381 
relational model, see data model. relational 
relational store, 381 
relationship, 535 

binary, 81 
built-in, 278,280 
cardinality-based, 279 
ID, 278 
ID type, 77 
ISA, 61,278 
ISA type, 77 
mandatory, 68 
many-to-many, 68 
many~to-one, 68 
n-ary, 82,281 
one-to~many. 68 
one-la-onc, 68 
optional, 68 
part-of, 534,536,550,557 
recursive, 16.278 
referential, 535, 550 
ternary, 70 
type, 65,66,74 

relationship between intervals. 391 
before, 392,397,401 
during, 392, 397, 401 
equal, 391 
finish, 391 
meet, 392,397,401 
overlap, 391,397,401 
start, 391 

release phase, see two-phase locking, shrinking phase 
relevance 

path-dependent, 572 
path-independent, 572 

renaming, 98 
attribute, 79 
extended, 307 

repeating dependency, 174 
restriction, 94 

extended, 302 
of a condition, 129 
relational algebra operator, 109, 118 

restructuring operator. 524 
Rice's theorem, 46,369 
role name, 75,76 
rough 

relation, 343 
set, 342 

rule 
active, 529, 530 
algorithm, 544 
association, 575 
basis, 488, 491 
bilinear recursive, 487 
body, 23 
chain, 485 
consequent, 478 
directly recursive, 487 
event-condition-action, 213,515.542 
firing, 543 
graph rewriting, 541 
head, 23 
justification, 478 
linear recursive, 487 
nontrivial, 116 
prerequisite, 478 
production, 486,515,542 
recursive, 487, 491 
redundant, 483 
template, 545 
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Russell's paradox. 29 
RW model. see read/write model 

safe 
base relation, 546 
Datalog program. 119 
rule for deleting nodes, 452 

safety. 119. 139 
saga, 442 
satisfaction 

additive, 3 tl 
algorithm. 313 
clause, 462,474 
embedded muItivalued dependency, 192 
functional dependency, 151.310,311 
fuzzy, 339- 342 
global. 231,232 
inclusion dependency. 171,322 
join dependency. 201 
local. 232 
multivalued dependency. 191 
of a condition, 125 
of a formula, 112 
probabilistic, 354 
rough, 344 
strong, 309.310, 311 
superkey family. 319 
weak. 309,310,311,322,329,356 

satisfiability problem, 508 
fact, 500 

schedule, 416,417 
conflict-equivalent, 417 
conflict-serialisable, 419,447 
legal. 455 
serial, 417 
view-equivalent, 420 

scheduler 
conflict-digraph-based, 453 
optimistic. 454 
pessimistic, 454 

schema, see relation schema 
discovery, 560 
evolution, 385,405,528 
integration, 560 
physical, 5 
view, 5 

schema evolution operation 
add attribute, 405 
add relation, 405 
change domain. 405 
remove attribute, 405 
remove relation, 405 
rename attribute, 405 

schema of Datalog program. 121 
score, 555 
script. 551 
search, 562 
security. 8,230 

lattice, 230 
level, 357 

SELECT statement, 114 
select-project-join expression, 484 
selection, 94, 109, 118 

extended, 302, 303 
formula, 302 
fuzzy, 338 
positive extended, 303 
relational algebra operator. 109, 118 

semantic network. 556 
semantics 

least fixpoint, 57 
partial ftxpoint, 57 

semi· naive evaluation, 493 
semigroup. 48 

finite. 48 
finite implication. 48 
free. 48 
word problem. 48 

sentence, see formula, closed 
sequence, 32 

of attributes. 170 
serialisability. 409. 415 

local. 422 
serialisation digraph. 451 
serialisation graph testing, 410,422,451,454 

basic, 451,457 
conservative. 451,452.457 

server, 567 
set, 29 

boundary. 343 
class. 33 
countable, 32 
crisp. 334 
definable. 343 
elementary. 343 
empty. 12. 29.523 
fuzzy. 287.566 
occurrence, 12 
or, 325 
partition. 33 
power, 30 
recursively enumerable, 382 
rough, 288 
singleton, 30 
size. 32 
standard encoding, 32 
type, 12 
uncountable, 32 
universal. 30 
universe, 36, 53 

set theory, 29 
sets of sets, see family of sets 
SGT, see serialisation graph testing 
sharing. 526 
similarity type, 88 
simple selection formula, see formula, simple selection 
site, 566 

home, 449 
situation calculus, 502 
Smalltalk, 531 
software engineering, 62 
spatial data, 408 
specialisation. 61 
split axiom, 129 
split-freeness property. 197,233,317.356 
spoiler, 55,498 
SQL, 11,91,113,114.138,292,381.453,540 

query, 60.114,543.546 
second version, 113 
subquery, 115 
temporal extension, 385,407 
third version. 529 

SQL2. see SQL, second version 
SQL3, see SQL, third version 
stable transformation, 472 
stack, 42 
standard encoding string, 49 
star join schema, 563 
star schema, see star join schema 
state, halt, 44 
state transition 

constraint, 146 
diagram, 41, 571 
table, 41 
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statistic, 561 
STD, see state transition, diagram 
stochastic independence, 353, 354 
structural part, see data model, network, see data model, 

hierarchical 
structure, 37,53 

finite, 53,483 
structured query language, see SQL 
subdatabase, 421 
subgraph, 63 
subschedule, 422, 455 
subset, 29 

proper, 29 
property, 197 

substitution, 121 
safe, 122 

subtype, 529 
summarisation, 562 
superkey, 73, 153 

family, 319,355 
cardinality k problem, 155,318 

super type, 529 
support, 575 
surrogate, 569 
survivability, 404 
symbol 

constant. 52 
function, 483 
relation, 52,88, III 

synthesis approach, 238,247 
algorithm, 267 

system clock, 388 

tableau, 162 
tabular form, see relation 
tautology. see formula, valid 
TD, see template dependency 
template dependency, 234 

trivial, 234 
temporal operator 

next, 398 
previous, 398 
since, 398, 399 
until, 398, 399 

temporal operators approach, 399 
temporal reasoning, 388 
term, 36 
terminal 

string, 43 
symbol, 42 

text 
adaptation, 554 
conditional. 554 

TGD, see tuple, generating dependency 
Thomas's write rule, 449,456 
thrashing, 432 
time, 385 
time domain, 391 

continuous, 390 
discrete, 390 
now, 391 
top element, 391 

time point, 391,401 
forever, 396 
now, 387,388,392,393,396,401 
until changed, 396 

time series modelling, 562 
timeout, 434,435 
timestamp, 445 

multi-version, 451 
timestamp ordering, 410,422,445,446,450, 451,454, 456 

basic, 448 

conservative, 449 
rule, 447,456 

timestamping, 388 
TM, see Turing machine 
TO, see timestamp ordering 
topological 

order, 419 
sort. 35,419 

topological relationship 
containment, 407 
disjointness, 407 
equality, 407 
meet, 407 
overlap, 407 

total relationship, see relationship, mandatory 
totally ordered set, see order, linear 
trail, 553, 555 
transaction, 7, 128,350,409, 411,575 

abort, 410,542,543 
active, 451 

atomic. 409 
commit, 410,453, 542 
committed. 7 
compensating. 442 
equivalent, 128 
history, 412 
interleaved. 4) 2 
long-duration, 441 
long-lived, 441 
management, 7, 567 
manager, 443 
nested, 442 
normal form, 128 
older, 447 
parameterised, 229 
rejection, 429,437 
restart, 448 
rollback, 7,410,453,543 
scheduler, 424,428,443 
scheduling, 429,437 
schema, 229 
start time, 447 
time, 388,40 1,405 
wake, 442 
well-formed, 423 
younger, 447 

transformation, see function 
transient data. 4 
transitive closure, 459, 466, 564, 569 

algorithm, 104 
directed graph, 103 
query, 377 
relation, 103, 359, 492 

translation. 221 
acceptable, 221 
consistent, 221 

translator, 223 
tree 

family, 513 
rooted, 428 
type, 16 

trigger, 529, 530 
truth 

assignment, 35 
clause, 121 
value, 35 

truth of a clause, 474 
truth table, 36 

three-valued, 303 
TSQL2, see SQL, temporal extension 
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tuple. 3.30.89.211. 290 
age. 404 
compatible. 241 
complete. 290. 326 
consistent. 290.326 
dangling. 96 
fuzzy. 333 
generating dependency. 211.503 
historical. 393 
incomplete. 290. 326 
inconsistent, 290, 326 
or. 326,356 

Turing machine, 40,43,381 
configuration, 44 
deterministic. 44 
finite control, 43 
halting problem, 46 
instantaneous description. 44 
k-tape, 44 
orade. 50 
query. 50 
tape, 43 

Turing-computable 
function, 45 
mapping, 45, 359, 360, 362 

Turing-decidable language, 46 
Turing-enumerable language. 46 
two-counter machine. 47 

halting problem. 490 
program, 47 

two-phase commit, 448 
two-phase locking, 430,431,442,453 

aggressive, 431 
conservative. 431 
growing phase, 430,431 
shrinking phase, 430, 431 
strict, 431 

TWR, see Thomas's write rule 

UDF, see user-defined. function 
UDT, see user-defined, type 
UID, see unique identifier 
UKNF, see normal form. unique key 
UNA, see unique names assumption 
undecidable, 178.487,489,491,500 
undecidable problem. 48 
undirected graph, see graph 
unfold operator, 394 
unified resource locator. see URL 
uniform boundedness, 491 
uniform distribution. 353 
uniform equivalence. 489 
union, 29,91,110,118,158,300,336,348 

disjoint, 158 
extended, 300, 348 
fuzzy, 336 
operator. 560 
relational algebra operator, 110, 118 

unique identifier, 55] 
unique minimal insertion. 506 
unique names assumption, 88. 460 
uniquely marked or-set, 327 
uniqueness condition, 232 
universal closure, 38 
universal relation, 206, 210 

model. 490 
one-flavour assumption. 80 
schema assumption. 27. 79. 89 
unique role assumption, 80 

universe, see set, universe 
universe of attributes, 87 
unk, see nulls, unk 

unknown null value, see nulls, unk 
unlock. 454 
unmarked nulls, 290, 308, 355 
UNNEST operator, 20,393,518,569 

algorithm. 520 
UnQL, see unstructured query language 
unstructured query language, 560 
update, 126,347.509 

blocking policy, 60 
deterministic. 501 
extended, 349 
language, 125 
nondeterministic, 502 
operation, 348 
propagation policy, 60 

update problem. 498, 508 
for deductive databases, 498,499 
for relational databases. 499 

upper bound. 34 
least, 34,310,311,329,526 

upwards compatible, 28 
URL, 549 

stale, 551 
URSA, see universal relation, schema assumption 
user interface, 533 

graph-based, 540 
user-defined 

abstract data types, 60 
data type, 212,226,529,570 
function, 529 
type, 529 

user-defined time, 389 

vague information, 357 
valid time, 388, 401, 402 
value does not exist, see nulls, dne 
value exists but is unknown, see nulls, unk 

Index 

value exists but is unknown at the present time, see nulls, unk 
value is applicable and missing at the present time, see nulls, unk 
value is inapplicable, see nulls, dne 
value is inconsistent. see nulls. inc 
value redundancy, 256 
variable, 23, 36 

bound, 37 
counter, 381 
distinguished, 162 
free, 37 
generic. 371 , 378 
negative, 136 
non distinguished, 162 
positive. 136 
typed, 378 

version, 405 
vertex cover problem, 155,272 
view, 215 

equivalence. 421 
equivalent. 454 
incremental maintenance, 542,54t 
independent, 225 
maintenance, 226, 528, 564, 573 
materialised, 215,226,546,564 
monotonic, 225 
personalised, 555 
self-maintainable, 226.573 
serialisability, 421 
translation, 219 
virtual, 215, 226, 546 

view level, see database schema. view 
view relation. see relation, intensional 
view update problem. 86.215.216. 461,542 
visual formalism, 82 
VRFNF, see normal form, value redundancy free 
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wait 
circular. 432 
queue. 424 

waits-for-graph. 433.434.454 
weak instance approach. 207.211.231 
weight. 352 
WFG. see waits-for-graph 
Whilelnt. 384 
WhileQL. 380.381.384 
wildcard operator, 560 
winning row, 163 

workflow management, 570 
world wide web. 548 
write-buffer. 449 
write operation, 410 
writeset. 411 
WWW.seeworld wide web 

Xanadu. 556 
XML, see extensible markup language 

zero-one law, 58 
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