

A Guided Tour of Relational Databases and Beyond

Springer-Verlag London Ltd.

Mark Levene and George Loizou

A Guided Tour of
Relational Databases
and Beyond

t Springer

Mark Levene, BSc, PhD
Department of Computer Science, University College London,
Gower Street, London WCIE 6BT, UK

George Loizou, BA, PhD
Department of Computer Science, Birkbeck College,
Malet Street, London WCIE 7HX

British Library Cataloguing in Publication Data

Levene, Mark
A guided tour of relational databases
I.Relational databases
I.Titie II.Loizou, George
0.05.7'56

Library of Congress Cataloging-in-Publication Data
Levene, M. (Mark), 1957-

A guided tour of relational databases and beyond / Mark Levene and
George Loizou.

p. cm.
Includes index.
ISBN 978-1-85233-008-8 ISBN 978-0-85729-349-7 (eBook)
DOI 10.1007/978-0-85729-349-7
1. Relational databases. 2. Database management. 1. Loizou.

George, 1937- Il. Title.
QA76.9.D3L477 1999
005.75'6--dc21 98-46727

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permis sion in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms oflicences issued by
the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent
to the publishers.

© Springer-Verlag London 1999
Originally published by Springer-Verlag London Berlin Heidelberg inl999

The use of registered names, trademarks etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for anyerrors or
omissions that may be made.

Typesetting: Digital by Design, Cheltenham

34/3830-543210 Printed on acid-free paper

Contents

Preface

Introduction

l.l An Introductory Example

1.2 What is a Database? ...

1.3 Why do we Need Database Management Systems? .

1.4 The Three Levels of Data Abstraction . ..

1.5 What is a Database Management System?

1.6 The Concept of Data Independence.

1.7 What is a Data Model?

1.7.1 The Relational Data Model .

1.7.2 The Network Data Model ..

1.7.3 The Hierarchical Data Model

1.7.4 The Nested Relational Data Model

1.7.5 The Deductive Data Model ...

1.7.6 An Object-Oriented Data Model

1.8 Discussion

1.9 Background Material.

1.9.1 Basic Concepts of Set Theory . .

1.9.2

1.9.3

1.9.4

1.9.5

Basic Concepts of Ordered Sets .

Basic Concepts of Mathematical Logic

Basic Concepts of the Theory of Computing .

Finite-Model Theory

l.l0 Exercises

2 The Entity-Relationship Model

2.1 Graphs

2.2 The Building Blocks of an Entity-Relationship Diagram (ERD)

2.2.1 Entities...........

v

xi

3

4

4

5

7

8

9

10

12

16

19

22

25

28

28

29

33

35

40

52

59

61

63

65

66

vi

2.2.2 Relationships and their Functionality

2.2.3 Attributes and Domains.

2.2.4 Keys

2.3 Recursive Relationships
2.4 WeakEntityTypes

2.5 The Steps Needed for Constructing an ERD
2.6 Discussion
2.7 Exercises

Contents

66
71

73
76
76

80
81
82

3 The Relational Data Model 85

86

91

91

3.1 The Data Structure of the Relational Model

3.2 Query and Update Languages for the Relational Model

3.2.1 The Relational Algebra

3.2.2 The Domain Relational Calculus
3.2.3 Datalog...........
3.2.4 An Update Language for the Relational Model

3.3 The Equivalence of Query Languages for the Relational Model
3.3.1 Domain Independence

3.3.2 The Equivalence of the Algebra, the Calculus and Datalog
3.4 Integrity Constraints in Relational Databases

3.5 Inference of Integrity Constraints
3.6 Data Dependencies.

3.6.1 Functional Dependencies and Keys ..
3.6.2
3.6.3
3.6.4
3.6.5

3.6.6
3.6.7

3.6.8

3.6.9

Armstrong Relations for Functional Dependencies
The Implication Problem for Functional Dependencies.
Lossless Join Decompositions and the Chase Procedure
Minimal Covers for Sets of Functional Dependencies
Projection of Functional Dependencies
Inclusion Dependencies.

The Chase Procedure for Inclusion Dependencies.

Armstrong Databases for Inclusion Dependencies

107

115

125
132
133

139
145

146

149
150
158
160
160
165
167
169

174

176

3.6.10 The Implication Problem for Inclusion Dependencies 178

3.6.11 Interaction between Functional and Inclusion Dependencies 179
3.6.12 The Case of No Interaction Between Functional and Inclusion

Dependencies 186

3.6.13 Multivalued Dependencies 189

3.6.14 Join Dependencies. 200

3.7 Domain and Cardinality Constraints 212

3.8 The View Update Problem. 215

3.9 Discussion 226
3.10 Exercises 227

Contents vii

4 Relational Database Design 237

4.1 Update Anomalies in Relational Databases. . . . 238

4.2 Desirable Properties of Database Decompositions 245

4.3 The Synthesis Versus Decomposition Approaches to Relational Database
Design. 247

4.4 Normal Forms

4.4.1 Second Normal Form (2NF)

4.4.2 Third Normal Form (3NF) .

4.4.3 Boyce-Codd Normal Form (BCNF) .

4.4.4 Inclusion Dependency Normal Form (IDNF)

4.5 Horizontal Decompositions

4.6 Algorithms for Converting a Relation Schema into Normal Form

4.6.1 A 3NF Synthesis Algorithm

4.6.2 BCNF Decompositions

4.6.3 How to Obtain a Decomposition in IDNF

4.7 Converting an ERD into a Relational Database Schema in IDNF

4.8 Discussion

4.9 Exercises .

5 Incomplete Information in the Relational Data Model

5.1 Different Types of Null Value

5.2 The Open and Closed World Assumptions

5.3 Introducing Order into the Domain

5.4 Extending the Relational Algebra with Null Values

5.5 Extending Integrity Constraints with Null Values

5.6 The Or-sets Approach . .

5.7 The Fuzzy Sets Approach ..

5.8 The Rough Sets Approach . .

5.9 The Default Values Approach

249

250

250

253

260

264

266

266

269

274

278

282

282

287

288

292

294

299

309

325

333

342

345
5.10 Updating Incomplete Relations 347

5.11 Discussion 351

5.12 Exercises 355

6 Computable Database Queries and the Expressiveness of the Relational Algebra 359

6.1 What is a Computable Database Query? . . 359

6.2 Formalising Computable Database Queries 360

6.2.1 Encodings and Decodings 362

6.2.2 Definition of Computable Database Queries .

6.3 Subclasses of Computable Database Queries ...

6.3.1 Order-Independent Computable Queries ..

364

366

366

viii

6.3.2 Isomorphism-Independent Computable Queries

6.3.3 Encoding-Independent Computable Queries

6.4 An Equivalence Relation on Computable Queries

6.5 Computational Query Completeness

6.6 The Expressive Power of the Relational Algebra . . .

6.7 Adding a Looping Mechanism to the Relational Algebra
6.8 Discussion

6.9 Exercises

7 Temporal Relational Databases

7.1 The Importance of Modelling Time .

7.2 A Taxonomy of Time in Databases
7.3 Historical Relations

7.4 A Historical Relational Algebra .. .

7.5 Historical Relational Completeness

7.6 TSQL2

7.7 Historical Key Dependencies
7.8 Schema Evolution

7.9 Discussion

7.10 Exercises

8 Concurrency Control.

8.1 Manifestations of Concurrency Control

8.2 Serialisability.....
8.2.1 Serialisability Theory . . .

8.3 Locking.
8.3.1 Two-Phase Locking Policy

8.4 Deadlock.....

8.4.1 Deadlock Detection

8.4.2 Deadlock Prevention .. .

8.5 Lock Granularity and Lock Manager

8.6 Lock Manager Implementation .. .

8.7 Timestamp Ordering

8.7.1 Timestamp Ordering Implementation

8.8 Serialisation Graph Testing

8.9 Discussion

8.10 Exercises

9 Deductive Databases .

9.1 Model-theoretic Semantics of Datalog

9.2 Expressive Power of Datalog

Contents

366

367

369

370

374

377

383
383

385

385

388
391

393

398
400

403
405

407

407

409

410

415
417

423
430

432

434

436

440

443

445

448

451

453

454

459

461

480

Contents

9.3 Equivalence Between Datalog Programs

9.4 Datalog Not-Equal

9.5 Updates in Deductive Databases

9.6 Integrity Constraints in Deductive Databases

9.7 Discussion

9.8 Exercises

10 Extensions to the Relational Data Model and Recent Directions

10.1 Nested Relational Databases.

10.2 Object-Oriented Databases

10.3 Graph-Based Databases

10.4 Active Databases

10.5 Hypertext Databases .. .

10.6 Semistructured Databases

10.7 Knowledge Discovery and Data Mining.

10.8 Other Areas

10.9 What Lies Beyond?

10.10 Exercises

Bibliography

Index

ix

483

493

498

502

509

510

515

516

524

533

542

547

556

560

566

568

568

577

609

Preface

The relational data model, which was first developed in the early 1970's, has gained immense
popularity and acceptance in the market place. There are many commercially available
relational database products, and there is no doubt that relational database management
systems will continue to dominate the database industry for the foreseeable future. A large
percentage of the activity in the information technology industry is related to the management
of data. The huge number of database-related publications, both academic and commercial,
is an indication of how central the database field is in computer science as a whole.

The relational data model is based on a formal and elegant foundation, providing fertile
ground for database researchers to investigate the problems associated with database systems.
The core theory seems to have stabilised during the early 1990's and the attention of database
researchers has subsequently moved to extensions of the relational data model and to newer
data models which attempt to solve challenging new problems in database management. Still,
the basis of all such developments is core relational database theory. Our book is a timely
summary of the state of the art in this field. There is a personal flavour to the book in that
we have interleaved into various chapters of the book some of our recent results in database
theory, and have chosen to cover in more detail some of the topics which we feel are more
important. Overall we have tried to be as unbiased as possible and to cover the spectrum of
fundamental topics in database theory. The next section has more detail on the topics covered.

Although there is a large variety of introductory textbooks focusing on relational databases,
there are not many textbooks which cater for more advanced courses both at undergraduate
and masters levels. We also hope that this book will be useful for new researchers in the field,
and as a reference for more established researchers in the database area. Finally, we feel that
the book will be relevant to many database practitioners who are interested in a more in-depth
understanding of the underlying concepts and results, which are not presented in the more
introductory textbooks.

The effect that relational database theory has had on common practice in the information
technology industry is immense and there has traditionally been a lot of interplay between
theory and practice in the database field. One of the aims of this book is to show that this
interplay is carried over to the new developments in database theory. We may now ask why
relational database theory has been so successful. The full answer is given in the contents of
the book. The relational data model is a relatively simple yet rich model which is appealing
to database theorists and practitioners alike. On the one hand, its formal foundations in set
theory and logic have provided a firm basis for research, and on the other hand its simple
tabular representation has made it possible to popularise the model and make it easy for
non -specialists to use.

xi

xii Preface

The Structure of the Book

The book is divided into ten chapters which we now detail. Chapter 1 introduces the
fundamental concepts and terminology of the database field. The central notion of a data
model is introduced and there follows a review of the main data models from past to present
extending into the future. In Section 1.9 we cover the necessary background material from
set theory, logic and the theory of computing, so that the book may be self-contained.

Chapter 2 covers the Entity-Relationship model as a meta model for conceptual data
modelling. We choose to restrict ourselves to the binary model, since it is the most prevalent
in practice. The concepts pertaining to Entity-Relationship modelling will familiarise the
reader in an informal manner with concepts that are formalised via the relational data model
in Chapter 3.

Chapter 3, which is by far the longest chapter in the book, covers the core material pertaining
to the three aspects of the relational data model: its data structure, query and update languages
and integrity constraints. Although much of the material in this chapter is by now standard,
we have also included some significant recent results bringing the subject up to date.

Chapter 4 covers the all important topic of relational database design and the infamous
normal forms. The approach we take in this chapter is novel in the sense thatwe provide formal
justification for normalisation, which includes both functional dependencies (generalising
keys) and inclusion dependencies (generalising foreign keys).

Chapters 5, 6 and 7 cover advanced topics building on the core material of Chapter 3.
In Chapter 5 we consider the problem of dealing with incomplete information. We feel
that this topic has been somewhat neglected by database researchers, to the extent that
some fundamental concepts need to be re-examined in the light of incomplete information.
Chapter 6 looks at the possibility of enhancing the expressive power of query and update
languages for the relational data model. In recent years there has been a steady demand for
extending the expressive power of SQL, and thus in this chapter we consider the foundations
of such extensions. In Chapter 7 we extend the relational data model to support time. Such
a temporal extension of the basic model is of great practical significance due to the growing
need for explicit temporal support in database applications, and thus its treatment warrants
a full chapter.

Chapter 8 covering concurrency control in relational databases can be considered, alongside
Chapters 3 and 4, to be core material. Despite the fact that some recent database textbooks
do not cover concurrency control at all, we felt that the book would not be complete without
this chapter.

Chapter 9 covers the topic of deductive or logical databases which enhances the relational
data model by providing users with an extended relational database query language allowing
the specification of recursive queries via a rule-based language, called Datalog. The topic of
recursive queries has been the most researched topic in database theory in the last ten years;
this has led to cross fertilisation between logicians, database theorists and practitioners. There
are many interesting and important results in this chapter which will have a strong impact on
current database technology.

The final chapter of the book, Chapter 10, covers various extensions of the relational data
model and new data models which are not relational, designed to provide solutions to problems
that are not easily solved using the standard relational data model. We also look at current

Preface xiii

directions and trends in the area of database research such as hypertext databases (the World
Wide Web being the most prominent example) and knowledge discovery and data mining.
The treatment of the topics in this final chapter cannot be as extensive as in previous chapters,
the main reason being that the research into these newer data models has not yet reached a
sufficient level of maturity. Despite this proviso, we have attempted to delve into each data
model as deeply as possible.

Teaching from the book

The book can be used to teach several database systems courses, from the introductory to the
more advanced. We assume that students studying from this book will have done introductory
courses in discrete mathematics, data structures and algorithms, and possibly the theory of
computation. We also assume some experience in programming. In many cases the proofs
of results have been omitted, but in such cases we give the reader enough information about
the techniques used in the proofs and provide when appropriate the relevant pointers to the
literature where the full proofs can be found.

We mainly recommend teaching from this book on third year undergraduate or masters
level courses in computer science. The book could also be used as preparation and reference
for graduates wishing to do research in this area. Finally, practitioners who are interested in
gaining more insight into the database field in an attempt to understand the foundations of
relational databases will find the book very useful.

Four strands for teaching courses from the book are suggested:

1. The introductory course: Chapters 1 and 2. An introduction to database systems
covering the fundamental concepts. These chapters form a prerequisite of the other
courses and provide a brief tour of the subject.

2. The core relational database theory course: Chapters 3, 4 and 8. Relational database
theory, covering its underlying data structure, i.e. the relation, its query languages and
integrity constraints, and also the fundamentals of database design and concurrency
control. Chapter 3 forms a prerequisite for the more advanced courses. Chapter 8 can
alternatively be taught on a concurrency course. This course forms a detailed tour of
the main elements of the subject.

3. Advanced relational database theory course: Chapters 5, 6 and 7. This course covers
incomplete information, computable queries and temporal databases. It forms an
advanced tour for those wishing to explore the subject in more depth.

4. Extensions of the relational data model course: Chapters 9 and 10. This course covers
deductive databases and recently developed data models. It forms an exotic tour for
those wishing to explore the newer data models.

Chapters 1,2 and 3 should be ta ugh t in that order. We would recommend teaching Chapter 4
before any of the more advanced topics are tackled, since some of the central concepts of
database design are utilised in later chapters. Chapters 5, 6, 7 and 8 are essentially independent
of each other. We would also recommend teaching Chapter 6 before Chapter 9, since much

xiv Preface

of the research in deductive databases is concerned with the expressive power of its extended
query language, Datalog. Chapter 10 can be taught immediately after Chapter 3, to give the
student the flavour of recent data models which have been developed as a response to new
real-world requirements.

Acknowledgements

When we started writing the book over four years ago, we did not realise what a mammoth
task it would be. Now we are wiser! It has been a learning experience and not just in relational
database theory and its extensions.

The authors would like to thank the reviewers of the book for their constructive comments.
Our special thanks go to Professor Nicholas Spyratos who has provided us with important
feedback on the book, and to one of his postgraduate students Yann Loyer who read Chapters 3
and 9 in detail. Any errors or omissions still remaining are, however, the responsibility of the
authors. We would like to thank Steve Counsell for drawing the figures in the book and Roger
Mitton for linguistic assistance.

We are also grateful to Beverley Ford, who is the computing editor at Springer-Verlag in
London, Rebecca Moore the editorial assistant, and Roger Dobbing the production manager,
for the efficient manner in which they have dealt with the problems of getting the book through
the reviewing and production stages. Finally, we would like to thank St.John Hoskyns from
Digital by Design who actually produced the book.

Dedications

Mark Levene would like to dedicate this book to his wife Sara and their children Tamara and
Joseph. Being with them has made this project worthwhile. George Loizou would like to
dedicate the book to his wife Diane and to his late parents, Loizos and Maritsa, especially the
latter who, although illiterate herself, insisted that George be educated.

1. Introduction

A database is essentially an organised collection of logically inter-connected data items. A
computer system which is responsible for the efficient storage and retrieval of the data items in
a database is called a Database Management System (or simply a database system or a DBMS).
Thus the purpose of a DBMS is to organise and manipulate information.

Nowadays most medium size to large size organisations use DBMS technology. Forexample,
banks store their customer accoun ts in a database, libraries keep all their book records and loan
information in a database and airline companies keep all their online booking information in
a database. The widespread use of Personal Computers (PCs) has also led small organisations
such as local video shops and general practitioners to use databases. A brief glance at the
available popular computer magazines should be enough to convince you that in the near
future we will all have personal databases to organise our day-to-day information. There is
at present a very large number of database-related products that are available on the market,
which are supported on a wide range of both hardware and software platforms.

How can the potential buyer decide which product to invest in amongst the plethora of
available choices? Furthermore, what features should a buyer be looking for apart from a
user-friendly and easy-to-use graphical user interface? The problems we face as buyers may
actually get worse once a DBMS has been purchased. How do we model the application we are
aiming to implement in the most faithful manner to its real-world representation? How do
we make sure that all the constraints present in the data are maintained? In addition, how do
we make sure that the data is organised in the most efficient manner, and how do we retrieve
and update information in the simplest and quickest manner?

The aim of this book is not to give you specific product advice but rather to introduce
you to the fundamental concepts of databases and their associated systems. In particular, we
will concentrate on data modelling which provides a high level abstract model of a database.
Using data modelling concepts users will be able to design and use their database system at a
level compatible with their level of abstraction rather than at the machine level. Each DBMS
supports a particular data model, the dominant one currently being the relational data model
(or simply the relational model). (We will call a DBMS which supports the relational data
model a relational DBMS [Cha76].) In this book we will mainly concentrate on introducing
the various facets of the relational model. As you will discover the relational model has the
advantage of being relatively simple to describe and understand but on the other hand it is rich
enough to capture most aspects of data modelling. We are convinced that an understanding
of the theoretical aspects of the relational model will allow the readers to make a better choice

2 Chapter 1. Introduction

than would otherwise be the case when purchasing a relational product that best suits their
needs, on the basis of the DBMS functionality the product offers.

The database concept has been evolving for well over thirty years. During the 1960's
databases were viewed as a collection of files and DBMSs were therefore file systems. In the
late 1960's and the early 1970's the introduction of the concept of a data model gave rise to
the hierarchical data model [TL76) and the network data model [Bac69, Bac73, TF76). There
are today still companies that are using databases based on these models. (Early editions of
many of the database books appearing in the bibliography cover the hierarchical and network
data models in detail; see also [MMC76, TF76, TL76] .)

The relational data model was introduced by Codd in 1970 [Cod70) whilst working for IBM
and in 1981 Codd received the Turing award for his important contribution to the theory
of databases [Cod82]. During the mid 1970's there was much debate between proponents
of the network data model on the one hand and those of the relational data model on the
other hand [MMC76, Dat86c). Joining this debate on the relational side Date has done much
to popularise and explain the central features of the relational data model [Dat95). During
the mid 1970's and until the mid 1980's relational database theory dominated the output of
database research resulting in a sound mathematical foundation for the relational data model.
Commercially, from the mid 1980's until today DBMSs supporting the relational data model
have had a dominant position in the DBMS market.

During the late 1980's and the 1990's shortcomings of the relational data model in areas
such as scientific and statistical applications, expert systems, text handling, multimedia, office
automation, manipulating temporal and spatial data, and computer-aided design, gave rise
to several new proposals and extensions to the relational data model. The main extensions to
the relational data model include complex objects data models such as the nested relational
data model [KK89, Lev92], and the deductive or logical data model [NT89, CGT90j. In
addition , several temporal extensions to the relational data model have been put forward
[TCG+93). Some recent proposals suggest object-orientation as a data model [Kim90, KM94)
but there is no current agreement on a definitive object-oriented data model. An emerging
area, for which several data models are being suggested, is that of hypertext (or more generally
hypermedia) [Con87, Nie90, Rad91), which is concerned with organising text in a nonlinear
fashion .

The aim of this chapter is to introduce the reader to the basic concepts of data modelling
showing how data can be viewed in different ways via different data models starting from the
relational model.

The layout of this chapter is as follows. In Section 1.1 we introduce the database concept
using an example of a library database. In Section 1.2 we define what a database is. In
Section 1.3 we motivate the need for DBMSs. In Section 1.4 we introduce the three levels of data
abstraction, which should be supported by any DBMS; these are the physical, conceptual and
view levels. In Section 1.5 we detail the components that constitute a DBMS. In Section 1.6 we
introduce the fundamental concept of data independence, which allows changes at a lower level
of abstraction (say the physical level) without affecting the higher levels (say the conceptual
and view levels). In Section 1.7 we define the central concept of a data model and give an
intuitive presentation of each of the main existing data models. In Section 1.8 we briefly discuss
the trend of extending the relational model and what the future may hold in this respect. In
Section 1.9 we present the basic mathematical concepts needed throughout the book.

1.1. An Introductory Example 3

1.1 An Introductory Example

As an illustration of a small fragment of a library database consider Tables 1.1 and 1.2, which
represent information concerning books and loans of these books, respectively.

Table 1.1 The books relation

AUTHOR 1 SHORT _TITLE PUBLISHER YEAR ISBN
Atzeni DB Theory Benjamin/Cummings 1993 0-8053-0249-2
Date Introduction to DBs Addison -Wesley 1990 0-201-52878-9
Korth DB Concepts McGraw-Hill 1991 0-07 -044754-3
Mannila The Design of DBs Addison -Wesley 1992 0-201-56523-4
Ullman Principles of DBs Computer Science Press 1988 0-7167-8158-1

Table 1.2 The loans relation

ISBN LOCATION QUANTITY LOAN
0-8053-0249-2 Science 1 0
0-201-52878-9 Main 3 2
0-07-044754-3 Main 1 1
0-201-56523-4 Science 1 0
0-7167-8158-1 Main 2 1

In relational database terminology each such table is called a relation and the rows of the
relation, which represent the data items, are called tuples. Each tuple is seen to model an
entity, or a thing, relevant to the application; it is also common to refer to an entity as an
object. The tuples in Table 1.1 represent book entities and the tuples in Table 1.2 represent
loan entities. Each relation as a whole represents an entity set. We stress that a relation is a
set in the mathematical sense (see Subsection 1.9.1), since if we reorder the tuples in any table
we will still have the same relation, that is to say, a relation is an unordered collection of data
items.

The collection of all relations, in this case the books and loans relations, is called a relational
database (or simply a database). This collection of relations is sometimes referred to as the
extension of the database.

The header of each column of a relation, which is called an attribute name (or simply an
attribute), represents a property of the entities being modelled. With each attribute, say A, we
associate a set of values, called the domain of the attribute, which represents the possible values
for the components of tuples appearing in the column headed by A. Attributes furnish a naming
mechanism which provides semantics to the components of tuples, which are their attribute
values. Thus the attribute AUTHOR 1 represents the first authors of the books modelled by
the relation shown in Table 1.1. Its domain is the set of all possible authors of books. This
domain may be the set of all strings over the English alphabet. The attribute LOAN represents
the number of books on loan for a particular book. Its domain is the set of all integers between
zero and the number of copies of the particular book that is being borrowed. In general, this
domain is the (countablyinfinite) set of all integers and so an integrity constraint must restrict
the cardinality of this set to the number of available copies stored in the library.

The first line of a relation is referred to as the header of the relation. The header of a relation
is the collection of all attributes of all the columns of a relation and is called a relation schema

4 Chapter 1. Introduction

(or simply a schema). In order to avoid ambiguity in naming, it is standard practice to insist
that attribute names are distinct. Thus we can consider a schema to be a set of attributes. On
the other hand, it is sometimes useful to be able to refer to the attributes in some order and
therefore it is common to impose some linear ordering (see Subsection 1.9.2) on the attributes
in a schema. For example, in the schema of the books relation we can take AUTHORl to be
the first attribute, SHORLTITLE to be the second attribute and so on for the third, fourth
and fifth attributes. A relation schema models an entity type; it is also common to refer to an
entity type as an object type.

I t is also customary to give names to relation schemas. For example, the books schema could
be called BOOKS and the loans schema could be called LOANS. Thus the relation schemas
of the library database can be written as: BOOKS(AUTHORl, SHORLTITLE, PUBLISHER,
YEAR, ISBN) and LOANS(ISBN, LOCATION, QUANTITY, LOAN); this notation emphasises
the default order of attributes for these schemas.

The collection of all schemas of all the relations in a database is called a relational database
schema (or simply a database schema). This collection of relation schemas is sometimes
referred to as the intension of the database.

1.2 What is a Database?

We use the example of Section 1.1 to give a higher level description of what a database
is. Firstly, a database is a collection of persistent data. That is, the database relations are
stored permanently in the computer rather than being transient data of some application
program. Secondly, this collection of data, i.e. the database, models part of the real world,
called the enterprise. For example, the enterprise might be a library and the database models
the cataloguing and loaning of books. The fact that a database is modelling an enterprise
implies that the data items in the database are logically interconnected. In the library example
the books and loans relations are obviously logically connected, while a relation modelling the
salaries oflibrary staff for payroll purposes is not logically connected in this case and therefore
would not be part of the library database. Thirdly, in many cases a database is a shared resource.
By sharing we mean that multiple users have access to the database concurrently. A library
database for a college will be shared by all members of the college and possibly by other users
who can remote login to the database system. An exception to sharing is the use of personal
databases on PCs.

1.3 Why do we Need Database Management Systems?

For simplicity let us assume that a DBMS is a software package (in fact this assumption is very
close to reality with respect to most commercial DBMSs). So, like any other software package
we hope that by using it it will make our life easier in some way.

The main benefit a DBMS can offer is to save programming time and software maintenance
by handling all the interactions of an application with the database. This can be viewed
as being compatible with one of the main goals of software engineering, which is to make
software production as high level as possible. That is, the software package should provide

1.4. The Three Levels of Data Abstraction 5

programmers with a variety of functional built-in modules that can be "plugged" into the
application software. Such modules may also include application generators and high level
database languages. In addition, the DBMS may provide high level graphical user interfaces.
These days most PC-based DBMSs will have a window-based user interface. In Section 1.5 we
will detail the services that a DBMS should offer the user.

Another important reason for having DBMSs is to provide data independence, which is
the independence of application programs from the actual organisation of the information in
the database. This implies that application programmers and database users do not have to
concern themselves with the actual structure of the database as it is stored on external media
and as it is manipulated in main memory. Their interaction with the database is on an abstract
level and any reorganisation of the way information is stored in the database should not affect
their interaction with the database. It follows that data independence will make application
programs much easier to maintain. This topic will be discussed in more detail in Section 1.6.

1.4 The Three Levels of Data Abstraction

An important proposal for a generalised framework for the architecture of a DBMS was put
forward by the ANSI/X3/SPARC study group on DBMSs [TK781. The framework emphasises
the interfaces that a DBMS should provide and the kind of information that should pass
between them. The proposed architecture identifies three distinct levels of abstraction:

• The physical (or internal) level comprises the physical schema and the physical database.
The physical schema is the description of the storage and access methods used to store
the information in the database on the media available within the computer system, and
the physical database is the actual data as stored on the storage devices of the computer
system.

• The conceptual (or logical) level comprises the conceptual database schema (or simply
database schema) and the conceptual database (or simply the database). The database
schema is the description of the information about the enterprise as it is modelled in
the database, and the database is the abstraction of the information being modelled as
it is seen by the users.

• The view (or external) level comprises a collection of view schemas and a collection
of views. Each view schema is a simplified description of the enterprise as seen by
an application program (and thus by a group of end users). A view schema has an
associated view, which corresponds to the portion of the database being described by
the view schema.

A diagrammatic view of the three levels of abstraction is given in Figure 1.l.

The physical level is, in general, dependent on the hardware and software available within
the computer system being used. It should be able to reflect current technology. It is possible
to make the physical schema machine independent by using device independent storage and
access methods but the physical information is normally machine dependent.

The conceptual database schema and the conceptual database are specified by using the
data model that is supported by the DBMS. Thus the data model provides a "language" which

6 Chapter 1. Introduction

View 1 schema View 2 schema • • • View n sch ema

f1 f2 fn

Conceptual database schema

9

Physical schema

Fig 1.1 The three levels of abstraction

allows us to communicate with the conceptual level of the DBMS. As we have seen in Section 1.1
the relational model provides a simple way of describing the conceptual level.

The external level of a DBMS may provide any number of views, corresponding to different
application programs or user groups. For example, in the library database, an application
program that checks which books are all out on loan (i.e. books that have a QUANTITY -value
equal to their LOAN-value) does not need the detailed book information. An entity type
that is represented in a view schema may not be explicitly modelled by the database schema
at the conceptual level. For example, the total number of books in the library for a given
publisher can be represented in a view but this information is not directly modelled in the
library database schema. All the information in views must be derivable from the information
present in the database at the conceptual level.

The correspondences between the three levels of abstraction are established through data
mappings between the view and the conceptual levels, and between the conceptual and the
physical levels. The mapping between the view and the physical levels is a composition of
the mappings between the view and the conceptual levels, and the mappings between the
conceptual and the physical levels. Thus data independence is maintained by insisting that
the information at the view level interacts with that of the physical level only through the
conceptual level. Assuming that the conceptual level has been defined, the DBMS must then
ensure that the mappings to the physical and view levels are consistent with the information
at the conceptual level.

An integral part of any DBMS is the data dictionary. The data dictionary is a meta-database
which is a repository of information about the database. It must at least contain the description
of the physical, conceptual and view schemas and the mappings between them. It may
also contain statistical information on the database usage, recovery information, user login

,.5. What is a Database Management System? 7

and access information, security information and accounting information. In fact, the data
dictionary can be implemented in a relational DBMS as just another relation in the database.
Therefore, the data dictionary can be queried and updated, by using the facilities of the DBMS,
like any other relation in the database.

1.S What is a Database Management System?

A DBMS is a computer system which is responsible for storage and maintenance of databases.
A DBMS is essentially a software system but it may contain specialised hardware in order to
make the management of data more efficient. Such hardware may include special disk drives
that support fast access to the data and multiprocessors that support parallelism. From now
on we will assume for simplicity that a DBMS is a software package. The DBMS software
should provide the following services:

• A Data Definition Language (DDL) for defining the schemas of the three levels of
abstraction (physical, conceptual and view) and the mappings between them.

• A Data Manipulation Language (DML) for querying and updating the information in
the database. Updates include inserting new data, deleting existing data and modifying
existing data. (A DML is also called a database language, a query and update language
or simply a query language.)

• Efficiency in query response time and utilisation of storage space.

• Integrity and consistency. That is, the ability to define and check for integrity
constraints, such as an ISBN is associated with a single book and the number of books
on loan does not exceed the quantity of books available. It is a fundamental requirement
that a database be consistent at all times.

• Concurrency control and data sharing. In a multi-user database environment several
processes, such as querying and updating data, may happen concurrently. Concurrency
control is the activity of ensuring that these processes do not interfere with each other.
A typical example of concurrency control is an airline reservation system which must
ensure that two people do not book the same seat.

• Transaction management. A transaction is an execution of a program that accesses
shared data. The most important operations a transaction can perform are reading data
(or querying) and writing data (or updating). If the transaction terminates successfully
then it is committed, i.e. the changes to the database are made permanent. On the other
hand, if the transaction is aborted, that is to say, it does not terminate successfully,
then it must be rolled back, i.e. all the updates that were made to the database by that
transaction have to be undone.

• Recovery from failure. That is, ensuring that system failures, be they software or
hardware, do not corrupt the database. The recovery facility should ensure that the
database be returned to its most recent consistent state prior to the failure.

8 Chapter 1. Introduction

• Security. That is, ensuring that users have access only to those parts of the database
they are authorised to access. This allows access privileges to be granted and revoked
from users.

• Database administration facilities. These are normally provided as part of the DDL. Thus
the DDL must also allow the definition of integrity constraints and security rights. The
DBMS might also provide software tools for database design, for monitoring and tuning
database performance, for running benchmarks on the database and for generating
various reports.

A DBMS has several types of users.

• End users, who interact with the external level of the DBMS via interfaces that are
generated by application programs. These are the people who use the database.

• Application programmers, who write the application programs that make use of the
database. Application programs may interact with the conceptual and/or the external
levels of the DBMS.

• Database Administrator (DBA), who is responsible for defining the physical schema and
the day-to-day administration of the database. The DBA is also responsible for handling
database security, tuning database performance and generating reports concerning the
database usage.

• Enterprise administrator, who is responsible for defining the conceptual database
schema. This involves the important task of database design.

• Application administrator, who is responsible for defining the view schemas. This
involves defining the view schema relevant to each application. It is possible that each
application that is being developed has a separate application administrator.

1.6 The Concept of Data Independence

The concept of data independence (or physical data independence) is one of the key factors
in the success of the relational model. It means that the physical level of the database may
be modified without the need to make any corresponding changes to the conceptual level.
This implies that application programs do not require any change when the physical level
of the database is restructured. The way data independence is enforced by the DBMS is by
modifying the data mapping between the physical and the conceptual levels, when any change
to the physical level occurs. With respect to the library example, the conceptual level deals
with relations and does not concern itself with their actual physical storage. Therefore, for
efficiency reasons, the DBA may decide to restructure the library database, say by changing its
physical access method, without affecting the conceptual level at all. The readers can convince
themselves that the relational model indeed provides data independence. Data models which
preceded the relational model did not provide full data independence.

To summarise, data independence makes maintenance of applications programs easier,
gives freedom to the DBA to modify the physical level and frees the users from having to know
the many details concerning the physical level when interacting with the database.

1.7. What is a Data Model? 9

A higher level of data independence would be conceptual data independence, which is the
independence of the view level from the conceptual level. In general, such independence
cannot be achieved, since the deletion of a relation or one or more columns of a relation will
necessarily disrupt any view that references that relation or those columns. On the other hand,
a weaker type of data independence, called growth independence [Dat86b], can be achieved
in the relational model. Growth independence is the independence of the view level from
adding new attributes to relation schemas (and thereafter adding attribute values to the new
columns of the relation) and from adding new relation schemas to the database schema (and
thereafter adding tuples to the new relations). Such additions to the conceptual level will not
require any changes to application programs, due to the fact that these programs do not have
references to these new attributes and relation schemas. The way growth independence is
enforced by the DBMS is by adding the changes that occur at the conceptual level to the data
mapping between the conceptual and view levels without changing the existing part of this data
mapping. The readers can convince themselves that growth independence is achieved in the
relational model. On the other hand, it is much harder to achieve such independence within
the data models that preceded the relational model. With respect to the library example, the
DBA may decide to add an attribute called SUBJECT, which represents the subject category
of the book, without affecting the view level at all.

1.7 What is a Data Model?

A data model (or simply a model) is a combination of three components [Cod82]:

• The structural part: A collection of data structures (or entity types, or object types)
which define the set of allowable databases.

• The integrity part: A collection of general integrity constraints, which specify the set of
consistent databases or the set of allowable changes to a database.

• The manipulative part: A collection of operators or inference rules, which can be applied
to an allowable database in any required combination in order to query and update parts
of the database.

Codd [Cod82] claims that the relational model was the first data model to be defined in the
above sense. In hindsight the three components of a data model can also be recognised in the
hierarchical and network data models. An example of a data model that concentrates mainly
on the structural and integrity part of a data model is the entity-relationship model (or simply
the ER model) [Che76]i this model is discussed in detail in Chapter 2. The reason for this is
that the main purpose of the ER model is to provide a conceptual database schema and due to
its simple yet powerful graphical representation it is very widely used during database design.

A useful distinction to make between the various data models, with respect to their
manipulative part, is whether they are inherently declarative or procedural.

Declarative database languages are logic-based, i.e. users of such languages specify what
data they want to manipulate with respect to the conceptual database schema rather than how

10 Chapter'. Introduction

to manipulate this schema. On the other hand, procedural database languages are access
path-based, that is, users of such languages specify the access path to the data they want to
manipulate with respect to the conceptual database schema.

Declarative database languages are most suitable for end users in the form of easy-to-use
graphical interfaces and procedural languages are most suitable for database programmers
in the form of well-defined interfaces between the database and a conventional programming
language such as COBOL, C or Java. Normally, this interface allows DBMS calls to be embedded
in such a programming language but there is an ongoing attempt to extend programming
languages with built-in database types and operations over these types [Sch77J .

Embedded query languages force application programmers to learn two different
formalisms, the formalism of the programming language and the formalism of the query
language. These two formalisms are not always fully compatible which leads to a problem
known as the impedance mismatch problem. Extending programming languages with built-in
database types is one way of solving the impedance mismatch problem.

Declarative interfaces may also be provided for database programmers in order to shift
the database optimisation issues from the programmer to the DBMS and thus to improve
productivity. These declarative interfaces are known as Fourth Generation Languages (4GLs).
4GLs which provide full programming capabilities are another way of solving the impedance
mismatch problem.

The manipulative part of the relational data model and its extensions naturally allows for
declarative query and update languages while that of the hierarchical, network and object
oriented data models naturally allows for procedural query and update languages. This is one
reason why object-oriented data models can be regarded as extensions of the hierarchical and
network data models.

1.7.1 The Relational Data Model

The relational data model, or simply the relational model, is a combination of the following
three components:

• Structural part: a database schema is a collection of relation schemas and a database is
a collection of relations.

• Integrity part: primary keys and foreign keys.

• Manipulative part: relational algebra and relational calculus.

For an example of a relational database see Tables 1.1 and 1.2. The relational data model
will be discussed in detail from Chapter 3 onwards. We now provide a brief summary of its
salient features.

A candidate key (or simply a key) for a relation schema is a minimal set of attributes whose
values uniquely identify tuples in the corresponding relation. For example, for both the books
and loans relation schemas ISBN is a key. Assuming that an author only writes one book a
year then the set of attributes {AUTHORl, YEAR} is also a key for the books relation schema.
This key is not as useful as the ISBN, since firstly it assumes that author names are unique,
and secondly it is a combination of two attributes and is thus not as concise as the ISBN. For

1.7. What is a Data Model? 11

the loans relation schema it may be the case that multiple copies of a book may be held in
different locations in which case {ISBN, LOCATION} would be a key for this relation schema.
An example of a relation schema with two natural keys is the schemaADDRESS(STREET, CITY,
POSTCODE) of addresses. The two keys for this relation schema are {STREET, POSTCODE}
and {STREET, CITY}, since both these keys uniquely determine the information conveyed
by the other. The primary key of a relation schema is a distinguished key designated by the
database designer.

In general, it may be that some of the information in a relation may be either unknown or does
not exist. Let EMPLOYEE(SSN, ENAME, SALARY, SPOUSE_SSN, ADDRESS, PROJECLID)
be an employee relation schema with the obvious semantics. It is possible that the address of
a given employee is unknown, i.e. this information exists but is not available in the relation
at present. It is also possible that an employee is not married in which case there does not
exist a social security number for the employee's spouse, i.e. SPOUSE_SSN is inapplicable. In
order to represent an unknown or inapplicable value into a relation the domains of attributes
are extended with two distinguished values, called null values (or simply nulls) : unk (as an
abbreviation of unknown) and dne (as an acronym of does not exist).

Now, in order to guarantee that every tuple in a relation is accessible we must ensure that
for all tuples in a relation the values of at least one key are not null. Therefore, a constraint
is placed on the values of the primary key, namely that these values cannot be null. This
constraint is known as entity integrity.

A foreign key is a set of attributes in a relation schema that forms a primary key of another
relation. For example, ISBN in BOOKS and LOANS are both foreign keys of each other. A
foreign key of a relation schema is said to reference the attributes of another relation schema.
Thus, ISBN in BOOKS references ISBN in LOANS and vice versa. Assume a relation schema
PROJECT(PROJECLID, TITLE, LOCATION, MGR_SSN). Then PROJECLID is a foreign key
of EMPLOYEE which references PROJECT _ID in PROJECT and MGR_SSN is a foreign key of
PROJECT which references SSN in EMPLOYEE. A relation schema may also reference itself;
for example, if MGR_SSN were an attribute of EMPLOYEE then it would be a foreign key of
EMPLOYEE which references SSN in EMPLOYEE.

In order to guarantee that foreign key values, which are not null, reference existing tuples
we place the constraint that if the values of a foreign key are not null then there exists a tuple in
the referenced relation having those values as key values. This constraint, known as referential
integrity, ensures that only valid references are made between tuples in relations.

The relational algebra is a collection of operators which take relations as input and generate
a relation as output. It is important to note that the relational algebra processes sets of tuples at
a time rather than one tuple at a time. For example, we can generate a relation from the books
relation which contains only tuples of books published by Addison-Wesley; such an operation
is called a selection. We can also generate a relation from the books relation which contains
only the ISBN, AUTHORl and SHORT _TITLE attribute values of tuples; such an operation
is called a projection. Moreover, we can combine the books and loans relations to output a
relation which contains tuples over the attributes ISBN, SHORT _TITLE and LOCATION; such
an operation which combines two or more relations is called a join.

The relational calculus is a declarative counterpart of the relational algebra based on first
order logic. The commercial query language SQL (an acronym for Structured Query Language),
which is the standard query language for relational DBMSs, is based on the relational calculus.

12 Chapter 1. Introduction

DEPARTMENT LECTURER

L ____ D_NA_M_E ____ ~--~~~----~~IL ____ L_NA_M_E ____ ~ EMPLOYS .

Figl.2 A data structure diagram

1.7.2 The Network Data Model

The network data model, or simply the network model, is a combination of the following three
components:

• Structural part: a database schema in the form of a directed graph, called a data structure
diagram, and a database is an instance of a data structure diagram.

• Integrity part: record identity and referential integrity.

• Manipulative part: network traversal.

The nodes of a data structure diagram are called record types and its links are called set
types. Whenever two record types are connected by a link, the source record type is called
the owner record type (or simply the owner type) and the destination record type is called the
member record type (or simply the member type). An example of a data structure diagram is
shown in Figure 1.2. It has the two record types DEPARTMENT and LECTURER and only one
set type EMPLOYS from DEPARTMENT to LECTURER. DEPARTMENT is the owner type of
EMPLOYS and LECTURER is the member type of EMPLOYS.

Each record type contains attributes (also called fields) in analogy to a relation schema. An
instance of a record type is called a record. Each record contains attribute values for each of
the attributes of its record type, in analogy to tuples of a relation, and, in addition, it has a
record identity, which is a unique identifier for that record. Record identity can be viewed as
a "pointer", which corresponds to the address of the record; it mayor may not correspond to
the actual physical address of the record. The record identity is generated by the DBMS and
is hidden from the user. Thus record identity provides a system-defined key value for each
record in the database.

An instance of a set type is called a set occurrence. A set occurrence contains one instance
of the owner record type together with zero or more instances of the member record type. A
set occurrence with no member records is called an empty set. The member records are linked
together in some order and there are two additional links, one from the owner record to the
first member record and one from the last member record to the owner record. An example
of an instance of the data structure diagram of Figure 1.2 is shown in Figure 1.3.

A set occurrence is a one-to-many association between owner and members records. It is
important not to confuse the use of the word "set" with its set-theoretic meaning. In fact set
occurrences in the network model are ordered and the use of the word "set" is unfortunate
but historical.

The constraint that a set occurrence must have exactly one owner record is called referential
integrity. Thus in order for an owner record (for example a department) to have member
records (for example lecturers) it must exist.

1.7. What is a Data Model? 13

Computing

Maths

Engineering

Fig 1.3 An instance of the data structure diagram of Figure 1.2

We can now define a database, which is an instance of a data structure diagram, to be
a collection of record instances for each record type in the data structure diagram and a
collection of set occurrences for each set type in the diagram.

Another example of a data structure diagram is shown in Figure 1.4. This data structure
diagram has two set types TEACHES and TAUGHLBY, two owner types TEACHER and
COURSE, ofTEACHES and TAUGHT_BY, respectively, and one member type T _C, where T_C
stands for TEACHER_COURSE. An instance of the data structure diagram of Figure 1.4 is
shown in Figure 1.5.

In order to discuss the manipulative part of the network model we will assume that all the
record types in a data structure diagram are either the owner type or member type of at least
one set type in the diagram. There is no loss of generality in this assumption, since if a record
type, say R, is isolated (i.e. it is not the owner type or member type of any set occurrence) we
can create a new set type, S, and a new record type M, with R being the owner type of Sand M
being the member type of S.

The fundamen tal operations of network traversal consist oflocating a record in the database
and once a record is located following a link (or "chasing a pointer") in order to obtain the
next record.

14 Chapter 1. Introduction

TEACHER COURSE

TNAME CNAME

TEACHES TAUGHCBY

Fig 1.4 Another data structure diagram

For every set occurrence the following operations must be supported:

• Given an owner record process its member records in some order.

• Given a member record process its owner record.

• Given a member record process the other member records in the set occurrence.

Navigation in a network database is done one record at a time. At each stage when the
user is navigating through the database several record identities, called currency pointers, are
maintained by the DBMS. The record identity of the most recently accessed record is referred
to as the current of run unit. Furthermore, for each record type, R, the record identity of the
most recently accessed record of type R is referred to as the current ofR. Finally, for each set
type, S, the record identity of the most recently accessed owner or member record in the most
recently accessed set occurrence of type S is referred to as the current ofS. All the currency
pointers are initially null. The actual network traversal query language consists of changing
the values of the currency pointers using a sequence of FIND statements.

A particular record of a record type can be located by a statement of the form:

FIND record type USING record attributes

where the record attributes are assigned values by assignment statements of the form: Att :=
val, where Att is an attribute and val is a value. If two or more records in the database have
the specified attribute values then anyone of these records is located. On the other hand, if
no records have the specified attribute values then the query fails.

The lecturer record for Mark can be made the current of LECTURER and the department
record for Computing can be made the current of DEPARTMENT by the query

LNAME:= 'Mark'
FIND LECTURER USING LNAME
DNAME := 'Computing'
FIND DEPARTMENT USING DNAME

The current of run unit will now be the department record for Computing.

1.7. What is a Data Model? 15

Prolog

Databases

Software Engineering

George

Fig 1.5 An instance of the data structure diagram of Figure 1.4

The first member of a set type can be located by a statement of the form:

FIND FIRST record type IN set type

The first member of the Computing department within EMPLOYS can be located by

FIND FIRST LECTURER IN EMPLOYS

The current of EMPLOYS will now be the lecturer record for John!.
The next member of a set type can be located by a statement of the form:

FIND NEXT record type IN set type

The query FIND NEXT R IN S fails if the current of S is the last member of the current set
occurrence being scanned.

16 Chapter 1. Introduction

The next member of the Computing department within EMPLOYS can be located by

FIND NEXT LECTURER IN EMPLOYS

The current of EMPLOYS will now be the lecturer record for Mark.

The owner of a set type can be located by a statement of the form:

FIND OWNER IN set type

The owner record of the Computing department can be located by

FIND OWNER IN EMPLOYS

Thus the current of EMPLOYS will now be the department record for Computing.

1.7.3 The Hierarchical Data Model

The hierarchical data model, or simply the hierarchical model, is a combination of the following
three components:

• Structural part: a database schema in the form of a collection of tree types, called a forest
type, and a database in the form of a collection of trees, called a forest.

• Integrity part: record identity and referential integrity.

• Manipulative part: hierarchical navigation.

A rooted tree is a tree which has a single root node and such that each child node in the
tree has exactly one parent node (the root node is not a child node). A tree type is a directed
graph which is a rooted tree. As in the network model each node in a tree type is called a
record type. The record type corresponding to the root node is called the root record type (or
simply the root type). If node, A, is a parent of another node, B, then the record type, say RA,
corresponding to A, is the parent record type of the record type, say RB, corresponding to B.
Equivalently, RB is a child record type of RA. A record type having no children record types
is called a leaf record type. A forest type is a collection of tree types. An example of a tree
type modelling a university database is shown in Figure 1.6. We also mention the concept of
a virtual record type which is a pointer to a record type. Virtual record types are useful when
we would like to use the same record type in two tree types (or to use the same record twice
in a single tree type) without duplicating the record type.

As in the network model each record type contains attributes and the instances of record
types are records containing values for each of the defined attributes. Furthermore, as in
the network model, each record has a record identity which specifies a unique address to the
record. The record identity is generated by the DBMS and is hidden from the user.

An instance of a tree type is a tree record, which is a tree whose nodes are records and whose
links form one-to-many associations between parent and child records. The root record of
a tree record is an instance of the root record type. A parent record may have zero or more
children records. On the other hand, a child record must have exactly one parent record; this

1.7. What is a Data Model? 17

TEACHER

Tname

Fig 1.6 A tree type

constraint is called referential integrity. We can now define a database over a forest type to
be a collection of tree records over the tree types in the forest. An example of a tree record
over the tree type of Figure 1.6 is shown in Figure 1.7.

In order to discuss the manipulative part of the hierarchical model we will assume that the
forest type has only one tree type. There is no loss of generality in this assumption, since we
can always create a new tree type with a new root record type which combines all the record
types in the forest type into a single tree type. Moreover, without loss of generality, we assume
that the database consists of a single tree record.

A hierarchical path (or simply a path) is a sequence of records starting from a root record
and following alternately from a parent record to a child record. For example, STUDENT,
COURSE, TEACHER is a path. The fundamental operation of hierarchical navigation is that
of traversing tree records by specifying paths starting from a root record to the record we are
trying to locate. As in the network model tree traversal is done one record at a time. At each
stage when the user is navigating through the database a currency pointer is maintained by
the DBMS, which is the record identity of the most recently accessed record.

Traversal of a tree record is performed in a depth-first [Tarn, AHU83) manner as follows,
starting by making the root record the current record:

1) visit the current record if it has not already been visited, else

2) visit the leftmost child record not previously visited, else

3) go back to the parent record.

The first record over a record type in depth-first order can be located by a statement of the
form:

GET FIRST record type WHERE condition

where condition is a Boolean expression over a record type qualifying the record that should
be located.

18 Chapter 1. Introduction

Fig 1.7 A tree record over the tree type of Figure 1.6

The first COURSE record having code D7 can be located by

GET FIRST COURSE WHERE CODE = 'D7'

The next record over a record type in depth-first order can be located by a statement of the
form:

GET NEXT record type WHERE condition

The next TIMETABLE record in room G22, i.e. the first TIMET ABLE record for D7, can be
located by

GET NEXT TIMETABLE WHERE ROOM = 'G22'

The next sibling record over a record type (i.e. the next record having the same parent
record as the current record, if such a record exists) in depth-first order can be located by a
statement of the form:

GET NEXT WITHIN PARENT WHERE condition

1.7. What is a Data Model? 19

The next TIMETABLE record within the parent record of the current record, i.e. the second
TIMETABLE record for D7, can be located by

GET NEXT WITHIN PARENT TIMET ABLE

Locating a record independently of the current record is achieved by a statement of the
form:

GET UNIQUE WHERE condition

The TEACHER record with TNAME John can be located by

GET UNIQUE TEACHER WHERE TNAME = 'John'

1.7.4 The Nested Relational Data Model

Relations are often called fiat relations due to their simple and flat tabular form. The (flat)
relational model does not allow attribute values to be sets of values or sets of tuples. In other
words, attribute values of (flat) relations cannot themselves be relations. This restriction on
the attribute values of relations is known as the First Normal Form (or INF) assumption. (lNF
and higher normal forms will be discussed in detail in Chapter 4 in the context of database
design.) The INF assumption has the advantage of keeping the tabular structure of relations
simple and allowing relational query languages to be able to refer to attribute values in tuples
of relations in a straightforward manner.

By relaxing the INF assumption we can introduce hierarchical structures into the relational
model [Mak771 . A relation which does not necessarily satisfy the INF assumption is called
a nested relation and the resulting data model is called the nested relational data model, or
simply the nested relational model. Thus an important special case is a nested relation which
satisfies the 1NF assumption; such a relation is called a fiat relation (or simply a relation
using our previous terminology). Attributes of nested relation schemas whose values may
be nested relations are called relation-valued attributes. Many applications have data that
can be described naturally in a hierarchical fashion . For example, a family tree, or a parts
inventory relation showing parts and their components, are described very naturally by using
trees. 50 the nested relational model generalises the concepts of the (flat) relational model
to hierarchical data structures without using record identity and links as was done in the
hierarchical model. Thus the nested relational model has the benefits of both the relational and
hierarchical models. On the one hand, it builds on over twenty five years of research into the
relational model and on the other hand it allows modelling of complex objects which may not be
flat. As an example, the flat relation shown Table 1.3 can be restructured into the nested relation
shown in Table 1.4 having the relation-valued attribute (CNAME NO_HOURS)*, or the nested
relation shown in Table 1.5 having the relation-valued attribute (TNAME NO_HOURS)*. We
observe that our notation for describing relation-valued attributes highlights their internal
structure by enclosing them with '(' and ')*'. Further nesting such as (CNAME (TNAME
NO_HOUR5)*)* is possible, for instance if we would like to record the set of courses, teachers
and hours that students take. This example highlights the fact that nested relations allow

20 Chapter 1. Introduction

flexibility in presenting the information to the users, which is not present in the relational
model. One of the advantages of the nested relational model over the hierarchical model is
that it is easy to restructure data according to the users' needs.

Table 1.3 A flat relation

TNAME CNAME NO_HOURS
John Expert Syst 15
John Databases 15
John Prolog 15
Mark Software Eng 10
Mark Databases 20
Mark Prolog 15
George Databases 20
George Graph Theory 25

The integrity part of the nested relational model generalises that of the relational model.
The concepts of key, primary key and foreign key of a nested relation schema must allow
for relation-valued attributes. For example, TNAME is a key for the schema of the nested
relation shown in Table 1.4, since TNAME attribute values uniquely determine the relation
consisting of course and number of hours tuples. Correspondingly, CNAME is a key
for the schema of the nested relation shown in Table 1.5, since CNAME attribute values
uniquely determine the relation consisting of teacher and number of hours tuples. Let us
assume that information about teachers is stored in a further nested relation, over a nested
relation schema, say TEACHER, whose primary key is TEACHER~AME and information
about courses is stored in a further nested relation, over a nested relation schema, say
COURSE, whose primary key is COURSE_NAME. Then CNAME and TNAME are foreign
keys which reference COURSE~AME in COURSE and TEACHER~AME in TEACHER,
respectively.

Table 1.4 A nested relation

TNAME II (CNAME I NO HOURS)* II -

John Expert Syst 15
Databases 15
Prolog 15

Mark Software Eng 10
Databases 20
Prolog 15

George Databases 20
Graph Theory 25

The nested relational algebra extends the (flat) relational algebra to nested relations by
providing two additional restructuring operators, called NEST and UNNEST. NEST transforms
a nested relation into a "more deeply" nested relation and UNNEST transforms a nested
relation into a "flatter" nested relation.

Let us call a nested relation over a nested relation schema having only one relation-valued
attribute which is not further nested, a shallow relation. For simplicity, we will restrict our

1.7. What is a Data Model? 21

Table 1.5 Another nested relation

CNAME II (TNAME I NO_HOURS)* II
Expert Syst John 15
Graph Theory George 25
Software Eng Mark 10
Prolog Mark 15

John 15
Databases Mark 20

George 20
John 15

attention to shallow relations. For example, the nested relations shown in Tables 1.4 and 1.5
are both shallow relations. Thus NEST transforms a flat relation into a shallow relation and
UNNEST transforms a shallow relation into a flat relation. For example, if we NEST Table 1.3
on (CNAME, NO_HOURS) we obtain the shallow relation shown in Table 1.4 and if we NEST
Table 1.3 on (TNAME, NO_HOURS) we obtain the shallow relation shown in Table 1.5. On
the other hand, if we UNNEST either the shallow relation shown in Table 1.4 or that shown in
Table 1.5 we obtain the flat relation shown in Table 1.3. This should not give the reader the
false impression that a shallow relation can always be recovered from a flat relation by a NEST
operation. For example, consider the shallow relation, shown in Table 1.6, which represents
the area of triangles and the x, y coordinates of their vertices. If we UNNEST this relation we
obtain the flat relation shown in Table 1.7 and if we then NEST this relation on (X-COORD,
Y -COORD) we obtain the different shallow relation shown in Table 1.8.

Table 1.6 A nested relation storing the area of triangles

I AREA II (X-COORD I Y-COORD)* II
1 0 0

1 0
0 2

1 0 0
2 0
0 1

Table 1.7 A flat relation obtained by unnesting
AREA X-COORD Y-COORD

1 0 0
1 1 0
1 0 2
1 2 0
1 0 1

This problem concerning the loss of information when a nested relation, which has been
un nested, cannot be recovered by nesting is called the lNF normalisability problem. In order
to solve the 1NF normalisability problem, an additional nested relational algebra operator
needs to be defined that preserves the key values of nested tuples when unnesting a nested
relation. For example, the schema of the shallow relation shown in Table 1.6 has a single
key which is the relation-valued attribute (X-COORD, Y -COORD)*. The flat relation shown

22 Chapter 1. Introduction

in Table 1.7 resulting from unnesting this shallow relation does not preserve the two key
values. The keying operator [JS82] is an operator which adds a new key to the relation schema
of a nested relation and maintains a key value for each nested tuple in the nested relation
being keyed. For example, keying the nested relation shown in Table 1.6 results in the nested
relation shown in Table 1.9. It can be verified that if we UNNEST the shallow relation shown
in Table 1.9, then NEST it on (X-COORD, Y -COORD) and finally project the result on AREA
and (X-COORD, Y -COORD)* we obtain the original shallow relation shown in Table 1.6.

Table 1.8 A shallow relation obtained by UNNEST and NEST

I AREA II (X-COORD Y-COORD)* II

I II

0 0

II

1 0
0 2
2 0
0

The relational calculus and SQL have also been extended to nested relations. (Several of the
database books appearing in the bibliography cover such extensions; see also [PT86, RKB87,
LL89].)

Table 1.9 A nested relation after keying

I NEW KEY I AREA II (X-COORD I Y-COORD)* II -
k} 1 0 0

1 0
0 2

k2 1 0 0
2 0
0 1

1.7.5 The Deductive Data Model

Deductive (or logical) databases in their simplest form have the same structural and integrity
parts as the relational model. It is common in the deductive database setting to call tuples facts,
attribute values constants and relations predicates. In addition, names of relation schemas
are called predicate symbols and a fixed ordering is imposed on the attributes of relation
schemas. For example, the predicate symbol associated with the relation shown in Table l.l
could be BOOKS with the ordering of attributes as in the header of the relation, and similarly
the predicate symbol associated with the relation shown in Table 1.2 could be LOANS with the
ordering of attributes as in the header of the relation. This notation allows us to write facts
(tuples) in the form, P(VI, V2, ... , vn), where P is a predicate symbol and VI, V2, ... , Vn are its
attribute values in the fixed ordering. For example, the third tuple in the books relation can
be written as

BOOKS(Korth, DB Concepts, McGraw-Hill, 1991,0-07-044754-3).

1.7. What is a Data Model? 23

Similarly, the third tuple in the loans relation can be written as

LOANS(O-07-044754-3, Main, 1, 1).

The manipulative part of a deductive database is a logic-based language, the best known
example being the rule-based query language Datalog. The syntax of Datalog resembles that
of the programming language Prolog [MW88a, SS94, Apt97) but its semantics are different,
since Prolog processes facts one at a time while Datalog processes sets of facts at a time. In
addition, Datalog is a declarative language while Prolog can be viewed as a mixture between
a procedural and a declarative programming language. Finally, Datalog is not a fully-fledged
programming language and it is thus not computationally complete (see Subsection 1.9.4 for
a definition of the important notion of computational completeness).

We briefly describe the basic syntax of Datalog. A statement of the form

where P is a predicate symbol and each Ai, with i E {1 , 2, .. . , n}, is either a variable or a
constant, is called a literal.

Datalog statements are rules of the form

where the Pi'S are predicate symbols, the A i'S, Bi'S and C;'s are either variables or constants
and the variables amongst the A i'S must be a subset of the B;'s, .. . , and the Ci'S. The symbol
": -" is read as if and the commas are read as and. The literal to the left of ": -" is called the
head of the rule and the set of literals to the right of "; -" is called the body of the rule. We
use the convention that variables are strings beginning with the lowercase letter x, possibly
subscripted, and constant values are all other strings.

A Datalog program is now defined to be a finite collection of rules.

Assume that we have a relational database and a Datalog program whose intension is to
query that database. A literal is logically true in a database if we can find an assignment of
constants to its variables that transforms the literal into a fact which is present in the database.
Assignments of constants to variables are local to rules and thus we can reuse them, i.e. the
same variable can be assigned different constants in different rules.

The intuitive semantics of invoking a Datalog rule is that if all the literals in the body of the
rule are logically true over the database we are querying, then derive a new fact corresponding
to the head of the rule and (temporarily) add it to the database. This process is repeated until
no further facts can be derived, technically until a fixpoint is attained. The result of a query
which invokes a rule is the set of facts in the resulting database that have the predicate symbol
of the head of the rule. The semantics of running a Datalog program corresponds to invoking
all the rules in the program in any order as long as possible, i.e. until a fixpoint is attained for
all the rules. Thus the result of running a Datalog program is the set of facts in the original
database together with all the new facts derived when a fixpoint is attained. It can be shown
that the order in which the rules are processed does not affect the result of running the Datalog
program.

24 Chapter 1. Introduction

Table 1.10 A family relation

PARENT CHILD
abraham Isaac

sara isaac
abraham ishmael

isaac jacob
rivka jacob
jacob joseph
lavan rachel
lavan lea
rachel joseph
jacob dan

For example, the following rule finds the first author, short title, year and ISBN of books
published by Addison-Wesley:

Similarly, the following rule finds the first author, short title, quantity of books in the main
library and the number of these books on loan:

The above queries can be expressed in the relational algebra. So in what sense does Datalog
extend the relational algebra. The answer is that Datalog supports recursive queries, a facility
not available in the relational algebra. A Datalog rule is said to be recursive if the predicate
symbol of the head of the rule also appears in a literal in the body of the rule. It can be shown
that there are recursive rules that are expressible in Datalog but not in the relational algebra
[AU79].

Consider the relation shown in Table 1.10 which models a family tree (this relation may be
better modelled via a nested relation).

The following nonrecursive rule finds the grandparents relation:

The following nonrecursive rule finds the sibling relation, assuming that a person is a sibling
of itself:

The following two rules, one of which is recursive, find all the ancestors of people in the
database:

ANC(Xl, X2):- PAR(Xl , X2).
ANC(Xl , X3):- PAR(Xl, X2), ANC(X2, X3).

1.7. What is a Data Model? 25

The following two rules, one of which is recursive, find all the people in the database which
are of the same generation:

SAME_GEN(X2 , X3) : - PAR(x" X2), PAR(x" X3) .
SAME_GEN(x" X2): - PAR(X3 , xd, PAR(X4 , X2), SAME_GEN(X3, X4) .

Datalog can be extended to handle negation using the Closed World Assumption (CWA)
[Rei78]. The CWA assumes that the database has complete positive information about the
enterprise it is modelling. Thus we can utilise the absence of positive information in order
to infer that this information is false. For example, if we assume the CW A with respect to
our library database, then we can safely assume that if a book is not recorded in the books
relation then it it is not available in the library. Another example is a database containing
three relations one for employees, the second for the departments employees can work in and
the third recording the assignment of employees to departments. A department may have no
employees if it is a newly set up department and a new employee may have not been assigned
to a department yet. Thus, we can use the CWA to derive departments that have no employees
and employees that have not been assigned to a department. (For more details on the CW A
see Chapter 5.)

1.7.6 An Object-Oriented Data Model

The title of this subsection begins with an rather than the as was the case in the previous
subsections. The reason is that there is no wide agreement on what the definitive object
oriented data model should be. The growing field of object-oriented databases lacks the solid
theoretical foundation that is characteristic of the relational data model. Thus it is difficult
to reach a consensus on the semantics of the various concepts that database practitioners
agree should be included in an object-oriented data model. Another source of hindrance
is the fact that the development of object-oriented database systems has been application
driven and therefore much experimental work is under way with features being added as
necessitated by the demand of the application being developed. Therefore we will restrict
ourselves to mentioning the novel concepts that object-oriented databases should possess.
It is tempting to define an object-oriented data model as a collection of concepts that have
been found to be useful in data modelling but are not directly supported within the relational
model.

Object-oriented databases in their simplest form have the same structural and integrity
parts as the network model. In object-oriented databases records are called objects, record
identity is called object identity and collections of records are called classes. A set occurrence
can be modelled by adding an attribute to the member object type, such that for each member
object the value of this attribute will be a link to its owner object.

A different approach is to view the concept of a complex object as central and to extend the
relational model from flat relations to complex object relations (cf. [Kim95b D. Such a complex
object relation may be a nested relation or, more generally, a recursive nested relation [SS90],
which uses references to give semantics to nested relations that reference themselves. This
approach has the advantage that it builds upon existing relational database technology, but
that the simplicity of the flat relational data model is lost.

26 Chapter 1. Introduction

Class types in an object-oriented database specify the object type of the objects in its class and
also the set of operations (also known as methods) that can be performed on objects in the class.
For example, an EMPLOYEE class type will contain an object type, say EMPLOYEE_SCHEMA,
and a set of operations on employees such as print employee details, retrieve salary and raise
salary. Both the object type and the operations are stored (or encapsulated) in the database.
Each operation has an interface and an implementation. The interface to an operation is the
specification of how to call the operation, i.e. the name of the operation and its parameters.
For example, in order to call the above-mentioned operations over EMPLOYEE, the user will
need as a parameter the record identity of the employee object involved. Encapsulation means
that users can access an object only through its interface, with all implementation information
of these operations being hidden. Thus encapsulation provides a form of data independence,
since the implementation of an operation can be changed without affecting the way users call
the operation. One of the problems that arises during query processing is that in order to
optimise queries encapsulation must be violated, since in order to perform its task the query
optimiser must look inside the implementation of operations. Thus the optimiser must be
trusted to access the implementation of operations.

Another useful concept which is adopted in object-oriented databases is that of inheritance.
As an example, we may have a STUDENT class type whose object type has attributes name,
address, age and course description and an EMPLOYEE class type whose object type has
attributes name, address, age and salary. Both students and employees are people so we could
have an additional class type PERSON whose object type has attributes name, address and
age. Thus EMPLOYEE and STUDENT inherit all the attributes and operations of PERSON
and are considered to be its subclasses. Inheritance is useful, since we can add new class
types to the system which reuse existing class types. Thus when we define the class types
STUDENT and EMPLOYEE we specify that they are subclasses of PERSON and then define
only their new attributes and new operations, so all existing data and code pertaining to
PERSON can be reused. Another class type that could be defined for this application is that
of RESEARCH-ASSISTANT (RA), which is a subclass of both STUDENT and EMPLOYEE, on
the assumption that research assistants are also enrolled as postgraduate students.

The set of all class types is organised in a class inheritance lattice (or simply an inheritance
lattice). At the top of the inheritance lattice is the class type object, which is a superclass of
all class types in the lattice. Inheritance can be either single or multiple. If every class type
has a unique superclass then inheritance is single and the inheritance lattice reduces to a class
hierarchy, i.e. it has the form of a tree. On the other hand, if a class type can have more than
one superclass then inheritance is multiple and the lattice has the form of a directed acyclic
graph. For example, EMPLOYEE and STUDENT have the single superclass PERSON, while
RA has two superclasses, EMPLOYEE and STUDENT. The inheritance lattice for the above
example is shown in Figure 1.8.

Single inheritance is simpler than multiple inheritance, since given a class, say STUDENT,
there is no ambiguity in determining the superclass PERSON from which STUDENT is to
inherit its attributes and operations (or methods) . On the other hand, given the class,
say RA, it may inherit attributes and operations from both STUDENT and EMPLOYEE.
This may lead to naming conflicts; for example, if both STUDENT and EMPLOYEE have
an attribute TOPIC, meaning research topic when the research assistant is a student and
project topic when the research assistant is an employee, then a naming conflict will
arise. It is possible to avoid such naming conflicts in the design phase by insisting

1.7. What is a Data Model? 27

OBJECT

STUDENT EMPLOYEE

RA

Fig 1.8 An inheritance lattice

that attribute names and operation names are unique (see the universal relation schema
assumption in Chapter 2) but this restriction may be hard to enforce if the inheritance
lattice is large. The approach taken in many object-oriented systems is to resolve naming
conflicts by setting a default superclass for the purpose of inheritance. For example, if
STUDENT is the default superclass of RA, then TOPIC from STUDENT will be chosen as
the default, whose meaning is the research topic of the research assistant. If multiple
inheritance is supported, then a mechanism for overriding the default conflict resolution
must also be provided, by allowing the user to explicitly mention the superclasses from
which inheritance is to take place in the case of a naming conflict. In our example, if
the user is interested in the project topic of a research assistant, then it must be stated
explicitly that inheritance is to take place from EMPLOYEE. (A formalisation of multiple
inheritance in the context of object-oriented programming languages can be found in
[CarSS] .)

The advantage of the object-oriented approach to databases is that it is compatible
with the object-oriented approach to programming and thus the impedance mismatch
problem mentioned earlier can be solved by merging an object-oriented data model and an
object-oriented programming language. In fact, such a computationally complete database
programming language can be used as the manipulative part of an object-oriented data model.
The application programmers need only learn one formalism. This approach has the further
advantage of providing application programmers with a computationally complete database
language [CHSO, ABD+89, AV90, Gil94].

It is still important for object-oriented database systems to provide a more limited query
language such as the relational algebra. Firstly, it may not be effective or even possible to
optimise general programs, written in a computationally complete database programming
language, while there are well-known algorithms available for optimising relational algebra
queries [KRB85, UllS9]. Secondly, users should be allowed to ask the database system simple

28 Chapter 1. Introduction

queries by using a relatively simple query language such as SQL. This has given rise to several
research projects aimed at implementing ad hoc query languages for object -oriented databases.
Examples of such query languages are OSQL (Object SQL) [AAC+95] and OQL (Object Query
Language) [Cat96, CB97], both of which can be viewed as extensions of SQL.

1.8 Discussion

The relational data model is currently the dominant data model used in the commercial
database market-place and we predict that this dominance will not change in the near future.
Although it may seem that object-orientation is threatening to displace the relational approach,
advocates of the relational approach are fighting back by extending relational databases with
object-oriented features. Thus instead of using the network model for the structural and
integrity parts for an object-oriented data model, the structural and integrity parts of the
relational model are extended to deal with object identity. The relational algebra is also
extended with an operator which caters for the creation of new object identifiers. Such an
extension, resulting in what is now called an object-relational data model [SM96], is presented
in the last chapter of the book in Section 10.2.

Both the nested relational model and the deductive data model are extensions of the
relational model and thus fit in well with a trend to support an upwards compatible relational
model.

Many applications are naturally expressed as hierarchies and thus even if a flat relational
model is maintained at the conceptual level of the DBMS the nested relational model with
its hierarchical data structures can enhance the expressiveness of user views. Moreover, the
nested relational model can provide a basis for optimising the conceptual flat level at the
physical DBMS level. The nested relational model is discussed in more detail in Section 10.1
of Chapter 10.

In the last decade a great deal of effort has gone into theoretical aspects of the deductive
database model resulting in several prototype systems being implemented [RU95] . Most of
the research has centred around the properties of the rule-based query language Datalog,
especially with its ability to express recursive queries. As deductive database technology is
reaching maturity we can expect to reap the benefits in the form of extended relational DBMSs
supporting Datalog-like query languages. Due to its perceived importance we have devoted
the whole of Chapter 9 to the deductive data model.

1.9 Background Material

This section introduces the main mathematical concepts used throughout the book and the
notation we have adopted. The reader may skip this section and return to it whenever he or
she is in need of the concepts and definitions. We have assumed that the reader has some
"mathematical awareness" and therefore it may be necessary to consult one or more of the
relevant references for a more fundamental and detailed treatment of any topic. The topics
covered include some basic concepts in set theory (Subsection 1.9.1), some basic concepts
concerning partially ordered and linearly ordered sets (Subsection 1.9.2), some basic concepts

1.9. Background Material 29

from mathematical logic (Subsection 1.9.3), some basic concepts from the theory of computing
and computational complexity (Subsection 1.9.4), and finally a quick introduction to finite
model theory and its impact on database theory (Subsection 1.9.5).

1.9.1 Basic Concepts of SetTheory

Intuitively a set can be viewed as a collection of objects. The objects collected into the set are
then called its members, or elements, and membership is designated by the symbol E or simply
in. Thus "a is a member of the set X" or "a is in the set X" is written a E X or a in X. The
members of a set are enclosed by { (begin) and} (end) and ',' (comma) is used as a separator.
A set does not contain any duplicates. A relaxation of this condition results in a more general
notion of a set which may contain duplicates; such a generalised set is called a multiset.

The main principle of set formation is called the axiom of comprehension, which says that
for any property we can form a set containing precisely those objects with the given property.
Thus {x I a} means the set of all x for which a is true.

The said principle is a very powerful principle and can be used to form a great variety of
sets. However, too full an interpretation of the word "property" gives rise to contradictions
such as "Russell's Paradox". For example, consider the set {x I x ~ x}.

We next define the principal relations between sets and operations thereon.

Subset: We write X ~ Y (or Y ;2 X) to mean that any member of X is also a member of Y,
and say that X is a subset of Y, or that X is contained in Y. Alternatively, we say that Y is a
superset of X.

Proper subset: Since any set is a subset of itself, if we want to exclude this possibility, then we
must talk instead of proper subsets. Thus we write X C Y (or Y :J X) and say that X is a proper
subset of Y, if X ~ Y and X=/: Y. Alternatively, we say that Y is a proper superset of X.

Another powerful principle in set theory is the axiom of extensionality, which tells us that
how far a set extends is determined by what its members are. Thus two sets, say Sand T, are
equal if and only if they have the same members. Symbolically, we write S = T which means
that S ~ T and T ~ S.

Intersection: Given any two sets X and Y, their intersection, denoted by n, is given by

X n Y = {z I Z E X and ZEn.

Union: Similarly, the union, denoted by u, is given by

xu Y = {z I Z E X or Z E Y}.

At times when no ambiguity arises X U Y is abbreviated just to XY.

Empty set: The set without any members, i.e. {}, is denoted by 0. This could be given by

0= {x I x =/:x}.

That there is only one such set follows vacuously from the axiom of extensionality.

30 Chapter 1. Introduction

A set with a single element is called a singleton, and a singleton, say {A}, is at times
abbreviated simply to A. Note that {0} 1= 0.

Power Set: The set of all subsets of a set X, denoted by peX), is called its power set. Thus

peX) = {Y I Y S; X}.

Difference: Given any two sets X and Y, we denote by X - Y the set of all members of X which
are not in Y. Thus

X - Y = {z I Z E X and z Ii Y}.

This is referred to as the relative complement of Y in X, and on occasion it is written as
X\ Y.

If all sets under consideration in a certain discussion are subsets of a set £, then £ is called
the universal set and X denotes the complement of X relative to £, namely X = £ - x.

Disjointness: Two sets X and Yare said to be disjoint if X n Y = 0, and a set of sets (or
collection of sets) is said to be pairwise disjoint if any two of its members are disjoint.

If we wish to distinguish the order in which elements are given, we need to use a different
notation from { and }. Thus we call (x,y) or <x,y> an ordered pair. We refer to x and y as
the coordinates of the ordered pair (x , y). The basic fact about ordered pairs, over a set X, is
that for any Xl,YI> X2,Y2 EX

Similarly, we may consider ordered triples, quadruples, or more generally tuples. All tuples
possess the property that

eXI> X2, ... , Xn) = (Yl> Y2 , . . . , Yn) if and only if Xl = Yl> X2 = Y2 , .. . , Xn = Yn,

where n is a positive (or nonnegative) integer.

The Cartesian product of two sets X and Y, denoted by X x Y, is given by

Xx Y={(X,y)lxEXandYEy}.

A binary relation, say R, or simply a relation, when no ambiguity arises, is a set of ordered
pairs. We write xRy to mean (x , y) E R. We say that R is a binary relation on or in a set X if R
S; X x X. If xRy implies yRx then R is said to be symmetric. If R S; X x Y, then we say that R
is a relation from X to Y.

A convenient graphical representation of a relation is via an associated directed graph or
digraph. We represent the elements of the underlying set as nodes (or vertices), and two nodes
are joined by a line (straight or curved), called a directed edge (or arc), when a relation between
them obtains, with the appropriate direction indicated. In such a situation we say that the
two nodes are adjacent. When R is a relation from X to Y, with X n Y = 0, then we obtain a
bipartite digraph, whose node set is X U Y. Finally, when the relation is symmetric, we may
omit the directions in which case we have an undirected graph or just a graph.

1.9. Background Material

The first and second coordinates of R are given by

{x I there exists y such that (x, y) E R} and
{y I there exists x such that (x, y) E R},

31

respectively, and are known as the domain and range ofR, designated by dom(R} and ran(R},
respectively. The inverse relation is defined by

R- I = {(y, x) I (x, y) E R}.

An n-ary relation on a set X is just a subset of X x X x ... x X, i.e. the Cartesian product
of X with n factors, n ~ 0, which we denote by xn; XO = 0.

Let R be a relation in X. Then R is: reflexive if xRx for all x E X; symmetric (defined earlier)
if xRy implies yRx; transitive if xRy and yRz imply xRz.

If R is reflexive, symmetric and transitive, then R is an equivalence relation on (in) X. If R
is an equivalence relation, then the equivalence class of x, x E X, with respect to R, is given by

R[x] = {y I xRy}.

A function, say f, from X to Y or alternatively from X into Y (sometimes referred to as a
total function), is a special relation with dom(j} = X and such that if (x, y) E f and (x, z) E f
then y = z. Alternatively, if x E dom(j}, then there is a unique yin Y such that (x, y) E f; quite
often we denote this by y = f(x}. We call x an argument off and f(x) is sometimes called the
image of x under f. Symbolically, we write

f: X -+ Y,

where Y is called the codomain off and ran(j} ~ Y. If ran(j} = Y then f is a function from X
onto Y. We say that f is a partial function from X into Y iff is a function for which dom(j} ~
X and ran(j} ~ Y.

Let A ~ X. Then the characteristic function of A, denoted by XA, is defined by

XA : X -+ {O, I} with XA(X} = 1 if and only if x E A.

A function f: X -+ Y is 1-1 (one-to-one) if every element of X is mapped to a unique
element of Y, namely for all x, y E X, if x i= y thenf(x} i= f(Y}, or equivalently, iff(x) = f(Y),
then x = y. In this case the inverse relation f- I is now a 1-1 and onto function from ran(j}
onto dom(j}. This is known as the inverse function.

Synonyms for the word "function" include among others mapping or map, correspondence,
transformation, and operator.

The restriction off to A, where A ~ X, designated by flA, is given by

flA = {(x,y) I (x,y) Ef and x E A}.

A homomorphism is a function that preserves structure. Given a binary relation and
therefore an underlying digraph we can define homomorphism as follows. Given a digraph,
say D, a homomorphism 4> of D onto a digraph D' is a homomorphic image of D under 4>,

32 Chapter 1. Introduction

written ¢(D) = D', such that every arc of D' must emanate from some arc of D, namely if u
and v are adjacent nodes in D, then there must exist two adjacent nodes u' and v in D' such
that ¢(u) = u' and ¢(v) = v.

If¢ is a 1-1 mapping then the homomorphism is said to be an isomorphism. In addition, if¢
is an isomorphism of Dwith itself, then¢ is called an automorphism. Thus each automorphism,
say a, of D is a permutation of the node set, say V, of D, which preserves adjacency.

Given two relations RJ and R2, the composition of R, and R2, symbolised by R2oR" is given
by

R20R, = {(x, y) I there exists z with (x, z) E R, and (z, y) E R2} .

Correspondingly, the composition of two functions f and g, gof, or simply gf, is also a
function. We say that this function exists if ran(f) ~ dom(g). If gof exists and x E dom(f),
then (go!) (x) = g(f(x».

Letf:X x Y -+ Xbean onto function such that for allxinX and for ally in Y,f(<x,y» = x;
then f is called the projection of X x Yon to the first coordinate. Similarly, when f (<x, y» = y,
then f is called the projection of X x Y onto the second coordinate.

Let X be a set with a finite number of elements. We use IXI to stand for the number of
elements of X; IXI is called the cardinality of X. The notion of a 1-1 function enables us to
extend the idea of "number of elements" to infinite sets. A 1-1 function from a set X onto a
set Y is often called a 1-1 correspondence (bijection) between X and Y. We observe then that

1) IXI = I YI if and only if there is a 1-1 correspondence between X and Y, and

2) IXI .::: I YI if and only if there is a 1-1 function from X to Y.

We postulate the existence of a "cardinality" function IXI defined for all sets satisfying (1)
and (2).

Let w be the set of natural numbers, namely w = {O, 1, 2,3, . . . }. Then an infinite set X is
countable if it can be put into 1-1 correspondence with w, and uncountable otherwise.

Given a set S, the size ofS, denoted by IISII, is the cardinality of some standard string encoding
of S. Details about the meaning of "standard" can be found in [GJ79]. The concept of size is
important when we wish to study the computational complexity of a problem. Any instance
of that problem can be viewed as a single finite string of symbols, chosen from a finite input
alphabet, which is input to the computer (see Subsection 1.9.4) .

We next consider sets of sets or (the more frequently used terms) collection of sets or family
of sets. To this end we introduce some further definitions. Suppose that f is a function on a
set I into a set Y. Let us call an element i of the domain I an index, I itself an index set, ran(f)
an indexed set, and the function f itself a family. Denote the value off at i by f; and call f; the
ith coordinate of the family. We may write

f={<i,f;> ElxYliEI}.

Alternatively, it is common practice to write If; liE I} or simply {j;}iEI or even {f;) when no
ambiguity arises.

By definition, a sequence is a family on the set of positive (or nonnegative) integers into Y.
That is to say, a sequence is a function for which w - {O} or w serves as an index set.

1.9. Background Material 33

By the phrase "a family (Ail of subsets of E" we shall understand a function A on some set
f of indices into P(E). We can now define the union ahd intersection of a family by

U {Ail i E f} and n {Ai liE l}.

Correspondingly, the Cartesian product of a family is given by

X {Ai liE f}.

We are now in a position to define a function of n variables (called an n-place function),
namely a function whose domain is

X. IXi or Xl XX2 X···xXn ,
IE

where f is the index set {I , 2, . .. , n}. We writef(xl , X2 , ... , xn) to meanf(<Xl, X2, ... , xn».

If] ~ f, then

X {Xi liE] } = {xl] I X E X {Xi liE f} }

and we can define a projection function

f: X IXi~ X. ,Xi suchthatf(x) = xl]·
IE IE

Given a set X, a partition of X is a disjoint collection C of nonempty sets such that

U{A I A E C} = X.

If C is a partition of X, then C induces the equivalence relation XjC on X given by

XjC = {(x,y) I there exists A E C and X E A and YEA}.

Throughout the book we occasionally use the term class to mean a subset of a given set
whose members are objects of a particular structure.

Two classical books covering set theory are [Ha174] and [St079]. The topic of graph theory
is covered in many books; we mention [Cha77, Wi185, BH90]. For the more general subjects
of discrete mathematics and combinatorics see [VW92, Gri94]. A now classical introduction
of the mathematical concepts that computer scientists need to know is Knuth's book [Knu73].

1.9.2 Basic Concepts of Ordered Sets

Let X be a set. A partial order on X is a binary relation, say R, on X such that for all x, y, Z E X

(i) xRx,

(ij) xRy and yRx imply that X = y,

(iii) xRy and yRz imply that xRz.

34 Chapter 1. Introduction

la, b, c)

/I~
la, b) la, c) Ib, c)

IXXI
la} Ib} Ie}

~
Ii

Fig 1.9 Hasse diagram for (P(la, b, e)), C)

These three conditions are referred to as reflexivity, antisymmetry and transItIvity,
respectively. A set X equipped with a partial order is said to be a partially ordered set.

Let X be a partially ordered set. Then X is a chain if, for all x, y E X, either xRy or yRx.
A chain is also known as a linearly ordered set, or a totally ordered set, or simply a linear
ordering. The partially ordered set X is an antichain if xRy in X only if x = y.

In the following we denote a partial order by the symbol :S. Let (X, :S) be a finite partially
ordered set. We define the strict linear order -< as follows: for all x, y E X, x -< Y if and only if
x :S y and x -=1= y; we say that x is covered by y or y covers x if x :S y and there does not exist
Z E X such that x -< Z -< y.

The covering (binary) relation for a finite partially ordered set can be conveniently displayed
by a Hasse diagram, which is defined as follows. The elements of X are represented as points
in the plane. If x is covered by y draw an arrow from x to y. In order to simplify the Hasse
diagram further, arrange so that if x is covered by y, then y lies above x on the plane. Thus all
arrows point upwards and the arrow heads may be safely omitted. The Hasse diagram for the
partially ordered set (P((a , b, c), c) is given in Figure 1.9.

Let X and Y be linearly ordered sets. Then the Cartesian product X x Y can be linearly
ordered as follows:

(x,y) :S (x',y') if x -< x' or x = x' andy:s y'.

This order is known as the lexicographic order (or lexicographical ordering) of X x Y, since
it is similar to the way words are arranged in a dictionary.

Let (X, :S) be a partially ordered set and assume that E ~ X. If x E X then x is a lower bound
of E if and only if for all y E E, x :S y. If, in addition, x E E, then x is the least element of E. The
greatest lower bound (glb) of E is the greatest element in the set oflower bounds of E, if such
an element exists. That is, x is the glb of E if x is a lower bound of E and for all lower bounds
y of E, Y :S x. In general, E may have no, one or many lower bounds; however, E can have at
most one glb, which is denoted by glb(E).

Correspondingly, if x EX, then x is an upper bound of E if and only if for all y E E, Y :S x. If,
in addition, x E E, then x is the greatest element of E. The least upper bound (lub) of E is the
smallest element in the set of upper bounds of E, if such an element exists. That is, x is the
lub of E if x is an upper bound of E and for all upper bounds y of E, x :S y. In general, E may

1.9. Background Material 35

have no, one or many upper bounds; however, E can have at most one lub, which is denoted
by lub(E).

Any partially ordered setX, such that glb(x, y) and lub(x, y) exist for any elements x, y E X,
is called a lattice. If glb(E) and lub(E) exist for all E S; X, then X is called a complete lattice.

Let ffi be the set of real numbers. We define the following subsets of ffi:

[0,1] = {x E ffi I 0 :::: x :::: I}

(0,1] = {x E ffi I 0 < x :::: I}

[0,1)= {x E ffi I 0 :::: x < I}

(0, 1) = {x E ffi I 0 < x < I}.

The above subsets of ffi are known as intervals; more specifically they are known as closed,
semi-closed on the right, semi-closed on the left and open intervals, respectively.

Given x E ffi, we define the ceiling of x, denoted by r xl, to be the smallest integer y in w
such that y 2: x. Correspondingly, we define the floor of x, denoted by LxJ, to be the greatest
integer yin w such that y :::: x.

Finally, we mention topological sort; this is a process of assigning a linear ordering to the
nodes of an acyclic digraph so that if there is an arc from node ni to node nj, then ni precedes
nj in the linear ordering. Topological sort can be accomplished by using depth-first search
[Tarn, AHU83j. (For the concept of acyclic digraph see Definition 2.2 in Section 2.1 of
Chapter 2.)

An excellent introduction to ordered sets is [DP90], and a classical book on lattice theory
is [Gra78j.

1.9.3 Basic Concepts of Mathematical Logic

Herein we look at languages that can be used to make statements that might reasonably be
viewed as true or false. The first language we consider is that of propositional calculus. The
strings in this language, called formulae, stand for propositions that are either true or false.
Formulae are assembled by combining atomic formulae with the aid of the logical connectives,
namely negation (-,), disjunction (v), conjunction (/\), conditional (:::::}) and biconditional
(<=». Atomic formulae are normally represented by small (lower-case) letters such as p, q
and r. In the sequel the symbols T and F will stand for true and false, respectively. These two
symbols will be referred to as truth-values.

A truth-assignment is a function from a set of atomic formulae, say M, to the set {T, F}. Let
F be a formula whose atomic formulae all belong to M. Consider the function A: M ---+ {T,
F}, which assigns a unique truth-value to F. We note that A assigns the natural meaning to
formulae which contain logical connectives. Hereafter we will assume that all atomic formulae
of F belong to M.

36 Chapter 1. Introduction

If A(F) = T then we write A F F and we say that A verifies (or equivalently, satisfies) F; if
A(F) = F then we write A ~ F and we say that A falsifies (or equivalently, does not satisfy) F.

Let S be a set of formulae. If A verifies each formula in S, then A is said to verify (or
equivalently, satisfy) S; symbolically A F S. If A falsifies at least one formula in S, then A is
said to falsify (or equivalently, not to satisfy) S; symbolically A ~ S. If A verifies a formula
or a set of formulae, then A is a model for that formula or set of formulae.

A formula or a set S of formulae is satisfiable if it has at least one model; otherwise it is
unsatisfiable. A formula F is valid if every truth-assignment verifies F, in which case F is called
a tautology.

In order to determine whether a formula F is valid or satisfiable we can employ the method
of truth tables. The truth tables of the logical connectives provide the basis upon which
appropriate truth-assignments to F are obtained.

As a language for stating mathematical ideas propositional calculus is severely limited, since
there is no wayof talking about individual objects and neither does there exist a way of making
an assertion about all objects in a single formula which covers infinitely many similar cases.
The reason for this is the fact that propositional calculus is limited to the structure of sentences
in terms of component sentences, namely it does not break a sentence into sufficiently fine
constituents for most purposes. To achieve this the structure of sentences must be viewed
along the subject-predicate lines employed by classical grammarians.

In predicate calculus we can make general statements about all objects in a fixed set, called the
universe. Atomic formulae are constructed out of names for relations and names for individual
objects. Thus P(x, y) is an atomic formula stating that some (binary) relation, designated by P,
obtains for the pair of objects (x, y). P is called a predicate (symbol) (alternatively, a relation
symbol) and x , yare called variables. In addition, there are the universal and existential
quantifiers, denoted by V and 3, respectively. Besides predicate symbols, there are function
symbols and constants. More specifically, we have:

(i) Terms are defined inductively as follows:

(i) Every variable is a term.

(ii) Iff is an n-place function, with n > 0, and tl, t2, ... , tn are terms, then f(tb
t2, ... , tn) is a term.

(ii) Atomic formulae are defined as follows:

If P is an n-place predicate, with n ~ 0, and tl> t2, ... , tn are terms, then P(tb t2 , ... , tn)
is an atomic formula.

(iii) Formulae are defined as follows:

(i) Atomic formulae are formulae.

(ii) If F and G are formulae, then so are F v G, F /\ G, (F) and F.

(iii) If F is a formula and x is a variable, then VxF and 3xF are formulae.

A O-place function symbol stands for a particular element in the universe and we call
such function symbols constants. Correspondingly, a O-place predicate is viewed as a

1.9. Background Material 37

proposition. We sometimes refer to I-place and 2-place predicates as unary and binary
predicates, respectively.

The free variables of a formula are defined inductively as follows:

(i) In an atomic formula all the variables occurring in it are free.

(ii) The free variables in F v G or F 1\ Gare the free variables of F and the free variables of
G, whilst the free variables of (F) or -, F are the free variables of F.

(iii) In VxF or 3xF the free variables are the free variables of F, except for x.

An occurrence of a variable x in a formula G is bound in G if it is not free in G, i.e. it is within
a subformula of G of the form VxF or 3xF. We say that the indicated occurrence of V or 3
binds each free occurrence of x in F. A formula F is closed if there are no free occurrences of
variables in it. A closed formula is also called a sentence.

As in the propositional calculus we would like to assign a unique truth-value to any formula
F of predicate calculus. However, this task here is much more complicated. The technical
details for this can be found, for example, in one of the books we recommend at the end of this
subsection. Nevertheless we give the following technical definition in order to facilitate the
exposition in Subsection 1.9.5; it is a special case of the more general notion of an interpretation.

Definition 1.1 (Structure) A structure is a pair A = ([Aj, F), where [Aj is any nonempty
set, called the universe of A, and F is a function whose domain consists of predicate and
function symbols. In particular,

(i) if P is an n-place predicate in the domain of F, then F(P) is an n-ary relation on [AJ,
namely a subset of [Ajn;

(ii) iff is an n-place function in the domain of F, then F(j) is a function from [Ajn to [Aj .

•
Assume that F is a sentence (closed formula), and that every predicate and function symbol

thereof is assigned a value by:F. If A F F then A is a model for F. If A F F for all structures A
which are appropriate to F, then F is said to be valid. (A structure A is said to be appropriate
to F, if each predicate and function symbol of F is assigned a value by the corresponding :F.)

A sentence (closed formula) is satisfiable if it has at least one model; otherwise it is
unsatisfiable.

We next describe a general language L, which comprises nonlogical symbols and logical
symbols. The nonlogical symbols of L are: propositional constants T, F, propositional
variables p, q, r, ... , (individual) variables x, y, z, . .. , (individual) constants a, b, c, ... ,
functions and predicates (also called relations). The logical symbols of L are: the logical
connectives and the two quantifiers; often equality (=) is also taken to be a logical symbol, in
which case it is interpreted as identity.

38 Chapter 1. Introduction

An interpretation for C consists of:

(i) a nonempty set D, called the domain;

(ii) for each constant an assignment of an element in D;

(iii) for each n-place function an assignment of a function from Dn to D;

(iv) for each n-place predicate an assignment of an n-ary relation on Dn, or equivalently, a
Boolean function from Dn to {T, F}.

A variable assignment for C consists of:

(i) for each propositional variable an assignment ofT or F;

(ii) for each variable an assignment of an element in D.

The concepts of term, atomic formula, formula and closed formula or sentence carryover
from the predicate calculus except that we now have to add constants and propositional
variables to terms and to atomic formulae, respectively. We can similarly define free and
bound variables and consequently a sentence (closed formula). We observe that for a sentence
the variable assignment is irrelevant.

A formula F is satisfiable if there is an interpretation and a variable assignment for which
it takes the truth-value T. Such an interpretation and variable assignment is a model for F. A
formula Fis valid ifittakes the truth-value T in any interpretation and any variable assignment.
The concepts of satisfiability, model and validity can easily be extended to a set of formulae,
say S = {FI, F2, ... , Fn}. A formula F is a logical consequence of S if every model for S is also
a model for F. Symbolically, we write S 1= F.

Assume that C admits quantification of individual variables only. Then C is said to be a
first-order language. If, in addition, we attach to C rules of inference such as modus ponens
(from ct ~ {3 and ct infer {3), then .c is a first-order theory.

A literal is an atomic formula or the negation thereof. A disjunction of a set of formulae
{FI, F2, ... , Fn} is the formula FI V F2 V ... v Fn and its conjunction is the formula FI /\ F2 /\
... /\ Fn·

The universal closure of a formula can be obtained by prefixing Vx for every free variable x
in the formula. A Horn clause is a formula with no free variables, and is the universal closure
of a disjunction of literals. For example, the formula

VxVy(P(x,y) v Q(x, x) v -'P(x,f(y)) v -'P(y, x»

is a Horn clause.

As in the cases of the propositional and predicate calculi we would like to assign truth-values
to any formula or set of formulae over .c. However,.c is too general for this to be achieved in
a computationally efficient way. So we consider special cases of C.

Let S be a set of formulae. The Herbrand universe of S is the set of all terms that contain no
variables and contain only the constants and individual functions that occur in S. (Whenever
no constants occur in S, then we still allow some constant, say a, to occur in the terms.) The

1.9. Background Material 39

Herbrand base is the set of all atomic formulae formed by applying predicates that occur in S
to the terms in the Herbrand universe.

For example, let
S = (V'x(P(x) v ~Q(j(x), g(x))) , V'yW(y)} .

Then the Herbrand universe is

(a,f(a) , g(a),f(j(a»,f(g(a» , g(g(a», g(j(a» , . . . }

and the Herbrand base is

(pea), Q(a, a), W(a) , P(j(a», P(g(a» , Q(a , g(a» , Q(a,f(a», Q(j(a) , a), . . . }.

A Herbrand interpretation is one such that:

(i) the domain D is the Herbrand universe;

(ii) the constants are assigned to themselves;

(iii) the functions are what we normally think they are; for example, I is assigned to the
function that maps a to I(a), maps g(a) to I(g(a» , maps I(a) to l(j(a» and so on.

There is no restriction on the assignment of predicates, so a set S of formulae will have
infinitely many interpretations. Each Herbrand interpretation is characterised by the subset
of the Herbrand base consisting of all those base formulae which take the value T in the
interpretation. Thus a Herbrand interpretation is a subset of the Herbrand base and vice
versa.

A Herbrand model for S is a Herbrand interpretation that is a model for S. A Herbrand
model, say M, of S is minimal if no proper subset of M is a Herbrand model of S.

The next result signifies the importance of Horn clauses.

Theorem 1.1
model.

If S is a set of Horn clauses and, in addition, S has a model, then S has a Herbrand
o

We observe that Theorem 1.1 can be extended to general first-order sentences provided that
there is an arbitrarily large number of constant symbols available in C [Fit961. We further
observe that Theorem 1.1 does not necessarily hold if S is merely a set of closed formulae. For
example, let S = (P(a), 3x ~P(x)}. Let D = {O, I} , a = 0 and the predicate P be true only on
zero, then S has a model but it has no Herbrand model, since the Herbrand universe consists
of the singleton (a}.

A program clause is a Horn clause in which every literal, except one, is the negation of
an atomic formula. Suppose that S is a set of program clauses. Consider each Herbrand
interpretation as a subset of the Herbrand base. The intersection of any number of Herbrand
models of S is a Herbrand model. Since the Herbrand base is a Herbrand model, there is always
at least one Herbrand model. The intersection of all Herbrand models is a Herbrand model and
is called the least Herbrand model; evidently the least Herbrand model is a minimal Herbrand
model. It consists of just those members of the Herbrand base that are logical consequences
ofS.

40 Chapter 1. Introduction

There are numerous introductions to mathematical logic that the reader can consult; we
mention [End72, St079, Men87, Van89, Fit96]. A more advanced book which covers the
interface between logic and computability is [BJ89]. Two books on first-order logic from the
point of view oflogic programming are [Ll087, Apt97].

1.9.4 Basic Concepts of the Theory of Computing

The pioneering work in this field, and much early work on computers was either done or
inspired by Alan Turing and Emil Post. In their seminal papers [Tur36, Pos36, Tur37] they
laid the foundations of computable mappings (functions) .

In [Tur36, Tur37] Turing defined an idealised kind of machine, nowadays called a "Turing
machine", and he argued that it was possible to compute on such a machine any mapping,
which it would be reasonable to call "computable". This conjecture is known as the Church
Turing thesis. It was shown that the class of mappings produced in this fashion is identical
with the classes of mappings produced by other apparently different methods, proposed by
A. Church, K. Godel, S. Kleene, E. Post and A. Markov.

We begin with "machines" that are less powerful than a Turing machine in terms of the
computations they can perform. We then incrementally look at more powerful machines
leading to the Turing machine.

A deterministic finite automaton consists of an input tape, which is divided into squares,
and a black box, called finite control. The latter can sense what symbol is written at any
position on the input tape by means of a movable reading head (see Figure 1.10). Initially, the
head is placed at the leftmost square of the tape and the finite control is set in a designated
initial state. At regular intervals the automaton reads one symbol from the input tape and
then enters a new state depending on the current state and the symbol just read. After reading
an input symbol, the head moves one square to the right (its next square) on the tape and on
the next move it will read the symbol in the next square of the tape. This process, namely read
a symbol, the head moves to the right, and the state of finite control changes, is carried out
repetitively until the head reaches the end of the input string of symbols. The automaton then
indicates its approval or otherwise of what it has read by the state it is at the end. If it ends
with one of a set of final states, the input string is considered to be accepted by the automaton;
the set of strings accepted by the automaton is the language accepted by it.

The formal definition of a deterministic finite automaton follows.

Definition 1.2 (Automaton) A Deterministic Finite Automaton (DFA) is a quintuple M = (K,
"E, 8, s, F), where K is a finite set of states, "E is an alphabet, i.e. a finite set of symbols, s E K is
the initial state, F S; K is the set of final states, and 8 is the transition function, i.e. a function
~mKx"EwK •

We denote the set of all strings over"E, i.e. the countably infinite set of all finite sequences of
symbols from "E, by"E*. A set of strings over "E, namely any subset of"E*, is called a language.
Since languages are sets, they can be combined via the set operations of union, intersection
and difference. If L is a language, then L, the complement of L, is given by "E* - L. In addition,

1.9. Background Material

Input I
tape . (

41

I d I (I (did I (I d I
~eading head

Finite control

Fig 1.10 A deterministic finite automaton

we can define the concatenation of two languages over I;, that is, if Ll> L2 are languages over
I; then their concatenation is L = L\ 0 L2, or simply L\L2, defined by

L = {w I w = x 0 y, or simply w = xy, for some x E L\ and y E L2},

where 0 stands for the concatenation of strings x and y, namely the leading part of w comes
from x and the trailing part from y.

Finally, the closure or Kleene star of a single language L, denoted by L *, is the set of all
strings obtained by concatenating zero or more strings from L.

The regular expressions over L are the strings over the alphabet L U { (,), 0, U, * } such that

(i) 0 and each member of L is a regular expression.

(ii) If a and fJ are regular expressions then so is (afJ) .

(iii) If a and fJ are regular expressions then so is (a U fJ).

(iv) If a is a regular expression then so is a*.

(v) Nothing is a regular expression unless it follows from (i) through (iv).

The class of regular languages (or regular sets) over L is the minimal set of languages
containing 0 as well as the singletons {a}, for all a E L, and closed under union, concatenation
and Kleene star.

It can be shown that a language is regular if and only if it can be described by a regular
expression. In addition, a language is regular if and only if it is accepted by a DFA. This
fundamental result was proved in a seminal paper by Kleene [Kle56].

The rules according to which a DFA, M, chooses its next state are encoded into 8. They
are given in a table, sometimes known as the state transition table, or graphically via a state
diagram. We note that the transition function 8 naturally extends to a transition function 8
from K x I;* to K by composing 8 with itself zero or more times.

If when a DFA changes state it has the option of selecting one from a set of possible "next
states", then we have a Nondeterministic Finite Automaton (NFA). The formal definition is

42 Chapter 1. Introduction

d
"Stack"

C or
"Pushdown

d store"

d

c

Fig 1.11 A pushdown automaton

as before except that the transition function 8 is replaced by the finite transition relation 6.,
where 6. S; K x :E* x K; as before :E* denotes the set of all strings, including the empty string,
over the alphabet :E.

LetL(M) be the language accepted by a DFA M. Then DFAs MI andM2 are equivalent if and
only if LI (M) = L2(M). It can be shown that for each NFA there is an equivalent DFA. This
result was proved in a seminal paper on finite automata by Rabin and Scott [RS59j.

There are languages, however, that are not regular and thus not, in general, accepted by
DFAs. In order to recognise such languages via an automaton, we need to increase its memory.
To this end we define an automaton that incorporates the idea of a "stack" (see Figure 1.11).

The notion of an automaton with a stack as auxiliary storage is now formalised.

Definition 1.3 (Pushdown automaton) A Pushdown automaton is a sextuple M = (K, :E, r,
6., s, F), where K is a finite set of states, :E is an alphabet (the input symbols), r is also an
alphabet (the stack symbols), s E K is the initial state, F S; K is the set ofJinal states, and 6.,
the transition relation, is a finite subset of (K x :E* x r*) x (K x r*). _

Intuitively, if «p, u, (3), (q, Y» E 6., then, whenever M is in a state p with f3 at the top
of the stack, it may read u from the input tape, replace f3 by y on the top of the stack and
then enter state q; such a pair is called a transition ofM. Since several transitions ofM may be
applied concurrently, M is nondeterministic in its mode of operation. In addition, a pushdown
automaton mimics the push and pop operations associated with a stack.

In essence if a pushdown au tomaton M reaches a configuration whereby the stack is empty,
the input tape has been read and M is in a final state, then M accepts the input string. On
the other hand, if M detects a mismatch between input and stack symbols, or if the input is
exhausted before the stack is emptied, then it does not accept the input string.

We next define a class oflanguages accepted by pushdown automata.

Defmition 1.4 (Context-free grammars and languages) A context-free grammar G is a
quadruple (N, :E, R, S), where N is an alphabet, :E is a subset of N (the set of terminal
symbols), R is a finite subset of (N - :E) x N* (the set of rules or productions) and S is an
element of N - :E (the start symbol).

1.9. Background Material 43

h
%

Finite control - ql
q3

q2

Fig 1.12 A Turing machine

For any A EN - I; and u E N*, we often write A ~ u whenever (A, u) E R. For any strings
u, Y E N*, we write u ==} y if and only if there are strings x, y, yl E N* and A E N - I; such that
u = xAy, y = Xyly and A ~ y'. The language generated by G, designated by L(G), is given by

L(G) = {w E I;* IS=h w},
G

where =h is the reflexive, transitive closure of ==} • A language L is context-free if it is equal to
G G

L(G) for some context-free grammar G. •

The elements of N - I; are called the nonterminal symbols. A string consisting entirely of
terminal symbols is termed a terminal string (this concept is used in Section 9.3 of Chapter 9).

It can be shown that if a language is accepted by a pushdown automaton, then it
is context-free; conversely, each context-free language is accepted by some pushdown
automaton. Closure properties of context-free grammars were investigated in a seminal
paper by Bar-Hillel et al. [BPS64].

As an epilogue to this particular subarea of the theory of computing we mention the
interesting problem of minimising a DFA, MJ> namely finding another DFA, M 2 , such that
L(Md = L(M2) and with a set of states, whose cardinality is minimum. For a recent application
of this idea see [VB92].

We now return to the Turing machine. A Turing Machine (TM) is basically composed of
a finite-state control unit (or simply finite control) and a tape. The tape has an infinite (or at
any rate arbitrarily large) storage capacity in the simple form of a semi-infinite tape, marked
off into squares. Communication between the control unit and the tape is provided by a single
read/write head, which reads symbols from the tape and may change symbols on the tape. The
control unit operates in discrete steps and at each step it performs the ensuing two functions
depending on its current state and the tape symbol which is scanned by the read/write head
(see Figure 1.12):

1) The control unit is put in a new state.

2) Either a symbol is written in the tape square, which is currently scanned, thus replacing
the one already there or the read/write head is moved one tape square to the left (L) or to

44 Chapter 1. Introduction

right (R). (If the Turing machine attempts to move its read/write head off the end of the
tape, it automatically ceases to operate, in which case we say that the Turing machine
hangs.)

The input to a TM is a string inscribed on the tape squares at the left end of the tape. The
rest of the tape contains a blank symbol, designated by #. A TM can alter its input as it sees fit
and can write on the blank portion of the tape situated to the right of the input string. It leaves
its answer on the tape (since it can write on its tape) at the end of a computation; a special
state, called halt state, signals the end of the computation for TMs and is denoted by h.

Defmition 1.5 (Deterministic Turing machine) A Deterministic Turing Machine (DTM),
referred to simply as a Turing machine, is a quadruple TM = (K, 1;, 8, s), where K is a
finite set of states such that h f/. K, 1; is an alphabet such that # E 1; and L, R f/. 1;, s E K is the
initial state and 8 is the transition function (or next move function) from K x 1; to (K U {h})
x (1; U {L, R}). •

Sometimes it is advantageous to consider a TM with k ::: 1 (k E w) one-way infinite tapes.
Such a machine is called a k-tape TM. Another version for a I-tape TM is to allow the tape to be
two-way infinite. However, these and other variations ofTMs are computationally equivalent
in the sense that they compute the same class of functions.

In order to specify the status of a TM, it is necessary to specify the state, the contents of the
tape, split into three pieces, namely the part (possibly empty) to the left of the tape square being
scanned, the symbol currently in the scanned square, and the part (again possibly empty) to
the right of the tape square being scanned, and the position of the head. Since no input string
ends with the blank symbol #, and in view of the said considerations, we define a configuration
(also called an instantaneous description) to be an element of the set

(K U {h}) x 1;* x 1; x (1;* (1; - {I}) U {A}),

where A denotes the empty string. A configuration whose state component is h will be called a
halt (or halting) configuration. We designate the change from one configuration to another
by

incorporating three cases: overwrite the symbol of the scanned tape square without moving
the read/write head, TM moves the read/write one square to the left (if it is moving to the left
off blank tape the symbol # on the scanned tape square disappears from the configuration)
and finally TM moves the read/write head one square to the right (if it is moving onto blank
tape, a new blank symbol, #, appears in the configuration as the new scanned tape symbol).

For any Turing machine TM, f-~M stands for the reflexive, transitive closure of f-TM.
We write Cl f-~M C2 to indicate that configuration C1 yields configuration C2. Hereafter, the
underlined symbol indicates the position of the read/write head.

Henceforth the input string to a Turing machine will be surrounded by # on each side and
written on the leftmost squares of the tape. The read/write head is positioned at the symbol
#, which marks the right end of the input string, and the Turing machine starts functioning

1.9. Background Material 4S

in its initial state. Thus, given a Turing machine TM and w E 1:*, TM is said to halt on input
w if and only if (s, #w!D yields a halt configuration.

We are now in a position to introduce formally the concept of a Turing-computable mapping
or function.

Definition 1.6 (Turing-computable mapping) Let 1:0 and 1:\ be alphabets not containing #.
Letf: 1:0' -+ 1:r A Turing machine TM = (k, 1:,8, s) computesf if 1:0,1:\ S; 1: and for anyw
E LO', if f(w} = u then (s, #w!D riM (h, #u!). If some such Turing machine TM exists, then
f is said to be a Turing-computable mapping (or a Turing-computable function). •

We note that a function computed by a Turing machine is called a partially recursive
function. If it happens to be defined for all values of its arguments, then it is also called a
totally recursive function (or simply a recursive function). In the case of computing a recursive
function the Turing machine always halts in state h. The notion of a Turing-computable
mapping from strings to strings can be readily extended to mappings from w to w.

Turing machines can be viewed as a low-level language for expressing computations; thus
they provide a way to measure the expressive power of any programming language.

Definition 1.7 (Computationally complete programming language) A programming lan
guage is said to be computationally complete if it can express all Turing-computable mappings .

•
If we allow Turing machines to behave nondeterministically, then upon certain

combinations of state and scanned symbol such machines might have more than one possible
choice of behaviour. Thus in Definition 1.58 is replaced by a transition relation 6., which is a
subset of (K x L) x {(K U {h)) x (L U {L, R}}}. However, rTM is no longer single-valued,
since one configuration may yield several others in a single step (move). It can be shown
that for each Nondeterministic Turing Machine (NTM) there is an equivalent deterministic
Turing machine (DTM), i.e. each mapping computed by a nondeterministic Turing machine
is Turing-computable.

We next consider the class of primitive recursive functions, in other words the smallest class
of functions containing the initial functions (also called basis functions) and closed under
composition and primitive recursion. Most of the Turing-computable functions arising in
practice belong to this class.

The initial functions are primitive recursive and comprise the successor function succ(x) =
x+ 1, the zero function zero(x) = 0, where x E w, and the projection functions. If/I,/2, ... ,fm
are primitive recursive functions of n variables and g is a primitive recursive function of m
variables, then the function h, obtained via composition, where

is primitive recursive.

46 Chapter 1. Introduction

We next define primitive recursion. Iff and g are primitive recursive functions of nand
n + 2 variables, respectively, then the function h, where

h(xl, X2, .. . , Xn, 0)

h(xl , X2, ... , xn,y + 1)

is primitive recursive.

f(xl, X2, ... , xn) ,

g(Xl, X2,···, xn ,Y, h(xl, X2, · ··, xn,y»,

A function is said to be primitive recursive if it is an initial function or can be generated by
a sequence of the operations of composition and primitive recursion.

However, not all functions are primitive recursive. For example, using Cantor's diagonal
method [Can55] it can be shown that there is a totally recursive function which is not primitive
recursive.

We now look at two derivatives of the important notion of a Turing-computable function,
namely that of a Turing-enumerable language and a Turing-decidable language. In this context
let Eo be an alphabet which does not contain the blank symbol #.

A Turing machine TM enumerates the language L S; E~, denoted as L = L(TM), if and only
if, for some fixed state q of TM,

L = {w I for some string u, (s,!J t-;M (q, #w!u)},

where 5 is the initial state ofTM.

A language is Turing-enumerable (or recursively enumerable) if and only if it is enumerated
by some Turing machine.

Let V, N rt Eo be two distinguished symbols. Then a language L S; E~ is Turing-decidable
(or recursively decidable or simply recursive or decidable) if and only if the function

XL: E~ -+ {V, N}

is Turing-computable, where for each w E E~ xLCw) = V if WE Land XL(W) = N if w rt L.

If XL is computed by a Turing machine TM, then we say that TM decides (or accepts) L,
and write L = L(TM). Otherwise, when there is no TM that decides L, then L is said to be
undecidable. It can be shown that a language is Turing-decidable if and only if both it and its
complement are recursively enumerable.

The most famous undecidable problem is the halting problem for Turing machines, namely
to decide (determine), for any arbitrary given Turing machine TM and input w, whether TM
will eventually halt on w.

Continuing in this vein we next state Rice's theorem [Ric53], which is utilised in Section 6.4
of Chapter 6.

Theorem 1.2 Assume that C is a proper nonempty subset of the set of recursively enumerable
languages. Then the following problem is undecidable: given a Turing machine TM, is the
language L = L(TM) enumerated by TM in C? 0

1.9. Background Material

Read-only input

Finite
control

Fig 1.13 A two-counter machine

47

We next look briefly at another computing device, called the Two-counter Machine (or
Register Machine), which is much simpler than a Turing machine. Such a machine has two
counters (or registers), which, at any time during the running of the machine, contain a natural
number.

An example of a two-counter machine is shown in Figure 1.13; the symbols@and$areused
as end markers and Z is the non blank symbol on each tape. An instance of the two-counter
machine can be described by the state, the contents of the input tape, the position of the input
head, and the distance of the storage heads from Z (shown in Figure 1.13 as d, and d2). We
call these distances the counts over the tapes.

Let ii stand for the contents of the nth counter in some fixed listing, so that ii E w for n = 1, 2.
A two-counter machine program is a finite sequence < 1, 2, ... , H> of instructions, where H
stands for the halt instruction. The other i are all active instructions; they are of two types,
namely (n,j) and (n,j, k), where n is the number of a counter, andj, k are the numbers of
instructions. Their meanings follow:

(n,j): add 1 to iI, and then go to instruction}.

(n,j, k): if iI > 0, subtract 1 from iI, and then go to instruction], otherwise go to instruction k.

We briefly illustrate the way a two-counter machine operates by considering the very simple
two-counter machine program:

i (2,2,3)
2 (1, 1)

3 halt

48 Chapter' . Introduction

Starting with, say (3, 2), in the contents of the two counters and at instruction 1, we obtain
the following computation:

i (3,2) 2 (3,1) i (4,1) 2 (4,0) i (5,0) 3 (5,0) halt

In general, the above two-counter machine program starting at position (m, n), that is, with
m and n in the two counters, and at instruction 1, terminates in position (m + n, 0).

It can be shown that a two-counter machine can simulate an arbitrary Turing machine
and consequently the corresponding halting problem, that is to say, to decide whether a
two-counter machine program, when applied to itself as input, terminates, is undecidable.

In the context of undecidability, we state two well-known undecidable problems, namely
the word problem for semigroups and finite semigroups, and the Post correspondence problem.

We begin with the definition of semigroup and finite semigroup.

Definition 1.8 (Semigroup and finite semigroup) A non empty set S together with a binary
operation, called composition, denoted by the juxtaposition ab for any a, b E S, constitutes a
semigroup whenever the following two axioms are satisfied:

(i) (Closure). For any two elements a, b E S, ab is also an element of S.

(ii) (Associativity). For any three elements a, b, c E S, (ab)c = a(bc).

A semi group is called a finite semigroup if S is a finite set. A semigroup is called a monoid,
if in addition to (i) and (ii) above, there is a special element E of S, called the identity, such
that for any a E S, Ea = a and aE = a. •

Let L be a finite alphabet and recall that a string over L (also called a word over L) is a
finite sequence of symbols from L. It is easy to verify that the countably infinite set L* of all
words over L is a semigroup; the set L* is called the free semigroup generated by L.

Now, let E = {ai = fJi I i = 1, 2, . . . , n} be a finite set of equalities and let e be an additional
equality a = fJ, with ai, fJi, a, fJ E L*. Then E (finitely) implies e, iffor each (finite) semigroup
S and homomorphism h : L* --+ S, the following statement is true:

if h(ai) = h(fJi) for each i = 1, 2, . . . , n, then h(a) = h(fJ).

The word problem for (finite) semigroups is to decide given E and e, whether E (finitely)
implies e. The word problem for semigroups was shown to be undecidable by Post [Pos47j,
and the word problem for finite semigroups was shown to be undecidable by Gurevich [Gur66J.

Another powerful result in the theory of computing is the undecidability of Post's
correspondence problem [Pos46J. This problem has had many important applications and has
been employed to obtain undecidability results in many areas including that of context-free
languages. Hereafter we present formally a version of this problem.

1.9. Background Material 49

A correspondence pair is a pair C = CA, B) in which A and B are ordered, finite sets of strings
over an alphabet ~, with

where nEW and n ::: 1. We say that the finite sequence of integers iI, i2, ... , im , 1 S ij S n,
1 S j S m, is a solution for the correspondence pair C if and only if the strings

are identical. The correspondence problem is that of deciding, for any given C, whether C has
a solution.

We next turn our attention to the problem of computational complexity. Given an instance
of a problem, we can encode it using some standard string encoding. We then assess the
efficiency of an algorithm for solving the problem by considering the number of primitive
steps required to produce an implementation of the algorithm on a computing device; the
input to the device is the encoded string version of the problem instance.

The computing device we employ is the nondeterministic Turing machine (NTM) with k
tapes. (Recall that NTMs are equivalent to DTMs and that a DTM is just a special case of an
NTM.)

We say that an NTM is of time complexity T(n) if for every input string of length n there is
some sequence of at most T(n) moves leading to the halt state h. Correspondingly, an NTM is
of space complexity Sen) iffor every input string oflength n there is some sequence of moves
leading to the halt state in which at most Sen) different cells are scanned on anyone of the k
tapes.

We define PTIME to be the set of all languages which can be accepted by deterministic
Turing machines (DTMs) of polynomial-time complexity. In formal terms

PTIME = {L I there exists a deterministic Turing machine, TM, and a polynomial pen)

such that TM is of time complexity pen) and L = L(TM)}.

Linear-time languages are a special case of polynomial-time languages that are accepted
by a TM of time complexity kn (k E w), i.e. by a TM that needs to scan its input only a fixed
number of times.

Correspondingly, NPTIME (or simply NP) is defined to be the set of all languages which
can be accepted by NTMs of polynomial-time complexity.

We next define PSP ACE which is a superset of NP. PSP ACE is defined to be the set of all
languages which can be accepted by polynomial-space-bounded DTMs, namely

PSPACE = {L I there exists a deterministic Turing machine, TM, and a polynomial pen)

such that TM is of space complexity pen) and L = LCTM)}.

Although it is not known whether PTIME is properly contained in NP, we can show that
certain languages are as hard as any in NP, in the sense that if we had a deterministic

so Chapter 1. Introduction

polynomial-time-bounded algorithm to recognise one of these languages, then we could obtain
a deterministic polynomial-time-bounded algorithm to recognise any language in NP.

Let I:l and I:2 be two alphabets. A mappingf: I:t -+ I:; is a polynomial-time computable
transformation (or simply a transformation), iff can be computed in polynomial time on a
DTM.

Let Ll ~ I:t and L2 ~ I:; be languages. Ll is (polynomial, many-to-one) reducible to L2,
written Ll ex: L2, if there is a transformation f such that

for all x E I:t, x E L1 if and only if f(x) E L2.

A language L is NP-complete, if L E NP and for all L' E NP, L' ex: L.

Historically, the set of satisfiable formulae of the propositional calculus was the first language
shown to be NP-complete [Co0711. There followed a seminal contribution by Karp [Kar721,
wherein a large number of problems, many of them graph-theoretic, were shown to be NP
complete.

In a similar vein a language L is PSPACE-complete, with respect to polynomial
transformabilityas above, if L E PSP ACE and for all L' E PSP ACE, L' ex: L.

We next define another computational complexity class, designated as co-NP, that deals
with complementary problems. As before let I: be an alphabet. In language terms

co-NP = {I:* - L I L is a language over I: and L E NP}.

In the context of this book we also employ the computational complexity class NP-hard
defined by

NP-hard = {L I L is a language over I: and for all L' E NP, L' ex: L}.

At this juncture we briefly consider the intriguing problem of the polynomial hierarchy. To
this end we introduce the oracle Turing machine (alternatively, query Turing machine), which
may be deterministic or nondeterministic. An oracle Turing machine is a Turing machine
with an additional distinguished tape, called the query tape, and three distinguished states
called the query state, the yes state and the no state. The computation of an oracle Turing
machine depends on its input and also on a given language over the alphabet I:, called the
oracle. The actions of an oracle Turing machine with oracle, say L', are identical to those
of a Turing machine with the following exception. If the finite control of the oracle Turing
machine enters its query state at some step, then the finite control next enters the machine's
yes state if the nonblank portion of the query tape contains a string in L'; otherwise the finite
control next enters the machine's no state.

An oracle Turing machine, OTM, is of time complexity T(n) if and only if, for every input
string oflength n there is some sequence of at most T(n) moves, relative to any oracle, leading

to the halt state of OTM. We let OTML' denote the oracle Turing machine, OTM, with oracle

L', and L = L(OTML') denote the language accepted by OTML'.

We now define two further computational complexity classes as follows, assuming that all
languages are over an alphabet I:.

1.9. Background Material

PTIMENP

co-NP 8 NP

Fig 1.14 Containment relationships amongst computational complexity classes

PTIMENP = {L I there exists an oracle Turing machine, OTML', with L' E PTIME,

and a polynomial pen) such that OTM is of time complexity pen) and

L = L(OTML')}.

NpNP = (L I there exists an oracle Turing machine, OTML', with L' E NP,

and a polynomial pen) such that OTM is of time complexity pen) and

L = L(OTML')}.

51

We observe that it is not known whether PTIMENP differs from NpNP or not. Pictorially,
assuming that PTIME =1= NP, the containment relationships amongst PTIME, NP, co-NP,
PTIMENP and NpNP are illustrated in Figure 1.14.

On the basis of this figure 5tockmeyer [5to77] observed that this process of defining new
computational complexity classes in terms of old ones could be carried out indefinitely,
resulting in classes of apparently greater difficulty. We obtain in this manner what is termed
the polynomial hierarchy. The computational complexity classes in the resulting hierarchy
are designated by :Ei, n~ and f.~, and are defined by

:E& = nb = f.b = PTIME

and for all k ::: 0, k E w,

f.~+l PTIMELf

:Ef+l NpLf

nf+! co- :Ef+!,

where co- :Ef+ 1 denotes the complement of :Ef+ 1 in a similar way that co-NP is the complement
ofNP.

52 Chapter 1. Introduction

We now look at two further computational complexity classes, namely EXPTIME
and EXPSP ACE. The former consists of all languages, recognised by a deterministic or
nondeterministic Turing machine, with time complexity bounded above by 2J'(n) for some
polynomial p of the in put string oflength n, whilst the latter consists of all languages recognised
bya deterministic or nondeterministic Turing machine, with space complexity bounded above
by 2P(n).

As above we can define the notions of EXPTIME-complete and EXPSPACE-complete.

Two further computational complexity classes are LOGTIME, which consists of all
languages, recognised by a deterministic or nondeterministic Turing machine, with time
complexity bounded above by f/og2n + 11, where n is the length of the input string, and
LOGSP ACE, which consists of all languages, recognised by a deterministic or nondeterministic
Turing machine, with space complexity bounded above by f/og2n + 11.

A standard way of measuring computational complexity is by introducing the big-O
notation, which reads "of the order of'. Consider two functions f and g. We say that f
is "big oh" of g, writtenf = O(g) or f(n) is O(g(n)), if there exist constants c and no such that
f(n) ::: c g(n) for all n ::: no. Thus a polynomial-time algorithm is one whose time complexity
is O(p(n)) , for some polynomial p, where p is a function in the size of the input n to the
algorithm. This complexity measure determines the worst-case behaviour of the algorithm.
Alternatively, we may wish to determine the average-case behaviour of an algorithm [Pap94].

Hereafter an algorithm of polynomial-time complexity is meant to be an algorithm of
deterministic polynomial-time complexity. In the course of developing the material in this
book we shall refer to a problem as tractable when there is a polynomial-time algorithm for its
solution. The pursuit of efficient polynomial-time algorithms for solving problems is central
to computer science [AHU83]. On the other hand, we shall refer to a problem as intractable
if it is so hard that no polynomial-time algorithm can possibly solve it.

We recommend the now classical books [Min69, Har78, HU79, LP81, Rog87] on the theory
of computation and formal languages. A collection of papers dealing with both a historical
perspective and contemporary research in the area of computability can be found in [Her88] .
The definitive book on computational complexity is [GJ79]; for a recent survey see [Joh90]. A
more recent book on computational complexity is [Pap94].

1.9.5 Finite-Model Theory

Model theory is a branch of logic concerned with the study of the properties of mathematical
structures. It endeavours to establish the expressive power of a logical language (usually a
first-order language) in terms of the class of problems that can be solved by the language.
Many of the central results from mathematical logic hinge upon the fact that the universe of
a model can be infinite. Finite-model theory is a sub-branch of model theory concerned only
with the study of the logical properties of models whose universe is finite. Since, a relational
database can be viewed as a finite model, there is an intimate connection between relational
database theory and finite-model theory, which has lead to a rich cross-fertilisation of ideas
between database theorists and logicians.

Let us consider a first-order language £ having a finite set of relation symbols,
RI , R2 , ... , Rn, each of which has an arity and a finite set of constant symbols, CI , C2, . . . , cm.

1.9. Background Material 53

(We assume that equality is a logical symbol of'c interpreted as identity.) A structure A
over'c (or simply a structure when ,c is understood from context) comprises the following
components:

1) a nonempty set [A]' called the universe of A;

2) a set of relations rl , r2, .. . , rn such that each ri is a relation on [A] associated with Ri
and having the same arity as Ri, for i = 1,2, . .. , n (ri is called the interpretation of Ri)i
and

3) a set of constants ai, a2, am such that each ai is a member of [A] and is associated
with Ci, for i = 1,2, .. . , m (ai is called the interpretation of Ci).

We note that the above definition of structure is a special case of the more general
Definition 1.1 of Subsection 1.9.3. Given a structure A and a first-order sentence <p both
over the same first-order language'c, we write A F= <p to mean that A satisfies <po We extend
the satisfaction relation, F=, to a set ~ of first-order sentences over 'c, where A F= ~ means
that A F= <p for all <p E ~. A structure A is a model of ~ precisely when A satisfies ~.

A finite structure is a structure whose universe if finite, and a finite model of ~ is a finite
structure that satisfies ~. A first-order sentence over ,C is satisfiable (finitely satisfiable) if
it is satisfied in at least one structure (finite structure), i.e. it has at least one model (finite
model). A first-order sentence over ,C is valid (finitely valid) if it is satisfied in all structures
(finite structures) over'c, i.e. every structure (finite structure) is a model (finite model) of the
sentence.

An algebraic language operating on structures is presented in Subsection 3.2.1 of Chapter 3
as an alternative to first-order formulae of the first-order predicate calculus, presented in
Subsection 3.2.2 of Chapter 3 in the context of the relational data model.

In Subsection 3.3.2 of Chapter 3 it is shown that, on finite structures, the algebraic language
is exactly as expressive as its counterpart first-order language. This result is one of the
cornerstones of relational database theory.

Many of the classical results from model theory fail for finite models; this in itself justifies
the study of finite models as an independent branch of model theory.

In the early 1930's G6del devised a proof system for first-order sentences which completely
characterises the set of valid first-order sentences. This monumental result, known as G6del's
completeness theorem, implies the following result, since we can systematically list all possible
proofs with the aid of a Turing machine.

Theorem 1.3 The set of valid first-order sentences over ,C is recursively enumerable but not
recursive, i.e. its complement is not recursively enumerable. 0

Trakhtenbrot [Tra63] proved the following result which implies the failure of the
completeness theorem for finitely valid first-order sentences (the original result in Russian
was published earlier in 1950).

Theorem 1.4 The set of finitely valid first-order sentences over ,C is not recursively
enumerable. 0

S4 Chapter 1. Introduction

Turing [Tur36, Tur37) in his seminal paper, defining the notion of computability, proved
the following result.

Theorem 1.5 The set of satisfiable first-order sentences over .c is not recursively enumerable.
o

On the other hand, the next result holds on using Theorem 1.4 since, given a first-order
sentence cp, we can systematically list all finite structures and test whether they satisfy cp.

Theorem 1.6 The set of finitely satisfiable first-order sentences over .c is recursively
enumerable but not recursive, i.e. its complement is not recursively enumerable. 0

A sentence which is either unsatisfiable or finitely satisfiable is said to be finitely controllable.
The following result is a direct consequence of Theorems 1.3 and 1.6.

Theorem 1.7
is decidable.

The problem of whether a finitely controllable first-order sentence is satisfiable
o

The theory of data dependencies, which is central to relational database theory, deals with the
investigation of limited subclasses of first-order sentences, which express certain constraints
on structures. In particular, the implication problem defined below is central.

Given a set of data dependencies ~ and a data dependency cp both in the same subclass offirst
order sentences under consideration, the implication problem is the problem of determining
the computational complexity of deciding whether for all structures A over .c, the following
condition is true:

A F= ~ implies A F= cp.

The reader will find a detailed account of data dependencies in Section 3.6 of Chapter 3.

Another fundamental result of model theory is the compactness theorem. It states that if
every finite subset of a set of sentences ~ is satisfiable then ~ is satisfiable; the cardinality of
E may be infinite. To see that the compactness theorem fails for finite models consider the
countably infinite set of sentences, <t> = {cPl , cP2 •...• cPi • ... }, where cPi states the existence of
at least i distinct elements in the universe. Then it is evident that every finite subset of <t> is
finitely satisfiable but <t> itself is not finitely satisfiable.

From the above we conclude that the foundations of finite-model theory cannot be built on
classical model theory. We will now briefly take a look at the fundamental tools and results
of finite-model theory. For the rest of this subsection we will assume that all structures, and
thus all models, are finite and that all structures and sentences are over a first-order language
.c. In the following we will often use the term logic instead of language; thus, for example, we
will use the term first -order logic instead of first -order language.

Two structures A and B over .c are said to be elementary equivalent, denoted by A == B, if
for every sentence cp over .c, A F= cp if and only if B F= cp. The next theorem implies that two
elementary equivalent structures cannot be distinguished by first-order sentences.

1.9. Background Material 55

Theorem 1.8 Two structures are elementary equivalent if and only if they are isomorphic.
o

Thus in finite-model theory it is more interesting to study classes of structures rather than
individual structures. Let a class of structures S be a subset of the set of all structures over
£, which is closed under isomorphism. A class of structures S can be viewed as expressing
some property such as being a connected graph (see Section 2.1 which introduces the notion
of a graph).

In order for a class of structures S to be definable (or expressible) in a language £ it must
be the case that there is a sentence cp over £ such that if A E S then A F cp and if A <t S
then A [;t: cpo That is, definability means that there is a sentence that is satisfied only by the
structures possessing the property.

One of the fundamental tools used to test whether a class of structures is definable is the
Ehrenfeucht-Frai'sse game [Ehr61, Bar73, Fag971. The k-round Ehrenfeucht-Fralsse game,
where k is a natural number, is a game consisting of k rounds played on a pair of structures
A and B by two players the Spoiler and the Duplicator. At each round the Spoiler makes a
move by choosing some constant in the universe of one of the structures and the Duplicator
must respond by a move choosing a constant from the universe of the other structure. The
game ends after k rounds, with k constants, ai, a2, ... , ak> chosen from the universe of A and
k constants, bl , b2, .. . , bk> chosen from the universe of B. If the mapping which takes each
ai to bi, for i = 1,2, ... , k, is a partial isomorphism from A to B then the Duplicator wins,
otherwise the Spoiler wins. (Bya partial isomorphism from A to B we mean that the respective
structures, induced by the restriction of the universe of A to ai , a2, . . . , ak together with the
interpretation of the constants of £, and the restriction of the universe of B to bl , b2, ... , bk

together with the interpretation of the constants of £, are isomorphic.) A winning strategy for
one of the players is a prescription, for playing the moves of each round of the game, which
guarantees that a player wins no matter how the other player moves in each round. The next
theorem characterises definability in terms of the Ehrenfeucht-Fralsse game.

Theorem 1.9 A class of structures S is definable in a first-order language £ if and only if
there is a natural number k such that whenever A E S but B <t S then the Spoiler has a
winning strategy in the k-round game over A and B. 0

As a corollary we can characterise the classes of structures S which are not definable in £.

Corollary 1.10 A class of structures S is not definable in a first-order language £ if and only
if for all natural numbers k, there exist structures A E Sand B <t S such that the Duplicator
has a winning strategy in the k-round game over A and B. 0

As an example consider a first-order language having no relation symbols and no constant
symbols, and two structures Ak and Ak+I, over this language, whose universes have k and
k + 1 elements, k E UJ, respectively. The reader can verify that the Duplicator has a winning
strategy in the k-round game over Ak and Ak+l. It follows that the property of having a
universe with an even number of elements is not definable in a first-order language.

56 Chapter 1. Introduction

As a more complicated example consider a first-order language having a single binary
relation symbol <, denoting the less than operator, and no constant symbols. A structure 8 m

over this language has a universe with m elements and a single relation 1 < 2 < ... < m
modelling a linear order oflength m. The reader can verify that the Duplicator has a winning
strategy in the k-round game over 8 ml and 8 m2 as long as the cardinalities of the two structures
are such that ml , m2 ~ 2k. Intuitively, after P rounds, with P :::: k, the Duplicator can always
maintain a large enough gap between any two elements in the smaller cardinality structure
which is needed to win the game. A more complex argument is needed to show that the
property of being a connected graph is not definable in a first-order language [Fag97J .

Viewing the number of variables in a first-order sentence as a logical resource motivates
the investigation of the expressiveness of variable-confined logics where variables may need
to be reused. This is similar to the situation in programming languages where variables are a
memory resource and thus their reuse leads to a more judicious use of space. Let FOk consist
of all the sentences over a first-order language C having at most k variables, where k is a
natural number.

As an example consider a first-order language having a single binary relation symbol E,
denoting the edges of a directed graph, and no constant symbols. Then the property asserting
the existence of a path (see Definition 2.2 in Section 2.1) of length n, where n is a natural
number, from a node x to a node y can be expressed in F03 by

3x 3y (Pn(x ,y)) ,

where PI (x, y) is defined by

PI (x , y) = E(x, y)

andpn(x,y) is defined inductively by

Pn(x, y) = 3z (E(x, z) ;\ (3x (x = z ;\ Pn- I (x , y)))).

Two structures A and 8 over C are said to be elementary equivalent in FOk, denoted by
A =k 8, if for every sentence rp E Fok, A F rp if and only if 8 F rp.

It is possible to characterise elementary equivalence in Fok in terms of an infinitary k-pebble
game, where k is a natural number, which can be viewed as a variation of the Ehrenfeucht
Fraisse game defined earlier. The Spoiler and the Duplicator share k pairs of pebbles such that
the pebbles in a given pair are said to correspond to each other. The game is played on two
structures A and 8 and the players take turns as follows. At each round of the game the Spoiler
chooses a pebble and places it on one of the constants in the universe of one of the structures.
The Duplicator must respond by placing the corresponding pebble in the pair on one of the
constants in the universe of the other structure. At each round the Spoiler may choose a
pebble which has so far been unused, i.e. not yet placed on a constant in the universe of one
of the structures, or the Spoiler may choose to reuse a pebble already placed on a constant in
the universe of one of the structures. In each case the Duplicator must respond by choosing
the corresponding pebble and placing it on a constant in the universe of the other structure
according to the rules of the game. The game continues indefinitely. After m rounds, m ~ 0,
we have n pairs (ai, bl) , (a2 , b2), ... , (an , bn) of constants chosen from the universes of A and
8, respectively, with n :::: k, corresponding to the n placed pairs of pebbles. The Spoiler wins

1.9. Background Material 57

the in finitary k-pebble game if after m rounds, for some m, with m ::: 0, the mapping which
takes each ai to bi, for i = 1, 2, . . . , n, is not a partial isomorphism from A to B, otherwise
the Duplicator wins. Thus if the Spoiler wins after m rounds the game may be terminated,
otherwise the Duplicator can force the game to continue forever. A winning strategy for one
of the players is defined as for the Ehrenfeucht-Fralsse game. The next result characterises
elementary equivalence in FOk [Bar77, IK89, KV92a, KV92b, DLW95] .

Theorem 1.11 Let A and B be two structures over a first-order language C. Then A =k B
if and only if the Duplicator has a winning strategy in the k-pebble game. 0

In the above references a further characterisation of elementary equivalence in FOk is
shown in terms of elementary equivalence in the injinitary logic L~w' The first subscript
indicates that conjunctions and disjunctions can be taken over arbitrary, possibly infinite,
sets of formulae and the second subscript indicates that only finite quantifier blocks are
allowed. The superscript indicates that any formula can have at most k variables. The study
of infinitary logics has been instrumental in studying the expressive power oflanguages which
are more expressive than first-order ones.

As we have seen, the expressive power of finite structures over a first-order language is
rather limited, since there are many useful properties which are not definable within first-order
logic. This has lead researchers to investigate more expressive logics such as fixpoint logic and
second-order logic over finite structures. (We refer the reader to Chapter 9 and to Section 6.7
of Chapter 6 for extensions of query languages beyond first-order logic; for example, with the
addition of a fixpoint operator.)

A very fruitful subarea of finite-model theory which deals specifically with the expressive
power of logical languages is descriptive complexity [Imm89, Imm95]. In descriptive
complexity we endeavour to capture computational complexity classes in terms of the classes
of structures, i.e. properties that are definable in a particular language of logic. The area
of descriptive complexity began in 1974 with Fagin's characterisation of the computational
complexity class NP as the set of properties that are definable by second-order existential
formulae [Fag741. (The language of second-order logic supersedes first-order logic by also
having variables that range over relations such that these variables may be quantified. A
second-order existential formula begins with second-order existential quantifiers and is
followed by a first-order formula.)

As we have mentioned above the expressive power of first-order logic is limited. More
specifically, its descriptive complexity can be seen to be contained in LOGSPACE. The addition
of a fixpoint operator to a first-order language increases the expressive power of first-order
logic by allowing inductive definitions of relations. In Section 6.7 we present Vardi and
Immerman's characterisation of the computational complexity class PTIME as the set of
properties that are definable within first-order logic having a linear order relation symbol
and augmented with the addition of a fixpoint operator possessing least jixpoint semantics
[Var82a, Imm86]. We also mention that the computational complexity class PSP ACE can be
characterised as the set of properties that are definable within first-order logic having a linear
order relation symbol and augmented with the addition of a fixpoint operator possessing
partial jixpoint semantics [Var82al; partial fixpoint semantics allows the inductive definition

58 Chapter 1. Introduction

to repeat itself an exponential number of times, but using only a polynomial amount of space,
when a least fixpoint does not exist.

Descriptive complexity is a significant route one can take in trying to solve hard problems
in the area of computational complexity. As an example, Immerman has been able to solve a
longstanding open problem using a result in descriptive complexity; specifically he has shown
that nondeterministic space is closed under complementation [Imm88).

We now briefly discuss a fascinating connection between the asymptotic probability of a
property, which informally measures the probability of a random structure possessing the
property, and definability in a language oflogic.

Assume a first-order language ,c having no constant symbols, and assume that the universe
[A) of a structure A over ,c is always taken to be {O, 1, . .. , n - I} for some natural number
n. Also, let en be the set of all structures over'c, where the universe is the set {O, 1, . . . , n - I}
of cardinality n, and let S be a class of structures over ,c defining some property.

The asymptotic probability p,(S) is the limit as n tends to infinity of the fraction of structures
over ,c whose universe has n elements and are in S. Formally,

p,(S) = lim P,n(S),
n-HXl

where
(S) = IS n enl.

P,n lenl

When the asymptotic probability of the property defined by a class of structures S over
,c is one then we say that almost all structures over ,c have this property, and when the said
asymptotic probability is zero then we say that almost no structures over ,c have this property.
Many interesting properties of graphs, which can be modelled as structures over a first-order
language having a single binary relation symbol, are satisfied by almost all or almost no graphs
[BH79). For example, almost all graphs are connected and almost no graphs are planar. (A
planar graph is a graph that can be drawn in the plane in such a way that no two edges cross
each other.) On the other hand, not all properties have an asymptotic probability of zero or
one. Thus, for example, the asymptotic probability of the property of having a universe with
an even number of elements is undefined, since it oscillates between zero and one. As another
example, suppose we allow ,c to have a single constant symbol, c, and that U is a unary relation
symbol in'c. Then the property U(c) of all structures, which have a tuple whose interpretation
is c, has an asymptotic probability of 1/2.

The asymptotic probability p,(rp) of a sentence rp over ,c is the asymptotic probability of the
set of all structures which satisfy rp. More formally,

p,(rp) = p,({A 104 1= rpl) .

A language ,c is said to have a zero-one law if the asymptotic probability ·of each of its
sentences is either zero or one. Fagin [Fag76) and independently Glebskii [GKLT69] proved
the remarkable result that first-order logic has the zero-one law. It therefore follows that if the
asymptotic probability of a property is not zero or one, then it is not definable in first-order
logic. Thus for example, the zero-one law for first-order logic implies that the property of
having a universe with an even number of elements is not first-order definable. It has been

1.1 O. Exercises 59

shown that the zero-one law also holds for fixpoint logic [BGK85j. A more general result is
that the zero-one law also holds for the infinitary logic L~w' where k is a natural number
[KV92cj.

The reader interested in the finite-model theory of nonclassical logics will also find strong
links between such logics and database theory. The foundations, which underpin the treatment
of incomplete information in relational databases, presented in Chapter 5, build upon three
valued, modal and fuzzy logics, while the foundations of temporal databases, presented in
Chapter 7, build upon temporal logic. Moreover, recent research into deductive databases
also known as logical databases, presented in Chapter 9, has made an immense contribution
to the advancement of the theories of nonmonotonic and default logics.

The classical reference on model theory, now in its third edition, is [CK90], and a recent
introduction to model theory is [Doe96j. Many of the seminal papers which laid the
foundations of mathematical logic can be found in [Van67j. A recent book solely devoted
to finite-model theory is [EF95]. Gurevich [Gur84] discusses in detail the failure of classical
results in model theory, and Fagin [Fag93] presents a very informative perspective on the
achievements of finite-model theory from a logician's point of view. A database theorist's
point of view is given by Vianu [Via97a]; he surveys the achievements of database theory
with the aim of convincing finite-model theorists that database theory provides a rich source
of interesting and relevant problems. The reader will find in this book many connections
between finite-model theory and database theory.

1.10 Exercises

Exercise 1.1 Assume that we have a relational data model at the conceptual database level.
Argue for and against adding a new internal database level between the conceptual and physical
levels, whose database schema is either hierarchical or nested relational. Define the notion of
internal data independence when such an internal level is added to the DBMS levels [SPS87].

Exercise 1.2 Define relational, network and hierarchical conceptual database schemas for
an application which manages exam results.

Exercise 1.3 With the widespread use of personal computers (PCs) it is common for a
database system to be used by a single user only. Discuss how this situation eases the tasks
the DBMS has to perform.

Exercise 1.4 At the physical level relations are stored as files and each tuple in a relation is
stored as a record in the file. An index allows us to locate records in a file in a similar way to
locating information in a book via an index. Thus an index to a file consists of the key values
of records and their addresses indicating their location in the file. (See [U1l88] for more details
on indexed files, and [Com79] for a survey on B-trees, which is a well-known technique for
organising a file and its index.)

Justify the use of an indexed file for query optimisation purposes, as opposed to a sequential
file organisation, where the records in a file are arranged in a particular order and a record

60 Chapter 1. Introduction

can only be accessed when all the records prior to it in the file have been accessed. You must
take into account the overhead of maintaining an indexed file compared to a sequential file.

Exercise 1.5 Indexed files allow random access to records, in the sense that any record in
the file can be accessed independently of accessing any other record. A hashed file is a file
which allows random access to its records without the need to maintain an index. The basic
idea is to compute the location of a record by applying the key value of the desired record to
an algorithm, called a hashing algorithm. A problem that may arise with a hashing algorithm
is that of collisions, i.e. the hashing algorithm may map two different key values to the same
location. In order to lessen the problem of collisions we can organise the records in a file in
buckets, which have the capacity to store several records. Then we require that the result of
the hashing algorithm return the address of the bucket in which the record is held, so that
this bucket can be sequentially searched for the desired record. Still this does not completely
solve the problem of collisions, since eventually a bucket may be full , and then an overflow
area must be designated for new records with the same hashed location. (See [Wie77, U1l88j
for more details on hashed files.)

Discuss the issues that determine whether you would choose a hashed file organisation for
the physical storage of a relation as opposed to an indexed file organisation.

Exercise 1.6 Suggest how referential integrity may be maintained when primary and foreign
key values of tuples in relations are updated [Dat86a, eT88, HR96j. Note that there may
be several competing policies for integrity maintenance such as blocking, i.e. disallowing the
update in certain circumstances, or propagation of the update to all tuples in the database
which are affected by the update.

Exercise 1.7 Discuss the pros and the cons of having a computationally complete database
language as a user query language.

Exercise 1.8 You may have heard of or already used a logic programming language, called
Prolog, whose style is similar to that of Datalog. Suggest how a rule-based query language
such as Datalog can combine general purpose programming with database programming.

Exercise 1.9 A recent proposal is to extend attribute domains of relation schemas so that
they may be specified as user-defined abstract data types. For example, the user may define an
abstract data type, ADDRESS, which is composed of the various address components such as
house number, street name, city and postcode. Argue for and against calling such an extended
relational data model, the object-relational data model [SM96j.

Exercise 1.10 Suppose that we have available an object-oriented DBMS, which comes
equipped with a computationally complete database programming language, called DPLOO,
providing the interface between the user and the database. Discuss the validityofthe statement
that DPLOO queries are harder to optimise than SQL queries.

2. The Entity-Relationship Model

The Entity-Relationship model (abbreviated to ER model) is a data model, which allows us to
model the semantics of a conceptual database schema. Actually, the ER model is only a partial
data model, since it only caters for the data structure and integrity constraint parts of a data
model with no provision being made for a query and update language.

The main motivation for defining the ER model [Che76, Che77] is to provide a high level
model for conceptual database design, which acts as an intermediate stage prior to mapping
the enterprise being modelled onto a conceptual level of say the relational model. The ER
model explicitly incorporates in its constructs important semantic information about the real
world, thus easing the task of the database designer. Furthermore, it achieves a high degree
of data independence freeing the database designer from the details of the physical structure
of the database.

The main semantics modelling constructs of the ER model are: entities, attributes of entities
and relationships between entities. For example, we can have employee entities where each
employee has the attributes: name, salary, address and phone numbers. Another example is
department entities where each department has a name, a manager and a location. This type
of abstraction, which forms a class of objects, in this case employee entities or department
entities, from its component objects, in this case its set of attributes, is called aggregation
[5577, PM88]. An example of a relationship between employees and departments is that of
"works in", meaning that an employee works in a department. This is also a type of abstraction,
which forms a binary relationship between two types of entity. Another important semantic
construct is that of generalisation [SS77, PM88] which ignores the differences between similar
objects in order to form an object of higher type. For example, employee and student entities
can be generalised to person entities. This type of abstraction can be viewed as specialisation,
since both student and employee entities can be viewed as special cases of person entities. In
the ER model generalisation is represented by a built -in relationship, called an [SA relationship.
For example, an employee ISA person and a student ISA person. This means that both the sets
of student and employee entities are a subset of the set of person entities. ISA relationships are
useful since they allow inheritance of attributes [PM88]. In our example, student entities will
inherit all the attributes of person entities. In addition to the inheritance of attributes, student
entities may also have specific attributes not present in person entities, such as student id and
the course they are taking.

The ER model has proved to be very successful in database design due its simple yet powerful
graphical representation via Entity-Relationship Diagrams (ERDs). An ERD for describing
the conceptual database schema of a computerised book order system is shown in Figure 2.1.

61

62 Chapter 2. The Entity-Relationship Model

Fig 2.1 An ERD describing a computerised book order system

Intuitively, a Customer places Orders which specify the Books being ordered and each Order
is billed by an Invoice, which is received by the Customer who ordered the Books.

The meaning of all the symbols used to represent an ERD will be discussed in Section 2.2
below. We mention that ERDs are widely used in software engineering for doing data analysis
[MM85, You89, Pla92], since they provide a high level data independent description of the
data involved in the system under development.

The ERD shown in Figure 2.1 represents the database schema, i.e. the types of the objects
corresponding to the real world enterprise we are modelling. Our notation differs from the
original notation encountered in [Che76, Che77] but is commonly used nowadays in industry
[MM85]. On the other hand, there is no accepted notation for the instances of entity types and
the relationships amongst relationship types; a conventional approach is the tabular approach
as in the relational model. The main disadvantage of this approach is that the semantics which
are explicitly represented in the ERD become implicit at the instance level. In Section 2.2
together with the detailed description of ERDs we propose to use a graphical notation in the
spirit of the ER model for the actual entities and relationships (cf. [PL94, LL95b D.

The main advantages of ERDs are:

• They are relatively simple .

• They are user-friendly, i.e. they correspond to a natural view of the real world.

2.1 . Graphs 63

• They can be translated into database schemas of different data models such as the
relational, network and hierarchical data models and thus can provide a unified view of
data [Che76, Che77].

In Section 2.1 we define the concept of a graph. In Section 2.2 we present the building blocks
of an ERD. In Section 2.3 we discuss recursive relationships. In Section 2.4 we discuss weak
entity types, and in Section 2.5 we describe the steps a database designer should follow when
constructing an ERD.

2.1 Graphs

In this section we define the concept of a graph [Cha77, Wil85, BH90 1, which is the mathematical
concept that underpins the notion of a diagram.

Defmition 2.1 (Graph and subgraph) A graph is an ordered pair (N, E), where N is a finite
set of nodes (also called vertices) and E is a set edges such that each edge, e = {u , v}, is an
unordered pair of distinct nodes of E.

Both nodes and edges can be labelled, i.e. they can be annotated by a number or a string to
add meaning to the graph. At times we also label the graph as a whole in order to distinguish
it from other graphs.

A directed graph (or simply a digraph) is a special case of a graph (N, E), where E is a set of
arcs such that each arc, e = (u, v), is an ordered pair of nodes of E. If (u , v) E E, then we say
that there is an arc from u to v in E.

A subgraph (or a subdigraph if the graph is directed) of a graph (N, E) is a graph having all
of its nodes in N and all of its edges in E. For any subset S ofN, the subgraph of (N, E) induced
by S is the maximal subgraph of (N, E) having S as its node set. •

Defmition 2.2 (Acyclic and cyclic graphs) A walk (oflength k) from node u EN to node v E
N in a directed graph (N, E) is an alternating sequence of nodes ni E N and arcs ei E E

where no = u, nk = v and ei = (ni-l, ni) , 1 SiS k. If the graph is undirected then we
replace (ni-l, ni) by the unordered pair {ni-l , nil.

A path from u to v is a walk from u to v in which all the nodes ni, 0 Si S k, are distinct. A
cycle (from u) is a walk from u to v in which u = v (i.e. it is a closed walk) and such that all
the ni, 1 SiS k - I, are distinct.

A graph (which is either directed or undirected) is acyclic if it does not contain any cycles,
otherwise if it contains at least one cycle then it is cyclic. In the case when the graph is not
directed, a connected acyclic graph is called a tree; a graph is connected if there is a path joining
each distinct pair of its nodes. •

We next give some examples of the usefulness of graphs. In Figure 2.2 we show a graph
representing a network of motorways between cities; the labels of the nodes denote the names

64 Chapter 2. The Entity-Relationship Model

City A CityB
100km

60km 150km 70km

50km
City D CityC

Fig 2.2 Graph representing a network of motorways

Bob

Ray

Mary

Jill Jane

Fig 2.3 Digraph representing a company hierarchy

of the cities and the labels of the edges denote the distance in kilometres between the cities.
This type of graph (or digraph) is called a network.

In Figure 2.3 we show a digraph representing a company hierarchy between employees.
The labels of the nodes denote the employees' names. This type of graph is called a tree (see
Definition 2.2) and a collection of trees is called a forest.

In Figure 2.4 we show a digraph representing the machine parts supplied to projects. This
type of digraph is called a data structure diagram [Bac69).

We note that the direction of the arc is represented diagrammatically by an arrow head. If
an arc is bidirectional, i.e. both (u, v) and (v, u) are in E, then we can just draw a line between
u and vas we would in the case of an edge {u, v}. Thus a bidirectional arc can be viewed as an
edge. At times when the direction of the arc is understood from context we refer to an arc as
an edge. We observe that the ERD shown in Figure 2.1 is also a digraph. The exact meaning
of the labelling system used for ERDs will be explained in the following sections.

2.2. The Building Blocks of an Entity-Relationship Diagram (ERD) 65

Fig 2.4 Digraph representing parts supplied to projects

Basic ERD Constructs

Concept Representation Example

Entity type
I I I

BOOK
I

Relationship type)) PLACES
~ ~

Attribute 0 8
Primary key Q ® attribute

Fig 2.5 Summary ofthe basic ERD constructs

2.2 The Building Blocks of an Entity-Relationship Diagram (ERD)

An ERD has only three components:

1) Entity types represented by labelled boxes.

2) Relationship types represented by labelled arcs, which connect the two entity types
participating in the relationship type.

3) Attributes represented by labelled ellipses, which are connected to an entity type by an
edge.

A summary of the basic ERD constructs is shown in the table of Figure 2.5.

For example, in the ERD shown in Figure 2.1 CUSTOMER and ORDER are entity types,
PLACES is a relationship type between CUSTOMER and ORDER and NAME and ADDRESS
are attributes of CUSTOMER.

66 Chapter 2. The Entity-Relationship Model

2.2.1 Entities

Definition 2.3 (Entity) An entity (or an object) is a "thing" that exists and is distinguishable,
i.e. it can be uniquely identified. •

The following are examples of entities:

1) A particular person, say Mark, is an entity.

2) A particular department, say the UCL Computer Science department, is an entity.

3) A particular book, say this book, is an entity.

Definition 2.4 (Entity type) An entity type (sometimes called an entity set) is a collection (or
a set) of similar entities. •

The following are examples of entity types:

1) The entity type of all lecturers in UCL, say LECTURER.

2) The entity type of all students in UCL, say STUDENT.

3) The entity type of all cars in London, say CAR.

Note that, in general, an entity may belong to more than one entity type. For example,
Mark may belong to both the entity types PERSON and LECTURER. An instance of an entity
type is a set of entities which contains the actual entities of the entity type that are stored in
the database. (When no ambiguity arises we also call an instance of an entity type simply an
entity set.) We depict an instance of an entity type by a graph which is labelled by the entity
type and whose nodes represent the entities in the instance. For some examples of instances
of entity types see Figure 2.6.

By convention each node (or entity) in the instance is represented by a string beginning
with "$". We observe that since we are dealing with a database system each instance of an
entity type can only contain a finite number of entities although the set of possible entities in
an entity type may be infinite for all practical purposes.

2.2.2 Relationships and their Functionality

Definition 2.5 (Relationship type) A (binary) relationship type among entity types is an
association among two entity types. •

The following are examples of relationship types:

1) TEACHES is a relationship type between LECTURER and STUDENT.

2) TUTORS is also a relationship type between LECTURER and STUDENT.

3) ASSIGNED_TO is a relationship type between EMPLOYEE and DEPARTMENT.

2.2. The Building Blocks of an Entity-Relationship Diagram (ERD)

LECTURER

$MARK $ANDY

$JOHN $PAUL

$PETER $CHRIS

STUDENT

$JAMES $PAULB

$DAN $MARKB

SQUASH-PLAYERS

$ANDY $MARKB

$DAN $PAUL

BOOK

$B1 $B2 $B3
$B4 $B5 $B6
$B7 $B8 $B9

CUSTOMER

$C1 $C2
$C3 $C4

ORDER

$01 $04

$02 $05

$03 $06

INVOICE

$11 $12

$13 $14
$15

Fig 2.6 Instances of entity types

TEACHES

STUDENT

TUTORS

Fig 2.7 An example of a relationship type

L-__ E_M_PL_O_YE_E __ ~~P>~--RE_S_ID_ES~ __ IN--~.IL ___ DE_P_AR_T_M_EN_T __ ~
Fig 2.8 An example of a relationship type

67

We observe that as in TEACHES and TUTORS above there may be more than one
relationship type between any two entity types. Relationship types are linked to the entity
sets participating in the relationship type by edges whose end points are either arrow heads
or crow's feet; the meaning of this notation will be explained below. Some examples of
relationship types are shown in Figures 2.7, 2.8, 2.9 and 2.10.

68 Chapter 2. The Entity-Relationship Model

Fig 2.9 An example of a relationship type

~ ___ MA_N_A_GE_R __ ~~14r---RE-SI-DE-S-J-N--~.IL ____ O_F_FI_CE ____ ~
Fig 2.10 An example of a relationship type

We refer to a relationship as the instance of a relationship type, i.e. to the set of pairs of
entities that are constructed from the entity types over which the relationship type is defined
and that participate in the actual relationship that is stored in the database. In mathematical
terms a relationship is just a (binary) set-theoretic relation (see Section 1.9.1). For simplicity
of the model we will always assume that any entity in an instance of an entity type mayor
may not participate in a relationship. Thus, for example, if $John is an entity belonging
to an instance of EMPLOYEE, then $John mayor may not participate in an ASSIGNED_TO
relationship. That is, we are assuming that $John mayor may not be assigned to a department.
This allows the participation in a relationship of entities, in an entity type of a relationship
type, to be optional (or partial). In general, it is also possible to constrain the participation in a
relationship of entities, in an instance of an entity type of a relationship type, to be mandatory
(or total), i.e. if we insist that every entity in the instance of the entity type participates in the
relationship. Such a distinction is made in [MM85, BCN92, Te094J. By default we assume that
the participation of entities in relationships is optional.

In the following we will use the term cardinality of a set to be the number of elements in
that set (see Section 1.9.1). Let R be a relationship type connecting the two entity types EJ

and E2. We now classify a relationship type according to how many entities in an instance of
El can be associated with how many entities in an instance of E2, within an instance of the
relationship type R. That is, we classify relationship types according to the cardinality ratio
between the instances of the two participating entity types. Now, let r be a relationship over
R and let e) and e2 be entities belonging to instances of E) and E2, respectively, such that e)
and e2 participate in r. Then we say that R is

• many-to-one if every entity el as defined above is associated in r with at most one entity
belonging to an instance of E2'

• one-to-many if every entity e2 as defined above is associated in r with at most one entity
belonging to an instance of E).

• one-to-one if every entity el as defined above is associated in r with at most one entity
belonging to an instance of E2, and correspondingly every entity e2 as defined above is
associated in r with at most one entity belonging to an instance of E).

• many-to-many if every entity eJ as defined above is associated in r with zero or more
entities belonging to an instance of E2, and correspondingly every entity e2 as defined
above is associated in r with zero or more entities belonging to an instance of E) .

2.2. The Building Blocks of an Entity-Relationship Diagram (ERD) 69

We note that the definitions of many-to-one and one-to-many are symmetric with respect
to El and E2 and that R is one-to-one if and only if it is many-to-one and one-to-many.
Furthermore, R is many-to-manyifit is neither many-to-oneor one-to-many. In mathematical
terms a many-to-one relationship type induces a partial mapping (or function) from instances
of El to instances of E2, and correspondingly a one-to-manyrelationship type induces a partial
mapping from instances of E2 to instances ofEI (see Section 1.9.1). Furthermore, a one-to-one
relationship type induces a partial one-to"one mapping from instances of El to instances of
E2• Finally, a many-to-many relationship type induces a (mathematical) relation between
instances of El and instances of E2 .

Some examples of the functionality of relationship types are now given:

1) The relationship type ASSIGNED_TO between EMPLOYEE and DEPARTMENT is many
to-one.

2) The relationship type EMPLOYS between DEPARTMENT and EMPLOYEE is one-to
many.

3) The relationship type MANAGES between MANAGER and DEPARTMENT is one-to
one.

4) The relationship types TEACHES and TUTORS between LECTURER and STUDENT are
many-to-many.

We use the following notation in an ERD to indicate the functionality of a relationship type
R from El to E2:

1) IfR is one-to-one then the end points of the edge connecting El and E2 are both depicted
by arrow heads.

2) If R is many-to-one then the end points of the edge connecting El and E2 are depicted
by a crow's foot on the El side and an arrow head on the E2 side.

3) If R is one-to-many then the end points of the edge connecting El and E2 are depicted
by an arrow head on the El side and a crow's foot on the E2 side.

4) If R is many-to-many then the end points of the edge connecting El and E2 are both
depicted by crow's feet.

A summary of the constructs for an ERD relationship type is shown in the table of Figure 2.11.

As with instances of entity types, instances of relationship types are also depicted as graphs.
In this case the graph is labelled by the relationship type, its nodes represent the entities
that participate in the relationship and its edges (or arcs) represent the associations which
make up the relationship. As in our representation of instances of entities the nodes in the
relationship are represented by strings beginning with a "$". For some examples of instances
of relationship types see Figure 2.12.

We note that the graphs that represent instances of relationship types are bipartite graphs,
i.e. their node set N is partitioned into two subsets, say Nl and N2 , such that every edge (or
arc) in E joins a node in Nl with a node in N2, and no node joins with another node of its own
subset. Diagrammatically, we can see in Figure 2.12 that the node sets Nl and N2 of a bipartite

70 Chapter 2. The Entity-Relationship Model

Basic ERD Constructs

Concept Representation Example

ASSIGNED_TO

Many-to-one) -
1

EMPLOYEE ~ -I DEPARTMENT
1

EMPLOYS

One-to-many -- < 1

DEPARTMENT 14 ~ EMPLOYEE
1

One-to-one
1

MANAGER
1--

HAS -I SECRETARY
1

.. -
WORKSJOR

Many-to-many) < 1

EMPLOYEE ~~ PROJEa l
Fig 2.11 Summary of the ERD relationship type constructs

$SPECIFIES
$PLACES

$01 --$Bl $01 ____
$02 ~$B2

$BILLING

$02 _$Cl $B3 $01-$11

$03 -$(2
$03 :::::x2 $B4 $02 -$12

$04~
$04 $B5

$03 ----- $13
$05 ~ $B6

$05 -$0 $B7 $04 -$14

$06- $06 $B8 $05 -$15

Fig 2.12 Examples of instances ofrelationship types

graph can be depicted each in a separate column and each edge in E joins a node from one
column to the other. The node set NJ is seen to represent the set of entities EJ and N2 is seen
to represent the set of entities E2.

In the formalism we have presented herein we have restricted ourselves to binary
relationship types, since they are the most common in practice. In fact this is not a restriction,
since any relationship type can always be reduced to a set of binary relationship types. For
example, suppose thatwe have the entity types, SUPPLIER, PART and PROJECT, with a ternary
relationship type between these three entity types meaning that a Supplier supplies many Parts
to many Projects. In Figure 2.13 we show how this ternary relationship type can be expressed
as a set of three binary relationship types, via the new entity type SPP.

We close this section with a bit of controversy. It has been claimed in [Dat92b 1 that there
is no clear distinction between the concepts of entity and relationship, i.e. one person's entity
may be another person's relationship. For example, suppose that we are designing an airline's
flight database. Then, a FLIGHT may be considered as a relationship type between an entity
type ROUTE and an entity type AIRCRAFT or as an entity type in its own right. There are two

2.2. The Building Blocks of an Entity-Relationship Diagram (ERD) 11

SUPPLIER PART PROJECT

Fig 2.13 A binary relationship type representing a ternary relationship type

answers one can give to such critics of the ER model. The first answer is that the ER model
provides the flexibility to model real-world enterprises in several different ways. This is an
advantage, since in any case there is always more than one way of viewing the semantics of any
application under development and, in general, there is no one definitive design. Furthermore,
from the practical point of view the distinction between entity and relationship seems to be
very useful and it is clear that without relationship types the semantics of the data model would
be greatly reduced. The second answer is that if the relationship type is such that it needs to
have attributes then it must be modelled as an entity type, since we do not allow relationship
types to have their own attributes. Thus, if we would like to model the flight's date as an
attribute of FLIGHT rather than an attribute of ROUTE, then FLIGHT must be modelled as
an entity type. We note that in the original ER model of Chen [Che76, Che77) relationship
types are allowed to have their own attributes. It follows that the variation of the ER model
we have presented herein has the advantage of simplifying the problem of deciding whether
to represent some part of the enterprise as an entity or as a relationship.

2.2.3 Attributes and Domains

Definition 2.6 (Attribute) Attribute names (or simply attributes) are properties of entity
types. •

The following are examples of attributes:

1) SOC#, PNAME, SPOUSE, CNAMES, HEIGHT and ADDRESS are attributes of PERSON.

2) DNAME, COLLEGE, ADDRESS and PHONES are attributes of DEPARTMENT.

3) SERIAL#, MODEL, COLOUR and ENGINE_SIZE are attributes of CAR.

We distinguish between single-valued attributes such as PNAME, DNAME and ADDRESS
and multi-valued attributes such as CNAMES and PHONES. In the ERD we represent the fact
that an attribute is single-valued by connecting it to its entity type with a single line and the
fact that an attribute is multi-valued by connecting it to its entity type by a double line; see
Figure 2.1 for examples of single-valued and multi-valued attributes in an ERD.

The domain of an attribute indicates what values the attribute can take. Domains can be
viewed as giving meaning (or semantics) to attributes.

72 Chapter 2. The Entity-Relationship Model

DefInition 2.7 (Domain) The domain of an attribute of an entity type is a set of constant
values (or simply values) associated with that attribute. •

A domain is atomic (or primitive) if its values are non decomposable, i.e. as far as the
database system is concerned they have no internal structure. Examples of atomic domains
are the domain of all positive integers, the domain of integers between 10 and 10,000, the
domain of all strings over the English alphabet and the domain of all strings of length 20 over
the English alphabet. A domain is set-valued if its values are finite sets of atomic domains, i.e.
a set-valued domain is a subset of the power set of an atomic domain. Examples of set-valued
domains are the domains of finite sets of integers and the domain of finite sets of strings.

We note that a domain may be finite or countably infinite. (A set is countably infinite
if it can be put into a one-to-one correspondence with the set of all natural numbers; see
Section 1.9.1.) Furthermore, we observe that we can view domains in terms of Data Dictionary
(DD) definitions, where atomic domains are specified by primitive DD definitions and set
valued domains are specified by iterated DD definitions [You89].

An attribute for a given entity type, say E, associates with each specific entity in an instance
ofE, a unique attribute value (or simply a value) from its domain. That is, an attribute can be
considered as a mapping from an instance of its underlying entity type to its domain.

Let att be an attribute of the entity type E and ent be an entity in an instance ofE. The value
that att associates with ent is denoted by att(ent).

For example, let PI be an entity in an instance of the entity type PERSON. Then we may
have:

SOC#($Pl) = 45671,
PNAME($Pl) = Jack,
SPOUSE($Pl) = Lisa,
CNAMES($Pl) = (Jill, Mary, Mona),
HEIGHT($Pl} = 187 and
ADDRESS($P1) = "North London".

As another example, let D2 be an entity in an instance of the entity type DEPARTMENT.
Then we may have:

DNAME($D2) = "Computer Science",
COLLEGE($D2) = "UCL",
ADDRESS($D2) = "Central London" and
PHONES($D2) = {3807777, 3877050}.

We depict the attribute values of an entity, say ent, as a digraph labelled by ent as follows:

I) For each attribute we have a node in the digraph labelled with the name of the attribute,
which is denoted by a string of uppercase letters possibly containing the underscore
character.

2) For each attribute value we have a node in the digraph labelled with the value of the
attribute, which is denoted by a string containing at least one lowercase letter or a string
surrounded by double quotes or a natural number.

2.2. The Building Blocks of an Entity-Relationship Diagram (ERD)

SOC

PNAME

CNAMES

SPOUSE

HEIGHT

ADDRESS

DNAME

COLLEGE

$P1

~

$02

ADDRESS -

PHONES ~

45671

Jack
Jill
Mary
Mona

Lisa

187

"North London"

"Computer Science"

"UCL"

"Central London"

3807777
3877050

Fig 2.14 Digraphs that depict entities

73

3) For each single-valued attribute, designated SATT, we draw an arc from SATT to its
value, say val, representing the fact that SATT(ent) == val. (That is, for single-valued
attributes we have a single arc for the only attribute value.)

4) For each multi-valued attribute, designated MATT, and each value, say vah, with vali
E MATT(ent), we draw an arc from MATT to vah. (That is, for multi-valued attributes
we may have multiple arcs, one for each attribute value.)

Our graphical representation allows a natural representation of missing information of the
type value does not exist. For example, if CNAMES($P!) == 0, i.e. $P! does not have any
children, then in the digraph for $P! we do not have any arcs emanating from CNAMES. In
addition, if SPOUSE($Pl) is undefined or inapplicable, i.e. $P! does not have a spouse, then
in the digraph for $P1 we do not have any arcs emanating from SPOUSE. Some examples of
the digraphs that depict entities are shown in Figure 2.14.

2.2.4 Keys

Definition 2.8 (Key and superkey) An attribute or a set of attributes, whose values uniquely
identify each entity in an instance of an entity type, is called a superkey for the entity type.

If a set of attributes K is a superkey for an entity type E and, in addition, no proper subset
ofK is a superkey for E (i.e. K is a minimal set of attributes that is a superkey for E) then K is
called a candidate key (or a minimal key or simply a key) for E.

A simple key for E is a key for E which is composed of a single attribute. •

74 Chapter 2. The Entity-Relationship Model

In other words a key is a minimal set of attributes that uniquely determines each entity
in an instance of an entity type_ From now on we will assume that keys contain at least one
attribute, i.e. we disallow keys to be the empty set of attributes.

The following are examples of simple keys:

1) {SOC#} (or simply SOC#) is a simple key for PERSON.

2) {PHONES} (or simply PHONES) is a simple key for DEPARTMENT.

3) {SERIAL#} (or simply SERIAL#) is a simple key for CAR.

A composite key is a key composed of two or more attributes. The following are examples
of composite keys:

1) {DNAME, COLLEGE} is a composite key for DEPARTMENT.

2) {PNAME, ADDRESS} is a composite key for PERSON.

We now make several observations:

• Every entity type must have at least one key, since we define en tities to be distinguishable.

• In the absence of a natural key we can create an artificial simple key such as SERIAL#,
EMP# and PROJECT#, which assigns a unique number to each entity in an instance of
an entity type. Such artificial simple keys are called surrogate keys.

• Simple keys are easier to specify and to maintain than composite keys but may have
been artificially created.

• An entity type may have more than one key; for example, the entity types PERSON
and DEPARTMENT have multiple keys. Thus for such entity types one of the keys is
designated as the primary key, and the other keys are called alternate keys. The primary
key provides a guaranteed logical access to every entity in an instance of an entity type
through the attribute values of the entity.

In the ERD we represent the fact that an attribute belongs to the primary key by underlining
the attribute; see Figure 2.1 for examples of key attributes in an ERD.

Definition 2.9 (Primary key of a relationship type) Let EJ and E2 be the entity types
participating in a relationship type R, with KJ being the primary key of EJ and K2 being
the primary key of K2' The primary key of R is determined according to the following cases:

1) IfR is many-to-many then KJ U K2 is the primary key ofR.

2) If R is one-to-many then K2 is the primary key of R.

3) If R is many-to-one then KJ is the primary key of R.

4) If R is one-to-one then either KJ or K2 is the primary key of R. •

2.2. The Building Blocks of an Entity-Relationship Diagram (ERD)

Concept

Single-valued
attribute

Multi-valued
attribute

Attribute Constructs

Representation

==0

Example

C#

CUSTOMER ~

Fig 2.1 S Summary of the ERD attribute constructs

7S

In this definition we assume, without loss of generality, that KJ and K2 are disjoint; we can
always enforce this disjointness by adding to each attribute a role name corresponding to the
entity type it belongs to; see Section 2.3. We further note that in all cases KJ U K2 is a superkey
for R.

The following example gives the primary keys of two relationship types:

1) Assume that there is a many-to-many relationship, SPECIFIES, between ORDER and
BOOK, that 0# is the primary key of ORDER and that B# is the primary key of BOOK.
Then {O#, B#} is the primary key of SPECIFIES.

2) Assume that there is a many-to-one relationship, ASSIGNED_TO, between EMPLOYEE
and DEPARTMENT, that (DNAME, COLLEGE) is the primary key of DEPARTMENT
and that EMP# is the primary key of EMPLOYEE. Then {EMP#, DNAME, COLLEGE} is
a superkey for ASSIGNED_TO and (EMP#) is its primary key.

3) Assume that there is a one-to-one relationship, BILLING, between ORDER and
INVOICE, that 0# is the primary key of ORDER and that 1# is the primary key of
INVOICE. Then (0#, I#) is a superkey for BILLING and either 0# or 1# is the primary
key of BILLING.

A summary of the attribute constructs of an ERD is shown in the table of Figure 2.15.

76 Chapter 2. The Entity-Relationship Model

PERSON

WIFE HUSBAND

MARRIAGE

Fig 2.16 Marriage relationship type

2.3 Recursive Relationships

Definition 2.10 (Recursive relationship) A relationship type between two occurrences ofthe
same entity type is called a recursive relationship type (or alternatively a cyclic relationship
type). •

Some examples of recursive relationship types are:

1) MARRIAGE, which is a recursive relationship type between PERSON and PERSON.

2) PARENT -CHILD, which is a recursive relationship type between PERSON and PERSON.

3) PART-SUBPART, which is a recursive relationship type between PART and PART.

In order to uniquely identify a recursive relationship we firstly need to determine the role
each occurrence of the entity type plays in the relationship.

For example, in MARRIAGE one person plays the role of husband and the other the role
of wife. In PARENT-CHILD one person plays the role of the parent and the other the role of
the child. On the other hand, in PART-SUBPART one part plays the role of superpart and the
other part plays the role of subpart. Thus we create a role name for each occurrence of the
entity type involved in the recursive relationship type.

In order to create the primary key for a recursive relationship type we first take two copies
of the primary key of the entity type involved in the relationship type. We then concatenate
the role names of each entity type participating in the relationship type to each attribute
in each copy of the primary key and finally take the union of the two resulting sets when
appropriate. The resulting set of attributes is the primary key of the recursive relationship
type. For example, ifin the relationship type MARRIAGE the attached role names are husband
and wife, then the primary key of MARRIAGE is either {HUSBAND_SOC#} or {WIFE_SOC#} .

In the ERD we label each end point of the edge connecting the recursive relationship type
to itself with the appropriate role name; see Figure 2.16 for the ERD of the MARRIAGE
relationship type.

2.4 Weak Entity Types

The existence of an entity in an instance of an entity type may depend on the existence of
another entity in an instance of another entity type. The most common example is that of

2.4. Weak Entity Types 77

child entities depending on their parent entities; for example, when we record the children of
employee entities. Assume that the current database has an instance, say P, of PARENT and
an instance, say C, of CHILD. Then in this case a CHILD entity would not be present in C unless
its parent entity exists in P. Such an entity type as CHILD is called a weak entity type. Another
example of a weak entity type arises via the concept of inheritance of attributes. Suppose that
we have the entity types PERSON, EMPLOYEE and STUDENT with respective instances P, E
and S, where both E and S are subsets of P. Thus, each EMPLOYEE entity is a special case of
a PERSON entity and similarly each STUDENT entity is a special case of a PERSON entity.
In other words, each person entity can be viewed as a general case of an EMPLOYEE entity
and a general case of a STUDENT entity. It follows that the existence of a STUDENT entity
depends on the existence of its corresponding PERSON entity and similarly the existence of
an EMPLOYEE entity depends on the existence of its corresponding PERSON entity. Such
entity types as EMPLOYEE and STUDENT that arise via generalisation are also called weak
entity types.

Weak entity types can depend on other entity types through two built-in relationship types,
the ID relationship type and the ISA relationship type.

Definition 2.11 (ID relationship type) An entity type EI is related to entity type E2 via an ID
relationship type (or simply EI ID E2) if the primary key of EI comprises the primary key of
E2 together with one or more additional attributes of EI. •

For example, suppose that we have a PARENT entity type and a CHILD entity type, where
the attributes of PARENT are: SOC#, PNAME, ADDRESS and AGE and the attributes of CHILD
are: AGE and CNAME. Furthermore, suppose tha t the primary key of PARENT is SOC#. Then
CHILD ID PARENT holds and the primary key of CHILD is: {SOC#, CNAME}, i.e. in order to
uniquely identify a CHILD we need to know the social security number of the child's parent
and the child's name. In the ERD we represent an ID relationship, EI ID E2, as a many-to-one
relationship from EI to E2 labelled by ID; see Figure 2.17 for the ERD representing the ID
relationship type from CHILD to PARENT.

Definition 2.12 (ISA relationship type) An entity type EI is related to entity type E2 via an
ISA relationship type (or simply ElISA E2) if the primary key of E\ is the same as the primary
key of E2 . In addition, if hand 12 are the instances of EI and E2, respectively, currently
recorded in the database, then h is a subset of h (strictly speaking, the set of primary key
values of II is a subset of the set of primary key values of h). •

For example, suppose we have an EMPLOYEE entity type having attributes: SOC#, PNAME,
ADDRESS and SALARY, with primary key SOC#. In addition, suppose we have a MANAGER
entity type having the same attributes as EMPLOYEE with the additional attribute DNAME,
which indicates the department name the manager is responsible for. Then MANAGER
ISA EMPLOYEE holds, and the primary key of MANAGER is the same as the primary key
of EMPLOYEE, i.e. SOC#. Furthermore, every MANAGER entity in the current instance of
MANAGER recorded in the database is also present in the current instance of EMPLOYEE
recorded in the database.

As a consequence of Definition 2.12, if ElISA E2 then EI inherits all the attributes of E2'
Thus each entity el in an instance of EI derives all the information that is currently available

78 Chapter 2. The Entity-Relationship Model

CNAME

AGE

Fig 2.17 10 relationship type from CHILD to PARENT

f-----; SUPERVISOR

Fig 2.18 ISA relationship types

for its corresponding entity e2 in an instance of E2, whenever e\ and e2 have the same primary
key values.

In the ERD we represent an ISA relationship, E\ ISA E2, as a many-to-one relationship from
E1 to E2labelled by ISAj see Figure 2.18 for an ERD representing several ISA relationship types.
We note that if E\ ISA E2 we need not repeat the attributes of E2 in the ERD representation of
E\ due to the inheritance of attributes.

The situation where an entity type inherits all the attributes of two or more further entity
types is called multiple inheritance. That is, we have E\ ISA E2 and E\ ISA E3, where E2 and
E3 are distinct entity types. In the ERD, shown in Figure 2.18, we have an instance of multiple

2.4. Weak Entity Types 79

EMPLOYEE DEPARTMENT

Fig 2.19 Relationship type ASSIGNED TO

inheritance, since PHD_STUDENT ISA EMPLOYEE and PHD_STUDENT ISA STUDENT both
hold. Multiple inheritance gives rise to attribute inheritance conflicts whenever an entity type
inherits the same attribute name from two or more distinct entity types. In the ERD, shown
in Figure 2.IS, PHD_STUDENT inherits DNAME from both EMPLOYEE and STUDENT. The
problem is that DNAME may have different meanings in EMPLOYEE and STUDENT. That
is, DNAME in EMPLOYEE may mean the department an employee works in and DNAME in
STUDENT may mean the department the student is enrolled in. Furthermore, in general, a
PhD student may work in a different department to that which he/she is enrolled in. There are
various ways to deal with multiple inheritance, one being to enforce some preference ordering
on inherited attributes in order to resolve conflicts. We prefer to avoid conflicts altogether
by requiring attribute names to have a global meaning in the ERD. The following definition
formalises this assumption.

Definition 2.13 (Universal relation schema assumption) An ERD is said to satisfy the
Universal Relation Schema Assumption (or simply URSA) if each attribute of an entity type
plays a unique role in the ERD. That is, all occurrences of an attribute name in an ERD are
assumed to have the same meaning. •

The URSA solves another problem highlighted in the ERD shown in Figure 2.19, which
depicts a relationship type ASSIGNED_TO between the EMPLOYEE and DEPARTMENT
entity types. Both EMPLOYEE and DEPARTMENT have an attribute, called NAME, meaning
employee name and department name, respectively. When we are referring to NAME, there
should be no ambiguity as long as it is clear from the context whether we mean employee
name or department name. The URSA resolves this ambiguity that may arise when referring
to attribute names by insisting that we have two distinct attribute names, say ENAME for
employee name, and DNAME for department name.

From now on, we assume that ERDs satisfy the URSA. The URSA can also be viewed as the
assumption that the name of an attribute uniquely determines its underlying domain. The
URSA is not as restrictive as it may seem, since it can always be enforced by a suitable renaming
of attribute names. In our example above, if DNAME does mean two different things in
EMPLOYEE and STUDENT, then DNAME in EMPLOYEE can be renamed to WORKJ>NAME
and DNAME in STUDENT can be renamed to ENROLDNAME.

There has been some controversy about the validity of the URSA [KenSI, KenS3bl. In
particular, it has been claimed that due to the necessity of renaming attributes, some attributes

80 Chapter 2. The Entity-Relationship Model

Built-in Relationship Types

Concept Representation Example

ISA) ISA I • STUDENT ~I PERSON I
ID) ID

• I CHILD ~I PARENT I
Fig 2.20 Summary of the ERD built-in relationship type constructs

will receive unintuitive names. However, as stated in [UIJ83] there is no real practical evidence
to that effect, and in particular it does not seem to be true that in practice many attributes
have to be renamed. In fact, although the URSA is not always made explicit, it seems to be
fundamental in the initial stage of database design and relational database design in particular.
We note that the URSA does not involve the stronger assumptions made in the context of the
Universal Relation, i.e. the unique role assumption and the one-flavour assumption [MUV84,
MRW86, Var89b, Lev92), which are harder to justify.

Our approach to defining weak entity types is similar to thattaken in [MR92a], which can be
viewed as a formalisation of the original approach in [Che76, Che77] in terms of the relationship
of the primary keys of the entity types involved in the relationship type. A summary of the
ERD built-in relationship type constructs is presented in the table of Figure 2.20.

2.S The Steps Needed for Constructing an ERD

Constructing an ERD for the enterprise being modelled is a data analysis activity and involves
abstracting the semantics of the data being used in the application under development. There
are several methodologies a data analyst can use for this purpose with varying degrees of
formality (see [BCN92, Te094] for detailed methodologies). We will content ourselves with
outlining the major steps that a database designer ought to take when constructing an ERD:

I) Identify the entity types (including weak entity types) of the enterprise.

2) Draw some instances of the identified entity types.

3) Identify the relationship types (including ISA and ID relationship types) of the
enterprise.

4) Classify each relationship type identified in step 3 according to its functionality, i.e. if it
is a one-to-one, many-to-one (equivalently one-to-many) or many-to-many.

5) Draw some instances of the identified relationship types.

6) Draw an ERD with the entity types and the relationship types between them.

2.6. Discussion 81

7) Identify the attributes of entity types and their underlying domains; if you are familiar
with DD notation then give the DD definitions of the domains (recall that DD is an
abbreviation for data dictionary).

8) Identify a primary key for each entity type.

9) Draw some instances of attribute values of entities.

10) Add the attributes and keys to the ERD drawn in step 6.

The main purpose of steps (2), (5) and (9), which involve drawing example instances, is to
verify by example that the previous identification steps faithfully model the enterprise.

Let us assume that we are planning to implement the application under development over a
relational DBMS. After the ERD has been finalised, it is possible to convert it into a relational
database schema using an algorithmic approach [JNS83a, JNS83b, CA84, DA87, MM90, MR92a,
Te094]. The main benefit of this approach is that data analysts can use the ERDs, which
provide us with an intuitive and high level picture of the enterprise being modelled, without
worrying themselves, at this stage of the design process, with the details of the relational
database schema. We will present such a conversion algorithm in Chapter 4, which deals with
relational database design.

2.6 Discussion

The ER approach to data modelling has become a very popular paradigm for conceptual
database design. It is widely used in industry during systems analysis and design due to
its relative simplicity and its naturalness. We will return to the ER model in Chapter 4 in
the context of relational database design, where we will show how to convert an ERD into a
relational database schema.

The ER model was pioneered in Chen's seminal paper [Che76) (see also the monograph
[Che77)). At the time there was ongoing debate between proponents of the relational model
on the one hand and hierarchical and network models on the other hand. The ER model was
proposed as a higher level model with the view of translating an ERD into a conceptual schema
in any of these three data models. Arguments in favour of the binary relationship concept as the
smallest meaningful concept can be found in [Abr74, BPP76). Some early ideas relating to the
semantics of entities and relationships in terms ofthe relational model can be found in [SS75)
and [Ken79]; therein the entity, relationship and attribute approach is advocated. Although
the original ER model had no provision for querying instances of entity types and relationship
types, there have been several proposals of algebras for the ER model [Che84, PS87]. These
algebras are similar to the relational algebra and include operators for: projecting specified
attribute values of entities in an instance, selecting entities from an instance which satisfy
certain selection criteria, taking the union and difference of two instances of an entity type
and joining two instances of two entity types via an instance of a relationship type in order
to create an instance of a new entity type. The ER model has also been extended to include
concepts such as complex objects [AH87, PS89], incomplete information [ZC86] and view
updates [LL96b].

82 Chapter 2. The Entity-Relationship Model

Several books have been solely devoted to the ER model; [BCN92, Te094] concentrate on
data modelling issues and [Pla92] concentrates on system modelling issues. Both [BCN92]
and [Pla92] show how functional and data analysis can be done jointly by incorporating ERD
information into Data Flow Diagrams (DFDs). This highlights the importance of database
design in the software engineering process. A recent book [MR92a] makes extensive use of
the ER model in the process of relational database design.

The ER model can be viewed as a visual formalism which conceptualises part of the real
world. Other visual formalisms which were proposed for knowledge representation are:
conceptual graphs [Sow76], higraphs [Har87, Har88], concept lattices [WiI92] and hypernodes
[PL94, LL95b].

2.7 Exercises

Exercise 2.1 We have presented an ER model in which the relationships are restricted to be
binary. Discuss the pros and cons of binary versus general n-ary relationships.

Exercise 2.2 In the ER model there are entities and relationships, although it is possible to
view a relationship as a special kind of entity. Why do you think the ER model supports
entities and relationships as two distinct concepts?

Exercise 2.3 Discuss the statement that the ER model provides an informal foundation for
the relational model.

Exercise 2.4 Construct an ERD for an application whereby a company would like to record
information about its employees and managers, information about the projects they work on
and the various locations of projects.

Exercise 2.5 Discuss the view that the ER model supports the fundamental concepts of an
object-oriented data model.

Exercise 2.6 Given an ERD describing the conceptual schema of an application, suggest how
ERDs can be used to describe the view schema of the application. In particular, care has to be
taken so that the semantics of the view schemas are consistent with those of the conceptual
schema.

Exercise 2.7 Data flow diagrams (DFDs) represent a diagrammatic tool that is used in
software engineering in order to describe the interconnection of processes for a given
application being analysed. Suggest an outline of a proposal for integrating the analysis
of the processes and data for a given application using ERDs.

Exercise 2.8 Consider an application where we would like to record the changes to an entity
over time; for example, such an entity could represent bank account details. Describe how
this could be done in the ER model.

Exercise 2.9 Discuss the merits of a DBMS having an ER-like user interface.

2.7. Exercises 83

Exercise 2.10 Consider enhancing the ER model with entity clustering, which allows us to
combine several entity types and their relationships into a higher order entity type [Teo94].
For example, in the ERD of the computerised book order system, shown in Figure 2.1,
we can cluster the entity types Order, Invoice and Book to form an entity cluster called
Book_Ordering_Interface. How could you use entity clustering to improve an ER-like user
interface?

Exercise 2.11 Devise a query language for the ER model with binary relationships [AC83,
Che84]. Such a query language must provide at least the following facilities:

1) Locating the entities in an entity set such that their attribute values satisfy a given
Boolean condition.

2) Locating the entities that participate in a particular relationship.

3) Chaining queries together by composition of relationships.

3. The Relational Data Model

In this chapter we present the core theory of relational databases. As described in
Subsection 1.7.1 of Section 3.1 of Chapter 1 the relational model has three components: a
structural part, a manipulative part and an integrity part. Thus we can view this chapter
as consisting of three mini chapters one corresponding to each component of the relational
model. The data structure of the model, i.e. the relation, and the relation schema over which
it is defined, is presented in Section 3.1. In this section the simple tabular form of database
relations is given a set-theoretic formalism.

The manipulative part of the relational model is presented in Section 3.2. We present
three relational query languages: the relational algebra, which is a procedural language, the
relational calculus, which is a declarative query language (SQL is based on the relational
calculus) and nonrecursive Datalog, which is a rule-based query language. In Section 3.3
we show that all three query languages are equivalent, i.e. they differ only in style but not in
expressive power. This result is fundamental to the theory of relational databases for two main
reasons. Firstly, it establishes the robustness of the query formalism for the model, i.e. three
languages which on the surface seem to be distinct turn out to be as expressive as each other.
Secondly, from a practical point of view we can choose the query language that best fits the
application. For example, naive users will, in general, prefer declarative languages such as the
relational calculus and Datalog, while system programmers may prefer the relational algebra
due to its procedural nature. It is considered beneficial to give users of database systems
(or any computerised system) choice of the method of interaction with the information. In
Section 3.3 we also present a simple update language for the relational model allowing us to
formalise the notion of a transaction. Updates are often not given enough coverage, although
the dynamic changes that occur to the current state of the database as a result of updates are
an ongoing and fundamental process in the management of the database.

The integrity part of the relational model is introduced in Section 3.4. Integrity constraints
restrict the allowable relations in a database to satisfy certain logical conditions, called integrity
constraints. Constraints such as functional dependencies (which generalise the notion of
keys) and inclusion dependencies (which generalise the notion of foreign keys) are called
data dependencies. The theory of data dependencies is very rich and there is a multitude of
results in this area. It is fair to say that although the core theory can be considered stable,
researchers are still refining and extending it. In Section 3.5 we describe the central problem
of automating the process of inferring new integrity constraints from a given set of integrity
constraints; this problem is known as the implication problem. In order to solve it data
dependency theorists have investigated the logical notion of a sound and complete axiom

85

86 Chapter 3. The Relational Data Model

system for a particular class of integrity constraints. Such a system, when it exists, provides
us with a computational procedure to solve the implication problem. When the implication
problem can be solved efficiently, the database designer can use the resulting algorithm to
refine his/her constraints over the database. On the other hand, when the database theorist
has shown that the implication problem cannot be solved efficiently for a particular class of
constraints, then only heuristic algorithms can be used to help the database designer refine
his/her constraints. In Section 3.6 we cover the most common data dependencies that are
used in practice. We attempt to cover the main achievements in this field but would need
several volumes to cover all the results obtained so far. In Section 3.7 we study domain and
cardinality constraints, which we feel have been neglected in the database literature despite
their importance. We arrive at a novel interpretation of the notion of atomic domain that
can pave the way to incorporating the notion of user-defined data types in relational database
systems.

Up until now we have concentrated on the conceptual level of the database system. The
question arises, however, as to what happens at the view level which is the level at which
the interaction between the users and the database systems occurs. In a relational database
a view can be defined as any portion of the database that can be retrieved by a relational
algebra query. Querying a view does not pose any particular problem, since it only involves
composing the query on the view with the definition of the view. On the other hand, updating
the view can cause serious problems to the database system, since in general such updates do
not unambiguously translate into database updates. We investigate solutions to this problem,
called the view update problem, in Section 3.8.

3.1 The Data Structure of the Relational Model

The relational model has only one data structure, the relation. An informal description and
an example of a relation and a relational database were given in Section 1.2 of Chapter 1. A
relation is a set of tuples, each tuple representing some entity, and a relational database is a set
of relations. The schema of a relation (i.e. a relation schema) is a set of attributes describing
the properties of the components of tuples, and the schema of a database (i.e. a database
schema) is a set of relation schemas. Notation-wise we give every relation schema a name, say
R, and denote the set of attributes of R by schema(R).

The representation of relations as tables is very convenient. The rows of the tables are the
tuples and the column headers the attributes of its schema.

We present a further example of a simple university database. In Table 3.1 we show a relation
rl over a relation schema STUDENT, where schema(STUDENT) = {SNAME, AGE, ADDRESS,
DEPT, DEGREE, YEAR}. In Table 3.2 we show a relation r2 over a relation schema COURSE,
where schema(COURSE) = {DEPT, CNAME, TNAME, TEXT}. In Table 3.3 we show a relation
r3 over a relation schema TUTOR, where schema(TUTOR) = {TNAME, DEPT, SALARY, DA Y}.
Together, the set of relations {rl> r2, r3} is a database d over a database schema UNIVERSITY
= {STUDENT, COURSE, TUTOR}.

Recall the definitions of attribute and domain from Subsection 2.2.3 of Chapter 2.

3.1. The Data Structure of the Relational Model 87

Table 3.1 The relation q over STUDENT

SNAME AGE ADDRESS DEPT DEGREE YEAR
Iris 21 Malet St Computing BSC first

Reuven 32 Harold Rd Maths BSC second
Hanna 31 HaroldRd Linguistics BA second

Dan 34 Gower St Linguistics BA second
Hillary 25 Gower St Computing BSC third

Eli 38 Oxford St Economics BCOM third
Naomi 39 Oxford St Maths BA fourth
David 42 Queens Ave Computing BSC first

Table 3.2 The relation r2 over COURSE

DEPT CNAME TNAME TEXT
Computing databases Robert Date
Computing databases Robert Ullman
Computing programming Hanna Knuth
Computing programming Richard Knuth
Computing algorithms Ada Harel

Maths logic Reuven Mendelson
Maths graph-theory Martine Harary

Linguistics hebrew Dan Bible

Table 3.3 The relation r3 over TUTOR

TNAME DEPT SALARY DAY
Robert Computing 2000 Monday
Robert Computing 2000 Tuesday
Robert Computing 2000 Thursday
Hanna Computing 1400 Wednesday
Hanna Computing 1400 Friday

Richard Computing 1000 Friday
Martine Maths 1600 Tuesday
Martine Philosophy 1600 Friday
Reuven Maths 1500 Wednesday
Reuven Maths 1500 Thursday

Dan Linguistics 1000 Tuesday
Ruth Linguistics 1100 Monday

Definition 3.1 (Attributes and domains) We assume that for the purpose of defining
relational databases a countably infinite set of attribute names (or simply attributes), U,
and a countably infinite set of constant values, TJ, are available. U is called the universe of
attributes and TJ is called the underlying database domain.

Given an attribute A inU the domain of A, denoted byDOM(A), is a subsetofTJ (which may
be finite or infinite). We will also refer to the constant values in DOM(A) simply as constants
or values. •

The following assumption states that if two constants are written differently then they are
actually different. For example, 'Robert' and 'Mark' and 1400 are all different but 'Mark' is
the same as 'Mark'.

88 Chapter 3. The Relational Data Model

Definition 3.2 (The unique names assumption) The Unique Names Assumption (UNA)
states that any two constant values CI E DOM(AI), C2 E DOM(A2) are equal if and only if
they are syntactically identical, i.e. they have the same name. •

Defmition 3.3 (Relation schema) A relation schema (or simplya schema) is a relation symbol
R together with an associated similarity type, denoted by type(R), such that type(R) is a natural
number. We refer to such a schema simply as R. We associate with each relation schema R a
one-to-one mapping, att: {I , 2, ... , type(R)} -+ U, which allows us to attach attribute names
to the type(R) components of a relation schema R; we denote the set {att(l), att(2), ... ,
att(type(R))} by schema(R). •

The relation symbol R is the name we attach to the relation schema, for example, STUDENT,
COURSE and TUTOR are relation symbols. The number of attributes in a relation schema,
R, is its similarity type, type(R). For example, type(STUDENT) = 6, type(COURSE) = 4 and
type (TUTOR) = 4. Finally, schema(R) is the set of attributes associated with R. For example,
schema(TUTOR) = {TNAME, DEPT, SALARY, DAY}. The mapping att allows us to refer to
the attributes in schema(R) in some fixed order. For example, the mapping att associated with
TUTOR gives us att(l) = TNAME, att(2) = DEPT, att(3) = SALARY and att(4) = DAY. This
ordering is useful for displaying the columns of a relation in some default ordering.

A database schema is now defined as a set of relation schemas.

Definition 3.4 (Database schema) A database schema is a finite set R = {R, , R2 , . • . , Rn} such
that each Ri E R is a relation schema. We denote by schema(R) the set of all attributes associated
with the relation schemas in R, i.e. schema(R) = UiE[schema(Ri), where I = {I, 2, . . . , n}.

We also refer to a database schema R as a decomposition of a finite set of attributes X
c U whenever X = schema(R) (or we call R simply a decomposition if X is understood from
~~. .

In the following uppercase letters (which may be subscripted) appearing at the end of the
alphabet such as X, Y, W, Z will be used to denote sets of attributes, whilst those at the beginning
of the alphabet such as A, B, C will, in general, be used to denote single attributes. Whenever
no ambiguity arises in a particular context we will write schema to mean either relation schema
or database schema.

Recall the definition of an atomic domain (i.e. a nondecomposable set of values which has
no internal structure as far as the database system is concerned) from Subsection 2.2.3 of
Chapter 2. We now formalise a very important structural constraint on relation schemas.

Definition 3.5 (First Normal Form) A relation schema R is in First Normal Form (INF) if all
the domains of attributes Ai in schema(R) are atomic. A database schema R is in INF if each
relation schema Ri in R is in INF. •

Relation schemas (respectively, database schemas) that are in INF are also called normalised
relation schemas (respectively, normalised database schemas) or jlat relation schemas
(respectively,jlat database schemas). From now on throughout the rest of the book a relation
schema will be assumed to be in INF unless otherwise stated. This assumption is known as

3.1 . The Data Structure of the Relational Model 89

the INF assumption. We note that Codd defined the concept of 1NF schemas in his seminal
paper in 1970 [Cod70). The main justifications for assuming 1NF schemas are:

1) It is easy to understand the semantics of attributes of 1NF schemas, since the internal
structure of atomic attributes is hidden both from the user and the database system.

2) It is simpler to formalise the relational model under this assumption.

As an example with respect to point (1) assume that an address comprises a street number,
street name, city and postcode. Then the attribute name ADDRESS, over a non atomic domain
of address values, is ambiguous, since it has a nontrivial internal structure which is not
obvious. On the other hand, the four attributes, STREET _NUMBER, STREET _NAME, CITY
and POSTCODE, all over atomic domains, collectively describe an address in an unambiguous
manner. With respect to point (2), as we have demonstrated in Subsection 1.7.4 of Chapter 1,
when we admit attributes over nonatomicor nested domains (i.e. we relax the 1NF assumption),
we are essentially allowing attribute values themselves to be relations. The formalisation
of such a nested relational model, which allows hierarchical structures in addition to flat
structures, is obviously more complex.

We now rephrase the Universal Relation Schema Assumption (URSA), given in
Definition 2.13 in Section 2.4 of Chapter 2 in the context of ERDs, in terms of relational
database schemas.

Defmition 3.6 (Universal relation schema assumption) A database schema R satisfies the
URSA if each attribute in schema(R) plays a unique role in R. That is, all occurrences of any
attribute name in the relation schemas ofR are assumed to have the same meaning. •

For the justification of this assumption see Section 2.4 of Chapter 2. The URSA is a
semantic assumption which can only be enforced by the database designer if he/she decides
on the attributes in schema(R) prior to deciding which attributes will belong to any particular
schema(Ri) , where Ri is in R. We observe that the URSA is stronger than the assumption that
two attributes with the same name possess the same domain. As an example, let NUMBER
be an attribute in an employee schema (meaning employee number) and, in addition, let
NUMBER be an attribute in a parts schema (meaning part number). Furthermore, assume
that the domain of NUMBER in both schemas is the set of all natural numbers. Obviously, the
resulting database schema violates the URSA. We view the URSA as an assumption that makes
our life slightly easier (both in theory and in practice) by allowing us to refer to attributes
unambiguously without referring to the specific relation schema in which the attribute occurs.

We now give the formal definition of a relation and a database.

Definition 3.7 (Relation and database) A tuple over a relation schema R, with schema(R)
= {A" A2, ... , Am} and where att(i) = Ai, for i = 1, 2, . .. , m, is a member of the Cartesian
product

A relation over R is a finite set of tuples over R. A database over R = {R" R2, . . . ,Rn} is a
set d = {r" r2, ... , rn} such that each ri E d is a relation over Ri E R. •

90 Chapter 3. The Relational Data Model

It is important to remember that relations are finite sets of tuples. Only a finite amount of
information can be stored in a computer.

It is also possible to view a tuple t over a relation schema R as a total mapping from
schema(R) to the union of the domains DOM(Ai), such that for all Ai E schema(R), t(Ai) E

DOM(Ai). In this case we can ignore the linear order imposed on the attributes of R by the
Cartesian product of the domains in Definition 3.7. This alternative definition of a tuple as
a mapping highlights the fact that the ordering of the attributes in the sequence of attributes
< att(1), att(2), ... , att(type(R»> is not important; that is, we can choose an alternative linear
order without changing the semantics of a relation. On the other hand, when we display a
relation as a table we need to choose some ordering of the columns in the displayed table and
the definition of a tuple as an element in the Cartesian product of the domains highlights this
default ordering.

Due to the 1NF assumption each tuple in a relation is a sequence of atomic values, which have
no internal structure as far as the DBMS is concerned. For this reason relations (respectively,
databases) are also called normalised relations (respectively, normalised databases) or flat
relations (respectively, flat databases). As we have demonstrated in Subsection 1.7.4 of
Chapter 1 when we relax the 1NF assumption we obtain nested relations and nested databases,
wherein tuples of relations are sequences of values which may either be atomic or nested,
nested values being values which are themselves relations. The advantages of normalised
(lNF) relations over nested relations are:

1) Normalised relations can be presented in a simple two-dimensional tabular form, where
each value in such a table is atomic.

2) Under the 1NF assumption, querying, updating and maintaining the fundamental
integrity constraints of a relational database are performed easily and in a
straightforward manner.

Let us now continue the formalisation of the relational model under the 1NF assumption.
Informally, the projection of a tuple t over R onto a subset Y of schema(R) is the restriction
of t to the attributes of Y.

Definition 3.8 (Projection) The projection of a tuple t in a relation r over relation schema R
onto the attribute Ai = att(i) in schema(R) is the i-coordinate of t, i.e. t(i).

We extend the notion of projection to a set of attributes, Y = {att(id, att(iz), ... , att(ik)} <;
schema(R), with i l < i2 < ... < ib as follows. The projection of tonto Y (also called the
Y -value of t), denoted by tty], is defined by tty) = <tUI), t(i2), . .. , tUk». •

For example, consider the relation r2 in Table 3.2 and let t = <Computing, databases,
Robert, Date>. Then t[TEXT] = <Date> and t[DEPT, TNAME] = <Computing, Robert>.

The active domain of a relation rover R is the set of constant values that appear in the
tuples of r and the active domain of a database dover R is the union of the active domains of
its relations; the formal definition follows.

Definition 3.9 (Active domain) The active domain of a relation rover R, denoted by
ADOM(r), is defined by

ADOM(r) = {v I 3A E schema(R) and 3t E r such that t[A] = v}.

3.2. Query and Update Languages for the Relational Model

The active domain of a database dover R, denoted by ADOM(d), is defined by

ADOM(d) = U{ADOM(T) I TEd}.

3.2 Query and Update Languages for the Relational Model

91

•

In the previous section we have concerned ourselves with the structural part of the relational
model. Here we elaborate on the manipulative part of the relational model, in the form of
query and update languages. In Subsection 3.2.1 we present the relational algebra which is a
procedural query language for the relational model. In Subsection 3.2.2 we present the domain
relational calculus which is the declarative counterpart of the relational algebra and is based
on the first-order predicate calculus. The domain relational calculus is the query language
which provides the theoretical underpinning of SQL which is the commercial relational query
language used in most DBMSs; in fact, many people go further and equate SQL with relational
databases. In Subsection 3.2.3 we present Datalog which is a rule-based query language for
the relational model and views a relational database in a logical way. In Subsection 3.2.4 we
consider an update language for the relational model that takes into account the dynamic
aspects of updating a relational database; it complements the query languages we present
in Subsections 3.2.1, 3.2.2 and 3.2.3, which can only be used to retrieve information from a
relational database.

3.2.1 The Relational Algebra

The relational algebra is a collection of operators; each operator takes as input either a single
relation or a pair of relations and outputs a single relation as its result. A relational query is
a composition of a finite number of relational operators. In that sense a query is procedural,
since it specifies the order in which the operators comprising the query are to be evaluated.
The declarative counterpart of the relational algebra, i.e. the domain relational calculus, is
defined in Subsection 3.2.2. The relational algebra was first presented in Codd's seminal 1970
paper [Cod70] and a variant of the domain relational calculus was first presented in 1972 in
another of Codd's fundamental papers [Cod72b]. Since then the relational algebra has become
a yardstick for measuring the expressiveness of any relational query language.

Our style of presentation of the relational algebra operators is: for each operator we give
an informal definition of the operator, then we give its formal definition and finally we give
an example of its use over the database presented in Section 3.l.

The set-theoretic operators, union, difference and intersection, defined below, are all binary
operators which take two relations over a common relation schema, say R, and return a relation
over R. It is customary to call two relations union-compatible if their corresponding relation
schemas have the same attribute set, and are thus effectively the same.

The union of two relations, T1 and T2 over relation schema R, is the set of tuples that are
either in T1 or in T2.

Defmition 3.10 (Union) The union, U, of two relations T1 and T2 over R is defined by

T1 U T2 = {t I t E T1 or t E T2}. •

92 Chapter 3. The Relational Data Model

Let 51 be the relation over SHORLSTUD with schema(SHORLSTUD) = {SNAME,
ADDRESS, DEPT}, shown in Table 3.4, representing students having computing accounts,
and let 52 be the relation over SHORLSTUD, shown in Table 3.5, representing students
receiving a grant. The query, "Retrieve the students who either have a computing account or
are receiving a grant", can be expressed as the union 51 U 52. The result of this query is shown
in Table 3.6.

Table 3.4 The relation 51 over SHORLSTUD

SNAME ADDRESS DEPT
Iris Malet St Computing

Reuven Harold Rd Maths
Hanna HaroldRd Linguistics
Brian Alexandra Rd Sociology

Table 3.S The relation 52 over SHORT_STUD

SNAME ADDRESS DEPT
Iris Malet St Computing

Reuven Harold Rd Maths
Annette Harold Rd Linguistics

Cyril Oakley Gdns Medicine

Table 3.6 The result ofthe query 51 U 52 over SHORLSTUD

SNAME ADDRESS DEPT
Iris MaletSt Computing

Reuven HaroldRd Maths
Hanna HaroldRd Linguistics

Annette HaroldRd Linguistics
Brian Alexandra Rd Sociology
Cyril Oakley Gdns Medicine

The difference between two relations, '1 and '2 over relation schema R, is the set of tuples
that are in 'I but not in '2.

Definition 3.11 (Difference) The difference, -, of two relations '1 and '2 over R is defined
by

•
The query, "Retrieve the students who have a computing account but do not receive a grant",

can be expressed as the difference 51 - 52, where 51 and 52 are shown in Tables 3.4 and 3.5,
respectively. The result of this query is shown in Table 3.7.

We note that the intersection, n, of two reiations'l and '2 over relation schema R, i.e. the set
of tuples that are included in both 'I and '2, can be defined in terms of the difference operator
by

3.2. Query and Update Languages for the Relational Model 93

Table 3.7 The result of the query SI - S2 over SHORT STUD

SNAME ADDRESS DEPT
Hanna Harold Rd Linguistics
Brian Alexandra Rd Sociology

The query, "Retrieve the students who have a computing account and are also receiving a
grant", can be expressed as the intersection 51 n 52, where 5) and 52 are shown in Tables 3.4
and 3.5, respectively. The result of this query is shown in Table 3.8.

Table 3.8 The result of the query SI n S2 over SHORT STUD

SNAME ADDRESS DEPT
Iris Malet St Computing

Reuven Harold Rd Maths

The projection of a relation r over relation schema R onto a set of attributes Y included in
schema(R) is the set of tuples resulting from projecting each of the tuples in r onto Y.

Defmition 3.12 (Projection) The projection, 7r, of a relation r over relation schema R onto a
set of attributes Y ~ schema(R) is defined by

7ry(r) = {try] I t E r},

where try] is the restriction of t to Y given in Definition 3.8. •
The query, "Retrieve the departments, degrees and years of students", can be expressed as

the projection 7r{DEPT,DEGREE, YEAR} (r), where r) is shown in Table 3.1. The result of this query
is shown in Table 3.9.

Table 3.9 The result ofthe query 7r{DEPT.DEGREE.YEAR} (rJl

DEPT DEGREE YEAR
Computing BSC first
Computing BSC third

Maths BSC second
Maths BA fourth

Linguistics BA second
Economics BCOM third

We note that the cardinality of 7ry(r) is less than or equal to the cardinality of r, since two
or more tuples in r may have the same projection onto Y. For example, in the above query
the tuple <Linguistics, BA, second> is the {DEPT, DEGREE, YEAR}-value of both the tuples,
whose SNAME-values are Hanna and Dan in r1 of Table 3.1. We further note that projection
captures the semantics of existential quantification. For example, in the above query we
retrieved the {DEPT, DEGREE, YEAR}-values of tuples such that there exist {SNAME, AGE,
ADDRESS}-values for these tuples.

Selection of tuples from a relation r with respect to a selection formula F is the subset of
tuples from r that satisfy the formula F.

94 Chapter 3. The Relational Data Model

Defmition 3.13 (Selection formula) A simple selection formula over a schema R is either an
expression of the form A = a or an expression of the form A = B, where A, B E schema(R) and
a E DOM(A).

A selection formula (or simply a formula whenever no ambiguity arises) over R is a well
formed expression composed of one or more simple selection formulae over R together with
the Boolean logical connectives: /\ (and), v (or), -. (not) and parentheses. A selection formula
is called positive if it does not have any occurrence of -'. We abbreviate -.(A = a) by A =I a
and -'(A = B) by A =I B. •

A simple selection formula of the type A = B is sometimes referred to as restriction. For
simplicity we have only included equality (=) as a comparison operator but, in general, we
can also expect :s (less than or equal to) and < (less than) to be available in simple selection
formulae.

Informally a tuple, t, logically implies a formula, F, if the tuple satisfies F. In the next
definition FI and F2 are also formulae.

Defmition 3.14 (Logical implication, F) Let r be a relation over relation schema R, t be a
tuple in r and, in addition, let F be a selection formula over R. Then t logically implies F,
written t F F, is defined recursively, as follows:

1) t FA = a, if t[A) = a evaluates to true.

2) t FA = B, if t[A) = t[BI evaluates to true.

3) t F FI /\ F2, if t F FI evaluates to true and t F F2 evaluates to true.

4) t F FI V F2, if t F FI evaluates to true or t F F2 evaluates to true.

5) t F -.F, if t F F does not evaluate to true, i.e. t l;t= F.

6) t F (F), if t F F. •
We are now ready to formalise selection which, when applied to a relation, r, with respect

to a formula, F, returns all the tuples in r that logically imply F.

Definition 3.15 (Selection) The selection, a, applied to a relation r over relation schema R
with respect to a selection formula F over R is defined by

aF(r) = {t I t E rand t F Fl. •
The following theorem, which easily follows from the definitions of selection and logical

implication, shows that the Boolean logical connectives, -., v and /\, present in selection
formulae can be expressed in terms of the set operators -, U and n, respectively.

3.2. Query and Update languages for the Relational Model 95

Theorem 3.1 The following equalities are all satisfied, where r is a relation over relation
schema R, and F, F, and F2 are selection formulae over R.

1) O"~p(r) = r - O"p(r).

2) O"Pl VP2 (r) = O"Pl (r) U O"P2 (r).

3) O"Pl AP2 (r) = O"Pl (r) n O"P2 (r). o

The query, "Retrieve the students who are either studying in the Linguistics department or
whose address is Oxford Sf', can be expressed as the selection O"Pl (r,), where FI is the formula
DEPT = 'Linguistics' v ADDRESS = 'Oxford St', and r, is shown in Table 3.1. The result of
this query is shown in Table 3.10.

Table 3.10 The result of the query O"Pl (TJ)

SNAME AGE ADDRESS DEPT DEGREE YEAR
Hanna 31 HaroldRd Linguistics BA second

Dan 34 GowerSt Linguistics BA second
Eli 38 Oxford St Economics BCOM third

Naomi 39 Oxford St Maths BA fourth

The query, "Retrieve the students who are not studying Computing and are not in their
second year", can be expressed as the selection O"P2(r,), where F2 is the formula DEPT "#
'Computing' /\ YEAR "# 'second', and r, is shown in Table 3.1. The result of this query is
shown in Table 3.11.

Table 3.11 The result of the query O"P2 (T,)

SNAME AGE ADDRESS DEPT DEGREE YEAR
Eli 38 Oxford St Economics BCOM third

Naomi 39 Oxford St Maths BA fourth

The query, "Retrieve the students who did the same number of courses in their first and
second years", can be expressed as the selection O"P3 (53), where F3 is the formula FIRST =
SECOND, and 53 is the relation over FST _SND shown in Table 3.12. The result of this query is
shown in Table 3.13.

Table 3.12 The relation 53 over FSLSND

SNAME FIRST SECOND
Reuven 5 5
Hanna 4 5

Dan 5 4
Hillary 4 4

Eli 3 6
Naomi 6 5

Informally, the natural join of two relations rl over relation schema RI and r2 over relation
schema R2, with schema(Rd n schema(R2) being the set of attributes X, is the relation

96 Chapter 3. The Relational Data Model

Table 3.13 The result of the query (TP3 (53)

SNAME FIRST SECOND
Reuven 5 5
Hillary 4 4

containing tuples that result from concatenating every tuple of'l with every tuple of r2 both
of which have the same X-values. The attributes in X are called the join attributes of RI and
R2·

Definition 3.16 (Natural join) The natural join (or simply the join), lXI, of two relations rl
over relation schema RI and r2 over relation schema R2 is a relation over relation schema R
defined by

where schema(R) = schema(Rd U schema(R2). •
Let 51 = Jr[CNAME,DEPT,TNAME}(rz) be the relation shown in Table 3.14 and 52 =

Jr[DEPT,TNAME,SALARY} (r3) be the relation shown in Table 3.15. The query, "Retrieve the courses
given in departments and the salaries of tutors for these courses", can be expressed as the
natural join 51 IXI 52.

The result of this query is shown in Table 3.16 We observe that the tuples <Philosophy,
Martine, 1600> and <Linguistics, Ruth, 1l00> in 52 did not participate in the join, since
their {DEPT, TNAME}-values do not match any corresponding values in 5" Furthermore, the
tuple <algorithms, Computing, Ada> in 51 did not participate in the join, since its {DEPT,
TNAME}-value does not match any corresponding values in 52. Such tuples are known as
dangling tuples.

There is a connection between the concept of dangling tuples and referential integrity,
which was introduced in Subsection 1.7.1 of Chapter 1. For example, suppose that the set of
attributes {DEPT, TNAME} forms the primary key for the schema of relation 52. In this case
the attributes {DEPT, TNAME} of the schema of relation 51 form a foreign key which references
these attributes in the schema of 52. It follows that the tuple <algorithms, Computing, Ada>
is dangling as a result of referential integrity being violated. More specifically, if referential
integrity is satisfied then there must exist a tuple tin 52 such that t[DEPT) = Computing and
t[TNAME) = Ada. If, in addition, the set of attributes {DEPT, TNAME} were the primary key
for the schema of 5" then the tuples in 52 that did not participate in the join are also dangling
as a result of referential integrity being violated. (It is unlikely that {DEPT, TNAME} is the
primary key for the schema of 51> since one would expect a teacher to teach more than one
course in a given department.)

The query, "Retrieve the courses that students can do in the department they are studying
in", can be expressed as the natural join Jr{CNAME, DEPT} (5d IXI Jr{DEPT,SNAME) ('1), where 51 and
r, are shown in Tables 3.14 and 3.1, respectively. The result of this query is shown in Table 3.17.

It may be easier to understand the semantics of the natural join algorithmically rather than
by the above declarative definition, The pseudo-code of an algorithm, designated JOIN(r" r2),

which given the input relations r1 over R1 and r2 over R2, with X = schema(R1) n schema(R2),
returns r1 IXI '2 over R, is presented as the ensuing algorithm.

3.2. Query and Update Languages for the Relational Model

Table 3.14 The relation 51 = n(CNAME.DEPT.TNAME) (T2)

CNAME DEPT TNAME
databases Computing Robert

programming Computing Hanna
programming Computing Richard

algorithms Computing Ada
logic Maths Reuven

graph-theory Maths Martine
Hebrew Linguistics Dan

Table 3.15 The relation 52 = n (DEPT. TNAME. SALARY] (T3)

DEPT TNAME SALARY
Computing Robert 2000
Computing Hanna 1400
Computing Richard 1000

Maths Martine 1600
Philosophy Martine 1600

Maths Reuven 1500
Linguistics Dan 1000
Linguistics Ruth llOO

Table 3.16 The result of the query 5 I C><l 52

CNAME
databases

programming
programming
graph-theory

logic
Hebrew

Algorithm 3.1 (JOIN(rl , r2))
1. begin
2. Result := 0;
3. for each tuple t] E rl do
4. for each tuple t2 E r2 do
5. if t!lX] = t2 [X] then

DEPT
Computing
Computing
Computing

Maths
Maths

Linguistics

6. Joined_tuple ;= a tuple over R such that
Joined_tuple[schema(R])] = t] and
Joined_tuple[schema(R2}] == t2;

7. Result;= Result U Joined_tuple;
8. end if
9. end for
10. end for
11. return Result;
12. end.

TNAME SALARY
Robert 2000
Hanna 1400
Richard 1000
Martine 1600
Reuven 1500

Dan 1000

97

We note that if schema(RI) = schema(R2), then the natural join operator reduces to the
intersection operator, i.e.

98 Chapter 3. The Relational Data Model

Table 3.17 The result ofthe query)T{CNAME.DEPTI(SI) I><l)T{DEPT.SNAME) (TI)

CNAME DEPT SNAME
databases Computing Iris
databases Computing Hillary
databases Computing David

programming Computing Iris
programming Computing Hillary
programming Computing David

algorithms Computing Iris
algorithms Computing Hillary
algorithms Computing David

logic Maths Reuven
logic Maths Naomi

graph-theory Maths Reuven
graph-theory Maths Naomi

Hebrew Linguistics Hanna
Hebrew Linguistics Dan

Furthermore, if schema(Rd n schema(R2) = 0, then the natural join operator reduces to
the Cartesian product operator, denoted by x. Therefore, in this case,

rl W r2 = rl x r2.

Informally, the Cartesian product of rl over RI and r2 over R2, with schema(Rd n
schema(R2) = 0, is the result of concatenating every tuple of rl with every tuple of r2.

The renaming operator allows us to change the name of an attribute in a schema of a relation.
Renaming is useful when we want to take the union, difference or intersection of relations
over different schemas, and when we want to take the natural join of two relations over a set
of attributes other than the set of common ones.

Defmition 3.17 (Renaming) Let r be a relation over relation schema R, A be an attribute of
schema(R) and B be an attribute in U, which is not in schema(R). The renaming, p, of A to B
in r, is a relation over relation schema S, where schema(S) = (schema(R) - (A}) U (B), defined
by

PA-.B(r) = (t 13u E rsuch that t[schema(R)-(B}) = u[schema(R)-(A}) and t[B) = u[A)) .

•
The query, "Rename SNAME to STUDENT _NAME, ADDRESS to STUDENT -.ADDRESS and

DEPT to DEPARTMENT in SI", can be expressed as the renaming

PSNAME-.STUDENT _NAME (PADDRESS-.STUDENT -ADDRESS (PDEPT DEPARTMENT(SI») ,

where SI is the relation shown in Table 3.4. The result of this query is shown in Table 3.18.
We observe that the only effect of renaming is to change attribute names.

We next define the division operator, which captures the semantics of universal
quantification (i.e. for all). Informally, the division of two relations, r over a schema having
attributes XY and S over a schema having attributes Y, is the set of X-values, say t[XJ, of tuples
t E r such that for all tuples u E s, u is included in the set of Y -values of tuples t in r having
X-value t[X).

3.2. Query and Update Languages for the Relational Model

Table 3.18 The result of the query PSNAME-> STUDENLNAME

(PADDRESS-> STUDENT .ADDRESS (PDEPT ->DEPARTMENT(51»)

STUDENT_NAME STUDENT ...ADDRESS DEPARTMENT
Iris Malet St Computing

Reuven HaroldRd Maths
Hanna Harold Rd Linguistics
Brian Alexandra Rd Sociology

99

Definition 3.18 (Division) Let r be a relation over relation schema R, with schema(R) = XY,
and 5 be a relation over relation schema S, with schema(S) = Y. The division, -:-, of r by 5, is a
relation over relation schema Rb where schema(Rd = X, defined by

r -:- 5 = {t[Xll t E rand 5 <; 7ly(aF(r», where X = {A" Az , . .. , Aq}
and F is the formula Al = trAIl /\ Az = t[Azl/\ . . . /\ Aq = t[Aq]}. •

Let 54 be the relation over TOPICS, shown in Table 3.19, with schema(TOPICS) = TOPIC
representing the research topics of the Computing department and let 55 be the relation
over INTERESTS, shown in Table 3.20, with schema(INTERESTS) = {LECTURER, TOPIC}
representing the particular topics academic staff are interested in. The query, "Retrieve the
lecturers who are interested in all the topics of the Computing department", can be expressed
as the division 55 -:- 54' The result of this query is shown in Table 3.21.

Table 3.19 The relation 54 over TOPICS

TOPIC
databases

software-engineering
distributed-computing

Table 3.20 The relation S5 over INTERESTS

LECTURER TOPIC
Jack databases
Jack software-engineering
Jack distributed-computing

Jeffrey databases
Jeffrey distributed-computing
Jeffrey automata-theory
John expert-systems
John software-engineering
Jill databases
Jill software-engineering
Jill distributed-computing
Jill algorithms

Table 3.21 The result of the query s5 -:- S4

LECTURER
Jack
Jill

100 Chapter 3. The Relational Data Model

The following proposition shows that the division operator can be expressed by the relational
algebra operators, projection, difference and Cartesian product.

Proposition 3.2 Let r be a relation over relation schema R, with schema(R) = XY, and s be a
relation over relation schema S, with schema(S) = Y. Then

r -:- s = lTx(r) - lTx((lTx(r) x s) - r). o

A relational algebra expression is an expression resulting from composing a finite number
of relational algebra operators together, where the operands of the expression are relation
schemas.

Definition 3.19 (Relational algebra expressions) A relational algebra expression (or alter
natively a relational algebra query, or just simply a query whenever no ambiguity arises) is
a well-formed expression composed of a finite number of relational algebra operators whose
operands are relation schemas which can be treated as input variables to the query. A query
Q having as operands the relation schemas R" R2 • ... , Rn is denoted by Q(R" R2, ... , Rn) or
simply by Q if R" R2, ... , Rn are understood from context. •

Definition 3.20 (An answer to a query) An answer to a query Q(R1, R2, ... , Rn) is obtained
by replacing every occurrence of Ri in Q by a relation ri over Ri and computing the result
by invoking the algebra operators present in Q; such an answer to Q will be denoted by
Q(r" r2, ... , rn) or simply by Q(d) if d is a database over R and for all i E {I, 2, ... , n}, Ri E

Rand ri E d. •

We will assume that parentheses are present in Q to indicate the priority of evaluation of
subexpressions of Q in order to avoid ambiguity when computing Q(rl, r2, ... , r n). At times,
when no ambiguity arises, we will also refer to an answer to a query simply as a query.

The relational algebra operators defined above are considered to be the core operators of
any relational query language. Therefore, in the following we will refer to this set of operators
(or any minimal subset which is of the same expressiveness) as the relational algebra. For
example, it is not hard to show that union, difference, projection, selection and Cartesian
product are such a minimal subset of the relational algebra [Bec781.

The set of queries, which are expressible in the relational algebra, is considered to be the
minimal set of queries that any query language for the relational model should possess. Thus
the relational algebra provides a yardstick for measuring the expressive power of a query
language for the relational model independently of any implementation.

Definition 3.21 (Relational completeness of a query language) A query language is said to
be relationally complete if it is at least as expressive as the relational algebra. •

It is interesting to investigate the independence of the operators comprising the relational
algebra. For instance, in Proposition 3.2 we have shown that division is not independent,
since it can be expressed with projection, difference and Cartesian product. Furthermore,
we have also shown that intersection can be expressed with difference or with join, Cartesian

3.2. Query and Update Languages for the Relational Model 101

product can be expressed with join and in Theorem 3.1 we have shown that simple selection
together with difference, union and intersection can express any selection formula. Another
independence result is that join can be expressed with selection, renaming, Cartesian product
and projection. It can be shown that projection, union and difference are independent
operators of the relational algebra. Projection is the only operator that removes columns
from a relation and union is the only operator that adds rows to a relation. It may seem that
difference can be expressed with selection formulae that allow negation but this is not the case
as evidenced by the following argument.

An operator, r, from relations to relations is monotonic, if whenever rl and r2 are relations
over R, with rl S; r2, it is also the case that r (rd S; r (r2); otherwise r is nonmonotonic. We
leave it to the reader to verify that selection is a monotonic operator. Now, let r be a relation
over R, with schema(R) = {AI , A2, . . . , Am}. The complement of r, denoted by r, is given by

r = (lTAl (r) x lTA2 (r) x .. . X lTAm (r» - r.

We leave it to the reader to show that, in general, the complement operator is nonmonotonic.
We therefore conclude that difference cannot be expressed with selection.

Although the relational algebra provides minimal relational capability, in practice, there
arises a need for extending the relational algebra in order to enhance its expressive power. We
will now introduce two extensions in the form of two additional algebraic operators, which
we will not consider as an integral part of the relational algebra.

Table 3.22 A family relation

PARENT CHILD
pi p3
pi p4
p2 p4
p2 pS
p3 p6
p3 p7
p4 p8
pS p9
pS plO
pS pll
p7 pl2
p9 pl2

The first extension deals with a new operator, called the transitive closure operator, which
solves the "parts explosion problem" also known as the "bill of materials problem". Consider
the relation, which we call family, over the relation schema FAMILY with schema(FAMILY)
= {PARENT, CHILD} describing the descendants of the two parents pI and p2. The acyclic
structure of the family relation shown in Table 3.22 is described pictorially as a family tree
shown in Figure 3.1. We note that another common example considers a relation, called parts,
which has attributes SUPER_PART corresponding to PARENT and SUB_PART corresponding
to CHILD. In this case the family tree tells us which parts are immediate subparts of a given
part and which subparts are indirect subparts of a given part.

102 Chapter 3. The Relational Data Model

/Pl~/Pl~
p3 p4 p5

/ \ 1 /1"'~
p6 P7~Pll/p9 p10 pll

Fig 3.1 The family tree ofthe family relation in Table 3.22

A query such as "output the parents and their children" is answered easily by just displaying
the family relation, and the query "output the parents and their grandchildren" is also easily
answered by the query:

7T{GPARENT,GCHILD) (PCHILD---> Jatt (PPARENT---> GPARENT (FAMILY))
~ PPARENT ---> Jatt (PCHILD---> GCHILD (FAMILY))) ,

Let us denote the above query by QKp(FAMILY). Using this query we can easily answer
queries such as who are the grandchildren of p 1 by

7TGCHILD(CTp(QKp(FAMILY))).

where F is the formula GPARENT = pI, and who are the grandparents ofp12 by

lTGPARENT(CTp(QK p(FAMILY))).

where F is the formula GCHILD = p12.

On the other hand, it can be shown that a query such as "Who are the descendants of a
particular parent at all levels?" cannot be expressed as a relational algebra query, in such a
way that, for every input relation over FAMILY, we obtain the correct answer. A similar query
that, in general, cannot be expressed as a relational algebra query is "Who are the ancestors
of a particular child at all levels?" (A formal proof can be found in [AU79] showing that
the transitive closure cannot be expressed by using the relational algebra operators we have
defined so far.)

In order to understand why the relational algebra is unable to answer such queries, let us first
examine the bill of materials for the family relation, shown in Table 3.23. This relation shows
the structure of the family tree by indicating the level of a parent-child relationship relative
to a given parent at levell. For example, the tuple < I, pI, p3> indicates that pI is a parent
of p3 at levell, the tuple <2, p3, p7> indicates that p3 is the parent of p7 at level 2 relative
to pI implying that pI is a grandparent of p7, and the tuple <3, p7, p12> indicates that p7 is
the parent of p12 at level 3 implying that pI is a great grandparent of p12. Now, informally,
the reason that the relational algebra is not powerful enough to express such queries is that
we cannot know a priori how many levels the bill of materials relation will contain. As we
have seen it is easy to answer queries involving parents, grandparents, great grandparents,
etc., by joining the family relation as many times as is necessary. However, this technique will
not work in general, since if the relational algebra query is to give the correct answer for all

3.2. Query and Update languages for the Relational Model 103

possible relations over FAMILY then it would contain an unbounded number of joins. This
leads to a contradiction of the definition of a relational algebra query, which states that a query
must be composed of a finite number of relational algebra operators.

Table 3.23 The bill of materials for the family relation

LEVEL PARENT CHILD
I pi p3
2 p3 p6
2 p3 p7
3 p7 pl2
I pI p4
I p2 p4
2 p4 p8
I p2 pS
2 pS p9
3 p9 pl2
2 pS plO
2 pS pll
I p3 p6
I p3 p7
2 p7 pl2
I p4 p8
I pS p9
2 p9 pI2
1 pS plO
I pS pll
I p7 pl2
I p9 pI2

We observe that the family tree is actually a directed graph (recall the formal definition
of a directed graph given in Section 2.1 of Chapter 2). We now define the transitive closure
operation on directed graphs.

Definition 3.22 (Transitive closure of a directed graph) The transitive closure of a directed
graph (N, E) is a directed graph (N, E+) defined by

1) if (u, v) E E, then (u, v) E E+,

2) if (u, v) E E+ and (v, w) E E, then (u, w) E E+, and

3) nothing is in E+ unless it follows from (1) and (2). •
The transitive closure of the family tree of Figure 3.1 is shown in Figure 3.2; the new arcs,

which were added to the original family tree in order to obtain the transitive closure, are shown
as squiggled lines. We are now in a position to define the transitive closure of a relation.

Definition 3.23 (Transitive closure of a relation) Let R be a relation schema with schema(R)
= {A, B} such that att(l) = A and att(2) = B, and where DOM(A) = DOM(B). The transitive
closure of a relation rover R is the relation r+, where r+ is the set of arcs of the transitive

104 Chapter 3. The Relational Data Model

p1 p2

Fig 3.2 The transitive closure of the family tree in Figure 3.1

closure of the directed graph (V, r), with V being the set of values present in the tuples of r,
i.e. the active domain of r. •

The transitive closure family+ of the family relation, which was shown in Table 3.22, is
shown in Table 3.24. We observe that the transitive closure of a relation expresses exactly the
same information as the bill of materials of the relation (see the bill of materials for the family
relation shown in Table 3.23) .

It may be easier to understand the semantics of the transitive closure algorithmically rather
than by the above declarative definition, namely Definition 3.22. The pseudo-code of an
algorithm, designated TR_CL(r}, which given the input relation rover R returns r+ over R, is
presented as the algorithm that follows. In the algorithm we let Qioin(R} denote the query

Algorithm 3.2 (TR_CL(r»
1. begin
2. Result := r;
3. Tmp:=0;
4. while Tmp # Result do
5. Tmp := Result;
6. Result := Result U Qioin(Result};
7. end while
8. return Result;
9. end.

3.2. Query and Update languages for the Relational Model 105

Table 3.24 The transitive closure of the family relation

PARENT DESCENDANT
pI p3
pI p6
pI p7
pI pl2
pI p4
pI p8
p2 p4
p2 p8
p2 pS
p2 p9
p2 pl2
p2 plO
p2 pll
p3 p6
p3 p7
p3 pl2
p4 p8
pS p9
pS pl2
pS plO
pS pll
p7 pl2
p9 pl2

The second extension of the relational algebra we deal with is that of allowing aggregate
functions in queries. Aggregate functions allow us to answer queries such as:

Ql How many tutors work in the college?

Q2 How many tutors are employed by the college in each department?

Q3 What is the overall average salary of tutors?

Q4 What is the average salary of tutors per department?

Qs What is the maximum, respectively minimum, salary of any tutor?

Q6 What is the sum of money that the college spends on its tutors per department?

The above queries cannot be expressed as relational algebra queries, since the relational
algebra treats domain values as uninterpreted objects and does not provide for computations
that involve iterating over the tuples in a relation. Informally, an aggregate function computes
an operation over the A-values of a set of tuples over relation schema R, where A E schema(R).

Definition 3.24 (Aggregate functions) An aggregate function fA over R is a Turing
computable function, with A E schema(R), which given a finite set of tuples over R returns a
natural number. •

The most common aggregate functions are:

1) COUNT, which returns the number of tuples in its input set of tuples (in this case the
attribute A is irrelevant);

106 Chapter 3. The Relational Data Model

2) MIN, which returns the minimum A-value of its input set of tuples;

3) MAX, which returns the maximum A-value of its input set of tuples;

4) SUM, which returns the sum of the A-values of its input set of tuples; and

5) AVG, which returns the average A-value of its input set of tuples.

The above list of aggregate functions is by no means exhaustive and various relational
DBMSs support additional aggregate functions of a statistical nature. For simplicity, we
assume that if an aggregate function is not defined over one of the A-values of a tuple in its
input set (which may be empty), then it returns the natural number zero.

Definition 3.25 (Aggregate functions in queries) Let fA be an aggregate function over R, X
s; schema(R) and assume that AJ 'I- schema(R) is an attribute in U. The result of applying fA
to a relation r, over R, with the partitioning attribute set X, denoted by fI(r) (or simply fA if
X = 0), is a relation over relation schema S, where schema(S) = X U {AJ}, defined by

fI(r) = {t I 3tl E T such that t[Xl = tdXl and t[AJl = fA({t2 I t2 E rand t2[Xl = t[X]})} .

•
Consider the relation T3 over TUTOR with schema(R3) = {TNAME, DEPT, SALARY, DAY},

shown in Table 3.3.

• The answer to Q1, i.e. COUNT(7l'TNAME(r3)), is shown in Table 3.2S.

• The answer to Q2, i.e. COUNT DEPT (7l'ITNAME.DEPTI (r3)), is shown in Table 3.26.

• The answer to Q3, i.e. AVGSALARY(7l'{TNAME.SALARYI (r3)), is shown in Table 3.27.

• The answer to Q4, i.e. AVGflrrRy(7l'{TNAME.DEPT.SALARYI(r3)), is shown in Table 3.28.

• The answer to QS, i.e. MAXsALARy(r3) x MINsALARy(r3), is shown in Table 3.29.

• The answer to Q6, i.e. SUMflnRy(7l'ITNAME.DEPT,sALARYI(r3)), is shown in Table 3.30.

Table 3.25 The answerto COUNT(rrTNAME (r3))

I CO~NT I

Table 3.26 The answer to COUNTDEPT (rrITNAME.DEPT) (r3))

DEPT COUNT
Computing 3

Maths 2
Philosophy 1
Linguistics 2

3.2. Query and Update languages for the Relational Model

Table 3.27 The answerto A V GSALARY (1l (TNAME.SALAR Y} (r3))

AVG_SALARY
1371

Table 3.28 The answer to AVG~}lIRy(1l{TNAME.DEPT.SALARy}(r3))
DEPT AVG_SALARY

Computing 1467
Maths ISS0

Philosophy 1600
Linguistics 10S0

Table 3.29 The answer to MAXSALARy(r3) x MINSALARy(r3)
MAX_SALARY MIN_SALARY

2000 1000

Table 3.30 The answer to SUM~KlIRy(ll(TNAME,DEPT, SALARY} (r3))

DEPT SUM_SALARY
Computing 4400

Maths 3100
Philosophy 1600
Linguistics 2100

107

It may be easier to understand the semantics of the aggregate functions in queries
algorithmically rather than by the above declarative definition, namely Definition 3.25. The
pseudo-code of an algorithm, designated AGG(fA, X, r), which given the aggregate function
IA and a relation rover R with A, X ~ schema(R), returns If (r), is presented as the following
algorithm. (A partition of a set P is a disjoint collection of nonempty subsets ofP whose union
is P; each subset Bi in a partition P is called a block.)

Algorithm 3.3 (AGG(fA, X, r»
1. begin
2. Result := 0;
3. P := a partition of r such tl, t2 are in the same block in P

if and only if t, [XI = t2[XI;
4. for each block Bi in the partition P do
S. Agg_tuple := a tuple over S such that

Agg_tuple[XI = t[XI with t E Bi and Agg_tuple[Aj I = IA ({t I t E Bj});
6. Result:= Result U {Agg_tuple};
7. end for
8. return Result;
9. end.

3.2.2 The Domain Relational Calculus

The domain relational calculus (or simply the relational calculus or the domain calculus or
even the calculus) is the declarative counterpart of the relational algebra. It is based on the

108 Chapter 3. The Relational Data Model

first-order predicate calculus (see Subsection 1.9.3). In this logical approach a relational
database is considered to be an interpretation of a first-order theory. In particular, the
domain of the interpretation is a superset of the active database domain and the relations
in the database are the extensions of the relation symbols of the database schema. A query
in the domain relational calculus is essentially checking whether the database is a model of
the first-order formula represented in the query. The importance of the relational calculus is
that it is more suitable as a basis of user-oriented query languages due to its high-levelness
and closeness to natural language. The equivalence between the relational algebra and the
domain relational calculus (suitably restricted so that it only yields finite answers to queries)
was first shown in [Cod72b 1 and is discussed in detail in Section 3.3. We proceed to formalise
the relational calculus.

Defmition 3.26 (Domain calculus expressions) A domain calculus expression (or alterna
tivelya domain calculus query or just simply a query whenever no ambiguity arises) has the
form:

(XI: AI, X2 : A2,.··, Xn : An I F(XI, X2,···, x n)},

where Fis a well-formed formula, AI, A2, .. . ,An are distinct attributes inU and XI, X2, ... ,Xn
are domain variables which occur freely in F, with n ::: O. When n = 0 the above query becomes
a~~~~ •

We will assume that all the relation symbols mentioned in the well-formed formula F
stand for relation schemas which are members of a database schema R. (The concepts of a
well-formed formula and free occurrence of a variable in a well-formed formula are formalised
subsequently; see also Subsection 1.9.3.)

Informally, the answer to a domain calculus query

with respect to a database d = {rl, r2, ... , r m} over the database schema R = {RI, R2, ... , Rm}
is a relation r over relation schema R with schema(R) = {AI, A2, ... , An} such that a tuple
< VI, V2, ... , Vn> E r if and only if

1) for all i E {I, 2, ... , n}, Vi E DOM(Ai); and

2) if for all i E {l, 2, . .. , n}, we substitute Vi for Xi in F, then <VI, V2 , ... , Vn> satisfies
the formula F with respect to the database d. (The exact meaning of satisfaction of a
formula will be explained subsequently.)

If there no free variables in F, i.e. n = 0, then the answer to the query is either true if {< > }
is returned or false if 0 is returned.

If Q is a domain calculus query, then we denote the answer to Q with respect to a database
d by Q(d), or simply as Q whenever d is understood from context.

We now give some example queries so that the reader can get a feel of the style of the
relational calculus as opposed to the relational algebra.

Let d = {rl' r2, r3} denote the example database given in Section 3.1, where rl is shown in
Table 3.1, r2 is shown in Table 3.2 and r3 is shown in Table 3.3.

3.2. Query and Update languages for the Relational Model 109

The query, "Retrieve all the tuples in the relation over STUDENT", can be expressed as the
domain calculus query:

{Xl: SNAME, X2 : AGE. X3 : ADDRESS. X4 : DEPT. Xs : DEGREE. X6 : YEAR I
STUDENT(XI. X2. X3. X4. Xs. X6)}(d)·

The query, "Retrieve the departments, degrees and years of students", can be expressed as
the domain calculus query:

{X4 : DEPT, Xs : DEGREE, X6 : YEAR I
3Xl : SNAME(3x2 : AGE(3x3 : ADDRESS(STUDENT(Xl , X2 , X3, X4, Xs, X6))))}(d) ·

Note the use of the existential quantifier (3) in this query, which is the way that the domain
calculus simulates the relational algebra projection operation.

The query, "Retrieve the names and ages of students who are either studying in the
Linguistics department or whose address is Oxford St", can be expressed as the domain
calculus query:

{Xl: SNAME, X2 : AGE I 3X3 : ADDRESS(3x4 : DEPT(3xs : DEGREE(3x6 : YEAR
(STUDENT(Xl, X2 , X3, X4, Xs , X6) /\ (X4 = 'Linguistics' v X3 = 'Oxford St')))))}(d).

This query is an example of how the calculus simulates the relational algebra selection
operation.

In general, there are many ways of posing the same query. An alternative formulation of
the above query is:

{Xl: SNAME, X2 : AGE I
(3X3 : ADDRESS(3xs : DEGREE(3x6 : YEAR(STUDENT(Xl, X2, X3 , Linguistics, Xs, X6)))))V

(3X4 : DEPT(3xs : DEGREE(3x6 : YEAR(STUDENT(Xl, X2 , Oxford St, X4 , Xs, x6»)))}(d).

The query, "Retrieve the names, degrees and departments of students who are not studying
in the Computing department and are also not in their second year", can be expressed as the
domain calculus query:

{Xl : SNAME, Xs : DEGREE, X4 : DEPT I 3X3 : ADDRESS(3x2 : AGE(3x6 : YEAR
(STUDENT(Xl , X2. X3, X4, Xs , X6) /\ (X4 i= 'Computing' /\ X6 i= 'second'»)))}(d).

This query is another example of how the calculus simulates the relational algebra selection
operation.

For the following query let 53 be the relation over FST _SND from Subsection 3.2.1 , which is
shown in Table 3.12. The query, "Retrieve the names of students who did the same number
of courses in their first and second years", can be expressed as the domain calculus query:

{Xl: SNAME I 3X2 : FIRST(3x3 : SECOND
(FSLSND(Xl, X2. X3) /\ X2 = X3)) }({53}).

This query is an example of how the calculus simulates the relational algebra restriction
operation, which is a special case of selection.

110 Chapter 3. The Relational Data Model

Let SHORT_STUD 1 and SHORT_STUD2 be relation schemas with schema(SHORT_STUD1)
= schema(SHORLSTUD2) = {SNAME, ADDRESS, DEPT} and let 51 over SHORLSTUDI and
52 over SHORLSTUD2 be the relations from Subsection 3.2.1, shown in Tables 3.4 and 3.5,
respectively. The query, "Retrieve the students who either have a computing account or are
receiving a grant", can be expressed as the domain calculus query:

{XI: SNAME, X2 : ADDRESS, X3 : DEPT I
SHORLSTUDl(Xl, X2 , X3) V SHORLSTUD2(XI , X2 , X3)}({51 , 52}).

This query is an example of how the calculus simulates the relational algebra union
operation.

The query, "Retrieve the students who have a computing account but do not receive a grant",
can be expressed as the domain calculus query:

{Xl: SNAME, X2 : ADDRESS, X3 : DEPT I
SHORLSTUDl(XI, X2, X3) /\ (-.SHORLSTUD2(Xl , X2, X3))}({51, 52}).

This query is an example of how the calculus simulates the relational algebra difference
operation.

The query, "Retrieve the students who have a computing account and are receiving a grant",
can be expressed as the domain calculus query:

{XI : SNAME, X2 : ADDRESS, X3 : DEPT I
SHORLSTUD1(XI, X2, X3) /\ SHORLSTUD2(XI, X2, X3)}({51, 52}).

This query is an example of how the calculus simulates the relational algebra intersection
operation.

The query, "Retrieve the names of courses and the tutoring days", can be expressed as the
domain calculus query:

{XI: CNAME, X2 : DAY I
3X3 : DEPT(3x4 : TNAME(3xs : TEXT(3x6 : SALARY

COURSE(X3, Xl, X4 , Xs) /\ TUTOR(X4, x3, x6, x2))))}(d).

This query is an example of how the calculus simulates the relational algebra natural join
operation.

An alternative formulation of the above query is:

{XI: CNAME, x2 : DAY I
3x~ : DEPT(3x~ : DEPT(3x! : TNAME(3~ : TNAME(3xs : TEXT(3x6 : SALARY
(COURSE(x~, Xl , X!, xs) /\ TUTOR(~, x~, x6, X2) /\ X~ = ~ /\ X! = ~))))))}(d) .

Assume that 51 over SHORLSTUD is the relation of Subsection 3.2.1, shown in Table 3.4
and recall that '2 is a relation over COURSE, shown in Table 3.2. The query, "Retrieve the

3.2. Query and Update Languages for the Relational Model 111

courses that students can do in the department they are studying in", can be expressed as the
domain calculus query:

{Xl: CNAME, X2 : DEPT, X3 : SNAME I 3X4 : ADDRESS(3x5 : TNAME(3x6 : TEXT
(SHORLSTUD(x3 , X4, Xz) 1\ COURSE(X2, Xl, X5 , X6))))}({51, r2}).

This query is another example of how the calculus simulates the relational algebra natural
join operation.

Let 54 be the relation over TOPICS, shown in Table 3.19, and let 55 be the relation over
INTERESTS, shown in Table 3.20. The query, "Retrieve the lecturers who are interested in all
the topics of the Computing department", can be expressed as the domain calculus query:

{Xl : LECTURER I 'VX2 : TOPIC(3x3 : TOPIC
(TOPICS(X2) 1\ INTERESTS(XI, X3) 1\ X2 = X3))}({54, 55}) '

This query is an example of how the calculus simulates the relational algebra division
operation.

We now formally define the components - which are the symbols allowed in formulae and
well-formed formulae built from atomic formulae by using the logical connectives - of domain
calculus expressions.

The following symbols are allowed to appear in formulae:

• Constant values (or simply constants) , v, Vi> Vz, ... , which are elements of the set V.

• Domain variables (or simply variables), x, Xl, XZ, ..• , which are members of a countably
infinite set of variables V disjoint from V .

• Relation symbols, R, R" Rz, ... , which are drawn from a countably infinite set of
symbols disjoint from V and V; each relation symbol corresponds to the relation schema
associated with that symbol.

• The equality operator, =.

• The quantifiers and logical connectives, 3 (there exists), 'V (for all), 1\ (and), v (or), =>
(implication) and ~ (not).

• Delimiters, 0 (parentheses), and, (comma).

As in the relational algebra selection formulae we have only included equality (=) as a
comparison operator; in general, however, we can expect also to have at least::::: (less than or
equal to) and < (less than) available.

Atomic formulae are defined as follows:

1) R(Yl,YZ, .. . ,Yn), where R is a relation symbol with type(R)
{I , 2, . . . , n}, Yi is either a constant or a variable.

2) X = y, where X is a variable and Y is either a variable or a constant.

n and for all j E

112 Chapter 3. The Relational Data Model

Well-formed formulae (or simply formulae) are now defined recursively as follows:

1) An atomic formula is a formula.

2) ifF is a formula, then so are ~F and (F).

3) If FI and F2 are formulae, then so are FI 1\ F2, FI V F2 and FI ~ F2.

4) If F is a formula then 3x : A(F) and "Ix : A(F) are formulae, where x is a variable and A
is an attribute.

5) No other formulae are well-formed formulae .

A subformula of a formula F is a substring of F that is also a formula. We omit parentheses
in formulae if no ambiguity arises as to the meaning of a formula. In addition, we write x =I Y
as an abbreviation for ~(x = y).

From now on we will assume that all the relation schemas corresponding to the relation
symbols that are mentioned in F are included in a database schema R.

The free occurrences of variables in a formula are defined as follows:

1) All the variables occurring in an atomic formula are free.

2) The free variables occurring in -.F and F are the same as the free variables occurring in
the formula F.

3) The free variables occurring in FI 1\ F2, FI V F2 and FI ~ F2 are the free variables
occurring in the formula FI together with the free variables occurring in the formula F2.

4) The free variables occurring in 3x : A(F) and "Ix : A(F) are the free variables occurring
in the formula F except for occurrences of x in F.

We write F(XI, X2 , . . . , xn) for a formula F to indicate that XI, X2 , ... , Xn are all the free
variables occurring in F.

Definition 3.27 (Satisfaction of a formula by a tuple) Let d = {fl, f2 , . .. , fml be a database
over the database schema R = {RI, R2 , ... , Rml and consider the query

A tuple < VI , V2, ... , Vn> satisfies the formula F with respect to d, if for all i E (l, 2, ... , n 1,
Vi E DOM(Ai), and one of the following conditions is satisfied:

1) If F is the atomic formula R(YI ,Y2, ... ,n), then R E R and the tuple t, resulting from
substituting Vi for each variable Yi E (YI, Y2, .. . , nl, satisfies t E f, where ris the relation
over R in d.

2) If F is the atomic formula Xi = Yj' then Vi = Vj is satisfied, where Vi is substituted for Xi,
and either Yj is a variable and Vj is substituted for Yj or Yj is a constant and Vj = Yj·

3) IfF is the formula (G), then <VI, V2, .. . , Vn> satisfies the formula F if <VI. V2, . ..• Vn>
satisfies G.

3.2. Query and Update languages for the Relational Model 113

4) If F takes one of the forms: -.F, FI /\ F2, FI V Fl or FI :::} Fl, then < VI , Vl , ... , Vn>

satisfies F is defined according to the semantics of the corresponding logical connectives.
As an example, <VI, V2, ... , Vn> satisfies FI :::} F2 if either <VI, Vl, . . . , Vn> does not
satisfy FI or <VI, V2 , ... , Vn> satisfies Fl' (See Definition 3.14 oflogical implication for
the semantics of the rest of the connectives.)

5) If F is the formula 3Xi : A (G(XI, xl , ... , Xi,···, xn)), then <VI, Vl,· · ·, Vi-I, Vi+! ,
... , Vn> satisfies F if there exists aconstant Vi E DaM (A) such that when Vi is substituted
for Xi, <VI, V2,"" Vi- I, Vi, Vi+I , ... , Vn> satisfies G.

6) If F is the formula YXi: A (G(XI, Xl , ... , Xi , ... ,xn)), then <VI, Vl , .. . , Vi-I, Vi+l,

... , Vn> satisfies F if for all constants Vi E DOM(A), when Vi is substituted for Xi,

<VI , Vl , ... , Vi-I, Vi, Vi+I,· · · , Vn> satisfies G. •
Informally, an answer to a query

{XI: AI, Xl: A l , · · · , Xn : An I F(XI' X2,···, xn)}

with respect to a database d is the set of all tuples satisfying F.

Definition 3.28 (An answer to a domain calculus query) An answer to a query

{XI : AI, Xl: Al," " Xn : An I F(XI , Xl, ... , Xn)}

with respect to a database dover R, denoted by

{XI: AI, Xl : A2, ... ,Xn : An I F(XI , Xl, ... , xn)}(d),

is a relation r over relation schema R, with schema(R) = {AI, Al, ... ,An}, defined by

r = (t I t satisfies F) . •
At times we will also refer to an answer to a query simply as a query when no ambiguity

arises.

We do not deal with the extension of the domain calculus to incorporate the transitive
closure operator or aggregate functions. We mention that an extension of the relational
calculus which deals with aggregate functions was given in [Klu82j. On the other hand, we
will see that the transitive closure operator can be expressed naturally in Datalog, which is
presented in the next section.

We now briefly introduce SQL (Structured Query Language) [AC75, ChaBOj, which is a
relational database query language based on the domain calculus. SQL is in fact more than
just a query language, since it also supports updates, data definition of relation schemas,
transaction processing and recovery, security of relations, definition of integrity constraints
and definition of views. SQL was developed during the 1970's at IBM as part of the System R
project. During the 1980's SQL was standardised by ISO and the current ISO SQL standard is
its second version, called SQL2 [DD93j. Currently most relational DBMSs support SQL and
there is a growing demand from users that these systems support the standard.

114 Chapter 3. The Relational Data Model

In the following we will only cover a small subset of the data manipulation part of SQL. A
simple SQL query is a statement, called a SELECT statement, having the form:

SELECT AI, A2, ... , Aq
FROM RI , R2, ... , Rk
WHEREF

In the above SELECT statement, RI, R2, ... , Rk are relation schemas, AI , A2, ... , Aq are
attributes in those relation schemas and F is a selection formula over a relation schema whose
attributes comprise the union of the attributes in each schema(Rj),j E {I, 2, ... , k} .

The semantics of the above SQL query can be best explained in terms of the following
relational algebra query:

That is, in order to answer a simple SQL query we take the Cartesian product of the relations
rj over Rj in the database which we are querying, then select the tuples that logically imply F

and finally project the result onto attributes specified in the SELECT clause. If the WHERE
clause is omitted then all the tuples in the Cartesian product are projected onto the specified
attributes.

The SQL query

SELECT DEPT, DEGREE, YEAR
FROM STUDENT

is equivalent to the relational algebra query, 1l"(DEPT,DEGREE.YEAR} (STUDENT).

The SQL query

SELECT *
FROM STUDENT
WHERE DEPT = 'Linguistics' OR ADDRESS = 'Oxford St'

is equivalent to the relational algebra query crFI (STUDENT), where FI is the formula: DEPT =
'Linguistics' v ADDRESS = 'Oxford St'. Note that "*" is used to denote the set of all attributes
in schema(STUDENT).

The SQL query

SELECT *
FROM STUDENT
WHERE (NOT (DEPT = 'Computing'» AND (NOT (YEAR = 'second'»

is equivalent to the relational algebra query crF2 (STUDENT), where F2 is the formula: DEPT
::j: 'Computing' /\ YEAR ::j: 'second'.

3.2. Query and Update languages for the Relational Model

The SQL query

SELECT SNAME, STUDENT.DEPT, CNAME
FROM STUDENT, COURSE
WHERE STUDENT.DEPT = COURSE.DEPT

l1S

is equivalent to the relational algebra query 7l'{SNAME.DEPT.CNAMEj(STUDENT ~ COURSE).
Note that whenever an attribute appears in two or more schemas we use the dot notation R.A
to indicate that we are referring to the attribute A in schema(R).

The SQL query

SELECT DEPT, MAX(SALARY)
FROM TUTOR
GROUP BY DEPT

is equivalent to the relational algebra query MAX~lnRy(TUTOR). Note that the GROUP BY
clause has the effect of partitioning an input relation to the query, over the schema TUTOR,
according to the attribute DEPT.

The final example shows an SQL query in which the formula in the WHERE clause of the
query is an SQL query itself. Such a query in the WHERE clause is called a subquery. The
syntax of a subquery, which is nested within the WHERE clause of an SQL query, is the same
as a general SQL query and thus multiple subqueries are allowed.

The SQL query

SELECT TNAME
FROM TUTOR
WHERE EXISTS

SELECT *
FROM COURSE
WHERE TNAME.TUTOR = TNAME.COURSE

is equivalent to the relational algebra query 7l'TNAME(TUTOR ~ COURSE). Note that the
subquery is connected to the main query by using the keyword EXISTS; informally, this leads
to the selection of only those tuples such that the result of applying the subquery is a nonempty
relation.

3.2.3 Datalog

Datalog is an abbreviation for Data Logic. As mentioned in Subsection 1.7.5 of Chapter 1
Datalog is a rule-based declarative query language. The syntax of Datalog is essentially a
subset of the syntax of Prolog [MW88a, SS941. In Datalog function symbols in predicates
are not allowed and in its purest form there are no extra-logical predicates that operate by
"side-effect" such as input and output predicates and, in addition, there are no procedural
predicates such as the infamous cut, which, in general, cannot be interpreted declaratively.
The semantics of Datalog are purely logical as opposed to the semantics of Prolog which

116 Chapter 3. The Relational Data Model

are procedural. Thus, for example, in Prolog the order of the rules in a program and the
order of the literals in the body of rules can have an effect on the semantics of a program.
Furthermore, the order of facts in a Prolog database can also have an effect on the semantics
of a program. In Datalog the order of rules in a program and the order of literals in the
body of rules have no effect whatsoever on the semantics of the program. Another important
difference between Prolog and Datalog is that Prolog processes one fact at a time while Datalog
processes sets of facts at a time. The importance of Data log is that it adds deductive or inference
capabilities to the relational calculus, thus transforming a relational database into a logical
database.

We now formally define the syntax of Datalog programs.
The atomic formulae of Datalog are the same as the atomic formulae of domain calculus

expressions. As with domain calculus expressions, we write x i= y as an abbreviation for
-o(x = y) . We will distinguish between the following types of atomic formula:

• An atomic formula of the form R(y' ,Y2, . . . ,Yk) is called a predicateformula (or simply
a predicate); recall that the relation symbol R of the atomic formula corresponds to the
relation schema having that symbol (when no ambiguity arises we use the terms relation
symbol, predicate and relation schema interchangeably).

• An atomic formula of the form x = y is called an equality formula (or simply an equality).

• A predicate formula of the form R(v" V2 , . . . , Vk) , where the Vj are constants in
DOM(att(i)) for each i E {l , 2, . .. , k}, is called a ground atomic formula over R.

A literal is either an atomic formula, say L, or the negation of L, namely -oL; L is called a
positive literal and -oL is called a negative literal. A literal which is a ground atomic formula
or the negation of a ground atomic formula is called a ground literal.

A clause (or alternatively a rule) is an expression of the form:

L :-L" L2, . .. , Ln.

In a rule such as above n :::: 0 is a natural number, for all i E {I, 2, .. . , n}, Li is a literal and
L is a predicate. The sequence of literals, L" L2, .. . , Ln, is called the body of the clause and L
is called the head of the clause. If n = 0 then we abbreviateL: - simply to L. In the special
case where n = 0 and L is a ground atomic formula over R, we call L a fact over R (or simply
a fact if R is understood from context). A clause which is not a fact is called a nontrivial rule
(or when there is no confusion, simply a rule). A Datalog program P (or simply a program
P) is a finite set C" C2 , . .. , Cm of clauses. (When it is convenient then, without any loss of
generality, we view P as a sequence of clauses.)

We observe that a relation r over a schema R induces a set of facts all having the relation
symbol R. For example, the first two tuples in the relation r, over STUDENT, shown in Table 3.1,
induce the following two facts:

STUDENT(Iris, 21, Malet St, Computing, BSC, first) .
STUDENT(Reuven, 32, Harold Rd, Maths, BSC, second).

Prior to the ensuing definition, we recall the definition of an acyclic and cyclic directed
graph from Section 2.1 of Chapter 2.

3.2. Query and Update Languages for the Relational Model 117

FAMILY TC')

Fig 3.3 The dependency graph ofTC

Defmition 3.29 (Recursive and nonrecursive Datalog programs) The dependency graph of
a Datalog program P is a digraph (N, E), where the set of nodes N is the set of relation
symbols that appear in the literals ofP, and there is an arc from RI to R2 in E if there is a rule
in P whose body contains either the positive literal RI (YI, Yz, . .. , Yk) or the negative literal
...... R1(YI,Y2, ... ,Yk) and whose head is the literal R2(ZI, Z2, ... , Zq).

A Datalog program is said to be nonrecursive if its dependency graph is acyclic, otherwise
if its dependency graph is cyclic, it is said to be a recursive Datalog program. •

An example of a recursive Datalog program, say TC, is:

TC(xI , X2) : - FAMILY(xI , X2).
TC(xI, X3):- FAMILY(xI , X2), TC(x2 , X3).

The cyclic dependency graph of the above simple Datalog program is shown in Figure 3.3.

After we define the meaning of a Datalog program it will be evident that the Datalog program
given above computes the transitive closure of FAMILY, assuming that the program contains
some facts over FAMILY (see Definition 3.34 below).

For the rest of this section we will assume that Datalog programs are nonrecursive and refer to
them simply as Datalog programs. Although we restrict Datalog programs to be nonrecursive,
Definition 3.34, giving the semantics of Datalog programs, does obtain for recursive Datalog
programs also. (The definition for recursive Datalog programs will be needed in Chapter 9
on deductive databases).

We now give some examples of Datalog programs so that the reader can get a feel of the
programming style of Datalog. In all of the programs we have assumed a relation symbol,
RESULT, whose set of facts will contain the result of the query when the Datalog program is
evaluated.

The query, "Retrieve all the tuples in the relation over STUDENT", can be expressed as the
result of the Datalog program:

The query, "Retrieve the departments, degrees and years of students", can be expressed as
the result of the Datalog program:

Note how the absence of variables in the head of a rule simulates the use of the

118 Chapter 3. The Relational Data Model

existential quantifier (:3) in a domain calculus query and thus the relational algebra projection
operation.

The query, "Retrieve the names and ages of students who are either studying in the
Linguistics department or whose address is Oxford Sf', can be expressed as the result of
the Datalog program:

RESULT(xI. X2): - STUDENT(xI. X2. X3. X4. Xs. X6), X4 = 'Linguistics'.
RESULT(xI. X2) : - STUDENT(XI, X2, X3, X4 . Xs, X6), X3 = 'Oxford st'.

Note how two rules in a Datalog program simulate the use of disjunction (v) in a domain
calculus query. In addition, each rule simulates a relational algebra selection operation.

The query, "Retrieve the names, degrees and departments of students who are not studying
in the Computing department and are also not in their second year", can be expressed as the
result of the Datalog program:

The above program is an example of how Datalog simulates the relational algebra selection
operation.

For the following query let S3 be the relation over FST _SND from Subsection 3.2.1, which is
shown in Table 3.12. The query, "Retrieve the names of students who did the same number of
courses in their first and second years", can be expressed as the result of the Datalog program:

The above program is an example of how Datalog simulates the relational algebra restriction
operation, which is a special case of selection.

Let SHORT _STUD1 and SHORT _STUD2 be relation schemas withschema(SHORT_STUDl)
= schema(SHORLSTUD2) = {SNAME, ADDRESS, DEPT} and let slover SHORLSTUDl and
52 over SHORLSTUD2 be the relations from Subsection 3.2.1, shown in Tables 3.4 and 3.5,
respectively. The query, "Retrieve the names of students who either have a computing account
or are receiving a grant", can be expressed as the result of the Datalog program:

RESULT(XI, X2, X3): - SHORLSTUD1(XI, X2, X3).
RESULT(Xl, X2, X3) : - SHORLSTUD2(XI, X2, X3).

The above program is an example of how Datalog simulates the relational algebra union
operation.

The query, "Retrieve the names of students who have a computing account but do not
receive a grant", can be expressed as the result of the Datalog program:

The above program is an example of how Datalog simulates the relational algebra difference
operation.

3.2. Query and Update Languages for the Relational Model 119

The query, "Retrieve the names of students who have a computing account and are receiving
a grant", can be expressed as the result of the Datalog program:

The above program is an example of how Datalog simulates the relational algebra
intersection operation.

The query, "Retrieve the names of courses and the tutoring days", can be expressed as the
result of the Datalog program:

The above program is an example of how Datalog simulates the relational algebra natural
join operation.

An alternative formulation of the above query is:

Assume that slover SHORT _STUD is the relation of Subsection 3.2.1, shown in Table 3.4,
and recall that r2 is a relation over COURSE. The query, "Retrieve the courses that students
can do in the department they are studying in", can be expressed as the result of the Datalog
program:

The above program is another example of how Datalog simulates the relational algebra
natural join operation.

Let S4 be the relation over TOPICS, shown in Table 3.19, and let S5 be the relation over
INTERESTS, shown in Table 3.20. The query, "Retrieve the lecturers who are interested in
all the topics of the Computing department", can be expressed as the result of the Datalog
program:

RESULT(xI) : - INTERESTS(xI , X3), -.DIFF(xI).
DIFF(xI) : - PROD(xI, X2), -.INTERESTS(xI , X2) .
PROD(xI, X2) : - INTERESTS(xI, X3), TOPICS(X2).

The above program is an example of how Datalog simulates the relational algebra division
operation. The acyclic dependency graph of the above program is shown in Figure 3.4.

A Datalog program makes sense only if the relations that can be derived from executing
these programs are finite. The safety restriction, defined next, provides a syntactic restriction
of programs which enforces the finiteness of derived predicates (or relations).

Definition 3.30 (Safe Datalog program) A variable x occurring in one of the literals in the
head or the body of a rule, say C, occurs positively in C if and only if either

120 Chapter 3. The Relational Data Model

T~C:r~T
~

RESULT

Fig 3.4 The dependency graph of RESULT

1) The variable x appears in a predicate formula R(y, , Y2, ... ,x, ... ,Yk), whichisa positive
literal in the body of C, or

2) The variable x appears in an equality formula x = v, which is a positive literal in the
body of C, where v is a constant, or

3) The variable x appears in the equality x = y or y = x, which is a positive literal in the
body of C, where y is a variable that appears positively in C.

A Datalog rule C is said to be safe if all the variables appearing in the literals of C (including
the head of C) occur positively in C. A Datalog program P is said to be safe if all the rules of P
~~. .

We observe that in a safe rule all the variables in the head of a rule must appear in one or
more literals in its body. Furthermore, all the variables appearing in negative literals in the
body of a safe rule must occur positively in one or more atomic formulae in its body.

Example 3.1 The following rules are not safe:

1) RESULTl(x): - COURSE(x" X2, X3, X4)

2) RESULT2(x" X2, X3, X4) : - COURSE(x" X2, X3, X4)

3) RESUL T3(x,) : - COURSE(x" X2 , x3, X4), Xs = x6

In the first rule the variable x does not appear in the body of the rule. In the second rule the
variables X" X2 , X3 , X4 appear only in the negative literal in the body of the rule. In the third
case Xs and X6 appear only in the equality Xs = X6. •

The reader can verify that all the examples of Datalog programs given prior to Example 3.1
are safe.

As we will show in Subsection 3.3.2 the class of nonrecursive safe Datalog programs can
express exactly the same set of queries that the relational algebra can express. Moreover, we
also show in Subsection 3.3.2 that nonrecursive safe Datalog can be viewed as a restricted

3.2. Query and Update Languages for the Relational Model 121

version of the domain calculus, that is, nonrecursive safe Datalog is exactly as expressive as
this restricted version of the domain calculus.

We proceed to define the semantics of general Datalog programs, which may be recursive
and unsafe.

Defmition 3.31 (The schema of Datalog program) The database schema of a Datalog pro
gram P, denoted by SCHEMA(P), is a set of relation schemas defined by

SCHEMA(P) = {R I R is a relation symbol that appears in a literal of a rule in Pl. •

Defmition 3.32 (Substituting the variables in a clause) Let C be a clause and {XI, X2 , . . . , Xq}

be the variables appearing in the literals of the body of C. A substitution 0 for C is a set of
assignments {xllvI> x21v2, .. . , xqlvq}, where for all i E {I, 2, ... , q}, Vi is in the domain of
constants, V. We denote by O(C) the clause resulting from applying the substitution 0 to the
literals in C, i.e. the result of substituting, for each i E {I, 2, . .. , q}, the constant Vi for the
variable Xi in each of the literals in C. •

We note that all the literals of the clause O(C) are ground literals.

Definition 3.33 (Truth of a clause with respect to a database) A literal L in the body of a
clause C in a Datalog program P is true with respect to a substitution 0 for C and a database d
over SCHEMA(P) if one of the following conditions is satisfied:

1) OCL) is a ground atomicformula of the form R(VI, V2, ... , vk) and <VI, V2, ... , Vk> E r,
where rEd is the relation over R.

2) O(L) is an equality, V = v, where V is a constant.

3) O(L) is a ground literal of the form ~R(VI , V2 , ...• Vk) and <VI, V2, ... , Vk> ¢ r, where
rEd is the relation over R.

4) OCL) is a negative literal of the form, ~(Vi = Vj), where Vi and Vj are distinct constants,
i.e. such that Vi =1= Vj'

A clause C in a program P is true with respect to a substitution 0 for C and a database dover
SCHEMA(P) if each of the literals in the body of C is true with respect to 0 and d. •

We observe that the truth of a negative literal with respect to a substitution and a database
is consistent with the CWA (closed world assumption) [Rei78], since ~R(VI, V2, ... , Vk) is
assumed to be true if the tuple <VI , V2, .. . , Vk> is absent from the database. This causes
a problem if the Datalog program is unsafe, since infinite relations may be derived due to
the fact that the underlying domain is infinite. Thus RESULT2 of Example 3.1 is an infinite
relation.

We further note that if the body of the clause is empty, i.e. the clause is a predicate, then C
is trivially true with respect to any substitution 0 for C and any database dover SCHEMA(P).
In particular, if C is a fact then C is trivially true with respect to 0 and d.

The meaning of a Datalog program P, denoted by MEANING(P), is informally the database
resulting from adding to the initial set of facts recorded in P as many new facts of the form

122 Chapter 3. The Relational Data Model

O(L) as possible, where 0 is a substitution that makes a rule C in P true and L is the head of
C. (A set of facts whose relation symbols are in SCHEMA(P) is naturally associated with a
database dover SCHEMA(P), since a fact having the relation symbol R can be viewed as a set
of tuples over R.)

Definition 3.34 (The meaning of a Datalog program) The pseudo-code of an algorithm,
which realises MEANING(P), is next presented. (The variable 1m is called the immediate
consequence of the current state of MEANING(P).) •

Algorithm 3.4 (MEANING(P»
1. begin
2. Result := 0;
3. Tmp := {< >};
4. while Tmp #- Result do
5. Tmp := Result;
6. Im:= 0;
7. for all clauses C in P and substitutions e for C

such that C is true with respect to e and Result do
8. Im:= 1m U {eeL)} where L is the head ofC;
9. end for
10. Result := Result U 1m;
11. end while
12. return Result;
13. end.

We observe that the current state of Result strictly increases after each iteration of the while
loop beginning at line 4, provided the relations in the immediate consequence, 1m, of Result
are not already included in the respective relations in Result. Thus 1m induces an immediate
consequence operator, sayT, such that T(Result) = Result U 1m. Such an increasing operator
is called inflationary, and the final output database returned from MEANING(P) is called the
inflationary fixpoint of the Datalog program P [GS86, KP91j. (We also refer to MEANING(P)
as the inflationary meaning of P.)

We will now show how we can optimise Algorithm 3.4.

Let CONST(P) denote the set of all constants appearing in the literals of the clauses in a
Datalog program P, and call a substitution e = {xllvl> x21v2, ... , xqlvq} for a clause C in P a
safe substitution if {VI, V2 , . . . , Vq} ~ CONST{P).

The following proposition, which follows immediately from the definition of a clause being
true with respect to a substitution and a database, states that when computing MEANING{P)
for a safe Datalog program, P, it is sufficient to consider only safe substitutions.

Proposition 3.3 Let dover SCHEMA{P) be the current state of Result at line 10 of the
algorithm MEANING{P) after one or more executions of the while loop beginning at line
4 of the algorithm. Then a clause C in a safe Datalog program P is true with respect to a
substitution e for C and d if and only if e is a safe substitution for C. 0

3.2. Query and Update Languages for the Relational Model 123

The next proposition states that when considering only safe substitutions, then safe and
unsafe Datalog are equivalent, since only finite relations can be generated in both cases.

Proposition 3.4 Assume that only safe substitutions e for C are considered in line 7 of
MEANING(P). Then safe and unsafe Datalog are equivalent in the sense that for every unsafe
Datalog program pu, there exists a safe Datalog program Ps such that MEANING(PU) =
MEANING(ps).

Proof Let pu be an unsafe Datalog program. We can then construct a safe Datalog program,
denoted by PC, having a distinguished unary predicate, CONSTANT, which is the head of all
the rules in PC, and such that the set of facts in MEANING(PC) over CONSTANT is exactly
CONST(PU). First for every rule RU in pu whose head is R(XI , X2 , . .. , Xj, . .. , Xk) such that Xj
does not appear in the literals of the body of RU add CONSTANT(xi) to the body of RU • Then for
every rule RU in pu, and every negative literal in the body of RU of the form --.R(XI , X2, ... , Xk),

which causes RU to be unsafe, add the positive literals, CONSTANT(XI), CONSTANT(x2), .. . ,
CONSTANT(Xk), to the body of RU • Moreover, for every rule RU in pu, and every equality in
the body of RU of the form Xi = Xj, which causes RU to be unsafe, add the positive literals,
CONSTANT(xj) and CONSTANT(xj) to the body of RU • Finally, add the rules in Pc to the
modified version of pu, and denote this program by PS. We leave it to the reader to verify that
Ps is indeed a safe Datalog program and that MEANING(PS) = MEANING(PU). 0

For the rest of the book we assume that only safe substitutions are considered at line 7 of
MEANING(P). Therefore, due to the above proposition, we need not distinguish between safe
and unsafe Datalog, since under this assumption all Datalog programs can be considered as
being safe. (At times for clarity we will highlight the fact that a Datalog program is safe.)

Definition 3.35 (The initial database of a Datalog program) The initial (relational) data
base of a Datalog program P, over SCHEMA(P) = {RI, R2 ,". ' Rn}, denoted by DB(P), is
the set of relations {rl' r2 , ... , rn} such that for all i E {1 , 2, .. . , n}, ri is defined by

rj = {<VI, V2, . .. , Vk> I Rj(vI , V2 , ... , Vk) is a fact over Ri that appears in Pl. •
We say that a database dl over a database schema R is included in a database d2 over R,

written dl C d2, if V r,l E dl over Rj E R, with rl -I- 0, 3,-2 E d2 over Ri such that rl c ,-2.
- I -r I I - I

The following proposition follows immediately from inspecting Algorithm 3.4 noting that
if a clause C is actually a fact, say R(VI, V2, . .. , Vk), then C is true with respect to any database
and the empty substitution e = 0.

Proposition 3.5 The initial database of a Datalog program P, DB(P), is included in the
meaning ofP, MEANING(P). 0

Let P be a Datalog program and SCHEMA(P) = {RI' R2, ... ,Rn}. Now, due to the fact
that in this section P is assumed to be nonrecursive, we can order the relation schemas in
SCHEMA(P) in such a way that for any Rj, Rj E SCHEMA(P) if there is a path from Ri to Rj in
the dependency graph of P then i < j. (We note that such an ordering can be obtained by a
topological sort of the dependency graph, as defined in Subsection 1.9.2 of Chapter 1.) Let us
assume that the relation schemas in SCHEMA(P) are ordered in this manner.

124 Chapter 3. The Relational Data Model

The pseudo-code of an algorithm, which realises NEW _MEANING(P), taking into account
Propositions 3.3, 3.4 and 3.5 and the ordering of the relation schemas in SCHEMA(P),
is presented as the algorithm that follows; for the purpose of the algorithm, given a
database dover SCHEMA(P), d U R;(VI, V2, . . . , Vk) is the database resulting from inserting
<VI, V2 , ... , Vk> into the relation ri E dover Ri, where d is a database over SCHEMA(P).

Algorithm 3.5 (NEW ~EANING(P»
1. begin
2. Result := DB(P);
3. for i := 1 to n do
4. while there exists a rule C in P such that Ri is the relation symbol of its head

and there exists a safe substitution 8 for C
such that C is true with respect to 8 and Result do

5. Result := Result U 8(L) where L is the head of C;
6. end while
7. end for
8. return Result;
9. end.

We leave the proof of the following theorem to the reader.

Theorem 3.6 Given a Datalog program P (which is assumed to be nonrecursive and safe),
MEANING(P) = NEW ~EANING(P). 0

We now show how the meaning of a Datalog program can be used to answer queries.

Defmition 3.36 (Datalog query) A Datalog query with respect to a Datalog program P is an
expression of the form: -pL, where L is a predicate (or simply: - L whenever P is understood
from context). •

Defmition 3.37 (The answer to a Datalog query) LetL be the predicate R(YI,!2, .. . ,Yk) and
(XI, X2, ... , xq) be the variables appearing in L. Furthermore, let us call a substitution 8 =
(xi/v" X2/V2, ..• , xqlvq) safe for L with respect to a Datalog program P if {v" V2, ..• , vq} ~
CONST(P). Then the answer to the Datalog query, : -pL, is the relation rover R, defined by

(8(L) I 8 is a safe substitution for L with respect to P, and 8(L) E r,
where r E MEANING(P) is the relation over R E SCHEMA(P)}. •

We note that if R ¢ SCHEMA(P), then the answer to : -L is the empty set. The following
notation will be useful later on when we discuss the equivalence of the relational algebra, the
domain calculus and nonrecursive safe Datalog programs.

Definition 3.38 (Datalog query with respect to a database) Let P be a Datalog program and
d be a database over R such that R ~ SCHEMA(P). The Datalog program P with respect to
d, denoted by P(d), is the Datalog program resulting from removing all the facts in DB(P)
from P and then adding to P all the facts contained in the relations of the database d. That is,
DB(P(d» = d holds, i.e. the facts in P are replaced by those in d to obtain P(d).

3.2. Query and Update Languages for the Relational Model 125

Let Q be the Datalog query : -pL. Then the Datalog query Q with respect to P and d, denoted
by Q(d), is defined as the Datalog query: -P(d)L. •

3.2.4 An Update Language for the Relational Model

So far we have only considered query languages for the relational model, which can only be used
to retrieve information from a relational database. In this section we consider the dynamic
aspects of updating a relational database resulting in its transition from one state to another.
An update can take one of three forms, namely an insertion, a deletion or a modification.
Insertion of a tuple into a relation results in the addition of this tuple to the relation. The
deletion of a set of tuples from a relation with respect to a condition, C, results in the removal
of the set of tuples satisfying C from the relation. The modification of a set of tuples with
respect to two conditions, CI and C2, results in replacing the set of tuples satisfying C) by the
set of tuples satisfying C2. A transaction can now be defined as the sequential composition of
one or more updates. The aim of this section is two-fold. Firstly, to formalise the notion of an
update and a transaction, and secondly to show that the equivalence of two transactions can be
tested in polynomial time in the size of the transactions being tested. The test for equivalence
is an essential ingredient in optimising a transaction, which intuitively means replacing the
transaction by an equivalent one which requires less operations. Prior to defining updates we
formalise the notion of a condition and a set of tuples satisfying a condition.

Definition 3.39 (Condition) A simple condition over R is either an expression of form A = a
or an expression of the form A =f a, where A E schema(R) and a E DOM(A).

AconditionCoverRisaconjunctioncjI"c2A . . . Acqofsimpleconditionsci, i E {I, 2, ... , q},
such that C does not contain two distinct simple conditions of the form A = a and A = b or of
the form A = a and A =f a, for some A E schema(R).

A positive condition over R is a condition of the form

where {A), A2, .'" Aq} ~ schema(R) and ai E DOM(Ai), for i E {I, 2, ... , q}.

A complete condition over R is a positive condition over R, where {AI , A2, ... ,Aq} =
schema(R) obtains in the definition of a positive condition. •

We observe that disallowing distinct simple conditions of the form A = a and A = b or of
the form A = a and A =f a, for some A E schema(R), restricts conditions to be meaningful by
not having mutually exclusive conditions.

Definition 3.40 (Satisfaction of a condition by a tuple) Let r be a relation over R, let t be a
tuple in r and, in addition, let C = CI A C2 A ... A cq be a condition over R. Then t satisfies C,
written t 1= c, is defined recursively, as follows:

1) t 1= A = a, if t[A) = a is true.

2) t 1= A =f a, if t[A) =f a is true.

3) t 1= C, if Vi E (I, 2, .. . ,q), t 1= Ci. •

126 Chapter 3. The Relational Data Model

We note that we could extend conditions in a straightforward way to be general Boolean
expressions but we prefer to keep the formalism simple. Furthermore, for simplicity we only
formalise updates on single relations but we note that the definitions given below can be
extended to databases (containing several relations) in a straightforward manner.

Definition 3.41 (An update) Let r be a relation over relation schema R, with schema(R) =
{A\, A2 , .. . , Am}. An update over R is either an insertion over R, a deletion over R or a
modification over R.

An insertion over R is an expression of the form insert(C), where C is a complete condition
over R. The effect of an insertion insert(C) over R on r is defined by

[insert(C)](r) = r U {t I t F= C}.

A deletion over R is an expression of the form delete(C), where C is a condition over R. The
effect of a deletion delete(C) over R on r is defined by

[delete(C)](r) = r - {t I t E rand t F= C}.

The modification of a tuple t over R with respect to a condition C, denoted by [modify(C)] (t),
is defined by

[modify(C)](t) = u, where u is a tuple over R such that
VAi E schema(R), urAd = ai if (Ai = ai) E C, otherwise urAd = t[Ad.

A modification over R is an expression of the form modify(C\; C2), where Cl and C2 are
conditions over R such that for each A E schema(R), if A "1= a is in C2 for some a E DOM(A),
then A "1= a is also in C\. The effect of a modification modify(Ct; C2) over R on r is defined by

[modify(C\; C2)](r) = (r - (t I t E rand t F= Cd) U ([modify(C2)](t) I t E rand t F= Cd .

•
The definition of a modification can be viewed as a deletion followed by a sequence of

insertions whereby each inserted tuple is the result of modifying some deleted tuple. We note
that we could restrict condition C2 above to be positive and the effect of the modification would
remain unchanged; however, for the purpose of the normal form introduced in Definition 3.44,
we find the above definition convenient.

As a running example for this subsection, suppose that we have a relation schema
EMPLOYEE having attributes: ENAME (employee name, abbreviated to EN), DNAME
(department name, abbreviated to DN) and SALARY (employee salary, abbreviated to SL). A
relation r over EMPLOYEE is shown in Table 3.31.

Table 3.31 The relation r over EMPLOYEE

ENAME DNAME SALARY
John Computing 30K
Jack Computing 35K
Jake Biology 30K

3.2. Query and Update Languages for the Relational Model 127

Consider the following updates, where ":=" denotes assignment:

1) rl := [insert(EN = Jill /\ DN = Maths /\ SL = 25K))(r) is shown in Table 3.32.

2) r2:= [insert(EN = Joe /\ DN = Maths /\ SL = 35K))(rd is shown in Table 3.33.

3) r := [delete(DN = Maths))(r2) is shown in Table 3.31.

4) r:= [delete(DN =I Computing /\ DN =I Biology))(r2) is shown in Table 3.31.

5) rl := [delete(EN = Joe))(r2) is shown in Table 3.32.

6) r3 := [modify(DN = Computing; DN = Maths))(r) is shown in Table 3.34.

7) r4:= [modify(DN =I Computing; DN = Maths))(r) is shown in Table 3.35.

Table 3.32 The relation rl over EMPLOYEE

ENAME DNAME SALARY
John Computing 30K
Jack Computing 35K
Jake Biology 30K
Jill Maths 25K

Table 3.33 The relation r2 over EMPLOYEE

ENAME DNAME SALARY
John Computing 30K
Jack Computing 35K
Jake Biology 30K
Jill Maths 25K
Joe Maths 35K

Table 3.34 The relation r3 over EMPLOYEE

ENAME DNAME SALARY
John Maths 30K
Jack Maths 35K
Jake Biology 30K

Table 3.35 The relation r4 over EMPLOYEE

ENAME DNAME SALARY
John Computing 30K
Jack Computing 35K
Jake Maths 30K

128 Chapter 3. The Relational Data Model

Informally a transaction is the composition of several updates. In the following an update
will be designated by upd.

Definition 3.42 (Transaction) A transaction T over R is a finite sequence of updates over R.
The effect of a transaction T = updJ, upd2 , ... , updn, on a relation rover R, where n ::: 0 is a
natural number, is defined by

[T)(r) = [updnl(. .. ([upd21([updd(r») .. .). •
We note that according to Definition 3.42, if n = 0 then [T](r) = r. Consider the following

transactions on r:

1) TJ = insert(EN = Jill /\ DN = Maths /\ SL = 25K), modify(EN = Jack; DN = Maths).

2) T2 = insert(EN = Jill /\ DN = Maths /\ SL = 25K), insert(EN = Jack /\ DN = Maths /\ SL
= 35K), delete(EN = Jack /\ DN = Computing /\ SL = 35K).

3) T3 = modify(EN = John; EN = Jill /\ DN = Maths /\ SL = 25K), insert(EN = John /\ DN
= Computing /\ SL = 30K), modify(EN = Jack; DN = Maths).

4) T4 = delete(EN = Jack), insert(EN = Jack /\ DN = Maths /\ SL = 35K), insert(EN = Jill /\
DN = Maths /\ SL = 25K).

5) Ts = modify(DN =1= Biology; DN = Maths), modify(EN = John; DN = Computing),
insert(EN = Jill /\ DN = Maths /\ SL = 25K).

It can be verified that [Td(r) = [T2)(r) = [T3)(r) = [T4)(r) = [Ts)(r) = rs, where r is
shown in Table 3.31 and r5 is shown in Table 3.36.

Table 3.36 The relation rs over EMPLOYEE

ENAME DNAME SALARY
John Computing 30K
Jack Maths 35K
Jake Biology 30K
Jill Maths 25K

The next definition formalises the intuition that two transactions over R are equivalent if
they have the same effect on all relations over R.

Defmition 3.43 (Equivalent transactions) Two transactions, TJ and T2, over a relation
schema R are said to be equivalent if for all relations, r, over R, [Td (r) = [T2)(r) . •

We next define a normal form for transactions which will be useful in proving that the
equivalence of transactions can be decided in polynomial time in the size of the transactions.

Definition 3.44 (Normal form transaction) Let T be a transaction over R. Then the active
domain ofT with respect to an attribute A E schema(R), denoted by ADOM(T, A), is the set
of all values in DOM(A) that occur in the conditions of the updates of T. The active domain

3.2. Query and Update Languages for the Relational Model 129

ofT with respect to R (or simply the active domain ofT when R is understood from context),
denoted by ADOM(T}, is given by

ADOM(T) = U ADOM(T,A).
AEschema(R)

We associate with T and each attribute, A E schema(R}, a set of normal form conditions,
denoted by NF(T, A}, given by

NF(T,A)={A=a1aEADOM(T,A)}U{ 1\ A#a}.
aEADOM(T.A)

The set of normal form conditions for T, denoted by NF(T}, is the set of all possible
conjunctions of normal form conditions having one normal form condition from NF(T, A}
for each attribute A in schema(R) such that A appears in T. Formally NF(T} is given by

NF(T) = { 1\ CA
AEschema(R)

CA E NF(T, A) }.

The transaction T is in normal form if every condition C occurring in T is in NF(T}. •

It follows that a transaction T is in normal form if for every two conditions C1 and C2
occurring in T the set of tuples {t I t F Cd is either disjoint or equal to the set of tuples
{t I t F C2}. To see this, suppose for example that schema(R) = {A, B}, ADOM(T, A} = {O, I}
and ADOM(T, B} = {I, 2} . Then NF(T} = {A = 0 /\ B = 1, A = 0 /\ B = 2, A = 0 /\ B # 1/\ B
2, A = 1 /\ B = 1, A = 1 /\ B = 2, A = 1 /\ B # 1 /\ B # 2, A # ° /\ A # 1/\ B = 1, A # ° /\ A
1 /\ B = 2, A # ° /\ A # 1 /\ B # 1 /\ B # 2}.

From Definition 3.44 we have that insertions are always in normal form. On the other
hand, transactions consisting of deletions and modifications may not be in normal form.
For example, the transaction, delete(DN # Biology /\ SL = 30K), modify(DN # Maths; DN =
Computing}, is not in normal form, while the transaction, delete(DN # Biology /\ DN # Maths
/\ DN # Computing /\ SL = 30K}, delete(DN = Maths /\ SL = 30K}, delete(DN = Computing
/\ SL = 30K}, modify(DN # Biology /\ DN # Maths /\ DN # Computing /\ SL = 30K; DN =
Computing /\ SL = 35K), modify(DN = Computing /\ SL = 30K; DN = Computing /\ SL = 35K),
modify(DN = Biology /\ SL = 35K; DN = Computing /\ SL = 30K), is in normal form. (We
observe that the active domain of EN with respect to both these transactions is empty.)

Given a condition Cover R we let the restriction of C to the attributes in schema(R)-{A},
denoted by C I~A' to be the condition C with any simple condition of the form A = a or A # a
removed from C.

The following two axioms, called the split axioms, allow us by their repeated application to
transform any transaction into normal form.

Defmition 3.45 (Split axioms) The two split axioms are given by

SPLITl: delete(C) is transformed into the equivalent transaction:

delete(C /\ A # a), delete(C I~A /\ A = a),

130 Chapter 3. The Relational Data Model

SPLIT2: modify(C; C') is transformed into the equivalent transaction:

modify(C /\ A =I a; Cd, modify(C [~A /\ A = a; C2),

where A E schema(R), a E DOM(A), A =I a is not one of the simple conditions of C, and for
each b E DOM(A), there is no simple condition in C of the form A = b. Moreover, C1 = C2 = C'
if A = b is a simple condition in C' for some b E DOM(A), otherwise Cl = C' /\ A =I a and
C2 = C' [~A /\ A = a. •

Intuitively, when the split axioms transform a condition C the set of tuples satisfying Cis
partitioned into two complementary sets: the set of tuples satisfying C and A =I a and the set
of tuples satisfying C and A = a. This allows us to apply the resulting updates to each one of
the two sets of tuples independently.

For example, the SPLIT! axiom transforms delete(DN = Maths /\ EN =I Jack) into the
transaction: delete(DN = Maths /\ EN =I Jack /\ EN =I John), delete(DN = Maths /\ EN
= John). As another example, the SPLIT2 axiom transforms modify(DN =I Biology; DN
= Maths) into the transaction: modify(DN =I Biology /\ DN =I Computing; DN = Maths),
modify(DN = Computing; DN = Maths). As a final example, the SPLIT2 axiom transforms
modify(EN =I John; DN = Computing) into the transaction: modify(EN =I John /\ EN =I Jack;
DN = Computing /\ EN =I Jack) , modify(EN = Jack; DN = Computing /\ EN = Jack). It is now
evident that applying the SPLIT axioms repeatedly to a transaction results in an equivalent
transaction.

Lemma 3.7 Given a transaction T over R, a normal form transaction T', which is equivalent
to T and such that for all A E schema(R), ADOM(T, A) ~ ADOM(T' , A), can be found in
polynomial time in any finite set of values ADOM(T') that includes ADOM(T).

Proof. We assume without loss of generality that T consists of a single update. Otherwise, we
can transform each update in T into normal form and then concatenate all of the resulting
normal form updates to obtain the desired normal form transaction T'.

In order to transform T into normal form we iteratively apply the relevant split axiom
with respect to some value in ADOM(T') until the current state of T is in normal form. The
number of such iterations is bounded by O([ADOM(T')[type(R) , since by Definition 3.45 each
update can only be split once with respect to a given domain value. The result follows since
this transformation is polynomial in ADOM(T'), although we note that it is exponential in
type(R). 0

The next theorem establishes the central result of this section, namely that transaction
equivalence can be decided in polynomial time in the size of the transactions being tested
lAVSS).

Theorem 3.8 The problem of whether two transactions over a relation schema Rare
equivalent can be decided in polynomial time in the number of active domain values in
the two transactions.

3.2. Query and Update Languages for the Relational Model 131

Proof Let T = upd" upd2, ... , updn be a transaction over R which is in normal form. We
show how to transform T into a pair (/, s), called a transition over R, where f is a partial
mapping from the set of all tuples over R to themselves and s is a relation over R. The relation
s corresponds to the tuples that are inserted by T and is equal to [T](0). The partial mapping
f is defined from the updates, Updi, as the composition fnf"-, ... hf, (we denote composition
of mappings by juxtaposition), where fi, i E I I, 2, ... , n - I, n}, is defined as follows:

1) If updi is the insertion update, insert(C), then for all tuples t over R,fCt) = t, i.e. in this
case f is the identity mapping.

2) If upd; is the deletion update, delete(C), then for all tuples t over R such that t F= C,f(t)
is undefined and for all other tuples t' over R such that t' ~ C,f(t') = t'.

3) If updi is the modification update, modify(C,; C2), then for all tuples t over R such that
t F= C"fCt) = [modify(C,; C2)]({t}) and for all other tuples t' over R such that t' ~ C"
f(t') = t'.

We observe that although the mapping f is defined at the individual tuple level, conceptually
we can view the tuples as being grouped into sets of tuples according to the condition C that
they satisfy, where C is a normal form condition.

The effect of a transition (/, s), as constructed above, on a relation rover R is given by

[if, 5)](r) = {j(t) I t Ern dom(/)} U 5,

where dom(/) denotes the domain of the partial mappingf; we note that if t ¢ r n dom(j)
thenf(t) is undefined. It is evident that the effect of a transaction T on a relation r is the same
as the effect of the transition, which was constructed from T, on r, i.e. [(/, s)](r) = [TI(r).

Next, let T, and T2 be two transactions over R. By Lemma 3.7 we can assume without any
loss of generality that T, and T2 are in normal form and that ADOM(Td = ADOM(T2). When
T, and T2 are in normal form we can transform them in polynomial time in the sizes of T,
and T2 into the transitions (/" 5,) and (/2, 52), respectively, as described above.

We say that two transitions (/,,5,) and (/2, 52) over R are equivalent if for all relations rover
R the effect of (/,,5,) on r is the same as the effect of (/2, S2) on r, i.e. [(/" 5,)](r) = [(/2, 52»)(r).
It, therefore, remains to decide whether (/,,5,) and (/2, 52) are equivalent.

Now, it can be shown that (/" 51) and (/2, 52) are equivalent if and only if the following two
conditions obtain:

1) 5, = 52, i.e. both transitions insert the same tuples, and

2) for each distinct i,j Ell, 2) and for each tuple t over R, iffi(t) is defined and is not in
5j, then !J(t) is defined and fi(t) = !J(t), i.e. if one transition modifies a tuple t that was
not the result of an insertion, then the other transition must also modify this tuple in
the same manner.

We observe that if fi(t) is undefined then !J(t) must also be undefined, otherwise a
contradiction occurs due to the following argument. If !J(t) is defined and it is not in Sj
then by condition (2) fi(t) = !J(t), otherwise if !J(t) E 5j then!J(t) = f;(t) = t, since Si = Sj by
condition (l).

132 Chapter 3. The Relational Data Model

Finally, the equivalence of if) , 5) and if2 , 52) can be tested in polynomial time in IADOM(Tj) I
as follows. Firstly, we can easily test whether the first condition holds, i.e. 5) = 52. Secondly,
in order to test the second condition we need only consider tuples t such that for all A E

schema(R), t[A) E ADOM(Tj, A) U {VA}, where VA is a distinct value in DOM(A) - ADOM(h
A) and there are at most IADOM(Tj)+Iltype(R) such tuples, where i E {I,2}. (The value VA

acts as a representative value not in ADOM(Tj, A).) To conclude the proof, it can be verified
by the construction of ik, for k E {I, 2, ... , n}, that we can simulate !Ct) by [T)({t)). 0

A survey on update languages can be found in [Abi88), and an algorithm for optimising
transactions is presented in [A V88]. An extension of the formalism we have described to
parameterised transactions and an investigation on how the consistent states, which satisfy a
set of data dependencies, can be expressed in terms of transactions can be found in [A V85,
AV89] . (Data dependencies are discussed in detail in Section 3.6.) A sound and complete
axiom system (see Definition 3.53) for proving the equivalence of two transactions is given in
[KKPV87, KV9I]. Finally, an extension of transactions to handle parallel updates is presented
in [KV88].

3.3 The Equivalence of Query Languages for the Relational
Model

A fundamental result in relational database theory is that of the equivalence of the query
languages for the relational model, which we presented in the previous section. Two query
languages are equivalent if for all input databases and for each query in the first (respectively
the second) query language there is some query in the second (respectively the first) query
language such that both queries return the same answer relation. Establishing the equivalence
of these query languages is important for several reasons. Firstly, it provides strong evidence
that Definition 3.21 of relational completeness is a robust measure of the expressive power
we would like a relational database query language to have. Secondly, due to the different
styles of the equivalent query languages, it allows for a relational DBMS to support procedural,
declarative and rule-based interfaces, all having the same underlying query processing engine.
Thirdly, by proving the equivalence we gain a better understanding of the limitations of the
relational algebra and how it can be enhanced to deal with recursive queries by using the
logical basis of Datalog (see Chapter 9 on deductive databases for details).

In order to prove the equivalence of the three query languages we have presented in the
previous section, both the domain calculus and Datalog need to be restricted so that their
answer set is always finite, even when the underlying attribute domains may be infinite.
A suitable restriction of Datalog is that it be safe (see Definition 3.30 in Subsection 3.2.3),
while a suitable restriction of the domain calculus is that it be allowed (see Definition 3.50 in
Subsection 3.3.1).

In Subsection 3.3.1 we study the important concept of domain independence which
intuitively means that the result of a query over a database depends only on the domain
elements in the database and those mentioned in the query and not on the rest of the values
in the underlying domains. We show that relational algebra and Datalog queries are domain
independent but that domain calculus queries are, in general, not domain independent.

The Equivalence of Query Languages for the Relational Model 133

When the domain calculus is restricted to the allowed domain calculus it becomes domain
independent. In Subsection 3.3.2 we prove the fundamental result that the relational algebra
is equivalent to both the allowed domain calculus and to nonrecursive safe Datalog.

3.3.1 Domain Independence

Queries expressed in the relational algebra always yield finite answers, since the operands
of such queries are relations which are by definition finite objects. Furthermore, the values
present in an answer to a relational algebra query depend only on the values in the input
relations together with the constant values that appear in the query itself, and not on the totality
of values in the domains, DOM(Aj), from which the relations are built. This characteristic of
the relational algebra is important, since attribute domains are, in general, either countably
infinite sets or very large finite sets. It follows that an answer to a relational algebra query
depends only on the constants present in the query and the active domain of the database
with respect to which the query was issued; it does not depend on other constant values
in the domains, DOM(Aj). A query language that satisfies this property is called domain
independent. We show that both the relational algebra and Datalog are domain independent
but that the domain calculus is not. We present a domain independent subset of the domain
calculus, called the allowed domain calculus, which, in the next subsection, will be shown to
be equivalent both to the relational algebra and nonrecursive safe Datalog.

In the following when we refer to a query Q it will either be a relational algebra query,
a domain calculus query or a Datalog query. We will assume that the arguments of the
query are relation schemas in a database schema R. In the case of a relational algebra query
these arguments are the operands of the query, in the case of a domain calculus query these
arguments are the relation schemas mentioned in the well-formed formula of the query, and
in the case of a Datalog query with respect to a Datalog program these are the relation schemas
over which the initial database of the Datalog program is defined.

In order to formalise the notion of domain independence some definitions follow.

Definition 3.46 (Active domain of a query) The active domain of a query Q, denoted by
ADOM(Q), is the set of constant values appearing in Q. •

Example 3.2 Let Q be the query "Retrieve the names of students who are enrolled in the
Computing department" and let rl be the relation over STUDENT, shown in Table 3.1. Then
ADOM(Q) = Computing. The relational algebra query corresponding to Q is:

Jl"SNAME(ap(rd),

where F is the formula DEPT = 'Computing'.

The domain calculus query corresponding to Q is:

{Xl: SNAME I 3X2(3x3(3x4(3xs(3x6
(STUDENT(XI, X2, X3, X4, xs, X6) 1\ X4 = 'Computing'»)))}({r!l).

134 Chapter 3. The Relational Data Model

The Datalog query corresponding to Q is:

: -p COMP _STUD(x)

where P is the Datalog program

COMP _STUD(xI) : - STUDENT(XI, X2, X3, Computing, xs, X6).

together with the set of facts that are contained in rl. •
In order to distinguish between various finite or infinite subsets ofD which can be chosen

as the domain of an attribute A E schema(R), we extend the notation, DOM(A), to DOMj(A),
where j is a natural number. Thus, in general, DOMj(A) =1= DOMk(A), for j =1= k. We will let
DOMjCR) denote the union of DOMjCA) for all attributes A in schema(R), i.e.

DOMj(R) = U{DOMj(A) I A E schema(R)}.

We will refer to DOMjCR) as the underlying domain of R and say that DOMj(R) is the
underlying domain of a database dover R if DOMj replaces DOM in Definition 3.7 of a
database. (Note that this is equivalent to stating that ADOM(d) S; DOMj(R).) When we want
to emphasise the fact that DOMjCR) is the underlying domain of d we will refer to d as the pair
(d, DOMjCR)).

Weare now ready to define the concept of a domain independent query, which informally
means that for all databases d input to a query Q the answers to Q depend only ADOM(Q) U
ADOM(d).

Definition 3.47 (Domain independent query) A query Q is domain independent if, for all
underlying domains of R, DOMI (R) and DOM2(R), and for all databases dover R such that
ADOM(Q) U ADOM(d) is a subset of both DOMI (R) and DOM2(R), the equation

Q«d, DOMI(R))) = Q«d, DOM2(R)))

holds. •
In Exercise 3.12 you are required to show that there is no loss of generality in restricting

DOMI (R) and DOM2(R) in Definition 3.47 to be finite domains. This result immediately
implies that a domain independent query is well-defined for all input databases, in the sense
that its answer is always a finite relation.

The following proposition follows from the semantics of answers to relational algebra and
Datalog queries (recall from Subsection 3.2.3 that we only consider safe substitutions when
computing the meaning of a Datalog program).

Proposition 3.9 All relational algebra and Datalog queries are domain independent. 0

Note that the above proposition still holds if we allow safe recursive Datalog programs in
addition to nonrecursive safe Datalog programs. On the other hand, domain calculus queries

The Equivalence of Query Languages for the Relational Model 135

may not be domain independent as we now demonstrate with two example queries. Let
STUDS and LECTS be two unary relation schemas with schema(STUDS) = schema(LECTS)
= {PNAME}, where DOM(PNAME) is the domain of person names. A relation over STUDS
contains the names of students currently enrolled in the college and a relation over LECTS
contains the names of lecturers currently employed by the college. In addition, let TI be a
nonempty relation over STUDS, T2 be a non empty relation over LECTS and let d = {TI, T2} be
a database over {STUD, LECTS}.

The following domain calculus query asks for the names of people who are not currently
enrolled in the college, namely

{x: PNAME I -'STUDS(x)} . (3.1)

According to Definition 3.28 the answer to (3.1) with respect to d includes all the tuples
in DOM(PNAME) that are not in TI. Assuming that DOM(PNAME) is infinite then the
answer to (3.1) is infinite. Apart from the fact that the answer is not a relation (which by
Definition 3.7 must be finite), it cannot be computed in a finite amount of time. Moreover,
even if DOM(PNAME) is finite then increasing DOM(PNAME) by adding elements to it will
increase the number of tuples in the answer to (3.1).

The following query asks for the names of people who are either students enrolled in the
college or lecturers employed by the college, namely

{XI: PNAME, X2 : PNAME I STUDS(xI) v LECTS(X2)}. (3.2)

The answer to (3.2) according to Definition 3.28 is the set of all possible name pairs <sname,
lname> such that either <sname> E TI is true or <lname> E T2 is true but not necessarily
both are true. Thus, if <sname> E TI and <iname> if. T2 or if <lname> E T2 and <sname>
if. TI> <sname, lname> is still in the answer to (3.2). Note that if TI and T2 are both empty
then the answer to the query is empty. It follows that if either TI or T2 is nonempty and
DOM(PNAME) is infinite then the answer to (3.2) is infinite and therefore not computable in
a finite amount of time. Moreover, as in (3.1), even ifDOM(PNAME) is finite then increasing
DOM(PNAME) by adding elements to it will increase the number of tuples in the answer to
(3.2).

The above example highlights the two main problems which cause a domain calculus query
to be domain dependent, namely

1) The query has a subformula of the form -.p such that a variable in F does not occur
positively in some atomic formula elsewhere in the query.

2) The query has a subformula of the form FI v F2 such that the free variables of FI are not
the same as the free variables of F2.

The following theorem, which was proved in [DiP69j and [Var81j (see also [Kif88]), implies
that, in general, there is no effective algorithm to decide whether a domain calculus query is
domain independent or not. The proof relies on a reduction from the finite validity problem,
which was stated in Theorem 1.4 of Subsection 1.9.5 of Chapter 1.

Theorem 3.10 The problem of determining whether a domain calculus query is domain
independent is undecidable. 0

136 Chapter 3. The Relational Data Model

Despite the negative result stated in Theorem 3.10, we will now define a subclass of domain
calculus queries, called allowed domain calculus queries [Top87, VT91], which are guaranteed
to be domain independent.

Defmition 3.48 (Positive occurrence of a variable in a domain calculus formula) A variable
x occurs positively (or simply x is positive) in a domain calculus formula if and only if one of
the following cases holds:

1) x is positive in an atomic formula R(YI. 12 • . ..• x• Yk) in which x appears.

2) x is positive in an atomic formula x = v in which x appears, where v is a constant.

3) x is positive in the formula -,F, if x is negative in F.

4) x is positive in the formula FI i\ F2, if either x is positive in FI or x is positive in F2.

5) x is positive in the formula FI v F2, if x is positive in FI and x is positive in F2.

6) x is positive in the formula FI => F2, if x is negative in FI and x is positive in F2.

7) x is positive in the formula 3y : A (P), if x :f=. y and x is positive in F. •
Defmition 3.49 (Negative occurrence of a variable in a domain calculus formula) A variable
x occurs negatively (or simply x is negative) in a domain calculus formula if and only if one of
the following cases holds:

1) x is negative in the atomic formula x = y in which x appears, where y is a variable.

2) x is negative in the formula -,F, if x is positive in F.

3) x is negative in the formula FI i\ F2, if x is negative in FI and x is negative in F2'

4) x is negative in the formula FI v F2, if either x is negative in FI or x is negative in F2•

5) x is negative in the formula FI => F2, if either x is positive in FI or x is negative in F2.

6) x is negative in the formula \ly : A (F), if x :f=. y and x is negative in F.

7) if x does not appear in a formula F, then x is negative in F. •
Definition 3.50 (An allowed domain calculus query) A domain calculus formula F is al
lowed if all of the following conditions hold:

1) For every free variable x of F, x is positive in F.

2) For every subformula 3x : A (G) of F, x is positive in G.

3) For every subformula \Ix: A (G) of F, x is negative in G.

A domain calculus query is allowed if its formula is allowed. •

The Equivalence of Query Languages for the Relational Model 137

In the following we call the domain calculus, restricted to allowed formulae, the allowed
domain calculus (or simply the allowed calculus).

We note that an algorithm which decides whether a domain calculus query is allowed or not
can easily be devised by a simple recursion on the structure of the domain calculus formula
of the query.

The following theorem can be proved by induction on the number oflogical connectives in
the domain calculus formula of a query.

Theorem 3.11 Every allowed domain calculus formula is domain independent. 0

We demonstrate the above theorem with some simple queries, where STUDS and LECTS
are the relation schemas defined above and LIVES is a relation schema with schema(LIVES}
= {PNAME, ADDRESS}. The following query retrieves the names of people who do not live
in London:

{Xl: PNAME I LIVES(Xl, X2) 1\ -.LIVES(XI, London)}.

This query is allowed, since Xl is positive in LIVES(XI, X2}.

The following query retrieves the names of people who either live in Manchester or London:

{XI: PNAME I LIVES(Xl, Manchester) v LIVES(Xl, London)}.

This query is allowed, since XI is positive in both LIVES(xl> Manchester} and LIVES(xl>
London}.

The following allowed query returns true if the relation 'lover STUDS is empty otherwise
it returns false if'l is not empty:

{X: PNAME I "Ix : PNAME(-.STUDS(x»}.

The above query is actually equivalent to the following query:

{X: PNAME I -.(:3x: PNAME(STUDS(x»)}.

The query shown in (3.1) is not allowed, since the free variable X is negative (i.e. it is not
positive) in -.STUDS(x). The query shown in (3.2) is also not allowed, since the free variable
X2 is negative in STUDS(xI) and similarly the free variable XI is negative in LECTS(X2).

The following query is not allowed, since XI does not appear in the formula of the query:

{XI: PNAME I LIVES(x2, Manchester)} .

Another way of restricting domain formulae so as to obtain a subclass of domain
independent queries is to restrict the quantifiers :3 andY to range over relations, which are by
definition finite objects. Let DOMAIN be a unary relation schema with schema(DOMAIN} =
{A}, then

"Ix E DOMAIN(F) is an abbreviation for "Ix: A (DOMAIN(x) =? F)

138 Chapter 3. The Relational Data Model

and
:3x E DOMAIN(F) is an abbreviation for:3x : A (DOMAIN(x) /\ F),

where F is a well-formed formula of the domain calculus. Such restricted quantifiers are
known in logic as relativised quantifiers [Van89).

For the rest of this subsection let us assume that DOMAIN E R holds, and thus any database
d, with respect to which a query Q is answered, includes a relation over DOMAIN. In addition,
let us assume that the relation r in d over DOMAIN is such that r = ADOM(Q) U ADOM(d),
i.e. r includes all the active domain values in Q and d.

We note that if the underlying domains of different attributes are disjoint (or more generally
not equal to each other) then we can partition the relation over DOMAIN accordingly.

The following proposition [Top87) shows that relativised quantifiers can be used to
transform a domain calculus query, which may not be domain independent, into a domain
independent query.

Proposition 3.12 Let Q be the domain calculus query

and let {y\ , Y2 , ... ,Ym} be the subset of the free variables of Q that are negative in F. Then,
provided all of the quantifiers in Fare relativised, the query

is allowed and thus domain independent. o

The following theorem taken from [Top87) shows that in most practical cases domain
independent queries have an equivalent allowed query.

Theorem 3.13 If Q is domain independent, then for all databases dover R, such that the
relation r in d over DOMAIN is nonempty, Q(d) = Qr(d), where Q is the domain calculus
query of Proposition 3.12 and QT is given by the relativised query of (3.3). 0

The reader can verify that the condition that DOMAIN be nonempty is necessary in the
statement of Theorem 3.13 by considering a database schema R = {Rl, with schema(R) = {A},
and taking Q to be the Boolean query

I "Ix: A (R(x) /\ ~R(x»},

whose result is always empty, representing the fact that Q is false. However, the relativised
query QT, given by

I "Ix: A (DOMAIN(x) ::::} (R(x) /\ ~R(x»)},

returns {< > } when DOMAIN is empty, representing the fact that QT is true.

From a practical point of view we note that all SQL queries are domain independent, since
they effectively maintain the form of the query Qr of (3.3). Every domain variable declared in

The Equivalence of Query Languages for the Relational Model 139

an SQL query must range over a projection 7r A (R), where R is a relation schema mentioned in
the FROM-clause of the query.

An alternative approach to dealing with the undecidability result of Theorem 3.10, which
does not restrict the domain calculus to a subclass of its queries, is now briefly discussed,
assuming that the underlying database domain, 1), is fixed and infinite. In this alternative
approach for a given database dover R and a domain calculus query Q we solve the state-safety
problem, which is the problem of deciding whether the answer Q(d) is finite, prior to actually
computing the answer to the query. If the solution to the state-safety problem for d and Q
is negative, i.e. the answer Q(d) is infinite, then we abandon the query and return a result
indicating that the query is undefined for the input database. The next theorem [AGSSS6,
KifSS] (see also [AH91, ST95]) implies that for the domain calculus a tractable solution exists
for the state-safety problem and thus this alternative approach is viable in practice.

Theorem 3.14 The state-safety problem is decidable in polynomial time in the size of the
input database.

Proof. Let d be a database and Q be a domain calculus query. We say that the underlying
domain DOMj(R) is sufficiently large with respect to Q and d if it is finite, it contains all the
elements in ADOM(Q) U ADOM(d) and the number of elements in DOMj(R) - (ADOM(Q)
U ADOM(d» is at least one plus twice the number of occurrences of equality and inequality
terms in Q, which are of the form x = y and x i=- y, respectively.

Now, evaluate the query Q((d, DOMj(R»), where DOMj(R) is sufficiently large with respect
to Q and d, and let r be its answer, which is finite since DOM/R) is finite. If r contains a
tuple t with an attribute value, say t[AJ, which is not in ADOM(Q) U ADOM(d) then return
undefined, otherwise return r. We leave it to the reader as an exercise to verify that we return
undefined if and only if Q(d) is infinite. 0

3.3.2 The Equivalence of the Algebra, the Calculus and Datalog

Herein we prove one of the most important results concerning query languages for the
relational model, i.e. that the relational algebra is equivalent to both nonrecursive safe Datalog
and to the allowed domain calculus.

Informally, two queries are equivalent if they return the same answer for all input databases,
and two query languages are equivalent if they express exactly the same set of queries.

Defmition 3.51 (Equivalence of queries and query languages) Two queries Q, and Q2,
whose arguments are relation schemas in a database schema R, are equivalent, denoted by
Q, == Q2,ifforalldatabasesdoverRQ,(d) = Q2(d).

A query language L, is contained in a query language L2, if for all queries Q, in L, there
exists a query Q2 in L2 such that Q, == Q2 . L, is equivalent to L2, if L, is contained in L2 and
L2 is contained in L,. •

We now set out to prove that the relational algebra, nonrecursive safe Datalog and the
allowed domain calculus are equivalent query languages for the relational model. We will

140 Chapter 3. The Relational Data Model

assume that the arguments of queries are relation schemas in a database schema R. We first
show that nonrecursive safe Datalog is at least as expressive as the relational algebra.

Lemma 3.15 The relational algebra is contained in nonrecursive safe Datalog.

Proof. We need to show that for every relational algebra query there exists an equivalent
Datalog query. The lemma follows by induction on the number of operators present in the
relational algebra query, say Q.

Basis. If Q does not contain any operators then it is simply a query of the form R, where R
E R. Then the equivalent nonrecursive safe Datalog query is

where P is a Datalog query satisfying R E SCHEMA(P).

Induction. Assume the result holds for relational algebra queries containing q operators;
we then need to prove that the result holds for relational algebra queries Q containing q + I
operators. Without loss of generality we assume that answers to Q result in relations over
a relation schema also named Q such that schema(Q) has k attributes. The Datalog query
equivalent to Q is

where P is a Datalog program satisfying Q E SCHEMA(P) such that Q is defined inductively
according to the (q + l)th relational algebra operator.

We consider the (q + l)th relational algebra operator to be either union, difference,
projection, join or selection.

If Q is the query Ql U Q2, then the Datalog rules in P that define Q are:

Q(XI, X2, ... , Xk) : - Ql (Xl, X2 , .. . , Xk)·
Q(XI , X2, ... ,Xk) : - Q2(XI, x2 , ... , Xk) ·

where by inductive hypothesis P contains nonrecursive safe Datalog rules that define Ql and
Q2 .

If Q is the query Ql - ~, then the Datalog rule in P that defines Q is:

where by inductive hypothesis P contains nonrecursive safe Datalog rules that define Ql and
Q2.

IfQ is the query JTX(QI), where X = {Xl, X2, ... , xkl S; {Zl , Z2, ... , zml and Ql results in a
relation over a relation schema with m attributes, then the Datalog rule in P that defines Q is:

where by inductive hypothesis P contains nonrecursive safe Datalog rules that define Ql'

The Equivalence of Query languages for the Relational Model 141

If Q is the query Q, [Xl Q2, where {XI, X2, ... , Xk} = {y, ,Y2, ... , Ym} U {z" Z2, ... , zn} and
Q, and Q2 result in relations over relation schemas with m and n attributes, respectively, then
the Datalog rule in P that defines Q is:

where by inductive hypothesis P contains nonrecursive safe Datalog rules that define QI and

Q2·
If Q is the query crF(Q,), where F is a selection formula, which by Theorem 3.1 can be

assumed to be a simple selection formula, then the Datalog rule in P that defines Q is:

where X = Y is the appropriate equality formula corresponding to the selection formula F.
Now by inductive hypothesis P contains nonrecursive safe Datalog rules that define Q,. 0

We next show that the allowed domain calculus is at least as expressive as nonrecursive safe
Datalog.

Lemma 3.16 Nonrecursive safe Datalog is contained in the allowed domain calculus.

Proof We need to show that for every nonrecursive safe Datalog query Q of the form

there exists an equivalent allowed domain calculus query, where SCHEMA(R) =
{A" A2 , •. . , Ad.

In order to simplify the proof we assume, without loss of generality, that the set of variables
appearing in any two rules in P are disjoint; if this is not the case then a simple renaming of
variables will realise this assumption.

We now create a set of atomic formulae from the predicate R(y, ,Y2, ... ,Yk) as follows. For
each constant Yi E {Y" Y2 , . .. , Yk} we create an atomic formula Xi = Yi, where Xi is a variable
which is not in {Y" Y2, ... , Yk}, and for each repeated variable Yi E {Y" Y2, ... , Yk} in positions
i and j we create an atomic formula Yi = Xj, where Xj is a variable distinct from Yi. We now
define the domain calculus formula

aft /\ aJz /\ ... /\ afm

which we denote by FR, where {af" aJz, ... , afm} is the set of atomic formulae we have created
from R(Y' ,Y2, . .. ,Yk).

Thus the allowed domain calculus query, which is equivalent to Q, has the form

where FQ is a domain calculus formula which will be defined below and {XI, X2, ... , Xk} is a
set of k variables containing all the variables in {y" Y2, ... , yd.

142 Chapter 3. The Relational Data Model

The remaining part of the lemma follows by induction on the number of rules in the
nonrecursive safe Datalog program P, with respect to which Q is issued, having the relation
symbol R in their head.

Basis. If P does not contain any such rules then the equivalent domain calculus query is

which is allowed, since for each Xi E {X], X2 , .. . ,Xk} Xi is positive in the atomic formula
R(x] , X2 . . . , Xk)·

Induction. Assume the result holds for nonrecursive safe Datalog programs P containing q
rules having the relation symbol R in their head; we then need to prove that the result holds
for nonrecursive safe Datalog programs P containing q + 1 rules having the relation symbol
R in their head.

Let us choose a rule C, in P having the relation symbol R in its head and assume, for
simplicity of the argument, that it has the form

where all the variables in the head of the rule have been appropriately renamed to conform
with the variables Xi appearing in R(x], X2 , . .. , Xk). Now, let {z] , Z2 , . .. , zm} be the set of
variables appearing in the body of C] but not in its head. We create the following domain
calculus formula for C] :

3z, : A,(3z2 : A2(." (3zm : Am(R](yj,yi , · ·· , y~l) /\ -.R2(yi ,Yi , · ·· , y~2 »)) /\ ... »,

which we denote by F] . The reader can verify that the domain calculus formula F, is allowed,
since C] is a safe Datalog rule.

We will make a short cut in the proof by assuming that the relation symbols of the literals in
the body of C] do not appear as the heads of other rules in P. We will leave it to the reader to
extend the proof to this more general case. As a hint for solving this case, for each such rule,
where a relation symbol of a literal in the body of C] appears as the head of another rule in P,
we replace the appropriate literal in F, by the body of the said rule, renaming the variables and
adding existential quantifiers where appropriate, and finally negating the resulting formula if
the said literal was negative. If there are several such rules, say n, for a given relation symbol,

say Ri> then we create a disjunction F} V Fi V .. . V Fr, where ~ is the formula created for the
jth rule having the relation symbol Ri in its head.

Finally, the equivalent allowed domain calculus query is

{X, : A" X2: A2, .. . , Xk: Ak I (FR /\ (F, V Fq))(x] , X2 , ·· ·, Xk)},

where by inductive hypothesis Fq is the allowed domain calculus formula used to obtain
an equivalent allowed domain calculus query if C, is removed from P. (Note that FQ
F, V Fq.) 0

We finally show that the relational algebra is at least as expressive as the allowed domain
calculus.

Lemma 3.17 The allowed domain calculus is contained in the relational algebra.

The Equivalence of Query Languages for the Relational Model 143

Proof We need to show that for every allowed domain calculus query there exists an equivalent
relational algebra query.

The lemma follows by induction on the number oflogical connectives present in the allowed
domain calculus query, say Q, which has the form

where F is an allowed domain calculus formula.

We can assume without loss of generality that F contains only the logical connectives, -', v
and 3. This is due to the fact that the subformula FII\F2 is logically equivalent to the subformula
-,(-,FI v -,F2), the subformula FI =} F2 is logically equivalent to the subformula -,Fl v F2
and the subformula Yx : A(F) is equivalent to the subformula -,(3x : A(-,F». Furthermore,
the reader can verify that if a formula is allowed its logically equivalent formula, containing
only -', v and 3, is also allowed. We can also assume that F does not contain subformulae of
the form x = y, since such subformulae can be simulated by repeated variables or constants
in atomic formulae as appropriate. For example, R(Xl, X2) 1\ Xl = X2 can be simulated by
R(XI, Xl), where XI and X2 are variables, and R(xl, X2) 1\ X2 = v can be simulated by R(Xl, v),
where Xl is a variable and v is a constant value.

For each relation symbol Ri appearing in F, with schema(Ri) = {AI, A2, . .. ,Am}, we create
the domain calculus formula

3z2 : A2(.' . (3zm : Am(Ri(X, Z2, ... , zm») ...) v ... V

3z1 : AI (. .. (3Zm-1 : Am-I (Ri(ZI, ... , Zm-I, X») .. .),

which we denote by Fdomi(x), with one free variable, x.

Let ADOM(Q) = {VI, V2 , ... , vp} and assume that the set (R I , R2, ... , Rkl includes all the
relation symbols appearing in Q. Then we let Fdom(x) denote the allowed formula

X = VI V X = V2 V ... v X = vp v Fdoml (x) v Fdom2(x) v ... v Fdomk(x).

Intuitively. Fdom(x) states the possible values that a variable X can range over (this is similar
to the assumption of the unary relation schema DOMAIN encountered towards the end of
Subsection 3.3.1).

Thus Q is equivalent to the allowed domain calculus query

(Xl: AI, X2 : A2 •... , Xn : An IF 1\ Fdom(x}) 1\ Fdom(x2) 1\ ... 1\ Fdom(xn»),

since Q is allowed and thus domain independent (see Proposition 3.12).

Now, it can easily be seen that Fdom(x) translates into the equivalent relational algebra
expression

{VI, V2, ... , vp} U RelDoml U RelDom2 U ... U ReiDomb

which we denote by RelDom(F), with RelDomi being the relational algebra expression

ll'Al(Ri) U ll'A 2 (Ri) U ... U ll'Am(Ri).

Thus it is sufficient to show that Q translates into an equivalent relational algebra expression:

En RelDom (F) n ,

144 Chapter 3. The Relational Data Model

where E is a relational algebra expression and RelDom(F)n denotes the Cartesian product

RelDom(F) x ... x RelDom(F), n times.

Weare now ready to proceed with the induction referred to at the beginning of the proof.

Basis. If F does not contain any logical connectives then it is an atomic formula of the
form R(YI,Y2, ... ,Ym), where {XI, X2,··· , xn} ~ {YI,Y2, ... ,Ym} and the set {YI,Yl, ... ,Ym}
- {XI, Xl, .. . , xn} consists of constants.

Let 1fr be the conjunction of simple selection formulae of the form Ai = Aj whenever a
variable Yi is repeated in positions i and j in R(YI, Yl, ... ,Ym) and Ai = Yi whenever Yi is a
constant value.

Thus the relational algebra expression equivalent to Q is

where X = {AI, Al,"" An}.

Induction. Assume the result holds for allowed domain calculus queries containing q
logical connectives; we then need to prove that the result holds for domain calculus queries Q
containing q + 1 logical connectives.

If F(XI, Xl, ... , xn) is the formula FI (YI, Yl, .. . , Ym) v Fl(ZI, Zl, ... , Zk) then the relational
algebra expression equivalent to Q is

Jrx(EI x RelDom(F)n-m) U JrX(El x RelDom(F)n-k),

where X = {AI, Al, ... , An}, and by inductive hypothesis EI and El are equivalent to the
domain calculus queries

and

respectively.
IfF(Xl, XZ, ... , xn)is the formula ~FI (XI, Xl, ... , xn), then the relational algebra expression

equivalent to Q is
RelDom(F)n - EI,

and by inductive hypothesis EI is equivalent to the domain calculus query

(XI: AI, Xz : Az,···, Xn : An I FI(XI, Xl,· · ·, Xn)}.

IfF(xI, Xl, .. . , xn)istheformula3xn+1 : An+I(FI(xI, Xl, ... , Xn, Xn+t», then the relational
algebra expression equivalent to Q is

JrX(EI),

where X = {AI, Al, ... , An}, and by inductive hypothesis EI is equivalent to the domain
calculus query

(XI: AI, Xl: Az,···, xn : An, Xn+1 : An+1 I FI(XI, X2,···, Xn, Xn+I)}.

This concludes the proof. o

3.4. Integrity Constraints in Relational Databases 145

The following theorem is implied by the preceding lemmas, since query language
containment is transitive.

Theorem 3.18 The following three query languages for the relational model are equivalent:

1) The relational algebra.

2) Nonrecursive safe Datalog.

3) The allowed domain calculus. o

3.4 Integrity Constraints in Relational Databases

In general, we would like to restrict relations so that they satisfy certain conditions, called
integrity constraints (or simply constraints) . Integrity constraints can be viewed as first-order
logic statements that restrict the set of allowable relations in a database. For example, stating
that EMP _NO is a primary key of a relation schema, EMPLOYEE, is an integrity constraint that
specifies that no two distinct tuples in a relation over EMPLOYEE have the same EMP ~O.

Primary key constraints are a special case of the more general class of Functional Dependencies
(FDs), the most studied class of integrity constraints in relational database theory. An example
of a functional dependency, which is not necessarily a primary key, is the constraint that an
employee's ADDRESS has a unique POSTCODE; it is written as ADDRESS ~ POSTCODE.

As another example, stating that DEPLNO is a foreign key of a relation over EMPLOYEE
referencing the primary key, DEPT _NO, of a relation schema, DEPARTMENT, is an integrity
constraint that specifies that if a tuple over EMPLOYEE has a nonnull DEPT ~O-value, say
di, then there exists a tuple in the relation over DEPARTMENT whose DEPLNO-value is di.
Foreign key constraints are a special case of the more general class of Inclusion Dependencies
(INDs). An example of an inclusion dependency that is not necessarily the result of a foreign
key is the constraint that the location in which an employee works is included in the collection
of locations of offices of the company the employee works in.

Constraints such as functional and inclusion dependencies, which depend on the equality
or inequality of values in tuples of relations, are called data dependencies. Another type of
integrity constraint restricts the allowable domain values of attributes; such constraints are
called domain dependencies.

For example, a domain dependency could state that values of an attribute EMP _SALARY
range between 15,000 and 40,000 pound sterling. Another domain dependency could state
that the values of an attribute EMP _NAME is a string of at most 25 English characters.

Yet another type of integrity constraint restricts the cardinality of a projection of a relation
onto a set of attributes; such constraints are called cardinality constraints.

For example, a cardinality constraint could state that there are less managers than
employees. Another cardinality constraint could state that the number of students doing
a particular course should not exceed some specified number.

All the integrity constraints mentioned above are static, i.e. their satisfaction in a database
can be checked by examining the current database state. There is another class of constraints
which are dynamic in nature in the sense that two database states need to be examined in

146 Chapter 3. The Relational Data Model

order to test their satisfactionj such integrity constraints are called state transition constraints
[NY78). As an example we may want to state that the attribute value age of a schema PERSON
only increases when a relation over PERSON is updated. Thus in order to check this constraint
during an update, we need to examine the person relation before and after the update. Another
example of this type ofintegrityconstraint is a constraint which states that salaries of employees
increase in time. Such state transition constraints cannot be checked statically only on the
relation prior to or after an update took place.

3.5 Inference of Integrity Constraints

The integrity part of a data model is one of its fundamental components. As we have indicated
above there are many useful constraints that can be defined over a database schema in order
to restrict the set of allowable relations in a database to those that are of interest to the
particular application we are dealing with. Given that we have defined a set of integrity
constraints, we would like to know what other integrity constraints this set logically implies
and also whether there are any redundancies in the set we have specified. For example, if
an employee works in a unique department and a department has a unique location we can
infer by transitivity that an employee works in a unique location. Thus, there is no need to
specify this implied functional dependency as part of our specification. However, how do
we know that our inference procedure can derive only and all possible logical implications
from the initial set of constraints? If our inference procedure is "sound and complete", then
the answer to this question is positive, otherwise, in general, we may not be able to derive an
integrity constraint which is indeed logically implied by the original set of constraints. Even
if the inference procedure is sound and complete, we need to investigate the computational
complexity of deciding whether an integrity constraint is logically implied by a given set
of integrity constraints. If the computational complexity of such an inference procedure is
polynomial time in the size of the input set of integrity constraints, then we can normally solve
this inference problem in reasonable time, otherwise the solution is probably only solvable in
exponential time in which case this inference problem is intractable.

A class C of integrity constraints refers to a particular set of integrity constraints over a given
relation schema or database schema. For example, the set of all FDs over relation schema R
is a class of integrity constraints and the set of all FDs and INDs over database schema R is
another class of integrity constraints. Whenever no ambiguity arises we will refer to a set of
integrity constraints, say~, which is included in a class of integrity constraints, say C, simply
as ~ without explicitly mentioning the class C. In the following we will assume for simplicity
that a set of integrity constraints is over a relation schema Rj the definition carries over to a
database schema R in a straightforward way.

We denote the fact that a relation r over schema R satisfies an integrity constraint a over R
by r F= a. If r F= a does not hold, we write r ~ a and say that r does not satisfy (or violates)
a. We say that r satisfies a set ~ of integrity constraints over R, if for all integrity constraints
a E ~, r F= a holds.

We say that a set of integrity constraints ~ over R logically implies a single integrity
constraint a over R, written ~ F= a, whenever for all relations rover R the following condition
is true:

if r F= ~ holds then r F= a also holds.

3.5. Inference of Integrity Constraints 147

We say that a set of integrity constraints I; over R logically implies a set of integrity
constraints rover R (or r is a logical consequence of I;), written I; F r, if for all a E

r, I; F a holds.

The concept oflogical implication is very important, since if I; - {a} F a, then the integrity
maintenance algorithm need only check for the satisfaction of I; - {a}. For example, {EMP
-'; ADDRESS, ADDRESS -'; PHONE} F {EMP -'; PHONE} holds and thus the fact that an
employee has a unique telephone number does not need to be explicitly stored in the database
system.

In order that a class of integrity constraints be of any practical use we need to address the
problem of the efficiency of mechanising the process of logical implication.

Definition 3.52 (The implication problem) The implication problem for a class of integrity
constraints C is the problem of finding the computational complexity of deciding whether
I; F a or I; ~ a, where I; S; C and a E C; if the class of integrity constraints C is understood
from context we will not mention it explicitly. •

An inference rule (with respect to a class C of integrity constraints) is a rule which allows us
to derive an integrity constraint from a given set of integrity constraints. More precisely, an
inference rule is a sentence of the form: if certain integrity constraints can be derived from the
given set of constraints then we can derive an additional constraint. The ifpart of an inference
rule is called the hypothesis of the rule and the then part of the rule is called its conclusion.
An axiom is an inference rule with an empty if part, that is, the additional constraint can be
derived unconditionally. An axiom system for a class C of integrity constraints is a set of
inference rules with respect to C.

For example, if the FDs, EMP -'; ADDRESS and ADDRESS -'; PHONE both hold, then we
can infer by the transitivity rule that the FD EMP -'; PHONE also holds.

Given an axiom system S (for a class of integrity constraints), a proof (in S) of an integrity
constraint a from a given set of integrity constraints I; is a finite sequence of integrity
constraints, whose last element is a, such that each constraint in the said sequence is either
in I; or can be derived from a finite number of previous constraints in the sequence by using
one of the inference rules of the axiom system S. We denote by I; f- a the fact that there exists
a proof (in S) of a from I; in a given axiom system; if the axiom system is understood from
context we will not mention it explicitly.

Informally, an axiom system is sound and complete for a class of integrity constraints if
the concept of logical implication coincides with the concept of proof within the said axiom
system. The benefit of a sound and complete axiom system is as follows. In order to solve
the implication problem I; F a in a naive way, we can test the logical implications r F I;

and r F a for all relations rover R. In general, this solution is infeasible, since there are, in
general, an infinite number of such relations. We therefore need to find a more efficient way
to check whether I; Fa. Now, if the axiom system is sound and complete then all we need
to do is to check whether I; f- a, i.e. we need to find a proof (which is a finite procedure) of a
from I;. In many cases we can actually devise efficient algorithms which construct proofs for
I; f- a and thus solve the implication problem efficiently.

Definition 3.53 (Sound and complete axiom system) Let I; be a set of integrity constraints
included in a given class C and let a be a single integrity constraint belonging to C. An axiom

148

system is sound (for C) whenever the following condition is true:

if L I- a holds then L F a also holds.

Chapter 3. The Relational Data Model

An axiom system is complete (for C) whenever the following condition is true:

if L F a holds then L I- a also holds. •
The following definition will be useful when we investigate the inference structure for

integrity constraints.

Definition 3.54 (Closure operator) Let S be a finite set and recall that P(S) denotes the finite
power set ofS. A closure operator [BDK87, DP90) is a total mapping Cfrom P(S) to P(S) such
that V X, Y S; S, the following conditions are satisfied:

1) X S; qX),

2) if X S; Y then qX) S; qy), and

3) C(qX)) = qX). •
Definition 3.55 (The closure of a set of integrity constraints) The closure of a set of integrity
constraints Lover R (with respect to an axiom system), denoted by L+, is the setof all integrity
constraints a over R that can be proved from L. Formally,

L+ = {a I L I- a}. •
We observe that the operator "+" induced by the closure L+ of L is a closure operator; the

reader can verify that "+" satisfies the three conditions of a closure operator.
A set of integrity constraints L is said to be closed if L+ = L. Also, a set of integrity

constraints L is said to be a cover of another set of integrity constraints r if L+ = r+ .

As an example, let L = {EMP --+ ADDRESS, ADDRESS --+ PHONE, EMP --+ PHONE}. Then
as we will see later on r = L - {EMP --+ PHONE} is a cover of L. The FD EMP --+ PHONE is
called a redundant FD, since it can be removed from L without loss of information.

Armstrong relations [Fag82a, BDFS84) are relations, which satisfy all and only those
integrity constraints which are logically implied by a given set of integrity constraints. The
existence of Armstrong relations for FDs holding in relations was first shown in [Arm74].
Such relations have been shown to be important in the process of database design [MR86a].
Various combinatorial results concerning the size of Armstrong relations (which is, in
general, exponential for FDs) and algorithms that generate such relations are given in
[Fag82a, BDFS84, MR86a, DT93].

Definition 3.56 (Armstrong relations) An Armstrong relation for a given set of integrity
constraints L over schema R is a relation rover R satisfying the following condition for all
integrity constraints a:

r Fa ifand only ifL Fa.
We say that a class of integrity constraints enjoys Armstrong relations if there exists an
Armstrong relation for each set of integrity constraints in the class. •

3.6. Data Dependencies 149

The following theorem, whose proof we leave for the reader, shows an elegant connection
between sound and complete axiom systems and the property of enjoying Armstrong relations.

Theorem 3.19 Let S be an axiom system for a class of integrity constraints C and consider
the following statements:

1) S is sound for C and for all sets ~ of constraints included in C there exists a relation r
over R that satisfies the condition

r F= a if and only if ~ f-- a.

2) C enjoys Armstrong relations.

3) S is sound and complete for C.

Then (1) is true if and only if (2) and (3) are both true. o

3.6 Data Dependencies

Constraints such as functional and inclusion dependencies, which depend on the equality or
inequality of values in tuples of relations in a database, are called data dependencies. More
specifically, a data dependency is a first-order logic formula defined over a database schema
that expresses the constraint that given that certain tuples exist in the database and these
tuples satisfy certain equalities or inequalities, then other tuples must also be present in the
database and these other tuples must also satisfy certain equalities or inequalities. The theory
of data dependencies has been central in the research area of relational databases, since it
deals with the foundations of the integrity part of the relational model and generalises the
fundamental notions of keys and foreign keys, which were discussed in Subsection 1.7.1 of
Chapter 1. The theory of data dependencies also forms the basis of relational database design,
which is discussed in detail in Chapter 4.

In Subsection 3.6.1 we introduce Functional Dependencies (FD), which generalise keys, and
give a sound and complete axiom system for FDs. In Subsection 3.6.2 we show that FDs enjoy
Armstrong relations. In Subsection 3.6.3 we discuss the implication problem for FDs and
show that it can be solved in polynomial time. In Subsection 3.6.4 we introduce the chase
procedure for FDs, which acts as a theorem prover that enables us to solve the implication
problem of whether a set of FDs logically implies that the relations in a given database can be
losslessly joined together. The property of being able to losslessly join relations in a database
is a fundamental one, since naturally joining relations is the means in the relational model
by which information in several relations is combined. In Subsection 3.6.5 we investigate the
issue of finding an appropriate cover of a set of FDs that has less redundancy in it than the
original set ofFDs. In Subsection 3.6.6 we investigate the problem of whether a relation schema
having a subset of attributes of another relation schema, say R, satisfies a given set of FDs
defined over R. This problem is very important in database design, since we may define a set of
FDs over a relation schema, say R, and then decompose R into two or more relation schemas
each having less attributes than R. In Subsection 3.6.7 we introduce Inclusion Dependencies

150 Chapter 3. The Relational Data Model

(INDs), which generalise foreign keys, and give a sound and complete axiom system for INDs.
In Subsection 3.6.8 we extend the chase procedure, introduced in Subsection 3.6.4, in the
presence of FDs and INDs. In this subsection we utilise the chase procedure in order to
test whether a given database satisfies a set of FDs and INDs. This highlights the versatility
of the chase procedure as a very useful tool for the relational database theorist in his/her
investigation of the properties of a class of data dependencies. In Subsection 3.6.9 we show
that certain subclasses of FDs and INDs enjoy Armstrong relations. In Subsection 3.6.10
we discuss the implication problem for INDs and show that it is, in general, intractable.
In Subsection 3.6.11 we investigate the interaction between FDs and INDs. Studying this
interaction is important, since FDs and INDs are the most fundamental integrity constraints
that arise in practice in relational databases. The interaction between FDs and INDs turns out
to be a complex matter resulting in the negative result that there is no sound and complete
axiom system for the general class of FDs and INDs, and also that their implication problem
is, in general, undecidable. In this subsection we investigate subclasses of FDs and INDs
that have a sound and complete axiomatisation and for which the implication problem is
decidable. Due to the complex interaction between FDs and INDs, in Subsection 3.6.12 we
study subclasses ofFDs and INDs that do not interact at all. We exhibit a large and useful class
of FDs and INDs that do not interact. FDs express dependencies within a relation schema
and INDs express dependencies between relation schemas. It is not at all clear whether FDs
are adequate to express the dependencies within a relation schema. In particular, FDs only
express single-valued properties while in the "real world" multivalued properties, such as
a person may have one or more children, naturally arise. In Subsection 3.6.l3 we define
Mulitvalued Dependencies (MVDs)which express the fact that a relation can be decomposed
into two further relations that can be losslessly joined together. This is a special kind of
multivalued property that can, for example, express that a person has a set of children and
independently a set of hobbies. We present a mixed sound and complete axiom system for
FDs and MVDs and study various problems that have intrigued database researchers during
the late 1970's until the mid 1980's. The Join Dependency (JD), presented in Subsection 3.6.14,
generalises the MVD to express the fact that a relation can be decomposed into two or more
relations that can be losslessly joined together. As such the JD is fundamental to relational
database design since the lossless join property guarantees that we can meaningfully combine
relations together in queries using the natural join operator. There is a plethora of results in
data dependency theory and in a book such as ours we can only cover the most important
results. The reader wishing to further his/her study of this area will discover many additional
interesting kinds of data dependencies and results that have made relational database theory
the fruitful area in computer science that it is.

3.6.1 Functional Dependencies and Keys

As we have already mentioned, the Functional Dependency (FD) generalises the notion ofkeys
and as such it is the most common data dependency that arises in practice. The theory of FDs
has been instrumental in providing a solid foundation for the theory of data dependencies and
has had a major impact on relational database design, which we detail in Chapter 4. We begin
with a motivating example. Let EMPLOYEE be a relation schema describing employees' details,
with schema(EMPLOYEE) = {SS#, ENAME, AGE, ADDRESS, POSTCODE, SALARY}. The
semantics of EMPLOYEE are that SS# and {ENAME, ADDRESS} are keys for EMPLOYEE and

3.6. Data Dependencies 151

ADDRESS uniquely determines POSTCODE. Thus the set of FDs specified over EMPLOYEE
is: {SS# ~ schema(EMPLOYEE), {ENAME, ADDRESS} ~ SS#, ADDRESS ~ POSTCODE}.

Let STUD_POS be a relation schema describing the students linear ordering in a class, with
schema(STUD_POS) = {SNAME, SUBJECT, POSITION}. The semantics of STUD_POS are
that {SNAME, SUBJECT} and {SUBJECT, POSITION} are keys, i.e. both these sets uniquely
determine all the attributes in the schema; note that this implies that no more than one
student can occupy any position. Thus the set of FDs specified over STUD_POS is: {{SNAME,
SUBJECT} ~ POSITION, {SUBJECT, POSITION} ~ SNAME}.

The formal definition of an FD follows.

Defmition 3.57 (Functional dependency) A functional dependency over schema R (or
simply an FD) is a statement of the form R: X ~ Y (or simply X ~ Y whenever R is understood
from context), where X, Y ~ schema(R).

An FD X ~ Y is said to be trivial if Y ~ X; it is said to be standard if X =F 0. •

An FD R : X ~ Y is satisfied in a relation rover R if whenever two tuples in r have equal
X-values they also have equal Y-values. This implies that every X-value in r has only one
corresponding Y -value. The formal definition of satisfaction of an FD in a relation follows.

Definition 3.58 (Satisfaction of an FD) An FD R : X ~ Y is satisfied in a relation rover R,
denoted by r 1= R : X ~ Y, if'v'tJ, t2 E r, if tdX) = t2[X), then tdY) = t2[Y) ' •

As defined above an FD X ~ Y is nonstandard if X = 0. Whenever a relation rover R
satisfies the FD 0 ~ Y, it must be the case that r can only have at most one Y-value. That
is, the cardinality of JTy(r) is less than or equal to one; if r = 0, then the cardinality of JTy(r)
is zero, otherwise it must be one. It follows that nonstandard FDs correspond to cardinality
constraints. From now on unless otherwise stated we will assume that FDs are standard. The
justification for this assumption is that nonstandard FDs are rare in practice. Moreover, a
nonstandard FD can always be described as a cardinality constraint when it is necessary for
the application (see Section 3.7).

When F is a set of FDs over one or more relation schemas R E R, where R is a database
schema, we say that F is a set of FDs over R. Usually, all the FDs in F are over a single relation
schema R E R, in which case we simply say that F is a set ofFDs over R.

Definition 3.59 (Inference rules for FDs) Let F be a set of FDs over schema R. We define the
following inference rules for FDs:

FDI Reflexivity: ifY ~ X ~ schema(R), then F I- X ~ Y.

FD2 Augmentation: ifF I- X ~ Y and W ~ schema(R), then F I- XW ~ YW.

FD3 Transitivity: if F I- X ~ Y and F I- Y ~ Z, then F I- X ~ Z.

FD4 Union: ifF I- X ~ Y and F I- X ~ Z, then F I- X ~ YZ.

FD5 Decomposition: ifF I- X ~ YZ, then F I- X ~ Y and F I- X ~ Z.

FD6 Pseudo-transitivity: if F I- X ~ Y and F I- YW ~ Z, then F I- XW ~ Z. •

152 Chapter 3. The Relational Data Model

Note that FDl is an axiom, since it has no hypotheses. We call the inference rules FD1, FD2
and FD3 Armstrong's axiom system [Arm74].

Defmition 3.60 (The closure of a set of attributes) We define the closure of a set of attributes
X ~ schema{R) with respect to a set of FDs F over R, denoted by X+ (assuming that F is
understood from context), by

X+ = U{Y IFf- X -+ Y using Armstrong's axiom system}. •
The reader can easily verify that the operator "+" induced by the closure X+ is a closure

operator. For our motivating examples we have:

• SS#+ = {ENAME, ADDRESS}+ = schema(EMPLOYEE).

• ADDRESS+ = {ADDRESS, POSTCODE}.

• {SNAME, SUBJECT}+ = {SUBJECT, POSITION}+ = schema(STUD_POS).

• SNAME+ = {SNAME}.

Lemma 3.20 Armstrong's axiom system is sound.

Proof. We prove that transitivity (FD3) is sound and leave it to the reader to prove that the
other inference rules are also sound.

Let r be a relation over Rand t(, t2 E r be tuples such that t([X] = t2 [X]. We need to show
that t([Z] = t2 [Z], which implies that r F X -+ Z. Now, t([Y] = t2[Y]' due to the fact that F f- X
-+ Y and thus by assumption r F X -+ Y. The result follows, since t([Y] = t2[Y] implies that
t([Z] = t2[Z] due to the fact that F f- Y -+ Z and thus by assumption r F Y -+ Z. D

The reader can verify that FD4, FD5 and FD6 are also sound inference rules.

Theorem 3.21 Armstrong's axiom system is sound and complete.

Proof. Soundness follows from the previous lemma. It remains to prove the completeness.

In order to prove completeness of Armstrong's axiom system, we need to show that ifF F
X -+ Y, then F f- X -+ Y. Equivalently, we need to show that ifF If X -+ Y, then F [;t= X -+ Y.
Thus assuming that F If X -+ Y it is sufficient to exhibit a counterexample relation, rover R,
such that r F F but r [;t= X -+ Y.

Let rover R be the relation shown in Table 3.37. We conclude the proof by showing that
r F F but r [;t= X -+ Y.

Table 3.37 A counterexample relation

x+ schema(R} -x+
1. . . 1 1. . . 1
1. . . 1 0 . .. 0

Firstly, we show that r F F. Suppose to the contrary that r [;t= F and thus 3 V -+ W E F such
that r [;t= V -+ W. It follows by the construction of r that V ~ X+ and 3A E W such that A E

3.6. Data Dependencies 153

schema(R) - X+. Now, F f- X --+ V, since V £ X+ and F f- V --+ A by the decomposition inference
rule (FDS). Thus F f- X --+ A by the transitivity rule (FD3). This leads to a contradiction, since
it follows that A E X+.

Secondly, we show that r [;t': X --+ Y. Suppose to the contrary that r F X --+ Y. It follows by
the construction of r that Y £ X+ and thus F f- X --+ Y. This leads to a contradiction, since F
II X --+ Y was assumed. 0

A superkey is a set of attributes that determines all the attributes in a relation schema and
a key is a superkey whose set of attributes is minimal.

Definition 3.61 (Key and superkey) A set of attributes K £ schema(R) is a candidate key
(or a minimal key or simply a key) for R with respect to a set of FDs F over schema R if the
following two conditions hold:

1) uniqueness: K+ = schema(R), and

2) minimality: for no proper subset X C K is X a key for R with respect to F.

A set of attributes K S; schema(R) is a superkey for R with respect to a set of FDs F over
schema R if it satisfies condition 1 (but not necessarily condition 2), i.e. K+ = schema(R). •

For our motivating examples we have:

• SS# and {ENAME, ADDRESS} are keys for EMPLOYEE; any proper superset of one of
these is a superkey which is not a key .

• {SNAME, SUBJECT} and {SUBJECT, POSITION} are keys for STUD_POS; the only
superkey that is not a key is schema(STUD_POS).

In the following we omit to mention the schema R and the set of FDs F over R if they are
understood from context. Given a relation schema R and a set of FDs F over R one of the
candidate keys is designated as the primary key. The other keys are called alternate keys. An
attribute in schema(R) that belongs to at least one candidate key for R with respect to F is
called a prime attribute of R with respect to F; an attribute in schema(R) which is not prime
is called nonprime. A key is said to be simple if it consists of a single attribute; otherwise it is
said to be composite.

There has been much debate on the merits of simple keys versus composite keys. For
example, consider a PERSON schema consisting of attributes NAME, ADDRESS, AGE and
OCCUPATION. Obviously, NAME is not, in general, a minimal key since there may be more
than one John Smith recorded in the database, so it can be assumed that {NAME, ADDRESS}
is a key, which is also the primary key. However, there are several problems with this key.
Firstly, we cannot distinguish between two John Smith's that happen to live in the same address.
Secondly, it is more cumbersome to refer to composite keys in queries and updates, since such
queries and updates are often tedious to specify and therefore more error prone than would
otherwise be the case. If a simple key such as social security number (SS#) is available, then it
should be chosen as the primary key. Simple keys such as SS# may not always be forthcoming
and thus it is often suggested to introduce a new simple key into the schema such as person
number (P#), which has no intrinsic meaning; we will call such a simple key a surrogate key.

154 Chapter 3. The Relational Data Model

The sole purpose of surrogate keys is to uniquely identify tuples in a relation. The values of a
surrogate should be generated either by the database system (if it supports such a mechanism)
or by an application program, and it is advisable that they be concealed from the user, since
they are not real-world identifiers and thus have no meaning to the user. Although such a
solution is viable, there are various overheads in maintaining surrogates and querying in their
presence which need to be considered. Still surrogates can be very useful as are, for example,
social security numbers, part numbers of various machines and order numbers.

We next present some combinatorial problems relating to keys. The following result,
which was shown in [DK93], gives an upper bound on the number of candidate keys that can
be satisfied in a relation. In the following theorem (~) denotes the number of combinations
of choosing r objects from n objects with no reference to the order in which the r objects
are chosen. Recall from Subsection l.9.2 of Chapter 1 that LmJ denotes the greatest natural
number less than or equal to some real number m.

Theorem 3.22 The number of candidate keys, Ki, for a schema R, with Ischema(R)I= n, is at
most

and there exists a relation rover R such that for all Ki, r F= Ki ~ schema(R). o

It is a well-known combinatorial result that given a set S of cardinality n there are at most
(lnl2J) incomparable subsets of S under set inclusion, hence the upper bound (the result was
first obtained by Sperner in 1928; see [VW92]). The existence of a relation satisfying the
upper bound number of keys follows from the fact that FDs enjoy Armstrong relations (see
Theorem 3.28 in the next subsection for a proof of this fact). Firstly, given a set of keys K it
can easily be verified that every distinct pair of keys in K is incomparable under set inclusion.
Secondly, we take F = {K ~ schema(R) IKE K} and construct an Armstrong relation, rover
R, for F.

As an example of a set of FDs with an exponential number of keys let schema(R) =
{A\,A2, ... ,An,B\,B2, ... ,Bn}andletF={Ai ~ Bi,Bi ~ Ai liE {1, ... ,n}}. Itcan
easily be verified that R has 2n keys with respect to F.

The following lemma shows that finding a single key for a relation schema can be done
in polynomial time [L078, Kun85]. The idea behind an algorithm to compute a key for R
is: starting from schema(R), which is a superkey for R, we loop over all the attributes A in
schema(R) in some order and remove A from the current state of the output key, say K, if A
E (K-A)+. The loop will be iterated at most type(R) times.

Lemma 3.23 Given a schema R and a set of FDs F over R the problem of finding a single key
for R with respect to F can be solved in time polynomial in the sizes ofR and F. 0

The following two decision problems concerning keys of relation schemas are unlikely to
have efficient solutions; the full proofs can be found in [L078].

Theorem 3.24 Given a schema R and a set of FDs F over R the following decision problems
are NP-complete:

3.6. Data Dependencies 155

1} The problem of deciding whether R has at least one superkey with respect to F of
cardinality less than or equal to k.

2} The problem of deciding whether an attribute A E schema(R} is prime with respect to
F.

Proof We sketch the main idea of the proof. Showing that the above two problems are in NP
is easily done, since testing whether a set of attributes X, with IXI ::: k, is a superkey for R with
respect to F can be done in polynomial time by testing whether X+ = schema(R}. Moreover,
A is prime if X is a key for R, i.e. for all B E X, X - B is not a superkey for R, and in addition A
EX.

To show that the first problem is NP-hard, a polynomial-time transformation from the
vertex cover problem, which is known to be NP-complete [Kar72, GJ79], is given.

The vertex cover problem: Given a graph (N, E) and a natural number k, does there exist a
subset M ofthe node set N, with IMI ::: k, such that for each edge {u, v} E E, at least one
of u and v belongs to M?

Essentially, we construct a relation schema, R, such that schema(R} has one attribute Ai for
each node in N and one attribute Bj for each edge in E. We also construct a set F of FDs which
is initially the empty set. We then add to F an FD Ai -+ Bj for each node represented by Ai

that is in the edge represented by Bj. In addition, an FD X -+ Y is added to the set F, where X
is the union of the attributes Bj and Y is the union of the attributes Ai; thus X is a key for R
with respect to F and Y is a superkey for R with respect to F. It can now be shown that M is a
vertex cover for (N, E) if and only if the set of attributes representing M is a superkey for R.

To show that the second problem is NP-hard, a polynomial-time transformation from
the superkey of cardinality k problem, shown to be NP-complete in part (1) above, can be
given. 0

The following result shows that the problem of finding whether a schema R has at least one
superkey of cardinality less than or equal to k with respect to the set of FDs that hold in a
specific relation over R is also NP-complete. We begin with a definition.

Definition 3.62 (The set of FDs satisfied in a relation) The set of FDs holding in a relation r
over R, denoted by F(r), is defined by F(r) = {X -+ Y I X, Y s:; schema(R) and r 1= X -+ Y} .

•
The proof of the next theorem follows by a reduction of the vertex cover problem [DTSS] .

Theorem 3.25 Given a relation rover R, the problem of deciding whether R has at least one
superkeyof cardinality less than or equal to k with respect to the set ofFDs F(r} that is satisfied
in r is NP-complete. 0

Definition 3.63 (Antikey) An antikey for a relation schema R with respect to a set F of FDs
over R is a maximal set of attributes included in schema(R) that is not a superkey for R with
respect to F. •

The following result shown in [DTS7] characterises the set of prime attributes with respect
to a set of FDs, F over R, in terms of the set of antikeys for R with respect to F.

156 Chapter 3. The Relational Data Model

Theorem 3.26 An attribute A E schema(R) is prime with respect to a set F of FDs over a
relation schema R if and only if A ~ A, where A denotes the intersection of all antikeys for R
with respect to F.

Proof If Suppose that A ~ A and thus A E schema(R) - A. Thus for some antikey W for R
with respect to F, we have A ~ W. Therefore, WA is a superkey for R with respect to F due to
the fact that W is an antikey for R with respect to F. It follows that A is prime with respect to F.

Only if Suppose that A is prime and thus there exists a key X for R with respect to F such
that A E X. Let Y = X - (A). Now, since Y is not a superset of any key for R with respect
to F, there exists an antikey W for R with respect to F such that Y ~ W. Obviously, A ~ W,
otherwise W would be a superkey for R with respect to F. So A E schema(R) - W ~ schema(R)
-A. 0

The following surprising result shows that if we are interested in finding whether an attribute
is prime with respect to the set of FDs that hold in a specific relation over R, then the problem
can be solved in polynomial time [DT87]. Its proof relies on Theorem 3.26, since given a
relation rover R, it can be shown that the set of antikeys for R with respect to the set F(r) of
FDs that holds in r can be computed in polynomial time in the size of r.

Theorem 3.27 Given a relation rover R and a set F of FDs over R the problem of deciding
whether an attribute A E schema(R) is prime with respect to the set ofFDs F(r) that is satisfied
in r can be determined in time polynomial in the size of r. 0

We now motivate foreign keys. Assume a simple database with two relation schemas,
EMPLOYEE (storing employee information) with attributes E#, ENAME and D# and DEPT
(storing department information) with attributes D#, DNAME andMGR. Let us further assume
that E# is the primary key of EMPLOYEE and D# is the primary key of DEPT.

A tuple <El, John, Dl> means that the name of employee El is John and El works in
department Dl. A tuple <Dl, Computing, E2> means that the name of department Dl is
Computing and its manager is employee E2. Thus the values of the attribute D# in EMPLOYEE
reference the primary key values of the attribute D# in DEPT and similarly the values of MGR
in DEPT reference the primary key values of the attribute E# in EMPLOYEE. Such referencing
attributes are called foreign keys. Foreign keys are fundamental to the relational model, since
they assert that values of tuples in one relation reference the primary key values of tuples in
another relation. In our motivating example, Dl in an employee tuple references a department
tuple with primary key value 01, and E2 in a department tuple references an employee tuple
with primary key value E2.

Up until now we have not mentioned how we model situations where the information is
missingorincomplete. Suppose that the schema EMPLOYEE contains the attributes ADDRES S
and SPOUSE. Furthermore, assume that the address of an employee may be unknown or
an employee may not have a spouse. In order to be able to record such information
we add a distinguished null value, denoted by unknown and abbreviated to unk, to the
domain of ADDRESS, and a distinguished null value, denoted by inapplicable (or alternatively
does-noLexist which is abbreviated to dne), to the domain of SPOUSE. Thus if the attribute
value of ADDRESS for a given employee tuple is unk then we interpret this as meaning that
the address of the employee exists but is unknown, and if the attribute value of SPOUSE is

3.6. Data Dependencies 157

inapplicable for a given employee tuple then we interpret this as meaning that the employee
does not have a spouse. We will now show how primary and foreign keys relate to the fact
that the information in the database may be missing or incomplete.

We begin by formalising the notion of a foreign key in a database.

Definition 3.64 (Foreign key) Let R be a database schema, RI> R2 be relation schemas of R
and let K be the primary key of R2' In addition, let d = {rl ' r2 , ... , r n} be a database over R.

A foreign key constraint is a specification of a set of attributes X C; schema(RI) and a primary
key K of R2. The set of attributes X is called a foreign key of RI and it is said to reference the
primary key K of R2. The foreign key constraint that X references K is satisfied in d if the
following condition holds: for all tuples tl E rl> if tl [Xl does not contain any null values, then
there exists t2 E r2 such that tl [Xl = t2 [Kl .

If d satisfies the foreign key constraint that X references K then the X-values of tuples in rl,
which are called foreign key values, are said to satisfy the foreign key constraint. •

We now state the two most fundamental integrity constraints that should be enforced in
the relational model [Cod79, Cod90).

Entity integrity The primary key values of tuples in a relation should not contain null values.

Referential integrity If a set of attributes in a relation schema is specified as a foreign key
referencing the primary key of another relation schema then its foreign key values in a
database must satisfy this foreign key constraint.

The meaning of these two constraints should be clear. Entity integrity guarantees that each
tuple in a relation has at least one unique logical access path. On the other hand, referential
in tegrity guaran tees tha t primary key val ues which are referenced via foreign key values indeed
relate to existing tuples.

We close this subsection with two algorithms which enforce entity and referential integrity
in a relational database. The first algorithm, given below, checks whether entity integrity is
satisfied in a relation rover R with primary key X C; R.

Algorithm 3.6 (CHECK_PRIMARY _KEY(r, X))
1. begin
2. for all tuples t E r do
3. inA E X such that t[AI is null then
4. return NO;
5. end if
6. for all tuples U E r - {t} do
7. if u[XI = t[XI then
8. return NO;
9. end if
10. end for
11. end for
12. return YES;
13. end.

158 Chapter 3. The Relational Data Model

The second algorithm, given below, checks whether referential integrity is satisfied in a
database d = (r, s) over a database schema R = {R, S}, with foreign key attributes X ~
schema(R) which reference the primary key attributes K ~ schema(S),

Algorithm 3.7 (CHECK_FOREIGN_KEY(d, X, K))
1. begin
2. for all tuples t E r do
3. if VA EX, t[A] is nonnull then
4. if ,lIu E s such that t[X] = u[K] then
5. return NO;
6. end if
7. end if
8. end for
9. return YES;
10. end.

3.6.2 Armstrong Relations for Functional Dependencies

Recall Definition 3.56 of Armstrong relations. For FDs this can be restated as follows: a
relation rover R is an Armstrong relation for a set of FDs F over R if for all FDs, X ~ Y
over R, r F= X ~ Y if and only if F F= X ~ Y. An immediate consequence of this definition
and the established fact that Armstrong's axiom system is sound and complete is that r is an
Armstrong relation for F if for all FDs X ~ Y over R, r F= X ~ Y if and only if X ~ Y E
p+, where p+ = {W ~ Z I F I- W ~ Z} is the closure of F with respect to Armstrong's axiom
system.

Armstrong [Arm74] was the first to show that FDs enjoy Armstrong relations. We next give
a proof of this assertion assuming that all FDs are standard.

Theorem 3.28 FDs enjoy Armstrong relations.

Proof. We first claim that ifF ~ X ~ Y, then there exists a relation over R, which we denote
by r(X ~ Y), containing exactly two tuples such that r(X ~ Y) F= F but r(X ~ Y) ~ X ~ Y.

Now, since F ~ X ~ Y, there exists a relation rover R such that r F= F but r ~ X ~ Y.
Thus 3tl , t2 E r such that (tl, t2) ~ X ~ Y. Therefore, we let r(X ~ Y) be (tl , t2)' The claim
follows, since {tl, t2} F= F holds due to the fact that r F= F.

We assume that the underlying domains are infinite and also that for two distinct FDs X ~
Y and W ~ Z the active domains of r(X ~ Y) and r(W ~ Z) are pairwise disjoint. We take
,.arm to be the union of all the relations r(X ~ Y) such that X ~ Y is an FD over R which is
not a member of P+.

It can easily be verified that rarm is an Armstrong relation for F. 0

The technique used in the above proof for constructing an Armstrong relation for a set
of FDs is called the disjoint union technique. Other techniques discussed in [Fag82a] are:

3.6. Data Dependencies 159

agreement sets (which are sets of closed attributes, i.e. sets X of attributes satisfying X = X+),
direct products and the chase procedure (see Subsection 3.6.4).

As an example, consider a relation schema, R, having attributes TEACHER (T), COURSE (C)
and DAY (D). Following [MR86al we will illustrate how Armstrong relations can be used as a
tool to show users example relations during the relational database design stage. Suppose the
user wishes to examine a relation over R prior to specifying any FDs that should be satisfied
in this relation. The tool could display an arbitrary relation, say the relation rJ, shown in
Table 3.38. It can easily be verified that both r F= C 4- TD and r F= T 4- CD hold. Thus r)
may mislead the user to suppose that these FDs indeed must be specified.

Table 3.38 The relation r) satisfying several FDs

TEACHER COURSE DAY
Robert databases Monday

Richard algorithms Monday

A better example relation to start off with would be the relation r2, shown in Table 3.39.
It can easily be verified that r2 is an Armstrong relation for the empty set of FDs, that is, no
nontrivial FDs are satisfied in r2 . Thus the user can inspect this relation and decide what FDs
correspond to the semantics of the application.

Table 3.39 The relation r2 satisfying no FDs

TEACHER COURSE DAY
Robert databases Monday
Richard databases Monday
Richard algorithms Monday
Robert databases Tuesday

Suppose the user decided that the only nontrivial FD that should be satisfied in the relation
over R is TC 4- D. The tool could then display the relation r3, shown in Table 3.40, which is
an Armstrong relation for the set of FDs, {TC 4- D}.

Table 3.40 The relation r3 satisfying Te --+ D

TEACHER COURSE DAY
Robert databases Monday

Richard databases Monday
Richard algorithms Monday
Robert algorithms Tuesday

A tool which displays Armstrong relations might also minimise such relations, since the
presence of redundant tuples may make it more difficult for the user to understand the
semantics embedded in the relation. Some results on the size of Armstrong relations can
be found in [BDFS84, MR86al . In general, the size of Armstrong relations for a given set of
FDs is exponential in the number of attributes in the relation schema. Some special cases,
when Armstrong relations have polynomial size in the number of attributes, are considered
in [DT93, DT951.

160 Chapter 3. The Relational Data Model

3.6.3 The Implication Problem for Functional Dependencies

The implication problem for FDs is the problem of deciding whether F F X --+ Y, given a set of
FDs F and a single FD X --+ Y over R. Now, by the soundness and completeness of Armstrong's
axiom system we need only consider the problem of deciding whether F I- X --+ Y. This is
equivalent to the problem of deciding whether Y is in the closure of X, or symbolically whether
Y ~ X+ holds. We now show that the implication problem for FDs can be efficiently solved.

The pseudo-code of an algorithm, designated CLOSURE(X, F}, which returns the closure
X+ with respect to a set of FDs F over R, is given below.

Algorithm 3.8 (CLOSURE(X, F»
1. begin
2. CI:=X;
3. Done := false;
4. while not Done do
5. Done := true;
6. for each W --+ Z E F do
7. ifW ~ Cl and Z S?; Cl then
8. Cl := CI U Z;
9. Done: = false;
10. end if
11. end for
12. end while
13. return Cl;
14. end.

The computational complexity of CLOSURE(X, F} is O(IFI x IRI), where IFI is the number
ofFDs in F (i.e. its cardinality) and IRI is the number of attributes in schema(R}. A faster linear
time algorithm to compute X+ in the size ofF was shown in [BB79], where the size ofF is the
sum of the number of attributes in each of the FDs in F.

Example 3.3 Consider a relation schema R, with attributes COURSE (C), TEACHER (T),
HOUR (H), ROOM (R), STUDENT (S) and GRADE (G). Let the set ofFDs F associated with R
be {C --+ T, HR --+ C, HT --+ R, CS --+ G, HS --+ R} with the obvious meaning. The following
results returned from CLOSURE(X, F) can be verified:

• C+ = CT.

• HR+ =CHRT

• CS+ = CGST
• HST+ = CHGRTS = schema(R). •

3.6.4 Lossless Join Decompositions and the Chase Procedure

The (natural) join operator provides the means of combining information in two or more
relations together. For example, if we have an employees relation containing every employee's

3.6. Data Dependencies 161

name and the name of the department each employee works in, and a departments relation
having department names and their locations, we can obtain the location that an employee
works in by joining these two relations together. Thus the join operator allows us to reconstruct
a larger relation, say r, from smaller ones that could have been obtained from r via projection.
The problem we investigate in this subsection is the characterisation of when the join of two
or more relations is meaningful, in the sense that the join operation does not incur any loss
of information. The concept of joining relations together without loss of information is a
fundamental property of a decomposition, which is a desirable property to attain during the
database design stage detailed in Chapter 4 (recall from Definition 3.4 of Section 3.1 that
decomposition is just a synonym of database schema).

Consider a relation schema R having the set of attributes, STUDENT (S), COURSE (C) and
TEACHER (T). Let rl over R be the relation shown in Table 3.41, representing the fact that
both Reuven and Hanna are taking the databases course but Reuven is taught by Mark and
Hanna by George. Now, let R = {SC, CT} be a decomposition whose aim is to separate the
information about students and their courses from the information about courses and their
teachers. Suppose thatweconstructthedatabased = (JTsdrl), JTCT(rl)} over the decomposition
R. When we join the relations in d together we get r2 = JTsdrl) [xl JTCT(rl) shown in Table 3.42.
This has created a problem, since 'I f '2 (or more precisely r1 C r2) and thus the database d
does not preserve the information of '1. If this situation occurs we say that the decomposition
R is lossy.

Table 3.41 A relation TJ over R Table 3.42 The relation r2 = nsch) I><l nCT(rl) over R

STUDENT COURSE TEACHER STUDENT COURSE TEACHER
Reuven databases Mark Reuven databases Mark
Hanna databases George Reuven databases George

Hanna databases Mark
Hanna databases George

The next definition formalises the notion oflosslessness.

Definition 3.65 (Lossless join decomposition) Let R = {R J, R2, ... , Rn} be a database
schema and recall that schema(R) = UiEI schema(Ri), where I = {I, 2, ... , n}. Then R
is a lossless join decomposition of schema(R) with respect to a set of FDs F (or simply the
decomposition R is lossless with respect to F) if for all relations, rover schema(R), with r F
F, the equality

holds. •
In the example above we have shown that R = {SC, CT} is not a lossless join decomposition

with respect to the empty set of FDs. Let us assume that a course has only one teacher, that is,
F = {C -+ T}, and let '3 be the relation over R shown in Table 3.43. It can easily be verified that
'3 = JTSdr3) [xl JTCT('3). In fact, the stronger statement that R is a lossless join decomposition
of schema(R) with respect to F holds.

In order to show a sufficient and necessary condition for a decomposition to be lossless
with respect to a set of FDs, F over R, we introduce the chase procedure.

162 Chapter 3. The Relational Data Model

Table 3.43 A relation T3 over R

STUDENT COURSE TEACHER
Reuven databases Mark
Hanna databases Mark

We first define the notion of a tableau, which is a relation whose active domain contains
certain types of variable instead of constant values; we will call the tuples of a tableau rows.

The types of variable that can appear in the active domain of a tableau are:

• distinguished variables (dv's) denoted by subscripted a's; we assume that for each
attribute A E schema(R), aj is the dv corresponding to A if and only if att(i) = A.

• nondistinguished variables (ndv's) denoted by subscripted b's.

We will now define a partial order, denoted by~, between dv's and ndv's; we take VI C V2

to mean VI ~ V2 but VI #- V2.

• for every dv aj and ndv bj, aj C bj.

• for every pair of dv's aj and aj, aj ~ aj if and only if i S j.

• for every pair of ndv's bj and bj , bj ~ bj if and only if i S j.

In the following let T be a tableau over Rand F be a set of FDs over R. We next define a
transformation rule with respect to F, called the FD rule, which is applied to a tableau T over
R and as a result modifies T by changing the occurrences of a particular variable to another
variable.

FD rule: if X ---+ Y E F and 3wj , Wj E T such that Wj[X] = Wj[X] but wj[A] C wj[A] for some A
E Y, then change all occurrences of the variable wj[A] in T to wj[A].

We are now ready to define the implementation of the chase procedure of a tableau T over
R with respect to F. The chase procedure will be used as a theorem prover to test whether a
database schema is a lossless join decomposition with respect to a set ofFDs and, in addition,
as an alternative way to solve the implication problem for a set ofFDs.

The pseudo-code of an algorithm, designated CHASE(T, F), which returns the chase of
a tableau T over R with respect to a set of FDs F over R, is given below. The algorithm is
nondeterministic, since the FD rule is free to choose any FD in F and any two tuples in T that
cause a change in the tableau.

Algorithm 3.9 (CHASE(T, F»
1. begin
2. Result := T;
3. Tmp:= 0;
4. while Tmp #- Result do
5. Tmp := Result;
6. Apply the FD rule to Result;
7. end while
8. return Result;
9. end.

3.6. Data Dependencies 163

We call an execution of line 6 in Algorithm 3.9 a chase step and we say that the chase step
applies the FD X ~ Y E F to the tuples tl and t2' There are several properties that CHASE{T,
F) possesses. Firstly, it is a finite Church-Rosser system. That is, the tableau returned by
CHASE{T, F) is unique independently of the order in which the FDs in F are chosen and the
tuples in T are chosen by the FD rule. Secondly, the tableau returned by CHASE{T, F) satisfies
F, since if this were not the case the FD rule could be applied at line 6 of Algorithm 3.9 causing
a further modification to the returned tableau. Finally, the chase procedure, which computes
CHASE{T, F), terminates after a finite number of steps, since no new values are created by
the algorithm. In fact CHASE{T, F) can be computed in time polynomial in the sizes ofR and
F, since each application of a chase step reduces the number of distinct values in the chased
tableau by at least one.

We will now utilise the chase to solve two important problems. The first problem is that
of testing whether a decomposition is lossless with respect to a set of FDs, and the second
one is an alternative method to that presented in Subsection 3.6.3 for solving the implication
problem for FDs.

Definition 3.66 A distinct ndv bi appearing in a tableau T over R is a ndv that appears in
only one row and column of T.

The tableau T for a database schema R = {RI, R2, ... , Rn}, denoted by T{R), is a tableau
over R, with schema{R) = schema{R), having a row Wi for each Ri E R. For all attributes A E
schema{R), if A E schema{Ri), then row Wi has the dvaj as the value of wi[A], where att(j) =
A, otherwise if A E schema{R) - schema(Ri), then row Wi has a distinct ndv as the value of
wi[A).

A winning row for CHASE{T{R), F) is a row which contains dv's over all the attributes in
schema{R).

The tableau T for an FD X ~ Y over R, denoted by T{X ~ Y), is a tableau over R containing
two rows. Both rows have the dv ai as the value ofwi[A), V A E X, where att(i) = A, and distinct
ndv's as the value of wi[A), V A E schema{R) - XY. The first row, WI> has the dvaj as the value
of WI [B], V BEY, where att(j) = B, and the second row, W2, has distinct ndv's as the value of
w2[B], V BEY.

A winning row for CHASE{T{X ~ Y), F) is a row which contains dv's over all the attributes
inXY. •

Theorem 3.29 A database schema R is a lossless join decomposition with respect to a set of
FDs F over R, with schema{R) = schema(R), if and only if CHASE{T{R), F) contains a winning
row.

Proof. Let T = CHASE{T{R), F). We need to show that for all relations, rover schema{R), with
r F= F, r =1XI1=1 lfRj(r), where R = {RI , R2, ... , Rn}, if and only ifT has a winning row.

If. Let r be a relation over R such that r F= F and suppose that 3t E 1XI1=1 lfRj (r) such that
t rt r. Furthermore, lets = {tl, t2, ... , tn } be the set of tuples in r satisfying {t} = 1><l1=1 lfRj{ {ti}).
We claim that T does not contain a winning row. Let rp be a mapping from T(R) to s, with
rp(Wi) = ti, where Wi are the tuples ofT(R) and 1 ::: i::: n. Now, suppose we apply the FD rule
for an FD, say X ~ Y E F with respect to an attribute A E Y, to two tuples, say WI and W2,

in the intermediate state of the tableau when computing T = CHASE(T{R), F). Then it can be

164 Chapter 3. The Relational Data Model

verified that the set of tuples {cp(WI) , cp(W2)} satisfies X 4 A, due to the fact that r F= F. Thus,
by the construction of t it follows that all the equalities in T must hold in s and therefore cp
is a homomorphism from T to s, that is, if wdA) = w2[A), with WI , W2 E T, then cp(wI)[A]
= cp(w2)[A], where A E Y. The result that T does not contain a winning row follows, since
otherwise t E r would hold contrary to our assumption.

Only if. Suppose that T does not contain a winning row. We create a relation rover R from
T by mapping each distinct dv and ndv in T to a distinct constant value. Now, it must be the
case that r F= F, since T F= F. Moreover, lett;, i E {I, 2, . . . , n}, be the tuple in rcorresponding
to the tuple in T having dv's as values for all the attributes in schema(R;}. The result follows,
since 1><11=1 JrRi({t;}) ~ r, due to the fact that T does not contain a winning row. 0

Example 3.4 Let us apply Theorem 3.29 to the database schema R = {SC, CT}, with F = {C
4 T}. The tableau T(R} is shown in Table 3.44 and the tableau CHASE(T(R}, F» is shown in
Table 3.45. It follows that R is a lossless join decomposition of SCT with respect to F, since the
latter tableau has a winning row. •

Table 3.44 The tableau for R

s C T
al az bl
bz az a3

Table 3.45 The tableau CHASE(T(R), F)

s C T
al az a3
bz az a3

The following theorem can be proved by using a similar argument to that made in
Theorem 3.29.

Theorem 3.30 Given a set of FDs F over R and an FD X 4 Y E F, F F= X 4 Y if and only if
both the rows of CHASE(T(X 4 Y}, F} are winning rows. 0

Example 3.5 Let R be a relation schema with attributes EMP (E), ADDRESS (A) and PHONE
(P), with a set of FDs F = {E 4 A, A 4 Pl. The tableau T(E 4 P} is shown in Table 3.46 and
the tableau CHASE(T(E 4 P), F}} is shown in Table 3.47. It follows that F F= E 4 P, since the
single row of Table 3.47 is a winning row. •

Table 3.46 The tableau for E -+ P

E A P
al bl a3
al bz b3

Table 3.47 The tableau CHASE(T(E -+ P), F)

I ;1 I ~ 1:31

3.6. Data Dependencies 165

The following corollary, which characterises binary lossless join decompositions with
respect to a set of FDs, follows immediately from the above two theorems.

Corollary 3.31 Let R = {R\, R2}, X = schema(Rd n schema(R2} and F be a set ofFDs over R,
with schema{R} = schema{R). Then the decomposition R is lossless with respect to F if and
only if either F F X -+ schema{RI) or F F X -+ schema{R2). 0

The reader can find a more detailed account of the chase procedure in [ABU79, MMS79,
Hon82).

3.6.5 Minimal (overs for Sets of Functional Dependencies

Recall that a set of FDs, F over R, is a cover of another set of FDs, Gover R, if p+ = G+. In
other words, the set of FDs that can be derived from F is equal to the set of FDs that can be
derived from G. (Note that the concept of a cover of a set of FDs is an equivalence relation
in the set-theoretic sense.) Thus all the covers of a set of FDs equally describe the semantics
of the application in hand. Some covers of a set of FDs are better than others in the sense
that they contain less redundancy in them. A set of FDs, say F over R, can have redundancy
in it if there is a cover which has less FDs in it, or it has a cover with a smaller size (the size
of a set of FDs is the number of attributes appearing in the FD set including repetitions).
We are interested in choosing a cover of F which has minimal redundancy in it. This is
beneficial, since the algorithms, which we develop that involve processing a set of FDs, such
as Algorithm 3.8 for computing the closure of a set of attributes with respect to a set of FDs,
will execute faster on a set of FDs which has less redundancy in it. We next give a motivating
example.

Example 3.6 Consider a relation schema R with the three attributes EMPLOYEE (E),
ADDRESS (A) and PHONE {P}.

Now, let PI = {E -+ P, E -+ A} and GI = {EA -+ P, E -+ A} . It is easy to verify that PI is a
cover of GI, since {E -+ P} f- {EA -+ P} by augmentation and decomposition and Gl f- {E -+
P} by augmentation and transitivity. However, PI has less attributes than Gl and is therefore
a more succinct representation of the semantics of the application.

Now, let P2 = {E -+ A, A -+ P} and G2 = {E -+ A, A -+ P, E -+ Pl. It is easy to verify that
P2 is a cover of G2 by using transitivity. However, P2 has fewer FDs than G2 and is therefore a
more succinct representation of the semantics of the application. •

Minimising the cover of a set of FDs has the benefits of reducing the time it takes to test
whether a relation satisfies a set of FDs and also reducing the time it takes to compute the
closure of a set of attributes. The next definition gives three types of coverfor sets of FDs.

Defmition 3.67 (Types of cover) Three types of cover for FDs are given by

1) A set of FDs F is nonredundant if there does not exist a cover G of F that is properly
contained in F.

2) A set ofFDs F is minimum ifthere does not exist a cover G ofF that has fewer FDs than
F.

166 Chapter 3. The Relational Data Model

3) A set of FDs F is optimum if there does not exist a cover G of F that has fewer attributes
ilimR •

The reader can easily verify that a minimum cover is nonredundant and not so easily that an
optimum cover is minimum. On the other hand, a cover of a set of FDs may be nonredundant
but not minimum. As a counterexample, F = {E --" P, E --" A} is nonredundant but not
minimum, since G = {E --" PA} is a cover of F. Moreover, a cover of a set of FDs may be
minimum but not optimum. As a counterexample, let us assume that R of Example 3.6 also
has attributes NAME (N) and SALARY (S). Then F = {E --" NA, NA --" E, NA --" S} is minimum
but not optimum, since G = {E --" NA, NA --" E, E --" S} is a cover of F.

The pseudo-code of an algorithm, designated MINIMUM(F), which returns a minimum
cover G of a set ofFDs F over R, is given below.

Algorithm 3.10 (MINIMUM(F))
1. begin
2. G:=0;
3. for each X --" Y E F do
4. G:= G U {X --" x+};
5. end for
6. for each X --" X+ E G do
7. if G - {X --" X+} f- X --" X+ then
8. G := G - {X --" X+};
9. end if
10. end for
11. return G;
12. end.

The correctness of Algorithm 3.10 relies on the result that if all the FDs in a set G of FDs
over R are of the form X --" X+, that is to say, ilie right-hand sides of FDs are the closures of
their left-hand sides, then G is minimum if and only if it is nonredundant [Sh086j.

The computational complexityofMINIMUM(F) is O(IFI x IIFI!), where IFI is the cardinality
of F and IIFII is the size of F, namely the number of attributes appearing in F including
repetitions.

The following theorem shows that finding an optimum cover of a set F ofFDs over R is most
likely intractable. Its proof follows by a reduction from the problem of deciding whether R
has at least one superkey with respect to F of cardinality less than or equal to k, which was
shown to be NP-complete in part (1) of Theorem 3.24.

Theorem 3.32 Given a set ofFDs F over a relation schema R, ilie problem of deciding whether
there exists a set of FDs G, with fewer ilian k attributes, k E w, such that F is a cover of G, is
NP-complete. 0

For a detailed account of minimal covers of FDs and full proofs of the results we have
presented we refer the reader to [Mai80, MR83j. A recent investigation of minimal covers in a

3.6. Data Dependencies 167

lattice-theoretic framework can be found in [Wil94]. An interesting investigation of minimal
covers in the context of FDs and functional independencies, which are negations of FDs, can
be found in (Jan88, Jan89].

3.6.6 Projection of Functional Dependencies

Given a set of FDs F over R, we are often interested to know which set of FDs is satisfied in a
smaller relation schema, S, where schema(S) is a subset of schema(R). This is known as the
problem of projecting a set ofFDs over R onto S.lts solution is very important during database
design, since often, as we shall see in Chapter 4, we need to decompose a relation schema R
into two or more smaller relation schemas each having a subset of the attribute set ofR. We can
only carry out this decomposition if the set of FDs F is preserved in the decomposed relation
schemas. By FD preservation we mean that the closure of the set of projected FDs is a cover
of the original set of FDs F.

Defmition 3.68 (Projection of a set of FDs) The projection of a set of FDs F over R onto a
relation schema S, with schema(S) 5; schema(R), denoted by F[S], is given by

F[S] = {X ~ Y I X ~ Y E F and XY 5; schema(S)}.

The FDs in F[S] are said to be embedded in S.

A relation schema S is said to preserve the set ofFDs F over R ifF[S] is a cover of p+ [S], i.e.
F[S] is a cover of

{X ~ Y I X ~ Y E p+ and XY 5; schema(S)}. •
We now investigate whether FDs are closed under projection, i.e. whether a projection of a

relation always satisfies the projection of a set of FDs and vice versa, i.e. whether a relation
that satisfies the projection of a set of FDs is a projection of a relation that satisfies the original
set ofFDs.

The following result follows immediately from the above definition.

Lemma 3.33 Let F be a set ofFDs over a relation schema Rand r be a relation over R such that
r F F. Then Jl'schema(S) (r) F p+ [S], where S is a relation schema with schema(S) 5; schema(R).

o

Surprisingly the converse of this lemma is shown to be false in [GZ82].

Theorem 3.34 There exist relation schemas Rand S, with schema(S) c schema(R), a set of
FDs F over R and a relation s over S such that s F p+ [S] but there does not exist a relation r
over R such that r F F and s = Jl'schema(S)(r).

Proof. Let R be a relation schema with schema(R) = {A, B, C, D, E, H, I} and S be a relation
schema with schema(S) = {A, B, C, D, E}. Furthermore let F = {A ~ I, B ~ I, C ~ H, D ~
H, IH ~ E}. In addition, let G = {AC ~ E, AD ~ E, BC ~ E, BD ~ E}. We leave it to the
reader to verify that G is a cover of p+ [S].

168 Chapter 3. The Relational Data Model

Now, let s = {tl , t2, t3, t4} be the relation over S shown in Table 3.48. The reader can verify
that s p G and thus s p P+[S]. Suppose that there exists a relation rover R such that r p
F and s = lTschema(S) (r). It follows that 3 UI, U2, U3, U4 E r such that for i E {l,2,3.4}, ti =
ui[schema(S)]. Let udIH] = <ii, hi>. Then the following equalities can be deduced from F:

• UI [I] = u4[I], since udAl = u4[A] and A --+ IE F.

• u2[I] = u4[I], since u2[B] = u4[B] and B --+ I E F.

• UI [I] = U2 [I] follows from the above two equalities.

• uI[H] = u3[H], since udc] = U3[C] and C --+ H E F.

• u2[H] = u3[H], since u2[D] = u3[D] and D --+ HE F.

• udH] = u2[H] follows from the above two equalities.

• UI [IH] = U2 [IH] is now implied from the above.

Table 3.48 The counterexample relation

A B C 0 E
al bl CI d l el

a2 b2 C2 d2 e2

a3 b 3 CI d2 e3

al b2 C3 d3 e4

Therefore, udE] = u2[E] due to the fact that IH --+ E E F and we have assumed that r p
F. However, this leads to a contradiction, since tdE] -::j: t2[E] and thus udE] -::j: u2[E]. We
must therefore conclude that there does not exist a relation rover R such that r p F and
s = lTschema(S) (r). 0

The following result was shown in [BH81]; recall that co-NP is the complement of NP.

Theorem 3.35 The problem of determining whether a relation schema S preserves a set of
FDs F over R is co-NP-complete.

Proof. We show that the complement of the problem, that is, to determine whether S does not
preserve F is NP-complete.

The problem is easily seen to be in NP. Simply guess an FD X --+ Y over S and then verify
in polynomial time by using CLOSURE(X, F), which was defined by Algorithm 3.8, that X --+

Y E P+[S) but X --+ Y ¢ F[S].

To show that the problem is NP-hard we give a polynomial-time transformation from
the hitting set problem (which was shown to be NP-complete in [Kar72)) to the problem of
determining whether S does not preserve F.

The hitting set problem: Given a family SI , S2, . .. , Sn of subsets of a set U, does there exist
a subset W s.; U, such that Vi E (1 , 2, ... , n}, IW n Sd = 1. Such a subset W of U is
called a hitting set, in other words W is a hitting set if for each i the cardinality of the
intersection of Wand Si is one.

3.6. Data Dependencies 169

Let R be a relation schema with schema{R) = U U {B I , B2, . .. , Bn, C}, where {BI , B2, ... , Bn,
C} n U = 0, and let schema{S) be a relation schema with schema{S) = U U {C}. We define
three sets of FDs, PI, P2 and P3 over R, and let F = PI U P2 U P3.

1) PI = {Aj -+ Bj I Aj E Sj for some i E {I, 2, . .. , n}}; this set of FDs captures each
membership of the form Aj E Sj.

2) P2 = {AjAk -+ C I Aj , Ak E Sj for some i E {I, 2, . .. , n} andAj =1= Ak}.

3) P3 = {BIB2 ... Bn -+ C}.

We claim that W is a hitting set if and only if S does not preserve F. That is, W is a hitting
set ifandonlyifF[S] is not a cover ofP+[S].

If. Suppose that F[S] is not a cover of P+[S]. Then there exists a nontrivial FD in P+[S] -
(F[S])+. By inspection of F and schema{S) we can deduce that this FD must be of the form W
-+ C, where Vi E {I , 2, . .. , n}, IW n S;I = 1. Thus W is a hitting set.

Only if. Suppose that W is a hitting set. Then W -+ C E P+[S] can be derived from PI and
P3. On the other hand, W -+ C rf- (F[S])+, since P3 ~ F[S] and, in addition, we cannot use P2
to derive W -+ C due to the fact that Vi E {l , 2, .. . , n}, (IW n Sjl = 1) < 2. Thus S does not
preserve F. D

3.6.7 Inclusion Dependencies

Inclusion Dependencies (or simply INDs) generalise the notion of referential integrity which
together with entity integrity form the fundamental integritycontraints ofthe relational model.
In fact, foreign keys can be expressed by a subclass of INDs called key-based INDs. There
is a proviso in that we will assume that none of the relations in the database do contain null
values. This assumption will be relaxed in Section 5.5 of Chapter 5, where we investigate
integrity contraints, including INDs, in the presence of incomplete information.

INDs are different from other data dependencies such as FDs, since they can express
interrelational constraints between attributes in two relations. Together FDs and INDs
constitute the most fundamental data dependencies that are used in practice.

Intuitively, an IND is an expression of the form R[X] ~ SlY], where Rand S are relation
schemas and X and Yare equal length sequences of attributes from schema{R) and schema{S},
respectively. Such an IND is satisfied in a database having relations rover Rand s over S if
the projection of r onto X is included in (Le. is a subset of) the projection of s onto Y.

We now give a motivating example. Let STUDENTS be a relation schema having attributes
STUD recording names of studen ts and DEPT recording names of departments. In addition, let
HEADS be a relation schema having attributes HEAD recording names of heads of departments
and DEPT be as before. Finally, let LECTURERS be a relation schema having attributes LECT
recoding names of lecturers and DEPT be as before. A database d = {rl, r2 , r3} over the
database schema containing the relation schemas STUDENTS, HEADS and LECTURERS is
shown in Tables 3.49, 3.50 and 3.51, respectively. The semantics of the database schema can
be captured by several FDs and INDs. The FDs are: STUD -+ DEPT over STUDENTS, DEPT
-+ HEAD over HEADS, and LECT -+ DEPT over LECTURERS, with their obviously intended

170 Chapter 3. The Relational Data Model

meaning. The INDs are: STUDENTS[DEPT] s::; HEADS[DEPT] meaning that a student only
studies in a department which has a head, and HEADS [HEAD, DEPT] s::; LECTURERS[LECT,
DEPT] meaning that a head of a department is also a lecturer in the department he/she
heads. The reader can verify that the specified FDs and INDs are all satisfied in d. There
is also some interaction between the FDs and INDs, since the IND HEADS[HEAD, DEPT] s::;
LECTURERS[LECT, DEPT] together with the FD LECT --+ DEPT over LECTURERS logically
imply the FD HEAD --+ DEPT over HEADS. The reader can verify that this implied FD is
satisfied in r2.

Table 3.49 The relation rl over
STUDENTS

STUD DEPT
Iris Computing

Reuven Computing
Eli Maths

Naomi Maths
Susi Philosophy

Table 3.50 The relation T2 over
HEADS

HEAD DEPT
Raphael Computing

Dan History
Brian Maths

Annette Philosophy

Table 3.51 The relation T3 over
LECTURERS

LECT DEPT
Hanna Biology

Raphael Computing
Dan History
Eli Maths

Naomi Maths
Brian Maths

Annette Philosophy

Consider another example. Let BOSS be a relation schema having two attributes, EMP and
MGR, and let r be the relation over BOSS shown in Table 3.52. The fact that a manager is also
an employee is captured by the IND BOSS[MGR] s::; BOSS[EMP]. This type of IND gives rise
to the notion of circular INDs, which leads to the following problem. In order to enforce the
satisfaction of this IND over BOSS in a relation without nulls we get into a circular argument
implying that a relation that satisfies the IND has an infinite number of tuples (we allow
only finite relations), unless we allow employees to manage themselves. As can be verified in
Table 3.52 Jill is the manager of herself.

Table 3.52 The relation r over BOSS

EMP MGR
Jack John
John Jill
Jill Jill

In order to formally define INDs we will introduce notation for sequences of distinct
attributes, i.e. sequences which do not repeat any attribute. A sequence of distinct attributes
AI, A2, ... , An, whose underlying set of attributes, {AI, A2, ... , An}, is equal to Y, is denoted
by <AI, A2 , .. . , An> or by <Y>. Whenever no confusion arises between a sequence and its
underlying set, we will refer to the sequence of distinct attributes <Y>, simplyas Y. We take A E

<AI, A2, .. . , An> to mean A E {AI, A2, ... , An} and <AI, A2, . . . , An> s::; <BI, B2, .. . , Bm>
to mean {AI, A2 , ... , An} s::; {B I , B2," " Bm}. From now on we will refer to a sequence of
attributes as a shorthand for a distinct sequence of attributes.

We will denote the concatenation of two sequences X and Y by XY; we will assume that,
unless otherwise stated, when we concatenate two sequences of attributes these sequences
have no common attributes, i.e. they are disjoint. The difference between two sequences

3.6. Data Dependencies 171

of attributes, denoted by X-Y, is the sequence resulting from removing all the common
attributes in X and Y from X while maintaining the original order of the attributes remaining
in X. If the sequences X, Yare not disjoint we define their concatenation XY to be (X-Y)Y.
The intersection of two sequences of attributes, denoted by X n Y, is a shorthand for X - (X
- Y). For simplicity, we will not distinguish between the empty sequence of attributes, < >,
and the empty set of attributes, 0.

The projection of a tuple t over a relation schema R onto the sequence of attributes <Y>
= <att(i1), att(i2), ... , att(ik», where Y ~ schema(R), denoted by t[<Y>] (or simply t[Y]
when no ambiguity arises), is defined by t[<Y>] = <t(id, t(i2) , ... , t(ik»' We extend
projection to a relation rover R onto <Y> in the usual manner, namely

1Ty(r) = {t[Y] I t E r}.

Defmition 3.69 (Inclusion dependency) An Inclusion Dependency over a database schema
R (or simply an IND) is a statement of the form RI [X] ~ R2 [Y], where Rl> R2 E R and X, Yare
sequences of attributes such that X ~ schema(Rd, Y ~ schema(R2) and IXI = IYI.

An IND is said to be trivial ifit is of the form R[X] ~ R[X]. An IND R[X] ~ S[Y] is said to
be unary if IXI = 1. An IND R[X] ~ S[Y] is said to be typed if X = Y. •

An example of an IND which is both typed and unary is STUDENTS[DEPT] ~
HEADS[DEPT] and an example of an IND which is neither unary nor typed is HEADS[HEAD,
DEPT] ~ LECTURERS[LECT, DEPT].

Defmition 3.70 (Satisfaction of an IND) Let d be a database over a database schema R, where
rl> r2 E d are relations over relation schemas Rl> R2 E R. An IND RtlX] ~ R2[Y] is satisfied
in a database dover R, denoted by d F RtlX] ~ R2[Y]' if'v'tl E rl, 3t2 E r2, such that ttl X] =
t2[Y]. (Equivalently, d F R;[X] ~ Rj[Y], whenever 1Tx(ri) ~ 1Ty(rj)') •

An important subclass ofINDs that is utilised in the next subsection is the class of noncircular
INDs [Sci86].

Defmition 3.71 (Circular and noncircular sets ofINDs) A set of INDs lover R is circular if
either

1) there exists a nontrivial IND R[X] ~ R[Y] E I, or

2) there exist m distinct relation schemas, RI, R2, R3,"" Rm E R, with m > 1, such that I
contains the INDs: RtlXtl ~ R2[Y2], R2[X2] ~ R3[Y3], .. . , Rm[Xm] ~ Rtlytl .

A set of INDs is noncircular if it is not circular. •
The reader can verify that the set of INDs {STUDENTS[DEPT] ~ HEADS[DEPT],

HEADS[HEAD, DEPT] ~ LECTURERS[LECT, DEPT]} is non circular. On the other hand, the
single IND {BOSS[MGR] ~ BOSS[EMP]} is circular according to part (1) of Definition 3.71.
Let us now add an attribute TUTEE to schema(LECTURERS) indicating those students that
are in the tutorial group of a lecturer. Then we can add the IND LECTURERS[TUTEE]

172 Chapter 3. The Relational Data Model

<; STUDENTS[STUD] specifying that the students in a tutorial group of a lecturer are
included in the official list of students. We now have the set of INDs {STUDENTS[DEPT] <;
HEADS[DEPT], HEADS[HEAD, DEPT] <; LECTURERS[LECT, DEPT], LECTURERS [TUTEE]
<; STUDENTS [STUD]}, which is circular according to part (2) of Definition 3.71.

We can easily test whether a set of INDs, I over R, is non circular as follows: construct
a directed graph GI = (N, E), whose nodes in N are labelled by the relation schemas in the
database schema R and such that there is an arc in E from R to S if there is a nontrivial IND
R[X] <; S[Y] in I (R = S is possible). It follows that I is noncircular if and only if GI is an acyclic
directed graph. Testing whether a directed graph is acyclic can easily be done in polynomial
time in the size of GI by a depth-first search algorithm [Tar72, AHU83].

We next define an important class of INDs where the attributes on the right-hand side of
INDs are keys. We remind the reader that when F is a set of FDs over one or more relation
schemas R E R, we say that F is a set of FDs over R.

Defmition 3.72 (Key-based INDs) An IND R[X] <; S[Y] over R is superkey-based,
respectively key-based, if Y is a superkey, respectively a key, for S with respect to a set of
FDs F over R.

A set I ofINDs is superkey-based, respectively key-based, with respect to a set of FDs F over
R if every IND in I is superkey-based, respectively key-based. •

For example, the IND STUDENTS[DEPT] <; HEADS[DEPT] is key-based, since DEPT ~
HEAD over HEADS implies that DEPT is a key for HEADS. On the other hand, the IND
HEADS[HEAD, DEPT] <; LECTURERS[LECT, DEPT] is superkey-based but not key-based,
since the FD LECT ~ DEPT over LECTURERS implies that LECT is a key for LECTURERS.
The reader can verify that the IND HEADS[DEPT] <; LECTURERS[DEPT] is neither superkey
based nor key-based.

An alternative formalisation of referential integrity in terms of key-based INDs is now
evident, recalling that we have assumed that relations in the database do not have null values.
If R[X] <; S[Y] is a key-based IND and Y is a primary key of S, then the set of attributes X is a
foreign key of R referencing the primary key Y of S.

The following inference rules allow us to axiomatise INDs.

Definition 3.73 (Inference rules for INDs) Let I be a set of INDs over a database schema R
= {RI , R2, ... , Rn}. We define the following inference rules for INDs:

INDl Reflexivity: if X <; schema(R), with R E R, then I I- R[X] <; R[X].

IND2 Projection and permutation: if I I- RdX] <; R2[Yj, where X = <AI, A2, ... , Am>
<; schema(Rd, Y = <BI, B2,"" Bm> <; schema(R2) and iI, i2, ... , ik is a sequence
of distinct natural numbers from {l, 2, ... , m}, then I I- RdAil' Ai2'"'' Aik] <;
R2[Bil' Bi2"'" Bik]'

IND3 Transitivity: if I I- RdX] <; R2[Y] and I I- R2[Y] <; R3[Z], then I I- RdX] <; R3[Z]. •

3.6. Data Dependencies 173

Note that INDI is an axiom, since it has no hypothesis. We call the inference rules INDl,
IND2 and IND3 Casanova et a/"s axiom system [CFP84j. The next lemma and theorem were
first proved in [CFP84j.

Lemma 3.36 Casanova et al.'s axiom system is sound.

Proof. We prove that transitivity (IND3) is sound and leave it to the reader to prove that the
other inference rules are also sound.

Let rl, r2 and r3 be the relations in d over the relation schemas RI , R2 andR3 in R, respectively.
Moreover, let tl E r" so we are required to show that tdXj E JTx(r3). By the fact that d ~
RdXj S; R2[Yj we have tdXj E JTy(r2). The result follows, since d ~ R2[Yj S; R3[Zj implies
that tl [Xj E JTz(r3) as required. 0

Theorem 3.37 Casanova et al.'s axiom system is sound and complete for INDs.

Proof. Soundness follows from the previous lemma. It remains to prove completeness. As
in Theorem 3.21, in which we proved that Armstrong's axiom system is sound and complete
for FDs, we assume that I If R[X] S; S[Y]. To conclude the proof it is sufficient to exhibit
a counterexample database, dover R, such that d F= I but d t;t= R[X] S; SlY], where X =
<AI, A2, ... ,Am>·

Let rEd be the relation over R that contains a single tuple t such that t[A;) = i, for
i = 1, 2, ... , m, and t[A;) = 0 otherwise. All the other relations in d are initialised to be
empty. We insert tuples into the relations in d by applying the following rule until no more
tuples can be inserted into the current state of d by a further application of this rule. Let us
call the resulting database d' (cf. the chase procedure for INDs, which is defined in the next
subsection) .

IND tuple insertion rule: If RI [Wj S; R2[Z] E I and 3tl E rl such that tl [Wj if- JTz(r2), then
add a tuple t2 over R2 to r2 such that t2[Z] = tt!W] and VA E schema(R2) - Z, t2[A] =
0, where rl and r2 in d are the relations over RI and R2 in R, respectively.

We observe that the IND tuple insertion rule can only be applied a finite number of times,
since this rule does not introduce new values into d'. It follows that d' F= I, since if this were
not the case then we could apply the IND tuple insertion rule to d', contradicting the fact that
this rule cannot be further applied.

It remains to show that d' t;t= R[Xj S; S[Y]. We claim that if t[X] E JTY(s) then I I- R[Xj S;

S[Yj, where sEd is the relation over S. The claim can be formally proved by induction on the
minimal number, say k, k E cu, of applications of the IND tuple insertion rule. The basis step,
when k = 0, follows by the reflexivity rule. The induction step follows by the projection and
permutation rule and the transitivity rule on using the induction hypothesis. We leave it to
the reader to fill in the missing details.

It follows by the above claim that t[Xj if- JTy(s), since we have assumed that I If R[Xj S; S[Y].
The result now follows by Definition 3.70 of the satisfaction of an IND. 0

In [Mit83] repeated attributes are allowed in inclusion dependencies. For example, if an
IND of the form R[A, Bj S; R[C, C) is satisfied in a database d, where rEd is the relation over

174 Chapter 3. The Relational Data Model

R, then for any tuple t E r we have t[A] = t[B] = t[C]. (In [CFP84] such INDs with repeating
attributes are called repeating dependencies.)

IND4 Substitutivity of equivalents: if I I- R[A, B] ~ S[C, C] and I I- a, where R[X] is either
the right-hand side or the left-hand side of a, then I I- {3, where (3 is obtained from a by
substituting one or more occurrences ofB in R[X] with A.

It is shown in [Mit83] that the axiom system consisting of the inference rules INDl, IND2,
IND3 and IND4 is sound and complete for INDs which may contain repeated attributes. As
we shall see in Subsection 3.6.11 when we consider the interaction between a set F ofFDs and
a set I of INDs, a repeating dependency a may be logically implied by F and I even if I does
not contain any repeating dependencies.

3.6.8 The Chase Procedure for Inclusion Dependencies

In this section we introduce the chase procedure for INDs in order to test the satisfaction of
a set of INDs in a database. This highlights the versatility of the chase procedure as a useful
tool in relational database theory, recalling that in Subsection 3.6.4 the chase was employed
in the context of the implication problem. In the theory of data dependencies it is common
to use the chase in both roles, i.e. to test satisfaction of a set of dependencies and to test for
implication of dependencies.

Let d be a database over a database schema R, where r, sEd are, respectively, the relations
over the relation schemas R, S E R.

IND rule: IfR[X] ~ S[Y] E I and 3t E r such that t[X] ~ Jry(s), then add a tuple u over S to s,
where u[Y] = t[XI and VA E schema(S) - Y, urAl ~ ADOM(d).

That is, the IND rule adds a new tuple u to the relation s, which has new values, not present in
s, over all the attributes which are not in Y. For convenience we will assume that the elements
in ADOM(d) are linearly ordered and that the new values, u[A] ~ ADOM(d}, are greater than
all the values in the current state of ADOM(d).

The pseudo-code of an algorithm, designated ICHASE(d, I), which returns the chase of a
database dover R with respect to a set I of INDs over R, is given below. As in the case of the
chase of a tableau with respect to a set of FDs the algorithm is nondeterministic.

Algorithm 3.11 (ICHASE(d, I))
1. begin
2. Result := d;
3. Tmp:= 0;
4. while Tmp =j:: Result do
5. Tmp := Result;
6. Apply the IND rule to Result;
7. end while
8. return Result;
9. end.

3.6. Data Dependencies 175

As in the case of CHASE(T, F), where T is a tableau over a relation schema R, ICHASE(d,

I) is a finite Church-Rosser system; the order in which the INDs are chosen by the IND rule
in line 6 of the algorithm does not affect the result, up to the particular choice of new values
that are added to d. On the other hand, ICHASE(d, I) does not always terminate. Consider
the relation, r, shown in Table 3.53, and assume that d = {r} and I = (R[MGR] S; R[EMPJ),
modelling the fact that every manager is an employee. When applying the IND rule to d we
will add to r a tuple of the form, <New_value(l), John>. The next application of the IND rule
will add to r an additional tuple of the form, <New-value(2), New-yalue(l». In general, the
ith application of the IND rule will add to r an additional tuple of the form, <New_value(i),
New-yalue(i - 1». Thus, ICHASE(d, I) will not terminate.

It is not hard to see that the following theorem holds.

Theorem 3.38 Let I be a set of noncircular INDs over Rand d be a database over R.

1) The chase procedure, which computes ICHASE(d, I), terminates.

2) ICHASE(d, I) F= I.

3) d = ICHASE(d, I) if and only if d F= I. o

The reader may think that the chase procedure for INDs terminates if and only if the set I
of INDs is noncircular. We next show that this finite chase property holds for a wider class of
INDs, which was defined in [lmi91], called proper circular.

Definition 3.74 (Proper circular sets ofINDs) A set I of INDs over R is proper circular if it
is either noncircular or whenever there exist m distinct relation schemas, RI, R2 , R3," " Rm
E R, with m > 1, such that I contains the INDs: RdXd S; R2[Y2], R2[X2] S; R3[Y3], ... ,
Rm- dXm-d S; Rm[Ym], Rm[Xm] S; RdYd, then for all i E {I , 2, ... , m} we have Xi = Yi .

•
Let rl , r2 , . .. , rm be the relations in d over the relation schemas RI, R2, ... , Rm in R,

respectively. Then the set of proper circular INDs, {RdXd S; R2[Y2], R2[X2] S; R3[Y3],
... , Rm- dXm- d S; Rm[Ym], Rm[Xm] S; RdYdJ, is satisfied in d if and only if

That is, proper circular INDs extend noncircular INDs by the ability to state that the
projections of two sequences of attributes onto two relations are equal. We leave it to the
reader to verify that Theorem 3.38 still holds when I is proper circular.

For example, the set of INDs {STUDENTS[DEPT] S; HEADS[DEPT], HEADS[DEPT] S;
LECTURERS[DEPT], LECTURERS[DEPT] S; STUDENTS[DEPT]} is proper circular but it

176 Chapter 3. The Relational Data Model

is not noncircular. This set of INDs states that the projections onto DEPT of the relations
in the database over these relation schemas are all equal. On the other hand, the set
of INDs {STUDENTS[DEPT) ~ HEADS[DEPT), HEADS[HEAD) ~ LECTURERS[LECT),
LECTURERS[TUTEE) ~ STUDENTS[STUDj} is not proper circular.

We now extend the chase procedure to FDs and INDs by introducing an FD rule. Let d be
a database over schema R, with rEd being the relation over schema R E R. (We remind the
reader that the elements in ADOM(d) are linearly ordered.)

FD rule: If R : X --+ Y E F and 3t1, t2 E r such that t1 [X) = t2 [X) but t1 [Y) i= t2 [Y) then, VA E

Y, change all the occurrences in d of the larger of the values of t1 [A) and t2 [A) to the
smaller of the values of t1 [A) and t2 [A).

That is, the FD rule equates values in d whenever an FD R : X --+ Y is violated in a relation in
d. We now modify the chase procedure to take a set ~ = F U I, where F is a set of FDs and I is
a set ofINDs over R, as input and modify ICHASE(d, ~) by changing line 6 of Algorithm 3.11
to

6. Apply the FD rule or the IND rule to Result;

The following theorem extends Theorem 3.38 when considering FDs and INDs together.
(In the following we will write d ~ R : X --+ Y to mean r ~ R : X --+ Y.)

Theorem 3.39 Let ~ = F U I be a set of FDs and proper circular INDs over Rand d be a
database over R.

1) The chase procedure, which computes ICHASE(d, ~), terminates.

2) ICHASE(d, ~) ~ ~.

3) d = ICHASE(d, ~) if and only if d ~ ~.

4) (1) to (3) hold when replacing ICHASE(d, ~) by ICHASE(ICHASE(d, I), F). 0

Part (4) of Theorem 3.39 implies that the chase procedure can be decoupled into two stages:
in the first stage we chase d with the INDs on their own, and in the second stage we chase the
resulting database with the FDs on their own. In fact, Theorem 3.39 holds for any class of FDs
and INDs possessing the finite chase property.

3.6.9 Armstrong Databases for Inclusion Dependencies

An Armstrong database for a set of INDs generalises the concept of Armstrong relations as
follows: d is an Armstrong database for a set of INDs lover R whenever

d ~ R[X) ~ SlY) if and only ifI ~ R[X) ~ SlY).

As demonstrated in Subsection 3.6.2 Armstrong databases can be very useful as a tool to
show users example databases satisfying exactly the setofFDs and INDs for a given application.

3.6. Data Dependencies 177

We prove below that proper circular INDs enjoy Armstrong databases and indicate how this
result can be generalised to include both standard FDs and INDs. (Recall that a standard FD
is one whose left-hand side is nonempty.)

Theorem 3.40 Proper circular INDs enjoy Armstrong databases.

Proof Let I be a set of proper circular INDs and d be a database with nonempty relations
such that the active domains of distinct relations in d are disjoint, and, in addition, the active
domains of distinct columns of the relations in d are also disjoint. We observe that this implies
that d does not satisfy any nontrivial IND.

We claim that ICHASE(d, I) is an Armstrong database for I, that is, ICHASE(d, I) F R[X)
~ S[Y) if and only if I F R[X) ~ S[Y).

For the if part suppose that I F R[X) ~ S[Y). By Theorem 3.38 (2), ICHASE(d, I) F I, and
therefore ICHASE(d, I) F R[X) ~ S[Y) as required.

For the only if part we need to show that if ICHASE(d, I) F R[X) ~ S[Y), then I F R[X) ~
S[Y). Assume to the contrary that ICHASE(d, I) F R[X) ~ S[Y) but I ~ R[X) ~ S[Y). Then
there exists a database d' over R such that d' F I but d' ~ R[X) ~ sty). By the definition of
the satisfaction of an IND, for some tuple t' E r', t'[X) E 7rx(r') but t'[X) fj 7rY(5'), where r'
and 5' are the relations in d' over Rand S, respectively. We can also assume without any loss
of generality that for all A E X the A-values of t'[X) are distinct, since we have assumed that
INDs do not have repeated attributes.

Let r, 5 E d be the relations over Rand S, respectively, and, due to the disjointness of the
relations in d and the columns of the relations in d, we assume without loss of generality that
3t E r such that t[X) = t'[X) but .lIu E 5 such that u[X) = t'[X). It follows that d ~ R[X) ~ sty).
In order to conclude the proof we show that d' =f. ICHASE(d', I) implying by Theorem 3.38 (3)
that d' ~ I leading to a contradiction.

The result follows by tracing the applications of the IND rule in line 6 of Algorithm 3.11
when computing ICHASE(d, I); denote the ith application of the IND rule by apply(i). In order
to show that d' =f. ICHASE(d', I) we check for each i whether apply(i) will cause a modification
to the current state of d'. In particular, we take note each time the value, t'[X), is part of a
tuple that is added to a relation in the current state of d' as a result of apply(i). Let apply(j)
be the application that causes t' [X) to be added to the current state of 7ry(5) . Now, if apply(j)
does not modify the current state of d' in ICHASE(d', I), then d' F R[X) ~ S[Y); on the other
hand if apply(j) modifies the current state of d' in ICHASE(d', I), then d' ~ I. 0

Armstrong databases have also been investigated in the context of FDs and INDs. It was
shown in [MR88) that in the special case when ICHASE(d, I) = ICHASE(d, ~), standard FDs
and noncircular INDs enjoy Armstrong databases. The proof relies on a modification of
Theorem 3.40 by requiring that the relations in the database d are Armstrong relations for
their respective sets of FDs.

Theorem 3.40 does not give us a general result, since it is restricted to proper circular
INDs. In order to obtain a more general result we cannot utilise the chase procedure, since
ICHASE(d, I) may not terminate ifI is not a proper circular set ofINDs. A more general result
was obtained in [Fag82b, FV83) using direct products, which shows that standard FDs and the
general class of INDs enjoy Armstrong databases.

178 Chapter 3. The Relational Data Model

3.6.10 The Implication Problem for Inclusion Dependencies

The implication problem for INDs is the problem of deciding whether IF R[X] S; SlY], given
a set I ofINDs and a single IND R[X] S; SlY] over R. Now, by the soundness and completeness
of Casanova et a!.'s axiom system we need only consider the problem of deciding whether I I
R[X] S; SlY]. Unfortunately, the implication problem for INDs turns out to be intractable. As
we will see the problem gets worse when we consider FDs and INDs together, since their joint
implication problem is, in general, undecidable. This has motivated researchers to investigate
subclasses of INDs, which have a more tractable implication problem.

The proof of the following theorem can be found in [CFP84].

Theorem 3.41 The implication problem for INDs (which may be circular) is PSPACE
complete. 0

The proof of the following theorem can be found in [Man84, CK86].

Theorem 3.42 The implication problem for noncircular INDs is NP-complete. 0

The next theorem shows that the implication problem for proper circular INDs is not more
difficult than that for noncircular INDs.

Theorem 3.43 The implication problem for proper circular INDs is NP-complete.

Proof. The problem is in NP, since any minimal proof of I I- R[X] S; SlY], where I is a proper
circular set of INDs, contains at most IRI INDs. The result follows, since NP-hardness of the
problem is a consequence of the NP-completeness of the implication problem for noncircular
INDs. 0

The next theorem can easily be verified, since by Theorem 3.37 IND 1 (reflexivity) and IND3
(transitivity) are sound and complete for unary INDs [CKV90].

Theorem 3.44 The implication problem for unary INDs is linear-time in the size of the input
set of unary INDs. 0

The next theorem shows that the implication problem for typed INDs can also be solved
efficiently [CV83].

Theorem 3.45 The implication problem for typed INDs is polynomial-time in the size of the
input set of typed INDs.

Proof. Suppose we would like to decide whether I I- R[X] S; S[X]. We utilise a directed graph
representation, Gx = (N, E), of the set ofINDs I, which is constructed as follows. Each relation
schema R in R has a separate node in N labelled by R; we do not distinguish between nodes
and their labels. There is an arc (Rl , R2) in E if and only if there is a nontrivial IND Rl [W] S;

R2[Wj E I, with X S; W.

3.6. Data Dependencies 179

We claim that I I- R[X) S; S[X) if and only if either R = S, in which case the IND can trivially
be derived, or there is a path from R to S in Gx. The claim can be proved by induction on
the minimal length of a proof of R[X] S; S[X] from I. The result now follows from the fact
that path reachability is a well-known polynomial-time problem in the size of the input graph
[AHU83). 0

3.6.11 Interaction between Functional and Inclusion Dependencies

As we have seen in the example at the beginning of Subsection 3.6.7 the IND HEADS[HEAD,
DEPT) S; LECTURERS[LECT, DEPT) together with the FD LECT -+ DEPT over LECTURERS
logically imply the FD HEAD -+ DEPT over HEADS. This is an example of interaction between
FDs and INDs that results in an FD being derived.

Suppose that we add an attribute FACULTY to both the relation schemas HEADS and
LECTURERS, indicating the faculty in which a lecturer is employed, together with the IND
HEADS[HEAD, FACULTY) S; LECTURERS[LECT, FACULTY]. Then, this IND combined
with the IND HEADS[HEAD, DEPT) S; LECTURERS[LECT, DEPT] and the FD LECT -+

DEPT over LECTURERS logically imply the IND HEADS[HEAD, DEPT, FACULTY) S;
LECTURERS[LECT, DEPT, FACULTY). This is an example of interaction between FDs and
INDs that results in an IND being derived.

Furthermore, suppose that we add an additional attribute INSTITUTE to the relation schema
HEADS together with the IND HEADS[HEAD, INSTITUTE) S; LECTURERS[LECT, DEPT).
Then, this IND combined with the IND HEADS[HEAD, DEPT) S; LECTURERS[LECT, DEPT)
and the FD LECT -+ DEPT over LECTURERS logically imply the IND HEADS[HEAD, DEPT,
INSTITUTE) S; LECTURERS[LECT, DEPT, DEPT) having a repeating attribute DEPT. Now,
by IND2 (projection and permutation) we can derive the repeated dependency HEADS[DEPT,
INSTITUTE) S; LECTURERS[DEPT, DEPT] indicating that DEPT and INSTITUTE have the
same meaning. Such a repeating dependency is not equivalent to any set ofFDs and INDs and
therefore repeating attributes must be considered when dealing with the interaction of FDs
and INDs.

The interaction between FDs and INDs turns out to be a complex matter. In fact, for
FDs and INDs we have the negative result that, in general, we cannot find a sound and
complete axiom system for FDs and INDs at all. This is a consequence of the important result
that the implication problem for FDs and INDs taken together is, in general, undecidable
[Mit83, CV85) . In practice this result means that relational database designers should restrict
themselves to some meaningful subclass of FDs and INDs whose implication problem is
decidable. The most tractable known subclass is that of FDs and unary INDs for which there
is an interesting sound and complete axiom system, which is discussed below. In addition,
for the subclass ofFDs and unary INDs the implication problem can be solved in polynomial
time. The implication problem for the subclass of FDs and proper circular INDs is decidable
but intractable. Moreover, apart from the subclass of FDs and unary INDs, it is the largest
meaningful subclass ofFDs and INDs we know of that has a sound and complete axiom system
in addition to having a decidable implication problem.

We remind the reader that we assume that relations can only have a finite number of tuples.
If we relax this assumption and allow relations to have an infinite number of tuples then we
need to consider two kinds of notion of logical implication, one for finite relations and the

180 Chapter 3. The Relational Data Model

other for infinite relations. When considering FDs and INDs together it is readily shown that
{R: A -+ B, R[A] S; R[B]} finitely implies {R: B -+ A, R[B] S; R[A]} but not infinitely [CFP84].
To demonstrate the latter case consider the relation, say rj, shown in Table 3.54, and the
relation, say r2, shown in Table 3.55. For i = 1,2, it can be seen that the infinite relations
resulting from ICHASE({n}, (R[A] S; R[B]}) satisfy {R: A -+ B, R[A] S; R[B]} but violate R: B
-+ A and R[B] S; R[AJ, respectively. Thus even for the subclass of FDs and unary INDs finite
and infinite logical implication do not coincide.

Table 3.54 A relation having an infinite chase

ffffiB
1 1
2 1

Table 3.55 Another relation having an infinite chase

ITI!J
c:!TIJ

In [Mit83, CV85] it was shown that the implication problem for FDs and INDs is, in general,
undecidable for infinite logical implication as well as for finite logical implication as mentioned
above. It is interesting to note that, although we cannot find a sound and complete axiom
system for FDs and INDs with respect to finite relations, the axiom system presented in [Mit83],
which we call Mitchell's axiom system, is sound and complete for FDs and INDs defined to hold
in relations which may be infinite. This axiom system is not attribute bounded in the sense that
new attributes not present in the original database schema may need to be generated during
a derivation sequence (see the attribute introduction inference rule for FDs and INDs given
below). In fact, due to the undecidability of infinite logical implication for FDs and INDs, there
cannot be an attribute bounded axiomatisation of FDs and INDs for infinite relations. On the
other hand, for FDs on their own and for INDs on their own it can be shown that finite and
infinite logical implication coincide. The largest subclass ofFDs and INDs for which we know
finite and infinite logical implication to coincide is the subclass of FDs and proper circular
INDs. This can formally be proved by using the fact shown above, namely that proper circular
INDs possess the finite chase property (see [Man84, Imi9I]). It follows that Mitchell's axiom
system is sound and complete for the subclass of FDs and proper circular INDs. It remains
an open problem to find an attribute bounded axiomatisation for this subclass.

The fact that finite and infinite logical implication coincide for a certain class of data
dependencies is not just of pure theoretical interest, since it is not hard to show that this
property implies that the implication problem for such a Class of data dependencies is
decidable.

In this subsection we let F be a set of FDs over R, where each FD in F is of the form R : X
-+ Y, with R E R, so the relation schema R distinguishes the schema over which the FD holds.
Moreover, we let Pi = {Ri : X -+ Y E Fl, with i E {I, 2, .. . , n}, be the set ofFDs in F over Ri E

R. Finally, we let I be a set of INDs over R and let 1: = F U I.

The next inference rule takes into account the fact that we are considering sequences
of attributes rather than unordered sets of attributes. It states that an FD X -+ Y holds
independently of the ordering of X and Y.

FD7 Permutation: ifF f- R: X -+ Y, W is a permutation of X and Z is a permutation ofY, then
F f- W -+ Z.

The next three inference rules capture the basic interaction between FDs and INDs [Mit83].

3.6. Data Dependencies 181

FD-INDl Pullback: if:E I- R[VW] ~ S[XY], with IVI = lXI, and :E I- S : X -+ Y, then :E I- R :
V-+W.

FD-IND2 Collection: if:E I- R[UV] ~ S[XY], :E I- R[UW] ~ S[XZ] and :E I- S : X -+ Y, then
:E I- R[UVW] ~ S[XYZ].

FD-IND3 Attribute introduction: if:E I- R[X] ~ sty] and :E I- S : Y -+ B, then :E I- R[XA] ~
S[YB], where A is an attribute that is newly added to schema(R), i.e. prior to adding A
to schema(R), A rf- schema(R).

We call the inference rules comprising Armstrong's axiom system, Casanova's et al. axiom
system, together with FD7 (permutation), IND4 (substitutivity of equivalents), FD-INDI
(pullback), FD-IND2 (collection) and FD-IND3 (attribute introduction), Mitchell's axiom
system [Mit83].

The reader can verify that both the pullback and collection inference rules are sound, i.e.
if:E I- a using either FD-INDI or FD-IND2 then :E F= a, where a is an FD or IND. The
attribute introduction inference rule requires some further explanation. Consider a database
d containing relations rover Rand s over S such that d F= {R[X] ~ sty], S : Y -+ B}. Then
after extending schema(R) with a new attribute A we can add an additional column to rover
the new attribute A, resulting in a new relation r' as follows. Each tuple t E r is extended to a
tuple t', with t = t'[schema(R)-A] and t'[A] = u[B], where u is the tuple in s such that t[X] =
u[Y]; note that this extension is unique due to the FD S : Y -+ B. Thus attribute introduction
is a sound inference rule. It is important to note that we do not allow :E+ to contain any data
dependencies having new attributes, so that new attributes may be present in FDs or INDs
only during intermediate steps of a derivation of a data dependency a from :E.

The next example shows that attribute introduction is a nonredundant inference rule for
FDs and INDs.

Example 3.7 Let R = {R, S}, with schema{R) = {A, B, C} and schema(S) = {A, B1 , Bz, Cl, Cz}.
Also, let:E = F U I, where F = {S: A -+ C l C2, S: C1Cz -+ A, S: Bl -+ CJ, S: Bz -+ Cz} and I
= {R[AC] ~ S[ABd, R[AC] ~ S[ABz], R[BC] ~ S[ABd, R[BC] ~ S[AB2]}. We leave it to the
reader to verify that :E I- R[AB] ~ S[AA]. Moreover, this repeating dependency cannot be
derived without the attribute introduction inference rule. •

We next direct our attention to whether we can restrict the number of antecedents in
inference rules of an axiom system.

Defmition 3.75 (k-ary axiomatisation) Given a set of data dependencies :E over R, an
inference rule in an axiom system may have the form

where al, az, .. . , ak> k :::: 0, k E cu, and f3 are also data dependencies over R. Such an inference
rule allows us to derive f3 from ai, az , .. . , ak and is said to have k antecedents.

An axiom system for a certain class of data dependencies is said to be k-ary if all its inference
rules have at most k antecedents. •

182 Chapter 3. The Relational Data Model

An axiom system which is k-ary is said to be a finite axiom system, for the obvious reason
that it has a finite set of inference rules. For example, both FDs and INDs on their own have
2-ary axiomatisations. The following negative result shows that FDs and INDs do not have a
finite axiomatisation. It was proved in [CFP84] and strengthened in [CK86, CKV90] .

Theorem 3.46 For no k :::: 0, k E w, does there exist a k-ary axiomatisation for FDs and INDs,
even if we restrict ourselves to unary INDs.

Proof. Let r be a set of data dependencies in a certain class, C, of data dependencies over
R. We say that r is closed under implication if whenever (i) ~ ~ r , (ii) a E C and (iii) if
~ 1= a then a E r . Correspondingly, we say that r is closed under k-ary implication, for
k :::: 0, k E w, if whenever (i), (ii) and (iii) hold and, in addition, I ~ I ::: k then a E r.

In [CFP84] it was shown that a class, C, of data dependencies over R has a k-ary
axiomatisation if and only if whenever a set of data dependencies ~ in C is closed under
k-ary implication then ~ is also closed under implication.

In order to prove our result we exhibit, for any k :::: 0, k E w, a set of FDs and INDs ~ that
is closed under k-ary implication but is not closed under implication. Let R be a database
schema with k + 1 relation schemas such that schema(Rj) = (A, Bl, for i = 0, 1, .. . k. In
addition, consider the set of FDs and INDs ~ and an IND a defined by

1) ~ = {Rj : A ~ B, RilA] ~ Rj+dB]}, for i = 0,1 , .. . , k, and

2) a = Ro[B] ~ RklA],

where we let k + 1 be 0, i.e. addition is modulo k. Let r be the union of ~ and all the trivial
FDs and INDs over R. By using a cardinality argument it can be shown that r 1= a, but r is
not closed under implication, since a if. r .

It remains to show that r is closed under k-ary implication. That is, we need to show that
if 6. ~ r contains at most k data dependencies and a is an FD or an IND, then 6. 1= a implies
that a E r. Now, ~ contains k + lINDs and thus some IND tl E ~ is not in 6.. It can be shown
that a database d can be constructed such that d satisfies exactly the set of data dependencies
in r - {tll; we refer the reader to [CFP84] for the details. We observe that d is an Armstrong
database for r - {tll as defined in Subsection 3.6.9. It follows that d 1= 6., since 6. ~ r - (tll
and thus d 1= a also. The result that a E r - {tll now follows, since by the construction of d
we have d 1= a if and only if r - (tll 1= a. D

We now turn our attention to axiomatising FDs and unary INDs. If all the INDs in I are of
the form R[X] ~ R[Y], then we say that I is a set of INDs over R and abbreviate R[X] ~ R[Y]
to X ~ Y. The k-cycle inference rule for a set of FDs and unary INDs ~ over R is defined as
follows: for each odd natural number k and attributes Ao, AI, . .. , Ak- I, Ak E schema(R),

from ~ I- Ao ~ Al and ~ I- A2 ~ Al and ... and ~ I- Ak- I ~ Ak and ~ I- Ao ~ Ak
derive ~ I- Al ~ Ao and ~ I- Al ~ A2 and .. . and ~ I- Ak ~ Ak-I and ~ I- Ak ~ Ao.

We observe that if we allow relations to have an infinite number of tuples then the k-cycle
inference rule will become unsound.

The following inference rule can be derived by the I-cycle inference rule and Armstrong's
axiom system:

3.6. Data Dependencies 183

1) from I; I- 0 -+ A and I; I- B ~ A derive I; I- B -+ A and I; I- A -+ B and I; I- A ~ B.

The following result was shown in [CKV90].

Theorem 3.47 The axiom system comprising FDI (reflexivity), FD2 (augmentation), FD3
(transitivity), FD7 (permutation), INDI (reflexivity), IND3 (transitivity) and the k-cycle
inference rule is sound and complete for FDs and unary INDs over a relation schema R.

Proof. We leave it to the reader to establish the soundness of this mixed axiom system. The
technique used to prove completeness is already familiar to us. Let I; be a set F of FDs and
a set I of unary INDs over R. We assume that I; If a, where a is an FD or a unary IND over
R. To conclude the proof it is sufficient to exhibit a counterexample database, d, containing a
single relation rover R, such that d 1= I; but d I;i= a. We refer the reader to [CKV90] for the
details of the construction of d. 0

We observe that the axiom system of Theorem 3.47 has a countably infinite number of
inference rules, since for each odd k, k E w, we have one k-cycle inference rule.

It was shown in [CKV90, Z092a] that the implication problem for FDs and unary INDs can
be solved in polynomial time in the size of the input dependency set. The technique used to
solve the implication problem is to construct a directed graph G'E = (N, E), where I; = F U I
is a set of FDs and INDs over R as follows. Each attribute A E schema(R) has a separate node
in N labelled A. G'E has two types of are, black and red. There is a black are, (B, A) in E, if
there is a nontrivial IND A ~ BEL Correspondingly, there is a red are, (A, B) in E, if there is a
nontrivial FD A -+ BE P+. It follows that the k-cycle inference rule can be used in a derivation
if and only if there is a corresponding cycle in G'E having k + 1 nodes and k + 1 arcs such that
the arcs alternate between red and black arcs. This problem can be solved in polynomial time
in the size of G'E ' This result is extremely important, since the class of FDs and unary INDs is
the largest class of FDs and INDs whose implication problem is known to be tractable.

Theorem 3.47 can be extended to the case where the set of unary INDs are over a database
schema rather than just over a single relation schema [CKV90]. To effect this extension
cardinality constraints, which are discussed in Subsection 3.7, turn out to be extremely useful.

The next theorem shows that the chase procedure can be utilised as a sound and complete
axiom system for FDs and proper circular INDs. This is complementary to the result,
mentioned in the introduction to this subsection, that Mitchell's axiom system is sound and
complete for FDs and proper circular INDs, since finite and infinite logical implication coincide
for this subclass ofFDs and INDs. It is interesting to note that Mitchell's axiom system is a finite
3-ary axiomatisation but it is not attribute bounded. Apart from the result of Theorem 3.47 for
unary INDs this is the most meaningful subclass of FDs and INDs whose implication problem
is decidable and for which a sound and complete axiomatisation exists.

Definition 3.76 (The database for an FD and an IND) Let a be an FD R : X -+ Y over R. The
database for a, denoted by dll , is a database over R, where apart from the relation rll Ed over
R all the other relations are empty and such that rll contains two tuples t) and t2, which are
constructed as follows: t[[X] = t2 [X] and for all A E schema(R)-X, t) [A] ¥ t2[A]. Moreover,
for every pair of distinct attributes A and B in schema(R), tj[A] ¥ tj[B], for i,j E {I, 2}, i.e. the
columns of rll are disjoint.

184 Chapter 3. The Relational Data Model

Let {3 be an IND R[Xj s; S[Yj over R. The database for {3, denoted by d/h is a database over
R, where apart from the relation rfJ E dover R all the other relations are empty and such that
rfJ contains a single tuple t which is constructed as follows: for every pair of distinct attributes
A and B in schema(R), t[Aj =1= t[Bj, i.e. as above the columns of rfJ are disjoint. •

Theorem 3.48 Let:E = F U I be a set of FDs and proper circular INDs over R, a be an FD R
: X ~ Y over Rand {3 be the IND R[Xj s; S[Yj over R. The following two inference rules are
sound and complete for FDs and proper circular INDs:

Chase FD: :E I- a, if ti [Yj = t~ [YJ, where ti and ti are the final states of tl and t2 in
ICHASE(d", :E).

Chase IND: :E I- {3, if t[Xj E Jry(s'), where s' is the final state of the relation over S in
ICHASE(dfJ , :E).

Proof. In order to prove soundness we consider the chase FD and the chase IND inference
rules separately.

Chase FD case. Assume that t~ [Yj = t; [Yj as in the definition of the chase FD inference rule
and let d be a database over R such that d F= :E . We need to show that d F= R: X ~ Y. Let us
define a mapping 1/1 from d" to d such that 1/I(tl) = Ul and 1/I(t2) = U2, with Ul [Xj = U2[XJ,
where tl, t2 E rand rEd is the relation over R. (The mapping 1/1 is called a containment
mapping from d" to d.) We claim that UI [Yj = U2 [Yj by an induction on the number of chase
steps, say k, required to compute ICHASE(d", :E), thereby proving the result. Due to the union
(FD4) and decomposition (FDS) inference rules for FDs, we assume without loss of generality
that Y = {A} is a singleton, and due to the reflexivity (FDl) inference rule for FDs we assume
without loss of generality that A rt X.

Basis If k = 1 then the only chase step executed is an application of the FD rule for an FD
R : W ~ Z E F, with W s; X and A E Z. It follows that UI [Aj = U2 [Aj as required, since d F= R
:W~Z.

Induction Assume the result holds when the number of chase steps required to compute
ICHASE(d", :E) is k, with k ~ 1; we then need to prove that the result holds when the number
of chase steps required to compute ICHASE(d" , :E) is k + 1. Let us consider the last chase step
executed to obtain ICHASE(d", E). There are two cases to consider.

Case 1. The last chase step is an application of the IND rule. The result follows by inductive
hypothesis, since this chase step does not change the current states of tl and t2, implying that
they are already in their final states, i.e. ti and t~ .

Case 2. The last chase step is an application of the FD rule for an FD S : W ~ Z. Let WI and
W2 be the two tuples in the current state of the relation over S in the current state of d" such
that WI [Zj and WI [Zj are equated as a result of this FD rule. It follows that for some B E Z,
t; [Aj = t;[Aj = w'1 [Bj = w;[BJ, where w; and w; are the final states of WI and W2, respectively.
Thus 1/1 (w; [Bj) = 1/I(w;[Bj) since d F= S : W ~ Z. The result now follows, since by inductive
hypothesis either udAj = 1/I(wdBJ) and u2[Aj = 1/I(w2[Bj) or udAl = 1/I(w2[Bj) and u2[Aj =
1/1 (wdB]).

Chase IND case. Assume that t[Xj E JrY(s') as in the definition of the chase IND inference
rule and let d be a database over R such that d F= E. We need to show that d F= R[Xj s; S[Yj.
Let us define a mapping 1/1 from dfJ to d such that 1/I(t) = u, where u E rand rEd is the

3.6. Data Dependencies 185

relation over R. (The mapping 1f! is called a containment mapping from dfJ to d.) We claim
that u[X] E JrY(s), where sEd is the relation over S, by an induction on the number of chase
steps, say k, required to compute ICHASE(dfJ' ~), thereby proving the result. We assume
without loss of generality by the reflexivity (INDl) inference rule for INDs that R[X] ~ SlY]
is a nontrivial IND.

Basis If k = 1 then the only chase step executed is an application of the IND rule for an IND
R[W] ~ R[Z] E I, where R[X] ~ SlY] can be obtained from R[W] ~ S[Z] by the projection and
permutation (IND2) inference rule for INDs. It follows that u[X] E Jry(s) as required, since
d F= R[W] ~ S[Z] .

Induction Assume the result holds when the number of chase steps required to compute
ICHASE(dfJ. ~) is k, with k 2: 1; we then need to prove that the result holds when the number
of chase steps required to compute ICHASE(dfJ. ~) is k + 1. Let us consider the last chase
step executed to obtain ICHASE(dfJ. ~) . There are two cases to consider.

Case 1. The last chase step is an application of the INO rule for an IND T[W] ~ S[Z], with Y
~ Z. Now, by inductive hypothesis there exists an IND R[V) ~ T[W) that is logically implied
by ~, with X ~ V. It therefore follows that R[X) ~ S[Y) can be inferred from R[V] ~ T[W]
and T[W] ~ S[Z] by the transitivity (IND3) and projection and permutation (IND2) inference
rules for INDs. Thus by inductive hypothesis there is a tuple W in the relation over T in d such
that u[V] = w[W]. The result is now evident, since d F= T[W] ~ S[Z].

Case 2. The last chase step was an application of the FO rule for an FO T : W --+ Z. Let WI and
W2 be the two tuples in the current state of the relation over Tin da such that WI [Z] and WI [Z)
are equated as a result of this FO rule. Assume without loss of generality that Z-W = {B} is a
singleton, otherwise the argument below can be repeated for all attributes in Z-W. 1t follows
that t[A] = w~ [B) = w; [BI, where w~ and w'2 are the final states of WI and W2, respectively.
Thus 1f!(w; [B]) = 1f!(w;[B]) since d F= S : W --+ Z. The result now follows, since by inductive
hypothesis u[X-A] = v[Y -C], for some attribute C E Y and tuple v E Jry(s), and either urAl
= 1f!(wdB]) = vIC] or urAl = 1f!(w2[B]) = vIC].

Completeness follows from Theorem 3.38, since both ICHASE(da.~) F= ~ and
ICHASE(d/l . ~) F= ~, implying that ICHASE(da.~) F= ex and ICHASE(d/l.~) F= {J,
respectively. 0

The following result showing the intractability of the implication problem for FDs and
noncircular INDs was established in [CK85]

Theorem 3.49 The implication problem for FDs and noncircular INDs is EXPTIME
complete. 0

It was also shown in [CK86] that the implication problem for the class of FDs and typed
non circular INDs is NP-hard; recall from Theorem 3.45 that the implication problem for
typed INDs on their own is polynomial-time decidable. The next theorem shows that the
implication problem for FDs and proper circular INDs is not more difficult than that for FDs
and noncircular INDs.

Theorem 3.50 The implication problem for the class of FDs and proper circular INDs is
EXPTIME-complete.

186 Chapter 3. The Relational Data Model

Proof. The problem is in EXPTIME, since the chase procedure for FDs and INDs can be
shown to terminate in exponential time when its input set of INDs is proper circular. The
result follows, since EXPTIME-hardness of the problem is a consequence of the EXPTIME
completeness of the implication problem for FDs and non circular INDs. 0

The proof of the following fundamental theorem, which follows by a reduction from the
word problem for finite semi groups defined in Subsection 1.9.4, can be found in [Mit83, CV85).

Theorem 3.51 The implication problem for FDs and INDs is undecidable, even if we restrict
ourselves to binary INDs, i.e. INDs whose left-hand sides and right-hand sides are restricted
to contain only two attributes. 0

3.6.12 The Case of No Interaction Between Functional and Inclusion
Dependencies

As we have seen in Subsection 3.6.11 the interaction between FDs and INDs is complex leading,
in general, to the undecidability of their joint implication problem. Given a set I; = F U I
of FDs and INDs over a database schema R it would be useful if F and I do not interact in
the sense that we need not apply any mixed FD-IND rules in deciding whether I; logically
implies an FD or an IND, a. The benefit of I; belonging to such a class of FDs and INDs is
that the implication problem is much simpler: for FDs we need only use Armstrong's axiom
system while for INDs we need only use Casanova et a!.'s axiom system. Unfortunately, the
implication problem for INDs on their own is still intractable unless we restrict ourselves to
subclasses of INDs such as unary and typed INDs. The next definition formalises the notion
of no interaction.

Defmition 3.77 (No interaction occurring between FDs and INDs) A set of FDs F over R is
said not to interact with a set of INDs lover R, if

1) for all FDs a over R, for all subsets G S; F, G U I 1= a if and only if G 1= a, and

2) for all INDs fJ over R, for all subsets J S; I, F U J 1= fJ if and only if J 1= fJ· •

For example, the set of FDs and INDs, (LECTURERS : LECT -+ DEPT, HEADS[HEAD,
DEPT) S; LECTURERS [LECT, DEPT)}, logically implies the FD HEADS: HEAD -+ DEPT by
the pullback inference rule and thus the FDs and INDs do interact. On the other hand, it can
be verified that the set of FDs and INDs, (STUDENTS : STUD -+ DEPT, HEADS: HEAD -+
DEPT, STUDENTS [DEPT) S; HEADS[DEPT)}, is such that the FDs and INDs do not interact,
since they do not logically imply any additional nontrivial FD or IND.

In the remaining part of this subsection we restrict ourselves to the subclass of FDs and
proper circular INDs.

Informally, a reduced set of FDs and INDs is one such that, for each IND R[X) S; SlY) in
the set I of INDs, Y does not contain any nontrivial FDs with respect to the set F of FDs.

Definition 3.78 (Reduced set ofFDs and INDs) The projection of a set ofFDs Fi over Ri onto
a set of attributes Y S; schema(Ri), denoted by Fi[Y), is given by Fi[Y) = (Ri: W -+ Z I Ri : W
-+ Z E F; and WZ S; V).

3.6. Data Dependencies 187

A set of attributes Y S; schema(Ri) is said to be reduced with respect to Ri and a set ofFDs Fi
over Rj (or simply reduced with respect to Fi if Rj is understood from context) if Fj[Y] contains
only trivial FDs. A set of FDs and INDs L = F U I is said to be reduced if V Rj [X] S; Rj [Y] E I,
Y is reduced with respect to Fj. •

The next lemma shows that being reduced is a necessary condition for no interaction
between F and I to occur.

Lemma 3.52 IfF and I do not interact then L is reduced.

Proof. We prove the result by contraposition. Assume that L is not reduced and thus for
some IND Rj[Z;l S; Rj[Zj] E I, Zj is not reduced with respect to Rj and Fj. It follows that Fj[Zj]
contains a nontrivial FD, say Rj : Xj --+ Yj, with Xj Yj S; Rj. Furthermore, we have that I F=
Rj[Xj Y;l S; Rj[Xj Yj] for some subsetXj Yj S; Zj, with IX;\=IXjl, since Xj Yj S; Zj. Therefore, by
the pullback inference rule (FD-IND1) L F= Rj : Xj --+ Yj, where Rj : Xj --+ Yj is a nontrivial
FD. The result follows, since Fj U I F= Rj : Xj --+ Yj but Fj ~ Rj : Xj --+ Yj. 0

The next example shows that being reduced is not a sufficient condition for no interaction
to occur between F and I.

Example 3.8 Let R = {R" Rz} be a database schema, with R, = {B" Bz, B3 , A} and Rz = R,U
{C}. Also, letd = {r" rz} be a database over R, with r, = {<I , 2, 3, O> } and r2 = 0. Finally,
let L = F U I be a set of FDs and typed noncircular INDs. The set of INDs is given by I =
{RdBzB3] S; Rz[BzB3]' RdB,B3A] S; R2[B,B3A], RdB,BzA] S; R2[B,BzAj}. The set ofFDs is
given by F = Fz = {B,A --+ C, Bz --+ C, B3C --+ A}. It can be verified that L F= R, [B2B3A] S;
R2[B2B3A], since ICHASE(d, L) produces a tuple tin rz, with t[BZB3A] = <2,3,0>. So there
is interaction between F and I but L is reduced. It is interesting to note that the closure of L
is not reduced, since F F= R2 : B2B3 --+ A. •

The next counterexample shows that even if the closure of L is reduced there may still be
interaction between F and I.

Example 3.9 Let R = {R" Rz , R31 be a database schema, with R, = R2 = {A, B, C} and R3 =
{A, B" B2 , c" C21. Also, let d = {r" rz, r31 be a database over R, with r, = {<O, 1,2>}, r2 =
r3 = 0. Finally, let L = F U I be a set of FDs and noncircular INDs as follows. The set of INDs
is given by I = {RdAC] S; Rz[BC], RdAC] S; R3[ABll, RdAC] S; R3[AB2], RdBC] S; R3[ABd,
RdBC] S; R3 [AB2ll· The set of FDs is given by F = F3 = {A --+ C, C2, C, Cz --+ A, B, --+ C"
Bz --+ C21. It can be verified that L F= RdBC] S; Rz [BC], since in ICHASE(d, L) the values 0
and 1 are equated. So there is interaction between F and I but it can be verified that the closure
of L is reduced. •

The next two theorems give two sufficient conditions for no interaction to occur [LL97c]
(cf. [MR92a]). An FD of the form R : X --+ Y is said to be n-standard if IXI ::: n for some
natural number n ::: 1. (When n = 1 then R: X --+ Y is a standard FD.) An IND R[X] S; SlY]
is said to be n-ary if IXI ::: n for some natural number n ::: 1. (When n = 1 then R[X] S; SlY]
is a unary IND.)

188 Chapter 3. The Relational Data Model

Theorem 3.53 IfF is a set of n-standard FDs and I is a set of proper circular and n-ary INDs
then F and I do not interact.

Proof. The proof hinges on the fact that in this case it is true that whenever a database d
satisfies F then ICHASE(d, I) = ICHASE(d, ~}, i.e. the FD rule is not applied at all during the
computation of the chase.

To see why this fact is true consider a tuple, say t, which was newly added to a relation,
say s, over S due to the application of the IND rule for an IND, say R[X] S; S [Y]. Then by the
definition of the IND rule try] ¢ ny(s}. Moreover, since I is n-ary IYI ::: n. However, since F is
n-standard then for any FD S : W -+ Z we have IWI :::: n. So, there can be no tuple in shaving
that same W -value as the newly added tuple t, due to the fact that for all A E schema(R}-Y
the A-value of t is a new value. Thus the FD rule cannot be applied to s U {t}. To conclude the
proof there are two cases to consider.

Case 1. We show that when a is an FD over a relation schema R E Rand F ~ a then ~ ~ a.
Now, since F ~ a there is a database d" over R such that d" F F but d" ~ a. Let d' =
ICHASE(d" , ~}. Then d' ~ a, since ICHASE(d", I) = ICHASE(d", ~}. Therefore, d' F ~
but d' ~ a implying the result that ~ ~ a.

Case 2. We show that when fJ is an IND over R and I ~ fJ then ~ ~ fJ. Now, consider
the database dfJ of Definition 3.76. It is easy to see that dfJ F F but dfJ ~ fJ. Let d' =
ICHASE(dfJ, ~} . Then by Theorem 3.48, d' ~ fJ, since ICHASE(dfJ' I) = ICHASE(dfJ'~} and
I ~ fJ. Therefore, d' F ~ but d' ~ fJ implying the result that ~ ~ fJ. 0

For the next theorem we need the definition of Boyce-Codd Normal Form, which is a
desirable property in database design, discussed in detail in Subsection 4.4.3 of Chapter 4. A
database schema R is in Boyce-Codd Normal Form (or simply BCNF) with respect to a set of
FDs F over R if for all Ri E R and for all nontrivial FOs Ri : X -+ Y E Fi, X is a superkey for Ri
with respect to Fi.

Theorem 3.54 If R is in BCNF with respect to F, I is a proper circular set of INDs and ~ = F
U I is reduced, then F and I do not interact.

Proof. The proof hinges on the fact that, as in Theorem 3.53, in this case it is also true that
whenever a database d satisfies F then ICHASE(d, I} = ICHASE(d, ~}, i.e. the FD rule is not

applied at all during the computation of the chase.

To see why this fact is true consider a tuple, say t, which was newly added to a relation,
say s, over S due to the application of the INO rule for an IND, say R[X] S; SlY]. Then by the
definition of the IND rule try] ¢ ny(s). Thus, if the FO rule can be applied for an FO S : W -+
Z then it must be the case that We Y, i.e. W is a proper subset ofY, due to the fact that for all A
E schema(R}-Y the A-value of t is a new value. Assume withoutloss of generality that Z = {B}
is a singleton and B ¢ W. So, either BEY or B E schema(R}-Y. In the first case we conclude
that ~ is not reduced, since R is in BCNF, leading to a contradiction. In the second case,
assuming that R is in BCNF we conclude again, since We Y, that ~ is not reduced leading to
a contradiction. Thus we finally conclude that the FO rule cannot be applied to s U {t}. The
rest of the proof is identical to the two cases considered in the proof of Theorem 3.53. 0

As the next example shows we cannot, in general, extend the above theorems to the case
when the set ofINOs I is circular.

3.6. Data Dependencies 189

Example 3.10 Consider a database schema R = {R, S}, where R = S = {A, B}, and a set ~ =
F U I, where F = {R : A --+ B, S : B --+ A} and I = {R[A] S; S[A], S[B] S; R[B]}. It can easily be
verified that ~ is reduced and that I is circular. On using the axiom system of Theorem 3.47
extended to relation schemas, it follows by a cardinality argument that ~ F= {R : B --+ A, S : A
--+ B} and thus F and I do interact.

As another example let F = {R: A --+ B} and I = {R[A] S; R[B]}. It can easily be verified that
~ is reduced and I is circular. Again, F and I do interact, since on using the axiom system of
Theorem 3.47 ~ F= {R : B --+ A, R[B] S; R[A]} . •

Although a syntactic necessary and sufficient condition for no interaction to occur between
FDs and proper circular INDs is still an open problem we close this subsection by identifying
the two ways of preventing such interaction occurring. Both of them utilise the fact that the
chase procedure can be used to solve the implication problem for FDs and proper circular
INDs as a consequence of Theorem 3.48. The first way to prevent interaction is to find a
condition which prevents any application of the chase FD rule during the computation of the
chase. Examples of such conditions are those found in the statements of Theorems 3.53 and
3.54. The second way to prevent interaction is to find a condition which prevents any old
value present in the original database, prior to the computation of the chase, to be equated
during the computation of the chase to either another old value or to a new value. In this case
new values added to the database during the computation of the chase may be equated to each
other. Examples of such conditions which are orthogonal to those of Theorems 3.53 and 3.54
can be found in [LL97c], see Exercise 3.31.

3.6.13 Multivalued Dependencies

Schmid and Swenson [SS75] raised the question of whether FDs are adequate for expressing all
the knowledge about the "world" we want to model. Consider an employee relation schema,
EMP, with schema(EMP} = {ENAME, CNAME, SALARY, YEAR}, meaning that an employee
has name ENAME, a child with name CNAME, and a salary history in which the employee's
SALARY is recorded together with the YEAR it was awarded. An example relation, say r, over
EMP is shown in Table 3.56. It can be seen that, in general, an employee has one or more
children and a salary history comprising one or more {SALARY, YEAR}-values. (We can also
record the fact that an employee has no children by using a distinguished null value to indicate
that no children exist for this employee; we deal with this problem in Section 5.1 of Chapter 5.)

In terms of the induced ERD we have a one-to-many relationship from employee to children
and salary history; children may be modelled as an ID relationship in the ERD but this is another
issue. Moreover, the children of an employee are independent ofhis/her salary history. Hence,
we can see in r that for a given ENAME each CNAME-value appears together with all the
{SALARY, YEAR}-values and correspondingly each (SALARY, YEAR}-value appears together
with all the CNAME-values for that ENAME. This independence is equivalent to stating that
r has the lossless join decomposition given by

r = Jl'(ENAME.CNAMEI(r) t><I Jl'(ENAME.SALARY.YEARI(r) .

We observe that the losslessness is not a consequence of any FDs that hold in r. Thus the
semantics of EMP cannot be captured by FDs on their own.

190 Chapter 3. The Relational Data Model

Table 3.56 The relation T over EMP

ENAME CNAME SALARY YEAR
Jeremy Jill 40 1990
Jeremy Jill 50 1993
Jeremy Jack 40 1990
Jeremy Jack 50 1993

Eva Emily 30 1994
Eva Emily 35 1995
Eva Emily 30 1998
Eva Andrew 30 1994
Eva Andrew 35 1995
Eva Andrew 30 1998
Erol Emily 40 1994

This type of constraint can be expressed as the Multivalued Dependency (or simply
MVD) ENAME multidetermines CNAME in the context of EMP, or equivalently, ENAME
multidetermines {SALARY, YEAR} in the context ofEMP. These MVDs are written as: ENAME
~~ CNAME (EMP) and ENAME ~~ {SALARY, YEAR} (EMP), respectively. Both these
MVDs can be expressed jointly as: ENAME ~~ CNAME I {SALARY, YEAR}, where the sum
of attributes in the joint MVD is schema(EMP), which is the context of the MVD. The joint
MVD emphasises the fact that CNAME and {SALARY, YEAR} are orthogonal. In fact, ENAME
~~ CNAME (EMP) and ENAME ~~ {SALARY, YEAR} (EMP) logically imply each other
by complementation. This is clearly seen when their satisfaction is expressed in terms of the
binary lossless join decomposition of r onto {{ENAME, CNAME}, {ENAME, SALARY, YEAR}}.

To see that the context of an MVD is important consider the relation s over PROJECT,
shown in Table 3.57. The attributes of PROJECT are: PNAME meaning a project name,
ENAME meaning an employee working on a project, COURSE meaning a course that an
employee on the project has taken and YEAR indicating the year in which a particular course
was taken. We assume that the semantics of PROJECT are that all employees on a project
must take all the courses associated with that project but different employees may take these
courses in different years.

Table 3.57 The relation 5 over PROJEU

PNAME ENAME COURSE YEAR
DB Jill Databases 1993
DB Jill Programming 1994
DB Jack Databases 1994
DB Jack Programming 1993

Thus it can be seen that s does not satisfy the MVD PNAME ~~ ENAME (PROJECT)
nor does it satisfy the complementary MVD PNAME ~~ {COURSE, YEAR} (PROJECT).
Specifically, Jill took the Databases course in 1993 but not in 1994 and Jill took the Programming
course in 1994 but not in 1993. On the other hand, let S' = n/PNAME,ENAME,COURSEj(S) be
the relation shown in Table 3.58 and call the relation schema of S' PROJECTED. We call
PROJECTED a restriction of PROJECT. The reader can verify that both PNAME ~~ ENAME
(PROJECTED) and PNAME ~~ {COURSE} (PROJECTED) are satisfied in S' in the context
of PROJECTED. Therefore the context of an MVD is important and cannot be omitted unless

3.6. Data Dependencies 191

it is somehow clear what the context is. Such an MVD that holds in a restricted context is
called an Embedded Multivalued Dependency (or simply an EMVD). Although EMVDs are
not common in practice they have played an important part in the theory of MVDs which
flourished during the late seventies and the early eighties.

Table 3.58 The relation 5' over PROJECTED

PNAME ENAME COURSE
DB Jill Databases
DB Jill Programming
DB Jack Databases
DB Jack Programming

MVDs and EMVDs were introduced in [Fag77b] (see also [DeI78]). We next give their
formal definition.

Definition 3.79 (Multivalued dependency) An embedded multivalued dependency over
schema R (or simply an EMVD) is a statement of the form X ~~ Y (S), where schema(S) ~
schema(R) and X, Y ~ schema(S); S is called the context of the EMVD.

An EMVD X ~~ Y (S) is said to be trivial if either Y ~ X or XY = schema(S); it is said to
be standard if X # 0.

An MVD over R is an EMVD X ~ ~ Y (R) (or simply X ~ ~ Y whenever R is understood
from context), i.e. when the context of the EMVD is R then we have an MVD. •

We next define the satisfaction of an MVD over R in a relation rover R. Intuitively, an
MVD X ~~ Y (R) is satisfied in r if each X-value determines a unique set ofY-values and
independently each X-value determines a unique set of (schema(R) - XY)-values.

Defmition 3.80 (Satisfaction of an MVD) An MVD X ~~ Y (R) is satisfied in a relation r
over R, denoted by r F= X ~ ~ Y (R), if'v'tl, t2 E r, if t!lX] = t2 [X], then 3t3, t4 E r such that

1) tdX] = t2 [X] = t3 [X] = t4 [X],

2) t3[Y] = t!lYl, t3[Z] = t2[Z] and

3) t4[Y] = t2[Yl, t4[Z] = tIlZ],

where Z = schema(R)-XY. •
We observe that due to symmetry we can simplify the above definition by dropping t4 and

case (3) from it.

The next proposition shows that the MVD formalises the concept of a binary lossless join
decomposition of R, independently of a set of FDs as was specified in Definition 3.65 of
Subsection 3.6.4. This fact is important in relational database design, since the MVD provides
the necessary and sufficient condition for decomposing a schema into two of its projections
without loss of information.

192 Chapter 3. The Relational Data Model

Proposition 3.55 Let X -+-+ Y (R) be an MVD, with Z = schema(R)- XY. Then r F X-+-+
Y (R) if and only if r = rrxy(r) I><Irrxz(r) . 0

The definition of the satisfaction of an EMVD can be viewed as a special case of the
satisfaction of an MVD.

Definition 3.81 (Satisfaction of an EMVD) An EMVD X -+-+ Y (S) is satisfied in a relation
rover R, where schema(S) ~ schema(R), denoted by r F X -+-+ Y (S), if the MVD X -+-+ Y
(S) is satisfied in rrschema(S) (r). •

The next proposition shows that certain EMVDs obtained by projection can be inferred
from a set of MVDs.

Proposition 3.56 Let X -+-+ Y (R) be an MVD, with Z = schema(R)- XY. Also, let S be a
relation schema, with schema(S) = XVW, where V ~ Y and W ~ Z. It is true that if r F X
-+-+ Y (R) then rrxwv(r) F X -+-+ V (S). 0

We caU an EMVD such as X -+-+ V (S), as defined in Proposition 3.56, a Projected MVD
(or simply PMVD).

We next present a set of inference rule for MVDs.

Defmition 3.82 (Inference rules for MVDs) Let M be a set of MVDs over a relation schema
R. We define the following inference rules for MVDs:

MVDl Reflexivity: ifY ~ X, then M I-- X -+-+ Y.

MVD2 Complementation: ifM I-- X -+-+ Y, then M I-- X -+-+ schema(R)-XY.

MVD3 Augmentation: ifM r X -+-+ Y and W ~ schema(R), then M I-- XW -+-+ YW.

MVD4 Transitivity: ifM I-- X -+-+ Yand M I-- Y -+-+ Z, then M I-- X -+-+ Z-Y.

MVD5 Union: ifM r X -+-+ Y and M I-- X -+-+ Z, then M I-- X -+-+ YZ.

MVD6 Decomposition: if M I-- X -+ -+ Y and M I-- X -+ -+ Z, then M I-- X -+ -+ YnZ, M r X
-+-+ Y-Z andM I-- X -+-+ Z-Y.

MVD7 Subset: ifM I-- X -+-+ Y, M r W -+-+ Z and Y n W = 0, then M r X -+-+ Y n Z and
X-+-+ Y-Z. •

Often instead of X -+ -+ Y (R) (or X -+ -+ Y when R is understood from context) we write
X -+-+ Y I Z, where Z = schema(R)-XY, to indicate that the context of the MVD or EMVD is
R. The justification for this notation being that from X -+ -+ Y we can derive X -+ -+ Z by the
complementation inference rule.

The interaction between FDs and MVDs can be described by the following two mixed
inference rules.

3.6. Data Dependencies 193

Definition 3.83 (Mixed inference rules for FDs and MVDs) Let F be a set of FDs over Rand
M be a set of MVDs over R. We define the following mixed inference rules for FDs and MVDs:

FD-MVDl Generalisation: ifF U M I- X -+ Y, then FUM I- X -+-+ Y.

FD-MVD2 Mixed pseudo-transitivity: if FUM I- X -+-+ Y, Z S; Y and for some W disjoint
from Y, i.e. W n Y = 0, FUM I- W -+ Z, then FUM I- X -+ Z. •

We call the inference rules FDl, FD2, FD3 (i.e. Armstrong's axiom system) together with
the inference rules MVDl, MVD2, MVD3, MVD4 for MVDs and the mixed inference rules
MVD-FDl, MVD-FD2 Beeri et al.'s axiom system [BFH77). The next theorem was first shown
in [BFH77); recall that ~+ (see Definition 3.55) is the set of all FDs and MVDs that can be
derived by using Beeri et al.'s axiom system, where ~ is a set F of FDs together with a set M of
MVDs over R.

Theorem 3.57 Beeri et al.'s axiom system is sound and complete for FDs and MVDs. 0

Proof For soundness we restrict ourselves to the proof that FD-MVD2 is sound. Let r be a
relation over R such that r F= X -+-+ Y, Z S; Y and for some W disjoint from Y, r F= W -+ Z.
Lettl, t2 E r be two tuples such thattJlX) = t2 [X). We are required to show thattdZ) = t2[Z),
By the definition of the satisfaction of the MVD X -+-+ Y, 3t3 E r such that

1) tl [X) = t2 [X) = t3 [X], and

2) t3[Yj = tdY) and t3[schema(R)-XY) = t2[schema(R)-XY).

Since W n Y = 0, we have that t2[W) = t3[W), Hence t2[Z) = t3[Z), since r F= W -+ Z. We
also have t3[Zj = tl [Z], since Z S; Y. It therefore follows that r F= X -+ Z as required.

To prove completeness of Beeri et al.'s axiom system we use the same technique employed
to prove the completeness of Armstrong's axiom system. Therefore we need to show that if
~ F= a, then ~ I- a, where ~ is a set ofFDs F together with a set ofMVDs Mover R and a is
an FD or an MVD over R. Equivalently, we need to show that if ~ If a, then ~ ~ a. Thus,
assuming that ~ If ct, it is sufficient to exhibit a counterexample relation, rover R, such that
r F= ~ but r ~ ct.

Assume that X S; schema(R) is the left -hand side of a. Let X* = {A I ~ I- X -+ A} be the set
of all attributes that are functionally determined by X, and let WI , W2 , ... , Wk be the finest
partition of schema(R)-X* such that ~ I- X -+ -+ Y if and only if Y is the union of some of
the attributes in X* together with zero or more Wi> i E {l, 2, ... , k}. The family of subsets of
schema(R), X* , WI, W2, .. . , Wk> is called the dependency basis of X with respect to ~. It is
common practice to denote the dependency basis of X by the full MVD

X -+-+ x* I WI I W2 I ... I Wk·

The dependency basis of X is unique, since it is the finest such partition, and by MVD5 and
MVD6 it is closed under the Boolean operations, union, intersection and difference. We now
construct the relation r. The active domain of r is the set {O, I} and the cardinality of r is 2k.
Each tuple t E r corresponds to a sequence <VI, V2, ... , Vk> of zeros and ones as follows.
For all A E X*, t[A) = 1 and for all A E Wi> t[A) = Vi. For example, if k = 4, then the tuple

194 Chapter 3. The Relational Data Model

corresponding to the sequence <0, 1, 0, 1> has 1 's as its X* -value, O's as its WI-value, l's as
its W2-value, O's as its W3-value and l's as its W4-value. We leave the remaining part of the
proof, which is to show that r ~ ~ but r ~ a, as an exercise. 0

Additional inference rules for MVDs and the role of the complementation inference rule
are discussed in [Bis78, Men79]. For example, it is shown in [Bis78] that the reflexivity and
complementation rules can be replaced by the single inference rule M f-- 0 ---+---+ schema(R)
and in [Men79] it is shown that the augmentation rule can be derived from the reflexivity,
complementation and transitivity rules. In fact, in [Men79] it is shown that the reflexivity,
complementation and transitivity rules are a minimal sound and complete axiom system for
MVDs, i.e. removing anyone of these inference rules results in an axiom system which is not
complete.

The implication problem for FDs and MVDs is the problem of deciding whether ~ ~ a,
given a set ~ of FDs and MVDs over R and a single FD or MVD a. The following result was
shown in [HITK79, Bee80].

Theorem 3.58 The implication problem for FDs and MVDs can be solved in polynomial time
in the size of the input set of FDs and MVDs. 0

Proof. Given a set ~ over R, consisting of a set F of FDs and a set M of MVDs, and an FD
or MVD a whose left-hand side is X, let DEP(X, :E) denote the dependency basis of X with
respect to :E. By the decomposition and union inference rules for FDs, we assume that each
FD in F is of the form W ---+ B, where B is a singleton.

Let F be the set of MVDs resulting from replacing each FD W ---+ B E F by the MVD W ---+---+
B and let [' = M U F. It can be shown that an MVD can be derived from [' if and only if it can
be derived from :E, i.e. [' f-- X ---+---+ Y if and only if:E f-- X ---+---+ Y. We next compute DEP(X,
1) as follows.

We initialise DEP(X, 1) to be the set {A I A EX} U schema(R)-X; we denote the current
state of DEP(X, 1) by B and call the sets of attributes in B blocks. While a change can be
effected to B do the following: if we can find an MVD W ---+ ---+ Z E r and a block V E B such
that V n W = 0, V n Z i=- 0 and V - Z i=- 0, then split V into VI = V n Z and V2 = V - Z,
i.e. replace V E B by VI and V2' It is shown in [Gal82] that the final state of B is the desired
DEP(X, 1) and that this algorithm runs in polynomial time in the size of r.

To conclude the proof assume firstly that a is the MVD X ---+---+ Y. Then :E f-- X ---+---+ Y if
and only ifY is the union of one or more blocks in DEP(X, r). Secondly, assume that a is the
FD X ---+ A. It is shown in [Bee80] that :E f-- X ---+ A if and only if either A E X or, when A E
schema(R)-X, A E DEP(X, 1) and there is some nontrivial FD W ---+ A E F (see FD-MVD2).
In both cases the required conditions can be checked in polynomial time in the size of :E. 0

In Galil [Ga182] it was shown that the implication problem for FDs and MVDs can be solved
in O(II:E II log II:E II) time, where II:E II, as before, denotes the size of ~, namely the number of
attributes appearing in F and M including repetitions. This is the fastest known algorithm to
date for solving this problem.

A set of MVDs Mover R is nonredundant if for all X ---+ ---+ Y E M, (M - {X ---+ ---+ Y})+ is a
proper subset of M+. The computation of the dependency basis, presented in Theorem 3.58,

3.6. Data Dependencies 195

can be used to find a nonredundant cover of a set, M, of MVDs over R as follows. M is
nonredundant ifand only if for each MVD X ~~ Y E M, DEP(X, M) '" DEP(X, M-{X ~~
Y}).

A simple and elegant characterisation of the implication problem for FDs and MVDs was
given in [HF86). Prior to stating this characterisation in the form of Theorem 3.59 we first
give a definition.

Definition 3.84 (Closed set of attributes) A set of attributes W ~ schema(R) is said to be
closed with respect to an FD X ~ Y, if X ~ W implies that Y ~ W. Correspondingly, a set of
attributes W ~ schema(R) is said to be closed with respect to an MVD X ~~ Y, if X ~ W
implies that either Y ~ W or schema(R)-XY ~ W.

A set of attributes W ~ schema(R) is said to be closed with respect to a set ~ of FDs and
MVDs over R, ifW is closed with respect to all the FDs and MVDs in ~. •

Theorem 3.59 Let ~ be a set of FDs and MVDs over R and a be a single FD or MVD over R.
Then ~ ~ a if and only if every set of attributes W ~ schema(R) that is closed with respect
to ~ is also closed with respect to a. 0

We next discuss some special kinds of MVDs. Suppose that schema(R) = XYZ, where X,
Y and Z are pairwise disjoint subsets of schema(R). Moreover, let Sl and S2 be relations over
R such that SI satisfies the FD X ~ Y and S2 satisfies the FD X ~ Z. It can be verified that if
we let r = SI U 52, then, in general, r will not satisfy either X ~ Y or X ~ Z. However, if the
X-values of SI and S2 are disjoint then r will satisfy the MVDs X ~ ~ Y (R) and X ~ ~ Z (R).
Such MVDs are called degenerate MVDs [AD80).

The degenerate MVD has an application in the maintenance of user views. Suppose that rl
over RI and r2 over R2 are relations in a database, withschema(RI) = XYand schema(R2) = Xl,
and that rl ~ X ~ Y or r2 ~ X ~ Z. Furthermore, assume that the natural join r = r1 ~ r2
is a user view over R.

The relation r is said to be deletion-viable if whenever t E r is deleted from r, then

r - It} = (rl - (t[XY]}) ~ r2 or

r - It) = rl ~ (r2 - (t[XZ]}),

i.e. deleting t from r can be realised by deleting t[XY) from rl or t[XZ) from r2 [Cod74J.

Correspondingly, the relation r is said to be insertion-viable if whenever t is inserted into r,
then

r U It} = (rl U (t[XY]}) ~ (r2 U (t[XZ]}),

provided that rl U {t[XY]} ~ X ~ Y or r2 U {t[XZ]} ~ X ~ Z. That is, inserting t into r can
be realised by inserting t[XYJ into rl and t[XZ) into r2 [Cod74J.

In [AD80) it was shown that in the general case deletion and insertion viability can be
characterised by degenerate MVDs.

Theorem 3.60 Let R be a relation schema, where schema(R) = XYZ and X, Y and Z are pairwise
disjoint subsets of schema(R), and let r be a relation over R such that r ~ X ~ ~ Y (R). If r

196 Chapter 3. The Relational Data Model

is deletion-viable or insertion-viable, then X -+--+ Y (R) is a degenerate MVD. Conversely, if
X -+-+ Y (R) is a degenerate MVD, then r is deletion-viable and insertion-viable. 0

We refer the reader to Section 3.8 for a comprehensive treatment of the view update problem.

Another special kind of MVD is an MVD of the form 0 -+ -+ Y (R), i.e. a nonstandard MVD,
that is, an MVD with an empty left-hand side. Let R be a relation schema, where schema(R)
= YZ and such that Y and Z are pairwise disjoint sets of attributes. The reader can verify that
a relation rover R satisfies 0 -+-+ Y (R) if and only

r = 7l"y(r) x 7l"z(r),

i.e. r is the Cartesian product of its projections onto Y and Z.

An important class of MVDs, which was investigated in the context of relational database
design in the presence of MVDs, is the class of conflict-free MVDs [Sci8l, Lie82J. One of the
main characteristics of a set M of conflict-free MVDs over R is that M is equivalent to an acyclic
join dependency which has many beneficial properties [BFMY83, Fag83) (see Subsection 3.6.14
for more details).

When we have a nontrivial MVD X -+ -+ Y (R) then it is natural to decompose R into Rl and
R2, with schema(Rd = XY and schema(R2) = XZ, where Z = schema(R)-XY. This is due to
Proposition 3.55 which guarantees that {R 1, R2 } is a lossless join decomposition ofR. Given a
set of MVDs Mover R we can iterate this binary decomposition process on R using nontrivial
PMVDs (i.e. projected MVDs) of the form X -+-+ Y (S) whenever possible with respect to a
relation schema S in the current state of the decomposition of R (see Proposition 3.56). The
resulting decomposition is lossless but is not unique as the next example shows [Lie8l). One
of the benefits of a conflict-free set of MVDs M is that they give rise to a unique loss less join
decomposition by iterating the process just described [Sci8l, Lie82). Historically, this was the
original motivation in defining the concept of conflict-freeness.

Example 3.11 Let R be a relation schema with schema(R} = {EMP _NO, PROJECT,
LOCATION}, where we abbreviate EMP~O to E, PROJECT to P and LOCATION to 1. Let
M = {E -+-+ LIP, P -+-+ L I E) be a set of MVDs over R; we denote the first MVD in M by
ml and the second MVD by m2. The meaning of ml is that an employee works in all locations
of the projects he/she is involved in. The meaning of m2 is that a project is associated with all
the locations of all the employees in that project.

We can now decompose R losslessly into Rl and R2, with either schema(Rd = {E,P} and
schema(R2} = {E, L} on using mi> or schema(Rd = (P, E) and schema(R2} = {P, L} on using
m2. Thus R does not decompose uniquely. The problem here is that M 1= (E -+-+ L, P-+-+
L) but M ~ 0 -+-+ 1. Such a problem is called an intersection anomaly. •

Definition 3.85 (Intersection property) A set of MVDs has an intersection anomaly if M 1=
(X -+-+ Z, Y -+-+ Z), where Z is disjoint from X and Y but M ~ (X n Y) -+-+ Z.

A set of MVDs Mover R possesses the intersection property if it does not have any
intersection anomalies. •

3.6. Data Dependencies 197

Example 3.12 Let us add the attribute MANAGER~O (abbreviated to N) to schema(R) of
Example 3.11 and modify M of Example 3.11 to be the set M = {{E, N} -l--l- LIP, {P, L} -l--l
E I N} of MVDs over R; we denote the first MVD in the modified version of M by m3 and the
second MVD by m4. The meaning of m3 is that an employee and his/her manager work in all
the locations of the projects they are involved in. The meaning of m4 is that a project and its
location are associated with all the employees under the jurisdiction of the manager of that
project.

We can now decompose R losslessly into R\ and R2, with either schema(R\) = {E, N, P} and
schema(R2) = {E, N, L} on using m3, or schema(Rd = {P, L, E} and schema(R2) = {P, L, N}
on using m4. Thus R does not decompose uniquely. The problem here is that m3 splits the
left-hand side of m4, i.e. P n {P, L} -:J: 0 and L n {P, L} -:J: 0. Similarly, m4 splits the left-hand
side of m3. Such a problem is called a split-lhs anomaly. •

Definition 3.86 (Split-freeness property) An MVD X -l--l- Y splits a set of attributes W if it
is nontrivial, W n (Y -X) -:J: 0 and W n (schema(R)-XY) -:J: 0. A set of MVDs Mover R splits
W if some MVD in M splits W.

Let M be a set of MVDs over R, and let us denote the set of left-hand sides of nontrivial
MVDs in M by LHS(M). A set of MVDs has a split-Ihs anomaly if for some W E LHS(M) M
splits W.

A set of MVDs Mover R is split-free if it does not have any split-Ihs anomalies. •

We next define conflict-freeness by combining Definitions 3.85 and 3.86.

Defmition 3.87 (Conflict-free set of MVDs) A set M of MVDs over R is conflict-free if it is
split-free and possesses the intersection property. •

Example3.13 Let schema(R) = {EMP_NO, SALARY, YEAR, PROJ, LOC}, where EMP~O,
SALARY, YEAR, PROJ and LOC are abbreviated to E, S, Y, P and L, respectively. Also, let M
= {E -l--l- IS, Y} I {P, L}, P -l--l- L I {E, s, Y}}, meaning that an employee has a salary history
and independently works on projects which have a set of locations, and a project has a set of
locations. The reader can verify that M is a conflict-free set of MVDs. •

Recall that a set of MVDs, Mover R, is a cover of another set of MVDs, N over R, if M+ =
N+. We next define two properties of MVDs that are related to the concept of cover. This is
the theme of Theorem 3.61 below.

Defmition 3.88 (Subset property) A set of MVDs Mover R possesses the subset property if
for every pair of nontrivial MVDs in M, X -l--l- Y I Z, where Z = schema(R)-XY, and U -l--l
V I W, where W = schema(R)-UV, we have

XY 5; UV and UW 5; XZ,

up to the renaming ofY by Z and Z by Y, or the renaming of V by Wand W by V. •

Defmition 3.89 (Interaction-free sets ofMVDs) A set of MVDs Mover R possesses the
interaction-free property if for every pair of nontrivial MVDs in M, X -l--l- Y I Z, where Z

198 Chapter 3. The Relational Data Model

= schema(R)-XY, and U ~~ V I W, where W = schema(R)-UV, and for any relation rover
R, we have

where rl = 1TXy(r) l><11Txz(r) and r2 = 1Tuv(r) l><11Tuw(r). •
Definitions 3.88 and 3.89 were first given in [GT84) and [Van86J, respectively. The following

theorem was established in [GT84, Van86).

Theorem 3.61 Let M is a set of MVDs over R. Then the following statements are equivalent:

1) A cover of M is conflict-free.

2) A cover of M possess the subset property.

3) A cover ofM is interaction-free. o

The next result was established in [Lak86, OY87a).

Theorem 3.62 It can be checked in polynomial time in the size II M II of a set of MVDs Mover
R whether M is conflict-free.

Proof. An MVD X ~~ Y E M+ is said to be reduced if it is nontrivial and satisfies the
following three conditions:

1) left-reduced, i.e. for no proper subset Z C X, does Z ~~ Y E M+ hold.

2) right-reduced, i.e. for no proper subset We Y, is X ~~ W a nontrivial MVD in M+.

3) nontransferable, i.e. for no proper subset Z C X, does Z ~~ (X-Z)Y E M+.

A set of MVDs N over R is a minimal set of MVDs if each MVD in N is reduced and N is
nonredundant. In [OY87aj it was shown that a minimal cover, say N, of M can be computed
in polynomial time in the size ofM. Furthermore, it was shown therein that a set ofMVDs has
a conflict-free cover if and only if the minimal cover computed by the said polynomial-time
algorithm is also conflict-free. The result now follows by computing a minimal cover, say
N, of M, and then invoking Definition 3.87 with the help of the algorithm for computing the
dependency basis, given in Theorem 3.58. 0

When we have FDs in addition to MVDs we need to extend the definition of a conflict-free
set of data dependencies [Kat84, BK86, Y092aj. Let E = FUM be a set F of FDs over R
together with a set M of MVDs over R. Given a set of attributes X ~ schema(R), recall that X*
= {A I E f- X ~ A} and assume that the dependency basis of X with respect to E is given by
DEP(X, E) = {X*. WI . W2 •...• Wk}.

Informally, E is extended conflict-free if the set of MVDs, obtained by replacing each
nontrivial data dependency, i.e. FD or MVD, in E, whose left-hand side is X, by an MVD,
whose left-hand side isX*, is conflict-free according to Definition 3.87. Essentially, an extended
conflict-free set of MVDs is obtained by neutralising the effect of the FDs in E.

3.6. Data Dependencies 199

Definition 3.90 (Extended conflict-free sets of FDs and MVDs) Let us denote the set ofleft
hand sides of nontrivial FDs and MVDs in ~ by LHS(~). We call an MVD of the form
X* --+--+ WI I W2 I ... I Wk> where X E LHS(~), a lhs-closed MVD.

The set ~ of FDs and MVDs is extended conflict-free if the set of all lhs-closed MVDs
obtained from the sets of attributes X E LHS(m is conflict-free. •

Example 3.14 Let us alter Example 3.13 be removing the attribute YEAR from schema(R)
and by adding the FD E --+ S to the dependency set, meaning that an employee has a unique
salary. Thus F = {E --+ S} and M = {E --+--+ S I {P, L}, P --+--+ L I {E, S}}. The reader can verify
that FUM is an extended conflcit-free set of MVDs, since the set oflhs-closed MVDs induced
by FUM, which is given by the nontrivial MVD P --+--+ L I {E, S} together with the trivial MVD
{E, S} --+--+ {P, L}, is conflict-free. •

In Subsection 3.6.14 we present the result giving the connection between extended conflict
free sets of FDs and MVDs and acyclic join dependencies.

We close this section with the story of the EMVD. As can be seen from Definition 3.81 the
EMVD is a generalisation of the MVD where the context of the dependency may be any subset
of schema(R). Thus the EMVD is sensitive to the context over which it is defined as opposed
to FDs which are oblivious to their context. Proposition 3.56, which was given in [Fag77b],
shows that certain EMVDs, called PMVDs, can be obtained from a set of MVDs by using
projection. It was shown in [ABU79j that the inference rule emanating from Proposition 3.56,
called the projection inference rule or simply EMVD1, is sound and complete for inferring
PMVDs. However, as Fagin observed, and as we have shown in Table 3.57, not all EMVDs are
PMVDs. That is, it is possible for a nontrivial EMVD X --+--+ Y (S) to hold in a projection of
a relation rover R, but for the corresponding MVD X --+--+ Y (R) to be violated in r, where
schema(S) is a proper subset of schema(R).

The first negative result for EMVDs was obtained in [PPG80, SW82, CFP84j, wherein it
was shown that for no k :::: 0, k E w, does there exist a k-ary axiomatisation for EMVDs (see
Theorem 3.46 showing this result for FDs and INDs). That is, there is no finite axiomatisation
for EMVDs. In proof let R be a relation schema containing at least k + 2 distinct attributes
AI, A2, ... , Ak, Ak+l> B. Also, let E = {AI --+--+ A2 I B, A2 --+--+ A3 I B, ... , Ak --+--+ Ak+I I
B, Ak+1 --+--+ Al I B} be a set of EMVDs over R and ex be the EMVD Al --+--+ Ak+1 I B. It
can be verified that the following three conditions are satisfied: (i) E F= ex, (ii) if f3 E E then
f3 1;6 ex and (iii) ifD is a set of at most k EMVDs ofE, f3 is an EMVD over Rand D F= f3, then
there is an EMVD Y E D such that Y F= f3. It was shown in [CFP84j that if these conditions
are satisfied then the aforesaid negative result holds.

As we have seen for FDs and unary INDs, the fact that no k-ary axiomatisation exists for a
class of data dependencies does not rule out a decision procedure for solving the implication
problem. So it remained as an open problem whether the implication problem for EMVDs is
decidable or not.

Let E be a set ofEMVDs over R, let S be a relation schema, with schema(S) ~ schema(R), and
let X, V, Y, Y', Z and Z' be sets of attributes in S, with Y' ~ Y and Z' ~ Z. The next inference
rule for EMVDs was given in [ITK83].

200 Chapter 3. The Relational Data Model

EMVD2 Embedded union: ifE I- X -+-+ Y I Z, E I- XY -+-+ z'v (S) and E I- XZ -+-+ y'V
(S) then E I- X -+-+ y'Z'V (S).

In [ITK83j EMVD2 together with EMVDI (the projection inference rule) were used to
investigate some subclasses of EMVDs that have decidable solutions to their implication
problem. A year later Vardi [Var84aj showed that for a larger class of data dependencies, which
properly includes EMVDs, the implication problem is undecidable (see also [CLM81, GL82)).
Vardi [Var83j suggested that the solvability of the implication problem for EMVDs is one of
the outstanding open questions in data dependency theory. He went further to say: "That
question still haunts and baffles us". More than a decade later the answer was given in [Her95j:
the implication problem for EMVDS is undecidable both for finite and for infinite logical
implication (see the discussion at the beginning of Subsection 3.6.11 about the difference
between logical implication for finite and infinite relations). We note that Herrmann's proof
utilises a lattice theoretic interpretation of EMVDs. This implies that, as is the case for FDs
and INDs, we cannot find a sound and complete (finite or countably infinite) axiom system
for EMVDs at all.

3.6.14 Join Dependencies

MVDs formalise the notion of binary lossless join decompositions but there are situations
where we require a lossless join decomposition into more than two relation schemas. Aho et
al. [ABU79j prove that there are situations where there is a lossless join decomposition into
n ~ 3 relation schemas but no proper subset of this collection of relation schemas is lossless.
For n = 3, they give the database schema R = {RI , R2, R3}, with schema(Rd = {AI, A2},
schema(R2) = {AI, BI , B2} and schema(R3) = {A2, BI, B2}, together with the set of FDs F =
{AI -+ BI, A2 -+ B2}. Using the chase procedure for FDs given in Subsection 3.6.4 and the
result of Theorem 3.29, it can be verified that R is a lossless join decomposition with respect to
F but that no proper subsetofR is lossless with respect to F. The concept of aloin Dependency
(or simply a JD) allows us to model arbitrary lossless join decompositions, independently of a
set ofFDs as was specified in Definition 3.65 of Subsection 3.6.4. Lossless join decomposition
of a database schema will play an important role as a desirable property to achieve during
database design (see Chapter 4 for details).

Consider a relation schema, called SPJ, with attributes SUPPLIER (abbreviated to S), PARTS
(abbreviated to P) and PROJECTS (abbreviated to J). A tuple <Si, Pi ,ji> in a relation over
SP} means that a supplier Si supplies part Pi to project ji. In Table 3.59 we show an example
relation, say r, over SP}.

Table 3.59 The relation rover SP J

SUPPLIER PART PROJECT
51 PI h
SI pz h
51 PI h
52 PI h

Let R = {RI, R2, R3} be a database schema, with schema(R) = {S,P,J}, where schema(RI) =
{S, P}, schema(R2) = {P, J} and schema(R3) = {S, J}. The reader should verify that r can be

3.6. Data Dependencies 201

decomposed losslessly onto these three relation schemas, since

r = 7r(s.PJ (r) ~ 7r(P.J) (r) ~ 7r{S,J) (r).

This type of constraint can be expressed by the JD

~ [IS, P}, (P, J), IS, Jl].

Defmition 3.91 (Join dependency) A Join Dependency (or simply a JD) over a relation
schema R is a statement of the form ~[schema(Rl)' schema(R2), ... , schema(Rn)], where R::::
{Rl, R2, ... , Rn} is a database schema such that schema(R) :::: schema(R). When no ambiguity
arises we write ~[R] instead of ~[schema(Rd, schema(R2)' ... , schema(Rn)].

A JD ~[R] is said to be trivial if one of its components is schema(R) (or when no ambiguity
arises simply R). •

Alternatively, if ~[R] is a JD over R we say that R is a lossless join decomposition of R. A
JD ~[R] is satisfied in r if there is no loss of information when projecting r onto the relation
schemas in R and then joining the projections together.

Definition 3.92 (Satisfaction of a JD) A JD ~[R] is satisfied in a relation rover R, denoted
by r F ~[R], if

When no ambiguity arises we write the above equality as

•
It is evident that if the decomposition R has a lossless join with respect to a set ofFDs F and

r F F, then it is also the case that r F ~[R]. (See Subsection 3.6.4 for details on lossless join
decompositions with respect to F.) Also, by Proposition 3.55 we have that an MVD is a special
case of a JD when the cardinality ofR is two. That is, the JD ~[X, Y] is equivalent to the MVD
X n Y ~ ~ X - Y I Y - X.

In order to investigate the properties of JDs we next define the project-join mapping.

Definition 3.93 (Project-join mapping) The project-join mapping associated with a database
schema R with respect to a relation rover R, denoted by mR(r), is given by

•
It can easily be verified that r F ~[R] if andonlyif mR(r) = r. The following basic properties

of mR(r) were shown in [BMSU81].

Lemma 3.63 The following properties are satisfied for all relations rand s over R:

1) r S; mR(r).

2) mR(mR(r» = mR(r).

202 Chapter 3. The Relational Data Model

o

We observe that the project-join mapping satisfies the three conditions given in
Definition 3.54 and is thus a closure operator.

We next define two database schemas, associated with a relation schema R, to be equivalent
if the sets of relations over R that satisfy the JDs induced by these schemas are exactly the
same.

Definition 3.94 (Equivalent database schemas) The set of all relations rover R such that r F=
t><l[R), i.e. mR(r) = r, is denoted by JD(R). Two database schemas Rand S, with schema(R) =
schema(S) = R, are said to be equivalent if JD(R) = JD(S). •

The project-join mapping can now be used to give a syntactic condition which guarantees
that two database schemas be equivalent.

Definition 3.95 (Cover of a database schema) A database schema R is said to cover a
database schema S, denoted by R ::: S, if for all relation schemas S E S there exists a relation
schema R E R such that schema(S) S; schema(R). •

The next theorem was shown in [BMSU81j.

Theorem 3.64 The following statements are equivalent:

1) R covers S.

2) for all relations rover R, mR(r) S; ms(r).

3) JD(S) S; JD(R). o

The soundness of the next two inference rules for JDs, where J is a set of JDs over R, is a
direct consequence of Theorem 3.64. (See [BV81, Sci82j for more details on inference rules
for JDs.)

J01 Reflexivity: J I- t><l[{R} j.

JD2 Covering: if} I- t><l[Sj and R::: S then J I- t><l[Rj.

The next theorem, which was established in [Pet89j, shows that JDs do not have a finite
axiomatisation.

Theorem 3.65 For no k ::: 0, k E w, does there exist a k-ary axiomatisation for JDs. 0

A sound and complete infinite axiom system for JDs, which has an unbounded inference
rule, i.e. an inference rule such as the k-cycle inference rule for FDs and unary INDs, was
exhibited in [BV85j.

The implication problem for JDs is the problem of deciding whether J F= t><l[Rj, given a set J
of JDs over R and a single JD t><l[Rj over R. Firstly, we present two intractability results for the
logical implication of}Ds from JDs and MVDs.

3.6. Data Dependencies 203

Theorem 3.66 The following two decision problems are NP-hard:

1) Testing whether a set oODs and MVDs logically imply a JD.

2) Testing whether a set of MVDs logically implies a JD. D

We note that the first decision problem was proved in [BV80, MSY81] and the second one
was proved in [FT83]. An MVD X --+--+ Y is unary ifY is a singleton. In [TL86] it was shown
that the implication problem, namely whether the set of unary MVDs implied by an arbitrary
set of MVDs, say M, logically implies a JD, can be solved in polynomial time in the size of M.
The following polynomial-time result was proved in [MSY81, Var83].

Theorem 3.67 Testing whether an FD X --+ Y or an MVD X --+--+ Y (R) is logically implied
by a set ~ = J U F, where J isa set of JDs over Rand F is a set of FDs over R, can be done in
polynomial time in the size of ~; more specifically it can be computed in O(I schema(R) I II ~ II)
time.

Proof. The idea is to replace ~ by a set M of MVDs such that the set of MVDs that is logically
implied by M is exactly the same as the set of MVDs that is logically implied by ~. The set of
MVDs M is constructed by replacing each FD X --+ Y E F by the set of MVDs {X --+ --+ A I A
E Y -X}, and by replacing each JD I><1[R] E J, where R = {RI, Rz, ... , Rn }, by the set of MVDs
given by

(1)<1 [Xl, X2]1 {Sl , S2} is a binary partition ofR with Xl = schema(SI) andX2 = schema(S2)}.

Recall that an MVD is a binary JD and observe that without any loss of generality we can
remove any trivial MVDs from M. As an example, consider the JD, I><1[(A, q, {C, L}, (L, B},
(B, A}], where A stands for account, C stands for customer, L stands for loan and B stands for
bank. Then M consists of the set of nontrivial MVDs given by {I><1[(A, C, L}, {A, L, B}], I><l[(A,
C, B}, {C, L, B}]}, or equivalently, {(A, L} --+--+ C I B, (C, B} --+--+ A I L}.

By using this set M of MVDs we can also derive all the FDs that are logically implied by ~,
since as was mentioned in Theorem 3.58 ~ logically implies a nontrivial FD X --+ A if and only
if X --+--+ A is logically implied by M and there is a nontrivial FD W --+ Z E F with A E Z.

All that remains is to compute the dependency basis of X with respect to M, i.e. DEP(X, M)
(see Theorem 3.58). This cannot be done by first computing M, since the size of M may be
exponential in the size of~. Essentially, we can find the finest partition of schema(R)-X by
refining a set of attributes, say Xi, in the current state of the partition, when there is an MVD
W --+ --+ Z E M such that Xi n W = 0 but Xi n Z # 0 and Xi - Z # 0. In this case we replace Xi
by Xi n Z and Xi - Z. Finding whether there exists in M such an MVD W --+ --+ Z is computed
directly from the set J of JDs by considering the JDs I><1[R] E J. In order to do so we construct
a graph, G = (N, E), whose nodes are the attributes in Xi and such that (A, B} is an edge in E if
both A, BE schema(Rj) n Xi for some Rj E R. It was shown in [MSY81] that I><1[R] can refine
Xi if and only if G is not connected, i.e. there exists a pair of nodes in N that do not have a path
connecting them. The result follows since G can be constructed in polynomial time in the size
00 and the graph connectivity problem is a linear-time problem in the size of the input graph
[AHU83] . 0

204 Chapter 3. The Relational Data Model

Fig 3.5 The hypergraph represented in Table 3.60

See also [LT87aJ for a polynomial algorithm which determines whether a set ofMVDs and
the subclass of PMVDs induced by a decomposition R logically imply the JD 1><1 [RJ.

The intractability results of Theorem 3.66 have led researchers to consider the subclass
of acyclic JDs. The term acyclic will be explained by viewing a database schema R =
{RI, Rz, ... , Rn} as a hypergraph. A hypergraph is a pair (N, E), where N is a finite set
of nodes and £ is a set of hyperedges, each hyperedge being a nonempty subset of N. A
hypergraph generalises the notion of a graph, since a graph is just a hypergraph where each
hyperedge consists of exactly two nodes (assuming there are no loops in the graph, i.e. there
are no singleton edges of the form {n}). The hyper graph induced by a database schema R has
schema(R) as its node set and {schema(Rd, schema(Rz), ... , schema(Rn}} as its hyperedge
set. Thus a JD I><I[RJ induces a hypergraph. In the following we will not distinguish between
a database R and the hypergraph, say H, that it induces. We can represent a hypergraph in
a table whose columns are the attributes of schema(R) and whose rows are the hyperedges; a
given cell is nonempty if and only if the attribute of its column is in the hyperedge represented
by that row. In Table 3.60 we show the representation of the hypergraph HI = {{A, B}, {A,
C, D}, {B, L}, {C, D, L}}, where A, B, C, D and L stand for account, bank, customer, address
and loan, respectively; a pictorial representation of this hypergraph is shown in Figure 3.5.
In Table 3.61 we show the representation of the hypergraph Hz = {{A, B}, {B, L}, {A, Cb,
Db}, {L, CI, DI}}, where Cb, Db, CI, and DI stand for borrowing customer, borrowing address,
loan customer and loan address, respectively; a pictorial representation of this hypergraph is
shown in Figure 3.6.

Table 3.60 A hypergraph representation of R

A B LCD
A B
A C D

B L
LCD

We now give a syntactic definition of acyclicity.

Definition 3.96 (Acyclic join dependency) A database schema R is acyclic if and only if
applying the following two operations repeatedly on the hypergraph H, induced by R, results

3.6. Data Dependencies

Table 3.61 Another hypergraph representation of R

A B L Cb Db Cl Dl
A B

B L
A Cb Db

L Cl Dl

(b (I

Db 01

Fig 3.6 The hypergraph represented in Table 3.61

in a hypergraph having an empty set of hyper edges:

205

I) If an attribute A appears in exactly one hyperedge in 1t then remove A from that
hyperedge; A is called an isolated attribute.

2} If Si and Sj are distinct hyperedges in 1t such that Si ~ Sj then remove Si from the
hyper edge set of 1t; Si is called a redundant relation schema.

A database schema R is cyclic if it is not acyclic. A JD M[RJ is said to be acyclic. respectively
cyclic. if R is acyclic. respectively cyclic. •

The algorithm used to determine the acyclicity of a database schema is known as Graham's
reduction algorithm [BFMY83. Fag83). The reader can verify that the hypergraph represented
in Table 3.60 is cyclic while the hypergraph represented in Table 3.61 is acyclic.

The next theorem gives an alternative. more semantic characterisation of acyclic database
schemas [FMU82. BFMY83).

Theorem 3.68 The following statements are equivalent:

1) R is an acyclic database schema.

2} The JD M[RJ over R is logically equivalent to a conflict-free set M of MVDs over R. i.e.
M[RJI= M and M 1= M[RJ. 0

The next theorem. which tells us how to infer MVDs from a JD. was established in [FMU82)
(see also the proof of Theorem 3.67).

Prior to stating the next theorem we introduce some further notions concerning
hypergraphs. A sequence <el, ez, ... , ek>. with ej E E. 1 :s i :s k. is called a path from

206 Chapter 3. The Relational Data Model

el to ek if e; n e;+ l i 0, 1 ::: i < k. Two hyperedges of a hypergraph 1-{ are connected if there is
a path from one to the other. A set of hyper edges in 1-{ is connected if every pair of hyper edges
in the set is connected. The connected components of 1-{ are the maximal connected sets of
hyperedges in 1-{.

Theorem 3.69 An MVD X -+-+ Y is logically implied by a JD t><I[R] if and only if Y is the
union of some of the connected components of the hypergraph induced by R with the nodes
of X removed from the node set of the hypergraph. 0

When R is acyclic then, by using Theorem 3.69, a set of MVDs, say Mover R, which is
equivalent to t><I[R], can be found in polynomial time in the size of R. The set M consists of the
MVDs whose left-hand side is the intersection of exactly two hyperedges of R. Therefore, by
Theorem 3.67 the problem of testing whether a set of JDs and FDs logically implies an acyclic
JD can be solved in polynomial time in the size of the input. A variation of this result is that
testing whether a set of data dependencies consisting of a single acyclic JD and a set of FDs
logically implies any JD can be solved in polynomial time in the size of the input by modifying
the chase procedure of Subsection 3.6.4 [YanSl].

Recall Definition 3.90 of an extended conflict-free set of MVDs from Subsection 3.6.13.

Definition 3.97 (Compatibility of a set of FDs with a JD) An FD X -+ Y over R is compatible
with a JD t><I[R] over R iffor some R; E R, XY ~ schema(R;}, where schema(R} = schema(R}.

A set F of FDs over R is compatible with a JD t><I[R] over R if every nontrivial FD in F is
compatible with t><I[R]. A set F ofFDs over R is completely compatible with a JD t><I[R] over R
if F is compatible with t><I[R], and for every FD X -+ Y E F such that for some R; E R, X ~
schema(R;}, then it is also true that Y ~ schema(R;}. •

The main result of [KatS4] on extended conflict-free sets of FDs and MVDs is presented
in the next theorem; we recall that two sets of data dependencies, ~ and r, are logically
equivalent if ~ 1= rand r 1= ~. In the context of the next theorem ~ = FUM, where F and
M are, respectively, a set of FDs and a set of MVDs over R.

Theorem 3.70 The following statements are equivalent:

1) ~ is logically equivalent to an extended conflict-free set of FDs and MVDs.

2} ~ is logically equivalent to an acyclic JD and a set of FDs which is compatible with this
acyclic JD.

3} ~ is logically equivalent to an acyclic JD and a set ofFDs which is completely compatible
with this acyclic JD. 0

An immediate corollary of this result is that any set F of FDs over R has an extended
conflict-free cover. To show this let R = {R}, in which case it is obvious that F is compatible
with t><I[R].

We next define the concepts of pairwise and join consistency which are related to the
concept of the so called "universal relation". Intuitively, when a database designer chooses

3.6. Data Dependencies 207

a decomposition (or database schema) R then it is reasonable to assume that the join of all
the relations rj in a database dover R is meaningful. In the universal relation approach
meaningful is taken to mean the existence of some "fictitious" relation r such that each rj E d
is the projection of r onto the attributes of the relation schema Rj of rj, i.e. schema(Rj). (See
Section 2.4 of Chapter 2 for further discussion on the universal relation approach. Also see
the monograph [Lev92) for a comprehensive survey of the role of the universal relation and
its derivative, the weak instance approach, in relational database theory.)

Defmition 3.98 (Pairwise and join consistency) Let rand s be relations over relation
schemas Rand S, respectively, and let X = schema(R) n schema(S). The relations rand s
are said to be consistent if Jl'x(r) = Jl'x(s). That is, rand s are consistent if their projections
onto the common set of attributes of their schemas are the same.

A database dover R is pairwise consistent if for all rj, rj E d, rj and rj are consistent. That
is, d is pairwise consistent if for each rj E dover Rj E R and each rj E dover Rj E R,

where X = schema(Rj) n schema(Rj)'

A database dover R is join consistent if there exists is a relation rover R, with schema(R} =
schema(R), such that for all rj E dover Rj E R we have

rj = Jl'schema(Rj) (r) .

That is, d is join consistent if there is some "universal relation" r such that each rj E d is
the projection of r onto the attributes of the relation schema Rj of rj . •

We observe that pairwise consistency of a database over R can be expressed via a set of typed
INDs over R (see Definition 3.69 in Subsection 3.6.7). For example, if we have two schemas
EMP and DEPT, with schema(EMP) = {ENAME, DNAME} and schema(DEPT) = {DNAME,
ADDRESS}, then pairwise consistency can be expressed by (EMP[DNAME) S; DEPT[DNAME)
and DEPT[DNAME] S; EMP[DNAME). In this case the semantics of pairwise consistency are
that employees work in departments and every department has at least one employee.

The next lemma shows that we can test join consistency by joining all the relations in the
database [HLY80].

Lemma 3.71 A database d = {rl ' r2, . .. , r n} over R is join consistent if and only for all rj E d
we have

Proof. If. The result follows by Definition 3.98, since the join of all the relations in the database
d is the relation r, which demonstrates that d is join consistent.

Only if. Let us denote rl 1><1 r2 1><1 •• . 1><1 rn by [1><1 d) and Jl'schema(Rj) ([1><1 dJ) by rj, where Rj E

R. Now suppose that d is join consistent and thus there is some relation rover R such that for
all rj E d, rj = Jl'schema(Rj)(r).

By part (1) of Lemma 3.63 r S; [1><1 d] and thus rj S; rj. It remains to show that Tj S; rj. Now,
let t be a tuple in rj. It follows that there exists a tuple U E [1><1 d] such that t = u[schema(Ri)].
Now suppose that t (j. ri, i.e. t (j. Jl'schema(Rj) (r), then u (j. [1><1 d]leading to a contradiction. 0

208 Chapter 3. The Relational Data Model

Unfortunately, using the result of Lemma 3.71 for checking whether a database is join
consistent by joining all the relations in the database leads to an exponential time algorithm
in the size of the input database. We observe that by the definitions of pairwise consistency
and join consistency, it follows that join consistency implies pairwise consistency. Now,
testing whether a database is pairwise consistent can be carried out in polynomial time in
the size of the input database. So, if pairwise consistency were to imply join consistency
then a polynomial-time test for join consistency would be readily available. This conjecture
unfortunately turns out to be false by the following counterexample database d. Let d =
{TI, T2, T3) be a database over R = {RI, R2, R3), with schema{Rd = {A, B), schema{R2) = {B,
C), and schema{R3) = {A, C), where TI, T2 and T3 are shown in Tables 3.62, 3.63 and 3.64,
respectively. It can be verified that d is pairwise consistent but not join consistent.

Table 3.62 The relation TI

LffiJB
o 0
I I

Table 3.63 The relation T2

ffffic
o 0
I I

Table 3.64 The relation T3 lffiJc
o I
I 0

The next theorem shows that, in general, testing whether a database is join consistent is
intractable.

Theorem 3.n Determining whether a database is join consistent is NP-complete.

PToof We sketch the main idea of the proof. Showing that the problem is in NP is easily done,
since for each tuple t in each relation Ti E d we can guess whether there are tuples in the other
relations Tj E d such that their join is nonempty.

To show that the problem is NP-hard a polynomial-time transformation from the graph
3-colourability problem, which is known to be NP-complete [Karn, GJ79], can be given.

The 3-colouTability pToblem: Given a graph G = (N, E) and three colours, red, blue and green,
does there exists a functionf from N to the three colours such that for each edge {u, v} E

E, it is true thatf(u) =1= f(v).

We construct a database for G as follows. For each edge ek = tUb Vk) E E we construct
a relation schema Rb with schema(Rd = tUb vd and a relation Tk consisting of all possible
valid 3-colourings of ek; Tk is shown in Table 3.65. It can then be verified that the constructed
database is join-consistent if and only if G is 3-colourable. 0

Table3.65 The relation Tk for the edge ek = (Uk . VkJ

Uk vk
red green
red blue
blue green
blue red

green blue
green red

3.6. Data Dependencies 209

The proof of the next theorem can be found in [BFMY83].

Theorem 3.73 A database schema R is acyclic if and only if every pairwise consistent database
over R is also join consistent.

Proof. We sketch the idea of the proof. A join tree for a database schema R is a tree (N, E),
denoted by Tree(R), whose node set N is the set of relation schemas Ri E R and such that

1) each edge {Ri, Rj} E E is labelled by the set of attributes schema(Ri) n schema(Rj)'

2) For every pair of distinct relation schemas Ri andRj and for each attribute A E schema(Ri)
n schema(Rj), every edge in the unique path from Ri to Rj includes A in its label.

It was shown in [GS83j that R is acyclic if and only if R has a join tree. To prove this
intermediate result, it can be shown that R has a join tree if and only if Graham's reduction
algorithm results in an empty hypergraph. Essentially the operations of (i) removing an
isolated attribute, say A, and (ii) removing a redundant relation schema, say Si, from the
current state ofthe hypergraph correspond to the operations of (i) removing A from schema(R)
and (ii) removing Si from R, respectively. Moreover, R has a join tree if and only if the database
schema, say S, resulting from applying the above two operations to R any number of times
and in any order, also has a join tree. It follows that R has a join tree if and only if Graham's
reduction algorithm results in a hypergraph having an empty set of hyper edges.

We distinguish a node in Tree(R) to be the root of the join tree. Given that Ri is the root of
the join tree its children are relation schemas Rj such that {Ri, Rj} is an edge in the said tree;
if Rj is a child of Ri then Ri is said to be the parent of Rj. Now, given a relation schema Ri in
the join tree, which is not the root, its children are relation schemas Rj such that {Ri, Rj} is
an edge in the join tree and Rj is not the parent of Ri; in this case the parent of Rj is Ri. If a
relation schema has no children then it is called a leaf. We define the level of a node Ri in the
join tree inductively as follows: if Ri is the root node of the tree then its level is zero, otherwise
the level of Ri is one plus the level of its parent node.

To conclude the proof we are required to show that R has a join tree if and only if every
pairwise consistent database over R is also join consistent. A join tree for R induces a join
plan which tells us in what order to join together the relations in a database dover R. Let
rl, r2, .. . , r n be a linear ordering of the relations in d such that if Ri is the parent of Rj then
i < j; we note that such an ordering can be obtained by a topological sort of the join tree for
R, as defined in Section 1.9.2 of Chapter 1. (Note that RI is the root of the join tree and Rn is
a leaf.) This linear ordering induces the following join plan, where parentheses indicate the
order in which to join the relations in d, namely

Now, if R has a join tree and d is pairwise consistent, then d is also join consistent since by
induction on IRI it can be shown that no tuples are lost at any stage of executing the join plan
for d. Conversely, if pairwise consistency implies join consistency, then there exists a join
plan for d such that no tuples are lost during the execution of the join plan. From this join
plan we can construct a join tree for R. 0

210 Chapter 3. The Relational Data Model

An immediate corollary of Theorem 3.73 is that join consistency can be checked in
polynomial time in the size of the input database when R is acyclic, since acyclicity can
be checked in polynomial time (see Definition 3.96).

Recall that a database schema R is also called a decomposition. This is meant to indicate
that a relation rover R can be replaced by its projections ri = lTschema(R;){r), where Ri E R
and schema{R) = schema{R). The reasons why we might prefer a decomposition rather than
just keeping a single relation schema are to do with database design considerations, which
are discussed in detail in Chapter 4. In order for such a decomposition to be useful it must
be lossless in the sense that given the projections {ril we must be able to reconstruct the
"universal" relation rover R. An operation that replaces a relation rover R by its projections
{riJ over {RiJ is called a decomposition map. A decomposition map LlR is said to be one-to-one
with respect to a set of data dependencies Lover R, if whenever rand s are relations over R
that satisfy L, with r i= s, then LlR(r) i= LlR(S). If a decomposition map is one-to-one then it
has an inverse which is called the reconstruction map.

The most natural candidate to be the reconstruction map is the (natural) join operator.
Thus it is reasonable to conjecture that the join operator is the only possible reconstruction
map, but in [Var82bj this conjecture was refuted by showing that for a general class of data
dependencies, which includes FDs and IDs, the reconstruction map is not necessarily the join
operator. However, when the database schema R is acyclic and we consider only FDs and IDs
in our dependency set, then the reconstruction map is necessarily the join operator [BV84bj
(see also [MMSU80j).

Theorem 3.74 Let R be an acyclic database schema, with schema{R) = schema{R), and let L
be a set of FDs and IDs over R. Then the following statements are equivalent:

1) The decomposition map LlR is one-to-one with respect to L.

2) L F= t><I[R].

3) The reconstruction map is the join operator.

Proof. We sketch the proof.

(I implies 2) Suppose that LlR is one-to-one but that L 1;6 t><I[R]. Then by Theorem 3.68
there is an MVD X -+-+ Y I Z, logically implied by t><I[RJ, such that L 1;6 X -+-+ Y I Z, since
R is acyclic. Now by the results given in [SDPF81j there exists a relation r having exactly
two tuples such that r F= L but r 1;6 X -+-+ Y I Z; we assume without loss of generality that
the active domains of distinct attributes are disjoint. Let S = {St, S2}, with schema{Sd = XY
and schema{Sz) = XZ. It follows that there exists a tuple t such that t E ms(r) but t rt r.
Furthermore, it can be shown that there exists a permutation 8 on the active domain of r
such that t E 8(r) and, in addition, Lls(r) = Lls(8(r». We also have r i= 8(r), due to the
fact that t rt r. Moreover, it can be shown that 8(r) F= L. Finally, it can be verified that
LlR(r) = LlR(8(r» and thus the decomposition map is not one-to-one with respect to L,
leading to a contradiction.

(2 implies 3) Let r be a relation that satisfies L and thus it also satisfies t><I[R]. It follows that
r = mR(r) and thus by Definition 3.93 the reconstruction map is the join operator. (Recall
that mR is the project-join mapping associated with R.)

3.6. Data Dependencies 211

(3 implies 1) If the reconstruction map is the join operator then lI.R must be one-to-one
with respect to :E. 0

It is interesting to consider how FDs can be used to relax the condition that a database
schema R is acyclic by considering a set of FDs over R. We say that R is FD-acyclic with
respect to F if every pairwise consistent database dover R that satisfies F is also join consistent
[LMG83, SS89]. The problem with this definition is that we need to give appropriate semantics
to the notion of d satisfying F. Such semantics are given by the weak instance approach that
states that d satisfies F if there exists a relation rover schema(R) that satisfies F and such
that each ri E d is contained in the projection of r onto schema(Ri) [Hon82]. As an example,
let R be a database schema with three relation schemas TEACHES, TAKES and GIVES, with
schema(TEACHES) = is, T}, schema(TAKES) = is, C} and schema(GIVES) = {C, T}, where S
stands for student, T stands for teacher and C stands for course. In addition, let F = {S ~ T,
C ~ T, T ~ C} be a set ofFDs over schema(R), meaning that a student has a unique teacher,
a course is taught by a unique teacher and a teacher teaches a unique course. We next show
that R is FD-acyclic; assume that d has relations r1 over TEACHES, r2 over TAKES and r3 over
GIVES. Let < 1,2> be a tuple in rl> then by pairwise consistency there is a tuple < 1,3> in r2
and a tuple <3,4> in r3 . Since d satisfies F, the FDs S ~ T and C ~ T imply that 2 = 4, and
thus < 1, 2, 3> is in the join of the relations in d. It follows that no tuple in r1 is lost when the
join of the relations in d is computed. Similarly, it can be shown that no tuple in r2 or in r3 is
lost in the join of the relations in d. Therefore, R is FD-acyclic with respect to F.

Other characterisations of acyclic database schemas can be found in [GS82, BFMY83, GS83,
MU84], and efficient algorithms in the presence of acyclic database schemas are given in
[Yan81]. A method of breaking cycles in a cyclic database schema by using maximal objects,
which union together two or more hyper edges in the hypergraph induced by a database
schema, is presented in [MU83]. Other types of acyclicity of database schemas, which are
more restrictive than that of Definition 3.96, can be found in [Fag83, GR86, Gys86]. Also, see
[Sac85, ADS86] for an extension of the hypergraph concept to include directed hyperedges,
thus allowing us to model FDs in addition to JDs.

It is possible to define Embedded Join Dependencies (or simply EJDs), which generalise
the notion of EMVDs, by allowing the attribute set, schema(R), of a database schema R, to
be a proper subset of schema(R). The implication problem for EJDs is undecidable by the
corresponding result for EMVDs discussed at the end of Subsection 3.6.13. The implication
problem for a subclass ofEJDs, called projected JDs, which generalise PMVDs, was also shown
to be undecidable [Var84a). Axiomatisation ofEJDs is considered in detail in [BV81, Sci82).
The axiom system for EJDs was shown to be sound and complete for the special case when the
set ofJDs, J over R, contains a single JD over R [MGKL88]. In [BR84) a subclass ofEJDs, called
cross dependencies, are considered, where the relation schemas of R have disjoint attribute
sets. Therein, a sound and complete axiom system for cross dependencies is exhibited.

For a generalisation ofFDs and JDs to Equality Generating Dependencies (EGDs) and Tuple
Generating Dependencies (TGDs), respectively, see [Fag82b), [BV84a, BV84c] and [GMV86).
An EGD says that if some tuples fulfilling certain equalities appear in the database then some
values in those tuples must be equal. Correspondingly, a TGD says that if some tuples fulfilling
certain equalities appear in the database then some additional tuples must be present in the
database. We formalise and further discuss the notions of EGD and TGD in Section 9.6
of Chapter 9 in the context of deductive databases. For comprehensive surveys on data
dependencies see [FV84a, Var88b).

212 Chapter 3. The Relational Data Model

3.7 Domain and Cardinality Constraints

The concept of a domain is fundamental to the definition of a relation. With each attribute,
A, in a relation schema, R, we associate a set of values which we call the domain of A, denoted
by DOM(A) (see Definition 3.1 in Section 3.1). Recall that a relation schema R is in INF if all
its attribute domains are atomic, i.e. each value in such a domain is a non decomposable set
of values which has no internal structure as far as the database system is concerned.

With the advent of the object-oriented database paradigm we follow Date's proposal and
interpret an atomic domain as a user-defined data type (or simply a data type) [Dat90j. The
concept of a user-defined data type is a well-known concept which is supported by many
programming languages; often user-defined data types are called abstract data types. To be
more specific a user-defined data type has the following characteristics:

I) A data type may be a simple data type, which is defined as a scalar (or primitive) data
type, such as a numeric data type or a string, or a composite data type, which is composed
of other data types, such as date, being composed of day, month and year, or polygon
being composed of a list of (x, y) coordinates.

2) The internal structure of the values of a data type is hidden both from the DBMS and
the user; the internal structure of a data type is called its implementation.

3) The manipulation of the values of a data type can be carried out only through the
operators which are defined for that data type; the set of operators defined for a data
type is called its interface which includes equality, inequality and comparison operators
such as less than and greater than.

Points (2) and (3) above are known as the encapsulation principle. The intention is that
both the database system and the user manipulate and access the values of a data type in a
disciplined manner. The encapsulation principle also guarantees data independence, since the
implementation of a data type may change but its interface remains the same. Encapsulation
should not be viewed as a restriction but rather as a protection against any misuse of the
data type. For example, a data type DATE can be composed of the data types DAY, MONTH
and YEAR, with the comparison operators, "=" and "<", which allow us to test whether two
dates are equal and whether one date precedes another date; respectively. In addition, the
operators DAY, MONTH and YEAR allow us to access the components of a date, for example
MONTH(28/6/96) will return 6. As another example, a data type CITY defined as CHAR(Is),
i.e. a string comprising 15 characters, will normally have various wild card operators to access
substrings and the comparison operator" <" could test whether the lexicographical order of
one substring is less than that of another substring.

Another advantage of encapsulation is that certain typing errors can be detected by the
DBMS through type checking. For example, two attributes, WEIGHT and GRADE, may be
numeric but defined over distinct domains, so comparing the two should normally be illegal.
There are exceptions that can be catered for by coercion rules which allow us to convert from
one data type to another; for example, we can compare an integer with a real number by
coercing the integer to be a real number.

It may seem that the definition of an atomic domain is inconsistent, since we are essentially
allowing a domain to be of arbitrary complexity. The crux of the argument is that an atomic

3.7. Domain and Cardinality Constraints 213

domain is nondecomposable by the DBMS. The interpretation of the statement that as far as
the DBMS is concerned a data type has no internal structure is that the DBMS has no access
to the implementation of a data type, but there is nothing to stop the DBMS accessing a data
type through its interface. This holds both for built-in data types and for data types that were
defined by the user; built-in data types could have been defined by the user but it is convenient
to have data types such as DATE and TIME built into the system. An interesting implication of
viewing domains as data types is that domains can be thought of as object classes and domain
values can be thought of as objects, so relational databases are object-oriented after all! (See
Section 10.2 of Chapter 10 for a comprehensive introduction to relational object-oriented
databases.) We note that currently SQL does not support user-defined data types in their full
generality but SQL3 promises to deliver these features [DD93].

Under our interpretation of a domain as a data type attributes are just variables ranging over
data types. It is common, but not necessary, to use the same name for both a domain and an
attribute. For example, we may have two data types, namely EMP _NAME, which is defined as
CHAR(25), and DATE which is composed of DAY, MONTH and YEAR. Moreover, the attribute
EMP _NAME will be defined over the domain EMP _NAME and the attribute HIRE_DATE will
be defined over the domain DATE.

Definition 3.99 (Domain constraint) A domain constraint (or simply a DC) is a statement
of the form R[A] E S, where R is a relation schema, A is an attribute in schema(R) and S ~
DOM(A) is a subset of the domain of A (or equivalently, the user-defined data type of A).

A DC R[A] E S is satisfied in a relation rover R, denoted by r 1= R[A] E S if lfA (r) ~ S .

•
There are several ways in which we may specify the subset S of DOM(A):

1) Enumerating all the values in S. For example, if the domain COLOUR is defined as
CHAR(10) then S could enumerate a finite set of colours, say {"red", "yellow", "blue",
"white"}.

2) Specifying a range of values, when DOM(A) is linearly ordered. For example, the range
of a day in a month is from 1 to 31, and the range of grades of students could be from A
to F.

3) Specifying a conditional expression which must be satisfied in order for the value to be
in S. For example, we may specify that a salary is greater than 10,000 as a conditional
expression. (Such conditional expressions can be specified as event-condition-action
rules; see Section 10.4 of Chapter 10 for details.)

Relations are defined as finite sets oftuples, and in practice it is often useful to further restrict
their cardinality. For example, if we have a relation schema EMP, with attributes EMPLOYEE#
and MANAGER#, it is quite sensible to assume that the number of managers is less than or
equal to the number of employees, written as EMP[MANAGER#] ::: EMP[EMPLOYEE#]. As
another example, we may want to restrict the number of students taking a particular course,
or the number of tickets sold for a particular football match. Despite the practical importance
of such cardinality constraints there are very few research papers which explicitly discuss their
formalisation.

214 Chapter 3. The Relational Data Model

Definition 3.100 (Cardinality constraint) A Cardinality Constraint (or simply a CC) is a
statement of the form R[X] .:s SlY]' where Rand S are relation schemas in a database schema
R, X S; schema(R} and Y S; schema(S}. A CC R[X] .:s SlY] is said to be unary if IXI=IYI= 1.

A CC R[X] .:s SlY] is satisfied in a database dover R, denoted by d F R[X] .:s SlY]' if Irrx(r)1
.:s Irry(s)l, where rand 5 are the relations in dover Rand S, respectively. •

We may also define CCs with bound k to be of the form R[X] .:s k, where k E w, i.e. k is a
natural number. A CC R[X] .:s k is satisfied in a relation rover R, denoted by r F R[X] .:s k, if
Irrx(r)1 .:s k. A CC with bound k can always be modelled by a CC by adding a new relation to
the database over a new relation schema and inserting exactly k tuples into this new relation.

The following inference rules allow us to axiomatise the restricted subclass of unary CCs.

Definition 3.101 (Inference rules for unary CCs) Let C be a set ofCCs over a database schema
R, and let R, S, T E R. We define the following inference rules for CCs:

CC1 Reflexivity: if A E schema(R), then C I- R[A] .:s R[A).

CC2 Transitivity: ifC I- R[A) .:s S[B] and C I- S[B] .:s T[D], then C I- R[B] .:s T[D]. •

An FD is unary if it is of the form R: A --+ B, where A, B are single attributes in schema(R).
The next two inference rules capture the basic interaction between unary FDs and unary CCs,

where l; is a set of unary FDs and unary CCs over R.

FD-CC1 Many-to-one: if l; I- R: A --+ B, then l; I- R[B] .:s R[A].

FD-CC2 One-to-one: if l; I- R: A --+ Band l; I- R[A] .:s R[B], then l; I- R: B --+ A.

We now prove soundness and completeness for the class of unary CCs [Ng96].

Theorem 3.75 The axiom system comprising the inference rules CC1 (reflexivity) and CC2
(transitivity) is sound and complete for unary CCs over a database schema R.

Proof We leave it to the reader to verify that the axiom system is sound. It remains to prove
its completeness. Without loss of generality, we assume that all the unary CCs in a set of unary
CCs Cover R are of the form R[A].:s R[B], in which case we say that C is a set ofCCs over R, and
abbreviate R[A] .:s R[B) to A .:s B. (We simply rename attributes in the relation schemas in R
so that if Rj and Rj are disjoint relation schemas in R, then schema(Rj) and schema(Rj) are also
disjoint, and then we construct a single relation schema R, whose attribute set is schema(R).)
Now, as in Theorem 3.21 for example, assume that C If A .:s B. To conclude the proof it is
sufficient to exhibit a counterexample database, d = {r} over R, such that d F C but d ~ A.:s
B.

Let X = {D I C I- D .:s B) and let Y = schema(R)-X. Now, let d = {r}, where r is the relation
over R shown in Table 3.66 (see Table 3.37). We conclude the proof by showing that d F C
but d ~ A.:s B.

Firstly, we show that d F C. Suppose to the contrary that Aj ::: Bj E C but d ~ Ai ::: Bi. It
follows that Aj E Y and Bi E X, and thus C I- Bi .:s B by the construction of d. Therefore, on

3.8. The View Update Problem 215

Table 3.66 A counterexample relation

x y

1. .. 1 1. .. 1
1. .. 1 0 ... 0

using CC2, we have that C I- Aj :::: B. However, by the construction of d we must have Aj EX
which leads to a contradiction.

Secondly, we show that d ~ A :::: B. Suppose to the contrary that d FA:::: B. Then by the
construction of d, we have that A E X, whence C I- A :::: B, leading to a contradiction. 0

The next result strengthens Theorem 3.75 by considering unary FDs and unary CCs together
[BeI95b).

Theorem 3.76 The axiom system, comprising the inference rules FDI (reflexivity), FD3
(transitivity) for unary FDs, the inference rules CCI (reflexivity), CC2 (transitivity) for unary
CCs, and the mixed inference rules FD-CCI (many-to-one) and FD-CC2 (one-to-one) for
unary FDs and unary CCs, is sound and complete for unary FDs and unary CCs over a database
schema R.

Proof We leave the reader to verify that the axiom system is sound and sketch the idea of
proving its completeness. Let:E be a set of unary FDs F over R together with a set of unary
CCs Cover R. We are required to show that :E F a implies that :E I- a, where a is an FD or a
Cc.

Firstly, we assume that a is a CC. Define CC(F) = {B :::: A I A -+ B E F} to be the set of CCs
that can be derived from F on using the inference rule FD-CCl. It can be shown that :E Fa
if and only if C U CC(F) Fa. The result then follows by Theorem 3.75.

We next assume that a is an FD, say A -+ B. It can be shown that if:E FA -+ B, then either
F F A -+ B or F F B -+ A. If F F A -+ B then the result is immediate by Armstrong's axiom
system, so assume that F F B -+ A but F ~ A -+ B. Then by the completeness of Armstrong's
axiom system we have :E I- B -+ A. Moreover, since:E F A -+ B by the soundness of FD-CC 1
we have that :E F B :::: A and by the first case above we have :E I- B :::: A. The result now
follows, since by FD-CC2 we have :E I- A -+ B as required. 0

Further investigation on the effects induced by the cardinalities of domains on data
dependency satisfaction is carried out in [Kan80, Fag81, CK86, CKV90, Bel95b).

3.8 The View Update Problem

Users interact with a database system through its view (or external) level. A view is a relation
comprising a portion of the conceptual level of the database system which provides the interface
between the user and the database. Different views of the database may be set up for different
groups of users. A view is defined as a relational algebra query over the database and is created
by computing the answer to the query. It can be virtual (or equivalently derived) in which case
it is recomputed each time the user accesses the view, or it can be materialised in which case
the relation is physically stored in the database system. In addition, a view may be required

216 Chapter 3. The Relational Data Model

to satisfy a set of integrity constraints such as a set of FDs and INDs. For simplicity, we will
assume a user who is interacting with a single view, i.e. with the single relation resulting from
computing the view definition. The interaction is carried out via relational algebra queries
and updates on the view, as if the view were a relational database consisting of a single relation.

Let VIR] (or simply V when R is understood from context) be a view definition over a
database schema R, i.e. VIR] is a query over R. We denote the set of attributes of the relation
schema induced by VIR] by schema(V[R]) (or simply schema(V) when R is understood from
context). Given a database dover R at the conceptual level the result of computing VIR] with
respect to d, i.e. the actual view, is given by V[R](d) (or simply V(d) if R is understood from
context).

Querying a view V(d) is straightforward from the DBMS's point of view. The user's query
is simply composed with V(d) to obtain the output, i.e. it is computed over V(d), which is
a relation over the relation schema induced by VIR]. On the other hand updating a view is
a difficult problem, called the view update problem. We will only consider updates that are
insertions or deletions, recalling that a modification can be simulated by a deletion followed
by an insertion; see Subsection 3.2.4 for more details on an update language for the relational
model.

As a running example for this section, suppose that a database schema R at the conceptual
level has two relation schemas EMPLOYEE (abbreviate to E) and DEPARTMENT (abbreviated
to D) such that EMPLOYEE has attributes: ENAME (employee name), DNAME (department
name), SALARY (employee salary), and DEPARTMENT has attributes: DNA ME, MGR
(manager name), and LOC (department location). In addition, we assume a set F of FDs
over R, where F = {E: ENAME ---* {DNAME, SALARY}, D: DNAME ---* {MGR, LOC}, D:
MGR ---* DNAME}, meaning that employee name is a key for E and, correspondingly,
DNAME and MGR are keys for D, and a set I of INDs over R, where I = {E[DNAME] S;

D[DNAME], D[DNAME] S; E[DNAME], D[MGR] S; E[ENAME]}, meaning that employees
work in established departments and all department have at least one employee, and, in
addition, managers are also employees. We let d = {rl' r2} be a database over R, where rl
over EMPLOYEE is shown in Table 3.67 and r2 over DEPARTMENT is shown in Table 3.68; it
can be verified that d 1= 'E, where 'E = F U I.

Table 3.67 The relation T[over EMPLOYEE

ENAME DNAME SALARY
John Computing 30,000
Jack Computing 30,000
Jill Maths 25,000
Joe Maths 35,000
Jake Biology 35,000

Table 3.68 The relation '2 over DEPARTMENT

DNA ME MGR LOC
Computing Jack West London

Biology Jake West London
Maths Jill East London

3.S. The View Update Problem 217

We consider another database d' = {r3, r4} over a database schema R' containing two rela
tion schemas EMP _WEST and EMP _EAST, where schema(EMP _WEST) = schema(EMP ~AST)
= schema(EMPLOYEE). The relation r3, representing the employees working in West London,
is shown in Table 3.69 and the relation r 4, representing the employees working in East London,
is shown in Table 3.70. The database d' can be viewed as a distributed database, satisfying
rl = r3 U r4.

Table 3.69 The relation '3 over EMP _WEST

ENAME DNAME SALARY
John Computing 30,000
Jack Computing 30,000
Jake Biology 35,000

Table 3.70 The relation '4 over EMP _EAST

ENAME DNAME SALARY
Jill Maths 25,000
Joe Maths 35,000

Let us consider some views which are defined by the following relational algebra expressions:

VI. JT{ENAME,DNAME} (rl).

V2. JT{DNAME,SALARY} (r)).

V3. rl [XI r2

V4. JT{ENAME,LOC}(rl [XI r2)

V5. aDNAME='Computing,(rl) .

V6. r3 U r4.

The view VI, shown in Table 3.71, is a projection of rl giving us a list of the employees and
the departments they work in. The view V2, shown in Table 3.72, is also a projection giving us
the departments and salaries of employees. The view V3, shown in Table 3.73, is the join of rl

and r2 which combines information about employees and departments. The view V 4, shown
in Table 3.74, tells us in what locations employees work in. The view V5, shown in Table 3.75,
tells us the employees who work in the Computing department. Finally, the view V6, shown in
Figure 3.67, which is equal to rl, gives us the list of employees working either in West London
or in East London.

As stated above a view may be required to satisfy a set of integrity constraints. Rather
than state the integrity constraints separately for the view, we assume that the set of integrity
constraints that the view should satisfy is exactly the set of all integrity constraints that can be
derived from the underlying set of integrity constraints that are satisfied in the database from
which the view is constructed. Assume that we are given a set of data dependencies I; = F U I
consisting ofFDs and INDs over R defining the valid database states over a database schema R.
Then, since the view definition V[RJ is a relational algebra query, the set of data dependencies

218 Chapter 3. The Relational Data Model

Table 3.71 The view Vl

ENAME DNAME
John Computing
Jack Computing
Jill Maths
Joe Maths
Jake Biology

Table 3.72 The view V2

DNAME SALARY
Computing 30,000

Maths 25,000
Maths 35,000
Biology 35,000

Table 3.73 The view V3

ENAME SALARY DNAME MGR LOC
John 30,000 Computing Jack West London
Jack 30,000 Computing Jack West London
Jake 35,000 Biology Jake West London
Jill 25,000 Maths Jill East London
Joe 35,000 Maths Jill East London

that should be satisfied in any view over V[R) is exactly the set of data dependencies that are
satisfied in all views V(d), where d is a database over R that satisfies ~. Let us denote this set
of data dependencies by V[~]. The membership problem for data dependencies in views is to
determine whether a data dependency a is in V[~] or not.

For the running example of this section we have,

1) Vl[~] = {ENAME -+ DNAME},

2) V2[~] = 0,

3) V3[~] = F U {R[MGR) S; R[ENAMEll, where R is the relation schema of V[R),

4) V4[~) = {ENAME -+ LOC},

5) V5[~] = {ENAME -+ {DNAME, SALARY)) and

6) V6[~) = 0, since, for example, if we add a tuple <John, Maths, 29,000> to r4, then r3 Ur4
would violate both ENAME -+ DNAME and ENAME -+ SALARY.

For the view V6, if we have the additional integrity constraint that employee names
in relations over EMP _WEST are disjoint from employee names in relations over
EMP ~AST, which can be stated as the exclusion dependency [CV83] EMP _WEST[ENAME] n
EMP _EAST [ENAME] = 0, then we have, as is the case in our example, that V6[~] = V5[~].

From a practical point of view, if d 1= ~ then V(d) 1= V[~] and thus we need only
maintain the consistency of the database defining the view. However, it may be useful to solve
the membership problem for data dependencies in view, so that we can compute V[~] when
designing a view. Knowing V[I:) is useful for update purposes, since apart from the view

3.8. The View Update Problem 219

Table 3.74 The view V4

ENAME LOC
John West London
Jack West London
Jake West London
Jill East London
Joe East London

Table 3.75 The view V5

ENAME DNAME SALARY
John Computing 30,000
Jack Computing 30,000

update problem, we may reject an update if the resulting state of the view after the update
does not satisfy V[~). Moreover, the information embedded in V[~) can be used to validate
the view definition. For example, the user of a projection of r1 may wish to maintain a key for
EMPLOYEE with respect to F and thus would accept the view Vl but would reject the view V2.

We briefly survey the results concerning the membership problem for FDs in views, which is
the problem of determining whether an FD is in V[F) or not, given a set ofFDs over R. In [Klu80)
the negative result was shown, namely, that the membership problem for FDs in views is, in
general, undecidable. If we consider only views which are constructed from relational algebra
expressions, which do not include any difference operations and such that all the formulae of
selection operations included in these expressions are simple, then the membership problem
for FDs in views in co-NP-complete [IITK84). Moreover, if the relational algebra expressions
that are used to construct the view are further restricted so as not to include any union
operations, then the membership problem for FDs in views can be solved in polynomial time
in the size of the input [IITK84). The membership problem for data dependencies in views in
the presence of MVDs and JDs, in addition to FDs, is considered in [KP82, IITK84).

We now use the views we have defined above to illustrate some of the problems that arise
when we update views. In particular, for each such view we will consider the insertion of a new
tuple into the view and the deletion of an existing tuple from the view. We will not consider
any update that violates the set of data dependencies V[~) which should be satisfied by the
view.

Consider the insertion of a tuple <Jerome, Computing> into Vi. The only reasonable
translation (see Definition 3.102) of this request is to insert <Jerome, Computing, unk> into
rl> where we allow attribute values which are not part of the primary key to have null values;
we note that ENAME is the only key for EMPLOYEE with respect to F and thus it must also be
its primary key.

Consider the deletion of the tuple <John, Computing> from Vi. The only reasonable
translation of this request is to delete the tuple <John, Computing, 30,000> from r1.

Consider the insertion of a tuple <Maths, 30,000> into V2. In order to translate this
insertion we need to insert a tuple <unk, Maths, 30,000> into r1. However, the primary key
value of this tuple will be null thus violating entity integrity. So it is not possible to insert such
a tuple into V2.

Consider the deletion of the tuple <Computing, 30,000> from V2. In order to translate
this deletion we could delete the first two tuples from r1. There are several problems with this
translation. Firstly, the IND D[DNAME) S; E[DNAME) will be violated, since no employees

220 Chapter 3. The Relational Data Model

will remain in the Computing department. Secondly, for the same reason the IND D[MGR] ~
E[ENAME] will also be violated. Thirdly, the deletion of a single tuple from the view results
in the deletion of several (in this case two) tuples in the underlying database and is thus
ambiguous. Fourthly, assume that after the deletion of the tuple <Computing, 30,000> from
V2 we request to re-insert this tuple into V2; then since we have no knowledge of the primary
key, we cannot insert this tuple and thus we cannot recover the original view. So we should
disallow deletion of tuples from V2.

Consider the insertion of a tuple <Jerome, 30,000, Computing, Jack, West London> into
V3. The only reasonable translation of this request is to insert <Jerome, Computing, 30,000>
into rl. If instead we request to insert the tuple <Jerome, 30,000, Physics, Jerome, West
London> into V3, then we need to insert <Jerome, Physics, 30,000> into rl and <Physics,
Jerome, West London> into r2.

Consider the deletion of the tuple <Joe, 35,000, Maths, Jill, East London> from V3. The
only reasonable translation of this request is to delete <Joe, Maths, 35,000> from rl.

Consider the insertion of a tuple <Jerome, West London> into V 4. In order to translate this
insertion we could either insert <Jerome, Computing, unk> into rl or we could alternatively
insert <Jerome, Biology, unk> into rJ. The reason for our uncertainty is that there is an
ambiguity as to which department Jerome works in. Next, consider the insertion of a tuple
<Jerome, North London> into V4. We can insert the tuple <Jerome, unk, unk> into rJ, but
since no departments are known to be located in "North London" we cannot insert a tuple
into r2 without violating entity integrity. Thus we should, in general, disallow insertions of
tuples into V 4.

Consider the deletion of the tuple <John, West London> from V4. The only reasonable
translation of this request is to delete <John, Computing, 30,000> from rJ.

Consider the insertion of a tuple <Jerome, Computing, 30,000> into V5. The only
reasonable translation of this request is to insert this tuple into rl. Now, consider the insertion
of a tuple <Jerome, Physics, 30,000> into V5. This has no effect on V5 and thus it would be
incorrect to insert this tuple into rl; the correct approach is to leave rl unchanged. Finally,
consider the insertion of a tuple <Jill, Computing, 25,000> into V5. There are two approaches
to handling this update. Firstly, we can reject this insertion on the grounds that if we insert
this tuple into rl the FD ENAME -+ {DNAME, SALARY} will be violated, since Jill will then be
working in two departments. Secondly, we can delete the tuple <Jill, Maths, 25,000> from rl
and then insert <Jill, Computing, 25,000> into rl resulting in a relation that satisfies the FD
ENAME -+ {DNAME, SALARY}. Thus in the first approach the insertion has no effect on V5
and rl remains unchanged and in the second approach we insert the tuple into V5 and modify
the corresponding tuple in rl. Herein we choose the first approach, since it avoids making an
update to tuples that are not involved in the view, but on the other hand the second approach
is semantically meaningful. Furthermore, if we take the second approach, there is no way we
can re-insert the tuple <Jill, Maths, 25,000> into rl via a view update on V5, so in the second
approach we cannot cancel the effect of inserting <Jill, Computing, 25,000> into V5.

Consider the deletion of the tuple <John, Computing, 30,000> from V5. The only reasonable
translation of this request is to delete this tuple from rl . Now, consider the deletion of a tuple
<Jill, Maths, 25,000> from V5. This has no effect on V5 and thus it would be incorrect to
delete this tuple from rl; the correct approach is to leave rl unchanged.

Consider the insertion of a tuple <Jerome, Physics, 30,000> into V6. In order to translate
this insertion we could either insert <Jerome, Physics, 30,000> into r3 or we could alternatively

3.8. The View Update Problem 221

insert <Jerome, Physics, 30,000> into r4 . The reason for our uncertainty is that there is an
ambiguity as to which location Jerome works in. If we wish to avoid ambiguity we should
disallow such insertions into this view.

Consider the deletion of the tuple <Jake, Biology, 30,000> from V6. Then, assuming the
database d' satisfies the exclusion dependency, EMP _WEST[ENAME] n EMP _EAST[ENAME]
= 0, the only reasonable translation of this request is to delete this tuple from r3. In the
absence of this exclusion dependency, when this tuple is present in both r3 and r4 there is
ambiguity as to whether to delete this tuple from r3 or from r4; we could just remove it from
both these relations. If we wish to avoid ambiguity we should, in some cases, disallow deletions
from this view.

We proceed to consider a formalism for dealing with the view update problem. Let U be
an update over a view definition V[R] and v' = U(v) be the effect of the update U on the view
v = V(d), where d is a database over R. Also, let T be an update over the database schema R
and d' = T(d) be the effect of the update T on the database dover R. We assume that we are
given a set L of integrity constraints comprising a set F of FDs over R together with a set I of
INDs over R; L defines the set of allowable database states over R.

Informally, a database update T(d) is consistent with respect to a view update U(v) if
invoking the view definition V on the updated database results in the updated view, i.e.
V(T(d» = U(V(d», where v = V(d).

For example, the database update which inserts <Jerome, Computing, unk> into rl is
consistent with the view update which inserts <Jerome, Computing> into VI. Similarly the
database update which deletes <John, Computing, 30,000> from rl is consistent with the view
update which deletes <John, Computing> from Vl. On the other hand, there is no database
update which is consistent with the view update that inserts tuples such as <Maths, 30,000>
into V2. Similarly, there is no database update which is consistent with the view update that
deletes tuples such as <Computing, 30,000> from V2. The reader can find other examples of
consistent database updates for the views V3 and V5, and examples of inconsistent database
updates for the views V4 and V6.

A database update T(d) is acceptable with respect to a view update U(v) if whenever U(v)
is unchanged, i.e. U(v) = v, then the database state is unchanged, i.e. T(d) = d.

For example, the database update which inserts the tuple <Jerome, Physics, 30,000> into
rl is not acceptable with respect to the view update that inserts this tuple into V5. On the other
hand, the database update that leaves rl unchanged is acceptable with respect to the insertion
of the above tuple into V5. Similarly, the database update that leaves rl unchanged is the only
acceptable update with respect to the deletion of the tuple <Jill, Maths, 25,000> from V5.

A final requirement is that, in addition, the resulting state T(d) must satisfy the given set
L ofFDs and INDs over R. For example, the deletion of the tuple <Jake, Biology> from the
view VI cannot be translated by deleting the tuple <Jake, Biology, 35,000> from rl> since the
IND D[DNAME] S; E[DNAME] would then be violated.

Definition 3.102 (Translation) An update d' = T(d) over R is said to be consistent with
respect to a view update v' = U(v), where v = V(d), if the diagram shown in Figure 3.7
commutes, and is acceptable with respect to U(v), if whenever U(v) = v then T(d) = d.

222 Chapter 3. lhe Relational Data Model

An update T over R is said to be a translation of a view update U over V[R] with respect
to a set ~ of FDs and INDs over R, if for all databases dover R that satisfy ~, the following
conditions are true:

1) T(d) is consistent with respect to U(v).

2) T(d) is acceptable with respect to U(v).

3) T(d) F ~.

d

T

v
------" v

v ______ " v

u

Fig 3.7 Commutative diagram for consistent view updates

•

Recall that by Definition 3.42 in Subsection 3.2.4 a transaction is the composition of several
updates; for the rest of this section we will not distinguish between updates and transactions
and refer to both as updates.

Informally, a set of view updates is complete if it is closed under composition and for every
view update U there exists is another view update U' which cancels the effect of U. Suppose
that the translation of the deletion of the tuple <Maths, 35,000> from V2 is the deletion of
the tuple <Joe, Maths, 35,000> from rl. Then we cannot cancel the effect of this deletion by
inserting a tuple into the current state ofV2 since we have lost knowledge of the primary key
of the related tuple in rl.

Definition 3.103 (Complete view updates) A set S of view updates over R is said to be
complete with respect to a view definition V[Rl if the following conditions are true:

1) Whenever the updates Ul, U2 E S, it is also the case that the composed update Ul U2 is
also in S (i.e. the update Ul U2 resulting from composing Ul with U2 is also in S).

2) For all databases dover R, whenever U E S, there exists U' E S such that U' (U(V(d») =
~~. .

We are now ready to define the notion of a translator which is a mapping from a set of
complete view updates to a set of database updates such that

1) each view update in the set is mapped to a translation for that update, and also

2) when we compose two view updates in the set, then the translation of this composition is
equal to the composition of the two translations corresponding to the two view updates.

3.8. The View Update Problem 223

We next formalise this notion.

Defmition 3.104 (Translator) A mapping T from a set of complete view updates S to a set
of database updates is said to be a translator of S, if the following two conditions are true:

1) For all U E S, T(U) is a translation of U.

•
So we can now restate the view update problem as the problem of finding a translator of a

set of complete updates. The solution we now present is the constant complement approach
suggested by Bancilhon and Spyratos [BS8l b]. Informally a complement of a view with respect
to a database d is another view such that together the view and its complement have sufficient
information to reconstruct the database d. Given a view and its complement a view update
is translatable into a database update if we can find a translation that leaves the complement
invariant. Thus a constant complement of a view represents the part of the database that is
unaffected by the view update. The importance of translatable view updates is that when they
exist then the inverse mapping of the view update is the desired translation which solves the
view update problem.

As an example, consider the view VI defined by: JT{ENAME,DNAME} (rl). The view
JT{ENAME,SALARy}(rl) x r2, which we call Cl, is a complement view of VI, since JTschema(E)(Vl
txI Cl) == rl> i.e. we can reconstruct rl by joining VI and CI together and then projecting
the result onto schema(E), Now consider an insertion of a tuple <e, d> into VI, where e
is a new employee of an existing department d. Then the translation that inserts the tuple
<e, d, unk> into rl solves the update problem for this insertion. (We assume that tuples
whose salary attribute values are null are removed from the projection JT{ENAME,SALARY) (r\)
when constructing the view complement Cl, and thus CI is indeed a constant complement. See
Chapter S for a comprehensive treatment of null values.) Deletions can be handled similarly.

As another example, consider the view V3 defined by: r\ txI r2. It is readily seen that the
empty relation, which we call C3, is a complement view ofV3 due to the inclusion dependencies
E[DNAME] ~ D[DNAME] and D[DNAME] ~ E[DNAME] which ensure that no tuples are lost
when joining rl with r2. It is obvious that as long as I: is satisfied C3 is a constant complement.
Now consider an insertion of a tuple <e, s. d, m, I> into V3, where e is a new employee, s is
the new employee's salary, d is an existing department, m is its existing manager and I is its
existing location. Then the translation that inserts the tuple <e, d,s> into r\ solves the update
problem for this insertion. Deletions can be handled similarly.

As a final example, consider the view VS defined by: O"DNAME='Computing,(r\). The view

(rl -O"DNAME= 'Computing,(rl» X PDNAME~D_DNAME (r2), which we call CS, is a complement view
ofVS, since JT schema(E) (CS) U VS == r1, i.e. we can reconstruct rl by projecting CS onto schema(E}
and unioning the result with VS. Now consider an insertion of a tuple <e, Computing, s>
into VS, where e is a new employee and s is his/her salary. Then the translation that inserts
the tuple <e, Computing,s> into rl solves the update problem for this insertion. Deletions
can be handled similarly.

We now formalise the notion of a complement of a view and how it can be used to solve
the update problem. Given a view definition V[R], a complement of V[R] is another view
definition C[R]such that for all databases dover R, d can be uniquely reconstructed from the
views V(d) and C(d). (As usual we write C for C[R] whenever R is understood from context.)

224 Chapter 3. The Relational Data Model

Defmition 3.105 (Complement of a view) A view definition Cover R is a complement of a
view definition V over R, if for all databases dover R the mapping, denoted by (V x C),
that takes d to the pair (V(d), C(d» is one-to-one (that is, (V x C) has an inverse mapping
(V x C)-I). If C is a complement view definition of V and d is a database over R then C(d) is
said to be the complement view to the view V(d) . •

As can be seen from the above examples, a view definition does not, in general, have a unique
complement. Take the view definition V3 assuming that databases over R are constrained to
be pairwise consistent. Since V3 contains all the information in the database, all possible view
definitions are complements ofV3. In fact, the database d is always a complement of a view.
It is natural to prefer a minimal complement, in the sense that there does not exist another
complement that has more information in it. As an example consider a database schema
R having two relation schemas Rand S each having a single attribute, where schema(R) =
schema(S) = {A}. Consider the simple view definition V = R. Then, obviously S is a complement
of V but the symmetric difference, T = (R - S) u (S - R), ofR and S is also a complement of
V, since S can be reconstructed by the relational algebra expression, (R U T) - (T n R). Both
of these complements can be seen to be minimal and thus, in general, a view does not have a
unique minimal complement.

We proceed to show how view complements can be used to solve the view update problem.
An update U is translatable with respect to a complement C of a view definition V, if for all
database states d, we can find a database state d' that reflects the update U on the view V(d)
and leaves the complement invariant, i.e. C(d') = C(d).

Definition 3.106 (Translatable with respect to a complement) A view update U is said to be
translatable with respect to a complement C of a view definition V over R, if for all databases
dover R, there exists a database d' over R such that V(d') = U(V(d» and C(d') = C(d). •

When a view update U is translatable with respect to a complement C over V, then we can
translate U by using the mapping y (U), which is the mapping that makes the diagram shown
in Figure 3.B commute.

d

(V xC)

(V(d), C(d))

y(U)
----'----_~ d

(V xC)

__ U ___ ~ (U(V(d)), C(d))

Fig 3.8 Commutative diagram defining a translation

The following result, which is central to the theory of view updates, was shown in [BSBlb).
This elegant result states that a set of complete view updates has a translator if and only if
there exists a complement C of V such that this translator is induced by y(U).

3.8. The View Update Problem 225

Theorem 3.77 Let V be a view over R and let S be a set of complete view updates over R. The
following statements are equivalent:

1) T is a translator of S.

2) V has a complement C such that for all view updates U E S, U is translatable with
respect to C and T(U) = y(U). 0

By studying the above examples for view definitions VI, V3 and VS, the reader can verify
that the following three classes of view definition have translators:

1) Projection views of the form nx (r), where r is a relation over Rand F = (K --+ schema(R)}
is a singleton set of FDs over R, such that X is a superset of K; that is, the set F of FDs
states that K is the primary key ofR. We allow attribute values which are not part of the
primary key to have null values.

2) Selection views of the form aM(r), where M is a conjunction of simple selection formulae
involving only attributes in K, where F = (K --+ schema(R)} is a singleton set ofFDs over
R, i.e. K is a superkey for R with respect to F.

3) Join views of the form rl I><l r2, where rl is a relation over RI and r2 is a relation over R2,
together with the set F of FDs and the set I of INDs given by

(i) F consists of one or both of K --+ schema(RI) or K --+ schema(R2),

(ii) I = (RdX) S; R2[X), R2[X) S; RdX)}, where X = schema(Rd n schema(R2) is
a superset of K, i.e. databases over R = {RI , R2} are constrained to be pairwise
consistent and the intersection of their attribute set includes K.

Furtado and Casanova [FC8S) provide a theoretical survey of the various approaches to
tackling the view update problem, while Date [Dat86d) provides a discussion of the view update
problem, which investigates the viability of updating various kinds of views. It is interesting to
note that SQL2's support of view updates is fairly limited and does not cover the class of views
that are known to be translatable; for example, join views are not supported at all [DD93].
Some early approaches to the view update problem can be found in [CA79, FSS79, DB82]. The
constant view complement approach was initiated by Bancilhon and Spyratos in [BS8I b) and
was investigated in detail for the case when the view definition is a projection of a single relation
database in [CP84b). In [CP84b) it is shown that finding a minimal view complement is, in
general, NP-complete. Keller and Ullman [KU84] consider a restricted class of views, called
independent views. Informally, two view definitions are independent if any two views over
these definitions correspond to some common database state. Thus if two view definitions
are both independent and complementary then all possible view updates are translatable with
respect to their complement. Suppose that, in addition, we are only interested in monotonic
views, i.e. views such that when we insert tuples into the database relations no tuples are
removed from the view. Then for such a monotonic view there exists a unique complement
view. The notion of independent views was also studied in [BS8Ia] and a characterisation of
such database schemes in terms of a single JD I><l[R] and a set F ofFDs over R is given in [CM87) .
Hegner [Heg84, Heg90, Heg94) refines the view complement approach by using a lattice
theoretic approach. Gottlob and Zicari [GPZ88] generalise the view complement approach

226 Chapter 3. The Relational Data Model

by relaxing the constant complement approach so as to allow the content of complement to
decrease according to a suitable partial order. Keller [Ke185, Kel86j advocates a more general
approach than the constant view complement approach. In particular, Keller proposes various
algorithms that translate view updates in which ambiguity can be resolved by a dialogue with
the user defining a view. Matsunaga [Mas84j advocates dealing with the view update problem
via translation rules, which are invoked recursively, and special purpose translators for solving
any ambiguities that arise. Tuchermann et al. [TFC83j and Casanova et al. [CFT91j present
an alternative approach to the view update problem based on Abstract Data Types (ADTs).
The underlying idea of this approach is to implement the translator of a view update (or a
class of view updates) as an ADT whose operations define how to translate the view update
into a database update. This approach has the advantage of being general but it requires
the programming effort to implement the ADT, while the constant complement approach is
completely automatic for the class of updates that can be translated. In addition, such ADTs
need to be maintained if the update requirements change.

There is the final issue of materialised views versus virtual views. If the view is materialised
then it takes up storage space but querying such a view is more efficient, especially if the
view definition includes joins. Another point is that updates on materialised views need to be
physically carried out both on the view and the underlying database; this incurs an extra cost
factor. A materialised view needs to be updated in one of two situations, either when the view
is updated or alternatively when the underlying database relations are updated. In the former
case we are confronted with the view update problem and in the latter case we are confronted
with the view maintenance problem. Let us consider the view maintenance problem further
(see [GM95j for a survey of the various approaches taken to solving this problem). Suppose
that the underlying database, say d, is updated via an update U. In order to update the
materialised view, say V, we could first invoke the update U on d and then recompute V.
The overhead in taking such an approach can be prohibitive if d is a very large database and
computing V involves one or more joins. Thus we are interested in situations when U can be
translated into an update, say U', on V such that when the translated update U' is invoked
on V the effect is the same as recomputing the materialised view after updating d. If such a
translation producing U' is possible then we say that the view V is self-maintainable [GJM96j.
If a view is self-maintainable then it can be updated without accessing the underlying database
and thus the overhead of updating it is kept to a minimum.

3.9 Discussion

The core of relational database theory has been presented in this lengthy chapter. It is evident
that relational database theory is very rich with interesting results that directly affect the
practical issues facing database programmers and users. Although the field has matured and
the foundations have been established and are well understood, the basic building blocks of
relational database theory are still a source for ongoing database theory research. This is
especially true with regards to extensions of the basic relational model which will be discussed
in later chapters. Not all the contributions to relational database theory have had direct impact
on DBMS functionality but there are still issues, especially in the theory of data dependencies,
that may still influence future versions of relational DBMSs.

3.10. Exercises 227

Codd's seminal paper [Cod70] provided the initial impetus for relational database theory,
while almost a decade later another seminal paper by Codd [Cod79] provided the basis for
extending the relational model with semantic concepts. Codd's proposals are documented in
detail in [Cod90]. A summary of the main ideas behind the relational model can be found in
Codd's 19S1 Turing award lecture [CodS2]. Precursors of the relational data model can be seen
in the two papers [LM67, Chi6S] which can be found in the reference listof[Cod70]. In [LM67]
a database system, called the relational data file, is discussed together with a language, called
relational information language, which is essentially a relational calculus query language.
The important idea which is central to the relational model is that a relational database
can be viewed as a finite model of a first-order logic language. The undecidability of domain
independence with respect to the relational information language was shown in [DiP69], which
implies the corresponding result for domain calculus queries (see Theorem 3.10). In [Chi6S] a
theory of data relations is presen ted together with a set -theoretic query language, which can be
viewed as a relational algebra. Again it was Codd in his seminal paper [Codnb], who showed
the equivalence of the relational algebra and the relational calculus. In the theory of data
dependencies Armstrong's seminal paper [Arm74j, which presented a sound and complete
axiom system for FDs, opened the doors for the plethora of results in this area. The paper by
Beeri and Bernstein [BB79] provides a milestone in the development of data dependency theory
dealing with the computational complexity of the implication problem. Fagin's seminal paper
[Fag77b] is also important, since it instigated the investigation oflossless join decompositions
independently ofFDs. An interesting account of achievements of database theory up until the
late 19S0's can be found in [UllS7, Bis9S].

3.10 Exercises

Exercise 3.1 In the network and hierarchical data models entities are related to each other (or
linked together) via pointers, so querying of related entities is done by "pointer chasing". On
the other hand, in the relational model entities are related to each other through their common
values, so querying related entities is done by "joining" relations. Discuss the advantages of
joining versus pointer chasing as a means of navigating through a database.

Exercise 3.2 Express the natural join using the renaming, Cartesian product, selection and
projection operators.

Exercise 3.3 Express the answer to a Datalog query, with respect to a nonrecursive Datalog
program P, using the relational algebra. (You may assume by Theorem 3.1S that P can be
translated into a relational algebra expression.)

Exercise 3.4 Let r be a relation over schema R, with schema(R) = XY and s be a relation
over schema S, with schema(S) = YZ. The generalised division, -:-g, of r by s, is a relation over
schema RI, where schema{RI) = XZ, defined by

r -:-g s = {t[XZ] I 3tl E rand 3t2 E sand t[X] = tdX] and t[Z] = t2[Z] and

lTY(O'F2 (s)) 5; lTY(O'FI (r))},

228 Chapter 3. The Relational Data Model

where X = {AI, A2, ... , Ap}, FI is the selection formula given by

and correspondingly, Z = {BI, B2, ... , Bq} and F2 is the selection formula given by

For example, if schema(R) = {SUPPLIER, PART} and schema(S) = {PART, PROJECT}, then
r -,;-g 5 returns the set of all supplier project pairs of the form <a, h> such that supplier a
supplies all the parts used in project h. Give the relational algebra expression for generalised
division [DD92aj.

Exercise 3.5 Let us denote the fact that two relational algebra expressions, EI and E2, are
equivalent by EI == E2. Prove the following algebraic equivalences [U1l89j:

2) EI W (E2 W E3) == (EI W E2) W E3.

3) 7TX(7Ty(E» == 7Tx(E), if X £ Y.

4) aFl (aF2 (E» == aFl /\F2 (E) .

5) 7Tx(aF(E» == aF(7Tx(E», if the selection formula F involves only the attributes in X.

6) ap(EI U E2) == aF(Ed U aF(E2).

8) aF(EI W E2) == aF(EI) W aF(E2), if the selection formula F involves only the common
attributes appearing in EI and E2.

9) 7Tx(EI x E2) == 7Ty(EI) x 7Tz(E2), where Y £ X includes all the attributes of X in EI and
Z £ X includes all the attributes of X in E2.

Exercise 3.6 Physical query optimisation concerns the utilisation of the physical data
structures that implement a relational database, and logical query optimisation concerns
ordering the execution of the relational algebra operators in a query. Both types of optimisation
aim to speed up the processing of queries. Discuss the importance of both types of optimisation
with an example.

Exercise 3.7 A simple logical query optimisation rule for queries expressed in the relational
algebra is to transform the query into an expression where the projections and selections are
processed as soon as possible. Justify this heuristic rule with an example.

3.10. Exercises 229

Exercise 3.8 Show how a relational algebra expression can be represented by a query tree,
whose internal nodes are relational algebra operators and leaf nodes are relation schemas.
Two query trees are said to be equivalent if the relational algebra expressions they represent
are equivalent.

Given a query tree, devise an algorithm for logical query optimisation which transforms
this query tree into an equivalent query tree by using the heuristic rule of Exercise 3.7 [U1l89].

Exercise 3.9 It is often claimed that the join operator is the bottleneck in relational database
query processing. Suggest how indexing relations at the physical level might be used to
optimise queries involving joins.

Exercise 3.10 We extend transactions to be parameterised transactions as indicated
hereafter. Assume that we have available a countably infinite set of variables and that
conditions may also be parameterised, i.e. they are of the form A = x or A "# x, where A
E schema(R} and x is a variable. For example, if we have a relation schema STUDENT, with
attributes NAME and COURSE, we can have a parameterised transaction over STUDENT,
called CHANGE_COURSE(x, y, z}, which is specified as

delete(NAME = x /\ COURSE = y},
insert(NAME = x /\ COURSE = z}.

A transaction call to a parameterised transaction, say P over R, is a transaction,
T over R, obtained by replacing all the variables in T by constants. For example,
CHANGE_COURSEOohn, Programming, Databases} is a transaction call to the parameterised
transaction CHANGE_COURSE(x,y, z}.

A transaction schema T over R is a finite set of parameterised transactions over R. The set
of relations generated by a transaction schema T over R, denoted by GEN(T}, is the set of
all relations that can be generated by the effect, on the the empty relation, of a sequence of
transaction calls to one or more of the parameterised transactions in T. For example, if T =
{CHANGE_COURSE} then GEN(T} is the set of all possible relations over STUDENT.

Let F be a set of FDs over Rand SAT(F} be the set of all relations over R that satisfies F.
Show that SAT(F} = GEN(T} for some transaction schema T over R [A V8S, AV89].

Exercise 3.11 Formulate an algorithm which decides whether a domain calculus query is
allowed or not (see Definition 3.50 in Subsection 3.3.1).

Exercise 3.12 Prove that a query Q is domain independent if and only if for all finite
underlying domains of R, DOM! (R) and DOM2(R}, and for all databases dover R such that
ADOM(Q} U ADOM(d} is a subset of both DOM! (R) and DOM2(R}, the equation

Q«d, DOM! (R))) = Q«d, DOM2(R}»

holds.

Note that the only difference between the above definition of domain independence and
Definition 3.47 is that we require DOM! (R) and DOM2(R} to be finite [Kif88]. (Hint: Show
that given a database d the answer Q«d, DOMj(R)}} does not depend on DOM/R} as long as
DOMj(R} is a superset of some sufficiently large finite domain with respect to Q and d.}

230 Chapter 3. The Relational Data Model

Exercise 3.13 Let Q be a domain calculus query over a database schema R whose output is a
relation with k attributes. Furthermore, let ADOM(d, Q) denote the set of all constant values,
ADOM(d) U ADOM(Q), and let ADOM(d, Qi denote the Cartesian product of ADOM(d, Q)
with itself k times, for k :::: 0, k E w.

Show that the following statements are equivalent [HS94c):

1) Q is domain independent.

2) For all databases dover R, Q(d) = Q(d) n ADOM(d, Q)k.

3) For all databases dover R, Q(d) remains invariant when we replace all the domains,
DOM(A), where A E schema(R), by DOM(A) n ADOM(d, Q).

Exercise 3.14 Let R be a relation schema, with schema(R) = {A, B, C, D, E, F, G}, together
with a set of FDs F = {A --+ BC, BD --+ E, EC --+ A, FG --+ E}. Compute the closure X+ with
respect to F for all sets X of one, two and three attributes of R.

Exercise 3.15 Develop a linear time algorithm in the size of a set F of FDs over R, which
computes the closure X+ of X with respect to F [BB79).

Exercise 3.16 A set of attributes X <; schema(R) is a subkey for R with respect to a set F of
FDs over a relation schema R ifit is a (not necessarily proper) subset of a key for R with respect
to F.

A subkey X for R with respect to F can be expanded into a superkey by adding to it attributes
AI, A2• Am, m :::: 0, such that X U {AI , A2, ... , Am} is a superkey for R with respect to F
but for each Ai+l> ° :s i < m, we have Ai+' f/. (X U {A,. A2, ... ,Ai})+.

Show that if X is a subkey for R with respect to F and A,. A2, ... , Am are chosen as above,
then X U Am is also a subkey for R with respect to F. Devise a polynomial-time algorithm
which, starting from a subkey for R with respect to F, expands it into a key for R with respect
to F [Kun85j.

Exercise 3.17 Suppose that for security reasons certain values in a relation are masked from
users by presenting them as null instead of their true value. For example, managers' salaries
may be confidential and thus masked as null. Demonstrate how security may be compromised
in the presence of FDs and INDs (see [Mic87]).

Exercise 3.18 A multilevel relation schema M contains two types of attribute: data attributes
Ai, which take on values from the domain of Ai extended with a distinguished value, null, and
classification attributes Ci, which take on values from the security lattice indicating the security
level needed to access Ai-values of tuples; Ci-values cannot be null. Given a relation rover
a multilevel relation schema M, a tuple t E r and a classification attribute Ci E schema(M),
we have that for a user with security level c :s t[Cil, trAil = v, for some data value v distinct
from null, and for a user with security level c > t[C;], t[Ai j = null. Thus a multilevel relation
rover M can be viewed as the union of standard relations, one for each security level in the
security lattice, such that users with a certain security level, say c, can view only those relations
at levels greater than or equal to c. Define the notion of a primary key for multilevel relations
[JS91a, }S91b, S}91).

3.10. Exercises 231

Exercise 3.19 Let F be a set of FDs over R and let us denote by C(F) the family of all closed
sets of attributes in schema(R) with respect to F, i.e. X E C(F) if and only if X = X+.

Show that C(F) is a lattice ordered by set inclusion, and that it is closed under intersection,
i.e. if X, Y E C(F), then X n Y E C(F). Show that C(F) is cover insensitive, i.e. if G is a cover of
F, then £(F) = C(G) [DK93j.

Exercise 3.20 Let C(F) be the lattice of closed sets as defined in Exercise 3.19. A closed set X
E C(F) is meet-irreducible if V Y, Z E C(F), X = Y n Z implies that either X = Y or X = Z. The
family of all meet-irreducible closed sets in C(F) is denoted by M(F).

Show that M (F) is the unique minimal subset of £(F) such that X E C(F) if and only if X
is the intersection of all the closed sets in M(F) that are supersets of X [BDFS84j.

Exercise 3.21 We now consider an alternative characterisation of M(F), which was defined
in the Exercise 3.20. Let MAX(F, A) be the family of all the maximal closed sets C(F) such that
V X E MAX(F, A), A rf- X. Show that the following equality holds [MR86aj:

M(F) = u MAX(F,A).
AEschema(R)

Exercise 3.22 A Numerical Dependency over a relation schema R (or simply an ND) is a
statementoftheformX~ky, where X, Y ~ Randk::: 1, k E w. AnNDX~kYissatisfiedin
a relation rover R, whenever Vt}, t2, ... , tb tk+! E r, if t!lXj = t2[Xj = ... = tk[Xj = tk+dXj
then 3i, j such that 1 :::: i < j :::: k + 1 and ti[Yj = tj[Yj. A set ofNDs N is satisfied in r, denoted
by r 1= N, whenever V X ~k YEN, r satisfies X ~k Y.

Show that an FD is a special case of an ND, i.e. when k = 1, and prove that the following
inference rules are sound for NDs, where N is a set ofNDs over R [GM85a, GM85bj:

1) IfN f- X ~k Y and W ~ schema(R), then N f- XW ~k YW.

2) IfN f- X ~k YZ, then N f- X ~k Yand N f- X ~k Z.

3) IfN f- X ~k Y and N f- Y ~m Z, then N f- X ~km YZ.

4) IfN f- X ~k Y, then N f- X ~k+! Y.

Exercise 3.23 The concept of a weak instance defined below allows us to formalise the notion
of a set F ofFDs over a relation schema R being globally satisfied in a database d over a database
schema R, with schema(R) = schema(R).

A relation rover R is a said to be a weak instance under F for a database dover R, if r 1= F
and for all ri E d, ri ~ 1l'schema(Ri)(r). We say that a database dover R satisfies F, written d 1=
F, if there exists a weak instance under F for d.

Give a polynomial-time algorithm in the sizes of d and F that tests whether d F= F or not
[Hon82j. (Hint: Pad each relation ri E d with unique nondistinguished variables in order
to convert ri to be a relation over R. Then take the union of all the padded relations ri E d
and invoke the chase procedure with respect to F on the resulting relation, interpreting the
constant values in the relations ri E d as distinguished variables. The resulting relation, when
the chase procedure terminates, can be used to check whether d 1= F or not.)

232 Chapter 3. The Relational Data Model

Exercise 3.24 We call an FD of the form K --+ schema(R}, where K is a key for a relation
schema R with respect to a set F of FDs over R a key dependency of F. Assume a database
schema R = {R}, R2, . . . , Rn}, with schema(R} = schema(R}, and such that with each relation
schema, Ri E R, we associate a set of key dependencies, Fi over Ri, where F = {FI , F2 , ... , Fn}.

A database d is locally satisfying with respect to F, if for all ri E d, ri F= hand d is said to
be globally satisfying with respect to F, if d F= F (see Exercise 3.23 for the precise definition of
when a database satisfies a set of FDs). We say that R is independent with respect to F if every
locally satisfying database with respect to F is also a globally satisfying database with respect
to F.

Prove that R is independent with respect to F if and only if R satisfies the uniqueness
condition with respect to F, which is defined below [Sag83j.

A database schema R satisfies the uniqueness condition with respect to F, if for all distinct
relation schemas Ri, Rj E R, there does not exist a key K of Rj with respect to Fj and an attribute
A E schema(R;} - K such that the closure of schema(Ri} with respect to F - {Fj} contains KA.

Exercise 3.25 We extend the definition of independence given in Exercise 3.24 to take into
account, both a set F of FDs over R and a set I of INDS over R, as follows. Let G be a cover of
the set of FDs that are logically implied by the data dependencies in both F and I. Then R is
said to be independent with respect to F and I if every database, which satisfies I and is locally
satisfying with respect to F, is also a globally satisfying database with respect to G [AC91).

Give an example of a set F ofFDs over R and a set I ofINDs over R such that R is independent
with respect to F but is not independent with respect to F and I. Give a simple condition which
guarantees that R is independent with respect to F if and only if R is independent with respect
to F and I.

Exercise 3.26 A set I of INDs over a database schema R is nonredundant if there does not
exist an IND a E I such that I - {a} F= a . Devise a polynomial-time algorithm for finding a
nonredundant cover of a set of typed INDs over R [MG90).

Exercise 3.27 Let X --+ --+ Y be a nontrivial MVD in a set :E of FDs and MVDs over a relation
schema R, and let K be a key for R with respect to the set ofFDs in :E+. Prove that either X--+
Y E :E+ or that K n Y i= 0 [Jaj86).

Exercise 3.28 A set F of FDs over R is said to be embedded in a database schema R if each FD
in F is embedded in some relation schema Ri E R.

Let F be a set of FDs over R that is embedded in a database schema R and satisfies the
following three conditions:

I} We have schema(R} = schema(R}.

2} For each FD X --+ Y E F, there exists a relation schema Ri E R such that X is a superkey
for Ri with respect to the set F[Rd of FDs, where F[Rd denotes the set of FDs that are
embedded in Ri.

3} For some Ri E R, schema(Ri } is a superkey for R with respect to F.

3.10. Exercises 233

Show that given a set F of FDs satisfying the above three conditions and a database dover
R, a relation rover R that satisfies I><I[RJ can be constructed by the sequence of joins

(... «rl 1><1 r2) 1><1 r3) 1><1 ••• 1><1 rn),

where d = {rl, r2, ... , rn} and ri F= F[Rd [Hon80J.

Exercise 3.29 Let F be a set of FDs over R, G be a nonredundant cover of F and H be a
minimum cover of F. Show that IGI :::: IHI(type(R) - 1) [Got87J.

Exercise 3.30 A database schema R dominates another database schema S with respect to a
query language, Q, if there exist sets of queries, QI and Q2 of Q, such that for every database
dl over R there exists a database d2 over S such that (qi(d l) I qi E Qd = d2 and (qj(d2) I
qj E Q2} = dl . Intuitively, this means that databases over R can always be restructured into
databases over S without any loss of information. Two database schemas Rand S are said to
be query-equivalent with respect to Q, if R dominates S with respect to Q and S dominates R
with respect to Q [Hu186J.

Now, let Rand S be two database schemas such that

1) R = {R}, S = {SI, S2} and schema(R) = schema(S).

2) F is a set of FDs over R, FI is a set of FDs over SI and F2 is a set of FDs over S2, with
F+ = (FI U F2)+' (That is, F is a cover of FI U F2.)

3) I = {SdX] ~ S2[X], S2[X] ~ SdX]} is a set of INDs over S, where X = schema(Sd n
schema(S2) and X -:f. 0. (That is, I asserts the pairwise consistency of databases over S.)

4) F+ contains either the FD X --+ schema(Sd or the FD X --+ schema(S2). (That is, S is a
lossless join decomposition of R with respect to F.)

Prove that Rand S are query-equivalent with respect to the query language that consists of
all possible relational expressions containing only projection and join [AABM82J.

Exercise 3.31 We define two subclasses of FDs which have been very useful in characterising
desirable properties in the design of incomplete information databases and ask you to prove
that when a set of FDs and proper circular INDs is reduced, then restricting the set of FDs
to one of these subclasses provides a sufficient condition for no interaction to occur. (See
Section 5.5 in Chapter 5 for motivation regarding these subclasses ofFDs.)

Firstly, we define the subclass ofFDs satisfying the intersection property. Two nontrivial FDs
of the form Rr X --+ A and Rr Y --+ A are said to be incomparable if X and Yare incomparable.
A set F of FDs over R satisfies the intersection property if VFj E F, VA E Rj, whenever there
exist incomparable FDs, Rr X --+ A, Rr Y --+ A E Ft, then Rr X n Y --+ A E Ft.

Secondly, we define the subclass ofFDs satisfying the split-freeness property. Two nontrivial
FDs of the form Rj: XB --+ A and Rj: Y A --+ B are said to be cyclic. A set F of FDs over R
satisfies the split-freeness property ifVFj E F, whenever there exist cyclic FDs, Rr XB --+ A,

Rj: YA --+ B E Ft, then either Rj: Y --+ B E Ft or Rj: (X n Y)A --+ B E Ft.

Prove that if I is proper circular, F satisfies either the intersection property or the split
freeness property and ~ = F U I is reduced, then F and I do not interact.

234 Chapter 3. The Relational Data Model

Exercise 3.32 A Template Dependency (TD) is a generalisation of a JD, which intuitively
asserts that if in a relation rover R we find tuples, tl, t2, . . . , tn, satisfying certain equalities
amongst their attribute values, then r must contain another tuple t, whose attribute values are
obtained from certain attribute values of the tuples ti, for i = 1, 2, ... , n [SU82l.

Formally, we write a TD over Ras T = tl, t2, . .. tkit, where the t;'s and t are tuples of variables
over R, and the variables appearing in t are a subset of those appearing in the t;' s. It is assumed
that no variable may be both the Ai-value and the Aj-value of any two (not necessarily distinct)
tuples, where Ai and Aj are distinct attributes in schema(R). (If this assumption holds for a
data dependency, then we say that the data dependency is typed, otherwise we say that it is
untyped. For example JDs are typed dependencies but INDs are untyped dependencies.)

A homomorphism h from a TD, T, to a relation, rover R, with type(R) = n, is a mapping from
the variables in T to values in r such that h(<VI, V2, . . . , vn» = <h(VI), h(V2), ... , h(vn».
A relation rover R satisfies a TD, T (i.e. r F= T), if whenever there is a homomorphism h from
T to r such that for all i = 1,2, ... , n, h(ti) E r, then h(t) E r also holds. Satisfaction of a set
of TDs in a relation and logical implication of a TD by a set of TDs are defined in the usual
manner (see Section 3.5). A TD T over R is trivial if it is satisfied by every relation over R.

Show, with an example, how any JD can be expressed as a TD. In addition, prove the
following statements about TDs over R [FMUY83l:

1) There exists a TD, T, such that for all other TDs, T', {T} F= T' holds, i.e. there is a strongest
TD over R.

2) There exists a nontrivial TD, T, such that for all nontrivial TDs, T', {T'} F= T holds, where
type(R) > 1, i.e. there is a weakest nontrivial TD over R. (Note that all TDs over R, with
type(R) = 1, are trivial.)

3) Iftype(R) = 2, then there are only three distinct TDs over R, up to renaming of variables.

4) TDs are closed under finite conjunction, i.e. if ~ is a finite set of TDs over R, then there
exists a single TD, T over R, such that I; F= T and {T} F= I;.

Exercise 3.33 Assume that the underlying database domain 1) is linearly ordered; for
example, 1) can be the set of natural numbers. Given a relation rover R we let t] ::::: t2

denote the fact that t] is less than or equal to t2 according to the lexicographical order induced
by the underlying linear order of 1), where the attributes in schema(R) are linearly ordered,
with att(i) ::::: att(j) if and only if i ::::: j. (See Section 1.9.2 of Chapter 1 for the definition of
lexicographical order.)

We define an Ordered Functional Dependency (OFD) over R to be a statement of the form
X '"V> Y, where X, Y ~ schema(R). An OFD X '"V> Y is satisfied in a relation rover R if whenever
t], t2 E rand t\ [Xl::::: t2[Xl, then it is also true that t] [Yl ::::: t2[Yl .

Give some examples illustrating the usefulness of the OFD. Which inference rules of
Armstrong's axiom system are unsound for OFDs? Suggest alternative sound inference rules
forOFDs.

Exercise 3.34 Let R be a relation schema and F be a set of FDs over R. Moreover, let R =
{R], R2}, with schema(R) = schema(R), and thus R] and R2 are projection views of R. Show
that R] and R2 are complementary views (see Definition 3.105 in Section 3.8) if and only if the
decomposition R is lossless with respect to F [CP84bl.

3.10. Exercises 235

Exercise 3.35 Assume a relation schema R and a singleton set F ofFDs over R containing the
FD, K ~ schema(R). Show that, when we disallow null values in r, the projection view Jl"x(r),
where r is a relation over R and X is a superset ofK, does not have a translator.

Exercise 3.36 Give sufficient conditions for a view containing a selection followed by a
projection to have a translator, assuming a database with a single relation rover R and a
singleton set F = (K ~ schema(R)} of FDs over R.

Exercise 3.37 It has been proposed to modify the definition of a translator by replacing the
condition that the view has a constant complement by the condition that the translation of a
view update must be minimal, in the sense that there is no transaction having fewer updates
(i.e. insertions, deletions and modifications) that realises the translation [Ke185J.

Show how this modified definition can be used to give a more intuitive semantics to view
updates involving selection. (Hint. Assume a simple selection formula of the form A = yes,
where DOM(A) = (yes, no} .)

In addition, show how the modified definition can be used to give semantics for view updates
involving the join of two relations over relation schemas R\ and R2, respectively, such that
the join attributes of R\ and R2, i.e. their common attributes, comprise a foreign key of R\
referencing the primary key of R2, where, apart from the primary keys of R\ and R2, no other
data dependencies are specified.

4. Relational Database Design

One of the key activities of an IT department is database design, which is part of the wider
activity of software analysis and design. Since the quality of the actual database depends, to a
large extent, on the quality of its design, it is important that the methodology and algorithms
used are known to be correct with respect to the requirements under consideration. One of
the advantages of using relational database systems is that they have a conceptually simple
tabular format which is easy to understand. The well-known normal forms, which are formally
presented in Section 4.4, give the database designer unambiguous guidelines in deciding which
databases are "good" in the quest to avoid "bad" designs that have redundancy problems and
update anomalies, which are discussed in Section 4.1. The central idea in relational database
design is that all the integrity constraints in the database should be describable in terms of
keys and foreign keys. As was shown in Section 3.6 of Chapter 3, keys and foreign keys are just
special cases of more general classes of data dependencies, i.e. FDs and INDs, respectively.
The classical normal forms considered in Section 4.4 all result in a vertical decomposition of
the database. That is, assuming that the decomposition R is lossless this corresponds to being
able to recover a relation rover R by projecting r onto R, resulting in a database {rrschema(Ri) (r)}
with R; E R, and then joining the projections. In Section 4.5 we consider the possibility of
a horizontal decomposition of a relation schema R, resulting in splitting R into two or more
union-compatible relation schemas, i.e. schemas having the same attribute set. In this case a
relation rover R will be split into two or more disjoint relations using one or more selection
operations and can then be recovered by applying the union operator.

Two important criteria that the database designer needs to take into account in order to
attain a decomposition with desirable properties are dependency preservation andlosslessness
with respect to combining the information via the natural join; both of these are discussed in
Section 4.2. Moreover, the database designer also needs to take into account query efficiency
and to avoid further redundancy caused by choosing a decomposition with too many relation
schemas in it. In some cases this may lead the database designer to denormalise the database
schema, meaning that we sacrifice being in a particular normal form by creating a single new
relation schema which replaces two or more existing relation schemas already in normal form.
By denormalisation we can enhance query efficiency, since the join operation of combining
the information in two or more relations in the database is the largest bottleneck of processing
relational queries. It may be the case that although a database schema is in the required normal
form, we have replicated information in two or more relation schemas. Such redundancy can
be avoided by removing all such replication. On the other hand, in a distributed environment
replicated information may be essential for query efficiency.

237

238 Chapter 4. Relational Database Design

Apart from the guidelines provided by the normal forms and desirable properties of
database schema, relational database technology provides us with the essential algorithms
for automating the design process. In Section 4.3 we discuss two fundamental approaches
to relational database design: the synthesis approach and the decomposition approach.
(You should not to confuse the decomposition approach with the other usage of the term
decomposition which is simply a database schema; the different usages of decomposition will
be clear from context). The synthesis approach is a bottom-up approach, i.e. we start from
the data dependencies, which in our case will be FDs, in order to obtain a database schema
in the required normal form. On the other hand, the decomposition approach is a top-down
approach, i.e. we start from the set of attributes schema(R) over which the FDs are defined
and decompose this set iteratively until the resulting database schema is in the desired normal
form. Several algorithms based on these two approaches are presented in Section 4.6. It is
important to note that some design problems have been shown to be NP-complete and thus
some of the design algorithms provide only heuristic solutions.

When designing a relational database practitioners often use the Entity-Relationship model,
described in Chapter 2, as a high level conceptual model. We demonstrate in Section 4.7 how
an ERD can be converted into a database schema in a desirable normal form. Thus we view
the entity relationship model as a convenient vehicle whose aim is to aid relational database
design.

From now on we will assume that R is a relation schema, F is a set of FDs over Rand R is a
decomposition of schema(R) with schema(R) = schema(R) (or simply R is a decomposition,
whenever R is understood from context).

4.1 Update Anomalies in Relational Databases

We have already assumed that relation schemas are in first normal form (lNF) in order to
obtain a database model with simple data structures and straightforward semantics. First
normal form relation schemas may possess the following two undesirable properties leading
to a bad database design:

• Update anomalies.

• Redundancy problems.

We illustrate these problems via three examples.

Example 4.1 Let EMPI be a relation schema, with schema(EMPI) = {ENAME, DNAME,
MNAME}, where ENAME stands for employee name, DNAME stands for department name
and MNAME stands for manager name. In addition, let FI = (ENAME -+ DNAME, DNAME
-+ MNAME} be a set of FDs over EMP!> implying that ENAME is the only key (and thus the
primary key) for EMPI' A relation rl over EMPI that satisfies FI is shown in Table 4.1.

Several problems arise with respect to EMPI and Fl ' Firstly, due to entity integrity and
the fact that ENAME is the primary key we cannot insert a tuple having a null ENAME-value.
Thus we cannot add information about a new department unless it has already hired one or
more employees. Such a problem is called an insertion anomaly.

4.1. Update Anomalies in Relational Databases 239

Secondly, the complement of the first problem arises when we would like to delete all the
employees from a department but still maintain the information about this department. Once
again this is not allowed, since we cannot have null ENAME-values due to the fact that ENAME
is a primary key. Such a problem is called a deletion anomaly.

Thirdly, assume that we would like to modify the MNAME-value in the first tuple of r[
from Peter to Philip. In this case the FD, ENAME -+ {DNAME, MNAME} (resulting from
ENAME being a key) is satisfied in the modified relation, but the FD DNAME -+ MNAME
(where DNAME is not a key) is violated in the modified relation. Thus when modifying the
MNAME-value in a tuple of rl it is not sufficient to check that the FDs resulting from the keys
for EMP I are satisfied in rl. A similar problem arises if we try to modify the DNAME-value in
the first tuple of r[to Maths. Such a problem is called a modification anomaly.

Fourthly, there is the problem of redundancy of information. In particular, for every
employee in a particular department the MNAME-value is repeated. Thus in r[the
MNAME-value for Computing appears thrice, since there are three employees in the
Computing department, and the MNAME-value for Maths appears twice, since there are
two employees in the Maths department. Such a problem is called a redundancy problem .

•
Table 4.1 The relation TJ over EMPI

ENAME DNAME MNAME
Mark Computing Peter

Angela Computing Peter
Graham Computing Peter

Paul Maths Donald
George Maths Donald

Example 4.2 LetEMP2 be a relation schema, with schema(EMP2) = {ENAME, CNAME, SAL},
where ENAME stands for employee name, CNAME stands for child name and SAL stands for
the employee's salary. In addition, let F2 = {ENAME -+ SAL} be a set of FDs over EMP2,
implying that {ENAME, CNAME} is the only key (and thus the primary key) for EMP2. A
relation r2 over EMP2 that satisfies F2 is shown in Table 4.2.

As with the previous example several problems arise with respect to EMP2 and F2. An
insertion anomaly occurs when we try to insert a new employee having no children, since
due to entity integrity null values are not allowed over CNAME. A deletion anomaly occurs
when we have made a data entry mistake and, for example, we discover that Donald does
not really have any children. Again, due to entity integrity we cannot delete all of Donald's
children. A modification anomaly occurs when we attempt to modify the SAL-value in the
first tuple from 25 to 27. The modified relation still satisfies the FD {ENAME, CNAME} -+
SAL, arising from the key {ENAME, CNAME}, but the FD ENAME -+ SAL will be violated.
Finally, a redundancy problem occurs, since for every employee the SAL-value is repeated for
each child of that employee. •

Example 4.3 Let ADDRESS be a relation schema, with schema(ADDRESS) = {S, C, P}, where
S stands for STREET, C stands for CITY and P stands for POSTCODE. In addition, let F3 =

240 Chapter 4. Relational Database Design

Table 4.2 The relation T2 over EMP2

ENAME CNAME SAL
Jack Jill 25
Jack Jake 25
Jack John 25

Donald Dan 30
Donald David 30

{SC --+ P, P --+ C} be a set ofFDs over ADDRESS. Both SC and PS are keys for ADDRESS with
respect to F3, so assume that PS is the primary key. A relation s over ADDRESS that satisfies
F3 is shown in Table 4.3.

As with the previous two examples several problems arise with respect to ADDRESS and
F3. An insertion anomaly occurs when we try to insert a new address which has not yet been
assigned a postcode, since due to entity integrity null values are not allowed over POSTCODE.

A deletion anomaly occurs when we would like to delete the postcode of an address, say,
due to an erroneous postcode being recorded for a particular address. Again, due to entity
integrity we cannot delete the postcode.

A modification anomaly occurs when we attempt to modify the CITY -value in the first tuple
of s from London to Bristol. SC and PC are still keys in the modified relation but P --+ C will be
violated. Finally, a redundancy problem occurs, since for every postcode the city is repeated
for each street in that postcode. •

Table 4.3 The relation s over ADDRESS

STREET CITY POSTCODE
Hampstead Way London NWll

Falloden Way London NWll
Oakley Gardens London N8

Gower St London WClE
Amhurst Rd London E8

In the remaining part of this section we will formalise the notions of update anomalies and
redundancy problems.

We call a set F of FDs over R canonical if all the FDs in F are nontrivial and of the form X
--+ A, with A being a single attribute. For the rest of the chapter, when convenient, we will
assume without any loss of generality that sets ofFDs are canonical; this simplifies some of the
definitions and proofs that follow.

Definition 4.1 (Key dependency) Let R be a relation schema and F be a set of FDs over R.
An FD of the form K --+ schema(R), where K is a key for R with respect to F is called a key
dependency of F. The set of all key dependencies that are logically implied by F is denoted by
KEYS(F).

(Recall from Subsection 3.6.1 of Chapter 3 that an attribute A E schema(R) is prime with
respect to F if it is a member of the left-hand side of any FD in KEYS(F).) •

4.1. Update Anomalies in Relational Databases 241

We are making the assumption that KEYS(F) contains all the fundamental information
a database designer needs to know about the integrity constraints over R. A less general
approach, which is subsumed by the above definition, is that KEYS(F) contains only the
primary key of R with respect to F.

A compatible tuple with a relation r is a tuple such that if it is inserted in r then the resulting
relation does not violate KEYS(F).

Definition 4.2 (Compatible tuple) Let R be a relation schema, F be a set ofFDs over Rand r
a relation over R. A tuple t over R is compatible with r, with respect to F (or simply compatible
with r whenever F is understood from context), if r U {t} F KEYS(F). •

A relation schema R has an insertion anomaly if there is a relation rover R that satisfies F
and a tuple t over R such that t is compatible with r but when we insert t into r the resulting
relation violates F.

Defmition 4.3 (Insertion anomaly) A relation rover R has an insertion violation with respect
to a set F of FDs over R (or simply r has an insertion violation if F and R are understood from
context) if

1) r F F, and

2) there exists a tuple t over R which is compatible with r but r U It} [;6 F.

The relation schema R has an insertion anomaly with respect to F (or simply R has an
insertion anomaly if F is understood from context) if there exists a relation rover R which has
an insertion violation. •

A relation schema R has a modification anomaly if there is a relation rover R that satisfies
F, a tuple u in r and a tuple t over R such that t is compatible with the relation resulting from
deleting u from r but if we delete u from r and insert t into the result, then the resulting relation
violates F.

Defmition 4.4 (Modification anomaly) A relation rover R has a modification violation with
respect to a set F of FDs over R (or simply r has a modification violation if F is understood
from context) if

1) r F F, and

2) there exists a tuple u E r and a tuple t over R such that t is compatible with r - {u} but
(r - {u}) U It} [;6 F.

The relation schema R has a modification anomaly with respect to F (or simply R has a
modification anomaly ifF is understood from context) if there exists a relation rover R which
has a modification violation. •

We view a deletion anomaly as a special case of a modification anomaly, since in order
for such an anomaly to occur we must first remove one or more tuples from the original

242 Chapter 4. Relational Database Design

relation and then insert a new tuple into the resulting relation. For example, with reference
to the relation rl over EMP!> in order to record the information about a department having
no employees we must first remove all the employee tuples for that department and only
then insert the information about the department. This new tuple must have a nonnull
ENAME-value, since ENAME is its primary key, and thus this department has at least one
employee leading to a contradiction. Straightforward deletion of tuples from a relation does
not cause any problems, as it can be verified that if a relation r satisfies F, then the relation
resulting from removing a tuple t from r also satisfies F.

A relation schema R has a redundancy problem if there is a relation rover R that satisfies
F, there is an FD X ~ A in F and two distinct tuples in r that have equal XA-values.

Definition 4.5 (Redundancy problem) A relation rover R is redundant with respect to a set
F ofFDs over R (or simply r is redundant ifF and R are understood from context) if

1) r F F, and

2) there exists an FD X ~ A E F and there exist two distinct tuples, tl , t2 E r, such that
tl [XAj = t2[XAj.

The relation schema R has a redundancy problem with respect to F (or simply R has a
redundancy problem if F is understood from context) if there exists a relation rover R which
is redundant. •

We now show the equivalence of the update anomalies and the redundancy problem [Vin91j.

Theorem 4.1 Let F be a set of FDs over a relation schema R. Then the following statements
are equivalent:

1) R has an insertion anomaly with respect to F.

2) R has a redundancy problem with respect to F.

3) R has a modification anomaly with respect to F.

Proof. Firstly, we prove that if R has an insertion anomaly then R has a redundancy problem.
Suppose that R has an insertion anomaly and as a consequence there exists a relation rover
R such that r F F and t is a tuple which is compatible with r but r U {t} ~ F. It follows that
for some FD X ~ A E F, where X is not a superkey for R with respect to F, r U {t} ~ X -+ A,
since r U It} F KEYS(F). Moreover, for some tuple t' E r, tt' , t} ~ X -+ A. Let u be a tuple
over R, with u[X+j = t'[X+], and such that for all attributes BE schema(R) - X+, u[Bj is a
distinct value not appearing in r. (Recall Definition 3.60 given in Subsection 3.6.1 of Chapter 3,
namely that X+ is the closure of X with respect to F and that Y <; X implies that y + <; X+.)
Now, u rt r, since X is not a superkey. Thus on replacing r by r U {u} in Definition 4.5 of a
redundancy problem the result follows, since it is evident that r U {u} F F.

Secondly, we prove that ifR has a redundancy problem then R has a modification anomaly.
Suppose that R has a redundancy problem and as a consequence there exists a relation rover
R such that r F F, and for some FD X -+ A E F there exist two distinct tuples tl, t2 E r such

4.1 . Update Anomalies in Relational Databases 243

that t, [XA] = t2[XA) . 1t follows that X is not a superkey for R with respect to F and thus each
key K for R contains some attribute that is not in X. Now, let t be a tuple over R, with t[X+ - A]
= t, [X+ -A], and such that for all attributes BE schema(R) - (X+ -A), t[B] is a distinct value
not appearing in r. The result follows, since t is compatible with r - ltd but (r - (td) U {t} tt=
F.

Thirdly, we prove that if R has a modification anomaly then R has an insertion anomaly.
Suppose that R has a modification anomaly and as a consequence there exists a relation rover
R such that r F F and t is a tuple over R which is compatible with r - {u} but (r - (u)) U {t} tt=
F for some tuple u E r. The result follows by replacing r by r - {u} in Definition 4.3 of an
insertion anomaly. 0

Recall the definitions of inclusion dependency (Definition 3.69) and its satisfaction
(Definition 3.70) given in Subsection 3.6.7 of Chapter 3, which generalise the notion of
referential integrity. In particular, the IND R[X] <; sty] is satisfied in a database dover
R, with R, S E R, if Jl'x(r) <; Jl'y(s), where rand s are the relations in dover Rand S,
respectively. Also recall the definitions of noncircular INDs (Definition 3.71) and key-based
INDs (Definition 3.72) given in Subsection 3.6.7 of Chapter 3. In particular, a set I of INDs
over R is non circular if the IND digraph G[= (N, E) is acyclic. The nodes in N are labelled by
the relation schemas in R and there is an arc in E from R to S if there is a nontrivial IND R[X] ~
sty] in I (R = S is possible). In addition, an IND R[X] <; sty) is superkey-based, respectively
key-based, if Y is a superkey, respectively a key, for S with respect to a set F of FDs over R. If
R[X] <; sty] is key-based and Y is a primary key for S then X is a foreign key for R. Thus when
X is a foreign key, then a key-based IND provides a formalisation of referential integrity.

We illustrate the problems that arise with INDs that are not key-based with two examples.
It is interesting to observe that there is very little material in the database literature concerning
anomalies and redundancy problems that arise as a result of referential integrity constraints
(cf. [CA84, MR86b, LG92, MR92a, Mar94, LV99]).

Example 4.4 Let HEAD be a relation schema, with schema(HEAD) = {H, D}, where H stands
for head of department and D stands for department, and let LECT be a relation schema, with
schema(LECT) = {L, D}, where L stands for lecturer and as before D stands for department.
In addition, let d = {rl' r2} be a database over R = {HEAD, LECT}, where r, over HEAD is
shown in Table 4.4 and r2 over LECT is shown in Table 4.5. Furthermore, let F = {HEAD: H
-+ D, LECT: L -+ D} be a set ofFDs over R and 1= (HEAD[HD) <; LECT[LD]} be a setofINDs
over R. The reader can verify that d satisfies both F and I. We note that I U (F - (HEAD: H
-+ D}) F HEAD: H -+ D by the pullback inference rule and thus the FD HEAD: H -+ D E F
is redundant. (See Subsection 3.6.11 of Chapter 3 for the definition of the pullback inference
rule and other interactions between FDs and INDs.) We also note that we have not assumed
that HEAD: D -+ H is in F and thus a department may have more than one head.

Two problems arise with respect to Rand F U I. Firstly, the interaction between F and I may
lead to the logical implication of data dependencies that were not envisaged by the database
designer and may not be easy to detect; recall from Subsection 3.6.11 of Chapter 3 that the
implication problem for FDs and INDs is in general intractable. In this example the pullback
rule implies that an FD in F is redundant.

Secondly, the IND HEAD[HD] <; LECT[LD] combined with the FD LECT: L -+ Dimply
that the attribute D in HEAD is redundant, since the department of a head can be inferred

244 Chapter 4. Relational Database Design

from the fact that L is a key for LECT. (Formally this inference can be done with the aid of a
relational algebra expression which uses renaming, join and projection.) Thus HEAD[HD]
S; LECT[LD] can be replaced by HEAD[H] S; LECT[L] and the attribute D in HEAD can be
removed without any loss of information. (This point is discussed in [Sci86].) The problem
here is tha tthe righ t -hand side, {L, D}, of the IND HEAD [HD] S; LECT [LD j is a proper superset
of a key, namely the key L for LECT. •

Table 4.4 The relation TJ over HEAD Table 4.5 The relation T2 over lECT

H D L D
Peter Computing Peter Computing

Donald Maths Angela Computing
Paul Maths Mark Computing

Donald Maths
Paul Maths
Ray Maths

Example 4.5 Let EMP be a relation schema, with schema(EMP) = {E, P}, where E stands
for employee name and P stands for project title, and let PROI be a relation schema, with
schema(PROJ} = {P, L}, where as before P stands for project title and L stands for project
location. In addition, let d = {rl ' r2} be a database over R = {EMP, PROn, where rl over EMP
is shown in Table 4.6 and r2 over PROI is shown in Table 4.7. Furthermore, let F = {EMP: E---+
P} be a set ofFDs over R and 1= {EMP[Pj S; PROJ[P]} be a set ofINDs over R. The reader can
verify that d satisfies both F and I. We note that a project may be situated in several locations
and correspondingly a location may be associated with several projects and thus {P, L} is the
primary key for PROI.

Let us assume that an employee working on a project works in one location only. The
problem that arises is that the right-hand side, P, of the IND EMP[Pj S; PROJ[Pj is a proper
subset of a key. Thus F U I does not provide us with sufficient information in order to ascertain
in what location the employee is actually working in. It follows that a new attribute, say L',
must be added to EMP and the IND EMP[P] S; PROJ[P] be replaced by EMP[PL'j S; PROJ[PLj.

Even if an employee is assumed to work in all locations of the project he/she is working
on a problem arises, which is related to an insertion anomaly. Suppose that an employee is
assigned to a project which has not yet been allocated a location. Due to entity integrity such
a project cannot be recorded in the relation over PROI. However, if the project is recorded
in the relation over EMP then the IND EMP[Pj S; PROJ[P] is violated. Therefore projects are
always associated with locations and thus it is sensible to carry out the modifications to the
relation schema EMP and the set I of INDs mentioned above. •

Table 4.6 The relation 'lover EMP Table 4.7 The relation '2 over PROJ

E P P L
Mark Alpha Alpha London

Naomi Beta Beta London
Alpha Paris

4.2. Desirable Properties of Database Decompositions 245

We defer the formalisation of the problems exhibited by the above examples that arise in
the presence of INDs to Subsection 4.4.4. We now illustrate with an example the problems
that arise with sets ofINDs that are circular (cf. [Sci86)).

Example 4.6 Let BOSS be a relation schema with schema(BOSS) = {EMP#, MGR#} and let I
be the singleton circular IND set {BOSS[MGR#] ~ BOSS[EMP#]} asserting that every manager
is also an employee. Thus, if r is a relation over BOSS and we insert the tuple <e, m> into
r, then we also need to insert a tuple <m, x> for some employee x, who is the manager of
m. It follows that r must contain a tuple of the form <x, x> for some employee x, since r
must be finite. Thus we must record the fact that at least one employee must be a manager of
himself/herself.

We can solve this problem by replacing the relation schema BOSS by the two relation schemas
EMPS, with schema(EMPS) = {EMP#}, and BOSSES, with schema(BOSSES) = {MGR#}, and
replacing I by the noncircular set {BOSSES [MGR#] ~ EMPS[EMP#]}. Moreover, in order not
to lose the knowledge of who the manager of a particular employee is, we can safely assume
that information pertaining to departments including the MGR# of its manager is contained
in a separate department relation schema, say DEPT. •

4.2 Desirable Properties of Database Decompositions

The first desirable property of a decomposition R is that it be a lossless join decomposition
with respect to F. Recall from Subsection 3.6.4 of Chapter 3 that a lossless join decomposition
implies that we can project a relation onto a decomposition and then join the projections
without loss of information. In order to refresh the reader's memory we repeat the formal
definition oflossless join decomposition.

Definition 4.6 (Lossless join decomposition) Let R = {Rl, R2, ... , Rn} be a database schema
and recall that schema(R) = UiE[schema(Ri), where I = {I, 2, ... ,n}. Then R is a lossless
join decomposition of schema(R) with respect to a set F of FDs (or simply the decomposition
R is lossless with respect to F) if for all relations, rover R, with schema(R) = schema(R), such
that r F= F, the following equation holds:

•
Recall from Subsection 3.6.6 of Chapter 3 that the projection of a set F of FDs over R onto

a relation schema S is the subset of FDs X ~ Y E F such that both X and Yare contained in
schema(S). In order to refresh the reader's memory we again repeat the formal definition of
the projection of a set F of FDs onto a relation schema.

Defmition 4.7 (Projection of a set of FDs) The projection of a set F of FDs over R onto a
relation schema S, with schema(S) ~ schema(R), denoted by F[S], is given by

F[S] = (X ~ Y I X ~ Y E F andXY ~ schema(S)}.

The FDs in F[S] are said to be embedded in S. The subset of FDs in F embedded in a
decomposition R of schema(R), denoted by F[R], is the set F[R] = U~l F[R;J. •

246 Chapter 4. Relational Database Design

The second desirable property of a decomposition R is that it be dependency preserving
with respect to F. Informally, R is dependency preserving with respect to F, if the closure of
the union of the subsets of F that are embedded in the relation schemas Rj E R is equal to the
closure ofF.

Definition 4.8 (Dependency preserving decomposition) Let R be a decomposition and let
F be a set of FDs over R, with schema{R) = schema{R). Then R is a dependency preserving
decomposition with respect to F if there exists a cover G of F such that G[Rj + = P+, i.e. such
that all the FDs in G are embedded in R. •

We observe that G[Rj+ = p+ is true ifand onlyif{P+[R))+ = P+ .

Example 4.7 Consider a relation schema EMPLOYEE with four attributes: E#, ENAME (N),
PROJECT (P) and LOCATION (L) together with the set F of FDs over EMPLOYEE, where F =
{E# --+ schema{R), P --+ L}.

Let R = {R" R2} be a decomposition of {E#, N, P, L} with schema{R,) = {E#, N, P} and
schema{R2) = {E#, L}. It can easily be verified that P --+ L ~ p+ [Rj and thus R is not dependency
preserving with respect to F.

On the other hand, the decomposition S = {S" S2), with schema{Sd = {E#, N, P} and
schema{R2) = {P, L} is easily seen to be dependency preserving with respect to F, i.e. F[Rj+ =
P+.

Let STUD_POS be a relation schema, describing the linear ordering of students in a class,
with the three attributes: SNAME (N), SUBJECT (S) and POSITION (P). Let F be a set ofFDs
over STUD_POS, where F = {NS --+ P, SP --+ N} . It can be verified that for no decomposition
R of {N, S, PI, where for each Ri in R schema{Ri) is properly contained in {N, S, P), is R
dependency preserving. •

The following theorem was proved in [BDB79, LT83, Var84bj.

Theorem 4.2 Let R be a database schema and F be a set of FDs over R, with schema{R) =
schema{R). Then the following statements are true:

1) If R is a lossless join decomposition of schema{R) with respect to F, then there exists S
E R such that schema{S) is a superkey for R with respect to F.

2) If R is a dependency preserving decomposition with respect to F, and there exists a
relation schema S E R such that schema(S) is a superkey for R with respect to F, then R
is a lossless join decomposition of schema{R) with respect to F.

Proof. Firstly, we prove (I). By Theorem 3.29 given in Subsection 3.6.4 of Chapter 3 concerning
lossless join decompositions, we have that CHASE(T(R), F) has a winning row. We prove (1)
by induction on the minimal number, say k, of chase steps required to produce a winning row
in CHASE(T(R), F).

Basis. If k = 0, then the result follows vacuously, since R E R.

Induction. Assume the result holds when the minimal number of chase steps required to
produce a winning row is k; we then need to prove that the result holds when the minimal
number of chase steps required to produce a winning row is k + 1.

The Synthesis Versus Decomposition Approaches to Relational Database Design 247

Suppose that the last chase step applies the nontrivial FD X --+ A E F to rows Wi and Wj
in the penultimate state of T{R) during the execution of CHASE{T{R), F) and that Wi is a
winning row. By induction hypothesis F 1= schema{Ri) --+ schema{R) - A holds. In particular,
F 1= schema{Ri) --+ X holds by the decomposition and union inference rules. The result that
schema{Ri) --+ schema{R) follows by the transitivity and union inference rules.

Secondly, we prove (2). Suppose that S E R is a superkey for R with respect to F and that
X denotes the set of attributes schema{S). Also, let G denote a cover of the set p+ [Rl of FDs
embedded in R. Then X is also a superkey for R with respect to G, since C+ = p+ due to
the fact that R is a dependency preserving decomposition. It follows that CLOSURE(X, G) =
CLOSURE(X, F) = schema(R), where the algorithm CLOSURE that computes X+ is given as
Algorithm 3.8 in Subsection 3.6.3 of Chapter 3.

By inspecting the algorithm CLOSURE it can be verified that there exists a sequence of FDs
in C+, X\ --+ Y\, X2 --+ Y2 , ••. , Xn --+ Yn, satisfying the following property for 1 ::s i ::s n:

schema{Ro) = schema(S) = X and schema(Ri) = Xi Yi, where Ri-\, Ri E R and Xi S; U;:~
schema(Rj)' The result now follows by induction on the number n of relation schemas in R,
recalling that ifR contains two relation schemas then the result follows by Corollary 3.31 given
in Subsection 3.6.4 of Chapter 3. 0

4.3 The Synthesis Versus Decomposition Approaches to
Relational Database Design

There are two competing approaches to relational database design: the decomposition
approach [Cod72al and the synthesis approach [Ber76]. Both approaches start from a relation
schema R and a set F of FDs over R and obtain a decomposition R of schema{R) possessing
some desirable properties. (There is an unfortunate double meaning in the usage of the word
decomposition; a decomposition of schema(R) has already been defined as a database schema
R, with schema(R) = schema(R), while the decomposition approach discussed in this section
is a method of obtaining a database schema. The different usages of the term decomposition
will be clear from context.)

The decomposition approach is a recursive process which at each step chooses an FD X
--+ Y E F satisfying certain conditions and then replaces R with two schemas, R\ and R2,
such that schema(Rd = XY and schema(R2) = schema(R) - (Y-X). The set ofFDs over R\
associated with R\ is P+[Rtl and the set of FDs over R2 associated with R2 is P+ [R21. The
process terminates when each relation schema in the resulting decomposed database schema
(or decomposition) possesses the desirable properties the database designer is aiming at.

An inherent difficulty with this approach is that, as shown in Subsection 3.6.6 of Chapter 3,
computing a cover of p+ [R;] is intractable. Thus in order for this approach to be feasible (i.e.
polynomial-time computable) the decomposition needs to be carried out together with an
efficient computation of a cover of p+ [Ri]. Another drawback of the decomposition approach
is that if we change the order in which the FDs X --+ Yare processed then the resulting database
schema may also change and the quality of the decomposition may be affected. For instance
changing the order in which the FDs in F are processed may result in one decomposition
being dependency preserving and another not being so, or in one decomposition having more
relation schemas than another (see [Fag77b, Section 4] for a discussion on these issues).

248 Chapter 4. Relational Database Design

The main advantage of the decomposition approach is its simplicity. Another advantage
is that the resulting decomposition is lossless. This losslessness can be proved by a
straightforward induction on the cardinality of the resulting database schema, noting that
when the cardinality of the database schema is two then the result follows by Corollary 3.31
given in Subsection 3.6.4 of Chapter 3.

Example 4.8 Let EMP be an employee relation schema, with schema(EMP} = {EN, SAL, CN},
where EN stands for employee name, SAL stands for salary and CN stands for child name. In
addition, let FI = {EN 4- SAL} be a set ofFDs over EMP.

Using the decomposition approach we obtain the database schema {RI, R2}, with
schema(RI} = {EN, SAL} and schema(R2} = {EN, CN}. This decomposition is lossless and
dependency preserving with respect to Fl' •

Example 4.9 Let DEPT be a department relation schema, with schema(DEPT} = (EN, DN,
MGR, SEC), where EN again stands for employee name, DN stands for department name,
MGR stands for manager name and SEC stands for the name of the manager's secretary. In
addition, let F2 = (EN 4- DN, DN 4- MGR, MGR 4- SEC) be a set of FDs over DEPT.

If we first choose the FD MGR 4- SEC and then the FD DN 4- MGR we obtain the
decomposition {RI, R2, R3}, with schema(Rd = (MGR, SEC), schema(R2} = {DN, MGR} and
schema(R3} = {EN, DN}. This decomposition is lossless and dependency preserving with
respect to F2.

On the other hand, if we first choose the FD EN 4- DN and then the FD MGR 4- SEC we
obtain the decomposition {Rt, Rz, R3}, with schema(Rd = {EN, DN}, schema(Rz} = (MGR,
SEC) and schema(R3} = {MGR, EN}. This decomposition is lossless but not dependency
preserving with respect to Fz. •

The synthesis approach uses the set F of FDs directly in order to obtain a decomposition
of schema(R} possessing the required desirable properties. Normally, a cover G of F is first
obtained in polynomial time; such a cover G is more desirable than F, if it removes from F as
much redundancy as possible. Then a preliminary decomposition of schema(R} is obtained
by creating a relation schema, Rj, with schema(Rj} = XY, for each FD X 4- Y E G. This
decomposition is dependency preserving with respect to F, since G is a cover of F. If the
resulting decomposition is not lossless then a key is added to it thus obtaining a lossless
decomposition by Theorem 4.2. Finally, improvements are made to the decomposition; for
example, by removing attributes [BM87) or adding attributes [Sci83).

The synthesis approach is more complex than the decomposition approach, since heuristics
such as adding or removing attributes may have to be used in order to obtain the required
desirable properties. On the other hand, it is not always possible to obtain a decomposition
which is dependency preserving and also satisfies the required desirable properties (for
example being in Boyce-Codd normal form), so the improvements made to the initial
decomposition may destroy some desirable property or properties (which may not be
required).

Example 4.10 Assume the same relation schema EMP and the set of FDs FI over EMP as
in Example 4.8. Using the synthesis approach we obtain the same database schema {Rio Rz},
with schema(Rd = {EN, SAL} and schema(R2 } = {EN, CN}, as was obtained by using the
decomposition approach. •

4.4. Normal forms 249

Example 4.11 Assume the same relation schema DEPT and the set of FDs F2 over DEPT as
in Example 4.9. Using the synthesis approach directly on F2 we obtain the database schema
{R1, R2, R3}, with schema(Rd := {EN, DN}, schema(R2):= {MGR, SEC} and schema(R3):= {DN,
MGR}. •

4.4 Normal Forms

Normal forms were introduced in order to solve the anomalies and redundancy problems that
may be present in 1NF relation schemas. Each normal form enforces some desirable properties
so that, if the relation schema is in that normal form, various problems disappear. We will
present several normal forms with respect to functional dependencies and one normal formal
form with respect to functional and inclusion dependencies. We will not deal with more general
normal forms that take into account other types of integrity constraint. In Subsection 4.4.1 we
present Second Normal Form (2NF), in Subsection 4.4.2 we present Third Normal Form (3NF),
in Subsection 4.4.3 we present Boyce-Codd Normal Form (BCNF), and in Subsection 4.4.4 we
present Inclusion Dependency Normal Form (IDNF).

Other normal forms which involve other types of integrity constraint have also been
suggested. For example, Fourth Normal Form (4NF) has been suggested as a normal form for
FDs and MVDs [Fag77a, Fag77bj. Fifth Normal Form (5NF), also called Project-Join Normal
Form (PJNF), has been suggested as a normal form for FDs and JDs [Fag79j . Finally, an
ultimate normal form, called Domain-Key Normal Form (DKNF), which subsumes all of the
above-mentioned normal forms (apart from IDNF), was suggested by Fagin in [FagSlj.

All the normal forms incorporate keys and entity integrity into the design process, the
underlying idea being that every integrity constraint specified for the application in hand
should be logically implied by the set of keys relevant to the application. IDNF is a normal
form which incorporates foreign keys and referential integrity into the design process, the
underlying idea being that every integrity constraint should be logically implied by the keys and
key-based INDs relevant to the application. For semantic reasons, discussed in Example 4.6
of Section 4.1, and computational problems arising with respect to the implication problem in
the presence of circular INDs, which are discussed in Subsections 3.6.S and 3.6.10 of Chapter 3,
the set of INDs is restricted to be noncircular.

Relational database design methods that take into account both FDs and MVDs can be
found in [ZMSl , LieS5, BKS6, Y092a, Y092bj.

It is worth mentioning that there may be some conflict between obtaining a decomposition
which is in a certain normal form and the performance of query processing. For example, let
PARTS be a relation schema, with schema(PARTS) := {PNO, PNAME, QTY} and SUPPLIER
be a relation schema, with schema(SUPPLIER) := {SNO, PNO, PRICE}. Suppose also that R:=
{PARTS, SUPPLIER} is a decomposition in a certain normal form. Moreover,letd = {r1, r2} be
a database over R, where r1 is a relation over PARTS and r2 is a relation over SUPPLIER. Now,
suppose that the most common query users are interested in is r1 ~ r2. In this case it may be
better to maintain the information in a single relation over a relation schema whose attribute
set is schema(PARTS) U schema(SUPPLIER). The act of joining relation schemas together in
order to increase response time of query processing is called denormalisation. A minimal
requirement of denormalising two relation schemas is that they join together losslessly with

250 Chapter 4. Relational Database Design

respect to the specified set of FDs. Another reasonable requirement is that of dependency
preservation, i.e. that the denormalised database schema embeds a cover of the projection
of the given set of FDs onto the resulting denormalised database schema. Given that the
normalised database schema is dependency preserving the resulting denormalised database
schema will also preserve the data dependencies. The trade off between normalisation and
denormalisation is discussed in [SS821.

4.4.1 Second Normal Form (2NF)

Second normal form was first defined in [Cod72al. Intuitively, a relation schema is in second
normal if it is in first normal form and every non prime attribute is fully dependent on each
key for the relation schema with respect to its set F of FDs.

Definition 4.9 (2NF) A relation schema R is in Second Normal Porm (2NF) with respect to a
set F of FDs over R (or simply in 2NF if F is understood from context) if for every nontrivial
FD X --+ A E F, either X is not a proper subset of a key for R with respect to F or A is a prime
attribute.

A decomposition R is in 2NF with respect to a set F of FDs over R, with schema(R) =
schema(R), if each Ri E R is in 2NF with respect to p+ [Ri I. (When no ambiguity arises we will
often say that Ri E R is in 2NF with respect to F to mean that Ri E R is in 2NF with respect to
P+[R;l.) •

Let us consider the relation schema EMP2 of Example 4.2 together with its set P2 of FDs.
EMP2 is not in 2NF, since ENAME --+ SAL is a nontrivial FD, where ENAME is a proper subset
of the key {ENAME, CNAME} and SAL is not a prime attribute. The reader can verify that the
decomposition, {EMPi, EM~}, with schema(EMPi) = {ENAME, SAL} and schema(EM~) =
{ENAME, CNAME} is in 2NF with respect to P2'

We next give an alternative characterisation of 2NF, which is an immediate consequence of
Definition 4.9.

Lemma 4.3 A relation schema R is in 2NF with respect to a set F of FDs if and only if for
every nontrivial FD X --+ A E F, either X is a superkey for R with respect to F, or at least one
of the attributes in X is non prime, or A is a prime attribute. 0

2NF is not usually employed in practice as an end in itself. Rather it can be viewed as an
intermediate step towards achieving 3NF.

4.4.2 Third Normal Form (3NF)

Third normal form was first defined in [Cod72al. Intuitively, a relation schema is in third
normal if it is in second normal form and there is no nonprime attribute that is transitively
dependent on a key for the relation schema with respect to its set ofFDs.

4.4. Normal Forms 251

Defmition 4.10 (3NF) A relation schema R is in Third Normal Porm (3NF) with respect to a
set F of FDs over R (or simply in 3NF if F is understood from context) if for every nontrivial
FD X --+ A E F, either X is a superkey for R with respect to F or A is a prime attribute.

A decomposition R is in 3NF with respect to a set F of FDs over R, with schema(R} =
schema(R), if each Ri E R is in 3NF with respect to p+ [Rd. (When no ambiguity arises we will
often say that Ri E R is in 3NF with respect to F to mean that Ri E R is in 3NF with respect to
P+[Rd.) •

Let us consider the relation schema EMPI of Example 4.1 together with its set of FDs Pl'
The reader can verify that EMPI is in 2NF with respect to Pl' On the other hand, EMPI is
not in 3NF, since DNAME --+ MNAME is a nontrivial FD but DNAME is not a superkey for
R with respect to PI> and, in addition, MNAME is not a prime attribute. The reader can
ascertain that the decomposition, {EMPt, EMPi} , with schema(EMPt} = {ENAME, DNAME}
and schema(EMPi) = {DNAME, MNAME}, is in 3NF with respect to h

Lemma 4.4 If a relation schema R is in 3NF with respect to a set F of FDs, then it is also in
2NF with respect to F. 0

We next proceed to give an alternative characterisation of 3NF.

Definition 4.11 (Transitively dependent attribute) Let R be a relation schema and F be a set
of FDs over R. An attribute A E schema(R} is transitively dependent on a set of attributes X
~ schema(R) with respect to F (or simply A is transitively dependent on X if F is understood
from context) if there exists a set of attributes Y ~ schema(R) such that F F= X --+ Y, F [;6 Y --+
X, F F= Y --+ A, A ¢ X and A ¢ Y (i.e. X --+ A and Y --+ A are nontrivial FDs). •

Lemma 4.5 A relation schema R is in 3NF with respect to a set F of FDs if and only if every
attribute that is transitively dependent on a key is prime.

Proof. We prove the result by contraposition.

If. Suppose that R is not in 3NF. Then there exists a nontrivial FD X --+ A E F such that X is
not a superkey and A is not prime. Let K be any key for R with respect to F. We can deduce
that F F= K --+ X, F [;6 X --+ K and F F= X --+ A. The result follows, since the non prime attribute
A is transitively dependent on the key K.

Only if. Suppose that an attribute A E schema(R} is non prime and that A is transitively
dependent on a key K for R with respect to F. By the definition of transitively dependent it
follows that there exists a set of attributes X ~ schema(R), such that F F= K --+ X, F [;6 X --+ K
(which implies that X is not a superkey for R with respect to F) and F F= X --+ A, where A ¢
X. Bya straightforward induction on the minimal number of inference rules needed to prove
X --+ A from F we can deduce that there exists a nontrivial FD Y --+ A E F, where A is non prime
and Y is not a superkey. The result that R is not in 3NF with respect to F follows due to the FD
Y --+ A E F. 0

The following theorem, which was proved in [JF82], shows that testing whether a relation
schema is in 3NF with respect to a set of FDs is NP-complete.

252 Chapter 4. Relational Database Design

Theorem 4.6 Given a relation schema R and a set F of FDs over R, the problem of deciding
whether R is in 3NF with respect to F is NP-complete.

Proof We first show that the problem is in NP. In order to test whether R is in 3NF with
respect to F, we need to check for each nontrivial FD X ~ A E F whether X is a superkey.
This can be done in time polynomial in the size of F by using the algorithm CLOSURE, given
as Algorithm 3.8 in Subsection 3.6.3 of Chapter 3, to compute X+. If X is not a superkey,
then we need to determine whether A is prime. This problem is in NP, since from part (2) of
Theorem 3.24 in Subsection 3.6.1 of Chapter 3 we know that the problem of deciding whether
an attribute A E schema(R) is prime with respect to F is NP-complete.

To show that the problem is NP-hard we present a polynomial-time transformation from
the prime attribute problem mentioned above. Thus we would like to decide whether A E

schema(R) is prime with respect to F.

Let B, C and D be new attributes not in schema(R) and let S be a new relation schema, with
schema(S) = schema(R) U {B, C, D}. In addition, let G be a set of FDs over S consisting of F
together with the following FDs, whose left-hand sides are taken to be reduced (i.e. they are
minimal with respect to the set G of FDs):

1) ED ~ schema(S) for each attribute E E schema(R),

2) schema(R)C ~ schema(S),

3) BC~ A,and

4) D~ B.

From (1) we can deduce that D and each attribute in schema(R) is prime with respect to
G, since ED is a key for S with respect to G. From (2) we can deduce that C is prime, since
schema(R)C is a key for S with respect to G. Furthermore, from (4) we can deduce that S is in
3NF with respect to G if and only if B is prime, since D is not a superkey for S with respect to
G.

In order to conclude the proof we show that A is prime with respect to F if and only if B is
prime with respect to G.

If Suppose that B is prime with respect to G and thus BY is a key for S with respect to G
for some set of attributes Y C schema(S) - B. From (4) we can deduce that D tI Y, otherwise
BY would not be a key for S. Moreover, C E Y, since no FDs in G apart from those in (1)
functionally determine C non trivially. Therefore, we can rewrite BY as BCZ, with Y = CZ.
From (2), (3) and the fact that D tI Z we can deduce that Z C schema(R) - A and thus G F=
BCZ ~ schema(R) - A, since BCZ is a key for S. It follows that F F= Z ~ schema(R) - A,
since G F= BCZ ~ D can only be derived on using (2). Thus ZA is a key for R with respect to
F but Z is not, since CZ cannot be a key for S because of (2). The result that A is prime with
respect to F now follows.

Only if Suppose that A is prime with respect to F and thus XA is a key for R with respect to
F for some set of attributes X S; schema(R) - A. From (2) and (3) we can deduce that BCX is
a key for S with respect to G and thus B is prime with respect to G as required. D

Third normal form was defined as a property of the relation schema over which the set F
of FDs is specified and is thus independent of any particular relation rover R. We can also

4.4. Normal Forms 253

define 3NF for a given relation rover R as follows, recalling that F(r) is the set of all FDs that
are satisfied in r (see Definition 3.62 in Subsection 3.6.1 of Chapter 3). A relation rover R is in
3NF ifR is in 3NF with respect to F(r). The surprising result, not withstanding Theorem 4.6, is
that the problem of testing whether a specific relation rover R is in 3NF can be solved in time
polynomial in the size of r [DHLM92J. The proof hinges on Theorem 3.27 in Subsection 3.6.1
of Chapter 3, which states that for relations such as r we can test whether an attribute A E

schema(R) is prime with respect to F(r) in time polynomial in the size of r, and on the following
observation. Given an attribute A E schema(R) we can test in polynomial time whether there
is a nontrivial FD X -+ A E F(r) such that X is not a superkey for R with respect to F(r). We
conclude this subsection by outlining the proof of this observation. The equality set of r is
defined as the family of sets of attributes of schema(R) such that Y is in the equality set of r,
if there are two distinct tuples in r that agree exactly on Y. It can be shown that the closure
of a set of attributes W of schema(R) with respect to F(r) is the intersection of all the sets of
attributes that include W in the equality set of r, or schema(R) if no set of attributes in the
equality set of r includes W. Thus r violates 3NF if and only if A is nonprime and there is a
set of attributes XA in the equality set of r such that A .;. X and A is in the closure of X with
respect to F(r) .

4.4.3 Boyce-Codd Normal Form (BCNF)

Boyce-Codd Normal Form (BCNF) was first defined in [Cod74J. Intuitively, a relation schema
is in BCNF ifit is in first normal form and the left-hand side of each nontrivial FD in the given set
ofFDs is a superkey for the relation schema with respect to this set ofFDs. Historically, BCNF
should have been called Fourth Normal Form (4NF), since it was proposed as an improvement
to 3NF. According to Date [Dat92c), in 1973 Boyce had actually called this new normal form
4NF, but Codd [Cod741 called it 3NF viewing it as an improved normal form that supersedes
3NF. Since BCNF is stricter than 3NF database researchers began to refer to this new normal
form by its current name, i.e. BCNF. Another interesting anecdote is that, again according to
Date [Dat92cj, in 1971 Heath defined 3NF in an equivalent manner to BCNF and thus maybe
BCNF should have actually been called Heath Normal Form. Then, in 1977 Fagin [Fag77bj
defined 4NF, a normal form which is stricter than BCNF taking into account both FDs and
MVDs. Thus the historical opportunity to call BCNF byits rightful name 4NF was permanently
lost. We have also noticed that database designers often confuse 3NF with BCNF and therefore
the common statement that practical database design does not go beyond 3NF often means
that practical database design actually aims for BCNF.

Definition 4.12 (BCNF) A relation schema R is in Boyce-Codd Normal Form (BCNF) with
respect to a set F of FDs over R (or simply in BCNF if F is understood from context) if for every
nontrivial FD X -+ A E F, X is a superkey for R with respect to F.

A decomposition R is in BCNF with respect to a set F of FDs over R, with schema(R) =
schema(R), if each Ri E R is in BCNF with respect to F+ [Rd. (When no ambiguity arises we
will often say that Ri E R is in BCNF with respect to F to mean that Ri E R is in BCNF with
respect to F+ [Ril.) •

Let us consider the relation schema ADDRESS of Example 4.3 together with its set of FDs F3 '
The reader can verify that ADDRESS is in 3NF with respect to F3. ADDRESS is not in BCNF,

254 Chapter 4. Relational Database Design

since P --+ C is a nontrivial FD but P is not a superkey for R with respect to F3. The reader
can ascertain that the decomposition, {ADDRESS!> ADDRESSz}, with schema(ADDRESSd =
{S, C} and schema(ADDRESSz) = {P, C}, is in BCNF with respect to h

The following lemma shows that BCNF is insensitive to the particular cover of the given set
F ofFDs.

Lemma 4.7 A relation schema R is in BCNF with respect to F if and only if for every nontrivial
FD X --+ A E P+, X is a superkey for R with respect to F.

Proof The if part is immediate from the definition of BCNF, so it remains to show the only if
part. Assume that R is in BCNF with respect to F and that X --+ A E P+. We show that X is a
superkey for R with respect to F.

We claim that X --+ A E p+ if and only if there exists a subset Y 5; X such that Y is the
left-hand side of a nontrivial FD in F. The claim follows by a straightforward induction on
the minimal number of inference rules needed to prove X --+ A from F. The basis case is
vacuously true, when no inference rules are needed, since in this case X --+ A E F. In the
induction step there are two cases to consider. In the first case, the last inference rule to be
used is decomposition which was preceded by augmentation in which case the result follows
by inductive hypothesis. Similarly, in the second case, the last inference rule to be used is
transitivity whereupon the result again follows by inductive hypothesis.

Now, by the above claim there exists Y --+ B E F such that Y 5; X and B !f Y. In addition, Y is
a superkey for R with respect to F, since R is in BCNF. The result that X is a super key follows
on using transitivity, since F 1= X --+ Y by reflexivity and F 1= Y --+ schema(R), since Y is a
superkey. 0

We leave it to the reader to give a proof similar to the one provided in the above lemma in
order to show that both 2NF and 3NF are also insensitive to the particular cover of the given
set F of FDs. The following result can be obtained from the definitions of 3NF and BCNF.

Lemma 4.8 If a relation schema R is in BCNF with respect to a set F of FDs, then it is also in
3NF with respect to F. 0

The following result taken from [DF92] shows one advantage of having only simple keys.

Lemma 4.9 If a relation schema R is in 3NF with respect to a set F of FDs and every key for
R with respect to F is simple then R is also in BCNF.

Proof Assume that R is in 3NF and let X --+ A E F be a nontrivial FD. We need to show that X
is a superkey for R with respect to F. Now, since R is in 3NF then either X is a superkey for R
or A is prime. If X is a superkey then no violation of BCNF occurs, so assume that A is prime.
It follows that A is a key for R, since every key for R with respect to F is simple and thus F
1= A --+ schema(R). By the transitivity inference rule for FDs we obtain F 1= X --+ schema(R)
from F 1= X --+ A and F 1= A --+ schema(R). Thus X is a superkey for R as required and R is in
BCNF. 0

4.4. Normal Forms 255

In fact the above lemma is also a consequence of the stronger result shown in [YS93, Mok97],
namely that if a relation schema R is in 3NF with respect to a set F of FOs but is not in BCNF
with respect to F, then it must have at least two distinct keys which overlap, i.e. such that their
intersection is nonempty.

Recall that we have assumed in Definition 3.57 given in Subsection 3.6.1 of Chapter 3 that
all FDs are standard, i.e. we do not allow FOs of the form'" -+ Y. The next lemma follows
from the fact that if the cardinality of the set of attributes of a relation schema R is two, then
the left-hand side of every nontrivial FD in a set F of FDs over R must be a key.

Lemma 4.10 If Ischema(R)1 ::: 2, then R is in BCNF with respect to any set F of FDs over R.
o

A sufficient condition for a relation schema to be in BCNF with respect to a set F of FDs
over R is now given [TF82] .

Lemma 4.11 If for all pairs of distinct attributes A, B E schema(R), we have that A rt
(schema(R) - AB)+, then R is in BCNF with respect to F.

Proof. We prove the result by contraposition. Suppose that R is not in BCNF and thus by
Lemma 4.7 there exists a nontrivial FO X -+ A E p+ such that X is not a superkey for R with
respect to F. It follows that there exists B E schema(R) - XA, since X is not a superkey. The
result follows , since A E (schema(R) - AB)+ on using the reflexivity and transitivity inference
ru~ 0

The above lemma can be strengthened to if and only if, when the cardinality of the shortest
key for R with respect to F is type(R)-1 [Z092b].

We next show that R is in BCNF if and only if it is free from update anomalies and redundancy
problems.

Theorem 4.12 The following statements, where F is a set of FDs over a relation schema R,
are equivalent:

1) R is in BCNF with respect to F.

2) R has no redundancy problems with respect to F.

3) R has no insertion anomalies with respect to F.

4) R has no modification anomalies with respect to F.

Proof. By Theorem 4.1 it is sufficient to show that R is in BCNF with respect to F if and only
if R has no redundancy problems with respect to F.

If. Suppose that R is not in BCNF and thus for some X -+ A E F, X is not a superkey. Let t\
and t2 be two tuples over R such that tdX+] = t2[X+] and for all BE schema(R) - X+, tdB]
#- t2[B]. (Note that schema(R) - X+ is not empty, since X is not a superkey.) The result that
R has a redundancy problem follows, since it is evident that {t\. t2} F= F due to the fact that Y
~ X implies that y+ ~ X+.

256 Chapter 4. Relational Database Design

Only if. Suppose that R has a redundancy problem and as a consequence there exists a
relation rover R such that r F= F, and for some FD X -j> A E F there exist two distinct tuples
tI, t2 E r such that tl [XA] = t2 [XA]. It follows that X is not a superkey for R with respect to
F, since tJ!schema(R) - X] '# t2[schema(R) - X] . The result that R is not in BCNF follows
immediately. 0

A more general definition of redundancy in a relation with respect to a set F of FDs was
given in [Vin98]. Informally, a relation has redundancy in it, if it contains a value that is
implied by the other values in the relation through its set F of FDs. When a relation has such
a redundant value then any change to this value will result in the violation of the set F of FDs.

Consider the relation r over LECTURER shown in Table 4.8, where schema(LECTURER) =
(ENAME, DNAME, UNIV), together with the set of FDs F = {ENAME -j> DNAME, DNAME
-j> UNIV}. Then r has redundancy in it, since it satisfies F and changing one of the two
occurrences of MIT in r to, say UCL, results in the violation of the FD DNAME -j> UNIV. On
the other hand, if we let rl = 1l'ENAME.DNAME(r) and r2 = 1l'DNAME,uNlv(r), then the reader can
verify that rl and r2 are free of redundancy. As the ensuing theorem shows it is no coincidence
that R is not in BCNF with respect to F.

Table 4.8 The relation T over LECTURER

ENAME DNAME UNIV
Paul Computing MIT

Angela Computing MIT

Definition 4.13 (Value redundancy) Let r be a relation over a relation schema R that satisfies
a set F of FDs and let t be a tuple in r. The occurrence of a value t[A], where A E schema(R),
is redundant in r with respect to F if for every replacement of t[A] by a distinct value v E

DOM(A) such that v i= t[A], resulting in the new relation r', we have that r' [;t:: F.

A relation schema R is said to be in Value Redundancy Free Normal Form (or simply VRFNF)
with respect to a set F ofFDs over R if there does not exist a relation rover R and an occurrence
of a value t[A] that is redundant in r with respect to F. •

The following result, presented in [Vin98], shows that given a set F of FDs VRFNF is
equivalent to BCNF.

Theorem 4.13 A relation schema R is in BCNF with respect to a set F of FDs over R if and
only if R is in VRFNF with respect to F.

Proof. If. Suppose that R is in VRFNF and let X -j> A E F+ be a nontrivial FD. Moreover,
let r be a relation over R and let tl and t2 be two distinct tuples in r. Now, since t2[A] is not
redundant in r with respect to F, there exists a value, v E DOM(A), which is distinct from
t2[A], such that replacing t2[A] by v results in the new relation r', with r' F= F. We claim that
tl [X] '# t2 [X]. There are two cases to consider. In the first case we have in r that tl [A] = t2 [A].
Thus tI[X] '# t2X], otherwise r' [;t:: F, since in r', tl [A] '# t2[A]. In the second case we have in r
that tl [A] '# t2 [A]. Thus again t) [X] '# t2X], otherwise r [;t:: F. The claim is now substantiated

4.4. Normal Forms 257

implying that X is a superkey for R with respect to F, and thus R must be in BCNF with respect
to F as required.

Only if. Suppose that R is in BCNF with respect to F. Let r be a relation over R, t E r and A E

schema(R). There are two cases to consider. In the first case A E K for some keydependencyK
~ schema(R) E KEYS(F). Then replacing t[A) by a value not in ADOM(r) results in a relation
r' that satisfies F. In the second case for all key dependencies K ~ schema(R) E KEYS(F),
A >t K, i.e. A is nonprime. Then replacing t[A) by any distinct value v E DOM(A) such that
v =F t[A) results in a relation r' that satisfies F. 0

As a corollary of Theorem 4.13 all the statements of Theorem 4.12 regarding the update
anomalies and redundancy problems are equivalent to R being in VRFNF with respect to F.
It is interesting to note that Vincent [Vin98) has also shown that, in the presence of FDs and
MVDs, VRFNF is equivalent to R being in 4NF. Thus a relation schema being in VRFNF with
respect to a set of data dependencies is a robust indication that this relation schema is free of
redundancy.

A special case of BCNF, which is important, arises when a relation schema has a unique
key with respect to its set of FDs. In this case there is only one choice of primary key and
thus database design is made easier. We first define a normal form which requires a relation
schema to have a unique key [BDLM91) .

Definition 4.14 (UKNF) A relation schema R is in Unique Key Normal Porm (UKNF) with
respect to a set F of FDs over R (or simply in UKNF if F is understood from context) if the
cardinality of KEYS(F) is one.

A decomposition R is in UKNF with respect to a set F of FDs over R, with schema(R) =
schema(R), if each Ri E R is in UKNF with respect to P+[R;). (When no ambiguity arises we
will often say that Ri E R is in UKNF with respect to F to mean that Ri E R is in UKNF with
respect to P+[R;).) •

Let us define LEFT(X) with respect to a set F of FDs over R, where X ~ schema(R), to be
the set of attributes in X that are either not present in any of the FDs in F, or are included in
left-hand sides of FDs in F but not in right-hand sides of such FDs. More formally, assuming
that F is understood from context, we have

LEFT(X) = {A E X I A >t (X - A) +).

Theorem 4.14 A relation schema R is in UKNF with respect to a set F of FDs over R if and
only ifLEFT(X) is a superkey for R with respect to F, where X = schema(R).

Proof. We first show by contraposition that LEFT(X) 5; K, where K is a key for R with respect
to F. If for some attribute A E schema(R), A >t K, then A E K+ and thus A E (X-A)+ by the
augmentation and decomposition inference rules. It follows that A >t LEFT(X), and therefore
LEFT(X) ~ K.

If. Suppose that LEFT(X) is a superkey for R with respect to F. It follows that LEFT(X) is a
unique key for R due to the fact that for any key K for R LEFT(X) ~ K.

Only if. Suppose that R is in UKNF and K is its unique key. We claim that K = LEFT(X)
implying the result. We have already shown that LEFT(X) 5; K and thus it only remains to

258 Chapter 4. Relational Database Design

show that K S; LEFT(X). If A rf. LEFT(X), then A E (X - A)+ and thus X-A is a superkey for R.
It follows that A rf. K as required, since K is the unique key for R with respect to F. D

By the above proof if we strengthen the requirement that LEFT(X) be a key for R with
respect to F, instead of just being a superkey, the result still holds. An immediate consequence
of the fact that LEFT(schema(R» S; K, for any key K for R with respect to F, is that a prime
attribute belongs to all the keys for R if and only if it is a member ofLEFT(schema(R». Another
immediate consequence of the above theorem is that UKNF can be checked in time polynomial
in the sizes of Rand F by using the polynomial-time algorithm given in Algorithm 3.8 in
Subsection 3.6.3 of Chapter 3 that computes the closure of a set of attributes with respect to F.

A relation schema may be in UKNF with respect to a set F ofFDs but not in BCNF with respect
to F. For example, let EMP be a relation schema with schema(EMP) == {EN, CN, SAL}, where
EN stands for employee name, CN stands for child name and SAL stands for the employee's
salary. In addition, let F == {EN ~ SAL} be a set ofFDs over EMP implying that {EN, CN} is
the unique key (and thus the primary key) for EMP. Thus EMP is in UKNF with respect to F,
but EMP is not in BCNF with respect to F, since EN is not a key for EMP with respect to F.
Thus, we must strengthen UKNF if we also require a relation schema to be in BCNF [Bis891.

Definition 4.15 (ONF) A relation schema R is in Object Normal Form (ONF) with respect to
a set F of FDs over R (or simply in ONF if F is understood from context) if it is both in UKNF
and BCNF with respect to F.

A decomposition R is in ONF with respect to a set F of FDs over R, with schema(R) ==
schema(R), if each Ri E R is in ONF with respect to F+[Rd. •

We can now show that ONF is equivalent to 3NF and UKNF, so 3NF and BCNF are equivalent
in this special case.

Theorem 4.15 A relation schema R is in ONF with respect to a set F ofFDs over R if and only
ifit is in 3NF and UKNF with respect to F.

Proof. The only if part of the theorem is an immediate consequence of Lemma 4.8. For the if
part suppose that R is in 3NF and UKNF and let X ~ A be a nontrivial FD in F. We claim that
A is nonprime thus implying that X is a superkey for R and therefore R is in BCNF as required.
Now, by the augmentation and decomposition inference rules A E (schema(R)-A)+ and thus
there exists a superkey K' for R such that A rf. K'. The result that A is non prime follows, since
R is in UKNF and thus A rf. K, where K S; K' is the unique key for R. D

We next consider two theorems pertaining to the computational complexity of testing
whether a relation schema is in BCNF. The proof of the first theorem follows directly from
algorithm CLOSURE, given as Algorithm 3.8 in Subsection 3.6.3 of Chapter 3, which computes
the closure of a set of attributes X with respect to F.

Theorem 4.16 Given a relation schema R and a set F of FDs over R, the problem of deciding
whether R is in BCNF with respect to F can be solved in time polynomial in the sizes ofR and
F. D

4.4. Normal Forms 259

The second theorem, which is proved in [BB79], shows that testing whether a proper subset
of a relation schema R is in BCNF with respect to a set F of FDs over R is co-NP-complete; a
relation schema S, with schema(S) c schema(R), is said to be in BCNF with respect to a set
F of FDs over R, if S is in BCNF with respect to F+ lSI. This implies that, assuming that P =1=

co-NP, testing whether R is in BCNF with respect to F is intractable.

Theorem 4.17 Given a relation schema R and a set F of FDs over R, the problem of deciding
whether a relation schema S, with schema(S) C schema(R), is in BCNF with respect to F is
cO-NP-complete.

Proof We sketch the main idea of the proof. In order to prove the result we show that the
complement of the above problem, i.e. the problem of whether S violates BCNF is NP-complete.
Showing that the problem is in NP is easily done by testing whether for a guessed nontrivial
FD X ->- A over R, XA <; schema(S) and X+ =1= schema(S).

To show that the problem is NP-hard a polynomial-time transformation from the hitting
set problem, which is described in the proof of Theorem 3.35 in Subsection 3.6.6 of Chapter 3,
can be given. Recall the description of the hitting set problem.

The hitting set problem: Given a family SI , S2, ... , Sn of subsets of a set U, does there exist
a subset W <; U, such that Vi E {I, 2, . .. , n}, IW n S;I = 1. Such a subset W of U is
called a hitting set, in other words W is a hitting set if for each i the cardinality of the
intersection ofW and Sj is one.

Let R be a relation schema with schema(R) = U U {BI, B2 , ... , Bn, C, D}, where
{B I , B2 , . ' " Bn, C, D} n U = 0, and let schema(S) be a relation schema with schema(S) =
U U {C, D}. We define four sets ofFDs, FI, F2, F3 and F4 over R and let F = FI U F2 U F3 U F4 .

1) FI = {Aj ->- Bj I Aj E Sj for some i E {I , 2, .. . , n}}; this set of FDs captures each
membership of the form Aj E Sj.

2) F2 = {AjAk ->- CD I Aj, Ak E Sj for some i E {I, 2, ... , n} andAj =1= Ak}.

3) F3 = {BIB2 ... Bn ->- C}.

4) F4 = {CD ->- U}.

It can then be shown that W is a hitting set of U if and only if S violates BCNF, where
schema(S) = U U {C, D}. 0

BCNF was defined as a property of the relation schema over which the set F ofFDs is specified
and is thus independent of any particular relation rover R. We can also define BCNF for a
given relation rover R as follows. A relation rover R is in BCNF if R is in BCNF with respect
to F(r). The surprising result, not withstanding Theorem 4.17, is that the problem of testing
whether the projection of r onto a proper subset X of schema(R) is in BCNF can be solved in
time polynomial in the size of r [DHLM92). The proof of this result is similar to that of the
corresponding polynomial-time algorithm for testing whether a relation r is in 3NF (see the
discussion at the end of Subsection 4.4.2).

260 Chapter 4. Relational Database Design

4.4.4 Inclusion Dependency Normal Form (lDNF)

BCNF does not take into account referential integrity which apart from entity integrity is a
fundamen tal constraint of the relational model. In the same manner that FDs generalise the
central concept of key, INDs generalise the central concept of foreign key. Herein we consider
how INDs can be incorporated in to the database design process by considering another normal
form, called Inclusion Dependency Normal Form (IDNF), that assumes that the semantics of
the application are described in terms of a set of FDs and INDs. We will show that when a
database schema is in IDNF with respect to a set ofFDs and INDs then certain problems that
would have otherwise arisen are solved and, in addition, further redundancy is removed.

Definition 4.16 (IDNF) A database schema R is in Inclusion Dependency Normal Form
(IDNF) with respect to a set F of FDs over R and a set I of INDs over R (or simply in IDNF if F
and I are understood from context) if

• R is in BCNF with respect to F, and

• the set I ofINDs is noncircular and key-based. •
In the special case when all the keys are simple then the INDs are all unary.

The justification for insisting that I be noncircular and key-based can be found in Section 4.1,
wherein we showed the problems that arise if I were either circular or not key-based. In
Example 4.4 we demonstrated that when an IND that is not key-based contains a proper
superset of a key then redundancy arises, in Example 4.5 we demonstrated that when an IND
that is not key-based contains a proper subset of a key then there is insufficient information to
infer key values, and in Example 4.6 we demonstrated that circular INDs give rise to semantic
anomalies. We now analyse these three examples in more detail showing how they can be
converted into database schemas in IDNF.

In the first example removing a redundant attribute and modifying the set of INDs
accordingly solves the problem.

Example 4.12 Consider the database schema R = {HEAD, LECT} of Example 4.4 together
with its set F of FDs and its set I of INDs. The reader can verify that R is in BCNF with respect
to F and that I is a noncircular set of INDs. On the other hand, R is not in IDNF with respect to
F and I, since the IND HEAD[HD) <; LECT[LD) is not key-based. The reader can verify that
the decomposition, {NEW _HEAD, LECT}, with schema(NEW _HEAD) = (H) (i.e. D is removed
fromschema(HEAD» isin IDNFwith respect toF' = (LECT:L-+ D) and I' = (NEW_HEAD[H)
<; LECT[Lll, since NEW _HEAD[H) <; LECT[L) is key-based. •

In the second example adding an attribute and modifying the set of FDs and INDs
accordingly solves the problem.

Example 4.13 Consider the database schema R = (EMP, PROn of Example 4.5 together with
its set F ofFDs and set I ofINDs. The reader can verify that Ris in BCNFwith respect to F and that
I is a noncircular set of INDs. On the other hand, R is not in IDNF with respect to F and I, since
the IND EMP[P) <; PROJ(P) is not key-based. Let us assume that an employee working on a

4.4. Normal Forms 261

project works in one location only. The reader can verify that the decomposition, (NEW _EMP,
PROn, with schema(NEW _EMP) = {E, P, L'} is in IDNF with respect to P' = {NEW -.EMP: E---+
PL'} and [' = {NEW _EMP[PL'] S; PROJ[PL]}, since NEW _EMP[PL'] S; PROJ[PL] is key-based .

•
In the third example adding a relation schema and modifying the set of INDs accordingly

solves the problem.

Example 4.14 Consider the database schema R = {BOSS}, where BOSS is the schema from
Example 4.6 together with an empty set F of FDs and the set of INDs I = {BOSS[MGR#] S;

BOSS[EMP#]}. The reader can also verify that R is not in IDNF, since I is a circular set ofINDs.
The reader can also verify that the decomposition {EMPS, BOSSES}, with schema(EMPS) =
{EMP#} and schema(BOSSES) = {MGR#} is in IDNF with respect to F and [' = {BOSSES [MGR#]
S; EMPS[EMP#]}, since [' is noncircular. •

Recall the results from Subsection 3.6.11 of Chapter 3 concerning the interaction between
FDs and INDs. In particular, we repeat the next definition to refresh the reader's memory.

Definition 4.17 (Interaction between FDs and INDs) A set F of FDs over R is said not to
interact with of set I of INDs over R, if

1) for all FDs a over R, for all subsets G S; F, G U I F a if and only if G F a, and

2) for all INDs f3 over R, for all subsets J S; I, F U J F f3 if and only if J F f3. •
IfF and I do not interact then the algorithms in database design that use logical implication

can be implemented more efficiently than would otherwise be the case. In particular, the
implication problem for FDs on their own is linear time and for noncircular INDs on their
own it is NP-complete; if the INDs are typed then their implication problem is polynomial
time and if the INDs are unary then their implication problem is linear time. Taken together
the implication problem for FDs and INDs is, in general, undecidable and the implication
problem for FDs and non circular INDs has a lower bound of exponential time complexity.
When the INDs are unary then the implication problem for FDs and unary INDs is polynomial
time. (Recall Subsection 3.6.11 of Chapter 3 for more details on the implication problem for
FDs and INDs.)

The next result is an immediate consequence of Theorem 3.54 in Subsection 3.6.11 of
Chapter 3. It shows that IDNF has an additional desirable property, namely that of no
interaction between the sets F and I ofFDs and INDs, respectively.

Theorem 4.18 If R is in IDNF with respect to a set F of FDs over R and a set I of INDs over
R, then F and I have no interaction. 0

Apart from having the desirable property of there being no interaction between the given
set of FDs and INDs, we can also justify IDNF in terms of removing attribute redundancy (see
Definition 4.18) and satisfying a generalised form of entity integrity (see Definition 4.19).

262 Chapter 4. Relational Database Design

Let ~ = F U I, where F is a set of FDs over R and I is a set of noncircular INDs over R.
Informally, an attribute A in a relation schema R E R is redundant, if whenever d is some
database over R, which satisfies the given set ~ of FDs and INDs, the following condition
holds. The relation rEd over R is nonempty and contains an A-value, say t[A] with t E r,
that is implied by the other values in the database through the set ~. When such an attribute
as A is redundant then any replacement of the A-value by another value in DOM(A) will result
in the violation of the set ~ of FDs and INDs.

Consider the database d = {rl, r2} over R = {MANAGER, EMPLOYEE}, where rl and r2
are shown in Tables 4.9 and 4.10, respectively, with schema(MANAGER) = {MGR, DEPT} and
schema(EMPLOYEE) = {EMP, DEPT}. In addition, let F = {EMPLOYEE; EMP ~ DEPT} be
a set of FDs over R, I = {MANAGER[MGR, DEPT] S; EMPLOYEE[EMP, DEPT]} be a set of
INDs over R and ~ = F U I. Note that F U I F= MANAGER; MGR ~ DEPT by the pullback
inference rule. Then DEPT E schema(MANAGER) is a redundant attribute, since d F= ~ and
changing the occurrence of Computing in rl to any other value v =1= Computing, say Maths,
results in a database that violates the IND MANAGER[MGR, DEPT] S; EMPLOYEE[EMP,
DEPT] and thus violates ~. Even if we were to add the tuple <Peter, Maths> to r2, then the
resulting database, which now satisfies MANAGER[MGR, DEPT] S; EMPLOYEE[EMP, DEPT],
will violate the FD EMPLOYEE; EMP ~ DEPT and thus will violate ~. On the other hand, if
we remove the attribute DEPT from schema(MANAGER), then the reader can verify that no
attribute in either schema(MANAGER) or in schema(EMPLOYEE) is redundant. Intuitively,
DEPT in schema(MANAGER) is redundant, since its values can be inferred from DEPT in
schema(EMPLOYEE) due to ~ and the pullback inference rule.

Table 4.10 The relation T2 over EMPLOYEE

EMP DEPT
Peter Computing
Paul Maths

Definition 4.18 (Attribute redundancy) An attribute A E schema(R), where R is a relation
schema in R, is redundant with respect to a set ~ of FDs and INDs over R, if whenever d is a
database over R that satisfies ~ and rEd is a nonempty relation over R, then for all tuples
t E r, if t[A] is replaced by a distinct value v E DOM(A) such that v =1= t[A], yielding a new
database d', then d' ~ ~.

A database schema R is said to be in Attribute Redundancy Free Normal Form (or simply
ARFNF) with respect to a set ~ of FDs and INDs over R if there does not exist an attribute A
in a relation schema R E R which is redundant with respect to ~. •

Recall the definition of the chase procedure with respect to a set ~ of FDs and INDs from
Subsection 3.6.8 in Chapter 3. Intuitively a database schema R satisfies generalised entity
integrity with respect to a set ~ of FDs and INDs over R if whenever a tuple, say t, is added to
a relation over R in a database dover R as a result of an IND, then prior to t being added to
the relation, it must be defined on all the values of at least one key for R.

4.4. Normal Forms 263

Defmition 4.19 (Generalised entity integrity) Let R be a database schema, ~ = F U I be a set
of FDs and INDs over R, and let dover R be a database that satisfies ~. Suppose that each
time we add a tuple t to a relation rEd over R, we invoke the chase procedure in order to
enforce the propagation of insertions of tuples due to the INDs in I.

Then a tuple t that is added to the current state of r during the computation ofICHASE(d, ~)
is entity-based, if there exists at least one key K for R with respect to the set of FDs {R : X --+ Y
I R : X --+ Y E F} such that for all A E K, t[A] is not a new value that is assigned to t as a result
of invoking the IND rule.

A database schema R satisfies generalised entity integrity with respect to a set ~ = F U I of
FDs and INDs over R if for all databases dover R, all the tuples that are added to relations in
the current state of d during the computation ofICHASE(d, ~) are entity-based. •

The next theorem gives a complete justification for IDNF in terms of removing redundancy
and satisfying generalised entity integrity.

Theorem 4.19 A database schema R is in IDNF with respect to a set ~ consisting of a set F
of FDs and a set I of noncircular INDs over R if and only if R is in ARFNF with respect to ~,
all the relation schemas R E R are in VRFNF with respect to the set of FDs {R : X --+ Y I R : X
--+ Y E F} and R satisfies generalised entity integrity with respect to ~ .

Proof. We sketch the main ideas behind the proof; the full proof can be found in [LV99].

If. Satisfaction of generalised entity integrity implies that I is a superkey-based set of INDs.
Moreover, R being in ARFNF implies that I must be a key-based set of INDs, otherwise the
attributes on the left-hand side of a superkey-based IND that do not belong to a key are
redundant in any such superkey-based IND. The result that R is in IDNF with respect to ~
follows by Theorem 4.13, which implies that when each R E R is in VRFNF then R is also in
BCNF with respect to F.

Only if. If R is in IDNF with respect to ~ then I is a key-based set of INDs implying that
R satisfies generalised entity integrity. Moreover, if R is in IDNF with respect to ~ then R
is in ARFNF due to the following argument. Let A E schema(R) be an attribute and do be
a database such that the relation rEdo over R has a single tuple t over R containing only
zeros and all other relations in d are empty. We invoke ICHASE(do, ~) to obtain a database
d1 satisfying~ . We observe that due to I being noncircular r is not modified by the chase
procedure. We then replace t[A] in db which is zero, by one, and invoke ICHASE(d1, ~) to
obtain the new database d2 satisfying~. Again r remains unmodified by the chase procedure
due to I being noncircular. The database d2 exhibits the fact that A is nonredundant, since by
Theorem 4.18 F and I have no interaction and thus changing t[A] in d2 back to its original value
zero results in a new database d3, where ICHASE(d3, ~) = d3 and thus d3 1= ~ as required by
Definition 4.18. The result now follows by Theorem 4.13 which implies that when each R E R
is in BCNF with respect to F then each R E R is in VRFNF. 0

Related normal forms for FDs and INDs and the motivation behind them can be found in
[CA84, MR86b, MS89a, LG92, MR92a, Mar94].

264 Chapter 4. Relational Database Design

4.5 Horizontal Decompositions

All the normal forms discussed in the previous section result in vertical decompositions, i.e. we
start with a relation schema R and decompose R into further relation schemas whose attribute
sets are subsets of schema(R). Assuming the decomposition R is lossless this corresponds to
being able to recover a relation rover R by projecting r onto R and then joining the projections.

Herein, we briefly discuss the possibility of a horizontal decomposition of a relation schema
R, i.e. splitting R into two or more relation schemas each having the same attribute set as R.
In this case a relation rover R will be split into two or more disjoint relations using one or
more selections and r will be recovered by applying the union operator [Fag79, DP84, GM85b,
PDGV89].

Horizontal decompositions are especially useful in situations when there are exceptions to
integrity constraints. We will concentrate on the case of exceptions to FDs. Assume a relation
rover R and an FD X -+ Y over R. If only a few tuples in r cause the FD X -+ Y to be violated,
then we can partition r into two relations rl and r2, where rl satisfies X -+ Y and r2 violates X
-+ Y. In order to formalise the notion of a horizontal partition of r we define the concept of
X-complete relations.

Defmition 4.20 (X-complete relations) Let R be a relation schema, X be a set of attributes
included in schema(R), and let r be a relation over R. A relation 5 is X-complete with respect
to r (or simply X-complete if r is understood from context) if 5 is a subset of r and all the
X-values of 5 are disjoint from the X-values of r - 5. Symbolically, 'It I E 5, '1t2 E r - 5, tl [X]
i= t2[X] . •

We next define the afunctional dependency which formalises the notion of an exception to
a functional dependency.

Defmition 4.21 (Afunctional dependency) An Afunctional Dependency over schema R (or
simply an AFD) is a statement of the form R : X fr Y (or simply X fr Y whenever R is
understood from context), where X, Y ~ schema(R).

The AFD X fr Y is satisfied in r, denoted by r F= X fr Y, if for all nonempty X-complete
relations,s, with respect to r, 5 violates the FD X -+ Y, i.e. 5 Pf: X -+ Y. •

By the definition of an AFD the AFD X fr Y is satisfied in a relation rover R if for every
X-value of a tuple in r there exist at least two tuples with this X-value which violate the FD X
-+ Y. This motivates partitioning a relation r that violates an FD X -+ Y into two relations rl
and r2 such that rl is the largest X-complete relation with respect to r such that rl F= X -+ Y.
It can be deduced that r2 = r - rl is the largest X-complete relation with respect to r such that
r2 F= X fr Y.

Example 4.15 Let PHONE be a relation schema, with schema(PHONE) = {ENAME, EXT},
where ENAME stands for employee name and EXT stands for the extension number of an
employee's telephone number. In general, we require that the FD ENAME -+ EXT holds. A
relation r over PHONE that violates the FD ENAME -+ EXT is shown in Table 4.11.

4.5. Horizontal Decompositions 265

The largest ENAME-complete relation r, with respect to r that satisfies the FD ENAME-+
EXT is shown in Table 4.12; the relation schema of r, is PHONE" with schema(PHONEd =
schema(PHONE). The relation r2 = r- r" shown in Table 4.13, is the largest ENAME-complete
relation with respect to r that satisfies the AFD ENAME fr EXT; the relation schema of r2 is
PHONE2, with schema(PHONE2) = schema(PHONE). •

Table 4.11 The relation T over
PHONE

ENAME EXT
Mark 3684
Dan 3685
Reuven 3686
Naomi 3687
Naomi 3688

Table4.12 The relation Ti over
PHONE,

ENAME EXT
Mark 3684
Dan 3685
Reuven 3686

Table 4.13 The relation T2 over
PHONE2

ENAME EXT
Naomi 3687
Naomi 3688

The horizontal decomposition induced by exceptions to FDs can be described as follows.
Suppose that we have a relation schema R, an FD X -+ Y over R and assume that the database
designer knows that relations rover R will not, in general, satisfy X -+ Y. The decomposition
step induced by such an exception is to split R into two relation schemas, R, and R2, with
schema(Rd = schema(R2) = schema(R) and to associate the FD X -+ Y with R, and the AFD
X fr Y with R2. This decomposition process generalises to sets ofFDs and AFDs.

The important concept of conflict between a set F of FDs over R and a set E of AFDs over R
needs to be taken into account when decomposing horizontally with respect to exceptions to
FDs. For example, ENAME -+ EXT and ENAME fr EXT are in conflict, since it cannot be the
case that both r 1= ENAME -+ EXT and r 1= ENAME fr EXT. Therefore, this requires that
r be decomposed horizontally in order to avoid this conflict. In this particular example the
exception could represent employees having more than one telephone.

Definition 4.22 (Conflict between FDs and AFDs) A set F ofFDs over R and a set E of AFDs
over R are in conflict if and only if for some AFD X fr Y E E, F 1= X -+ Y. •

We briefly describe below the main step in horizontally decomposing a relation schema
with respect to a set of FDs and AFDs. It is assumed that at each stage of the decomposition
F and E are not in conflict and an FD X -+ Y and its counterpart X fr Yare considered.
Obviously, adding X -+ Y to F and correspondingly adding X fr Y to E will result in a
conflict, so the idea is to decompose R horizontally into two relation schemas, one with X
-+ Y in its set of FDs and the other with X fr Y in its set of AFDs, provided that no conflict
arises.

Specifically, during a step of the horizontal decomposition process we consider a set F of
FDs and a set E of AFDs both over R that are not in conflict. In addition, we consider an FD
X -+ Y and its counterpart AFD X fr Y such that both F U E ~ X -+ Y and F U E ~ X fr Y
obtain. From this specification it follows that F U E U {X -+ Y} and correspondingly F U E
U {X fr Y} are also not in conflict. Thus as a result of this specification we replace R by two
relation schemas R, and R2, with schema(R,} = schema(R2} = schema(R}, and we replace F U
E by two sets of data dependencies such that F U E U {X -+ Y} is associated with R, and F U E
U {X fr Y} is associated with R2'

266 Chapter 4. Relational Database Design

We refer the reader to [DP84, PDGV89j for a sound and complete set of inference rules for
FDs and AFDs and for a polynomial-time algorithm which solves the implication problem for
FDs and AFDs.

4.6 Algorithms for Converting a Relation Schema into Normal
Form

So far we have presented the normal forms and the desirable properties that we aim to achieve
in a database which is in a normal form with respect to a given set of data dependencies.
We now tackle the problem of how to achieve such a normal form. The solution comes
in two stages. In the first stage we present an algorithm that can be used to output a 3NF
or BCNF database schema given a set of FDs over a relation schema R. In the second stage
we assume that the database schema, say R, is already in 3NF or BCNF and we present an
algorithm that can be used to transform this database schema into one which is in IDNF
given a set of FDs and noncircular INDs over R (we can easily relax the definition of IDNF
such that R is required to be in 3NF rather than the stricter condition of being in BCNF). The
success of the process of relational database design is dependent on the quality of the database
schema which is output from these algorithms, so we investigate the desirable properties of
the database schema output by each algorithm. For 3NF we can achieve a lossless join and
dependency preserving decomposition but for BCNF we can only guarantee, in general, that
the output database schema is a lossless join decomposition. The algorithm we present for
transforming the resulting database schema into IDNF comprises four heuristics which when
applied iteratively to the database schema result in an output database schema which is in
IDNF.

In Subsection 4.6.1 we present a 3NF synthesis algorithm, in Subsection 4.6.2 we present
a BCNF decomposition algorithm, and in Subsection 4.6.3 we present a heuristic algorithm
which transforms a decomposition in BCNF into one which is in IDNF.

4.6.1 A 3NF Synthesis Algorithm

We have introduced the synthesis approach to relational database design in Section 4.3. Herein
we present the details of a 3NF synthesis algorithm, which given as input a relation schema
R and a set F of FDs over R, outputs a database schema R which is in 3NF with respect to F
and is both lossless and dependency preserving with respect to F. The algorithm consists of
three steps: the first step preprocesses the input set of FDs in order to transform it into an
appropriate minimum cover, the second step synthesises each FD in the produced cover into a
relation schema, and finally the third step ensures that the output database schema is lossless
by ensuring that the attribute set of one of its relation schemas is a superkey for R with respect
to the input set of FDs.

We first give the pseudo-code of an algorithm, designated MINIMISE(R, F), which returns
a cover of F, which is minimum and such that the right-hand sides and left-hand sides
of the FDs in the cover are reduced (i.e. they are minimal with respect to F). Recall that

Algorithms for Converting a Relation Schema into Normal Form 267

Algorithm 3.10 given in Subsection 3.6.5 of Chapter 3, which was designated MINIMUM(F),
returns a minimum cover ofF.

Algorithm 4.1 (MINIMISE(R, F»
1. begin
2. Min := MINIMUM(F);
3. for each X ~ Y E Min do
4. W:=X;
5. for each A E X do
6. if Min F= (W -A) ~ X then
7. W := W - {A};
8. end if
9. end for
10. Min := (Min - (X ~ Y)) U {W ~ Y};
11. end for
12. for each X ~ Y E Min do
13. W:=Y;
14. for each A E Y do
15. G:= (Min - (X ~ Y)) U {X ~ (W -A)};
16. ifG F= X ~ Y then
17. W:= W - {A};
18. end if
19. end for
20. Min := (Min - (X ~ Y)) U {X ~ W};
21. end for
22. return Min;
23. end.

Next, the pseudo-code of an algorithm, designated SYNTHESISE(R, F), which returns a
lossless join and dependency preserving decomposition of schema(R) in 3NF with respect to
a set F of FDs over R, is given below.

Algorithm 4.2 (SYNTHESISE(R, F»
1. begin
2. Min := MINIMI5E(R, F);
3. Out:= 0;
4. for each X ~ Y E Min do
5. let 5 be a relation schema with schema(S) = XY;
6. Out := Out U {5};
7. end for
8. if Out is not a lossless join decomposition
9 of schema(R) with respect to F then
10. let S be a relation schema, where schema(S)

is a key for R with respect to F;
11. Out := Out U {S};
12. end if
13. return Out;
14. end.

268 Chapter 4. Relational Database Design

We leave it to the reader to verify that Algorithm 4.2 executes in time polynomial in the sizes
ofR and F; we note that by the results in Subsections 3.6.5 and 3.6.1 of Chapter 3, respectively, a
minimum cover ofF and, respectively, a key for R with respect to F can be found in polynomial
time in the size of F.

Theorem 4.20 Given a relation schema R and a set F of FDs over R SYNTHESISE(R, F},
whose pseudo-code is given in Algorithm 4.2, outputs a lossless join dependency preserving
decomposition of schema(R} which is in 3NF.

Proof. Let R be the database schema output from SYNTHESISE(R, F} and let G be the output
of MINIMISE(R, F}. Then R is dependency preserving, since G is a cover of F and by line 5 of
Algorithm 4.2 we have that for each X ~ Y E G there is a relation schema S, with schema(S} =
XY. It follows by part (2) of Theorem 4.2 that R is a lossless join decomposition of schema(R}
with respect to G and therefore also with respect to F.

It remains to show that R is in 3NF with respect to F. Since p+ = G+ we prove the result with
respect to G. Let S be a relation schema in R and X ~ Y be the FD in G+ [S] that constitutes S
in line 5 of Algorithm 4.2. By the for loop in Algorithm 4.1 beginning at line 5 and ending at
line 9, it follows that X is a key for S with respect to G+[S).

Now assume that S is not in 3NF with respect to G+[S); since S is not in 3NF there exists
a nontrivial FD W ~ A E G+[S), such that W is not a superkey for S and A is nonprime. It
follows that A E Y, since X is a key for S with respect to G+ [S]. Moreover, X ~ Wand W ~ X
if. G+ [S], since W is not a superkey for S. We conclude the proof by arriving at a contradiction
of the fact that G is the output of MINIMISE(R, F}.

LetH = (G - (X ~ Y}) U {X ~ Y-A}. It follows thatH F= W ~ A, since G [;t= W ~ Xand
W ~ A E G+[S) . Furthermore, since W ~ XY -A, H F= X ~ W, and thus by the transitivity
inference rule H F= X ~ A implying that H F= X ~ Y. Therefore H is a cover of G. By the for
loop in Algorithm 4.1 beginning at line 14 and ending at line 19, it follows that G could not
have been output from MINIMISE(R, F}, leading to the desired contradiction. D

We next demonstrate the synthesis algorithm with a nontrivial example.

Example 4.16 Consider a relation schema R, with schema(R} = {A, B, C, D, E, G, H, J, K}
together with a set of FDs F = {A ~ B, B ~ CD, D ~ B, ABE ~ K, E ~ J, EG ~ H, H
~ G} over R. The reader can verify that MINIMISE(R, F} = F; that is, F is a minimum set
ofFDs and both its left-hand sides and right-hand sides are reduced. Thus SYNTHESISE(R,
F} will output R = {RI, R2, R3, R4 , Rs, R6, R7, Rs} with schema(Rd = {A, B}, schema(R2} =
{B, C, D}, schema(R3} = {B, D}, schema(R4} = {A, B, E, K}, schema(Rs} = {E, n, schema(R6}
= {E, G, H}, schema(R7} = {G, H} and schema(Rs} = {A, E, G}, where AEG is the key for R
with respect to F generated at line 10 of Algorithm 4.2. Thus by Theorem 4.20 R is a lossless
join and dependency preserving decomposition of schema(R} in 3NF with respect to F. We
observe that R is not in BCNF, since R6 is not in BCNF due to the fact that the FD H ~ G is
embedded in R6. Moreover, the relation schemas R3 and R7 are redundant, since schema(R3}
C schema(R2} and schema(R7} C schema(R6}. Such redundant relation schemas can easily
be removed from R. •

Algorithms for Converting a Relation Schema into Normal Form 269

Improved algorithms which synthesise database schemas in 3NF can be found in [Ber76,
BDB79,LTK81, Zan82, BM87). As an example, if two sets XI andX2 of attributes are equivalent,
i.e. F 1= XI -+ X2 and F 1= X2 -+ XI, then XI and X2 can reside in the same relation schema
thus reducing the number of relation schemas in a decomposition. Other improvements deal
with removing redundant attributes from relation schemas.

4.6.2 BCNF Decompositions

We have introduced the decomposition approach to relational database design in Section 4.3.
Herein we present the details of a BCNF decomposition algorithm which, given as input
a relation schema R and a set F of FDs over R, outputs a database schema R which is in
BCNF with respect to F and is also a lossless join decomposition of schema{R) with respect
to F. Whenever a relation schema in the current state of the output database schema violates
BCNF, the decomposition algorithm removes the cause for this violation ofBCNF by replacing
the offending relation schema by two child relation schemas each having fewer attributes than
their parent; these two relation schemas can be joined losslessly to reconstruct their parent.

The following example shows that it is not always possible to obtain a BCNF decomposition
which is also dependency preserving .

Example 4.17 Recall the relation schema STUD_POS from Example 4.7 together with the
set of FDs {N -+ P, SP -+ N}, which we denote herein by FI; we note that we have made a
stronger requirement here than in Example 4.7, since we are insisting that SNAME is associated
with a unique POSITION. It can easily be verified that there does not exist a decomposition
of schema{STUD_POS) = {N, S, P} which is both dependency preserving and in BCNF with
respect to Fl .

As another example, recall the relation schema ADDRESS from Example 4.3 together with
the set of FDs (SC -+ P, P -+ q, which we denote herein by F2. It can easily be verified
that there does not exist a decomposition of schema{ADDRESS) = {S, C, P} which is both
dependency preserving and in BCNF with respect to F2. •

An exponential time algorithm in the size of F, which decides whether there exists a
dependency preserving decomposition of schema{R) that is in BCNF, can be found in [Osb79)
(we note that in [TF82) this problem was shown to be co-NP-hard) . A method of guaranteeing
a dependency preserving decomposition, which is in BCNF, was proposed in [KM80), wherein
it was shown that by adding attributes to schema{R} and FDs to F it is always possible to obtain
a BCNF dependency preserving decomposition of the augmented schema with respect to the
augmented set of FDs. We illustrate the main idea of the augmentation by using the relation
schemas and sets ofFDs from Example 4.17.

Example 4.18 Let schema(NEW _STUD_POS} = {N, S, P, K} and let GI = {K -+ SP, SP -+ K,
K -+ N, N -+ Pl. A dependency preserving decomposition of schema(NEW _STUD_POS} into
BCNF is the database schema {RI , R2, R3}, with schema(Rd = {S, P, K}, schema(R2) = {K, N}
and schema(R3} = {N, Pl. Thus by introducing an additional attribute K, which is a simple
key, we obtain a dependency preserving decomposition with Gi [STUD_POS) = Fi.

270 Chapter 4. Relational Database Design

Similarly, let schema(NEW.ADDRESS) = IS, C, P, K} and let G2 = (K --+ SC, SC --+ K, K--+
P, P --+ q. A dependency preserving decomposition of schema(NEW .ADDRESS) into BCNF
is the database schema {RI, R2, R3}, with schema(Rd = IS, C, K}, schema(R2) = (K, q and
schema(R3) = (P, q. Thus by introducing an additional attribute K, which is a simple key, we
obtain a dependency preserving decomposition with Gi [ADDRESS] = pi. •

The pseudo-code of an algorithm, designated DECOMPOSE(R, F), which returns a lossless
join decomposition of schema(R) in BCNF with respect to a set F ofFDs over R, is given below.

Algorithm 4.3 (DECOMPOSE(R, F»
1. begin
2. Out:= 0;
3. if R is in BCNF with respect F then
4. Out := Out U {R};
5. else
6. let X --+ Y E F be nontrivial and such that F li= X --+ schema(R);
7. let RI be the relation schema with schema(Rd = XY;
8. Out:= Out U DECOMPOSE(RI> P+[Rd);
9. let R2 be the relation schema with schema(R2) = schema(R) - (Y -X);
10. Out:= Out U DECOMPOSE(R2, P+[R2]);
11. end if
12. return Out;
13. end.

The above algorithm, which outputs a decomposition, can be viewed as building a binary
decomposition tree whose root is labelled by schema(R) and whose leaves are labelled by the
attributes of the relation schemas in the output decomposition. The internal nodes of the tree
are the intermediate relation schemas created during the decomposition process.

It is possible to modify Algorithm 4.3 to output a 3NF decomposition with respect to F
rather than a BCNF decomposition; we leave this modification to the reader as an exercise.
This would give us an alternative to the synthesis approach of Algorithm 4.2.

Example4.19 Consider a relation schema R, with schema(R) = {A, B, C, D, E, F} together
with the set ofFDs F = {A --+ B, A --+ C, D --+ A, D --+ F} over R. The binary decomposition tree
associated with the output R of DECOMPOSE(R, F) is shown in Figure 4.1. It can be verified
that R is the collection of labels of the leaf nodes of the decomposition tree and that R is a
lossless join BCNF decomposition ofR with respect to F which is also dependency preserving.

If we replace F by {A --+ BC, D --+ AF}, which is a cover ofF, we will obtain a more succinct
lossless join and dependency preserving BCNF decomposition, i.e. we obtain a decomposition
with only two relation schemas. On the other hand, given F, R is unique no matter what FD is
chosen at line 6 of Algorithm 4.3. The decomposition output from DECOMPOSE(R, F) is not
always unique as we demonstrate below. •

In general, Algorithm 4.3 does not execute in time polynomial in the sizes of Rand F, since
as shown in Theorem 3.35 given in Subsection 3.6.6 of Chapter 3 computing a cover of p+ [R;]

Algorithms for Converting a Relation Schema into Normal Form 271

ABCDEF

AC DEF
AB

A DE F
AC

DF ADE

AD DE

Fig 4.1 The binary decomposition tree associated with Example 4.19

is intractable. This source of inefficiency can easily be removed by changing the computations
of P+ [Rd and P+[R2l in lines 8 and 10 of DECOMPOSE, respectively, to the polynomial-time
computations ofF[Rll and F[R2l in the size ofF. The problem in this case is that the algorithm
may not always output a BCNF decomposition. For example, let F = {A ~ B, B ~ C} be a set
of FDs over R, with schema{R) = {A, B, C, D}. Then F[R'l = 0, where schema{R') = {A, C, D},
but P+[R'l = {A ~ C}. It follows that if the FD, A ~ B, is chosen at line 6 of DECOMPOSE,
then R', which is not in BCNF with respect to P+[R'l, is in the output decomposition. In
any case this is not the only problem, since the cardinality of the decomposition returned by
DECOMPOSE{R, F) may be exponential in the cardinality of schema{R), i.e. type(R).

A polynomial-time algorithm in the sizes of Rand F that outputs a lossless join
decomposition of schema{R) in BCNF with respect to F can be formulated by using Lemmas
4.10 and 4.11 in conjunction with Algorithm 4.3 [TF82l. Essentially, if a relation schema, say
R, in line 3 of the said algorithm is such that Ischema(R)I > 2, then Lemma 4.11 is utilised to
remove attributes from schema{R), otherwise Lemma 4.10 is utilised.

Theorem 4.21 Given a relation schema R and a set F ofFDs over R, DECOMPOSE{R, F), whose
pseudo-code is given in Algorithm 4.3, outputs a lossless join decomposition of schema(R) in
BCNF.

Proof. Algorithm 4.3 terminates, since at each recursive call of the algorithm the cardinality
of the attribute set of the argument relation schema is strictly smaller than the cardinality of
the attribute set of the argument relation schema at the previous call.

Let R be the database schema output from DECOMPOSE(R, F). It is easy to verify that R is
in BCNF with respect to F, since by line 3 of the algorithm a relation schema is added to the
output database schema if and only if it is in BCNF.

By Theorem 3.29 given in Subsection 3.6.4 of Chapter 3 concerning lossless join
decompositions, we have that R is a lossless join decomposition of schema{R) with respect
to F if and only if CHASE(T{R), F) has a winning row. We leave it to the reader to conclude
the proof that R is a lossless join decomposition of schema{R) with respect to F by using a

272 Chapter 4. Relational Database Design

straightforward induction on the cardinality of R to show that CHASE(T(R), F) indeed has a
winning row. 0

Theorem 4.21 shows that we can always find a decomposition R of schema(R) which is
lossless and in BNCF with respect to F; as discussed prior to the theorem we can find such an
R in polynomial time in the size of the input. It is obvious that we would prefer the cardinality
of R to be as small as possible, since this would imply that less joins need to be performed
during the processing of queries and also that further redundancy is avoided. For example, let
schema(R) = {A, B, C} and F = {A -+ BC}. The database schema R = {R} is lossless and in BCNF,
while the database schemaS = {SI, S2}, withschema(Sd = {A,B} andschema(S2) = {A,C} is also
lossless and in BCNF. We would normally prefer Rover S due to the above-mentioned reasons.
So, an algorithm that minimises the number of relation schemas in R, while maintaining its
losslessness and its being in BCNF, would be very useful during database design in order to
improve the quality of the resulting database.

We show the negative result that the problem of finding a minimal cardinality database
schema that is both lossless and in BCNF is NP-hard. Thus assuming that PTIME # NP we
cannot find a polynomial-time algorithm to solve this minimisation problem. We begin by
defining the concept of redundant relation schemas with respect to a set F of FDs.

Defmition 4.23 (Redundant relation schemas) Let R be a lossless join decomposition of
schema(R) with respect to a set F ofFDs over R, with schema(R) = schema(R). Then a relation
schema S is redundant in R with respect to F ifR - IS} is also a lossless join decomposition of
schema(R) with respect to F. A decomposition R is nonredundant with respect to F if it does
not contain any redundant relation schemas with respect to F. •

A similar result to the one stated in the next theorem can be found in [TLJ90j.

Theorem 4.22 The problem of finding a loss less join and nonredundant decomposition of
schema(R) that is in BCNF with respect to a set F ofFDs over R, and such that the number of
relation schemas in R is less than or equal to some natural number k, with k ::: 1, is NP-hard.

Proof. To show that the problem is NP-hard we give a polynomial-time transformation from
the vertex cover problem, which is known to be NP-complete (see part (1) of Theorem 3.24 in
Subsection 3.6.1 of Chapter 3 wherein the superkey of cardinality k problem was shown to be
NP-complete by using essentially the same reduction). In order to help the reader we repeat
the description of the vertex cover problem.

The vertex cover problem: Given a graph (N, E) and a natural number q, does there exist a
subset M of the node set N, with IMI ::: q, such that for each edge {u, v} E E, at least one
of u and v belongs to M?

We construct a relation schema, R, such that schema(R) has one attribute A i for each node
in N and one attribute Bj for each edge in E; in the following we do not distinguish between
attributes and the nodes or edges they represent. We then construct a set F of FDs by having
an FD Ai -+ Bj for each node represented by Ai that is in the edge represented by Bj. In the
following we let X be the union of all the attributes Bj and let Y be the union of all the attributes

Algorithms for Converting a Relation Schema into Normal Form 273

Ai. By Theorem 4.14 given in Subsection 4.4.3 it follows that Y is the only key for R with respect
toF.

It remains to be shown that M is a vertex cover for (N, E) if and only if schema(R} has a lossless
join and nonredundant decomposition R which is in BCNF and such that the cardinality of R
is no more than k, where k = q + 1.

If. Suppose that R is a lossless join and nonredundant decomposition of schema(R} into
BCNF with respect to F with cardinality no more than k. By part (I) of Theorem 4.2 there exists
a relation schema S E R such that schema(S} is a superkey for R with respect to F. Moreover,
since Y is the unique key for R with respect to F, Y S; schema(S} must hold.

Let S be any relation schema in R and assume that schema(S} = W. We claim that if there
is at least one attribute Bj in W then there is exactly one attribute Ai in W, otherwise S is
redundant. To obtain a contradiction if this were not true there are two cases to consider.

Case 1. There is no such Ai in W, i.e. Y n W = 0. Then by Theorem 3.29 given in
Subsection 3.6.4 of Chapter 3 S is redundant in R with respect to F, since CHASE(T(R}, F}
contains a winning row if and only if CHASE(T(R - {S}}, F} contains a winning row. This is
due to the fact that no FD in F has an attribute Bj in its left-hand side.

Case 2. There are two distinct attributes Al and A2 in Y n W. Then due to the fact that no
FD in F has an attribute Bj in its left-hand side, neither Al E Bj nor A2 E Bj hold. There

are three further subcases to consider. Firstly, suppose that neither Bj E At nor Bj E Ai. It
follows therefore that Bj ¥ (AIA2)+' otherwise by the construction of F, AIA2 = Y implying
that either Bj E At or Bj E Ai leading to a contradiction. (We observe that there are no
nontrivial FDs in p+ of the form AIA2 ~ A3.) Therefore, Y %: schema(S) implying that S is
redundant in R with respect to F, since as in Case 1, we have that CHASE(T(R), F) contains a
winning row if and only if CHASE(T(R - IS)), F) contains a winning row. This is due to the
fact that all the FDs in p+ [SI are trivial. Secondly, suppose that either Bj E At or Bj E Ai
holds. Then S is not in BCNF with respect to F, since neither Al E Ai nor A2 E At holds,
thus leading to a contradiction. Thirdly, suppose that Bj E (AIA2)+ but neither Bj E At nor
Bj E Ai. Then by the construction of F we conclude that AIA2 = Y and thus either Bj E Ai
or Bj E Ai in which case S is not in BCNF, thus leading to a contradiction. The claim is now
proved.

So, we can form a vertex cover for (N, E) with at most q nodes as follows. IfR contains only
one relation schema, say S, then schema(S) = Y, and it must be the case that E = 0 implying that
M = 0. Otherwise, by the above claim R contains a single relation schema S with schema(S}
= Y and all other relation schemas in R have a single attribute Ai in them. We form M by the
union of the Ai in the attribute sets of the relation schemas in R - IS}. The result follows by
the construction ofF, since due to the fact that R is a lossless join decomposition of schema(R}
with respect to F, we have that X S; M+.

Only if. Suppose that M = {AI, A2, ... , Aq} is a vertex cover for (N, E). Let R =
{RI, R2, ... , Rq, Rk} where for all i E {I, 2, ... , q}, schema(Ri} = Ai n (X U {Ai)), i.e. the
intersection of the closure of Ai with respect to F with the set of attributes X U {Ail, and finally
schema(Rk} = Y. It can be verified that the database schema R is in BCNF with respect to F.
This relies on the observations that (i) by the construction of F it is true that for all subsets
W of X, w+ = W, and (ii) for all proper subsets Z of Y, Z+ n Y = Z. Moreover, it is easy to
show that R is a lossless join decomposition of schema(R} with respect to F on using the chase
procedure of Theorem 3.29 given in Subsection 3.6.4 of Chapter 3. 0

274 Chapter 4. Relational Database Design

It is not clear whether the problem stated in Theorem 4.22 is in NP or not. This is due
to the fact that we can guess a database schema R and check in polynomial time whether
R is nonredundant with respect to F by using the chase procedure, but as was shown in
Theorem 4.17 the problem of deciding whether R is in BCNF with respect to a set F of FDs
over R is, in general, cO-NP-complete.

4.6.3 How to Obtain a Decomposition in IDNF

We present some heuristics for obtaining decompositions which are in IDNF with respect to
a set F of FDs and a set I of INDs both over R. We assume that R is already decomposed into
BCNF with respect to F by using the decomposition algorithm given in Subsection 4.6.2.

Our heuristics deal with three problems that can prevent R from being in IDNF:

1) I has an IND of the form R[XA) S; S[YB), where Y is a superkey for S with respect to F
and B fj. Y (see Example 4.12 of Subsection 4.4.4); we call this problem the redundant
attribute problem.

2) I has an IND of the form R[X) S; sty), where Y is not a superkey for S with respect to F,
i.e. the intersection ofY with any key for S with respect to F is a proper subset of a key
for S with respect to F (see Example 4.13 of Subsection 4.4.4); we call this problem the
missing attribute problem.

3) I is a circular set of INDs (see Example 4.14 of Subsection 4.4.4); we call this problem
the circular IND problem.

Defmition 4.24 (BCNF preserving heuristic) A heuristic is BCNP preserving with respect to
a database schema R and a set F of FDs together with a set I of INDs both over R (or simply
BCNF preserving if R, F and I are understood from context) if after the heuristic is applied,
resulting in the modification of R to R/, F to pi and I to 1', R' is in BCNF with respect to p' .

•
HI Heuristic for solving the redundant attribute problem, where R[XA) S; S[YB) E I, Y is a

superkey for S with respect to F and B fj. Y. In this case A is redundant in R. Thus we
remove A from schema(R) and replace the IND R[XA) S; S[YB) in I with the IND R[X)
S; sty)·

As we showed in Example 4.12, by invoking heuristic HI, we remove the attribute D
from schema(HEAD) and transform the IND HEAD[HD) S; LECT[LD) into the key-based
IND HEAD[H) S; LECT[L] (in the actual example we renamed the schema HEAD to be
NEW _HEAD). The removal of the attribute D from schema(HEAD) does not incur any loss
of information, since the original relation schema, which includes D, can be inferred via the
relational algebra query

H2 Heuristic for solving the missing attribute problem, where R[X) S; sty) E I and Y is not
a superkey for S with respect to F. Since Y is not a superkey for S with respect to F we
can find a nonempty set of attributes W S; schema(S) - Y such that YW is a superkey

Algorithms for Converting a Relation Schema into Normal Form 275

for R with respect to F. We choose one attribute B E Wand add a corresponding new
attribute, say A, which is not in schema(R), to schema(R). We assume that A is not a
prime attribute of R with respect to F and that the keys for R with respect to F remain
unchanged, i.e. if K is a key for R prior to adding A to schema(R) then R: K -+ A E p+
after adding A to schema(R). Finally, we replace the IND R[X] ~ SlY] in I by the IND
R[XA] ~ S[YB] .

As we showed in Example 4.13, by invoking heuristic H2, we add the new attribute L' to
schema(EMP) and transform the IND EMP[P] ~ PROHP] into the key-based IND EMP[PL']
~ PROHPL] (in the actual example we renamed the schema EMP to be NEW _EMP). Moreover,
we add the FD EMP: E -+ L' to F. We note that as a result of invoking H2 we can now losslessly
join relations over EMP and PROT, after renaming L' to L in schema(EMP), since PL is a key
for PROT.

It is evident that repeated application of the heuristics HI and H2 results in a set of INDs
that is key-based. The next lemma shows that these heuristics are also BCNF preserving.

Lemma 4.23 The heuristics HI and H2 are BCNF preserving.

Proof. HI is BCNF preserving, since removing an attribute from schema(R) does not affect
the property that R is in BCNF with respect to F. H2 is BCNF preserving since the keys for the
resulting relation schema remain the same after the new attribute is added to schema(R). 0

The next two heuristics transform I to a noncircular set of INDs by removing cycles from I.
Prior to invoking them we assume that we have applied heuristics HI and H2 repeatedly until
I is a set of key-based INDs.

Definition 4.25 (A cycle ofINDs) A cycle ofINDs in I is either a nontrivial IND R[X] ~ R[Y]
E I or a sequence of m, with m > 1, distinct INDs in I of the form: RdXd ~ R2 [Y2], R2 [X2]
~ R3[Y3], ... , Rm[Xm] ~ RdYd, where RI , R2, 00 ', Rm are distinct relation schemas in R. A
cycle ofINDs in I is proper if for all i E {I , 2, 0 0 0 , m} we have Xi = Yi. •

Definition 4.26 (Cycle breaking heuristics) A sequence of heuristics, HI , H2 , 0 0 0 , Hb is
cycle breaking with respect to a database schema R and a set F of FDs together with a set
I of INDs both over R (or simply cycle breaking if R, F and I are understood from context)
if, after applying each heuristic in the sequence a finite number of times such that we always
apply Hi before Hj' when i < j, resulting in the modification ofR to R', F to p' and I to I', the
set I' is a noncircular set of INDs. •

Definition 4.27 (Key-based preserving heuristic) A heuristic is key-based preserving with
respect to a database schema R and a set F ofFDs together with a set I ofINDs both over R (or
simply key-based preserving ifR, F and I are understood from context) if, after the heuristic
is applied resulting in the modification of R to R', F to pI and I to I', the set I' is a key-based
set ofINDs over R' with respect to p'. •

H3 First heuristic for solving the circular IND problem, where RdXtl ~ R2[Y2], R2[X2] S;

R3[Y3], 000' Rm[Xm] S; RI [Yll is a proper cycle in I. Collapse RI andR2 into RI as follows.

276 Chapter 4. Relational Database Design

Firstly, we rename all the attributes in schema(Rz) - Yz to new attributes that are disjoint
from the attributes in schema(R); the renaming of the attributes is also carried out in
all the data dependencies in which they appear with reference to R2. Secondly, the
attributes in schema(R2) - Y2 are added to schema(Rd. Finally, we remove R2 from R
and rename all references to the relation schema R2 and the attributes Y2 to be to Rl
and Xl> respectively, in all the data dependencies that they appear in.

Example 4.20 Consider a database schema R = {EMP, JOB}, with schema(EMP) = {EN, AGE,
ADR} and schema (JOB) = UNO, JDES, DN}, where EN stands for employee name, AGE stands
for employee age, JNO stands for job number, JDES stands for job description and DN stands
for department name. Moreover, consider a set F of FDs over R consisting of the two FDs,
EN --?- schema(EMP) and JNO --?- schemaOOB), and a set I of INDs over R consisting of the
two INDs, EMP[EN] S; JOB[JNO] and JOB [JNO] S; EMP[EN]. When invoking heuristic H3 we
add the new attributes, say JDES' and DN', to schema(EMP), remove the relation schema JOB
from R and replace the FD JNO --?- schemaOOB} by the FD EMP: EN --?- {IDES', DN'}. We also
rename JOB to EMP and JNO to EN in the set I of INDs; thereafter it follows that I is empty
since it contains only trivial INDs when the renaming is completed. It can be verified that the
resulting database schema is in BCNF and that I is trivially non circular. We note that each
of the two original relation schemas can be inferred from the new one by a relation algebra
query involving projection and renaming where appropriate. •

H4 Second heuristic for solving the circular IND problem, where RI [Xl] S; R2[Y2], R2[X2] S;
R3[Y3], ... , Rm[Xm] S; RtlYIl is a cycle in I which is not proper. Firstly, we remove the
attributes in Xl - Yl from schema(Rd, project the set of FDs over the original Rl onto
the resulting relation schema, and remove RtlXd S; R2[Y2] from I. Secondly, we add a
new relation schema S to R, an FD to F and two INDs to I as follows. We set schema(S)
= Xl Y I , noting that since I is key-based we have that Y I is a key for Rl with respect to F,
and therefore we add the FD S : YI --?- Xl to F. Lastly, we add the INDs S[Xd S; R2[Y2]
and S[Yd S; RtlYd to I.

Example 4.21 Consider a database schema R = {EMP}, with schema(EMP} = {EN, MN},
where EN stands for employee name and MN stands for manager name. Moreover, consider
a set F of FDs over R having the single FD, EMP: EN --?- MN, and a set I of INDs over R
having the single IND, EMP[MN] S; EMP[EN]. When invoking heuristic H4 we remove the
attribute MN from schema(EMP} and add the new relation schema EMP-MGR to R, with
schema(EMP-MGR} = {EN, MN}. Furthermore, we remove the FD EMP: EN --?- MN from F
as a result of the projection in H4 and add to F the FD EMP-MGR: EN --?- MN; we also replace
the single IND in I by the two INDs: EMP-MGR[MN] S; EMP[EN] and EMP-MGR[EN] S;

EMP[EN] (see also Example 4.14). It can be verified that the resulting database schema is in
BCNF and that I is noncircular. Moreover, the original version of the relation schema EMP
can be losslessly recovered by a relational algebra expression which joins together EMP and
EMP-MGR.

Consider a database schema R = {EMP, DEPT}, with schema(EMP} = {EN, DN} and
schema(DEPT} = {DN, MN}, where EN stands for employee name, DN stands for department
name and MN stands for manager name. Moreover, consider a set F ofFDs over Rconsisting of
the two FDs, EMP: EN --?- DN and DEPT: DN --?- MN, and a set I ofINDs over R consisting of the

Algorithms for Converting a Relation Schema into Normal Form 277

two INDs, EMP[DNj S; DEPT[DNj and DEPT[MNj S; EMP[ENj. When invoking heuristic H4
we remove the attribute DN from schema(EMP) and add the new relation schema EMP-DEPT
to R, with schema(EMP-DEPT) = {EN, DN} . Furthermore, we remove the FD EMP: EN --+ DN
from F as a result of the projection in H4 and add to F the FD EMP-DEPT : EN --+ DN; we also
replace the IND EMP[DNj S; DEPT[DNj in I by the two INDs: EMP-DEPT[DNj S; DEPT[DNj
and EMP-DEPT[ENJ S; EMP[ENJ. It can be verified that the resulting database schema is in
BCNF and that I is noncircular. Moreover, the original version of the relation schema EMP
can be losslessly recovered by a relational algebra expression which joins together EMP and
EMP-DEPT. •

Lemma 4.24 The heuristics H3 and H4 are BCNF preserving, key-based preserving and the
sequence of heuristics H3, H4 is cycle breaking.

Proof. Firstly, we show that H3 and H4 are BCNF preserving. H3 is BCNF preserving, since
Xl and Y2 are equivalent keys in the sense that in any database dover R satisfying F and I we
have that rrx1 (rl) = rrY2 (r2), where rl and r2 are the relations in dover Rl and R2, respectively.
Thus the effect of H3 is to merge Rl and R2 together by transforming all references to Y2 to
be references to Xl and the set of keys for the transformed relation schema is just the result
of merging together the keys for the old relation schemas Rl and R2. H4 is BCNF preserving
since we have removed attributes from schema(R\) and, in addition, schema(S) is a subset of
the original schema(Rd which is known to be in BCNF with respect to F.

Secondly, it is evident that each application of heuristic H3 or H4 results in a set of INDs
that is key-based.

Thirdly, we show that the sequence H3, H4 is cycle breaking. This follows directly from the
fact that repeated application ofH3 or H4 each results in removing a cycle from I. Moreover,
no new cycles are introduced by applying either H3 or H4 and the set I of INDs can have only
a finite number of cycles in it. D

The next theorem is immediate from Lemmas 4.23 and 4.24 observing that after applying
HI and H2 a sufficient number of times we obtain a key-based set of INDs.

Theorem 4.25 Given a database schema R that is in BCNF with respect to a set F ofFDs over
R and a set I ofINDs over R we can obtain an IDNF database schema by invoking the following
two steps:

1) Apply heuristics HI and H2 repeatedly until I becomes key-based.

2) Apply the sequence of heuristics H3, H4 until I becomes noncircular. D

The problem of achieving a database schema in normal form with respect to a set ofFDs and
INDs is considered in [CA84, MR86b, MS89a, MM90, MR92aj. In all these references apart
from [MR86b j part of the requirement of being in normal form is that each relation schema
in R also correspond to a particular type of ERD. Thus a database schema which is in such
an Entity Relationship Normal Form (ERNF) can be readily transformed into an ERD. This
approach has the advantage that the semantics of the database schema can be presented in
terms of the ER model, whose semantics are easier for users to understand.

278 Chapter 4. Relational Database Design

4.7 Converting an ERD into a Relational Database Schema in
IDNF

It is common practice to produce an ERD as a first step in relational database design. The
semantics of the application are more visible in the ERD and many database users find it easier
to work with the ERD rather than directly with the attributes of the database schema and the
data dependencies over this set of attributes. Herein we present a mapping from an entity
relationship diagram, D, onto a database schema R together with a set of FDs and INDs over
R. We will show that R is in IDNF with respect to the set of data dependencies output from the
mapping. Thus given that a database designer prefers to work with ERDs we can automate
the process of relational database design once the ERD under consideration is completed.

One of the problems with this approach is that when an entity type is added to the ERD
the user needs to specify a primary key (or more generally a set of candidate keys), which
has the effect of producing a relation schema already in BCNF. However, in order to specify
the candidate keys the user needs to know the set of FDs that are valid for the application in
hand. Similarly, the relationship types induce certain key-based INDs but in order for these
to be specified correctly the user may need to know more about the INDs that are valid for
the application in hand. Thus it may be possible to utilise the algorithms given in Section 4.6
during the process of designing an ERD in order to produce a higher quality result.

For the sake of simplicity of the mapping we will assume that D does not contain any
recursive relationship types; in fact, a recursive relationship type can always be transformed
into a nonrecursive one. This is achieved by replacing the entity type involved in the recursive
relationship type by two distinct entity types each denoting one of the two roles the said entity
type plays in the relationship type.

Furthermore, we will assume that the set of non prime (i.e. nonkey) attribute names
associated with any two entity types in the ERD are disjoint and that the key attributes of each
entity type (including the entity types involved in built-in relationship types) are explicitly
represented for each entity type in D. We will call this assumption the disjointness assumption
for nonprime attributes; this assumption can always be enforced by renaming of attribute
names. We note that it is still possible for a nonprime attribute of one entity type, say DNAME
in EMP, to be the same as a prime attribute of another entity type, say DNAME in DEPT.

With respect to the built-in relationship types we have the following situation. If the
relationship type is an ID relationship type from an entity type [\ to an entity type [2, then
we repeat the primary key attributes of [2 in the representation of [\ in D. Similarly, if the
relationship type is an ISA relationship type from an entity type [\ to an entity type [2, then
due to the inheritance of attributes we need only repeat the primary key attributes of [2 in
the representation of [\ in D. In the mapping now described we consider the set of attributes
associated with an entity type to be the set of attributes explicitly represented in D for that
entity type.

Another reasonable assumption that we will make concerns the built-in relationship types
ID and ISA (see Section 2.4 of Chapter 2). Let B denote the ERD resulting from removing
from D all non built-in relationship types, and also all attributes and the corresponding edges
connecting these attributes to their entity types. That is, B is an ERD describing the entity
types and the built-in relationship types present in D; we call the sub graph B, the inheritance
lattice induced by D. We observe that B is directed and that, in general, B may not be connected

Converting an ERD into a Relational Database Schema in IDNF 279

and thus may have islands of connected components. The assumption we make is that the
inheritance lattice B, which is induced by D, does not contain any directed cycles (or simply
cycles). We justify this assumption by considering two cases when we have a cycle in the
inheritance lattice B involving two entity types £1 and £2 . Firstly, suppose that there is an
ID relationship type between £1 and £2, i.e. £1 ID £2. Thus by the transitivity of ID and ISA
relationship types we conclude that £2 ID £1 or £2 ISA £1. This leads to a contradiction since,
due to the fact that there is a cycle involving £1 and £2, we conclude that the primary keys of £1
and £2 are the same contrary to the definition of an ID relationship type. Secondly, suppose
that that there is no ID relationship type between £1 and £2 and, by symmetry, that there is also
no ID relationship type between £2 and £1. Thus by the transitivity of ISA relationship types
we conclude that £1 ISA £2 and £2 ISA £1 implying that £1 and £2 should be merged, since
they do not represent distinct entity types. Therefore, in D we can collapse £1 and £2 into a
single entity type, say £, take the corresponding attribute set E to be the union of the attributes
sets of £1 and £2, and also adjust the relationship types involving £1 and £2 accordingly so
that they reference £ instead (see heuristic H3 for solving the proper circular IND problem
in Subsection 4.6.3). It follows that we are justified in assuming that the inheritance lattice
B, which is induced by D, does not contain any cycles; we call this assumption the built-in
relationship type assumption.

Defmition 4.28 (Mapping entity types) An entity type £ in D is mapped to a relation schema,
denoted by R(£), with schema(R(£» being equal to the set of attributes associated with £; we
will assume that all the attributes of £ are single-valued, so that the resulting relation schema
be in INF. A singleton set of FDs, denoted by F(£), is associated with £, where •

F(£) = {K ~ schema(R(£» I K is the primary key of £} .
We observe that in the above definition we assume that the entity type has a single candidate

key, which bydefault is the primary key. This assumption can be relaxed by allowing additional
candidate keys, called alternate keys, to be represented in the ERD. Allowing alternate keys to
be represented will not affect the translation process.

Definition 4.29 (Mapping cardinality-based relationship types) Let R in D be a relationship
type from the entity type £1 in D to the entity type £2 in D, with KI being the primary key
of £1 and K2 being the primary key of £2; R may be a many-to-many, a many-to-one or a
one-to-one relationship type.

The relationship type R is mapped to a relation schema, denoted by R(R), with
schema(R(R» =KI UK2. We assume without loss of generality that KI andK2 are disjoint; ifnot
we can always enforce this disjointness by adding to each attribute a role name corresponding
to the entity type it belongs to; see Definition 2.9 in Subsection 2.2.4 of Chapter 2. The following
set of key dependencies, denoted by F(R), is associated with R:

• ifR is a many-to-many relationship type, then F(R) = 0,

• ifR is a many-to-one relationship type, then F(R) = {KI ~ K2}, or

• ifR is a one-to-one relationship type, then F(R) = {KJ ~ K2 , K2 ~ Kd.

In addition, a set of two key-based INDs, denoted by I(R), is associated with R, where

•

280 Chapter 4. Relational Database Design

We observe that when the relationship type is many-to-one or one-to-one, there is no need to
create an additional relation schema for the relationship type. In the many-to-one case from £1
to £2 we can add the primary key attributes ofR(£2) to R(£I), renaming attributes if necessary,
and add a key-based IND from these foreign key attributes to the primary key attributes of
R(£2); the primary key of R(£d remains the same. The construction for the one-to-one case
is similar except that it is done in both directions, by considering the one-to-one relationship
type as a combination of a many-to-one relationship type from £1 to £2 together with another
many-to-one relationship type from £2 to £1. The problem with this alternative approach is
that the resulting set of INDs may be cyclic and thus IDNF will be violated.

Defmition 4.30 (Mapping built-in relationship types) Let R in D be a relationship type from
the entity type £1 in D to the entity type £2 in D, with KI being the primary key of £1 and K2
being the primary key of £2; R may be an ID or an ISA relationship type. If R is an ID type
then K2 C KI and ifR is an ISA type then KI = K2.

A singleton set of key-based INDs, denoted by I(R), is associated with R, where

•
We observe that the INDs produced from mapping relationship types are typed and thus

by Theorem 3.45 in Subsection 3.6.10 of Chapter 3 their implication problem is polynomial
time decidable. We now summarise the above three mappings as a mapping from an ERD to
a database schema together with a set of FDs and INDs.

Definition 4.31 (The mapping from ERDs to database schemas) We amalgamate the map
pings given above to obtain a mapping from an ERD D to a database schema, R(D), with an
associated set of FDs, F(D), and an associated set of INDs, I(D), as follows:

R(D) (R(£) I £ is an entity type in D} U

(R(R) I R is a cardinality-based relationship type in D),

F(D) (F(£) I £ is an entity type in D} U

(F(R) I R is a cardinality-based relationship type in D), and

I(D) = (I(R) I R is a relationship type in D}. •
The following theorem shows that the mapping just defined yields a database schema in

IDNF (see Definition 4.16 in Subsection 4.4.4 for the definition ofIDNF). This has a practical
implication, since in many IT departments it is common practice to produce an ERD as a
first step in relational database design and then to use the ERD as the basis for constructing a
relational database schema.

Theorem 4.26 Let D be an ERD that satisfies the disjointness assumption for non prime
attributes and the built-in relationship type assumption. Then R(D) is in IDNF with respect
to F(D) and I(D).

Proof. Let R(D) E R be a relation schema. If R, where R stands for R(D), is mapped from
an entity type then R is in BCNF with respect to F(D), since F(D)[R) contains a single key
dependency by the disjointness assumption for nonprime attributes. (If we allow alternate keys

Converting an ERD into a Relational Database Schema in IDNF 281

to be represented in the ERD, it can be shown that R is still in BCNF with respect to F(D).) On
the other hand, ifR is mapped from a cardinality-based relationship type, then by construction
R is in BCNF with respect to F(D), since KJ and K2 are assumed to be disjoint. Furthermore,
all the INDs generated from relationship types, whether they be cardinality-based or built-in,
are key-based and thus I(D) is a key-based set of INDs. The result that R is in IDNF with
respect to F(D) and I(D) follows, since it can be verified that I(D) is noncircular due to the
built-in relationship type assumption. 0

It can easily be seen that the mappings from R(D), F(D) and I(D) can be carried out in
polynomial time in the size of D, and can be viewed as an efficient synthesis algorithm.

Example 4.22 Consider the ERD, D, shown in Figure 2.1 of Chapter 2, concerning a
computerised book order system; we will ignore the two multi-valued attributes PHONES of
CUSTOMER and AUTHORS of BOOK. The mapping from D results in the following database
schema and set of FDs and INDs, where in this case we take R(R) = R:

1) R(D) = {CUSTOMER, ORDER, INVOICE, BOOK, PLACES, RECEIVES, BILLING,
SPECIFIES}, with schema(CUSTOMER) = {C#, NAME, ADDRESS}, schema(ORDER)
= {O#, O-DATE, QTY}, schema(INVOICE) = {I#, I-DATE, VALUE}, schema(BOOK) =
{ISBN, TITLE, PRICE}, schema(PLACES) = {C#, O#}, schema(RECEIVES) = {C#, I#},
schema(BILLING) = {O#, I#} and schema(SPECIFIES) = {O#, ISBN}.

2) F(D) = {CUSTOMER: C# -+ schema(CUSTOMER), ORDER: 0# -+ schema(ORDER),
INVOICE: 1# -+ schema(INVOICE), BOOK: ISBN -+ schema(BOOK), PLACES : 0#-+
C#, RECEIVES: 1# -+ C#, BILLING: 0# -+ 1#, BILLING: 1# -+ OIl.

3) I(D) = (PLACES[C#] ~ CUSTOMER[C#), PLACES [0#] ~ ORDER[O#], RECEIVES[C#]
~ CUSTOMER[C#], RECEIVES[I#] ~ INVOICE[I#], BILLING[O#] ~ ORDER[O#],
BILLING[I#] ~ INVOICE[I#], SPECIFIES[O#] ~ ORDER[O#), SPECIFIES[ISBN] ~
BOOK[ISBN]}.

The reader can verify that R(D) is in IDNF with respect to F(D) and I(D). •
Jajodia et al. [JNS83a, JNS83b] consider the problem of when an ERD can be mapped to

a database schema which is in BCNF without taking INDs into account. They allow general
n-ary relationship types, which may have attributes of their own, while we have restricted
ourselves to binary relationship types and we do not allow such relationship types to have
attributes of their own (see Subsection 2.2.2 of Chapter 2). Several researchers [CA84, DA87,
MS89a, MM90, MR92a] have also considered the inverse mapping, namely from a database
schema to an ERD. Given that a database schema is in ERNF (see end of Subsection 4.6.3)
then it can be mapped to an ERD, which in turn can be mapped back to the database schema.
Especially for naive users such a mapping may be very useful as an aid to understanding the
semantics of the database schema.

282 Chapter 4. Relational Database Design

4.8 Discussion

Relational database design has been at· the forefront of relational database theory since
its inception in Codd's seminal paper [Cod72a), which introduced 2NF and 3NF, and the
introduction of BCNF in [Cod74). An informative summary of the state of the art on the
various normal forms, not taking INDs into account, was given by Kent as early as 1983
[Ken83a). The concepts pertaining to the various normal forms have infiltrated industry and
are widely used in practice. Moreover, as we have seen in Section 4.7, relational database design
can be combined with the higher-level activity of data modelling by using ERDs. It is our view
that relational database design is a good example of how theory can have an important and
direct influence on practice. We also feel that recent work on providing semantic justification
for the various normal forms is of fundamental importance, since it can provide us with an
explanation of what we actually achieve by the process of database design [Vin94, LV99).

We now briefly mention how we can reduce query processing overheads by designing acyclic
database schemas. It is natural to describe a database schema R as a hypergraph, where the
nodes of the hypergraph correspond to the attributes in the relation schemas of R and each
hyperedge is the set of attributes of one of the relation schemas in R. Fagin [Fag83) investigated
various types of acyclicity of relational database schemas when viewed as hypergraphs. (See
Subsection 3.6.14 in Chapter 3 for the formal definition of an acyclic database schema and
its hypergraph representation.) Recall Definition 3.98 in Subsection 3.6.14 of Chapter 3 of
pairwise and join consistent databases. Moreover, recall Theorem 3.73 of Subsection 3.6.14 in
Chapter 3, where we have shown that a database schema R is acyclic if and only if every pairwise
consistent database over R is also join consistent. Thus in order to check join consistency
of a database over an acyclic database schema, we can simply check, in polynomial time in
the size of the input database, whether it is pairwise consistent or not. In general, when the
database schema is cyclic then, by Theorem 3.72 of Subsection 3.6.14 in Chapter 3, testing for
join consistency is an NP-complete problem.

Let us call the query that involves the computation of the natural join of all the relations in
the database the database join query. The computation of the database join query is said to
be monotone if it can be computed in a way such that for all the intermediate stages during
the computation of the query, the number of tuples in any intermediate result is greater
than or equal to the number of tuples in the previous intermediate result, i.e. the number of
tuples in the result of the query increases monotonically. In [GS82, BFMY83) it was shown
that a database schema is acyclic if and only if the computation of the database join query is
monotone assuming that the database is pairwise consistent. Thus the database join query
can be computed efficiently when the database schema is acyclic. If the database schema is
such that every subset of the database schema is also acyclic then it follows that all natural
join queries involving one or more relations in the database can be computed efficiently.

Finally, we refer the reader to [Bis98) for a recent critique on the overall achievements and
prospects of database design.

4.9 Exercises
Exercise 4.1 Given a relation schema R, with schema(R) = {A, B, C, D}, together with a set
ofFDs F = {A -+ B, A -+ C, A -+ D}, is R in 2NF? Is R in 3NF? Is R in BCNF?

4.9. Exercises 283

Exercise 4.2 Given a relation schema R, with schema(R) = {A, B, C, D} , together with a set
ofFDs F = {A ~ B, B ~ C, C ~ D}, is R in 2NF? Is R in 3NF? Is R in BCNF?

Exercise 4.3 Given a relation schema R, with schema(R) = (A, B, C), together with a set of
FDs F = {AB ~ C, AC ~ B, BC ~ A}, is R in 2NF? Is R in 3NF? Is R in BCNF?

Exercise 4.4 Given a relation schema R, with schema(R) = (A, B, C), together with a set of
FDs F = {AB ~ C, C ~ B}, is R in 2NF? Is R in 3NF? Is R in BCNF?

Exercise 4.5 An FD X ~ A in a set F of FDs over a relation schema R is elementary, if it is
nontrivial, A is a single attribute and for no proper subset Y C X, is it true that Y ~ A E F+.
A set F of FDs is elementary if all the FDs in F are elementary. Prove that R is in BCNF with
respect to a set F of elementary FDs if and only if for every FD X ~ A E F, X is a key for R with
respect to F [Zan82].

Exercise 4.6 Prove that if a relation schema R is in 3NF with respect to a set F of FDs but is
not in BCNF with respect to F, then it must have at least two distinct keys for R with respect
to F which overlap, i.e. such that their intersection is nonempty [VS93, Mok97] .

Exercise 4.7 The definitions of 3NF and BCNF do not mention null values at all, although
entity integrity insists that the primary key values of tuples in a relation should not contain
any null values. Show how, in the presence of null values, this restriction has an effect on the
validity of a 3NF or BCNF decomposition, assuming that the null values are of the type, "value
exists but is unknown at the present time" [AC84].

Exercise 4.8 An MVD X ~~ Y I Z is pure with respect to a set M of FDs and MVDs, if it is
nontrivial and neither X ~ Y nor X ~ Z are in M+. Prove that if R is in BCNF with respect to
M, i.e. R is in BCNF with respect to the set of FDs in M+, then for any key K for R with respect
to the set of FDs in M+ and any pure MVD X ~ ~ Y I Z E M+, YZ S; K (Jaj86].

Exercise 4.9 You are given a relation schema R, with schema(R) = {A, B, C, D, E, G}, together
with a set of FDs F = {A ~ B, CD ~ A, CB ~ D, AE ~ G, CE ~ D}. Synthesise R into a
lossless join and dependency preserving 3NF decomposition with respect to F. Decompose R
into a lossless join BCNF decomposition with respect to F.

Exercise 4.10 Let F be a set of FDs over R that is canonical, nonredundant and such that its
left-hand sides are reduced. Define an FD digraph Gp = (N, E) for such a set ofFDs as follows.
The nodes in N are labelled by FDs in F and there is an arc in E from a node labelled X ~ A
to a node labelled Y ~ B if A E Y. Show that if Gp is an acyclic digraph then R has a lossless
join and dependency preserving BCNF decomposition with respect to F [Maj92].

Exercise 4.11 A relation schema R is in Fourth Normal Form (4NF) with respect to a set M
of FDs and MVDs, if whenever X ~ ~ Y is a nontrivial MVD in M, then X is a superkey for
R with respect to the set of FDs in M+. (Recall that an FD X ~ Y is a special case of an MVD
X ~~ Y.) Prove that 4NF is cover insensitive, i.e. that R is in 4NF if and only if whenever X
~ ~ Y is a nontrivial MVD in M+, then X is a superkey for R with respect to the set of FDs
inM+.

284 Chapter 4. Relational Database Design

Exercise 4.12 Prove that if a relation schema R is in 4NF with respect to a set of FDs and
MVDs M, then it is also in BCNF with respect to the set of FDs in M+.

Exercise 4.13 Definition 4.13 of value redundancy in Subsection 4.4.3 can be generalised to
FDs and MVDs, simply by replacing, in this definition, the set F of FDs by a set M of FDs and
MVDs. Generalise Theorem 4.13 to FDs and MVDs, i.e. prove that a relation schema R is in
4NF with respect to a set M ofFDs and MVDs over R if and only ifR is in VRFNF with respect
to M [Vin98j.

Exercise 4.14 A decomposition R is in 4NF with respect to a set M of FDs and MVDs over
R, with schema(R) = schema(R), if each Ri E R is in 4NF with respect to the set of projected
MVDs (PMVDs) that hold in the context of Ri. (See Proposition 3.56 of Subsection 3.6.13 in
Chapter 3 for the definition of a PMVD.) Propose an algorithm that decomposes a relation
schema R into a lossless join decomposition of schema(R) that is in 4NF with respect to M
[Fag77a, Fag77bj.

Exercise 4.15 Let M be a set ofMVDs over R. Devise an algorithm that obtains a lossless join
4NF decomposition of schema(R), whose cardinality is less than or equal to the cardinality of
schema(R) [LT87bj.

Exercise 4.16 Assume a set M of FDs and MVDs over a relation schema R. Prove that if R is
in BCNF with respect to the set of FDs in M+ and at least one of the keys for R with respect to
the set of FDs in M+ is simple, then R is also in 4NF with respect to M [DF92j. (Recall that a
simple key is a key that is a singleton.)

Exercise 4.17 Recall that an Armstrong relation for a set of integrity constraints :E is a relation
which satisfies all the constraints in :E and violates each constraint not in the closure of:E (see
Definition 3.56 in Section 3.5 of Chapter 3). Discuss how Armstrong relations can be useful
in relational database design.

Exercise 4.18 In some applications the stipulation in the definition of IDNF that the set of
INDs be noncircular seems to be overly restrictive. Give an example supporting this claim.

Exercise 4.19 A database dover R has an insertion violation with respect to a set of FDs and
INDs :E = F U lover R if

1) d F :E, and

2) there exists a tuple t over R which is compatible with r, where r is the relation in dover
R, but ICHASE(dU It}, I) ~ :E; dU {t} denotes the database resulting from the insertion
of t into r.

A database schema R is free of insertion anomalies with respect to :E if there does not exist
a database dover R which has an insertion violation with respect to :E.

Prove that if I is noncircular, then R is free of insertion anomalies with respect to :E if
and only if:E is a reduced set of FDs and INDs (see Definition 3.78 in Subsection 3.6.12 of
Chapter 3) and R is in BCNF with respect to F [LV99j.

4.9. Exercises 285

Exercise 4.20 A database dover R has a modification violation with respect to a set of FDs
and INDs ~ = F U lover R if

1) d F ~ , and

2) there exists a tuple U E r and a tuple t over R which is compatible with r - {u}, where
r is the relation in dover R, but ICHASE((d - {u)) U It}, I) [;6 ~; d - {u} denotes the
database resulting from the deletion of u from r.

A database schema R is free of modification anomalies with respect to ~ if there does not
exist a database dover R which has a modification violation.

Prove that if I is non circular, then R is free of modification anomalies with respect to ~ if
and only if R is free of insertion anomalies with respect to ~ [L V99].

Exercise 4.21 Suppose that we have a relational database schema that is in IDNF with respect
to a set of FDs. Propose an algorithm to reverse engineer this database schema into an
Entity-Relationship Diagram [DA87].

Exercise 4.22 Suggest how you would design a Computer-Aided Software Engineering
(CASE) tool for relational database design, which would allow database designers to iteratively
improve the quality of their designs.

s. Incomplete Information in the
Relational Data Model

Correct treatment of incomplete information in databases is offundamental importance, since
it is very rare that in practice all the information stored in a database is complete. There are
several different types of incompleteness that need to be taken into account. In the first case
some information in the database may be missing. Missing information generally falls into
two categories; applicable information, for example, if the name of the course that Iris is taking
is applicable but unknown, and inapplicable information, for example, ifIris does not have a
spouse. In both cases the missing information can be modelled by special values, called null
values, which act as place holders for the information that is missing. Varied interpretations of
null values within these two categories were listed in [ANS751. In the second case information
in the database may be inconsistent, for example, if two different ages were recorded for Iris
when Iris is only allowed to have one age. Inconsistency can normally be detected during
updates to the database and in such cases it can be avoided. In the third case incompleteness
involves the modelling of disjunctive information, which is a special case of applicable but
unknown information. For example, we may know that Iris either belongs to the Computer
Science department or to the Maths department but we do not know for certain to which
department she belongs. Disjunctive information can be modelled by a finite set of values,
called an or-set, one of these values being the true value. That is, Iris's department is a member
of the or-set {ComputeLScience, Maths}. In the fourth case incompleteness relates to fuzzy
information. In this case the membership of an attribute value may be fuzzy; namely, it may
be a number in the interval [0, 11 or a linguistic value such as short, medium or tall. For
example, Iris's age may be recorded as young and her performance in last year's exam may
be recorded as 0.7. Fuzzy sets are also able to model the situation where there is uncertainty
about the membership of a tuple in a relation. For example, we may only know with a
degree of 0.8 certainty that the tuple recording information about Iris is actually true, i.e. the
membership of that tuple is 0.8. Finally, we could use a probabilistic approach to incomplete
information by attaching to each attribute value a probability between 0 and 1 according to
a known distribution for that attribute domain. This approach allows the use of statistical
inference during query processing in order to obtain approximate answers. We will further
discuss the use of probability theory in modelling incomplete information at the end of the
chapter.

As relational database systems are now widely available in the commercial world there
is a growing demand for comprehensive handling of incomplete information within those

287

288 Chapter 5. Incomplete Information in the Relational Data Model

systems. This has lead researchers to extend the relational model by allowing attribute values
of tuples to be incomplete; we shall refer to such relations as incomplete relations.

In Section 5.1 we introduce four different types of null value that cover most situations of
incompleteness that arise in practice. In Section 5.2 we discuss two fundamental approaches
with regards to how complete the information in a database is, namely the open world and
closed world assumptions. In Section 5.3 we formalise the notion of an information lattice of
types of null value, which allows us to measure the information content of tuples in a relation,
and formally define the meaning of an incomplete relation. In Section 5.4 we present an
extension of the relational algebra where we allow a single type of null value representing an
unknown value from an attribute domain. In Section 5.5 we show how integrity constraints
can be extended to hold in incomplete relations; we focus on FDs and INDs (see Subsections
3.6.1 and 3.6.7 of Chapter 3, respectively, for details concerning the satisfaction of FDs and
INDs in relations). In Section 5.6 we formalise the notion of an or-relation, which allows
the representation of a disjunction of a finite set of values, and show how the relational
algebra and integrity constraints can be extended within the context of the or-set approach.
In Section 5.7 we formalise the notion of a fuzzy relation, based on fuzzy set theory, which
allows the representation of vague information, and show how the relational algebra and
integrity constraints can be extended within this approach. In Section 5.8 we discuss the
related approach of rough sets which addresses imprecision and ambiguity in data rather than
vagueness. In Section 5.9 we present an alternative approach to dealing with incomplete
information that uses default values rather than null values. Default values have simpler
semantics than null values but they do not take into account the information content of a
relation and thus may lead users to misinterpret answers to queries. In Section 5.10 we deal
with the problem of updating a relational database in the presence of incomplete information
by extending the formalism of Subsection 3.2.4 in Chapter 3.

5.1 Different Types of Null Value

In order to model the two categories of missing information referred to earlier we introduce
the following types of null value:

I} "value exists but is unknown at the present time" or "value is applicable and missing at
the present time", which is denoted in the database by the distinguished value unk; for
example, ifIris's age is unknown, then the attribute value for age in the tuple recording
information about Iris would be unk.

2} "value does not exist" or "value is inapplicable", which is denoted in the database by
the distinguished value dne; for example, if Iris does not have a job, then the attribute
value for job in the tuple recording information about Iris would be dne; we note that
dne is very useful when filling in forms where some of the categories in the form may
be filled in as inapplicable. As opposed to unk, the null value dne does not arise due to
incompleteness of information. Despite this fact dne cannot be treated as just another
nonnull value; for example, we can record the fact that a person is unmarried by having
dne as their spouse attribute value but we cannot say that two unmarried people have
the same spouse.

5.1. Different Types of Null Value 289

Zaniolo [Zan84] observed that both unk and dne do not provide the most fundamental
type of null value. There are situations when we may not even know if an attribute value
exists or not. For example, we may not have any recorded information in the database
as to whether Hillary is married or not. Another example is that we may not have any
information recorded in the database as to whether Iris has a job or not. This gives rise
to the following third basic type of null value.

3) "no information is available for the value", i.e. it is either unk or dne, which is denoted
in the database by the distinguished value ni.

In some cases we have contradictory information, which leads to an inconsistency in
the database. For this purpose we will make use of the fourth basic type of null value.

4) "value is inconsistent", which is denoted in the database by the distinguished value
inc; for example, if a student is only allowed to enrol in one department and for some
reason we have contradictory information that student number 8 is enrolled both in
the Computing and Maths departments, then the attribute value for department in the
tuple recording information about student number 8 would be inc.

As mentioned before, it is standard practice to detect inconsistencies when the database is
updated and thus to avoid inconsistent database states. The actual detection of inconsistencies
will be relegated to the algorithms that maintain the integrity constraints which are defined
as part of the conceptual database schema.

At times we will refer to a null value in a generic way without specifying its type; we denote
such a generic null value by null. This will be convenient when we investigate the fundamental
semantics which are common to all types of null value.

Prior to giving the formal definition of an incomplete relation we give a motivating example.

Example 5.1 In Table 5.1 we show an incomplete relation, say r, over a relation schema, say
R, where type{R) = 6 and schema{R) = {STUD#, NAME, COURSE, SPS, DEPT, HEAD}. The
semantics ofR are: a student has a unique student number (STUD#), a name (NAME), belongs
to one department (DEPT), takes one or more courses (COURSE) and may have at most one
spouse (SPS). In addition, a department has one head (HEAD) and each course is given by
one department. •

Table 5.1 An incomplete relation

STUDt NAME COURSE SPS DEPT HEAD
1 Iris Databases dne Computing Dan
2 Iris Programming dne Computing unk
3 Reuven Programming Hanna unk unk
4 Hillary Theory ni Maths Annette
5 Hillary unk ni Maths unk
6 Eli ni Naomi ni ni
7 David Logic Rachel unk unk

Informally, the extended domain of an attribute A is the domain of A augmented with the
above four types of null value.

290 Chapter 5. Incomplete Information in the Relational Data Model

Definition 5.1 (Extended domain) Let R be a relation schema and A E schema(R) be an
attribute, and recall that DOM(A) denotes the countably infinite set of constants that are
included in the domain of A. In addition, assume that unk, dne, ni and inc are not members
of DOM(A). Then the extended domain of A, denoted by EDOM(A), is defined by

EDOM(A) = DOM(A) U funk, dne, ni, inc}. •
Definition 5.2 (Incomplete relation) An incomplete tuple over a relation schema R is a
member of the Cartesian product,

EDOM(A1) x EDOM(A2) x ... x EDOM(Atype(R»).

An incomplete relation over R is a finite set of incomplete tuples.

An incomplete tuple is actually a complete tuple if none of its attribute values is null; that is, a
complete tuple is a special case of an incomplete tuple. Also, an incomplete tuple is consistent
if none of its attribute values is the null value inc; if at least one of its attribute values is the
null value inc then the incomplete tuple is inconsistent.

An incomplete relation is actually complete if all its tuples are complete; note that a complete
relation is a special case of an incomplete relation. In addition, an incomplete relation is
consistent if all its tuples are consistent; if at least one of its tuples is inconsistent then it is
inconsistent. •

We note that the definition of the projection of a tuple t onto a set of attributes Y S; schema(R)
remains the same for incomplete relations, i.e. tlY] is the restriction of t to Y.

Whenever no ambiguity arises we will refer to an incomplete tuple simply as a tuple and to
an incomplete relation simply as a relation. Furthermore, from now on we will assume that
relations are consistent unless explicitly stated otherwise.

If we examine the incomplete relation given in Table 5.1 we will notice that we cannot
distinguish between different occurrences of a null value in the relation. For example, the
unk null value appears as the attribute value of the department in the tuples whose student
numbers are 3 and 7, but it is not necessarily the case that these two students are studying in
the same department. Another example is the multiple occurrence of ni as the attribute value
of spouse in the tuples with student numbers 4 and 5. In this case we obviously cannot say that
these two students are married and even if this were to be the case it would be very unlikely that
they would both be married to the same person. On the other hand, the occurrences of dne as
the attribute value of spouse in the tuples with student numbers 1 and 2 can be considered as
conveying exactly the same semantic information, namely that both of these students are not
married.

We can classify the above types of null value as being unmarked nulls, since we do not
distinguish between different occurrences of the null values as attribute values of tuples in an
incomplete relation. That is, there is no "mark" to distinguish between different occurrences
of the same type of null value. Another possibility is to subscript (or index) each occurrence of
a null value, say null, by an integer i, resulting in nulli, in order to distinguish between different
occurrences of the null value. Such null values are classified as marked nulls. Consider, for
example, the incomplete relation shown in Table 5.2, which consists of incomplete tuples with
marked nulls of type unk. We can infer from the marked nulls that students 1,2 and 3 are

5.1. Different Types of Null Value 291

studying in the same department and that student 5 and student 6 are taking the same course.
On the other hand, students 3 and 4 mayor may not be studying in the same department and
students 6 and 7 mayor may not be taking the same course. We observe that it does not make
much sense to mark nulls of type dne, since the meaning of the fact that students 1 and 2, in
the relation shown in Table 5.1, are not married (i.e. that for students 1 and 2 there does not
exist a spouse) would not be affected in any way by marking the dne null values. In addition,
if a relation is inconsistent it will not be meaningful in our context to distinguish between
different occurrences of inc in the relation, since we are assuming that we are able to avoid
any inconsistencies in the database by integrity constraint maintenance.

Thus, as the incomplete relation shown in Table 5.2 indicates, it is most meaningful to mark
nulls of type unk. Furthermore, marked nulls of type unk have a natural logical interpretation
as Skolem constants [Fit96), i.e. they are constants that are used to eliminate existential
quantifiers in first-order predicate logic proof theory. Now, let us see what the interpretation
of marking nulls of type ni can be. Suppose that the attribute value of COURSE, for both
students 5 and 6 in Table 5.2, is ni3' We would interpret this situation as meaning that the
course value for students 5 and 6 is either dne or the same marked null unk3•

Table 5.2 An incomplete relation with marked nulls

STUDt COURSE DEPT
1 Databases unk)
2 Databases unk)
3 Theory unk)
4 Logic unk2

5 unk3 Computing
6 unk3 Computing
7 unk4 Computing

For the rest of this section we will only consider marked and unmarked nulls of type unk.
The next definition formalises the notion of two values having the same information content
or being information-wise equivalent; this is known as symbolic equality. This notion is
important, since semantically, two different occurrences of unk mayor may not be equal but
they definitely convey the same information content.

For example, the head of department in the second and third tuples in the incomplete
relation, shown in Table 5.1, mayor may not be the same since our information is incomplete,
but in both cases the occurrence of unk conveys the same information, i.e. that the value exists
but is unknown.

Defmition 5.3 (Information-wise equivalence) Let A be an attribute in schema(R) and Vi . Vj

be values in EDOM(A). Then Vi is information-wise equivalence to Vj, written as Vi ~ Vj, if
and only if Vi and Vj are syntactically identical, i.e. they have the same name. If Vi is not
information-wise equivalent to Vj, then we write --'(Vi ~ Vj)' •

Thus, for example, unk ~ unk, unk2 ~ unk2 and Iris ~ Iris, but --.(Iris ~ Hillary), --.(unk
~ Iris) and --.(unk1 ~ unk2). We note that if Vi and Vj are nonnull values, i.e. they are both
members of DOM(A), then information-wise equivalence reduces to equality. In Section 5.3

292 Chapter 5. Incomplete Information in the Relational Data Model

we will extend the notion ofinformation-wise equivalence to incomplete tuples and incomplete
relations.

In order give a formal treatment of nulls of type unk, we adopt a three-valued logic by
introducing a third truth-value maybe in addition to the standard two truth-values true and
false. In a two-valued world equality is a predicate that evaluates to either true or false. Thus we
redefine equality in the presence of incomplete information to be a predicate which evaluates
to either true, false or maybe.

Definition 5.4 (Three-valued equality for nulls) Let A be an attribute in schema(R) and
Vi, Vj E EDOM(A). Then the following cases define the interpretation of equality in a
three-valued logic:

1) If Vi and Vj are both nonnull values then Vi = Vj evaluates to true if Vi ~ Vj holds,
otherwise it evaluates to false.

2) unk = unk evaluates to maybe.

3) unk = unki evaluates to maybe.

4) unki = unkj evaluates to true if i = j, otherwise it evaluates to maybe.

5) If Vi is a null value (marked or unmarked) and Vj is a non null value, i.e. Vj is in DOM(A),
then Vi = Vj evaluates to maybe. •

Thus, for example, unkll = unkll evaluates to true, Iris = unk evaluates to maybe and Iris
= Hillary evaluates to false. From now on, whenever we refer to "Vi = V/, in a sentence of the
form "if Vi = Vj then ... " or in the midst of a formula, then we take it to mean Vi = Vj evaluates
to true.

We now discuss the advantages and disadvantages of unmarked and marked null values.
Marked nulls have the obvious advantage of being more expressive than unmarked nulls,
since we can distinguish between different occurrences of them depending on the value of
their mark. Furthermore, there may be circumstances when the database system can deduce
that two marked nulls are equal and thereby equate their marks. In practice marked nulls
add complexity to the database system, which then needs to maintain the marks of nulls
globally throughout the database, and to avoid inconsistencies which would arise if two or
more marked nulls were inappropriately equated. It is also not clear if the benefit of knowing
that two occurrences of a null value are equal outweighs the overhead incurred. Unmarked
nulls have the obvious advantage of being conceptually, theoretically and practically simpler
than marked nulls. We mention that to date SQL's support for null values includes only the
unmarked unk null type.

5.2 The Open and Closed World Assumptions

When viewing the database as an open world we do not make any assumptions about
information that is not stored in the database. Thus when making the Open World Assumption

5.2. The Open and Closed World Assumptions 293

(or simply the OWA) we do not utilise the absence ofinformation to infer that this information
is false. For example, if we consider the relation shown in Table 5.3, then we cannot infer
that Hillary is not taking a database course and we cannot infer that Hillary is not taking
a programming course. What we can say is that from the information we have available
Hillary mayor may not be taking a database course and Hillary mayor may not be taking a
programming course. Thus under the OW A the database is not expressive enough to infer
any negative information.

Table 5.3 A relation illustrating the OWA and CWA

SNAME COURSE DEPT
Iris Databases Computing

Reuven Programming Computing
Hillary Logic Philosophy

One possible solution to this problem of negative information is to allow tuples in relations
to represent negative data. Let us assume for a moment that we have extended the relational
model to store false information in relations. Thus, for example, if we wanted to store the
fact that Hillary is not doing a database course, then that fact would be stored explicitly in the
relation and tagged as false. The problem with this approach is that in most applications there
would be an overwhelming amount of negative data and thus this solution is not very practical.
For this reason we will not consider such a solution. Now, in the relation shown in Table 5.3 it
is standard practice to record the courses that students are taking and assume that these are
in fact the only courses that they are taking. That is, information not recorded in the database
is assumed by default to be false. Thus in our example we can infer that Hillary is not taking a
database course and also that she is not taking a programming course. In this case we say that
we view the database as a closed world, meaning that we assume that the database has complete
positive information. Thus when making the Closed World Assumption (or simply the CWA)
we can utilise the absence of information in order to infer that this absent information is false.

The importance of the CW A will become obvious in Chapter 9 when we introduce deductive
databases that extend relational databases to allow intentional information, in the form of
rules, to be stored as part of the database. For example, we could have a rule stating that if a
student is not doing the Programming course in the Computing department, then this student
is doing the Theory course in the Maths department. Under the CW A we can infer that Hillary
is doing the Theory course in the Maths department and possibly add this fact to the relation
shown in Table 5.3. On the other hand, we could not infer this fact under the OW A. We will
also utilise the CW A in the next section when we define the relative content of relations.

A generalisation of the CW A, which is meant to solve the inconsistency problem arising
from the CW A when disjunctive information is allowed in the database, can be found in
[Min88aj. The CWA and its generalisation are further discussed in Chapter 9 in the context
of deductive databases.

An interesting suggestion which attempts to merge the CWA and the OW A is given in
[GZ88j. This is done by adding another type of null value, denoted by open. Consider the
relation, r, shown in Table 5.4. We interpret r under the CWA except for the DEPT-value of
the second tuple. Under the CW A we infer that Hillary is the only student taking Logic in the
Philosophy department and that she is studying only in this department. In fact, under the

294 Chapter 5. Incomplete Information in the Relational Data Model

CW A we can derive the stronger fact, namely that Hillary is the only student studying in the
Philosophy department and that there is only one department, i.e. the Philosophy department.
Under the OW A, due to the occurrence of open, we can deduce that Hillary may be taking
more courses in the Philosophy department apart from Logic. Thus occurrences of open allow
us to locally open the database. If we add to a relation a tuple of the form, <open, ... , open>,
consisting solely of occurrences of open, then all the information in the relation is interpreted
according to the OW A.

Table 5.4 A relation illustrating the open null value

SNAME COURSE DEPT
Hillary Logic Philosophy
Hillary open Philosophy

5.3 Introducing Order into the Domain

In this section we will assume that the only types of null that are available are unmarked. It
is very natural to view an incomplete relation as containing less information than a complete
relation, or alternatively, to view a complete relation as containing more information than an
incomplete relation.

We formalise what we mean by less informative and more informative by appealing to the
theory of ordered sets. Taking this approach we will impose a partial order on the extended
domains of attributes, which we will denote by~. Recall from Subsection 1.9.2 of Chapter 1
that a partial order such as ~ on a set S is a binary relation on S that is reflexive, antisymmetric
and transitive. To convey the fact that a partial order is defined on a set it is customary to
consider the partial order together with the set over which it is defined. The resulting ordered
pair (S, ~) is called a partially ordered set.

Thus, if A is an attribute in schema(R} then (EDOM(A), ~) is a partially ordered set. The
actual ordering is shown pictorially in Figure 5.1, where DOM(A} = {VI, V2, ... , vn}; such a
diagram is known as a Hasse diagram. We interpret the diagram as follows: el ~ e2 holds if
and only if el appears "lower" in the diagram than e2 and there is a connecting line between el

and e2. Furthermore, if el is not information-wise equivalent to e2, then it is not the case that
e2 ~ e[, which is written as --.(e2 ~ ed. Therefore, in Figure 5.1 we have ni ~ unk ~ Vi ~ inc
and ni ~ dne ~ inc and for no other two elements in the diagram does this relationship hold.
In the following we will refer to the partially ordered set (EDOM(A), ~) as the information
lattice for A. We note that the information lattice for A is actually as its name suggests a
mathematical lattice. (We refer the reader to Subsection 1.9.2 of Chapter 1 for the definition
of a lattice.)

Defmition 5.5 (Less informative and more informative) If VI, V2 E EDOM(A), then VI is less
informative than V2 (or equivalently, V2 is more informative than VI) if and only if VI ~ V2 .

•
We next give an alternative definition of information-wise equivalence for unmarked nulls.

That is, VI and V2 are information-wise equivalent, i.e. VI ~ V2, if and only if VI ~ V2 and
V2 ~ VI·

5.3. Introducing Order into the Domain

inc

"~" /dne
unk

-------ni

Fig 5.1 The information lattice

295

We will now continue to develop our order-theoretic approach to incomplete relations.

Defmition 5.6 (Less informative and more informative tuples) We extend!; to incomplete
tuples as follows: where tl and t2 are incomplete tuples over a relation schema R,

tl !; t2 if and only if VA E schema(R), tdA] !; t2[A].

If tl !; t2, then we say that tl is less informative than t2 (or equivalently, that t2 is more
informative than td.

We extend information-wise equivalence to incomplete tuples as follows: tl and t2 are
information-wise equivalent, written tl ~ t2, if and only if tl !; t2 and t2 !; tl' •

We observe that it is also customary in the literature to say that a more informative tuple
subsumes a less informative tuple. From Definition 5.6 it follows that

(EDOM(Ad x EDOM(A I) x ... x EDOM(Atype(R», !;}

is a partially ordered set.

Defmition 5.7 (The extended active domain) Let r be an incomplete relation over a relation
schema R. Then the extended active domain of r with respect to A E schema(R), denoted by
EACTIVE(r, A), is defined by

EACTIVE(r, A) = {t[A] I t E r} U {unk, dne, ni, inc}. •

We observe that the Cartesian product

EACTIVE(r, Ad x EACTIVE(r, A2) x ... x EACTIVE(r, Atype(R»

yields a finite set, since Vi E {l, 2, ... , type(R)}, EACTIVE(r, Ai) is finite. The following
proposition is now obvious.

Proposition 5.1 Let r be a relation over a relation schema R. Then

(EACTIVE(r, AI) x EACTIVE(r, A2) x ... x EACTIVE(r, Atype(R», !;}

is a partially ordered set. o

296 Chapter 5. Incomplete Information in the Relational Data Model

Informally a relation T, over a relation schema R is less informative than a relation T2 over
R, written T, !; T2, if zero or more of the tuples in T, can be replaced by (or modified to
become) more informative tuples in order to obtain T2. Prior to giving the formal definition
ofless informative and more informative relations we provide some motivation. Consider the
relations, TI> T2 and T3, shown in Tables, 5.5, 5.6 and 5.7, respectively.

Table 5.5 An incomplete relation " Table 5.6 An incomplete relation '2 Table 5.7 An incomplete relation'3

PARENT CHILD PARENT CHILD PARENT CHILD
Jack Jill Jack Jill Jack Jill
unk unk unk unk unk unk
Jack unk unk Jill

First consider T, and T2. The first two tuples in T, match with the first two tuples in T2 . Now
assume that r, !; r2 holds. In this case the tuple <Jack, unk> must correspond to a more
informative tuple in r2, i.e. to <Jack, Jill>. However, according to our informal definition
of more informative relations we obtain r3 and not r2, since the tuple <unk, Jill> does not
correspond to any tuple in r,. Nonetheless, there is another possibility to consider. The tuple
<unk, unk> in r, could correspond to the tuple <unk, Jill> in r2. However, then the tuple
<unk, unk> would correspond to two tuples in r2. Moreover, this contradicts our informal
definition ofless informative relations, since <unk, unk> would be replaced by two distinct
tuples in r2 which is not possible.

There are two possible solutions to this problem. The first solution is to treat less informative
tuples in a way similar to the treatment of duplicate tuples in complete relations. That is, since
duplicate tuples are removed from complete relations (recalling that relations are sets), less
informative tuples are also removed from incomplete relations. An incomplete relation from
which all less informative tuples have been removed is called a reduced relation. A reduced
relation is an antichain (see Subsection 1.9.2 of Chapter 1), since no two tuples in a reduced
relation are comparable with respect to !;. It is easy to check that in our example all of rl> r2
and r3 reduce to a single tuple <Jack, Jill>. However, it is evident that the process of reduction
involves a considerable loss of semantics. The tuple <Jack, unk> in r, may denote the fact
that Jack has another child apart from Jill, the tuple < unk, Jill> in r2 may denote the fact that
Jill's mother exists but is unknown and the tuple <unk, unk> in either T, or T2 may denote the
fact that another unknown parent and a child thereof are stored in the relation. For this reason
we will not advocate reduced relations. We mention that the assumption that relations are
reduced is common in the database literature mainly due to the fact that, in theory, reduced
relations are easier to deal with than non-reduced relations. In practice, there does not seem to
be any justification to reduce relations, not to mention the overhead which would be incurred
in maintaining such reduced relations.

The second solution is to admit that according to our informal definition ~(r, !; r2), that
is, r, is not less informative than r2. Bya similar argument we can deduce that r2 is not less
informative than r,. Continuing our example we can also deduce that r, !; r3 holds, since both
<Jack, Jill> and <Jack, unk> could have been replaced by <Jack, Jill>. This corresponds to
the situation where the occurrence of unk in <Jack, unk> is replaced by Jill; for example, it
may be the case that Jack actually has only one child. In this case <Jack, unk> turns out to
be a duplicate of <Jack, Jill>. Similarly, we can deduce that r2 !; r3 holds. Finally, ~(r3 !; rd
and ~(r3 !; r2) can also be verified.

5.3. Introducing Order into the Domain 297

Definition 5.8 (Less informative and more informative relations) We extend ~ to incom
plete relations as follows: where rl and r2 are incomplete relations over schema R, rl ~ r2 if
and only if there exists a total and onto mapping () from rl to r2 such that "It E rl, t ~ ()(t).
(See Subsection 1.9.1 of Chapter 1 for the definition of a total and onto mapping.)

If rl ~ r2, then we say that rl is less informative than r2 (or equivalently, r2 is more
informative than rl).

We extend information-wise equivalence to incomplete relations as follows: rl and r2 are
information-wise equivalent, written rl ~ r2, if and only if rl ~ r2 and r2 ~ rl. •

It can be verified that the formal definition ofless informative relations corresponds to the
informal definition given earlier. We note that, when r ~ s, we insist that each tuple in s be
more informative than some tuple in r and also that for each tuple t E r there is some tuple in
s that is more informative than t. We make the following interesting observations concerning
the boundary cases, where rand s are incomplete relations over R:

1) If r = 0 and s = 0, then r ~ s holds.

2) If r = 0 and s ::/= 0, then (r ~ s), since () = 0 and thus () is not an onto mapping.

3) If r ::/= 0 and s = 0, then (r ~ s), since () does not exist in this case.

The following technical definition is now needed.

Defmition 5.9 (The set of active incomplete relations) Let r be an incomplete relation over
schema R. Then the set of active incomplete relations induced by r, denoted by EAREL(r), is
the set of all subsets of the Cartesian product

EACTIVE(r, AI) x EACTIVE(r, A2) x ... x EACTIVE(r, Atype(R». •
We note that EAREL(r) is a finite set, since Vi E (I, 2, .. . , type(R)}, EACTIVE(r, Ai) is a

finite set. The following proposition states that the set of active incomplete relations induced by
an incomplete relation r forms a partially ordered set. Its proof follows from the Definition 5.8
of less informative relations on using composition of mappings.

Proposition 5.2 Let r be a relation over schema(R). Then (EAREL(r), ~} is a partially ordered
~ 0

In the following we will refer to the partially ordered set (EAREL(r), ~} as the information
ordering. Our interpretation of a more informative relation is a relation that results from
modifying another relation. In particular, our definition directly caters for the replacement
(or modification) of tuples, and not for the deletion of old tuples from a relation or the
insertion of new tuples into a relation. We could amend our definition of less informative in
the following two ways:

1) In order to cater for deletions we could relax () in the definition to be a partial mapping
rather than a total mapping.

298 Chapter S. Incomplete Information in the Relational Data Model

2) In order to cater for insertions we could relax e in the definition to be an into mapping
rather than an onto mapping.

In the first case the deleted tuples in r would not be mapped to any tuple in the more
informative relation s and in the second case the inserted tuples in s would not have any less
informative tuples in r mapped to them. Our definition of less informative by using a total
and onto mapping can be viewed as an application of the CW A. This is due to the fact that a
more informative relation is viewed as the result of modifying existing information and thus
each incomplete relation resulting from replacing some null values by nonnull values in a less
informative relation will not violate the CW A. For example, in the incomplete relation shown
in Table 5.1, say r, on assuming the CWA we can deduce that there are only seven students
doing courses at this moment in time. Thus for any incomplete relation s such that r ~ s
holds there will still be seven tuples, due to our definition being compatible with the CW A.

Our approach to defining the relative information content of an incomplete relation by
imposing a partial order on the underlying domains allows us to formalise the notion of the
possible worlds relative to an incomplete relation r, denoted by POSS(r). Informally, POSS(r)
is the set of all relations, which are more informative than r and do not contain nulls of type
ni, unk or inc. On treating dne as having the same information content as some nonnull value,
we have that POSS(r) is the set of all complete relations which are more informative than r.

Defmition 5.10 (The set of possible worlds relative to a relation) The set of all possible
worlds relative to an incomplete relation r over schema R, denoted by POSS(r), is defined
by

POSS(r) = (s I r ~ s and "It E s, VA E schema(R), tlA] E EDOM(A) - {ni, unk, inc}}. •

We note that r is inconsistent if and only if POSS(r) = 0, which fits in with our philosophy
that in our context inconsistent relations are not meaningful. The following theorem, which
follows from Definition 5.10 above and Definition 5.8 of less informative relations, captures
our intuition, namely that an incomplete relation is more informative than another incomplete
relation if and only if it has less possible worlds.

Theorem 5.3 The following two statements, where rand s are incomplete relations over
schema R, are true:

1) If r ~ s, then POSS(s) ~ POSS(r).

2) IfPOSS(s) ~ POSS(r) and both ofPOSS(r) and POSS(s) are non empty, then r ~ s. 0

The next proposition follows directly from the above definition of possible worlds.

Proposition 5.4 An incomplete relation r over schema R is consistent if and only if r = 0 or
POSS(r) =f. 0. 0

Our previous assumption that incomplete relations are consistent unless explicitly stated
otherwise is justified by Proposition 5.4, since if inconsistency is introduced it is present in all
possible worlds.

5.4. Extending the Relational Algebra with Null Values 299

We refer the reader to [BJ091, Lib91, Lev92, LL92, LL93a, LL93b, LL94, Lib98j for further
investigations into the order-theoretic approach to formalising incompleteness in relational
databases. This approach borrows from the theory of denotational semantics of programming
languages [Sch86j and from lattice theory [Gra78, DP90j.

5.4 Extending the Relational Algebra with Null Values

In this section we will extend the relational algebra so that it is capable of manipulating
incomplete relations. With the intention of simplifying the definition of the extended algebra,
throughout this section, the only type of null that we will consider being present in incomplete
relations will be the unmarked null unk.

In order to ascertain that our extended algebra is reasonable we will use the notions of
faithfulness and truth-preservation. An extended operator is faithful ifit returns the same result
as its corresponding standard operator, when manipulating complete relations. Faithfulness
provides us with a reference point as to the expressive power of the extended algebra. An
extended operator is truth-preserving if the intersection of the set of relations belonging to all
possible worlds induced by the result of applying the said operator to an incomplete relation
is the same as the intersection of the set of complete relations resulting from invoking the
corresponding standard operator on all possible worlds of this incomplete relation. Thus if an
extended operator is truth-preserving then it maintains all the true answers to a query, i.e. all
the answers that are true in all possible worlds. We note that we could relax truth -preservation
to possibility-preservation if we allow answers that evaluate to maybe to be included in the
result of a query. In this case an answer to a query will contain all tuples that evaluate to true
in at least one possible world. Herein we will only test for truth-preservation which is the
minimal desirable property of an extended operator.

Let op be a standard relational algebra operator for complete relations, as defined in
Subsection 3.2.1 of Chapter 3, and let ope be an extended relational algebra operator (or simply
an extended operator) for incomplete relations. For simplicity we will assume that op and
ope are unary operators but obviously the definitions of faithfulness and truth-preservation
also hold when op and ope are binary operators. In the following we will refer to an
extended relational algebra expression (or equivalently, an extended query) as a well-formed
expression composed of a finite number of extended relational algebra operators, whose
operands are relation schemas which can be treated as input variables to the extended query.
An extended query Q, having operands Rl , R2,"" Rn, is denoted by Q(Rl, R2 ," " Rn} or
simply by Q, if Rl , R2, ... , Rn are understood from context. An answer to an extended query
Q(Rl, R2," " Rn} is obtained by replacing every occurrence of Ri in Q by an incomplete
relation ri over Ri and computing the result by invoking the extended operators present in
Qj such an answer to Q will be denoted by Q(rl , r2 , .. . , rn}. We will assume that appropriate
parentheses are present in Q in order to avoid any ambiguity when computing Q(rl, r2, .. . , r n}.
At times we will also refer to an answer of an extended query as an extended query (or simply
a query) when no ambiguity arises.

We next formally define faithfulness and truth-preservation for unary operators, leaving it
to the reader to define the analogous definitions for binary operators.

300 Chapter 5. Incomplete Information in the Relational Data Model

Defmition 5.11 (Faithful extended operator) We say that ope is faithful to op if for all
complete relations r over schema R, op(r) = ope (r). •

Defmition 5.12 (Truth-preserving extended operator) We say that an extended operator,
ope, is a truth-preserving extension of a standard operator, op, if for all incomplete relations r

n{s I s E POSS(ope(r»} = n{op(s) Is E POSS(r)}. •
Recall that r is consistent by assumption. We note that in [IL84a, Lip84, Imi89] a more

general definition of truth-preservation was given where an operator in the above definition is
taken to be a query and an extended operator is taken to be an extended query. This definition
is more powerful than Definition 5.12, since although we can obtain truth-preservation for
all the extended operators there are still certain subclasses of extended queries that are not
truth-preserving. We will illustrate this point later on with examples.

Definition 5.13 (Extended union) The extended union, Ue, of two incomplete relations rl
and r2 over schema R is defined by

•
We make the small technical comment that the use of the equality sign, "=", in the definition

above should read "is defined as" and is not to be confused with equality between domain
values. In some mathematical texts different symbols are used to denote "equals" and "is
defined as"; in our case we will use the same symbol, i.e. "=", to denote both meanings since
its use is obvious from context.

We note that the definition of extended union is essentially the same as the definition of the
standard union. As an example, let rl and r2 be the two incomplete relations over R, where
schema(R) = {SNAME, COURSE, DEPT}, shown in Tables 5.8 and 5.9, respectively. The null
extended union rl Ue r2 is shown in Table 5.10.

Table 5.8 An incomplete student relation rl
SNAME COURSE DEPT

Iris Databases Computing
Reuven Theory unk
Hillary unk Philosophy
Rachel unk unk

Eli Databases Computing

Table 5.9 An incomplete student relation r2
SNAME COURSE DEPT

Iris Databases Computing
Reuven unk unk
Rachel Logic unk
David unk Maths

5.4. Extending the Relational Algebra with Null Values 301

Table 5.10 The incomplete student relation TI Ue T2

SNAME COURSE DEPT
Iris Databases Computing

Reuven Theory unk
Reuven unk unk
Hillary unk Philosophy
Rachel unk unk
Rachel Logic unk
David unk Maths

Eli Databases Computing

We leave the proof of the following theorem to the reader.

Theorem 5.5 Extended union is a faithful and truth-preserving extended operator. 0

We observe that extended union satisfies a stronger property than truth-preservation, which
is given by

POSS(rl Ue r2) = {51 U 52 I 51 E POSS(rl) and 52 E POSS(r2)} ,

implying that extended union is also possibility-preserving.

Defmition 5.14 (Extended difference) The extended difference, e of two incomplete
relations r1 and r2 over schema R is defined by

rl _e r2 = {t I t E rl and jlu E r2 such that either u ~ tor t ~ u}. •
As an example, the null extended difference rl _e r2 is shown in Table 5.11, where rl and r2

are the incomplete relations shown in Tables 5.8 and 5.9, respectively.

Table 5.11 The incomplete student relation TI _e T2

SNAME COURSE DEPT
Hillary unk Philosophy

Eli Databases Computing

We leave the proof of the following theorem to the reader.

Theorem 5.6 Extended difference is a faithful and truth-preserving extended operator. 0

We note that an alternative definition of the extended difference, denoted by _z and
suggested by Zaniolo [Zan84], is given by

rl _z r2 = {t I t E rl and jlu E r2 such that t ~ u}.

Although the definition of _z may seem intuitively more appealing than that of _e, the
reader can verify that _z is not truth-preserving by setting rl = {<v>} and r2 = {<unk>}.
In particular, rl _z r2 = rl> but n{51 - 52 I 51 E POSS(rd and 52 E POSS(r2)} = 0.

302 Chapter 5. Incomplete Information in the Relational Data Model

Defmition 5.15 (Extended projection) The extended projection, n e, of an incomplete
relation r over schema R onto Y S; schema(R) is defined by

n~(r) = {try] I t E r}. •
We note that the definition of extended projection is essentially the same as the definition of

the standard projection. As an example, the extended projection n {COURSE, DEPT} (r1) is shown
in Table 5.12, where r1 is shown in Table 5.8.

Table 5.12 The incomplete student relation nlCOURSE.DEPT} (TJ)

COURSE DEPT
Databases Computing

Theory unk
unk Philosophy
unk unk

We leave the proof of the following theorem to the reader.

Theorem 5.7 Extended projection is a faithful and truth-preserving extended operator. 0

Let r be an incomplete relation over Rand Y S; schema(R). Then the extended projection
satisfies a stronger property than truth-preservation, namely

POSS(n{(r» = (ny(s) Is E POSS(r)},

implying that, as well as extended union, extended projection is also possibility-preserving.

We now define extended selection using a three-valued logic approach, as opposed to
standard selection which uses the classical two-valued logic approach. Prior to defining the
semantics of extended selection we define extended selection formulae.

Defmition 5.16 (Extended selection formula) An extended simple selection formula over a
relation schema R is either an expression of the form A = a or an expression of the form A =
B, where A, B E schema(R) and a E EDOM(A).

An extended selection formula over R is a well-formed expression composed of one or more
extended simple selection formulae together with the Boolean logical connectives: /\ (and), v
(or), -. (not) and parentheses. An extended selection formula is called positive if it does not
have any occurrence of -.. We abbreviate -.(A = a) by A", a and -.(A = B) by A", B. •

We note that an extended simple selection formula of the form A = B is sometimes referred
to as an extended restriction. We also note that for simplicity we have only included equality
(=) as a comparison operator but, in general, we can expect to have :S, <, !; and ~ available in
an extended simple selection formula. We further note that!; and ~ are not truth-preserving,
since unk ~ unk evaluates to true while unk = unk evaluates only to maybe.

Defmition 5.17 (True logical implication, F) Let r be an incomplete relation over R, t be a
tuple in r and, in addition, let F be an extended selection formula over R. Then t truly logically
implies F, written t F F, is defined recursively, as follows:

5.4. Extending the Relational Algebra with Null Values 303

1) t FA = a, if t[A] = a evaluates to true using our three-valued equality for nulls.

2) t FA = B, if t[A] = t[B] evaluates to true using our three-valued equality for nulls.

3) t F (F), if t F F.

4) t F F, if F evaluates to true by computing the truth-value of F recursively, using (1),
(2) and (3) above and the three-valued logic truth tables shown in Tables 5.13, 5.14 and
5.15. •

We note that the three-valued truth tables shown in Tables 5.13, 5.14 and 5.15 coincide with
those of the three-valued logics defined by Lukasiewicz and Kleene [Res69, BB92].

Table 5.13 The three-valued truth table for conjunction

1\ true false maybe
true true false maybe
false false false false

maybe maybe false maybe

Table 5.14 The three-valued truth table for negation

true false
false true

maybe maybe

Table 5.15 The three-valued truth table for disjunction

v true false maybe
true
false

maybe

true true
true false
true maybe

true
maybe
maybe

Definition 5.18 (Extended selection) The extended selection, ai, applied to an incomplete
relation r over schema R with respect to a selection formula F over R is defined by

a$(r) = {t It E rand t F F}.

The extended selection is called positive if F is a positive extended selection formula. •

We give three examples of extended selection. The extended selection ail (rl) is shown in
Table 5.16, where FI is (DEPT = 'Philosophy' or SNAME = 'Rachel') and rl is shown in Table 5.8.
The extended selection ai2 (rl) is shown in Table 5.17, where F2 is (DEPT "# 'Philosophy' and
COURSE"# 'Theory') and 'I is shown in Table 5.8. The extended selection ai3 (r4) is shown
in Table 5.19, where F3 is FIRST = SECOND and the incomplete relation r4 indicating the
number of courses students did take in their first and second years is shown in Table 5.18.

304 Chapter 5. Incomplete Information in the Relational Data Model

Table 5.16 The incomplete student relation a~l (r1)

SNAME COURSE DEPT
Hillary unk Philosophy
Rachel unk unk

Table 5.17 The incomplete student relation a~2 (r»

SNAME COURSE DEPT
Iris Databases Computing
Eli Databases Computing

Table 5.18 An incomplete number of courses relation r 4

SNAME FIRST SECOND
Iris 5 5

Reuven 5 unk
Hillary 6 6
Rachel unk unk

Eli 4 5

Table 5.19 The incomplete student relation a~J (r4)

SNAME FIRST SECOND
Iris 5 5

Hillary 6 6

Although all the queries we have just shown are indeed truth-preserving extended selection
is not, in general, truth-preserving due to the tautology problem. A tautology is a logical
formula, in our case an extended selection formula, which evaluates to true, no matter what
data values are present in the tuples of the incomplete relation used, when computing the
truth-value of the formula. That is, a tautology is an extended selection formula, F over R,
such that for all incomplete relations rover R and "It E r, t F F. For example, let F be
the formula (COURSE = 'Databases' or COURSE ::I 'Databases'). Then the tuples <Hillary,
unk, Philosophy> and <Rachel, unk, unk> will not be included in the answer to the query
CTp(r)), where rl is the incomplete relation shown in Table 5.8. This is due to the three-valued
equality rule which evaluates unk = 'Databases' to maybe and thus using the three-valued
logic truth table for"'" we obtain that unk ::I 'Databases' also evaluates to maybe. Nonetheless
in all possible worlds S E POSS(rl) Hillary and Rachel are either doing Databases or not doing
Databases, so these tuples ought to be present in the answer to the query. Another example is
the formula,(DEPT = 'Computing' and DEPT ::I 'Computing'), which evaluates to true for
all tuples in all possible worlds but will evaluate to maybe for tuples t such that t[DEPT] ~
unk on using three-valued logic equality with the aid of the three-valued logic truth tables.

It follows that extended selection is not truth-preserving in general. Let us assume for the
moment that all the extended domains are finite and thus POSS(r) is also finite; for instance
we could assume that POSS(r) is a subset ofEAREL(r), where r is an incomplete relation. In
this case to obtain a truth-preserving answer to a query involving extended selection we could
simply evaluate the selection over all possible worlds, i.e. we could let

CTp(r) = {t I t E rand n{aF(u) I u E POSS({t})) ::10).

5.4. Extending the Relational Algebra with Null Values 305

However, it is easy to see that this approach is not practical, since the number of possible
worlds is exponential in the number of occurrences of unk in the incomplete relation,
r. Furthermore, even if we restrict ourselves to propositional logic (that is, we disallow
quantification over formulae), the complement of the problem of deciding whether a formula
is a tautology, i.e. the problem of finding whether a formula is satisfiable is known to be
NP-complete [GJ79]. This is considered to be an indication that this problem cannot be
solved in polynomial time in the size of the formula involved, i.e. that its computation cannot
be carried out efficiently. We can stilI console ourselves by the fact that

n{s I 5 E POSS(O'~(r»} ~ n{O'P(s) I 5 E POSS(r)},

i.e. all the answers to a query involving extended selection are true in all possible worlds but
we may not obtain all the true answers. Furthermore, in some special cases it is possible to
augment the database query processor with the ability to detect tautologies. We leave the
proof of the following theorem to the reader.

Theorem 5.8 The following three statements are true:

1) Extended selection is a faithful extended operator.

2) Positive extended selection is truth-preserving.

3) Extended selection is not, in general, truth-preserving. o

Definition 5.19 (Extended natural join) The extended natural join (or simply extended
join), l><Je, of two incomplete relations rl> over schema RI> and r2, over schema R2, is an
incomplete relation over a schema R, where schema(R} = schema(Rd U schema(R2), defined
by

rJ W r2 = {t I 3tJ E rJ and 3t2 E r2 such that t[schema(R J)] ~ tJ and t[schema(R2}] ~ t2

and tdschema(R')] = t2[schema(R')] evaluates to true} ,

where R' is a relation schema with schema(R') = schema(RI) n schema(R2). •
As an example, the null extended join rl l><Je r5 is shown in Table 5.21, where rl and r5 are

the incomplete relations shown in Tables 5.8 and 5.20, respectively.

Table 5.20 An incomplete department relation '5

DEPT HEAD PHONE
Computing Dan 7214
Philosophy unk 7116

Maths Rachel unk
unk Annette unk

By utilising the extended join we can define the extended Cartesian product, denoted as
x e, and the extended intersection, denoted as ne. The extended join reduces to the extended
Cartesian product when schema(Rd n schema(R2} = Ql and the extended join reduces to the
extended intersection when schema(Rd = schema(R2)'

We leave the proof of the following theorem to the reader.

306 Chapter 5. Incomplete Information in the Relational Data Model

Table 5.21 The incomplete relation rl Me r5

SNAME COURSE DEPT HEAD PHONE
Iris Databases Computing Dan 7214
Eli Databases Computing Dan 7214

Hillary unk Philosophy unk 7116

Theorem 5.9 Extended join is a faithful and truth-preserving extended operator. 0

Despite the above result there are situations when the extended projection and extended join
are combined together to yield a query which is not truth-preserving. Consider the incomplete
relation r = {<Hillary, unk, Philosophy>} over R, where schema(R) = {SNAME, COURSE,
DEPT}. Then the reader can verify that rr(SNAME.COURSE} (r) [><Je rr(COURSE.DEPTj (r) = 0, since
unk = unk evaluates to maybe. However, the occurrence of unk in rr(SNAME.COURSEj(r) :;:::

{<Hillary, unk>} is the same occurrence of unk in rr(COURSE.DEPTj (r) :;::: {<unk, Philosophy>}.
Thus, in this case, the two occurrences of unk should be considered equal and the true result
should be r, i.e. {<Hillary, unk, Philosophy>}. Therefore, we can conclude that if we combine
extended projection with extended join in queries then the result is not necessarily truth
preserving.

Ifwe examine the result of the extended join rl [><Je r5 shown in Table 5.21 we will notice that
unmatched tuples are not represented in this relation. For example, both the tuples, < Reuven,
Theory, unk> of rl and the tuple <Maths, Rachel, unk> of r5 are not represented in rl [><Je rs.

In some circumstances we would like to preserve all the information present in the original
relations. For example, in the joined relation we would like to maintain a record of all the
students and all the departments whether they appear in the result of the extended join or
not. Such a generalisation of the extended join operator is called the outer join operator. The
result of the outer join operator consists of the tuples of the extended join operator unioned
with the unmatched tuples padded with null values for the attributes not present in each of
the original two relation schemas.

Prior to defining the outer join operator we define the pad operator.

Defmition 5.20 (The pad operator) Let r be an incomplete relation over a relation schema R
and let S be a relation schema such that schema(R) ~ schema(S). The pad, 8, of r with respect
to S is defined by

8(r, S) = {t I 3u E r such that t[schema(R)) :;::: u and VA E schema(S) - schema(R),

t[A) :;::: unk}. •

Definition 5.21 (The outer join operator) Let rl over schema RI and r2 over schema R2 be
incomplete relations. In addition, let 51 and 52 be the incomplete relations over RI and R2,
respectively, defined by

1) 51 = rl _e rr:chema(Rl/rl [><Je r2).

2) 52 = r2 _e rr:chema(R2) (rl [><Je r2).

The outer natural join (or simply outer join), 1Xl, of r1 and r2 is an incomplete relation over
a schema R, where schema(R) = schema(Rd U schema(R2), defined by

r l lXlr2 = (rl [><Je r2) Ue 8(51, R) Ue 8(52, R). •

5.4. Extending the Relational Algebra with Null Values 307

As an example, the outer join r1 [Xlrs is shown in Table 5.22, where r1 and rs are the incomplete
relations shown in Tables 5.8 and 5.20, respectively.

Table 5.22 The incomplete relation TJ IXl T5

SNAME COURSE DEPT HEAD PHONE
Iris Databases Computing Dan 7214
Eli Databases Computing Dan 7214

Hillary unk Philosophy unk 7116
Reuven Theory unk unk unk
Rachel unk unk unk unk

unk unk Maths Rachel unk
unk unk unk Annette unk

We conclude the presentation of the extended algebra with the formal definition of the
extended renaming operator.

Defmition 5.22 (Extended renaming) Let r be an incomplete relation over schema R, A E

schema(R) and B ~ schema(R) is an attribute inU. The extended renaming, pe, of A to B in T,

is an incomplete relation over schema S, where schema(S) = (schema(R) - (A}) U {B}, defined
by

PA-> B(T) = (t I 3u E T such that t[schema(R)-{A}) ~ u[schema(R)-{Al) and t[B) ~ u[A)) .

•
We leave the proof of the following theorem to the reader.

Theorem 5.10 Extended renaming is a faithful and truth-preserving extended operator. 0

Another criterion for measuring the characteristics of an extended algebra is that of
monotonicity of its extended queries.

Defmition 5.23 (Monotonic extended queries) An extended query Q(R J, R2, . . . , Rn) is
monotonic (with respect to ~) when for all incomplete relations T1 and slover Rj, r2 and
S2 over R2, .. . , Tn and Sn over Rn, if Vi E {l , 2, ... , n}, Ti ~ Si is satisfied, then Q(TJ , T2 , ... , Tn)
~ Q(SJ, S2 , . . . , Sn) is also satisfied. •

The intuition behind monotonicity is that the user's view of the database corresponds to
queries being evaluated over the current state of the database. Thus monotonicity implies that
increasing the information content of the database also increases the information content of
the user's view.

Theorem 5.11 All extended queries of the extended algebra are monotonic.

Proof The length of an extended query is defined to be the number of occurrences of extended
algebra operators in the extended query. We now sketch the proof of the result by induction
on the length of an extended query, say Q = Q(R1 , R2 , .. . , Rn).

308 Chapter 5. Incomplete Information in the Relational Data Model

(Basis) : If the length of Q is 1, then Q is one of the extended algebra operators: extended
union, extended difference, extended projection, extended selection, extended join, pad or
extended renaming. The outer join is not included in the list, since it can be considered
as a query whose length is greater than one. We next prove that extended difference is a
monotonic operator and leave it to the reader to prove that the other extended operators are
also monotonic.

Let rl, r2, 51 and 52 be incomplete relations over schema R satisfying, rl !; 51 and r2 !; 52 .
We need to show that (rl _e r2) !; (51 _e 52). Now let ()i, for i = 1,2, be the total and onto
mapping from ri to 5i in the definition of!; such that "It E rio t !; ()i(t).

Suppose that t E rl _e r2 and thus ()I (t) E SI. It remains to show that ()I (t) E SI _e S2.

Suppose to the contrary that in fact ()I (t) ¢ SI _e S2. Thus by the definition of _e, 3u E r2 such
that either 82(U) !; 81 (t), or 81 (t) !; 82(U). It follows that either u !; 81 (t), since u !; 82(U), or
t !; 82 (u), since t !; 81 (t), holds.

Now assume that (u !; t) and (t !; u) both hold. Then by the definition of!;, 3 A E

schema(R) such that t[A] = urAl evaluates to false, i.e. t[A] ;/: urAl holds. This leads to a
contradiction of the fact that either u !; ()I(t) or t !; ()2(U) holds and thus we conclude that
either u !; tor t !; u must hold contrary to the above assumption. Consequently t ¢ rl _e r2
as we have assumed, thus leading to a contradiction of our assumption that 81 (t) ¢ SI _e S2.

The result, namely that the extended difference is monotonic, now follows.

(Induction): Assume the result holds when Q is of length k, where k > O. We then need
to prove that the result holds when the length of Q is k + 1. For simplicity, assume that Q
has only one operand, say R, and that Q = ope (Qk(R», where Qk(R) is an extended query of
length k. Now let rand S be incomplete relations over R such that r !; S. Then by inductive
hypothesis, Qk(r) !; Qk(S), and thus by the basis step Ope(Qk(r» !; Ope(Qk(S», since ope was
shown to be a monotonic operator. The result that Q(r) !; Q(s) follows. 0

The above result may seem surprising, since as we will see below the extended difference
operator is not monotonic with respect to subset. An intuitive explanation of our result is
that, as we have already noted, less informative than (!;) is compatible with the CWA, which
limits the amount of information that can be added to an incomplete relation with respect to
!; and thus enforces mono tonicity. We observe that if we replace less informative than (!;) by
subset of (S;) in the definition of monotonicity then the above result does not hold, since the
extended difference operator is not a monotonic operator with respect to subset. For example,
let rl = {<Hillary, unk, Philosophy>} and r2 = 0. It can easily be verified that rl _e r2 ;:: rl'
Now, let SI ;:: rl and also S2 ;:: rl. Then rl S; SI and r2 S; 52 both hold. However, 51 _e S2 = 0,
which implies that _e is not monotonic with respect to subset.

We commen t briefly on our use of unmarked nulls rather than marked nulls in the definition
of the extended relational algebra. As we have noted before marked nulls are more expressive
than unmarked nulls but would add complexity to the database system. As an example of the
added expressiveness of marked nulls we recall that, when we combine extended projection
with extended join, extended queries are not necessarily truth-preserving in the presence
of unmarked nulls. On the other hand, if we allow marked nulls such extended queries
are truth-preserving, since two marked nulls are taken to be equal if their marks are the
same. For example, consider the incomplete relation r = {<Hillary, unki> Philosophy>}
over R, where schema(R) = {SNAME, COURSE, DEPT}. Then the reader can verify that
7r(SNAME.COURSE} (r) txIe 7r(COURSE.DEPT} (r) = r, as expected. On the other hand, in the presence

5.5. Extending Integrity Constraints with Null Values 309

of negation (~) in extended selection even when we allow marked nulls, extended queries
may not be truth-preserving a situation associated with unmarked nulls. The culprit is again
the three-valued equality rule. For example, let F be the formula (COURSE = 'Databases' or
COURSE "I 'Databases') and consider the extended query aJ(r). Then the answer to this query
is empty although F is a tautology.

5.5 Extending Integrity Constraints with Null Values

The problem of extending integrity constraints, so as to take into account the presence of
null values, is the problem of redefining the notion of an integrity constraint being satisfied
in an incomplete relation. Let r be an incomplete relation over schema R. We will assume
throughout this section that both of the unmarked null types, unk and inc, may be present in
incomplete relations. If r is inconsistent then r is taken to violate all integrity constraints; thus
our assumption that a database should not contain inconsistent relations is justified. On the
other hand, if r is complete then r satisfies an integrity constraint when the standard definition
of satisfaction for complete relations obtains. In other words, an extended integrity constraint
will always be defined so that it is faithful to its standard counterpart. We now discuss the two
main approaches to extending the notion of satisfaction of an integrity constraint in r. The
first approach insists that the integrity constraint be satisfied in all possible worlds relative
to r and is called the strong satisfaction approach. The second approach requires that the
integrity constraint be satisfied in at least one possible world relative to r and is called the
weak satisfaction approach. The strong satisfaction approach can be viewed as modal logic
necessity and the weak satisfaction approach can be viewed as modal logic possibility. (For an
introduction to modal logic see [Che801.)

We argue that both strong and weak satisfaction arise naturally in the real world. For
example, assume that the functional dependency (FD) constraining a student to belong to
only one department is satisfied strongly and that the FD constraining a department to have
one head is satisfied weakly. We will now show that the difference between strong and weak
satisfaction has an effect on integrity constraint maintenance, whose task is to ensure that the
database is in a consistent state after an update has taken place. The strong satisfaction of
an integrity constraint implies that whenever an occurrence of unk is replaced by a nonnull
value, the constraint maintenance mechanism does not need to recheck the satisfaction of
the FD, since the fact that a student belongs to one department holds in all possible worlds.
On the other hand, the weak satisfaction of an integrity constraint implies that whenever an
occurrence of unk is replaced by a nonnull value, the constraint maintenance mechanism does
need to recheck the satisfaction of the FD, since in the resulting possible world a department
may have more than one head in which case the FD is violated, giving rise to inconsistency.
Thus strong satisfaction is easier to maintain than weak satisfaction but weak satisfaction
allows for a higher degree of uncertainty to be represented in the database.

We will now extend the notion ofFD to incomplete relations. Recall that an FD over schema
R is a statement of the form R : X --? Y (or simply X --? Y whenever R is understood from
context), where X, Y 5; schema(R). Also recall that an FD X --? Y is satisfied in a complete
relation rover R, denoted by r 1= X --? Y, if and only if for all tuples t\ and t2 in r, if t\ [Xl =
t2[Xj then tdYj = t2[YI.

310 Chapter 5. Incomplete Information in the Relational Data Model

The following definition formally captures our intuition that an FD is strongly satisfied in
an incomplete relation, say r, if and only if it is satisfied in all possible worlds relative to r.

Definition 5.24 (Strong satisfaction of an FD) An FD X --+ Y is strongly satisfied (or simply
satisfied whenever no ambiguity arises) in an incomplete relation rover R, denoted by r F= X
--+ Y, if and only if'Vs E POSS(r), 5 F= X --+ Y. •

The following definition formally captures our intuition that an FD is weakly satisfied in an
incomplete relation, say r, if and only if there exists a possible world relative to r in which this
FD is satisfied.

Definition 5.25 (Weak satisfaction of an FD) An FD X --+ Y is weakly satisfied (or simply
satisfied whenever no ambiguity arises) in an incomplete relation rover R, denoted by r ~ X
--+ Y, if and only if 35 E POSS(r) such that 5 F= X --+ Y. •

We observe that if r is a complete relation then both the definitions of strong satisfaction
and weak satisfaction coincide with the standard notion of FD satisfaction, since in this case
POSS(r) = {rIo Thus both strong and weak satisfaction of an FD are faithful to the standard
satisfaction of an FD.

As an example of the above definitions let r be the incomplete relation over R, shown in
Table 5.23, where schema(R) = {SNAME, COURSE, DEPT, HEAD}, and let F = {SNAME--+
DEPT, COURSE --+ DEPT, DEPT --+ HEAD} be a set ofFDs over R. It can be verified that r F=
SNAME --+ DEPT, r ~ COURSE --+ DEPT and r ~ DEPT --+ HEAD are all satisfied.

Table 5.23 An incomplete relation r

SNAME COURSE DEPT HEAD
Iris Databases Computing Dan
Iris Theory Computing unk

Reuven Theory unk unk
Naomi Programming Maths Annette
Joseph unk Maths unk

Eli Logic unk Brian

Prior to giving a syntactic characterisation of strong and weak satisfaction we define an
operator, denoted by lub, which returns the least upper bound of two tuples over R with
respect to the information lattice. (For the formal definition of the lub of a subset of a partially
order set see Subsection 1.9.2 in Chapter 1.)

Definition 5.26 (Least upper bound operator) The least upper bound of two values VI, V2 E

EDOM(A) is defined as follows:

2) if V2 ~ VI then lub(VI , V2) = VI; otherwise

5.5. Extending Integrity Constraints with Null Values 311

We extend the lub operator to tuples t[, t2 over R as follows: lub(t[, t2) = t, where t is a tuple
over R such that 'v' A E schema(R), t[Al = lub(tIlA], t2 [AJ). •

The following lemma is important, since it gives rise to efficient algorithms for testing
whether an FD is strongly or weakly satisfied in an incomplete relation.

Lemma 5.12 The following statements, where r is an incomplete relation over R (which is
consistent) and X, Y ~ schema(R), are true:

1) r F= X ~ Y if and only iffor all distinct tuples tl, t2 E r, iflub(tJ!Xl, t2[X]) is consistent,
then tl [Y - Xl = t2 [Y - Xl evaluates to true on using three-valued logic equality.

2) r ~ X ~ Yifandonlyif'v'tl, t2 E r, if tl [Xl = t2[Xl evaluates to true on using three-valued
logic equality, then lub(tdYl, t2 [YJ) is consistent. 0

When we are modelling an application under development we will consider a set of FDs
that should be satisfied in any instance of the database. Therefore, we now generalise the
definition of strong and weak satisfaction of a single FD to a set of FDs. Informally, a set of
FDs, say F, is strongly satisfied in an incomplete relation, say r, if all the FDs in F are satisfied
in all possible worlds relative to r. Correspondingly, F is weakly satisfied in r if all the FDs in
F are satisfied in at least one single possible world relative to r.

Defmition 5.27 (satisfaction of a set of FDs) A set F of FDs over R is satisfied in a complete
relation rover R, denoted by r F= F, if and only if 'v' X ~ Y E F, r F= X ~ Y.

A set F ofFDs over R is strongly satisfied (or simply satisfied whenever no ambiguity arises)
in an incomplete relation rover R, denoted by r F= F, if and only if'v's E POSS(r), s F= F.

A set F ofFDs over R is weakly satisfied (or simply satisfied whenever no ambiguity arises)
in an incomplete relation rover R, denoted by r ~ F, if and only if:3s E POSS(r) such that s F=
R •

The above definition gives rise to the problem of whether we can test for satisfaction of a
set F of FDs over R, in an incomplete relation, r, by testing independently the satisfaction in
the relation r of each individual FD in the set F. Obviously a positive answer to this problem
is desirable.

Definition 5.28 (Additive satisfaction) We will say that satisfaction is additive for a class of
integrity constraints whenever the following condition holds:

for all finite sets of integrity constraints b = {aI, a2, .. . , ak} in the class, b is satisfied in
a relation r (which may be incomplete) if and only if'v'i E {I, 2, ... , k), ai is satisfied in r
individually. •

Weak satisfaction is defined in terms of possible worlds. Intuitively, if an incomplete
relation, r, weakly satisfies a set of data dependencies, b, then there exists a sequence of
updates, each update modifying a null value to anonnull value, such that the resulting complete
relation satisfies all the data dependencies ai E b. The problem that arises is that although
there may exist such a sequence of updates for every single data dependency ai E b, two

312 Chapter 5. Incomplete Information in the Relational Data Model

or more such sequences may lead to different possible worlds. In particular, there may not
exist a single sequence of updates that leads to one possible world that satisfies all of the data
dependencies a in ~. From the user's point of view, when r 176 ~, it is natural to view such a
relation, r, as contradictory. Even if r is a true reflection of the current available information
the user may still view ~ as contradictory. We call this problem the additivity problem.

If satisfaction is additive for a given class of integrity constraints then the additivity
problem does not arise. The following theorem shows the expected result, namely that strong
satisfaction is additive and the more surprising result that weak satisfaction is not additive.

Theorem 5.13 The following statements are true:

1) Strong satisfaction is additive.

2) Weak satisfaction is not additive. o

Proof Let r be an incomplete relation over R and let F be a set of FDs over R.
(Part 1): We need to show that r F F if and only if 'v' X -c>- Y E F, r F X -c>- Y. Now by

definition r F F if and only if'v's E POSS(r), s F F, and s F F if and only if 'v' X -c>- Y E F, s F X
-c>- Y. Thus r F F if and only if 'v' X -c>- Y E F, 'v's E POSS(r), S F X -c>- Y. The result now follows
by the definition of the satisfaction of an FD, since 'v's E POSS(r), S F X -c>- Y if and only if r F
X -c>- Y.

(Part 2): We first observe that, by the definition of weak satisfaction of a single FD and a
set of FDs, it follows that if r p:; F, then 'v' X -c>- Y E F, r p:; X -c>- Y. In order to conclude the
proof we need to exhibit a counterexample to the statement, if 'v' X -c>- Y E F, r p:; X -c>- Y then
r p:; F. The result follows by setting r to be the incomplete relation r) shown in Table 5.24 and
by setting F to be the set of FDs (A -c>- B, B -c>- C). 0

We exhibit two interesting alternatives to setting rand F as in part (2) of Theorem 5.13.
Firstly, we can set r to be the incomplete relation r2, shown in Table 5.25, and F to be the set
of FDs (A -c>- C, B -c>- C) . Secondly, we can set r to be the incomplete relation r3, shown in
Table 5.26, and F to be the set ofFDs (B -c>- A, AC -c>- B}.

Table 5.24 The counterexample
relation ')

A B C
0 unk 0
0 unk 1

Table 5.25 The counterexample
relation '2

A B C
0 unk 0
0 0 unk

unk 0 1

Table 5.26 The counterexample
relation '3

A B C
0 0 unk

unk 0 0
0 1 0

Let r be an incomplete relation over a relation schema Rand F be a set of FDs over R. We
now present efficient algorithms for testing whether r F For r p:; F hold.

Firstly, the pseudo-code of an algorithm, designated STRONG_SAT(r, F) , which given the
inputs rand F returns an incomplete relation, is presented as Algorithm 5.1. On inspecting the
algorithm the reader can verify that r F F if and only if STRONG_SAT(r, F) is consistent, on
using part (1) of Lemma 5.12 and the fact that by part (1) of Theorem 5.13 strong satisfaction
is additive. It can also be seen that the time complexity of Algorithm 5.1 is polynomial in IFI
(the cardinality of F), IIFII (the size of F) and Irl (the cardinality of r) .

5.5. Extending Integrity Constraints with Null Values

Algorithm 5.1 (STRONG_SAT(r, F»
1. begin
2. Tmp:= r;
3. for each FD X --+ Y E F do
4. for each pair of distinct tuples tl, t2 E Tmp do
5. iflub(tl [X], t2[X]) is consistent and tl [Y] '" t2[Y] then
6. tdY-X] := <inc, . .. , inc>;
7. t2[Y-X]:= <inc, . .. , inc>;
8. return Tmp;
9. end if
10. end for
11. end for
12. return Tmp;
13. end.

313

Secondly, the pseudo-code of an algorithm, designated WEAK_SAT(r, F}, which given the
inputs rand F returns an incomplete relation in POSS(r}, is presented as Algorithm 5.2. We
assume for the purpose of Algorithm 5.2 that UNK = {unkl' unk2, ... , unkq} is a set of marked
nulls of type unk, where VA E schema(R}, UNK S;; EDOM(A} and q denotes the finite number
of distinct occurrences of unk in r. We also extend the partial order, less informative than, i.e.
~, in EDOM(A} as follows: unk; ~ unkj if and only if i ~ j and Vv E DOM(A}, Vunk; E UNK,
unk; ~ v and --.(v ~ unk;). WEAK_SAT(r, F} is more complex than STRONG_SAT(r, F}, since
by part (2) of Theorem 5.13 weak satisfaction is not additive and thus a naive approach whereby
each FD in F is tested independently would not not suffice. We note that WEAK_SAT(r, F} is
known in the database literature as the chase procedure (see Subsection 3.6.4 of Chapter 3).
We leave the proof of the correctness of WEAK_SAT(r, F} to the reader; we conclude that r ~
F if and only ifWEAK_SAT(r, F} is consistent. It can also be seen that the time complexity of
Algorithm 5.2 is polynomial in IFI, IIFII and Irl·

Algorithm 5.2 (WEAK_SAT(r, F»
1. begin
2. Tmp := r;
3. i := 1;

4. for each A E schema(R} do
5. for each t E Tmp such that t[A) = unk do
6. t[A) := unk;;
7. i:= i + 1;
8. end for
9. end for
10. while 3tl, t2 E Tmp, 3 X --+ Y E F such that tdX] = t2[X) and --.(tdY] ~ t2[Y]) do
11. tdYJ, t2[Y] := lub(tdYJ, t2[Y]);
12. end while
13. return Tmp;
14. end.

314 Chapter S. Incomplete Information in the Relational Data Model

Example 5.2 Let r be the incomplete relation shown in Table 5.23 and let F = {COURSE-+
DEPT, DEPT -+ HEAD}. WEAK_SAT(r, F) is shown in Table 5.27; it can be verified that
WEAK_SAT(r, F) is consistent and that r ~ F holds. •

Table 5.27 The relation WEAK..SAT(r, F) of Example 5.2

STUD COURSE DEPT HEAD
Iris Databases Computing Dan
Iris Theory Computing Dan

Reuven Theory Computing Dan
Naomi Programming Maths Annette
Joseph unk. Maths Annette

Eli Logic unk2 Brian

Recall the notions relating to the inference of integrity constraints, which were defined
in Section 3.4 of Chapter 3, and recall the inference rules for FDs which were presented in
Subsection 3.6.1 of Chapter 3. We also remind the reader that the set of inference rules FDl,
FD2 and FD3 is called Armstrong's axiom system, and herein we call the set of inference rules
FD1, FD2, FD4 and FD5 Lien's and Atzeni's axiom system [Lie82, AM84]. We now specialise
the definition oflogical implication with respect to strong and weak satisfaction of FDs.

Definition 5.29 (Strong and weak logical implication) A set F ofFDs over schema R strongly
implies an FD X -+ Y over R, written F F X -+ Y, whenever for all incomplete relations rover
R the following condition is true:

if 'v' W -+ Z E F, r F W -+ Z then r F X -+ Y.

Correspondingly, F weakly implies X -+ Y, written F f:: X -+ Y, whenever for all incomplete
relations rover R the following condition is true:

if'v'W -+ Z E F, r f:: W -+ Zthen r f:: X -+ Y. •
We note that due to the difference between strong and weak implication we have introduced

two different notions of logical implication. Thus in order to avoid confusion in the
presentation of the following results, for each result we will explicitly mention whether the
result is with respect to weak implication or with respect to strong implication.

The following result is to be expected and its proof follows along the same lines of the proof
of Theorem 3.21 given in Subsection 3.6.1 of Chapter 3. (Recall that in Theorem 3.21 we have
shown that Armstrong's axioms are sound and complete with respect to logical implication
of FDs in complete relations.)

Theorem 5.14 Armstrong's axiom system is sound and complete for FDs with respect to
strong implication. 0

We define the closure of a set of attributes X ~ schema(R) with respect to a set F ofFDs over
R and Armstrong's axiom system, denoted as XArm+ (assuming that F in understood from

5.5. Extending Integrity Constraints with Null Values 315

context), by

xArm+ = U{y I F I- X --+ Y using Armstrong's axiom system}.

We note that the operator "Arm+" induced by the closure X Arm+ is a closure operator (see
Definition 3.54 in Section 3.5 of Chapter 3). Furthermore, F I- X --+ Y if and only ifY ~ X Arm+

holds. Finally, from the results presented in Subsection 3.6.1 of Chapter 3 it is immediate that
XArm+ can be computed in time linear in IIFII and thus by Theorem 5.14 it provides an efficient
solution to the strong implication problem for FDs.

We now consider soundness and completeness with respect to weak implication. Consider
the relation r1 shown in Table 5.24. This relation proves that the transitivity rule (FD3) is not
sound for FDs with respect to weak implication, since both r1 ~ A --+ Band r1 ~ B --+ C hold
but r ~ A --+ C is violated. Despite this negative result we obtain a sound and complete axiom
system by dropping FD3 and adding FD4 (union) and FDS (decomposition) to the axiom
system, thus obtaining Lien's and Atzeni's axiom system. Prior to presenting Theorem 5.15
we define the closure of a set of attributes X ~ schema(R) with respect to a set F of FDs over
R and Lien's and Atzeni's axiom system, denoted as X Lien+ (assuming that F in understood
from context), by

X Lien+ = U{y I F I- X --+ Y using Lien's and Atzeni's axiom system}.

We note again that the operator "Lien+" induced by the closure X Lien+ is a closure operator.
Furthermore, FI- X--+ YifandonlyifY ~ X Lien+ holds. Finally,pArm+ andpLien+ stand for the
closure ofF with respect to Armstrong's and Lien's and Atzeni's axiom systems, respectively;
this notation for the closure is used only when it is not obvious from context.

Theorem 5.15 Lien's and Atzeni's axiom system is sound and complete for FDs with respect
to weak implication.

Proof We leave it to the reader to prove that Lien's and Atzeni's axiom system is sound with
respect to weak implication. We now give the proof of completeness in full, since it is typical
of such proofs in database theory and it is both highly elegant and instructive.

We prove completeness by showing that ifF I:f X --+ Y, then F ~ X --+ Y, where F is a set of
FDs over schema R. Equivalently for the latter, it is sufficient to exhibit an incomplete relation,
say r, such that V W --+ Z E F, r ~ W --+ Z but r ~ X --+ Y. Let r be the incomplete relation
over schema R shown in Table 5.28.

We first show that V W --+ Z E F, r ~ W --+ Z. Suppose to the contrary that there exists an
FD, W --+ Z E F, such that r ~ W --+ Z. It follows by the construction of r that W ~ X and
that 3 A E Z n (schema(R) _XLien+); this implies that A ¢ XLien+ . By FD2 (augmentation) it
follows that F I- X --+ ZX, and by FDS (decomposition) it follows that F I- X --+ A. This leads
to a contradiction, since it follows that A E X Lien+.

We conclude the proofby showing that r ~ X --+ Y. Suppose to the contrary that r ~ X --+ Y.
Thus by the construction of r, Y ~ X Lien+ holds. Now, F I- X --+ X Lien+ holds by the definition
of X Lien+. Therefore, on using FDS (decomposition) it follows that V A E Y, F I- X -+ A holds
and on using FD4 (union) it follows that F I- X --+ Y holds. This leads to a contradiction, since
we have derived F I- X --+ Y contrary to our assumption. 0

316 Chapter 5. Incomplete Information in the Relational Data Model

Table S.28 The incomplete relation used in the proof ofTheorem 5.15

X X Lien+_ X schema(R) _XLien+

0".0 unk ... unk 1 " . 1
0".0 0".0 0".0

We now present an efficient algorithm that solves the weak implication problem for
FDs. The pseudo-code of the algorithm, designated WEAK_CLOSE(X, F), given inputs X
s; schema(R) and a set F of FDs over R, returns XLien+. We leave it to the reader to verify that
WEALCLOSE(X, F) is correct and that its time complexity is linear in IIFII.

Algorithm 5.3 (WEAK_CLOSE(X, F))
1. begin
2. CL:= X;
3. for each W -+ Z E F do
5. ifW S; X then
6. CL := CL U Z;
7. end if
8. end for
9. return CL;
10. end.

A mixed axiom system for FDs with respect to strong and weak implication was considered
in [LL98b]. Therein, each FD, in a set of FDs, is qualified as being either a strong FD or a
weak FD, according to whether its satisfaction in a relation should be strong or weak. For
example, one mixed inference rule, which takes into account the interaction between these
two types of FDs, states that if a set of FDs logically implies a strong FD X -+ Y then it also
logically implies the corresponding weak FD X -+ Y. In modal logic terms, this inference rule
states that if the constraint is necessary then it is also possible. In [LL98b 1 it is shown that
the above-mentioned mixed axiom system is sound and complete for a set of strong and weak
FDs.

We next introduce two new subclasses ofFDs with a view to solving the additivity problem.

Informally, a set F of FDs over R satisfies the intersection property if for each attribute A in
schema(R) there exists at most one FD that functionally determines A and the closure of this
FD contains all the FDs in the closure of F that functionally determine A. We next formalise
this subclass of FDs.

Definition 5.30 (Intersection property) Two nontrivial FDs X -+ A and Y -+ A (i.e. A ¢ X,
Y) are incomparable if X '1:. Y and Y '1:. x.

A set F ofFDs satisfies the intersection property if for all attributes A E schema(R), whenever
X -+ A, Y -+ A E pArm+ are incomparable FDs, then it is also true that X n Y -+ A E pArm+ .

•
We define a set F of FDs over R to be reduced iffor all FDs X -+ Y E F, there does not exist

a proper subset W C X such that W -+ Y E pArm+.

5.5. Extending Integrity Constraints with Null Values 317

The next theorem states that ifF is reduced and satisfies the intersection property, then the
closure of F with respect to Armstrong's axiom system coincides with the closure of F with
respect to Lien's and Atzeni's axiom system. Intuitively, this is true due to the fact that the
intersection property implies that if X ~ A E pArm+, for some nontrivial FD X ~ A, then
there is an FD W ~ Z E F such that W s;;: X and A E Z; therefore, it is also true that X ~ A
E pLien+. (A full proof of the theorem can be found in [LL97al.) We observe that if F is not
reduced then the result does not hold; this can be seen by considering the set ofFDs, {A ~ B,
AB ~ q, which satisfies the intersection property, since A ~ C is in pArm+ but not in pLien+ .

Theorem 5.16 If F is reduced and satisfies the intersection property then pArm+ = pLien+.

o

The converse of Theorem 5.16 is, in general, false. For example, let F = (A ~ C, B ~ q be
a set of FDs over R, with schema(R) = {A, B, q. It can be easily verified that pArm+ = pLien+

but that F does not satisfy the intersection property, since 0 ~ C <t p+.

Informally, a set F of FDs over R satisfies the split-freeness property if there do not exist
two FDs in the closure ofF such that the right-hand side of one FD splits the left-hand side of
the other FD into two parts. We next formalise this subclass of FDs.

Definition 5.31 (Split-freeness property) Two nontrivial FDs of the forms XB ~ A and YA
~ B are said to be cyclic.

A set F ofFDs over R satisfies the split-freeness property, if whenever there exist cyclic FDs,
XB ~ A, YA ~ B E pArm+, then it is also true that either Y ~ B E pArm+ or (X n Y)A ~ B
E pArm+. •

Definition 5.32 (Monodependent sets ofFDs) A set F of FDs over R is said to be mono
dependent if it satisfies both the intersection property and the split-freeness property. •

Let us make a slight modification to Definition 5.28 with respect to FDs by saying that
satisfaction is additive for a class FC of FDs over R if satisfaction is additive for FCed , where
FCed is the result of replacing each set F of FDs in FC by a reduced cover of F.

We observe that we cannot relax the condition that the sets of FDs are reduced. Consider
the relation rl> shown in Table 5.24, and let F = {A ~ B, AB ~ q. It can easily be verified
that rl "'" A ~ Band rl "'" AB ~ C but rl t76 F. On the other hand, if we let G = (A ~ B, A ~
q, i.e. G is a reduced cover of F, then rl t76 A ~ C. There is no loss of generality in assuming
that sets of FDs, such as F, are reduced, since a reduced cover of F can easily be obtained in
polynomial time in the size of F.

The next theorem shows that for FDs the additivity problem is solved when we consider sets
ofFDs which are monodependent. Assume according to the definition of additive satisfaction
for FDs, as modified above, that F is a reduced set of FDs over R.

Intuitively, if for some relation r, we have that V X ~ Y E F, r "'" X ~ Y but r t76 F, then
we can show that F is not monodependent by induction on the minimum number of times
the while loop in WEAK_SAT(r, F) is executed in order to ascertain whether WEAK_SAT(r,
F) is inconsistent. On the other hand, if F is not monodependent then the counterexamples
shown in Tables 5.25 and 5.26 can be generalised to the two cases when F either violates the

318 Chapter 5. Incomplete Information in the Relational Data Model

intersection property, or respectively, the split-freeness property. (A full proof of the theorem
can be found in [LL97a].)

Theorem 5.17 Weak satisfaction is additive for a class FC of sets of FDs over R if and only if
all the sets of FDs in FC are monodependent. 0

Many useful properties of monodependent sets of FDs can be found in [Lev95, LL99a] .
For example, therein we show that the superkey of cardinality k problem and the prime
attribute problem can both be solved in polynomial time in the size of F (see Theorem 3.24 in
Subsection 3.6.1 of Chapter 3). In addition, there is a unique optimum cover of F that can be
found in polynomial time in the size ofF (see Theorem 3.32 in Subsection 3.6.5 of Chapter 3).
Moreover, ifF is monodependent then every lossless join decomposition R of schema(R} with
respect to F is also dependency preserving with respect to F (see Section 4.2 of Chapter 4).

In the presence of incomplete information the notions of key, superkey and primary key
remain as they were in Subsection 3.6.1 of Chapter 3, the difference being that in the case of
weak satisfaction our axiom system has changed. Weare now in a position to formalise the
notion of entity integrity discussed in Subsection 3.6.1 of Chapter 3. In fact, entity integrity
is only really meaningful in the presence of incomplete information. We first quote Codd's
definition of entity integrity from [Cod90]:

"No component of a primary key is allowed to have a missing value of any type".

Definition 5.33 (Entity integrity) Let K S; schema(R} be the primary key of a relation schema
R. The entity integrity rule states that: for an incomplete relation, rover R, it is true that for
all the tuples t E r, t[K] does not contain any null values. •

For example, if the primary key of the student schema, given in Example 5.1, is STUD#
then the attribute values of STUD# are not allowed to be null. Thus the relation shown in
Table 5.1 satisfies the entity integrity rule. We note that according to the entity integrity rule
any attribute value that is not part of the primary key may have a null value. We further
note that entity integrity can be viewed as a special case of a more general type of integrity
constraint, called a null-free constraint, which asserts that certain attributes in schema(R} are
not allowed to have null attribute values.

In the presence of incomplete information it can be argued that entity integrity is too strict
in practice. Assume for the moment that we restrict ourselves to incomplete relations where
the only type of null value that is used is unk, modelling the fact that a "value exists but is
unknown at the present time".

As a first motivating example consider a relation schema R containing the attributes NAME
and ADDRESS, and assume that {NAME, ADDRESS} is the primary key of R. It can easily
be seen that the relation, say r, over R shown in Table 5.29 violates entity integrity. Despite
this fact all the tuples in r are uniquely identifiable, since the problematic third tuple is the
only tuple having the name Sue Jones. Thus all possible worlds of r have three tuples and
in all such complete relations,s E POSS(r}, {NAME, ADDRESS} is a superkey in s. (Recall
from Definition 3.62 in Subsection 3.6.1 of Chapter 3 that K is a key (superkey) in a complete

5.5. Extending Integrity Constraints with Null Values 319

relation 5 over R, if K is a key (superkey) for R with respect to the set F(s) of FDs that are
satisfied in 5.)

Table 5.29 A relation showing that entity integrity is too strict

NAME ADDRESS
John Smith Hampstead Way
John Smith HaroldRd
Sue Jones unk

So as long as each tuple in a relation r is uniquely identifiable as a distinct entity by the
nonnull portion ofits primary keyvalues, we can consider the relation to satisfy entity integrity.
As a second motivating example consider a relation schema R containing the attributes NAME,
ADDRESS and DOB (date of birth), and assume that {NAME, ADDRESS, DOB} is the primary
key of R. It can easily be seen that the relation, say r, over R shown in Table 5.30 violates
entity integrity. Despite this fact all the tuples in r are uniquely identifiable by the nonnull
portion of their primary key values. Consider the tuples in r pairwise: the first and second
tuples are distinguishable by their NAME, the first and third tuples are distinguishable by
their DOB and the second and third tuples are distinguishable by their ADDRESS. As in the
previous example all possible worlds of r have three tuples and in all such complete relations,
5 E POSS(r), {NAME, ADDRESS, DOB} is a superkey in s.

Table 5.30 Another relation showing that entity integrity is too strict
NAME ADDRESS DOB

John Smith unk 13/6/95
Sue Jones Harold Rd unk

unk Hampstead Way 17112/96

The examples given above suggest that in relations, which may be incomplete, the notions
of superkey and key can be generalised. We next formalise such a generalisation which
was proposed by Thalheim [Tha89al. (In the following we will make use of the index set
I = {I, 2, ... , n}.)

Defmition 5.34 (Superkey family) A superkey family K for R is a familyK == {K1, K2, ... , Kn}
consisting of n, n ~ 1, subsets of schema(R). •

Informally, a superkey family K is satisfied in a relation rover R if all pairs of distinct tuples
in r differ on nonnull values with respect to some Kj E K.

Definition 5.35 (Satisfaction of a superkey family) A relation rover R satisfies a superkey
family K (alternatively, K is a superkey family in r), written r ~ K, if for all pairs of distinct
tuples tl, t2 E r, there exists Kj E K, i E I, such that tdKd and t2[Kd are complete (i.e. do not
contain any null values) and tl [Kj) #- t2[Kj). •

The reader can verify that for the boundary cases of a relation, say r, containing no tuples or
a single tuple, the superkey family containing the empty set, i.e. {0}, is always satisfied in r. To

320 Chapter S. Incomplete Information in the Relational Data Model

avoid these special cases we assume, in the ensuing development of the notion of a superkey
family, that relations contain at least two tuples. When r contains two or more tuples, then
{0} is not satisfied in r.

Definition 5.36 (Nonredundant, irreducible and minimal key families) Let K be a superkey
family that is satisfied in a relation rover R. We say that K is nonredundant in r, iffor no proper
subset K' C K, does r satisfy K', i.e. the cardinality of K is minimal. We say that K is irreducible
in r, iffor no proper subset K; C Ki, i E I, with Ki E K, does r satisfy (K - (Kil) U {K;}, i.e. the
cardinalities of all the elements in K are minimal. Finally, we say that K is minimal in r (or
alternatively, K is a key family in r), if it is nonredundant in r and every K E K is a singleton,
i.e. contains only a single attribute. •

By our assumption that r contains at least two tuples, we can deduce that a key family in r
is also irreducible in r. The reader can verify the next lemma.

Lemma 5.18 IfKis a superkeyfamily in a relation rover R, then there exists a superkeyfamily,
{{Ad, {Az}, ... , {Am}}, with m 2: 1, that is minimal in r and such that {A" Az , ... , Am} ~
UiEI Ki, with Ki E K. 0

The next proposition states that the notion of a key family is possibility-preserving with
respect to the standard notion of a superkey, when we restrict our attention to the class of
relations which satisfy at least one key family.

Proposition 5.19 Given a superkey family K and a relation rover R, ifK is a superkey family
in r, then for all S E POSS(r), UiEI K;, with Ki E K, is a superkey in s.

Proof. Assume to the contrary that K is a superkey family in r but for some 5 E POSS(r), X
is not a superkey in s, where X = UiEI Ki, with Ki E K. It therefore follows that there are at
least two distinct tuples in r that are not uniquely identifiable by the nonnull portion of their
superkey values contradicting Definition 5.35. 0

We observe that we cannot strengthen Proposition 5.19 to key families. As a
counterexample, {{NAME}, {ADDRESS}} is a key family in the relation shown in Table 5.29 but
if we replace unk by Asmuns Hill, then ADDRESS is a key in the resulting complete relation.
In fact, there are relations which satisfy a key family but in none of their possible worlds is
the union of the attributes of the elements of the key family a key. For example, {{NAME},
{ADDRESS}, {DOB}} is a key family in the relation shown in Table 5.30. However, {NAME,
ADDRESS, DOB} is a superkey in all of its possible worlds but a key in none of them. To see
this, in order for {ADDRESS, DOB} not to be a key in one of its possible worlds, the unk in the
first tuple must be replaced by Harold Rd, but then {NAME, ADDRESS} will be a superkey in
all the possible worlds emanating from this replacement.

Weare now ready to generalise entity integrity, which is well defined for incomplete relations
satisfying key families.

Definition 5.37 (Generalised entity integrity) A primary key family is a superkey family,
which is designated by the user. Given a primary key family K, a relation r satisfies generalised
entity integrity if K is a key family in r. •

5.5. Extending Integrity Constraints with Null Values 321

We now turn our attention to some computational problems related to superkey families.
The next result is an immediate consequence of Lemma 5.18, since if K is a superkey family
in r, then {{Ad, (A2L ... , {Am}} must also be a superkey family in r, where schema(R) =
{AI,A2,···,A m}·

Corollary 5.20 The problem of determining, given a relation rover R, whether there exists
a superkey family K for R such that r ~ K can be solved in polynomial time in the sizes of r
~~ D

We next show that the problem of finding a key family in a relation can be computed in
polynomial time. The problem of deciding whether a relation satisfies a superkey family of
cardinality no greater than some natural number k is NP-complete (see Exercise 5.8).

Proposition 5.21 If there is a superkey family which is satisfied in a relation rover R, then
the problem of finding a superkey family K, such that K is a key family in r, can be solved in
polynomial time in the sizes of rand R.

Proof. By Lemma 5.18, K = {{Ad, (A2l. . .. , {Am}} isasuperkeyfamilyin r, whereschema(R)
= {AI , A2, ... , Am}, with m :::: 1. The idea behind an algorithm to compute a key family in r
is: starting from K, which is a super key family in r, we loop over all the singleton sets {A;} in
K in some order and remove {A;} from the current state of the superkey family K, ifK - {{A;}}
is a superkey family in r. The loop will be iterated at most m - 1 times. D

As a third motivating example for generalising entity integrity, we lift our restriction that unk
is the only type of null value allowed in incomplete relations by also allowing occurrences of
dne, modelling the fact that a "value does not exist". Consider a relation schema R containing
the attributes SS# (social security number), P# (passport number) and NAME. It is possible
that, as in the relation rover R shown in Table 5.31, for some tuples in r, SS# is nonnull but P#
is null (see the first tuple in r), and for other tuples in r, P# is nonnull but SS# is null (see the
second tuple in r). In this case every tuple in r is distinguishable (by nonnull values) either
by SS# or P#, since each is unique, but entity integrity is violated, assuming that both SS#
and P# are candidate keys for R and either SS# or P# is the primary key of R. Moreover, on
using Definition 5.35 there is no superkey family that is satisfied in r and thus {{SS#}, {P#}}
is not a superkey family in r. Despite this fact, it is important to observe that, due to the
semantics of dne, the first and second tuples of r represent distinct entities. Thus if at some
later stage, John Smith of the first tuple acquires a P# it cannot be 2, and if at some later stage,
John Smith of the second tuple acquires a SS# it cannot be 1. This would not have been the
case had the null values in r been of type unk, since then there would be a possible world of
r in which both the tuples in r represent the same entity. One solution, which is consistent
with Definition 5.35, is to treat dne as having the same information content as some nonnull
value, implying that <dne> is taken to be a complete tuple. To illustrate the problem with
this solution, consider the projection of r onto SS# or onto P#. In both cases dne will be
used for identification purposes, which is contrary to Codd's assertion that tuples should be
distinguishable by their nonnull values. This solution can be enhanced by insisting that each
tuple in r must be uniquely identified by its nonnull values on some member of the superkey
family [LL97bj.

322 Chapter S. Incomplete Information in the Relational Data Model

Table 5.31 Yet another relation showing that entity integrity is too strict

SS# P# NAME
1 dne John Smith

dne 2 John Smith

We now turn our attention to the existence of Armstrong relations, in the presence of
null values of type unk, with respect to strong and weak implication. Firstly, it is obvious
that FDs enjoy Armstrong relations with respect to strong implication by Theorem 3.21 of
Subsection 3.6.1 of Chapter 3, since Armstrong's axioms are sound and complete for FDs
with respect to strong implication. The following theorem shows the companion result for
FDs with respect to weak implication. (Below we still continue to make use of the index set
f = {l , 2, . . . , n).)

Theorem 5.22 FDs enjoy Armstrong relations with respect to weak implication.

PToof Let F be a set of FDs over R and let the power set P(schema(R» be the set
{XI, X2 , . .. , Xn) . We now construct n tuples as follows: Vi E f, let ti be an incomplete
tuple such that ti[X;] = < 0, . . . , 0> , ti [Xf ien+ - X;] = < unk, . . . , unk> and ti[schema(R)
_Xfien+] = < i, . . . , i>. We next construct the incomplete relation ,.Arm over R defined by

,.Arm = U{ti liE f) .

We leave it to the reader to show that indeed ,.Arm ~ X ~ Y if and only if F 1= X ~ Y. 0

We will now extend the notion of an inclusion dependency (or simply an IND) from
Subsection 3.6.7 of Chapter 3 to incomplete relations, containing null values of type unk,
in order to formalise the notion of referential integrity. Firstly, we will give some preliminary
definitions. An incomplete database over R = {R I , R2 , . .. , Rn) is a collection d of incomplete
relations h , T2 , ... , Tn) such that for all i E f, Ti is an incomplete relation over Ri. An
incomplete database is said to be a complete database (or simply a database) if for all i E f, Ti
is a complete relation.

We can now extend INDs to incomplete relations. Recall that an IND over a database
schema R is a statement of the form Rd <X>] S; R2[< Y>], where RI , R2 E R and < X> , < Y>
are sequences of distinct attributes such that X S; schema(R I), Y S; schema(R2) and IXI = I YI.
Whenever no confusion arises between a sequence and its underlying set, we will refer to the
sequence of distinct attributes < Y> , simply as Y.

Also recall that an IND RI [X] S; R2[Y] is satisfied in a complete relation T over R, denoted
by T 1= RdX] S; R2 [Y], ifVtl E TI , 3t2 E T2 such that tdX] = t2[Y]' i.e. 1l'X(TI) S; 1l'Y(T2)'

Defmition 5.38 (Weak satisfaction of an IND) An IND RdX] S; R2[Y] is satisfied in an
incomplete database dover R, denoted by d ~ RdX] S; R2[Y)' ifVtl E TI , 3t2 E T2 such
thattdX] !; t2[Y] ' •

We observe that if d is a complete database then the definition of weak satisfaction of an
IND coincides with the standard notion ofIND satisfaction. Thus weak satisfaction of an IND
is faithful to the standard satisfaction of an IND.

5.5. Extending Integrity Constraints with Null Values 323

Defmition 5.39 (The set of possible worlds of a database) We extend POSS to a database,
d = {rl' r2, ... , rn}, as follows:

POSS(d) = {{51, 52, ... ,sn} I 51 E POSS(rl) and 52 E POSS(r2) and ... and Sn E POSS(r n)} .

•
The following proposition gives a semantic characterisation of weak satisfaction of an IND

in terms of possible worlds.

Proposition 5.23 Let dl be a database over Rand R[X] <;::: S[Y] be an IND over R. If dl ~
R[X] <;::: S[Y], then 3d2 E POSS(dd such that 7lx(r) <;::: JTy(s), where r E d2 is the relation over
R E Rand 5 E d2 is the relation over S E R. D

We note that the converse of Proposition 5.23 does not hold. For example, let dl = {rl' r2}
be a database over R = {RI, R2}, where rl = {<a, b>} is the relation over Rb with schema(RI)
= {A, B}, and r2 = {<unk, d>} is the relation over R2, with schema(R2) = {C, D}. Then dl ~
RI[A] <;::: R2[C]; however, d2 F= RdA] <;::: R2[C], where d2 = {rl' 52} E POSS(dl) is a database
over R, with 52 = {<a, d>} being a relation over R2, and JTA (rl) <;::: JTc(S2). Thus the existence
of a possible world of a database, say d, that satisfies a standard inclusion dependency is not
sufficient for a corresponding IND to be weakly satisfied in d.

This leads to an asymmetry between the definition of weak satisfaction for FDs and INDs.
We justify our definition of weak satisfaction of an IND by the fact that it faithfully captures
the notion of subset in the presence of incomplete information. Suppose that employees work
in departments and that we specify the IND, EMP[DNAME] <;::: DEPT[DNAME], meaning that
the information pertaining to the department that an employee works for can be found in
the department relation. Now, it could be that the department of an employee is unknown,
implying that the DNAME-value could be any value. On the other hand, if the DNAME-value
is known then this would indicate the existence of nonnull information about the employee's
department in the department relation. Thus a nonnull value, say v, in the DNAME attribute
of an employee tuple implies that there must exist a corresponding tuple in the department
relation with vas its DNAME-value. In this sense an IND is similar to a directional link and
thus the definition is asymmetric. (Also see Definition 5.41 of referential integrity, given
below.)

Definition 5.40 (Weak logical implication) A set I of INDs over a database schema R weakly
implies an IND RI [X] <;::: R2[X] over R, written I ~ RI [Xl <;::: R2[Yl, whenever for all incomplete
databases dover R the following condition is true: if'v'RdWl <;::: Rj[Z] E I, d ~ Rj[Wl <;::: Rj[Zl
then d ~ RI [Xl <;::: R2[Yl. •

Now recall the inference rules, INDl, IND2 and IND3, for INDs holding in complete
relations, which were given in Subsection 3.6.7 of Chapter 3. The next result shows that in
contrast to weak implication of FDs the axiom system for weak implication of INDs remains
unchanged.

Theorem 5.24 The axiom system comprising IND1, IND2 and IND3 is sound and complete
for INDs with respect to weak implication of INDs.

324 Chapter 5. Incomplete Information in the Relational Data Model

Proof We sketch the main idea of the proof. Soundness of the axiom system follows directly
from the definition of weak satisfaction of an IND. Now, let I be a set of INDs over a database
schema R and a be a single IND over R such that I If a. In order to prove completeness of the
axiom system we need to exhibit an incomplete database over R, say d, such that d f; I but
d f76 a. By the completeness of the axiom system with respect to standard implication ofINDs,
shown in Theorem 3.37 in Subsection 3.6.7 of Chapter 3, there exists a complete database, say
d' over R, such that d' 1= I but d' ~ a. The result now follows since weak implication of
INDs is faithful to the standard implication ofINDs, which means that for complete databases
weak implication and standard implication coincide; thus we can choose d' as the database d
showing that d' f; I but d' f76 a. 0

We note that, although a significant amount of research has been done on the semantics
of FDs in the presence of incomplete information, to our knowledge very little research has
been done on the semantics ofINDs in the presence of incomplete information. In [LL97d] we
have further investigated the interaction between FDs and INDs in the presence of incomplete
information. Therein we have shown that the pullback inference rule is sound for weak
satisfaction of FDs and INDs but that the collection inference rule is not. We exhibited a
sound and complete axiom system for weak satisfaction of FDs and INDs, which replaces the
collection inference rule by a new inference rule, called null collection. In contrast to the
undecidability result of the implication problem for FDs and INDs for complete relations,
we showed that in the presence of incomplete information this decision problem is decidable
and EXPTIME-complete. Intuitively, this is due to the fact that when we allow null values
the axiom system is weaker mainly as a result of the fact that transitivity for FDs becomes
unsound. (See Subsection 3.6.11 of Chapter 3 for details on the interaction ofFDs and INDs
in complete relations.)

We have also looked into the additivity problem in the context of weak satisfaction for INDs
and their interaction with FDs in [LL98a) . We give an example showing why weak satisfaction
is not additive for INDs, as is the case with FDs. Let d be an incomplete database over Rand
let I be a set ofINDs over R. Informally, we need to exhibit a counterexample to the statement,
ifYRdX) £ R2IY) E I, d f; RI [X) £ R2IY), then d f; 1. Let TI , T2 and T3 be the relations shown
in Tables 5.32, 5.33 and 5.34, respectively, and let d = {Tl, T2 , T3} be a database over R, with R
= {R, S, T} and schema(R) = <A>, schema(S) = and schema(T) = <C>. Suppose that I
= {RIA) £ SIB), RIA) £ TIC]}. The result follows, since it can easily be verified that d f; RIA)
£ S[B) and d f; RIA) £ TIC) but d f76 {RIA) £ SIB), RIA) £ Tlc)}. In ILL98a) we formalise
the additivity problem for INDs and give necessary and sufficient conditions for its solution
in the case where the INDs in I are unary. The reader can verify that if we add to the set I of
INDs one of the INDs, SIB) £ TIC), TIC) £ SIB), SIB) £ RIA) or TIC) £ RIA) and enforce its
weak satisfaction in d, then the additivity problem would not arise in this case.

Table 5.32 The counterexample
relation ')

I u~k I

Table 5.33 The counterexample
relation '2

tE
Table 5.34 The counterexample

relation '3

EE
We are now in a position to formalise the notion of referential integrity discussed in

Subsection 3.6.1 of Chapter 3.

5.6. The Or-sets Approach 325

Definition 5.41 (Foreign keys and referential integrity) Let R be a database schema and RJ,
R2 be relation schemas ofR; also let X be a set of attributes in schema(Rl) and K be the primary
key of R2.

A referential dependency over R is an IND of the form Rl [Xl ~ R2[KI over R. A referential
dependency RI [Xl ~ R2 [Kl is satisfied in a database dover R if d ~ Rl [Xl ~ R2 [Kl holds.

Let RD be a designated set of referential dependencies over R. The referential integrity rule
asserts that: for a database dover R, all of the referential dependencies Rl [Xl ~ R2 [Kl E RD
are satisfied in d. The sets of attributes X are called foreign keys of R. •

We note that referential dependencies can be generalised to key-based INDs, which are
INDs of the form Rl [Xl ~ R2[K), with K being a candidate key for R2, which is not necessarily
the primary key of R2.

5.6 The Or-sets Approach

When an incomplete relation has tuples containing the attribute value unk, then it has an
infinite set of possible worlds assuming that attribute domains are countably infinite. Thus
the null value unk represents the fact that each value in the domain is possible, or equivalently,
it can be viewed as the disjunction of all the possible domain values. As we have seen this
approach has the advantage of being relatively simple but in many cases when we have some
partial information it may be too vague. For example, suppose we have a tuple <Hillary, unk>
over schema R with schema(R) = {SNAME, COURSE}. The occurrence of unk in this tuple
implies that we have no knowledge about the course Hillary is taking. Now, suppose that we
know that Hillary is either taking a course on Databases or a course on Programming. We
could represent this partial information by a finite set {Databases, Programming} resulting
in the tuple <Hillary, {Databases, Programming} > . Next assume that this tuple represents
all the information we have about Hillary. Then this new tuple represents an increase of
information, since we can now answer the query "Is Hillary taking a Logic course?" with a no
and the query "Is Hillary taking a Programming course?" with a maybe. On the other hand,
using the null value unk we would have to answer the query "Is Hillary taking a Logic course?"
with a maybe.

Definition 5.42 (Or-sets) A finite set of values, one of which is the true value, drawn from a
given attribute domain, say DOM(A), is called an or-set over A (or simply an or-set). •

In other words an or-set over A is a member of the finite power set ofDOM(A). The semantics
of an or-set {VI , V2, .. . , vm} are as follows:

1) if m = 0, then the or-set is the empty set 0 representing an inconsistent value,

2) if m = 1, then the or-set is a singleton representing a known value, and

3) if m > 1, then the or-set is a set of possible values, where it is unknown which value in
the or-set is the true value.

326 Chapter 5. Incomplete Information in the Relational Data Model

Therefore an or-set can be viewed as a refinement of the unmarked nulls approach, since
the unmarked null unk can be viewed as the or-set DOM(A} (assuming that DOM(A) is finite}
and the unmarked null inc can be viewed as the or-set 0.

Definition 5.43 (Or-relation) An or-tuple over schema R is a member of the Cartesian
product,

P(DOM(Al}) x P(DOM(A2» x .. . X P(DOM(Atype(R»),

recalling the P is the finite power set operator. An or-relation over R is a finite set of or-tuples.

An or-tuple over R is a complete tuple if all its attribute values are singleton or-sets, otherwise
the or-tuple is said to be incomplete. An or-tuple is consistent if none of its attribute values
is the empty set; if at least one of its attribute values is the empty set then the or-tuple is
inconsistent.

An or-relation over R is complete if all its or-tuples are complete. In addition, an or-relation
is consistent if all its or-tuples are consistent; if at least one of its tuples is inconsistent then it
is inconsistent. •

As an example, an or-relation over schema R with schema(R} = {SNAME, COURSE} is shown
in Table 5.35. This or-relation is inconsistent due to the second or-tuple being inconsistent;
also we observe that the first and fourth or-tuples are incomplete and the third or-tuple is
complete.

Table 5.35 A students and courses or-relation

SNAME COURSE
{Iris) {Databases, Theory, Graphics)

{Reuven) 0
{Eli) {Logic)

{Hillary) {Databases, Programming)

Given a schema R we can specify the constraint that certain attribute values must be
complete.

Definition 5.44 (Or-set domain constraints) An Or-set Domain Constraint (ODC) over
schema R is a total mapping cp from schema(R) to {COMPLETE, OR}. An ODC cp over R
is satisfied in an or-relation rover R, denoted by r F= cp, if for all attributes A E schema(R}
and for all or-tuples t E r, the following condition holds: if CP(A} = COMPLETE then t[A] is
complete. •

In the following we will assume that together with a relation schema R we have specified
an ODC cP over R. We will represent the ODC,p explicitly in schema(R} by superscripting the
attributes A E schema(R} such that ,p(A) = OR by "or" (when no ambiguity arises we will
superscript a set of attributes by "or" rather than superscripting each attribute separately).
At times we will refer to such superscripted attributes as or-attributes to distinguish them
from other attributes, called complete attributes. In addition, on occasion we will abbreviate a
singleton such as {v} to v. The or-relation shown in Table 5.35 is depicted again in Table 5.36

5.6. The Or-sets Approach 327

using our notation for making the ODe explicit. Finally, from now on we will assume that
or-relations are consistent unless explicitly stated otherwise.

Table 5.36 The students and courses or-relation with an explicit ODC

SNAME COURSEor

Iris {Databases, Theory, Graphics}
Reuven 0

Eli {Logic}
Hillary {Databases, Programming}

We now redefine the concept ofless informative in the context of or-relations. Intuitively,
an or-tuple tl over a relation schema R is less informative than another or-tuple t2 over R if
for all attributes A in schema(R) the or-set t2 [A] is a subset of the or-set tl [A]. That is, having
less values in an or-set represents having more information, the extreme case being an empty
or-set representing inconsistency.

Definition 5.45 (Less informative and more informative or-tuples) Let tl and t2 be or
tuples over schema R. Then tl is less informative than t2 (or equivalently, t2 is more informative
than td, denoted by tl ~ t2, if and only if VA E schema(R), t2[A] S; tdA].

If tl ~ t2, then we say that tl is less informative than t2 (or equivalently, t2 is more informative
than td. •

The definition of less informative for or-relations remains the same as that for incomplete
relations. That is, rl ~ r2 if and only if there exists a total and onto mapping e from rl to r2
such that Vt E rl, t ~ e(t), where rl and r2 are or-relations over R. We are now ready to define
POSS(r) in the context of or-relations.

Definition 5.46 (The set of possible worlds relative to an or-relation) The set of all possible
worlds relative to an or-relation r over schema R, denoted by POSS(r), is defined by

POSS(r) = (s I r ~ sand Vt E s, VA E schema(R), t[A] is a singleton}. •

We note that for or-relations the set POSS(r) is always a finite set, while for incomplete
relations (with occurrences of unk) POSS(r) is, in general, a countably infinite set. We
further note that as is the case with incomplete relations if r is inconsistent then POSS(r)
= 0 and, in addition, Theorem 5.3 and Proposition 504 stated after Definition 5.10 ofPOSS(r)
for incomplete relations in Section 5.3 also hold for or-relations.

We will now briefly discuss two approaches to extending the relational algebra in order to
manipulate or-relations. The first approach is to view an or-set whose cardinality is greater
than one as the unmarked null value unk and an empty or-set as the unmarked null value
inc (strictly speaking we will not make use of inc in the extended algebra, since we have
assumed that or-relations are consistent). Thereafter, we can use the extended algebra, as
defined in Section SA, without change. A slightly different, but equivalent, approach is to
assign a unique mark to each occurrence of an or-set (i.e. two occurrences of the same or-set
will be given two different marks). In this case we can still use the extended algebra, defined
in Section SA, by considering uniquely marked or-sets simply as different occurrences of

328 Chapter 5. Incomplete Information in the Relational Data Model

unk. The advantage of this first approach is its simplicity and computational efficiency, since
evaluating an extended algebra expression does not incur a significant overhead compared to
evaluating the corresponding standard relational algebra expression. On the other hand, the
disadvantage of this approach is that we do not make use, in the extended algebra, of the fact
that or-sets are more expressive than the unmarked null unk.

The second approach makes use of the fact that POSS(r), where r is an or-relation, is a
finite set and thus to obtain the result of a query we directly compute the query over all
possible worlds. Let Q(R I, R2, ... , Rn) be a standard relational algebra query. Then the result
of computing Q with the or-relations, rl over RJ, r2 over R2 , . .. , rn over Rn, as its actual
parameters, is denoted by QOT (rl , r2 , ... , r n) and is defined by

QOT (rl, r2, ... , rn) = n {Q(SI , S2 , ... , Sn) I SI E POSS(rl) and S2 E POSS(r2)

and . .. and Sn E POSS(rn)}.

We call a query of the form QOT(RI, R2, .. . , Rn) an or-query. The advantage of this approach
is that, by definition, the resulting extended relational algebra is both faithful and truth
preserving for all possible or-queries QOT . The disadvantage is that computing answers to
such queries may be prohibitively expensive. That is, the additional expressiveness comes at
a high computational cost!

The ensuing example adapted from [Imi89, IV89) gives a concrete illustration of an
intractable or-query. Let G be a schema with schema(G) = {NODE1, NODE2}, whose instance
or-relations represent digraphs, recalling the definition of a digraph from Section 2.1 of
Chapter 2. That is, an instance, say gr, over G has complete tuples of the form <nl , n2>
representing an arc in a digraph. We assume without loss of generality that there are no
arcs of the form <n, n> in gr, i.e. gr does not have any loops. Also, let C be a schema with
schema(C) = {NODE, COLOUROT}, whose instances represent the possible colouring of nodes
in a digraph. In particular, let gr be an or-relation over G and co be an or-relation over C
defined by

co = {<n, {blue, red, green} > I <n, m> E gror <m, n> E gr} .

That is, for every node n in the digraph gr that participates in an arc, co has tuple of the
form < n, {blue, red, green} > representing the fact that node n can be coloured in three ways.
Next, let G3COT(G, C) be the or-query

1r0(G I><l PNODE->NODEI (C) I><l PNODE->NODE2(C» .

It can be verified that G3COT (gr, co) # 0, i.e. G3COT (gr, co) = {< > }, if and only if the
digraph represented by gr is not 3-colourable, i.e. we cannot find a colouring of gr, using only
three colours, which assigns different colours to nodes which are contained in the same arc.
(This is due to the fact that if the result of the query is non empty then in all possible worlds,
POSSe {gr , co}) , gr is not 3-colourable.) However, this is exactly the complement of the graph
3-colourability problem, which is known to be NP-complete [GJ79). Thus we have a strong
indication that this query cannot be answered in polynomial time in the size of the or-relations
involved in the above or-query, i.e. that its computation cannot be carried out efficiently.

5.6. The Or-sets Approach 329

We are now ready to redefine weak satisfaction of an FD in the context of or-relations; in
fact, the definition is identical to that of weak satisfaction of an FD in an incomplete relation
but we repeat the definition for the sake of completeness.

Defmition 5.47 (Weak satisfaction of an FD in an or-relation) An FD X ~ Y is weakly
satisfied (or simply satisfied whenever no ambiguity arises) in an or-relation rover R, denoted
by r ~ X ~ Y, if and only if 3s E POSS{r) such that s F= X ~ Y. •

For example, it can be verified that the or-relation over schema R, shown in Table 5.37, with
schema(R) = {SNAME, DEPTor, HEADor}, weakly satisfies the FDs SNAME ~ DEPTor and
DEPTor ~ HEADor.

Table 5.37 A students, departments and heads or-relation

SNAME DEPTor HEADor

Iris {Computing, Maths} Dan
Iris {Computing, Economics} {Dan, Hanna}

Reuven {Computing, Philosophy} {Dan, David}
Naomi {Maths, Economics} {Annette}
Naomi {Maths, Computing} {Annette, Dan}

Having another look at the or-relation, say r, shown in Table 5.37, we note that the knowledge
that the FDs SNAME ~ DEPTor and DEPTor ~ HEADor are weakly satisfied in r allows us
to obtain a more informative or-relation as the following argument demonstrates. The FD
SNAME ~ DEPTor implies that there does not exist a possible world where each ofIris, Reuven
and Naomi is studying in one department. Thus we can deduce that Iris must be studying in the
Computing department and Naomi must be studying in the Maths department. Furthermore,
on using the FD DEPTor ~ HEADor we can deduce that Dan is the head of Computing and
that Annette is the head of Maths. This deduction process is a generalisation of the chase
procedure mentioned in connection with Algorithm 5.2, which was designated WEAK_SAT(r,
F). We now define a similar algorithm in connection with or-relations, where r is an or-relation
over schema Rand F is a set ofFDs over R. We first redefine the least upper bound (lub) operator
in the context of or-relations, since it is needed in Algorithm 5,4 given below.

Definition 5.48 (Least upper bound operator) The least upper bound, lub, of two or-sets
VI , V2 over an attribute A is defined by

lub(VI, V2) = VI n V2 .

We extend the lub operator to or-tuples tl> t2 over R as follows: lub(tl> t2) = t, where t is an
or-tuple over R and VA E schema(R), t[Al = lub(tdA], t2[A]). •

Next the pseudo-code of an algorithm, designated OR_CHASE(r, F), which given the inputs
rand F returns a more informative or-relation, is presented as Algorithm 5,4. It can be shown
that r ~ OR_CHASE(r, F) and that if the result of OR_CHASE(r, F) is inconsistent then "Is E

POSS(r), s ft: F, i.e. no possible world in r satisfies F. We observe that lines 9 to 11 of the
algorithm depart from the standard chase procedure in that it enforces an inequality by a
backwards test, when the X-values of two tuples cannot be equal if the FD is to be weakly

330 Chapter 5. Incomplete Information in the Relational Data Model

satisfied. (The reader should verify that if we lift the restriction in line 9 of the algorithm that
IXI = 1, then, in general, more than two tuples will need to be considered in such a backwards
test.) It can also be seen that the time complexity of Algorithm 5.4 is polynomial in IFI. IIFII
and Irl.

Algorithm 5.4 (OR_CHASE(r, F))
1. begin
2. Result := r;
3. Tmp:=0;
4. while Tmp =1= Result do
5. Tmp := Result;
6. if 3 X ~ Y E F, 3tl, t2 E Result such that

tl [X] and t2 [X] are complete and tl [X] = t2 [X] but tl [Y] =1= t2 [Y] do
7. tl [YJ, t2[Y] := lub(tl [Y], t2[Y));
8. end if
9. if 3 X ~ Y E F, with IXI = 1, 3t1, t2 E Result such that

t!lXY] and t2[Y -X] are complete but t!lY -X] =1= t2[Y -X] then
10. t2[X] := t2[X] - t!lX];
11. end if
12. end while
13. return Tmp;
14. end.

Example 5.3 Let r be the or-relation shown in Table 5.37 and let F = {SNAME ~
DEPTor, DEPTor ~ HEADor} . The result of OR_CHASE(r, F) is shown in Table 5.38; it
can be verified that the result of OR_CHASE(r, F) is consistent and that both r ~ SNAME
~ DEPTor and r ~ DEPTor ~ HEADor hold. •

Table S.38 The result of OR 'CHASE{r, F) of Example 5.3

SNAME DEPTor HEADor

Iris { Computing} {Dan}
Iris {Computing} {Dan}

Reuven {Computing, Philosophy} {Dan, David}
Naomi {Maths} {Annette}
Naomi {Maths} {Annette}

We now make two interesting comments regarding the weak satisfaction of FDs in or
relations; these highlight the difference between the weak satisfaction of FDs in incomplete
relations and or-relations, respectively. Firstly, let us examine the or-relation, say rl> shown
in Table 5.39, which violates the FD SNAME ~ COURSEor. It is interesting to note that any
proper subset of '1 weakly satisfies SNAME ~ COURSEor implying that in order to test weak
satisfaction of an FD in an or-relation it is not sufficient just to test weak satisfaction with
respect to pairs of tuples as can be done in incomplete relations (cf. part (2) of Lemma 5.12

5.6. The Or-sets Approach 331

which shows that weak satisfaction of an FD in incomplete relations can be tested with respect
to pairs of tuples). We observe that in this case the OR_CHASE is powerful enough to detect
the violation of the FD. Secondly, let us examine the or-relation, say r2, shown in Table 5.40,
which violates the FD DEPTor --+ HEAD. Yet again we note that any proper subset of r2 weakly
satisfies DEPTor --+ HEAD. However, on this occasion the reason for the violation of the FD is
due to the fact that the cardinality of the or-set {Computing, Maths}, i.e. two, is less than the
cardinality of r2, i.e. three. All possible worlds in POSS(r2) have three tuples and thus three
attribute values over DEPTor are needed in order for the FD to be satisfied. We observe that
in this case the OR_CHASE is not powerful enough to detect the violation of the FD, but if
we replace the or-set over DEPTor of the first tuple by {Computing} then the OR_CHASE will
indeed detect the violation of the FD with the assistance of the backwards test.

Table 5.39 An or-relation violating SNAME ~ COURSEor

SNAME COURSEor

Iris {Databases, Graphics}
Iris {Databases, Logic}
Iris {Logic, Graphics}

Table 5.40 An or-relation violating DEPT'JT ~ HEAD

DEPTor HEAD
{Computing. Maths} Dan
{Computing. Maths} Annette
{Computing. Maths} Brian

The following consistency problem is central to detecting weak satisfaction in or-relations.

Defmition 5.49 (The consistency problem) Given a set F of FDs over R and an or-relation r
over R the consistency problem is the problem of deciding whether r f:> F. •

In [VN95] the consistency problem was shown to be intractable.

Theorem 5.25 The consistency problem is NP-complete.

Proof. We provide a sketch of the proof leaving some of the details out. The problem is
easily seen to be in NP. Simply guess a possible world s E POSS(r) and test whether s F F in
polynomial time in the sizes of 5 and F.

To show that the problem is NP-hard we give a polynomial-time transformation from the
Monotone 3-Satisfiability (M3SAT) problem, which is known to be NP-complete [G]79j, to
the problem of determining whether r f:> F.

M3SAT problem: Given a finite set U of propositional variables and a collection C of clauses
over U such that each clause contains exactly three unnegated variables or exactly three
negated variables, is there a satisfying truth-assignment for C (i.e. is C satisfiable)?

For the transformation we choose F to contain the single FD A or --+ B over R, with schema(R)
= {Aor, B}. We represent each clause Cj E C by an or-set. If Cj is a positive clause then we

332 Chapter S. Incomplete Information in the Relational Data Model

represent its three unnegated variables by the or-set {Pi), Pi2, Pi3), and if Ci is a negative clause
then we represent its three negated variables by the or-set (nil , ni2, ni3).

We now construct an or-relation rover R containing one tuple for each clause in Ci E C
such that if Ci is positive then we insert the tuple < (pi), Pi2, Pi3), 0> into r and if Ci is negative
then we insert the tuple <(nil , ni2, ni3), 1> into r. The reader can verify that C is satisfiable if
and only if r ~ F. 0

In [VN95] it was shown that in the following special case the consistency problem can be
solved in polynomial time.

Theorem 5.26 Let F be a set of FDs over Rand r be a relation over R. If all the attributes on
the left-hand sides of FDs in F are complete attributes (i.e. none of them are or-attributes),
then the consistency problem can be solved in polynomial time in the sizes of rand F.

Proof. It can be shown that in this case r ~ F if and only if OR_CHASE(r, F) is consistent. 0

Weak implication ofFDs in the context of or-relations is just a restatement of Definition 5.29
which replaces incomplete relation by or-relation. The next theorem establishes the fact that
for FDs holding in or-relations Lien's and Atzeni's axiom system is sound and complete.

Theorem 5.27 Lien's and Atzeni's axiom system is sound and complete for FDs with respect
to weak implication in the context of or-relations.

Proof. We leave it to the reader to prove the soundness of the axiom system. The proof of
completeness follows along the same lines as the proof of Theorem 5.15, where the relation
used herein to show completeness is that shown in Table 5.41. 0

Table 5.41 The or·relation used in the proof ofTheorem 5.27

X (XLien+ _ X)OT schema(R) _XLien+

0." 0 to, I}." to, I} 1.. .1
0." 0 0." 0 0".0

In the presence of or-sets the notions of key, superkey and primary key remain as they were
defined in Subsection 3.6.1 of Chapter 3, the difference being that our notion of satisfaction
of an FD has changed. We next restate entity integrity in the context of or-relations.

Definition 5.50 (Entity integrity) Let K ~ schema(R) be the primary key of the relation
schema R. The entity integrity rule asserts that: for all or-relations, rover R, an ODC ¢ is
satisfied, where VA E K, ¢(A) = COMPLETE. •

We note that referential integrity in the context of or-relations can be defined in the same
way as in Section 5.5 for incomplete relations by using our definition of less informative for
or-relations.

5.7. The Fuzzy Sets Approach 333

5.7 The Fuzzy Sets Approach

In the real world we often encounter situations where we can only vaguely specify attribute
values. Some examples of such vagueness or fuzziness are: John's salary is "high", Jeremy's
salary is "between 15 to 25 thousand pounds", Jack is "middle aged", Jim's age is "around 35"
and Jill is "tall". Such fuzzy data cannot be represented by null values such as unk and dne,
since unk is a place holder for a non-fuzzy or crisp data value and dne is a place holder for the
non-existence of a crisp data value.

Given a relation r, each tuple t E r is taken to be true and each tuple t rt r is taken to be false.
Fuzzy sets (originally proposed in [Zad65] and further developed in [Gog67]) generalise the
notion of membership in a set by associating with each element in a set a value in the closed
interval [0, 1] that denotes its grade of membership in the set. The grade of membership is also
called the possibility measure of a value being in the fuzzy set. We note that the introduction of
fuzzy sets has led to the development of fuzzy logic which can be viewed as a generalisation of
many-valued logic [Res69, BB92]. In turn many-valued logic generalises classical two-valued
logic by allowing other truth-values, such as maybe, in addition to the standard truth-values
true and false (we observe that three-valued logic is a special case of many-valued logic).

An example of a fuzzy relation r over LIKES, with schema(LIKES) = {SNAME, COURSE},
is shown in Table 5.42. Note that r has an extra column with the heading fir representing the
membership function (or characteristic function) of the fuzzy relation r. More formally, fir
is a mapping from all possible tuples over LIKES to [0, 1] giving the grade of membership of
each possible tuple in the relation r. We note that in accordance with crisp sets (i.e. non-fuzzy
sets) it is customary to assume that for all tuples t, which are not represented in r, we have
fir(t) = 0.0, i.e. we can deduce that they are definitely not members of the fuzzy relation r.
Thus fir tells us how much each student likes the course helshe is taking. We call the tuples
in a fuzzy relation fuzzy tuples.

Table 5.42 A fuzzy relation over LIKES

SNAME COURSE iJ.r
Iris Databases 0.90
Iris Graphics 0.45

Reuven Programming 0.80
Hillary Logic 1.0

Zadeh [Zad79] utilised the notion of fuzzy sets to introduce the notion of a possibility
distribution with the aim of representing approximate concepts such as high-salary, tall-person
and young-person. For example, small-integer can be described as the fuzzy set

small-integer = {1.010, 0.9/1, 0.8/2, ... ,0.3/7,0.2/8, 0.1/9}.

The notation of the form 0.8/2 for members of the above fuzzy set signifies that the grade
of membership of the integer 2 is 0.8. More formally, a member g/v in a fuzzy set F denotes
the fact that the grade of membership of v in F is g, i.e. fiF(V) = g. As mentioned before
it is assumed that any possible value, say i, that is not represented in the fuzzy set F has
membership grade of 0.0, i.e. fiFCi) = 0.0. In our example, we can deduce that all integers i
greater that nine have a membership grade of 0.0.

334 Chapter 5. Incomplete Information in the Relational Data Model

A crisp set (or simply a set) can now be defined as a fuzzy set of the form {1.0/l, 1.0/2,
.. . , 1.0/n}, where the membership grade of each of its members is 1.0; in this case we simply
represent the set as in the standard way, namely {l, 2, ... , n}. If the crisp set represents a
range of values, such as 1 to n, we also represent the set as I-n.

Now, suppose that the crisp set {1O, 15,20,25,30,35, 40} represents the possible salaries
of employees, where the numbers in the set denote the salary in tens of thousands of pounds.
Then high-salary can be described as the fuzzy set

high-salary = {0.2/l0, 0.2/l5, 0.3/20, 0.6/25, 0.8/30, 1.0/35, 1.0/40}.

Note that the fact that 10 and 15 have the same membership grade of 0.2 and 35 and 40 have
the same membership grade of 1.0 does not pose any problems.

We now make the connection between fuzzy sets and the notion of possibility distributions
[Zad79). A fuzzy set F induces a possibility distribution, which equates the possibility that a
variable, say x, taking a value v in the universe of discourse of F, with the grade of membership
of v, i.e. with J1F(v). That is, we can view a fuzzy set as giving us the possibility that x can take
vas its value.

We can now extend fuzzy relations to have fuzzy attribute values, which are fuzzy sets,
in addition to having fuzzy tuples. Let r be the fuzzy relation over STUDENT, shown in
Table 5.43, where schema(STUDENT) = {SNAME, AGEfuz }. The schema of this relation has a
fuzzy attribute whose values are fuzzy sets over the domain of AGE; note that fuzzy attributes
are indicated by superscripting them with "fuz". We now make several observations about r:

1) All the tuples in r are crisp, i.e. their membership grade is 1.0.

2) The age value 25 in the first tuple denotes the singleton crisp set {25}.

3) The fuzzy set {27, 29, 31} is crisp and could also be written as {1.0/27, 1.0/29, 1.0/31}.
Furthermore, this set is actually an or-set, since its interpretation is that Reuven's age
is definitely one of 27, 29 or 31. Thus, or-sets are special cases of fuzzy sets.

4) The age values around-35, young and middle-aged are all fuzzy sets.

5) The range 24-27 is a shorthand for the fuzzy set (or equivalently, the or-set) {24, 25, 26,
27}.

Table 5.43 A fuzzy relation over STUDENT

SNAME AGE!UZ

Iris 25
Reuven {27, 29, 31}
Hillary around-35

Eli young
Saul 24-27

David middle-aged

We next introduce proximity relations. These set-theoretic relations are utilised in the
definition of fuzzy selection as well as the fuzzy satisfaction of an FD.

5.7. The Fuuy Sets Approach 335

The concept of equality can also be fuzzified, thus general ising three-valued equality for
nulls and giving rise to proximity relations. A proximity relation over a fuzzy attribute A E

schema(R) is a fuzzy relation in the domain of A; note that A may be a fuzzy or standard
attribute. Thus the membership function of a proximity relation over A is a mapping from
DOM(A) x DOM(A) to [0,1). Whenever the attribute, say A, over which a proximity relation
is defined is understood from context we will denote such a relation by the equality sign
"=". Furthermore, if ,.b(V\ , V2) = a, we will say that the proximity between v\ and V2 is
a. Let us consider the subset of a proximity relation over an attribute, say Att, shown in
Table 5.44, whose domain is a subset of the natural numbers. For this table we can deduce, for
example, that p-=(one, one) = 1.0, p-=(one, two) = 0.8 and p-=(one, three) = 0.6. In general,
a proximity relation is reflexive, i.e. for all u in the domain of the attribute, over which the
proximity relation is defined, p-=(u, u) = 1.0, and is symmetric, i.e. for all u, v in the said
domain, p-=(u , v) = p-=(v, u) . On the other hand, a proximity relation is not, in general,
transitive (thus differing from two-valued equality), since from the fact that p-=(u, v) = x
and p-=(v, w) = y we cannot, in general, deduce the membership grade of p-=(u , w). Thus,
in our example, it is not clear how one can deduce that p-=(one, three) = 0.6 from the other
membership grades given in Table 5.44.

Table 5.44 A subset of a proximity relation over Att

p-= one two three
one 1.0 0.8 0.6
two 0.8 1.0 0.8

three 0.6 0.8 1.0

We will now define an extension of the relational algebra to manipulate fuzzy relations,
which may have fuzzy tuples and may also have fuzzy attribute values. The definition of a
fuzzy relational algebra operator (or simply a fuzzy algebra operator) extends the definition
of a standard algebra operator (see Subsection 3.2.1 of Chapter 3) by characterising the
membership function of the fuzzy relation resulting from invoking the fuzzy operator. In
the following we let max(S) denote the maximum value of a set of numbers in the unit interval
[0, 1) and let mineS) denote the minimum value of a set of numbers in the unit interval [0, 1).
In addition, let

REL(R) = DOM(A\) x DOM(A2) x . .. X DOM(Atype(R»

be the countable set of all possible tuples over a relation schema R.

Intuitively, the projection of a fuzzy relation maintains the maximum membership grade
of duplicate projected fuzzy tuples.

Definition 5.51 (Fuzzy Projection) The fuzzy projection of a fuzzy relation r over schema R

onto Y ~ schema(R), denoted by 7l'!uz (r), is a fuzzy relation s over schema S with schema(S)
= Y, characterised by the fuzzy membership function P-s given by

"It E REL(S) , P-s(t) = max({p-r(u) I U E REL(R) and u[¥) = tl). •
We observe that although the sets REL(S) and REL(R) are, in general, countably infinite we

need only consider tuples U E REL(R) such that P-r(u) > 0.0. As an example, let r be the fuzzy

336 Chapter S. Incomplete Information in the Relational Data Model

relation shown in Table 5.42. The fuzzy projection If{~~ME(r) is shown in Table 5.45; iJ.-r can
be interpreted as giving the maximum membership grade referring to how much a student
likes his/her courses.

Table 5.45 A projection of the fuzzy relation over LIKES

SNAME /-tr
Iris 0.90

Reuven 0.80
Hillary 1.0

Intuitively, the union of two fuzzy relations maintains the maximum membership grade of
the unioned fuzzy tuples.

Definition 5.52 (Fuzzy union) The fuzzy union of two fuzzy relations r1 and r2 over schema
R, denoted by r1 Ufuz r2, is a fuzzy relation rover R characterised by the fuzzy membership
function iJ.-r given by

•
As an example, let r1 and r2 be two fuzzy relations over LIKES, shown in Tables 5.42 and

5.46, respectively. The fuzzy union r = r1 ufuz r2 is shown in Table 5.47.

Table 5.46 Another fuzzy relation over LIKES

SNAME COURSE /-tr2
Iris Databases 0.95

Reuven Programming 0.40
Hillary Logic 0.75
Rachel Databases 0.8

Table 5.47 The fuzzy relation Tl ufuz T2 over LIKES

SNAME COURSE /-ts
Iris Databases 0.95
Iris Graphics 0.45

Reuven Programming 0.80
Hillary Logic 1.0
Rachel Databases 0.8

Intuitively, the intersection of two fuzzy relations maintains the minimum membership
grade of the intersected fuzzy tuples.

Defmition 5.53 (Fuzzy intersection) The fuzzy intersection of two fuzzy relations r1 and r2
over schema R, denoted by r1 n fuz r2, is a fuzzy relation rover R characterised by the fuzzy
membership function iJ.-r given by

•

5.7. The Fuzzy Sets Approach 337

As an example, the fuzzy intersection r = rl nfuz r2 is shown in Table 5.48, where rl and r2
are the fuzzy relations over LIKES, shown in Tables 5.42 and 5.46, respectively.

Table 5.48 The fuzzy relation rl nfuz r2 over LIKES

SNAME COURSE J1. r2

Iris Databases 0.90
Reuven Programming 0.40
Hillary Logic 0.75

Intuitively, the difference between two fuzzy relations is defined by the intersection of the
first fuzzy relation with the complement of the second fuzzy relation, where the complement
of a fuzzy relation complements its membership function .

Definition 5.54 (Fuzzy difference) The fuzzy complement of a fuzzy relation r over schema
R, denoted by,fuz(r), is a fuzzy relation s over R characterised by the fuzzy membership
function J1.s given by

'<It E REL(R), J1.s(t) = 1 - J1.r(t) .

The fuzzy difference of two fuzzy relations rl and r2 over schema R, denoted by rl _fuz r2,
is a fuzzy relation rover R given by

•
As an example, the fuzzy difference r = rl _fuz r2 is shown in Table 5.49, where rl and r2

are the fuzzy relations over LIKES, shown in Tables 5.42 and 5.46, respectively.

Table 5.49 Another fuzzy relation over LIKES

SNAME COURSE J1. r2

Iris Databases 0.05
Iris Graphics 0.45

Reuven Programming 0.60
Hillary Logic 0.25

Intuitively, the Cartesian product of two fuzzy relations maintains the minimum
membership grade of the fuzzy tuples in the product.

Definition 5.55 (Fuzzy Cartesian product) Let rl be a fuzzy relation over Rl and let r2 be a
fuzzy relation over R2, where Rl and R2 are relation schemas with schema(Rd n schema(R2)
= 0. The fuzzy Cartesian product of the two relations rl and r2, denoted by rl xfuz r2, is a
fuzzy relation rover R, where schema(R) = schema(Rd U schema(R2}, characterised by the
fuzzy membership function J1.r given by

"It E REL(R), J1.r(t) = min({J1.rl (t[schema(Rd]), J1. r2 (t[schema(R2»))}). •

Intuitively, the selection of fuzzy tuples from a fuzzy relation with respect to a selection
formula, say SF, maintains the fuzzy tuples which fuzzily logically imply SF with a threshold
ofa E [0, 1).

338 Chapter S. Incomplete Information in the Relational Data Model

Defmition 5.56 (Fuzzy selection) Recall that a simple selection formula over a relation
schema R is either an expression of the form A = a or an expression of the form A = B,
where A, B E schema{R), a E DOM{A) and U=" is a proximity relation.

Let r be a fuzzy relation over Rand t be a tuple in r. We define fuzzy logical implication
with threshold a E [0, 1], denoted by (a) ~, as follows:

1) tea) ~ A = a evaluates to true if tL={t[A), a) 2: a;

2) tea) ~ A = B evaluates to true if tL=(t[A), t[B]) 2: a.

The fuzzy selection applied to a fuzzy relation r over schema R with respect to a simple
selection formula SF over R and threshold a, denoted by (a)asF(r), is a fuzzy relation s over
R characterised by the fuzzy membership function tLs given by

Vt E REL(R), if tea) ~ SF then tLs(t) = tLr(t), otherwise tLs(t) = 0.0. •

Fuzzy selection can be extended to well-formed expressions composed of simple selection
formulae together with the Boolean logical connectives in a straightforward way, where
disjunction corresponds to fuzzy union (i.e. we take the max of the two membership functions),
conjunction corresponds to fuzzy intersection (i.e. we take the min of the two membership
functions) and negation corresponds to fuzzy complement (i.e. we subtract the membership
function from one).

As an example, the fuzzy selection (0 .9)asF(r) over STUDENT, with SF = AGEfuz = young,
is shown in Table 5.50, where r is the fuzzy relation over STUDENT shown in Table 5.43.
In this example we have assumed that anyone, who is possibly 25 or under, qualifies with a
threshold of 0.9 as being young (in particular, we assume that tL=(middle-aged, 25) < 0.9 and
that tL={around-35, 25) < 0.9).

Table 5.50 The fuzzy relation (O .9)aSF(r) over STUDENT, where SF is AGEfuz = young

SNAME AGEfuz

Iris 25
Eli young

Saul 24-27

We observe that fuzzy natural join can now be defined in the standard way by using fuzzy
Cartesian product, fuzzy renaming and fuzzy selection. (Fuzzy renaming can be defined in
the same way as standard renaming by maintaining the same membership function.)

We note that all the operators of the fuzzy relational algebra are faithful to the standard
relational algebra operators. On the other hand, truth-preservation is not relevant in the
context of the fuzzy algebra, since we have not defined a possible worlds semantics for fuzzy
relations. An alternative measure of the reasonableness of the fuzzy algebra is its faithfulness
to fuzzy set theory [Zad65) and fuzzy approximation theory [Zad79), which is immediately
evident. The notion of threshold was added to fuzzy selection, since it provides a mechanism
for the user to put a filter on the output.

5.7. The Fuzzy Sets Approach 339

We next discuss the extension of FDs to fuzzy relations. Firstly, we extend the membership
function of a proximity relation between tuples as follows:

JL=(tJ!X], t2[X]) = min(JL=(tJ!A!l, t2[A!l) , JL=(tJ!A2], t2[A2)), " " JL=(t!lAk], t2[Ak))) ,

where X = {AI , A2 , ... , Ak}'

In the following we assume that attributes are fuzzy unless otherwise stated.

Definition 5.57 (Fuzzy satisfaction of an FD in a fuzzy relation) An FD X ---+ Y is fuzzily
satisfied (or simply satisfied whenever no ambiguity arises) in a fuzzy relation rover R,
denoted by r ~ X ---+ Y, if'v'tl , t2 E r, JL=(tJ!Xj, t2[X]) ~ JL=(tdYj, t2[Y]). •

We note that if r is a complete non-fuzzy relation, where the proximity relation between
domain values is just the standard equality relation, then the definition of fuzzy satisfaction
of an FD coincides with the standard notion of FD satisfaction. Thus fuzzy satisfaction of an
FD is faithful to standard satisfaction of an FD.

As an example, let r be the fuzzy relation over SALARY -SCALE, shown in Table 5.51, with
attributes EXPfuz denoting the (fuzzy) experience of an employee and SALARyfuz denoting
the (fuzzy) salary of the employee in thousands of pounds. It can intuitively be verified that
r ~ EXPfuz ---+ SALARYfuz, noting that JL=(10, High) and JL=(2, Low) are close to 1.0 and
JL=(10, Low) and JL=(2, High) are close to 0.0. (Of course our interpretation of the proximity
relation is subjective.)

Table 5.51 A fuzzy relation satisfying the fuzzy FD EXP!uZ -> SALAR Y fuz

EXP!UZ SALARY!uZ
2 Low
10 High

7-15 around-25
High High
Low Low

Moderate 15

Fuzzy implication of FDs in the context of fuzzy relations is just a restatement of
Definition 5.29 of weak logical implication with the replacement of incomplete relations by
fuzzy relations. The next theorem presented in [RM88j shows that Armstrong's axiom system
is still sound and complete in the context of fuzzy relations.

Theorem 5.28 Armstrong's axiom system is sound and complete for FDs with respect to
fuzzy implication in the context of fuzzy relations, assuming that for all A E schema(R) there
are at least two values VI, V2 E DOM(A) such that JL= (VI , V2) = o.

Proof We leave it to the reader to prove the soundness of the axiom system. The proof of
completeness follows along the same lines as the proof of Theorem 3.21 in Subsection 3.6.1 of
Chapter 3. 0

The reader may be surprised to discover that the transitivity inference rule is sound in
the context of fuzzy relations while it is unsound in the context of incomplete relations and

340 Chapter 5. Incomplete Information in the Relational Data Model

or-relations. Consider the fuzzy relation, say rover R, with schema(R) = {A, B, C, Dfuz }, which
is shown in Table 5.52; assume that 1k=(0 , 0) = 1.0, 1k=(0, (O, I}) = 0.5 and 1k=(0, 1) = 0.0.
In the context of either incomplete relations, or-relations or fuzzy relations we have that r
weakly satisfies the FD A -7 B but violates the FD A -7 C. Now, the FD A -7 Dfuz is also weakly
satisfied in the context of or-relations, and assuming that we replace {O, I} in the second tuple
by unk, A -7 Dfuz is also weakly satisfied in the context of incomplete relations. This is
due to the fact that weak satisfaction in the context of incomplete relations and or-relations
is defined in terms of possible worlds, which are induced by substitution semantics. Thus,
transitivity is not sound for either incomplete relations or or-relations, since r weakly satisfies
both A -7 Dfuz and Dfuz -7 C but it violates A -7 C. On the other hand, A -7 Dfuz is violated
in the context of fuzzy relations, since (1k=(0 , 0) = 1.0) > (1k=(0 , (O, I}) = 0.5). Thus
fuzzy satisfaction of FDs is defined in terms of proximity of values rather than in terms of
possible worlds and therefore the transitivity inference rule is still sound. More specifically,
if 1k=(tdXj, t2[X]) ::: 1k=(tdYj, t2[Y]) and 1k=(tdYj, t2[Y]) ::: 1k=(tdZ], t2[Z]), then due to
the transitivity ofless than or equal (:::), it follows that Ik=(t, [X], t2[X]) ::: Ik=(t, [Z], t2[Z]),

Table 5.52 A fuuy relation

A B C DJuZ

0 0 0 0

0 0 1 {O. I}

We now discuss two alternative, but related, semantics of fuzzy satisfaction of FDs. We
begin by defining the fuzzy implication operator. The fuzzy implication between p and q,
denoted by p =? q, where p, q E [0 , 1], is an operator whose result is given by

{ I ifp:::q
p =? q = q if P > q.

In the first alternative semantics the degree of fuzzy satisfaction is indicated so
Definition 5.57 is strengthened [CKV94].

Definition 5.58 (Fuzzy satisfaction of an FD to degree A) An FD X(A) -7 Y is fuzzily
satisfied in a fuzzy relation rover R to the degree A E (0, 1], denoted by rCA) ~ X -7 Y,
ifVt" t2 E r, (1k=(t,[X], t2[X]) =? 1k={tdY], t2[Yj)) 2: A. •

We note that if A = 1, i.e. the degree offuzzy satisfaction is one, then Definition 5.58 reduces
to Definition 5.57.

An interesting inference rule which can be shown to be sound with respect to fuzzy
satisfaction of a set F of FDs over R, according to Definition 5.58, is given by

ifFI-X(A) -7 YthenFI-X(A') -7 Y,whereA'::: A.

It was shown in [CKV94] that Armstrong's axiom system, suitably modified to take the
degree of fuzzy satisfaction into account, together with the above inference rule, is sound
and complete for FDs with respect to fuzzy implication according to Definition 5.58 of fuzzy
satisfaction.

5.7. The Fuuy Sets Approach 341

As a simple example illustrating Definition 5.58, consider an FD SS# -+ AGE, meaning
that a person's social security number uniquely determines their age. In the context of fuzzy
relations the FD SS#fuz (0.9) -+ AGEfuz means that for any two tuples either the degree of
proximity (or closeness) between the AGEfuz-values of the tuples is greater than the degree of
proximity between the SS#fuz-values of the tuples, or that the degree of proximity between the
AGEJuz-values of the tuples is greater than or equal to 0.9. So, for example, let r = {fl, t2, t3}
be the fuzzy relation shown in Table 5.53, where tl, t2 and t3 are the first, second and third
tuples, respectively, in r. Also assume that tL=(1234, 1234) = 1.0, tL={nearly-30, 27-29) = 0.9
and tL=(nearly-30, 26-32) = 0.8. Then {fl, t2}(O.9) ~ SS#fuz -+ AGEfuz but (tl, t3}(0.9) F,t
SS#Juz -+ AGEJuz. This is due to the fact that the AGEfuz-values of the first two tuples are
close enough, i.e. at least 0.9, but the AGEfuz-values of the first and third tuples are not close
enough, i.e. less than 0.9.

Table 5.53 A fuuy relation

SS#fuz AGEfuz

1234 nearly-3D
1234 27-29
1234 26-32

In the second alternative semantics two thresholds are taken into account, so that a
constraint such as if any two employees have a similar age then these employees have a
similar salary can be expressed [CV94b).

Defmition 5.59 (Fuzzy satisfaction of an FD in a fuzzy relation with thresholds (a, f3» An
FD X(a, f3) -+ Y is fuzzily satisfied in a fuzzy relation rover R, with thresholds a, f3 E (0, 1],
denoted by rea, f3) ~ X -+ Y, ifVtl. t2 E r, whenever tL=(t1 [X), t2 [Xl) ~ a then it is also true
that tL=(tdYl, t2 [Yl) ~ f3. •

An interesting inference rule which can be shown to be sound with respect to fuzzy
satisfaction ofFDs, according to Definition 5.59, is given by

if F f- X(a, f3) -+ Y then F I-- X(a', f3') -+ Y, where a' ~ a and f3' :::: f3.

It was shown in [CV94b) that Armstrong's axiom system, suitably modified to take into
account the thresholds, together with the above inference rule, is sound and complete for FDs
with respect to fuzzy implication according to Definition 5.59 of fuzzy satisfaction.

The following example illustrates Definition 5.59. Let r be the fuzzy relation shown in
Table 5.56 over a schema with fuzzy attributes GRADEJuz and SALAR Y Juz. Also, suppose that
the proximity relation over GRADEfuz-values is given in Table 5.54 and the proximity relation
over SALARyfuz-values is given in Table 5.55. Next let GRADEfuz(a, f3) -+ SALARyfuz

be an FD meaning that employees with similar grades receive similar salaries. The reader
can verify that, for instance, r(0.3, 0.4) ~ GRADEfuz -+ SALARyfuz holds according to
Definition 5.59, r ~ GRADEfuz -+ SALARYJuz is violated according to Definition 5.57, and
finally r(0.6) ~ GRADEJuz -+ SALARyfuz is violated according to Definition 5.58.

A discussion of the different semantics of fuzzy satisfaction ofFDs can be found in [BDP94).

342 Chapter 5. Incomplete Information in the Relational Data Model

Table 5.54 The proximity relation over GRADEfuz

J.L= analyst programmer manager
analyst 1.0 0.8 0.6

programmer 0.8 1.0 0.3
manager 0.6 0.3 1.0

Table 5.55 The proximity relation over SALAR Y Juz

J.L= medium 28 high
medium 1.0 0.7 0.4

28 0.7 1.0 0.5
high 0.4 0.5 1.0

Table 5.56 A fuzzy relation

GRADEJuz SALARyJuz

programmer medium
analyst 28

manager high

To conclude this section we show how the notion of an inclusion dependency can be recast
in the context offuzzy relations. We first define a fuzzy database over R = {R I , R2, ... , Rn}
in the obvious manner, namely as a collection d of fuzzy relations, {rl, r2 , ... , rn}, such that
Vi E {I, 2, ... , n}, ri is a fuzzy relation over Ri. Intuitively, an IND RdXI ~ R2[YI is fuzzily
satisfied in a fuzzy database, say d, with threshold a E (0, II, if for every tuple, say tJ, in the
fuzzy relation rl over RI there exists a tuple, say t2, in the fuzzy relation r2 over R2 such that
the proximity between tl and t2 is greater than a and the membership grade of tl is less than
or equal to the membership grade of t2'

Definition 5.60 (Fuzzy satisfaction of an IND) An IND RI [XI ~ R2[YI is fuzzily satisfied in
a fuzzy database dover R with threshold a E (0,1)' denoted by d(a) ~ RdXI ~ R2[Y)' if
Vtl E rl, 3t2 E r2, such that J.L=(tdX), t2 [Y)) :::: a and ILrl (tl) :::: ILr2 (t2)' •

We note that if d is a complete non-fuzzy database, where the proximity relation between
domain values is just the standard equality relation and a = 1.0, then the definition of fuzzy
satisfaction of an IND coincides with the standard notion of IND satisfaction. Thus fuzzy
satisfaction of an IND is faithful to standard satisfaction of an IND. Finally, referential integrity
in the context of fuzzy relations can be defined in the same way as in Section 5.5 for incomplete
relations by using our definition of a fuzzy IND.

We close this section by remarking that the topic of fuzzy relations can be extended to deal
with fuzzy normal forms corresponding to the normal forms defined for complete relations
in Chapter 4. For further details see [SMF92, CKV961.

5.8 The Rough Sets Approach

An approach related to that of fuzzy sets is that of rough sets [Paw821, which addresses the
imprecision and ambiguity present in a database rather than addressing vagueness as fuzzy
sets do.

5.8. The Rough Sets Approach 343

Definition 5.61 (Rough relation) Let r be a complete relation over a relation schema Rand
R be an equivalence relation in r. The ordered pair (r, R) is called an approximation space.

Let [t17~. , where t E r (or simply [tj whenever R is understood from context), denote the
equivalence class of t with respect to R. The equivalence classes of r with respect to Rare
called its elementary sets and any finite union of elementary sets is called a definable set (or a
composed set).

The lower approximation of a set of tuples 5 ~ r with respect to (r, R), denoted by R(s) , is
given by

R(s) = {t I t E rand [tl ~ s}.

The upper approximation of a set of tuples 5 ~ r with respect to (r, R), denoted by R(s), is
given by

R(s) = {t I t E rand [tj n 5 =1= el}.

The boundary of a set of tuples 5 ~ r with respect to (r, R), denoted by BNDR(S), is the set
of tuples in R(s) - R(s) .

A set of tuples 5 ~ r is said to be a rough relation with respect to the approximation space
(r, R) if its lower approximation is different from its upper approximation (i.e. if its lower
approximation is properly contained in its upper approximation) .

A set of tuples 5 is said to be a definable relation (or a crisp relation) with respect to the
approximation space (r, R) if its lower approximation is equal to its upper approximation .

•
As an example, let r be the complete relation shown in Table 5.57 having the attributes

PATIENT _NO, DISEASE~O and SYMPTOM_NOS, with their obvious meaning. Let R denote
the equivalence relation of patients having the same disease, i.e. two tuples are in the same
equivalence class if and only if their DISEASE_NO-value is the same. Now, let 5 consist of the
first three tuples, i.e. the patients who have symptom 52. Then R(s) consists of the first two
tuples, while R(s) = r. Thus 5 is a rough relation with respect to the approximation space (r,
R), since the set of patients having symptom 52 cannot be precisely characterised according
to the equivalence classes of diseases. If on the other hand, we take 5 to be the first two
tuples, i.e. the tuples representing patients who have symptom 5" then 5 is a definable relation
with respect to the approximation space (r, R), since in this case 5 precisely characterises
the patients having disease d!. From this example we see that rough sets are very useful in
classifying objects (or tuples) into indiscernibility classes.

Table 5.57 A relation recording diseases and their symptoms

PATIENLNO DISEASE~O SYMPTOM_NOS

PI dl {51 , 52}

P2 dl {51 , 52}

P3 d2 {53 , 52}

P4 d2 {53 , 54}

An interesting method of modelling rough relations via the fuzzy membership function of
a fuzzy relation was presented in [BP94j; this extends their work on rough relations presented
in [BPB95j .

344 Chapter 5. Incomplete Information in the Relational Data Model

Definition 5.62 (Fuzzy rough relation) A relation rover R is a fuzzy rough relation with
respect to the approximation space (r, R) and a subset of its tuples s S; r, if it is a fuzzy
relation whose membership function J-I..r is given by

1) J-I..r(t) = 1, if t E R(s),

2) J-I..r(t) = 0, if t E r - R(s), and

3) 0 < J-I..r(t) < 1, if t E BNDR,(s). •
The tuples in the lower ap,E!oximation of s are considered to be certain tuples, the tuples

in the boundary of s (i.e. in R(s) - R(s» are considered to be possible tuples whose fuzzy
membership value is between zero and one and the set of tuples not in the upper approximation
of s are tuples which are not even possible. Under the above interpretation of rough relations,
we can use the fuzzy relational algebra of the previous section in order to manipulate fuzzy
rough relations.

We next define the rough satisfaction of an FD in a complete relation IZia91]. Intuitively,
given a relation rover R and an FD X -+ Y over R, the degree of rough satisfaction measures the
degree of functionality of the FD. In the context of rough satisfaction of an FD, the attributes
X are called the condition attributes and the attributes Yare called the decision attributes.

Definition 5.63 (Rough satisfaction of an FD to degree).,) The X-partition of a complete
relation rover R, where X S; schema(R), is a partition of r, denoted by Ir, X], such that
tJ, t2 E r are in the same element in Ir, X] if and only if tJ IX] = t2IX]. In addition, we let
RIX](s) be the lower approximation of a set of tuples s S; r with respect to the equivalence
relation induced by Ir, Xl on r.

The positive region of the Y -partition of r with respect to the X-partition of r, denoted by
POSr(X, Y) (or simply POS(X, Y) whenever r is understood form context), is given by

POS(X, Y) = U RIX](y)
yE[r.Y)

U {x I x E Ir, Xl and x S; y}.
yE[r,Y)

The degree to which a set of attributes Y depends on a set of attributes X in a complete
relation r, denoted by K(r, X -+ Y), is given by

IPOS(X, Y)I
K(r, X -+ Y) = .

Irl

An FD X()") -+ Y is roughly satisfied in a complete relation rover R to degree)., E (0,1],
denoted by r().,) p:; X -+ Y, if K(r, X -+ Y) ::::).,. •

Thus K(r, X -+ Y) = 1 if and only if X(l) -+ Y is roughly satisfied in r to degree 1, i.e. X
functionally determines Y. We note that X(l) -+ Y is roughly satisfied in r if and only if X -+

Y is satisfied in r, i.e. r F= X -+ Y.

5.9. The Default Values Approach 345

As an example, let r be the complete (nested) relation shown in Table 5.57 and denote
the four tuples thereof in order of appearance by tl , t2 , t3 and t4 ' The reader can verify
that r(l} ~ SYMPTOM_NOS --+ DISEASE_NO holds. Now, the DISEASE_NO-partition
of r is [r, DISEASE_NO] = {{tl , t2}, {t3 , t4}} and the SYMPTOM_NOS-partition of r is
[r , SYMPTOM.-NOS] = {{tl , t2}, {t3}, {t4}}. Thus, POS(DISEASE_NO, SYMPTOM_NOS} =
{t. , t2} and K (r, DISEASE_NO --+ SYMPTOM_NOS) = 0.5. It follows that the highest degree
of rough satisfaction of the FD DISEASE_NO --+ SYMPTOM_NOS is 0.5, i.e. r(0 .5} ~
DISEASE-NO --+ SYMPTOM_NOS is the maximal degree for which rough satisfaction holds.

5.9 The Default Values Approach

An approach to missing information that has been put forward by Date in [Dat92a] is that of
using default values instead of null values as place holders for missing information. As an
example, suppose that John's salary is unknown, then instead of representing John's salary
by unk we represent his salary by a default value, say "minus one". Obviously, "minus one"
cannot be a real salary and thus we can interpret "minus one" as an unknown salary. Another
common example is that of filling a form. Suppose that we have an application form and we
are required to answer whether we are married or not. A default value of "N/A" or a "dash"
is normally acceptable as an indication that the question is not applicable in our case. This
approach of using default values instead of null values seems to correspond more closely to
the way incomplete information is treated in the real world. (In the rest of this section we will
only consider default values representing information which is missing but unknown.) The
claimed advantages of the default values approach as opposed to the null values approach are:
it is simpler to formalise, easier to understand and has a closer correspondence to the real
world. Furthermore, we do not not need to depart from the classical two-valued logic to the
more complex three-valued logic.

As an example consider the relation over STUDENT, shown in Table 5.58. The value "???",
which is a member of the domains DOM(COURSE} and DOM(DEPT}, has been distinguished
as a default value representing the fact that a course, or department, is unknown. In addition,
the value "-1", which is a member of the domain DOM(GRANT}, has been distinguished
as a default value indicating that the value of a grant is unknown. Thus the default values
approach, instead of extending the underlying domain of an attribute, distinguishes a value in
the domain as a default value. Note that the tuple <???, m, Computing, 3750> is meaningful
and represents the fact that students who are not recorded in the relation are assumed to be
members of the Computing department and to receive a grant of 3750 pounds.

Table 5.58 A student relation with default values

SNAME COURSE DEPT GRANT
Iris Databases Computing -1

Reuven Theory m 3500
Hillary m Philosophy 4000
Rachel m m -1

Eli Databases Computing 4200
m m Computing 3750

346 Chapter 5. Incomplete Information in the Relational Data Model

It follows that, due to the fact that null values are not allowed in the default values approach,
the entity integrity rule can simply be dropped. For example, in the above relation if SNAME
is the primary key of STUDENT then the default value "???" is a primary key value as are
the values "Iris", "Reuven", "Hillary", "Rachel" and "Eli". Thus there can only be one tuple
in any relation over STUDENT whose SNAME value is "???". Moreover, since null values are
not allowed the referential integrity rule can be simplified by omitting any mention of nulls.
Hence, a foreign key value cannot be a null value and must refer to an existing primary key
value in the target relation for which it is a foreign key. Furthermore, the relational algebra
and integrity constraints remain the same as they were defined in Chapter 3 over relations
without null values. It is worth mentioning that when defining domain constraints one has to
explicitly take default values into account. For example, if we specify the domain constraint
that the value of a grant must range between 3000-5000 pounds, then we would take that to
mean that either the value of a grant is -1 (if its true value is unknown) or its value ranges
between 3000-5000 (if its value is known).

Although the default values approach as informally explained above is indeed simpler than
the null values approach, it has several drawbacks pointed out by Codd in [Cod90], which we
now discuss. The main problem with the default values approach is that it is semantically
weaker than the null values approach, since it does not take into account the information
content of a relation. Let r be the relation over STUDENT shown in Table 5.58 and consider
the tuple <Rachel, m, m, -1>. The intention is that this tuple has the same meaning as
the tuple <Rachel, unk, unk, unk>, which uses the null value unk. Now, let QI (r) be the
query O'FI (r), where FI = COURSE = 'Databases', and let Q2(r) be the query O'F2 (r), where
F2 = COURSE ::j:. 'Databases'. A user posing these queries will notice that <Rachel, m, m,
-1> is not in QI (r) but <Rachel, ???, m, -1> is in Q2(r) . How is the user to interpret these
answers when using default values? A sensible interpretation of these answers is that Rachel
is definitely not doing the Databases course. This interpretation would be correct if we did
not have any missing information but due to the fact that we do not know if Rachel is doing
the Databases course this interpretation is incorrect. Now, suppose that we were using null
values and extended selection, then in such a case <Rachel, unk, unk, unk> is not either
in QI (r) or in Q2(r). The interpretation of these answers is that Rachel mayor may not be
doing the Databases course, i.e. we do not know whether or not she is doing that course. This
interpretation is intuitively correct, since a tuple is in the result of an extended query only
if the tuple is definitely true. Thus the null values approach is semantically richer than the
default values approach precisely for the reason that it formalises the information content of a
relation in terms of the partial order, less informative than, leading to the definition of the set
of possible worlds relative to a relation. Furthermore, the use of three-valued logic in the null
values approach allows us to differentiate between facts which are true, facts which are false
and facts which are possible. For example, we can distinguish between the fact that Rachel is
not doing the Databases course and the fact that Rachel mayor may not be doing that course.
Another important point to make is that, unlike the default values approach, the null values
approach extends naturally to the semantically richer or-sets and fuzzy sets approaches.

The absence of powerful enough semantics to handle incomplete information can have
dire consequences if the handling of incomplete information is relegated to the application
programs, since this may lead to an inconsistent and unsystematic treatment of incomplete
information. Our conclusion is that the default values approach does not deal comprehensively
with the problem of missing and incomplete information; it rather sidesteps the main issues

5.10. Updating Incomplete Relations 347

in favour of a simple and realistic solution. As the example above has shown this absence of
semantics may lead users to misinterpret the meaning of default values in relations.

The default values approach to incomplete information is not to be confused with default
logic [Rei80, Bes89j, whose aim is to formalise the common sense reasoning: "in the absence
of any information to the contrary assume that ... ". For example, if we are given the fact
that Tweety is a bird then we can deduce by default reasoning that Tweety can fly unless
we have some evidence to the contrary such as the fact that Tweety is actually a penguin.
Default reasoning deals nicely with incomplete information, since it relies on the absence of
information in order to make deductions. We note that the CW A, discussed in Section 5.2, is
a special case of default reasoning where we deduce that a fact does not hold if it is not stored
in the database. Default logic relies upon the fact that the real world is far too complex to be
represented fully and thus at any given moment in time we can only represent an incomplete
fragment of the real world. We rely on the fact that many aspects of the real world, which are
not represented, can be inferred by common sense reasoning. With respect to the CW A we
rely upon the assumption that if data is not represented then it must be false. It is important to
note that default reasoning is tentative in the sense that when our information about the real
world increases then conclusions made by default reasoning may be withdrawn. For example,
if we add to the relation, shown in Table 5.3, the fact that Hillary is doing a database course in
the Computing department, then under the CW A we withdraw our previous conclusion that
Hillary is not doing a database course.

Default logic can assist us in dealing with incomplete information in relational databases
as the following example shows. Suppose that we have the knowledge that students normally
receive grants and that the sum they normally receive is 3750 pounds. Thus, with respect to
the relation, say r, shown in Table 5.58, we can use default logic to deduce that Iris and Rachel
each receive a grant of 3750 pounds, since we do not have any evidence to the contrary. On
the other hand, we cannot use this default rule for the other students recorded in r, since
their grant values are already known. As another example suppose that it is normally the case
that students are not married; thus in the absence of any other information for a particular
student, say Rachel, we can record in the database that Rachel is unmarried. In general,
default reasoning allows us to deduce values for attributes that would otherwise be missing
or incomplete. This is not always possible or desirable, since the default values are treated
by the database system in the same manner as other domain values and thus may lead to a
loss of semantics as in Date's default values approach. Thus default logic does not replace
the null values approach but rather complements it by allowing us to fill in some gaps in our
information whenever this is possible.

S.10 Updating Incomplete Relations

In this section we deal with the problem of updating a relational database in the presence of
incomplete information. We will assume the null values approach to incomplete information
throughout this section with unk being the only available type of null value. Although this
approach is less expressive than the or-sets or fuzzy sets approach, it will be sufficient to
highlight the main ideas concerning updating incomplete relations. In the formalism we

348 Chapter 5. Incomplete Information in the Relational Data Model

present for updating incomplete relations, we simplify matters by not taking into account any
integrity constraints.

We motivate our presentation of updating incomplete relations with several examples,
where r is the incomplete relation over STUDENT, shown in Table 5.8. Let our first update be
that of inserting the set of tuples 5 = «David, Logic, Philosophy>, <Iris, unk, unk>, <Eli,
unk, Economics>} into r obtaining the incomplete relation shown in Table 5.59. Thus the
updated relation is given by the extended query r ue 5. It follows that an insert operation is
realised via the extended union operator and is, therefore, by Theorem 5.5 both faithful and
tru th -preserving.

Table 5.59 The incomplete relation onable 5.8 after some insertions
SNAME COURSE DEPT

Iris Databases Computing
Reuven Theory unk
Hillary unk Philosophy
Rachel unk unk

Eli Databases Computing
David Logic Philosophy
Iris unk unk
Eli unk Economics

Now, let our second update be that of deleting the set of tuples 5 = «Iris, unk, Computing>,
<Reuven, Theory, unk>, <Eli, Databases, unk>} from r obtaining the incomplete relation
shown in Table 5.60. Thus the updated relation is given by the extended query r_e 5. Itfollows
that a delete operation is realised via the extended difference operator and is, therefore, by
Theorem 5.6 both faithful and truth-preserving.

Table 5.60 The incomplete relation onable 5.8 after some deletions
SNAME COURSE DEPT
Hillary unk Philosophy
Rachel unk unk

Now, let our third update be that of modifying the set of tuples 51 = «Reuven, Theory,
unk>, <Hillary, unk, Philosophy>, <Rachel, unk, unk>}, with 51 ~ r, to be the set of tuples
52 = «Reuven, Quantum, Physics>, <Hillary, Quantum, Physics>, <Rachel, Quantum,
Physics>}, obtaining the incomplete relation shown in Table 5.61. Thus the updated relation
is given by the extended algebra expression (r _e 51) ue 52. It follows that a modification
operation is realised via the extended difference and extended union operators and it can
therefore be shown that it is both faithful and truth-preserving on using Theorems 5.5 and
5.6.

In what follows we formalise our redefinition of update operations, which were originally
given in Subsection 3.2.4 of Chapter 3, in the context of incomplete relations. As was done
in Subsection 3.2.4 of Chapter 3, for simplicity we allow only conjunctions in conditions
rather than general Boolean expressions and, in addition, we only formalise updates on
single incomplete relations rather than on incomplete databases, which may contain several
incomplete relations.

5.10. Updating Incomplete Relations 349

Table 5.61 The incomplete relation ofT able 5.8 after some modifications

SNAME COURSE DEPT
Iris Databases Computing

Reuven Quantum Physics
Hillary Quantum Physics
Rachel Quantum Physics

Eli Databases Computing

The following definition differs from the corresponding one given in Subsection 3.2.4 of
Chapter 3 only in the replacement of"=" by "~". Let us briefly motivate this replacement by
a simple example. Suppose the user would like to modify the incomplete tuple <unk, unk,
Philosophy> over STUDENT to be the complete tuple < Hillary, Logic, Philosophy>. In this
case, due to the three-valued equality for nulls the user cannot uniquely select the desired
incomplete tuple for modification using true logical implication (assuming the relation in
question has more than one student recorded as studying in the Philosophy department).
Thus we could either allow maybe logical implication, which would select incomplete tuples,
whose truth-value evaluates to maybe, or we could opt for the simpler solution which is to use
information-wise equivalence instead of equality in the condition which realises the selection.
We claim that using information-wise equivalence is better in this case, since the user being
aware of the relation's incompleteness is specifically interested in the incomplete tuple < unk,
unk, Philosophy> rather than tuples such as < Hillary, Many-valued-logic, Philosophy> ,
which are maybe equal to <unk, unk, Philosophy> in three-valued logic.

Definition 5.64 (Extended condition) A simple extended condition over R is either an
expression of form A ~ a or an expression of the form --.(A ~ a}, where A E schema(R}
and a E EDOM(A}. An extended condition is a conjunction CI 1\ C2 1\ ... 1\ Cn of simple
extended conditions Ci , i E {I, 2, . . . , n} . A positive extended condition over R is an extended
condition of the form Al ~ al 1\ A2 ~ a2 1\ ... 1\ Am ~ am, where {AI , A2, .. . ,Am} S;
schema(R}. A complete extended condition over R is a positive extended condition over R,
with {AI , A2, . . . , Am} = schema(R}.

Let r be an incomplete relation over R, let t be an incomplete tuple in r and in addition let
C = CI 1\ C2 1\ . . . 1\ Cn be an extended condition over R. Then t satisfies C, written t F c, is
defined recursively, as follows:

1) t F A ~ a, ift[A) ~ a is true.

2} t F --'(A ~ a}, if --.(t[A) ~ a} is true.

3} t F C, if'v'i E {l, 2, . .. , n}, t F Ci · •
The following definition differs from the corresponding one given in Subsection 3.2.4 of

Chapter 3 only by the replacement of the standard relational algebra operators with their
extended counterparts.

Definition 5.65 (Extended update) Let r be an incomplete relation over a relation schema R,
with schema(R} = {AI , A2 • . . . ,An}. An extended update over R is either an extended insertion
over R, or an extended deletion over R or an extended modification over R. (In the following we
omit to qualify conditions and updates as being "extended" whenever no ambiguity arises.)

350 Chapter 5. Incomplete Information in the Relational Data Model

An insertion over R is an expression of the form inserte(C), where C is a complete condition
over R. The effect of an insertion inserte(C) over R on r is defined by

[inserte (C)] (r) = r Ue {t I t 1= C}.

A deletion over R is an expression of the form deletee(C), where C is a condition over R.
The effect of a deletion deletee(C) over R on r is defined by

[deletee(C)](r) = r _e {t I t E rand t 1= C}.

LetX= {A" A2, ... ,Am} and C =A, ~ ai/\A2 ~ a2/\ . . . /\Am ~ am bea positive condition
over R. Then the modification of an incomplete tuple t over R with respect to C, denoted by
[modifl(C)](t), is defined by

[modifye (C)] (t) = u, where u is an incomplete tuple over R such that VAi E X, u[A;] ~ ai

and VAi E schema(R) - X, u[A;] ~ t[A;].

A modification over R is an expression of the form modifl(C,; C2), where C, is a condition
over Rand C2 is a positive condition over R. The effect of a modification modifl (C,; C2) over
R on r is defined by

[modifl(c,; C2)](r) = (r_e{t I t E randt 1= Cd) ue ([modifye(C2)](t) I t E randt 1= Cd .

•
We note that the notion of a transaction defined in Subsection 3.2.4 of Chapter 3 can be

extended in a straightforward way to be a finite sequence of extended updates. For brevity we
do not discuss transactions in the context of incomplete information. We now reformulate
the example updates given above in terms of the operators we have just defined, where r is the
incomplete relation over STUDENT, shown in Table 5.8.

With respect to insertion, let C, = SNAME ~ David /\ COURSE ~ Logic /\ DEPT
~ Philosophy, let C2 = SNAME ~ Iris /\ COURSE ~ unk /\ DEPT ~ unk, and let
C3 = SNAME ~ Eli /\ COURSE ~ unk /\ DEPT ~ Economics, be three complete
conditions over STUDENT. The reader can verify that the effect of the extended transaction,
[inserte(Cd, inserte(C2), inserte(C3)], on r is the incomplete relation shown in Table 5.59.

With respect to deletion, let C, = COURSE ~ Databases /\ DEPT ~ Computing, and let
C2 = SNAME ~ Reuven. The reader can verify that the effect of the extended transaction,
[deletee(C,), deletee(C2)], on r is the incomplete relation shown in Table 5.60.

With respect to modification, let C, = --.(DEPT ~ Computing), and let C2 = COURSE ~
Quantum /\ DEPT ~ Physics. The reader can verify that the effect of the extended transaction,
[modifye(C,; C2)], on r is the incomplete relation shown in Table 5.61.

We leave the formal proof of the following theorem to the reader.

Theorem 5.29 The extended update operators are all faithful and truth-preserving. 0

We complete this section by briefly making a comment on the expressiveness of our update
operators. The main problem with incomplete relations is theirinabilityto describe disjunctive

5.11. Discussion 351

information. Or-sets improve upon this situation, since they allow us to express disjunctions
of the form < Hillary, {Science, Logic}, Philosophy> meaning that Hillary is taking either
Science or Logic in the Philosophy department. Thus by allowing or-sets we could introduce
into conditions disjunctions of the form,

(COURSE = Science V COURSE = Logic),

and maintain meaningful update operations for these conditions. Nonetheless, even when
taking the or-sets approach we do not get the full expressive power of disjunctions as the
following example shows. Suppose that we have a disjunction of the form, < Hillary, Logic,
Philosophy> v < Hillary, Set-theory, Maths> , meaning that either Hillary is taking Logic in the
Philosophy department or she is taking Set-theory in the Maths department. As the reader can
verify such disjunctive tuples cannot be represented by or-sets. Therefore, allowing disjunctive
tuples in relations would be a natural extension of the or-sets approach. For example, the above
disjunctive tuple could be represented as the set, {< Hillary, Logic, Philosophy>, < Hillary,
Set-theory, Maths> }.

Therefore, if we extend the or-sets approach to allow disjunctive tuples we could introduce
into conditions disjunctions of the form,

((COURSE = Logic /\ DEPT = Philosophy) v
(COURSE = Set-theory /\ DEPT = Maths)),

thereby allowing conditions to be general Boolean expressions and still maintaining
meaningful update operations for these conditions.

5.11 Discussion

Incomplete information is one of the most important extensions to the basic relational
model due to the growing demand for the correct handling of such information in real-world
applications. Most current database systems do not deal with incomplete information in a
consistent manner with regard to query processing, integrity constraint maintenance, update
transactions and other DBMS facilities. In this chapter we have outlined a consistent theory
dealing with either incomplete relations, or or-relations or fuzzy relations. If we include a
null value such as unk in the database domains then we can model incomplete relations; on
the other hand, if we allow values of tuples to be or-sets, i.e. finite disjunctions of domain
values, then we can model or-relations. Finally, if we allow attributes and/or tuples to be
fuzzy then we can model fuzzy relations. The first of these - incomplete relations - is the
easiest route for a database system to manage incompleteness. Although or-relations are
more expressive than incomplete relations this comes at a price, since we are faced with the
intractability of both query processing and solving the consistency checking problem. Thus
if we require general efficiency, only a judicious choice of subclasses of or-relations having
polynomial-time querying and consistency checking can be catered for by the database system
[IVV95, VN95J. The other option is for the database system to cater for fuzzy relations. In this
case we gain expressiveness over incomplete relations, and efficiency of query processing and
consistency maintenance because the fuzzy relations approach does not rely upon the possible

352 Chapter 5. Incomplete Information in the Relational Data Model

worlds semantics; but there is the added complexity in the representation and manipulation
of fuzzy sets to take into account. The trade-off between higher expressiveness and greater
efficiency is a problem that all database system implementers face!

A further extension of the three-valued logic approach to modelling incomplete relations
is to use a four-valued logic by adding both the null values unk and dne to the database
domains [Cod90). The null value unk represents missing but applicable information, and
correspondingly the null value dne represents missing but inapplicable information. The
obvious advantage is that we enhance the expressiveness of our modelling of incomplete
information but it may be even more onerous on users to understand the four-valued truth
tables than to understand the three-valued ones. (See [LL86) for a comprehensive argument
in favour of supporting the dne null value.)

In this context Belnap's work [Bel77a, Bel77b) is interesting; therein a four-valued logic
is proposed with the truth-values: true, false, none (neither true nor false) and both (both
true and false). Belnap considers the tuples (or facts) stored in a database as information
that the computer has been told, and thus when a fact is inserted into the database its logical
interpretation is that the computer has been told that this fact is true. The computer can also
be told that a fact is false, none or both. Belnap considers truth tables for his four-valued logic,
which in fact differ from Codd's truth tables. The truth tables for a four-valued logic depend
on their semantics and there is no universal agreement for their specification [Res69, BB92).
Belnap also considers entailment between logical sentences, where a logical sentence S, entails
a logical sentence S2 if the truth-value of S, with respect to the database is less than or equal
to the truth-value of S2 with respect to the same database (cf. Definitions 5.57 and 5.58).

If we relax our assumption that only consistent relations are stored in the database, then a
four-valued logic can be useful in dealing with inconsistent relations. Logics which deal with
inconsistent information are called paraconsistent; Belnap's four-valued logic, mentioned
above, is an example of a paraconsistent logic where the truth-value "both" represents
inconsistent information. A paraconsistent model for relational databases is presented in
[BS95). In a paraconsistent relation rover R there are two kinds of tuples: those believed to
be true, denoted by r+, and those believed to be false, denoted by r- , such that r = r+ U r-.
If r+ n r- = 0 then r is said to be consistent otherwise it is inconsistent. If r contains the set
of all possible tuples over R (i.e. the Cartesian product of all the attribute domains, assuming
attribute domains are finite) then r is said to be complete otherwise r is incomplete. If r is both
consistent and complete then it is said to be total. Note that under the CWA we can interpret
relations as being total. A relational algebra for paraconsistent relations is defined in [BS95).

Other data dependencies apart from FDs and INDs have been considered in the context of
incomplete relations. In particular multivalued dependencies are considered in [Lie79, Lie82)
and join dependencies were considered in [LL92). The more general classes of tuple generating
and equality generating data dependencies are considered in [Gra91).

We conclude with a brief discussion of probabilistic relational databases. A probabilistic
relation can be defined in the same way as an or-relation (see Section 5.6) with the additional
requirement that each value in a nonempty or-set be attached a weight; we call such an or-set
a probabilistic or-set. Thus each value in an or-set is a pair v/w, where v is a domain element
and w is a natural number. Given a probabilistic or-set s = {vt!w" V2/W2, ... , Vk/Wk}, with

5.11. Discussion 353

k::: 1, the probability of Vj, 1 ::: j ::: k, denoted by PI Vj I s1, is given by

W'
Plvjls1= k' ,

Li=IWi

i.e. the proportion of Wj with respect to the sum of the w;'s. Under this interpretation we
can view an or-set as a set of equally probable values from a uniform distribution, i.e. such
that their weights are equal. The interpretation of an empty or-set is that for any value, v,
PI v I 01 = 1, i.e. with probability one v is inconsistent given the empty or-set.

Thus a probabilistic relation is a finite set of tuples whose attribute values are probabilistic
or-sets. As an example consider the probabilistic relation, say r, over R, with schema{R) =
{SHARE, PRICE}, recording prices of shares obtained from different sources, which is shown
in Table 5.62; in r we abbreviate a probabilistic or-set of the form {vii} simply by v, since
in this case the probability that the true value is v is one. In this example, the probability of
share Sl having price PI is 1/2, having price P2 is 1/3, and having price P3 is 1/6. In addition,
the probability of share S2 having price PI is 3/4, and having price P4 is 1/4. Thus tuple-wise,
the probabilities are conditional; for example, given the first tuple the probability of price PI
is 1/2 and given the second tuple the probability of price PI is 3/4. Assuming that SHARE is a
COMPLETE-attribute, i.e. its probabilistic or-sets are all singletons such that its single value
is true with probability one, then SHARE is a key for R which is weakly (probabilistically)
satisfied in r with probability one, i.e. this key is satisfied in all possible worlds.

Table 5.62 A probabilistic relation

SHARE PRICE
SI {P1/3, P2/2, P311 }
S2 {P1/3 , P4/1}

The possible worlds semantics of or-sets carries over in a straightforward manner to
probabilistic relations, assuming stochastic independence between attribute values and tuples
in such a relation. As an example consider the probabilistic relation, say r', over RI, with
schema{RI) = {MANAGER, DEPARTMENT}, recording the possible managers of departments;
r' is shown in Table 5.63. The probability that Jack is the manager of the Toy department is
2/3 x 1/3 = 2/9, and the probability that Jack is the manager of the Carpet department is
2/3 x 2/3 = 4/9. Similarly, the probability that Joe is the manager of the Toy department
is 1/3 x 1/3 = 1/9, and the probability that Joe is the manager of the Carpet department
is 1/3 x 2/3 = 2/9. Furthermore, the probability that Jill is the manageress of the Toy
department is 2/ 9, and the probability that Jill is the manageress of the Carpet department
is 1/9. Similarly, the probability that Jane is the manageress of the Toy department is 4/9,
and the probability that Jane is the manageress of the Carpet department is 2/9. What is
the probability of a possible world that Jack is the manager of the Toy department and Jill
is the manageress of the Carpet department? The answer is: 2/9 x 1/9 = 2/81. What
is the overall probability that Jack is the manager of the Toy department? The answer is:
(2/9 x 2/9) + (2/9 x 1/9) + (2/9 x 4/9) + (2/9 x 2/9) = 2/9, which as expected agrees
with the above probability. What is the probability that Joe be a manager of the Carpet
department and either Jill or Jane be joint manageresses of the Carpet department. The
answer is: (2/9 x 1/9) + (2/9 x 2/9) = 2/27.

354 Chapter 5. Incomplete Information in the Relational Data Model

Table 5.63 Another probabilistic relation

MANAGER DEPARTMENT
{Jack/2, Joe/l} {Toy/I, Carpet/2}
{JilUI, Jane/2} {Toy/2, Carpet/l}

A relational algebra for probabilistic relations can be defined in a manner similar to that
of or-sets, with the provision that the probabilities of tuples in the resulting relations be
computed according to the stochastic independence assumption. In addition, for selection
from a probabilistic relation, r, a threshold value, say a E (0, 1), can be specified so that
tuples appear in the result of a query only if their probability in r is greater than or equal to a.
Furthermore, weak (probabilistic) satisfaction ofFDs in probabilistic relations can be defined
as it was defined for or-relations. Weak probabilistic satisfaction can also be defined to a
degree A E (0,1)' so that a set F ofFDs is probabilistically satisfied in a probabilistic relation,
r, if there exists one possible world relative to r that satisfies F to a degree whose probability
is greater than or equal to A. Unfortunately, in general, the computational problems relating
to the or-sets approach carryover to the probabilistic approach; thus as for or-sets we may
need to restrict ourselves to polynomial-time subclasses.

Probabilistic methods can also be utilised for querying relations, which may be incomplete,
by viewing a relation as a sample whose distribution may also be unknown [Fuh90). In this
context, given a query, the query processor needs to estimate the probability that a tuple (or
an object) is a correct and relevant answer to the query. These probabilities can be used to
rank the answer tuples of a query and/or to eliminate tuples below a specified threshold. An
early data model which considers a statistical framework for using prior knowledge to query
incomplete relations was considered in [Won82).

For a comprehensive survey on the management of probabilistic data see [BGP92) and for an
investigation of probabilistic data dependencies see [CP87). Some fundamental connections
between probabilistic and relational concepts are exhibited in [Hil9I).

The fuzzy and probabilistic approaches to relational databases can be viewed as
complementary. Suppose that we have a tuple in a relational database recording some
information about a person named Mary. Then, stating that the probability that Mary is
young is 0.5 can be interpreted as saying that Mary is either young or not but she is equally
likely to be either. On the other hand, saying that Mary is fuzzily young, where young is a fuzzy
set, is taken to mean that the range of possible age values for Mary is restricted and the grade
of membership of20 (years) in this fuzzy set is much higher than the grade of membership of
40 (years) in the same fuzzy set. Consider another example; saying that a cup of tea is hot, with
probability 0.6, means that it is more likely to be hot than not, while saying that a cup of tea is
fuzzily hot means that it is definitely "hot" and higher temperatures have higher membership
grades in this fuzzy set. Probabilities can also be fuzzified by considering statements such
as "it is very likely that Mary is young" and "it is unlikely that the cup of tea is hot". The
probabilistic and fuzzy approaches can actually be reconciled if we interpret probabilities as
measures of belief.

For interesting discussions on probabilistic versus fuzzy reasoning see [Che86), advocating
the probabilistic side of the fence, and [Zad86), advocating the fuzzy side of the fence. A recent
survey on different representations and ways of reasoning with imperfect information can be
found in [Par96).

5.12. Exercises 355

5.12 Exercises

Exercise 5.1 Discuss the pros and cons of having marked and unmarked nulls in incomplete
relations, with reference to query processing.

Exercise 5.2 Suppose that a bank has a relational database which has, amongst other
relations, a master file relation containing all the customer accounts information, and a
details file relation containing all the recent transactions of customers such as deposit and
withdrawal information. A common activity of the bank's IT department is that of generating
a master-detail report, which collates for each master file tuple all the transactions that this
customer has carried out. Given that some of the customers may not have any transactions
recorded in the details file, how can the outer join be useful in generating the report [BuI8?]
(see Definition 5.21 in Section 5.4).

Exercise 5.3 We say that an extended operator, ope, is a possibility preserving extension of a
standard operator, op, iffor all incomplete relations r

U{s Is E POSS(ope(r»} = U{oP(s) Is E POSS(r)}.

Redefine all the extended operators of the extended algebra with the intention that they be
possibility preserving. If this is not possible for an extended operator justify your claim.

Exercise 5.4 Which of the following equivalences, which are true for complete relations, are
also true for incomplete relations:

1) a!p(r) ~ r _e a$(r).

2) a$l VF2 (r) ~ a$l (r) Ue a$2 (r).

3) a$1 1\P2 (r) ~ a$l (r) ne a$2 (r).

Exercise 5.5 Prove the soundness and completeness of Armstrong's axiom system with
respect to strong implication.

Exercise 5.6 Let F be a set of FDs over a relation schema R, and let NF(R) be a subset
of schema(R), constraining incomplete relations rover R not to have null values in the
projection of r onto NF(R). We define the following additional inference rule for FDs holding
in incomplete relations:

NFD3 Null-transitivity: if F I- X -+ Y, F I- Y -+ Z and Y - X ~ NF(R), then F I- X -+ Z.

Show that Lien's and Atzeni's axiom system together with NFD3 is sound and complete for
FDs with respect to weak implication in the presence of a null-free constraint NF(R) (AM841 .

Exercise 5.? Prove that a relation rover R satisfies a superkey family K if and only if, where
X = UiEI Kj, with Ki E K, for all relations s E POSS(r), the cardinality of the projection of s
onto X is equal to the cardinality of r, i.e. IJrx(s)I=lrl.

356 Chapter 5. Incomplete Information in the Relational Data Model

Exercise 5.8 Prove that the problem of deciding whether a relation rover R satisfies a
superkey family of cardinality less than or equal to some natural number k is NP-complete
[Tha89al.

Exercise 5.9 Let R be a relation schema such that schema(R) = XYZ, where X, Y and Z are
pairwise disjoint sets of attributes in schema(R) and let F be a set of FDs over R. Furthermore,
let r be an incomplete relation over R, rl = lTxy(r) and r2 = lTyz(r).

We say that r is connected, if r is reduced and for every tuple t E r, t is the outer join of
t[XY] and t[YZ]. Prove that the following two statements are equivalent [JS90]:

1) For any connected relation rover R that weakly satisfies F, r = rl txlr2.

2) Either the FD Y -+ X or the FD Y -+ Z, or both, are in pLien+.

Exercise 5.10 Consider incomplete relations which, apart from nonnull values, have
occurrences, only of the null value dne. Suppose we have a relation schema PERSON,
having three attributes, NAME, ADDRESS and SPOUSE~AME. Now, since a person may
not have a spouse, relations over PERSON may have dne in their SPOUSE column. Argue
whether it is a good design principle to replace the relation schema PERSON by two relation
schemas, one having attributes NAME and ADDRESS and the other having attributes NAME
and SPOUSE~AME [LL86].

Exercise 5.11 Prove that weak satisfaction of FDs in or-relations is not additive.

Exercise 5.12 Consider an or-relation r = {<a, {bl , b2} >} over R, with schema(R) = {A,
B}, and a relation s = {<bl , C>, <b2 , c>} over S, with schema(S) = {B, C}. If we naturally
join rand s, we would expect either <a, bl , c> or <a, b2, c> to be in the result, but not
both. Explain why neither of the above tuples is in the answer of the or-query, r !XI s. How
can this problem be alleviated by allowing or-tuples in or-relations, i.e. tuples of the form
<a, {<bl , C>, <b2 , c>}> representing a disjunction of the subtuples <bl , c> and <b2 , c>
[Imi89].

Exercise 5.13 Prove that if a set F of FDs over a relation schema R satisfies the intersection
property, then R is in 2NF with respect to F if and only if it is in 3NF with respect to F [LL99a].

Exercise 5.14 Recall that a relation schema R is in UKNF with respect to a set F of FDs over
R, ifits set of keys is a singleton (see Definition 4.14 from Subsection 4.4.3 in Chapter 4). Prove
that if R is in UKNF with respect to F and F is a monodependent set of FDs, then R is in 2NF
with respect to F if and only if R is in 3NF with respect to F if and only if R is in BCNF with
respect to F [LL99al.

Exercise 5.15 Prove that if all of the keys for a relation schema R with respect to a set F of
FDs over R are simple, i.e. they are singletons, and F is a monodependent set ofFDs, then R is
in 2NF with respect to F if and only if R is in 3NF with respect to F if and only if R is in BCNF
with respect to F [LL99al.

Exercise 5.16 Prove that if a set F ofFDs over a relation schema R satisfies the split-freeness
property, then all the keys for R with respect to F have the same cardinality [LL99al.

5.12. Exercises 357

Exercise 5.17 Explain the difference between the possibility measure of a value in a fuzzy set
and the probability of a value in a set with respect to some distribution function.

Exercise 5.18 Define and give an example of the notion of a key being fuzzily satisfied to
degree>.. [CKV96).

Exercise 5.19 Use your definition from the Exercise 5.18 to define and justify a variant of
BCNF, called)"-BCNF, for fuzzy relational databases [CKV96).

Exercise 5.20 Suggest, with a motivating example, how fuzzy sets may be used to enforce
security levels to classified information in a relational database [She93).

Exercise 5.21 Explain the difference between vagueness as represented by fuzzy sets and
imprecision as represented by rough sets.

Exercise 5.22 Let X -+ Y be an FD over a relation schema(R) and A E X. The attribute A is
said to be superfluous with respect to X -+ Y and a relation rover R, if POS(X, Y) = POS(X -
{A}, Y). The core of X is the set of attributes given by

CORE(X, Y) = (A E X I POS(X, Y) =1= POS(X - (A), Y»),

i.e. CORE(X) is the set of attributes the are not superfluous.

The set of attributes W ~ X is independent with respect to Y, if for every proper subset Z of
W, POS(Z, Y) =1= POS(X, Y). The set of attributes W ~ X is a reduct of X, if it is independent
with respect to Y and POS(W, Y) = POS(X, Y).

Prove that CORE(X) is the intersection of all the reducts of X [Zia91).

6. Computable Database Queries and the
Expressiveness of the Relational Algebra

One of the fundamental operations a database system needs to carry out is that of processing
queries. The relational algebra was defined in Section 3.2 of Chapter 3 as a yardstick for the
expressiveness of a query language for relational databases. The relational algebra on its own is
not intended to be used as a general purpose database programming language for developing
applications and as such does not provide the application programmer with iteration and
recursion facilities. Thus in the context of database application programming the question
that arises is: what are the possible queries that such a database language can and should be able
to compute? In this chapter we define and investigate a general notion of a computable query
in an attempt to answer the question we have just posed. There are essentially two parts to
our investigation. The first part involves a categorisation of several subclasses of computable
queries and the second part involves the presentation of a database programming language that
is complete with respect to computable queries and an investigation of the expressive power of
the relational algebra and how it can be made more expressive by adding to it iteration and/or
recursion facilities. Since the early 1980's it was realised that the relational algebra is not
expressive enough to carry out general database computations. The research into computable
queries has been instrumental in motivating the necessity to develop more expressive query
languages for relational databases and laying down the fundamental principles which provide
the foundations for such development.

6.1 What is a Computable Database Query?

As we have shown in Subsection 3.2.1 of Chapter 3 there are many useful queries that the
relational algebra cannot express such as computing the transitive closure of a relation and
counting the number of tuples in a relation. In fact, from a computational complexity point of
view the relational algebra is equivalent to the set of problems checkable in constant time on
a concurrent parallel random access machine [Imm89]. This computational complexity class
is very weak and is properly included in the deterministic logspace computational complexity
class [Imm81, Var82a, Imm87J. Thus it is natural to investigate extensions of the relational
algebra in order to enhance its computational expressiveness. In particular, our aim is to
formalise the notion of a computable query.

There are two fundamental differences between computable queries and Turing
computable mappings (also known as partially recursive functions). The first difference is

359

360 Chapter 6. Computable Database Queries and the Expressiveness of the Relational Algebra

that Turing-computable mappings are mappings from strings to strings (or alternatively, from
natural numbers to natural numbers) whilst computable queries are mappings from finite sets
of objects to finite sets of objects (d. [Gan80]). The second difference is that the objects of
computable queries are not strings or numbers but abstract objects (d. [Fri71]), in our case
records (d. [CM91]), which are defined as total mappings from a finite set of attributes to a
set of domain values.

We define the semantics of a computable query as a Turing-computable mapping together
with an encoding from finite sets of records (or simply sets) to strings. Consequently, we
can evaluate a computable query by encoding the input set into a string, then use this string
as an input to a given Turing-computable mapping, and finally decode the resulting output
string to obtain the output set, which yields the result of the computable query. This analysis
provides clarification of the notion of a computable query by dealing with the problem of
how a database language can be implemented on a standard Turing machine that does not
cater directly for mappings from sets to sets. Thus, intuitively, a database query language
is computationally query complete (or simply query complete) if it can express the set of all
computable queries.

Once the formal definition of a computable query is established in Section 6.2 we investigate
several important subclasses of computable queries in the following section, i.e. Section 6.3.
Thereafter in Section 6.4 we further our understanding of computable queries by looking
into the Turing-computable mappings that realise a given computable query. In Section 6.5
we define the notion of a database language being query complete, and present the database
query language, QL, from [CH80j. In Section 6.6 we present a fundamental characterisation
of the expressiveness of the relational algebra. Since the ability to express all the computable
queries may be more than is needed from a database query language, in Section 6.7 we describe
how the relational algebra can be made more expressive without making it query complete
by adding to it a looping mechanism. The motivation for such an extension of the relational
algebra is that it may be desirable to enhance the expressiveness of the relational algebra, say to
compute queries such as the transitive closure of a relation (see Subsection 3.2.1 in Chapter 3),
without making it query complete, since database users rarely require query complete database
languages.

6.2 Formalising Computable Database Queries

For the purpose of this chapter we will consider a slightly different model of a relational
database. Instead of viewing a database as a set of relations with each relation being a set of
tuples, we will view a database as being a set of records [CM91j.

We first recall from Definition 3.1 in Section 3.1 thatU is the countably infinite universe of
attributes and that V is the countably infinite underlying database domain.

Defmition 6.1 (A record and a database) Let X be a finite subset of the set of attributes U.
An X-record (or simply a record whenever X is understood from context) is a total mapping,
t, from X into V such that

VA E X, teA) E DOM(A).

6.2. Formalising Computable Database Queries 361

In the case when X = 0, we take t to be the empty mapping corresponding to the empty
record, which is denoted by <>. We denote an X-record, t, where X = {AI, A2,"" Am} and
Vi E {I, 2, ... , m}, t(i) = Vi, with Vi E DOM(Ai), by

In the following we will abbreviate (Ai: Vi) by Ai : Vi.

Let RECS denote the countably infinite set of all finite sets of records, where a set of records
may contain X-records and Y -records, where X # Y. Then a database of records (or simply a
database) is a member of RECS. •

The reader can verify that every relational database can be translated into a database of
records and vice versa; we can assume without loss of generality that whenever Ri and Rj are
two distinct relation schemas then schema(Ri} # schema(Rj). The notational advantage of
databases of records is that the schema of the database is encoded in the database itself and,
in addition, the database can be viewed as a single relation containing variable length records
[LL95aj.

Example 6.1 In Table 6.1 we show a database of records, say EMP. The translation of EMP
into a relational database d comprising three relations r" r2 and r3 is shown in Tables 6.2, 6.3
and 6.4. The semantics of EMP are: an employee has a NAME, earns a SALary, works in one
DEParTment and may have at most one SPouSe. In addition, a DEPT has one ManaGeR and
a MGR has one SECretary. •

Table 6.1 The database of records EMP

{<DEPT: Computing,
<DEPT: Computing,
<DEPT: Computing,
<DEPT: Maths,
<DEPT: Maths,
<DEPT: Computing,
<DEPT: Philosophy,

DEPT

NAME: Iris, SAL: 20>,
NAME: Reuven, SAL: 25,
NAME: Brian, SAL: 30,
NAME: Naomi, SAL: 22,
MGR : Naomi, SEC: Sophia>,
MGR: Brian, SEC: Rachel>,
MGR : Dan, SEC: Naomi>}

Table 6.3 The relation '2

NAME SAL SPS
Computing Reuven 25 Hanna
Computing Brian 30 Annette
Maths Naomi 22 Sophia

SPS : Hanna>,
SPS: Annette>,
SPS : Sophia>,

362 Chapter 6. Computable Database Queries and the Expressiveness of the Relational Algebra

Table 6.4 The relation 73

DEPT MGR SEC
Maths Naomi Sophia
Computing Brian Rachel
Philosophy Dan Naomi

We let CHAR be a finite and nonempty set of characters (the alphabet) and STR be the
countably infinite set of strings over CHAR. Furthermore, we let TC denote the set of all
Turing-computable mappings (also known as partially recursive functions) from STR to STR;
see Subsection 1.9.4 of Chapter I for the necessary background material from the theory
of computing. (Recall that we denote the composition of two mappings g and f by the
juxtaposition fg off and g.)

6.2.1 Encodings and Oecodings

Herein we investigate in depth the semantics of encodings, an area which has been hitherto
neglected in the database literature, and then formally define a computable query by making
use of encodings. Informally, an encoding of a set of records consists of two components: an
ordering function, which orders the records in the set as well as the values of each record in
the set, and an isomorphism, which maps the values in the records of the set to strings. A
decoding, which is the inverse of an encoding, also has two components: the inverse of the
said isomorphism and a mapping which forgets the order imposed by the aforesaid ordering
function used in the encoding. Since, in general, there may not be an algorithm to convert any
two encodings into each other, we restrict the set of en co dings to a set of mutually convertible
encodings, which is a set of encodings that are algorithmically convertible to a given standard
encoding [G}79] . It follows that our (restricted set of) encodings are "reasonable" in the
sense of [G}79]. An important class of encodings, called free encodings, whose isomorphism
maps record values to a corresponding natural string representation, is also defined. In a free
encoding the isomorphism has the same semantics as the identity mapping on record values.

Definition 6.2 (Encoding) An encoding is a mapping from RECS which maps each database
of records S E RECS to an (ordered) list of (ordered) lists of ordered pairs.

More specifically, an encoding Q is a mapping from RECS to a restricted subset of STR,
which is the composition e¢ of an ordering function, ¢, together with a namingfunction, e.

Given an input S the ordering function, ¢, converts each record in S into a list of ordered
pairs and then orders the resulting set of lists of pairs into a further list as follows:

1) ift = <AI: vl,A2: V2,·· .,Am: vm>, with t E S, then¢«AI : vl,A2 : V2, ... ,Am:
vm» = [(B I, WI), (B2, W2), ... , (Bm, wm)], such thatAj = Bj and Vj = Wj if and only if
(Aj: Vj) is mapped onto thejth ordered pair in ¢(t), where i,j E {I, 2, ... , m}; and

2) ifS= (tl, t2 ,"" tnJ ::!len¢(S) = [UI, u2, . .. , un], with¢(tj) = uj,ismappedasdescribed
in (1), if and only if tj is mapped onto the jth record in ¢(S), where i,j E {I, 2, . . . , n}.

The naming function, e, is a one-to-one mapping that converts the attributes and values of
records in S into strings in STR which do not contain any delimiters in the fixed set, {[,],(,),,} .
The mapping e is extended to ¢(S) as follows:

e([(AI , VI) , (A2, V2)," " (Am, vm))) = [(e(Ad , e(vd) , (e(A2) , e(V2», ... , (e(Am), e(vm))) .

6.2. Formalising Computable Database Queries 363

We denote the set of encodings of databases in RECS by ENC and denote the range of ENC
by LISTS; we call the elements of LISTS databases of lists. •

DefInition 6.3 (Decoding) A decoding is a mapping from LISTS to RECS which maps a
database of lists in LISTS onto a database of records in RECS.

More specifically, a decoding, Q-I, is a mapping from LISTS to RECS, which is the
composition ye- I of the inverse e- I of a naming function e together with the forgetful
function, y.

The forgetful function y maps a database oflists into a set of records simply by ignoring or
forgetting the ordering imposed by the list structure representing the records in the database.
Furthermore, the inverse mapping e- I converts all the strings in a database of lists to their
original attributes and values, thus yielding an ordered database of records.

We denote the set of decodings of databases of lists in LISTS by DEC. Given an encoding
Q = e¢ E ENC, Q-I = ye- I E DEC is called its decoding. •

We now define a special encoding, called a standard encoding, which allows us to formalise
the notion of what we call a reasonable encoding.

Defmition 6.4 (A standard encoding) Assume that X is an ordering function corresponding
to some fixed lexicographical ordering of the set U U '0 of attributes and domain values.
Furthermore, assume that L is a naming function that maps the attributes and values in U U '0
into some fixed values, which are considered to be their natural representation, that is, VA E

U, L(A) = "A" and "Iv E '0, L(V) = "v". The encoding LX is called a standard encoding. •

We need to restrict the above definition of encodings so that we consider only encodings
which can be algorithmically converted to a standard encoding.

DefInition 6.5 (Mutually convertible encodiogs) An encoding Q E ENC is said to be
mutually convertible to the encoding LX if both the compositions Q(LX)-I (observe that
(LX)-I = YL- I) and (LX)Q-I are Turing-computable mappings. •

From now on we will assume that all the encodings in ENC are mutually convertible to LX.
We leave the proof of the following proposition to the reader.

Proposition 6.1 All encodings QI, Q2 E ENC are mutually convertible. o

Thus all encodings are equivalent in the sense that they can all be algorithmically converted
into each other. It is also useful to insist that any encoding of a database of records can be
converted into another one in polynomial time in the size ofthe input database of records, but
such a restriction is unnecessary in our context. In practice, it is also important that encodings
be precise in the sense that naming functions, e, do not pad the input database of records S
with extraneous characters.

A free encoding is one which maps attributes and values to their natural representation.
Free encodings are useful, since users will easily be able to interpret their output.

Defmition 6.6 (Free encoding) An encoding Q = e¢ is said to be free if e = L. •

364 Chapter 6. Computable Database Queries and the Expressiveness of the Relational Algebra

Example 6.2 In Table 6.5 we show a free encoding of the database of records, EMP, shown
in Table 6.1 and in Table 6.6 we show an encoding of EMP which is not free. •

Table 6.S A free encoding of EMP

[[(DEPT, Computing), (NAME, Iris), (SAL,20»),
[(DEPT, Computing), (NAME, Reuven), (SAL,25), (SPS, Hanna»),
[(DEPT, Computing), (NAME, Brian), (SAL,30), (SPS, Annette»),
[(DEPT, Maths), (NAME, Naomi), (SAL,22), (SPS, Sophia)],
[(DEPT, Maths), (MGR, Naomi), (SEC, Sophia],
[(DEPT, Computing), (MGR, Brian), (SEC, Rachel)],
[(DEPT, Philosophy), (MGR,Dan), (SEC, Naomi»))

Table 6.6 An encoding of EMP which is not free

[[(l, COMPUTING), (2, IRIS), (3,20)],
[(l, COMPUTING), (2, REUVEN), (3,25), (4, HANNA»),
[(1, COMPUTING), (2, BRIAN), (3,30), (4, ANNETTE»),
[(l, MATHS), (2,NAOMI), (3,22), (4, SOPHIA»),
[(1, MATHS), (5,NAOMI), (6, SOPHIA)],
[(l, COMPUTING), (5, BRIAN), (6, RACHEL»),
[(1, PHILOSOPHY), (5, DAN), (6, NAOMI»))

6.2.2 Definition of Computable Database Queries

We begin this subsection with an example of some computable database queries.

Example 6.3 The following queries over the database of records EMP of Example 6.1, shown
in Table 6.1, are intuitively computable.

1) Project EMP onto the set of attributes {DEPT, NAME}.

2) Select from EMP the records whose DEPT -value is Computing.

3) Return the nth record in EMP (with respect to an encoding of EMP) if IEMPI :=:: n,
otherwise return { < > }.

4) Select from EMP the records, t, where t has n attributes.

5) Return {<>} if IEMPI :=:: n, otherwise return 0.

6) Select from EMP all records tj such that there exists another record tj in EMP such that
tj =1= tj and both tj and tj contain a common attribute value pair, say (A : v) . •

Informally, a computable database query l' is a mapping from RECS to RECS that can be
computed via a Turing-computable mapping 8 from LISTS to LISTS by encoding the input
database of records S to l' via an encoding Q and decoding the output database oflists from 8
via the decoding Q-l. Figure 6.1 shows the commutative diagram describing the semantics of
a computable database query, where CQ denotes the set of all computable database queries.

6.2. Formalising Computable Database Queries 365

CQ
RECS RECS

ENC DEC

LISTS __________ • LISTS

TC

Fig 6.1 Commutative diagram describing the semantics of CQ

Defmition 6.7 (Computable database query) A mapping T from RECS to RECS is a
computable database query (or simply a computable query or a query) if

38 ETC, 3Q E ENC such that r = Q- 18Q.

As an abbreviation to the above equation we say that r is realised via 8 and Q; at times we
simply say that r is realised via 8 meaning that 3Q E ENC such that r is realised via 8 and Q .

•
Example 6.4 The reader can verify that all the queries given in Example 6.3 are in fact
computable according to Definition 6.7. •

The next proposition shows that if a computable query r is realised via 8 and Q then for any
other encoding Qi E ENC we can effectively find a Turing-computable mapping 8i such that r
is realised via 8i and Qi.

Proposition 6.2 Let r E CQ. Then VQi E ENC, 38; ETC such that r is realised via 8i and Qi.

Proof. Assume that r is realised via 8 and Q. Let 8i = QiQ- 18QQi l • By Proposition 6.1 and
the fact that TC is closed under composition of mappings it follows that 8; ETC. Therefore, r
is realised via 8; and Q; as required. 0

Our definition of a computable query differs from the standard definition given in [CH80j
and [A V90j, wherein a computable queryis defined directly as acomputable mapping from sets
to sets without detailing the encoding and decoding process. Moreover, another nonstandard
feature of a computable query is that, in addition to encoding attribute values of tuples, we also
encode the attribute names of values. Research in the area of computable database queries
can be found in [CH80, VS89, AV90, AV91a, AV91b, DM92, HS93, Saz93, Van93a, LL96aj.

366 Chapter 6. Computable Database Queries and the Expressiveness of the Relational Algebra

6.3 Subclasses of Computable Database Queries

Herein we define various subclasses of computable queries and investigate the relationships
between these subclasses.

6.3.1 Order-Independent Computable Queries

Informally, a computable database query r that is realised via Q = 8¢ is order-independent
if its computation does not depend on the ordering function ¢. That is, intuitively r is
order-independent if the diagram shown in Figure 6.1 commutes for all encodings Qi = 8i¢i E

ENC with 8 = 8i.

Prior to defining order-independent computable queries we define order-independence as
a property of the Turing-computable mapping 8 that realises r.

Defmition 6.8 (Order-independent Turing-computable mapping) A Turing-computable
mapping 8 E TC is order-independent if

"IQi = 8¢i E ENC, "IQ = 8¢ E ENC, 8Qi = 8Q.

Hereafter we let OITC denote the set of all order-independent Turing-computable mappings .

•
We observe that in the above definition Qjl = y8- 1 = Q-1 holds and thus it is true that

-1 < - 1 <
Qi oQi = Q OQ.

Defmition 6.9 (Order-independent computable query) A computable query r E CQ is
order-independent if 38 E OITC such that r is realised via 8.

Hereafter we let OI denote the set of all order-independent computable queries. •

We observe that in Example 6.3 only query (3) is not order-independent and thus OI is a
proper subset of CQ.

6.3.2 Isomorphism-Independent Computable Queries

Informally, a computable database query r that is realised via Q = 8¢ is isomorphism
independent if its computation does not depend on the naming function 8. That is, intuitively
r is isomorphism-independent if the diagram shown in Figure 6.1 commutes for all encodings
Qi = 8i¢i E ENC with ¢ = ¢i.

Prior to defining isomorphism-independent computable queries we define isomorphism
independence as a property of the Turing-computable mapping 8 that realises r.

Definition 6.10 (Isomorphism-independent Turing-computable mapping)
computable mapping 8 E TC is isomorphism-independent if

"IQi = 8i¢ E ENC, "IQ = 8¢ E ENC, 8i- 188i = 8-188.

A Turing-

6.3. Subclasses of Computable Database Queries 367

Hereafter we let IITC denote the set of all isomorphism-independent Turing-computable
mappings. •

We observe that in the above definition it is true that Qi l 8Qi = Q-18Q.

Definition 6.11 (Isomorphism-independent computable query) A computable query T E
CQ is isomorphism-independent if 38 E IITC such that T is realised via 8.

Hereafter we let II denote the set of all isomorphism-independent computable queries. •

We observe that in Example 6.3 only queries (1) and (2) are not isomorphism-independent
and thus II is a proper subset of CQ.

6.3.3 Encoding-Independent Computable Queries

Informally, a computable database query T that is realised via Q is encoding-independent
if its computation does not depend on any particular encoding Q. That is, intuitively T is
encoding-independent if the diagram shown in Figure 6.1 commutes for all encodings Q E
ENe.

In essence encoding-independence with respect to computable queries means that, in
practice, the same query executed on two distinct machines, whether they be different or
not, will yield the same result irrespective of how the query is represented internally within
each machine.

Definition 6.12 (Encoding-independent computable query) A computable query T E CQ is
encoding-independent if

38 ETC such that 'v'Q E ENC, T = Q- 18Q.

Hereafter we let EI denote the set of all encoding-independent computable queries. •

We observe that in the above definition it is true that 'v'Qi, Qj E ENC, Qi l 8Qi = Qt8Qj.

Therefore, EI is a subset of both or and II. In fact, EI is a proper subset of both or and II, since
in Example 6.3 queries (1) and (2) are in or but not in EI and query (3) is in II but not in EI.
We now show that EI is the intersection of or and II.

Theorem 6.3 EI = or n II.

Proof. EI ~ or n II, since EI C or and EI C II as noted above.

It remains to show that or n II ~ EI. Let T E or n II be a computable query which is both
order-independent and isomorphism-independent. Now,let8 E IITC be a Turing-computable
mapping and Q E ENC be an encoding such that T is realised via 8 and Q; 8 and Q exist due to
that fact that T E II. Let 8' be the mapping 8QQ-l. Now,8' ETC, since by Proposition 6.1 Q

is mutually convertible to itself. Furthermore, 8' E OITC, since the mapping QQ-l effectively
reorders the encoded input so that it be suitable for 8. Thus T is realised via 8'.

In order to conclude the proofwe need to showthat'v'Qi, Qj E ENC,QiI8' Qi = Qt8' Qj. That

is, we need to show that T is realised via 8' and any encoding Q in ENC. Let Q = e¢, Qi = ei¢i

368 Chapter 6. Computable Database Queries and the Expressiveness of the Relational Algebra

and Qj = ej¢j; Qil8' Qi = yei-18e¢ye-lei¢i = yej- 18e¢ye-1ej¢i, since by the definition of

lITC 8' E lITC due to the fact that 8 E IITC. Thus, yet8e¢ye-lej¢i = yet I'ie¢ye-lej¢j =

Qj- 18' Qj, since 8' E OITC. The result that T E EI follows as required. 0

An interesting corollary to the above proof is that any isomorphism-independent
computable query T can be made to be encoding-independent by "hard-wiring" the ordering
function into the Turing-computable mapping that realises T.

A generic computable query is one which commutes with every one-to-one mapping from
records to records, which is the composition of an encoding and a decoding. The next
definition formalises this notion.

Definition 6.13 (Generic computable query)
where rJ = Qi1Q2 and QI, Q2 E ENC.

A computable query T is generic if rJT = TrJ,

•
The notion of encoding-independence is closely related to the notion of genericity as the

following theorem asserts.

Theorem 6.4 A computable query, T, is encoding-independent if and only if T is order
independent and generic.

Proof If Suppose that T is realised via 8 and Ql E ENC, where 8 E OITe. We need to show
that T = Qi l 8Ql = Q;18Q2, where Q2 E ENC.

Let rJ = Qi1Q2' Then rJ-ITrJ = T, since T is generic. Therefore r = Q;IQIQi18QIQiIQ2'

Thus T = Q;18e2¢, since Q21 QIQil = Q21 and QIQil Q2 = e2¢ for some ordering function
¢, where Q2 = e2¢2. The result that T = Q2 18Q2 follows, since 8 E OITe.

Only if Suppose that T is realised by 8 and Q. Thus, by the definition of encoding
independence T = Q-18Q = rJ- 1Q-18QrJ. The result follows, since rJT = rJrJ- 1Q-18QrJ

Q-18QrJ = HJ. 0

We next summarise the benefits of encoding-independent queries .

• The order of records in the database does not influence the result of the query .

• The result of the query is independent of the representation of the attributes and values
in the database.

The concept of encoding-independence is related to the concept of data independence
discussed in Section 1.6 of Chapter 1. If a database query is in EI, then the result of the query
is unaffected by the physical representation of the database.

We close this section by indicating how the concept of encoding-independence can be
weakened to allow a finite set C of attributes and values to be mentioned explicitly in a query.

Recall from Definition 6.4 that the naming function I maps attributes and values to their
natural representation. An encoding Q = e¢ is said to be a C-encoding ifVc E C, e(c) = I(C),
i.e. any constant in C can be identified by its natural representation. Intuitively, a computable
query r is C-encoding-independent if the diagram shown in Figure 6.1 commutes for all

6.4. An Equivalence Relation on Computable Queries 369

C-encodings. When C = 0 then the notion of C-encoding-independent reduces to the notion
of encoding-independent. We denote the set of all C-encoding-independent computable
queries by C-EI.

The reader can verify that, with respect to Example 6.3, query (1) is (DEPT,
NAME}-encoding-independent and query (2) is (DEPT, Computing}-encoding-independent.
In practice we would require C to include at least the attribute names and domain values in
the database over which we are querying; that is, with respect to the latter, C should include at
least all the constants in the active domain of the database. We leave it to the reader to verify
that all the results in Sections 6.2 and 6.3 could be recast in terms of C-encodings rather than
general encodings.

6.4 An Equivalence Relation on Computable Queries

The aim of this section is to add to our understanding of computable queries by investigating
an equivalence relation on the set CQ of computable queries; two such queries are related
if they are realised via the same Turing-computable mapping, say 8. In particular, we are
interested in the cardinality of the equivalence class of a computable query, realised via 8 and
some encoding, with respect to the said equivalence relation; this equivalence class is denoted
by /').{, . In the case when I/').{' 1 = 0, there is no computable query r such that r is realised via 8
and some encoding. On the other hand, when I/').{' 1 = 1 and r is realised via 8 and all possible
encodings in ENC, then r corresponds to an encoding-independent computable query.

Defmition 6.14 (/').{,) Let 8 ETC. Then /').{, = {r 1 3Q E ENC such that r is realised via 8 and
Q} . That is, /').{, is the set of all computable queries that are realised via 8 and some encoding .

•
The following theorem is proved using Rice's theorem (see Theorem 1.2 in Subsection 1.9.4

of Chapter 1).

Theorem 6.5 The two decision problems: is I/').{' 1 = O? and is I/').{' 1 = 1 ? are undecidable.

Proof. On using Rice's theorem we need to show that the sets, CLo and CLI> of Turing
computable mappings, 8, such that I/').{, 1 = 0 and I/').{, 1 = I, respectively, are both nontrivial.
That is, CLi =f: 0 and CLi =f: TC, for i = 0, 1. We prove the result by exhibiting 80, 8 1 ETC,
such that 80 E CLo and 81 E CLI'

Let 80 be a Turing-computable mapping that removes all the delimiters in the fixed set
{[.],(,),,} from its input and then halts. It can easily be verified that 1 /').{'o 1 = 0, since V Q E ENC,
Q-180Q is not in RECS.

Let 81 be a Turing-computable mapping that returns [[]] (i.e. it returns the string
representing the singleton containing the empty record) if its input is an encoding of a set
containing an even number of records, and returns [] (i.e. it returns the string representing the
empty set of records) otherwise. (We could have also chosen the Turing-computable mapping
that realises query (4), (5) or (6) from Example 6.3 to be 8d It can easily be verified that I/').{'II
=1. D

370 Chapter 6. Computable Database Queries and the Expressiveness of the Relational Algebra

The following theorem shows that either I Ll81 = 0 or I Ll81 = 1 or I Ll81 = w recalling that
w is the set of all natural numbers. Our interpretation of this interesting result is that it is
not possible to obtain a finer partition of the class of computable queries with respect to
the Turing-computable mappings that realise them, without putting restrictions on the set of
encodings.

Theorem 6.6 If I Ll81 > 1, then I Ll81 = w.

Proof. SupposethatlLl81 = n, where n > l,withn E w. Then3el , '12 ,···, en EENCsuchthat
Ti is realised via 8 and Qi and Vi, j E {I , 2, . .. , n}, Ti "# Tj . In order to obtain a contradiction
to ILl81 = n, we use a diagonalisation argument to construct a computable query Tn+l E Ll8
such that Vi E {I , 2, . .. , n}, Tn+l "# Ti .

Byour assumption that ILl81 = n, 3SI , S2, ... , Sn-l E RECS such that Vi E {I , 2, ... , n-l} ,
Ti(Si) "# Ti+l (Si). Without loss of generality letSn E RECS be a database of records that satisfies
el(SI) = '11 (Sn) and e2(SI) = e2(Sn).

We construct an encoding en+l E ENC such that Tn+l is realised via 8 and en+l as follows.
Assume without loss of generality that Vi E (I , 2, ... , n-l} ,en+l (Si) = ei(Si), anden+l (Sn) =
e2(Sn). The result that Vi E {I, 2, ... , n}, Tn+! "# Ti then follows. 0

6.S Computational Query Completeness

We would like to utilise our notion of a computable database query to design expressive query
languages. Relational completeness of a query language is only a minimal requirement for
such a language, since there are many useful computable queries such as transitive closure
and counting the number of tuples in a relation which are not expressible in the relational
algebra. (See Definition 3.21 of relational completeness in Subsection 3.2.1 of Chapter 3.) We
will further discuss the expressive power of the relational algebra in Section 6.6.

The set of all computable queries, CQ, is too expressive as a measure of the expressiveness
of a database query language (or simply a query language), since databases are unordered
collections of objects. Thus we should require all expressible queries to be at least order
independent. The class of order-independent computable queries, 01, may also be considered
to be overly expressive, since it requires fixing a naming function. On the other hand, the
class of encoding-independent computable queries, EI, is not expressive enough, since in
practice the user would like to be able to refer to attributes and values which are present in
the database. Therefore, we use the notion of C-encoding-independent queries as a measure
of the computational completeness of a query language.

Definition 6.15 (Computational query completeness) A database query language is compu
tationally query complete (or simply query complete) if it expresses exactly the union of all
the classes, C-EI, of all C-encoding-independent computable queries, for some finite set C of
attribute names and domain values.

When C is restricted to be a finite set of attribute names only (i.e. C does not include domain
values) then we say that the query language is computationally attribute query complete (or
simply attribute query complete). •

6.5. Computational Query Completeness 371

In the above definition if we require that C = 0, then a query language is query complete if
it expresses exactly the class, EI, of all encoding-independent computable queries.

In the following let us disregard the differences between relational databases and databases
of records recalling that every relational database can be translated into a database of records
and vice versa. When a query language is attribute query complete the user can explicitly
refer to attribute names in queries. Therefore in this case, without any loss of generality, the
naming function used to encode a database can always encode a finite set, {AI, A2, ... ,Am}, of
attribute names as the finite set of natural numbers, {1, 2, ... , m}, and the ordering function
used to encode a database can always order the pair (i, Vi) before the pair (j, Vi) if and only if
i < j. (See Table 6.6 for such an encoding.) This technicality is useful, since it allows us to view
X-records as tuples over a relation schema R, with schema(R) = X. (Recall from Definition 3.3
in Section 3.1 of Chapter 3 that attribute names can be referred to in the fixed order induced
by the mapping, att.)

We now describe the query language QL [CH80], where dover R is taken to be the input
database to a QL program (recall from Definition 3.9 in Section 3.1 of Chapter 3 that ADOM(d)
is the active domain of d).

Definition 6.16 (The syntax of QL) The syntax of QL is defined as follows:

• (YI,Y2, ... j is a countable set of generic variables.

• The set of terms in QL is defined inductively as follows:

1) The equality relation E, a relation reli and a generic variable Yi, with i ::: 1, are
terms.

2) (el n e2), (--.e), (e t), (e t) and (e ~) are terms, where e, el and e2 are terms.

• The set of programs in QL is defined inductively as follows:

1) Yi ~ e is a program, where Yi is a generic variable and e is a term.

2) (PI; P2) and while Yi = 0 do P, are programs, where Yi is a generic variable and
P, PI and P2 are programs. •

Prior to giving the formal semantics of QL programs we give informal descriptions of the
operators of QL which appear in the definition of the set of terms:

1) n is the intersection operator.

2) --. is the complementation operator.

3) t is the extension operator, which extends a relation with an additional column.

4) t is the projection operator, which projects out the first column of a relation.

5) ~ is the permutation operator, which exchanges the values in the last two columns of a
relation.

372 Chapter 6. Computable Database Queries and the Expressiveness of the Relational Algebra

Definition 6.17 (The semantics of QL) The semantics of terms are defined as follows:

• E = {(v, v) I v E ADOM(d)} is the equality relation.

• reli is the relation ri over a relation schema Ri, if the input database d contains a relation
ri over Ri, otherwise reh is the empty set over the relation schema with the empty set of
attributes.

• The value of a generic variable Yi is a relation; Yi is initialised to be the empty set over
the relation schema with the empty set of attributes. The relation schema of the value
of Yi may change during the computation of a QL program.

• Let the value of e be a relation rover R, with type(R) = m, the value of el be a relation
rl over RI and the value of e2 be a relation r2 over R2.

- If RI = R2, then the value of (el n e2) is rl n r2, otherwise it is the empty set over
the relation schema with the empty set of attributes.

- The value of (....,e) is 5 - r, where 5 is the Cartesian product of ADOM(d) with itself
m times.

- The value of(e t) is the relation (<VI , V2, ... , Vm , v> I <VI, V2 , . .. , Vm > E rand
v E ADOM(d)}.

- The value of (e ,!.) is the relation {<V2, V3, ... , Vm > I <VI, V2, ... , Vm > E r} if
m::: I, otherwise the value of (e ,!.) is defined to be the empty relation.

- Thevalueof(e~)istherelation{<vl, V2, ... , Vm , Vm- I> I <VI , V2 ,· ··, Vm-I, Vm>

E r} if type(R) = m > I, otherwise the value of (e ~) is r.

The semantics of QL programs are defined as follows:

• The value of Yi *"" e is the result of assigning the value of e to Yi.

• The value of (PI; P2) is the result of sequentially composing PI and P2; we omit
parentheses whenever no ambiguity arises.

• The value of while Yi = 0 do P is the result of iterating P while the value of Yi is equal to
the empty set; if the while loop terminates, then the value of the program P is the value
of Yi, otherwise it is undefined. •

The proof of the next theorem can be found in [CH80 J.

Theorem 6.7 The query language QL is attribute query complete. o

Using the extension and projection operators we can simulate counting in QL as follows.
The term, ((E ,!.) ,!.), whose value is equal to {< >} represents the natural number zero. Let
<i> be the representation of the natural number i. Then adding one to <i> is given by <i> t.
Similarly, subtracting one from <i> is given by <i> ,!..

We next give some examples of QL programs.

6.5. Computational Query Completeness 373

Example 6.5 Let el and ez be terms, where the value of el is a relation TI over RI and the
value of ez is a relation TZ over Rz. If RI = Rz, then the union of el and ez, denoted by el U ez,
is defined by

Assume that PI and Pz are programs and that YI and yz are generic variables that do not
appear in PI or in Pz. The following program gives the expected semantics to the statement,
if Yi = 0 then PI else Pz:

YI *- Yi;
yz *- «(E ,j..) ,j..) ,j..);
whileYI = 0 do (PI ;YI *- E; yz *- E);
while yz = 0 do (Pz ; yz *- E).

We observe that « (E ,j..) ,j..) ,j..) = 0. Using the above semantics of an if statement we can
simulate iterating a program P while Yi ;f. 0 with the following QL program, where YI is a
generic variable that does not appear in P:

ifYi = 0 thenYI *- E else YI *- «(E ,j..) ,j..) n
while YI = 0 do (P; if Yi = 0 thenYI *- E else YI *- «(E ,j..) ,j..) ,j..». •

Another example of an abstract query language which was shown to be attribute query
complete is the geneTic machine [A V91b]. The generic machine is based on extending the
relational algebra with Turing-machine capability. An example of a query language which
was shown to be query complete is detDL (deterministic transformation language) [AV90].
Finally, another example of a query language which was also shown to be query complete is
an extension of Datalog presented in [AV91a], which allows the heads of rules to be negative
literals.

An important difference between the semantics of QL and detDL is in the way these query
languages simulate counting. As we have seen above QL simulates counting by using the
extension operator (t) in order to simulate addition and the projection operator (,j..) in order
to simulate subtraction. On the other hand, detDL simulates counting by generating (or
inventing) new values, not in the active domain of the input database, by using a construct
called with new. The invented values are generated nondeterministic ally. Furthermore, the
invented values are not allowed to appear in the result of a query ensuring that the result of
the query is deterministic.

A distinguished value, say Yo, is chosen to represent the natural number zero and another
distinguished value, say V*' is chosen as a placeholder which allows detDL to determine how
many natural numbers have already been generated. At any stage during the execution of
a detDL program a finite sequence of values, Yo, VI, ... , Vn, have already been generated
representing the natural numbers {O, 1, ... , n}. In order to indicate the linear ordering Vo <
VI < ... < Vn, these values are stored in a binary relation, T (j), over a relation schema Rw,
with schema(R,v) = {NI' Nz}. The relation T w is shown in Table 6.7. Whenever addition is
performed on the value, vn,such that <Vn, V*> E T(j), then a new value, Vn+l> is generated, and
Tw is replaced byT,v - {<vn, v*>} U {<vn, Vn+I>, <Vn+l, v*>}.

374 Chapter 6. Computable Database Queries and the Expressiveness of the Relational Algebra

Table 6.7 The relation r w

NI N2

Vo VI

VI V2

..
Vn-l Vn

Vn V*

6.6 The Expressive Power of the Relational Algebra

Let us assume that the relational algebra includes only the basic set of relational operators, that
is, union, difference, projection, selection, natural join and renaming. In selection we allow
only simple selection formulae of the form A = B, where A and B are attributes. The reader
can verify that all queries of the relational algebra are C-encoding-independent computable
queries for some finite set C of attributes. As we have already mentioned in Subsection 3.2.1
of Chapter 3 the relational algebra cannot express the transitive closure operation, which is
a C-encoding-independent computable query. Furthermore, the relational algebra cannot
count the number of tuples in a relation or determine whether the number of tuples in a
relation is even or odd; both these queries are encoding-independent computable queries.
It therefore follows that the relational algebra is not an attribute complete query language.
The fundamental reason for the limited expressiveness of the relational algebra is its lack of a
looping mechanism (such as a while loop or a recursion facility) and its inability to simulate
counting. Still, the relational algebra has become an important yardstick for measuring the
expressiveness of a query language. Thus it is important to pinpoint the expressive power of the
relational algebra, which is the objective of this section. In particular, we give a characterisation
of the set of relations that can be computed as answers to a relational algebra query with respect
to an input database.

Let d be a database over the database schema R, let E be a relational algebra expression
(or equivalently, a relational algebra query) over the database schema R and let E(d) be the
answer to E with respect to d (see Definition 3.20 in Subsection 3.2.1 of Chapter 3). We now
define the basic information of a database to be the set of all relations that can be obtained by
a relational algebra query over that database.

Definition 6.18 (The basic information of a database) The basic information of a database d
over R, denoted by BI(d), is the set of all relations, r, for which there exists a relational algebra
expression E such that E(d) = r. •

Thus the basic information of d measures the expressive power of the relational algebra with
respect to a database d. The operators of the relational algebra (as restricted at the beginning
of this section) do not reference explicitly the values in the database, but rather only equality or
inequality of values is expressed in relational algebra queries. This motivates us to investigate
the connection between the basic information of a database and the mappings from values in
the active domain of the database to themselves that leave the database unchanged. Such a
mapping that leaves the database unchanged is called an automorphism of the database and
the set of all automorphisms of a database is called the cogroup of the database.

6.6. The Expressive Power of the Relational Algebra 375

Defmition 6.19 (An automorphism of a database) Let d = {r" rl, . .. , rn} be a database over
R, r = {t" tl, ... , tk} be a relation over R E Rand t = <v" Vl , . . . , Vm> be a tuple in r. An
automorphism of d is a one-to-one mapping, ifJ, from V onto V, where V ~ D is a set of domain
values, extended to tuples, t, relations, r, and databases, d, as follows:

• ifJ(t) = ifJ(<V" Vl, . .. , vm » = <ifJ(v,) , ifJ(Vl) , ... ,ifJ(vm»·
• ifJ(r) = ifJ({t, , tz,·· · , tk)) = {ifJ(t,) , ifJ(tl) , · · · , ifJ(tk)}·

• ifJ(d) = ifJ({r" rl , · · · , rn)) = {ifJ(rd, ifJ(rl), ... , rp(rn)}. •
Definition 6.20 (The cogroup of a database) The cogroup of a database, d, denoted by CG(d),
is the set of all automorphisms of d. •

The next definition shows how the cogroup of a database can be represented by a relation.

Definition 6.21 (The cogroup relation of a database) The cogroup of a database, d, can be
expressed as a relation, r, over a relation schema R, called the cogroup relation of d as follows:

• Ischema(R)I = IADOM(d)1 = I{v" vz, .. . , vq}l, and

• < rp(v,) , ifJ(V2), . . . rp(Vq) > E r if and only if rp E CG(d). •
From now on, for simplicity, we will not distinguish between the cogroup of a database, d,

and its cogroup relation; we will denote both by CG(d). Observe that the cogroup relation of
d is uniquely defined up to the linear order imposed on ADOM(d) and the attribute names of
its database schema.

Example 6.6 The cogroup relation, CG(d), of a database d = {r} , where the relation r is shown
in Table 6.8, is shown in Table 6.9. The latter relation is obtained by applying Algorithm 6.1
~~ .

Table 6.8 The relation r

EMP SEC MGR
john jane john
jeff john jenny

john jill john
Jenny John Jeff

Table 6.9 The cogroup relation of {r}

A B C D E
John Jeff Jenny Jane Jill
John Jenny Jeff Jane Jill
John Jeff Jenny Jill Jane
John Jenny Jeff Jill Jane

We can now prove that the cogroup relation of d is included in the basic information of d.

376 Chapter 6. Computable Database Queries and the Expressiveness of the Relational Algebra

Lemma 6.8 CG(d) E BI(d).

Proof. We prove the result when d = {r} is a singleton; we leave it to the reader to generalise
the result when d may contain more than one relation by constructing a database with a single
relation resulting from taking the Cartesian product of all the relations in the database.

Assume that r is a relation over R with Ischema(R)I= m, Irl= k and IADOM(r)l= q.
The pseudo-code of an algorithm, designated CONSTRUCLCG(r), which returns the unique
cogroup relation of d (up to a permutation of its attribute names) over a relation schema,
whose cardinality is q, is presented in the following algorithm. The reader can verify that
CONSTRUCT _CG(r) returns a relational algebra expression whose answer with respect to {r}
is the cogroup relation CG({r)) of r.

Algorithm 6.1 (CONSTRUCT _CG(r»
1. begin
2. rk := PAm Bm (. .. (PAI BI (r» .. .) x ... X PAm Bkm (.•. (PAI Bkm-m+1 (r» . . .);
3. t := the tuple in rk that is the concatenation of all the tuples in r;
4. Ecg := rk;
5. foreachiE{I,2, . . . ,mk-l}do
6. for each j E {i + 1, i + 2, .. . , mk} do
7. if t[Bj] = t[Bil then
8. Ecg := O"Bi=B/Ecg);

9. else
10. Ecg := O"Bi#/Ecg);

11. end if
12. end for
13. end for
14. X:= a set of q attributes such that 3t E Ecg with UBi EX t[B;] = ADOM(r);
15. Ecq := nx(Ecg);
16. return Ecg;
17. end.

Theorem 6.9 r E BI(d) if and only if ADOM(r) S; ADOM(d) and CG(d) S; CG({r}).

Proof. We only sketch the proof.

o

If. Suppose that ADOM(r) S; ADOM(d) and CG(d) S; CG({r)) . We then need to show that
r = E(d) for some relational algebra expression E. Let t be a tuple in r and let R be the relation
schema of r. We know by Lemma 6.8 that CG(d) E BI(d). Furthermore, for all attributes A
E schema(R), t[A] is a value in each tuple of CG(d). Thus t is a member of the answer to a
relational algebra expression, say Et, with respect to CG(d). The expression Et is composed
of a Cartesian product for each repeated value in t, appropriate renamings so that the schema
of the output corresponds to R and a projection onto the set of attributes schema(R). All the
tuples in Et(CG(d» are of the form ifJ(t), where ifJ E CG(d) S; CG((r}) and thus all the tuples in

6.7. Adding a Looping Mechanism to the Relational Algebra 377

Er(CG(d» are members of r. Thus on letting E be the relational expression UrErEr, it follows
that E(d) = r as required.

Only if If r E BI(d), then by Definition 6.18 r = E(d) for some relational algebra expression
E. The result that ADOM(r) S; ADOM(d) and CG(d) S; CG({r}) follows by induction on the
number of relational algebra operators appearing in E. D

The above theorem was first proved in [Ban78, Par78j; a full proof can also be found in
[AD93j. An alternative representation of the cogroup relation as a nested relation can be
found in [AGV89j.

6.7 Adding a Looping Mechanism to the Relational Algebra

The reason that the relational algebra is not expressive enough to express transitive closure
queries is its lack of a looping mechanism. One possible extension suggested in [AU79j is to
add a fixpoint operator to the relational algebra. The fixpoint operates on a relational algebra
query, Q, with respect to a database d, by iterating Q with respect to d until no changes occur in
the result of the query Q. More formally, we define the result of the fixpoint of Q with respect
to d, denoted by FIX(Q(d», by using the auxiliary query Qi, where i 2: 0 is a natural number,
as follows:

1) Qo(d) = Q(d),

2) Qi+l (d) = Qi(d) U Q(Qi(d»; and

3) FIX(Q(d» = Qk(d), where k 2: 0 is the least natural number such that Qk(d) = Qk+l(d).

A query of the form FIX(Q(d» is called a fixpoint query. We observe that fixpoint queries
as we have defined them are inflationary, since the intermediate results Qi are increasing
for i 2: O. We show that the cardinality of FIX(Q(d» is polynomial in the size of the input
database, d. Let s be the size of d, i.e. the number of symbols needed to encode d, and let m
be the number of attributes in the schema of the relation resulting from answering the query.
Then I FIX(Q(d» I ::::: sm, which is polynomial in the size of the input database.

Let ARC be a binary relation representing the arcs of a digraph. Then the following fixpoint
query computes the transitive closure of the digraph:

FIX(ARC U (Jl'{A,B) (PB--->-dARC) I><l PA--->-dARC)))).

Instead of incorporating the fixpoint operator into the relational algebra, it has been
suggested that we add an explicit looping mechanism to the algebra such as the while loop
of the query language, QL. Such a while loop is unbounded, since it is not guaranteed to
terminate, resulting in polynomial space computations in the size of the input database. In
order to bound the number of iterations of a loop by a polynomial in the size of the input
database, a bounded looping mechanism can be added to the relational algebra. Adding a
bounded looping mechanism, such as the for loop introduced below, provides us with a query

378 Chapter 6. Computable Database Queries and the Expressiveness of the Relational Algebra

language of intermediate expressive power between the relational algebra augmented with the
fixpoint operator and QL.

Defmition 6.22 (For loop) Let Yi be a generic variable and P be a QL program. Then the
construct

forYi do P,

called afor loop, is also a QL program.

The semantics of the for loop are defined as follows, where ri is the value of Yi :

• The program P is executed n times, where n is the cardinality of ri upon entry to the for
loop; when the for loop terminates the value of P is the value of Yi. •

We leave it to the reader to verify that the for loop does not add any expressive power to QL,
since it can be simulated in QL by a while loop that counts the number of times the for loop
is executed and exits the while loop after a specified number of iterations. On the other hand,
if we replace the while loop in QL by the for loop, then QL would not be an attribute query
complete database query language, since intuitively QL's computations may be unbounded
and non terminating, as opposed to the computations of the for loop restriction of QL which are
always bounded and terminating. More precisely it can be shown that the for loop restriction
of QL computes exactly the set of primitive recursive queries (see Subsection 1.9.4), which are
a proper subset of the set of computable queries [ehaBl).

For the purpose of extending the relational algebra with a for loop mechanism we will
restrict QL as follows.

Defmition 6.23 (ForQL) A variable is typed if the similarity type of its relation schema is
fixed and cannot change during the computation of a program. If a typed variable is assigned
a relation over a relation schema with a different similarity type then the empty set is assigned
to this variable.

ForQL is the query language which restricts QL by assuming that all variables are typed,
that the terms of the language are relational algebra expressions (as defined at the beginning
of Section 6.6) and that instead of the while loop we have the for loop for Yi do P, where Yi is a
typed variable. •

Bya similar argument to the fixpoint, it can now be shown that the time complexity ofForQL
programs is bounded by a polynomial in the size of the input database. We note that if we lift
the restriction that variables be typed, then we cannot, in general, bound the time complexity
of such QL programs to a polynomial in the size of the input database, since a nested for loop
which uses the same generic variable can lead to a computation which is exponential in the
size of the input database.

Assume that r is a relation over R, with schema(R) = {A,B} and that the input database to
the next QL program is d = {r}, i.e. that the value of reI in the QL program is r. Also, assume
that the schema of the equality relation E is R. The following ForQL program uses a for loop

6.7. Adding a Looping Mechanism to the Relational Algebra

in order to compute the transitive closure of r:

Y ~ JrA(E) x JrB(E);
YI ~ rei;
forydo

(Y2 ~ YI U (Jr{A.BI(PB C(yI) [Xl PA c(rel)));
YI ~Y2 ;

Y ~YI) .

379

The next ForQL program shows that by using a for loop it is possible to test whether the
cardinality of a relation is even. In the ForQL program we assume that Jr A (E) represents logical
truth and 0 represents logical falsity:

Y ~ reI;
YI ~ JrA(E) ;
forydoYI ~ (~YI)'

When the above program terminates,YI is non empty, i.e. it represents logical truth, if and
only if Irl is even. In [CH82) it was shown that testing whether the cardinality of a relation is
even cannot be expressed by the relational algebra augmented with the fixpoint operator. It
follows that adding a bounded looping mechanism to the relational algebra results in a query
language that is strictly more expressive than the language resulting from adding the fixpoint
operator to the relational algebra. Still, some natural queries such as checking whether two
relations rl and r2 have equal cardinality, i.e. checking whether I rll = I r21, cannot be expressed
in ForQL, i.e. it cannot be expressed by the relational algebra augmented with a bounded
looping mechanism [Cha88).

In [AV91a] it was shown that Datalog, whose programs may be recursive and contain rules
having negative literals in their body (see Subsection 3.2.3 of Chapter 3), is equivalent to
the relational algebra augmented with a fixpoint operator, in the sense that they both express
exactly the same set of computable queries. This set of computable queries is a proper subset of
the set of all polynomial-time computable queries, since as noted above determining whether
the cardinality of a relation is even is not amongst such queries.

Definition 6.24 (Ordered relational database) A relational database dover R is an ordered
relational database (or simply an ordered database) ifR contains a designated binary relation
schema, SUCC, such that the relation r in dover SUCC defines a linear ordering on the set of
active domain values, ADOM(d). •

We observe that SUCC is isomorphic to a finite fragment of the successor relation on the
natural numbers. We further note that an ordered database induces a lexicographical ordering
on the tuples of each relation in d. The next fundamental theorem, which characterises the
computational expressiveness over ordered databases of the relational algebra augmented
with a fixpoint operator, was shown in [Var82a, Imm86] (see also [AHV95b, Chapter 17]).

Theorem 6.10 Over ordered databases, the relational algebra augmented with a fixpoint
operator expresses exactly the set of all polynomial-time computable queries.

380 Chapter 6. Computable Database Queries and the Expressiveness of the Relational Algebra

Proof We briefly sketch the proof leaving the reader to consult the above references for
the full proof. We have already shown that the algebra augmented with a fixpoint can only
express computable queries which can be evaluated in polynomial time in the size of the input
database, so it suffices to show that it can express all such computable queries.

Let Q be a polynomial-time computable query. The idea is to simulate the Turing machine
TM that computes Q with a fixpoint query. Firstly, we can encode TM's input tape by utilising
the lexicographical ordering of the tuples of the relations in d. Secondly, we can encode an
instantaneous description ofTM, after the ith computation step, by using the lexicographical
ordering to encode i and by having distinguished attributes whose values encode the current
state ofTM's finite state control and the current position of its head. The next move function
can then be encoded via an algebraic expression, which given the current state and position
of the finite state control performs the next computation step of TM. That is, the currently
scanned symbol is overwritten, the head of the finite state control moves either left (add one)
or right (subtract one) and a transition of state is effected. We assume that TM halts if and
only if no more state transitions can be effected or the maximum number of computation
steps has been performed. Thus the fixpoint operator is needed in order to repeat the next
move function until TM halts. 0

The next corollary follows from the previous theorem and the fact that Datalog, whose
programs may be recursive and contain rules having negative literals in their body (see
Subsection 3.2.3 of Chapter 3), is equivalent to the relational algebra with a fixpoint and
less expressive than the relational algebra with bounded looping; we note that these three
query languages can only compute queries whose time complexity is polynomial in the size
of the input database.

Corollary 6.11 Over ordered databases, the relational algebra augmented with a fixpoint
operator, the relational algebra augmented with a bounded for loop mechanism and Datalog
are all equivalent and express exactly the set of all polynomial-time computable queries. 0

As mentioned prior to Definition 6.22 augmenting the relational algebra with a while loop
as in QL results in polynomial space computations in the size of the input database. For the
purpose of extending the relational algebra with a while loop mechanism, we will restrict QL
to allow only typed variables as follows.

Definition 6.25 (WhileQL) WhileQL is the query language which restricts QL by assuming
that all variables are typed, and that the terms of the language are relational algebra expressions
(as defined at the beginning of Section 6.6). •

Thus WhileQL is the query language resulting from restricting QL in the same manner as
the query language ForQL given in Definition 6.23, apart from maintaining the while loop,
while Yi = 0 do P, rather than swapping it with a for loop as in ForQL. It can be shown that
WhileQL's computational power is included in the set of polynomial space queries [CH82j.
(See PSPACE in Subsection 1.9.4 of Chapter 1.) This inclusion is proper, since, for example,
WhileQL is not expressive enough to determine whether the cardinality of a relation is even
or odd. Moreover, it can be shown that over ordered relational databases WhileQL expresses
exactly the set of all polynomial space queries [Var82aj.

6.7. Adding a looping Mechanism to the Relational Algebra 381

WhileQLcan be further extended with integer arithmetic by augmenting it with the following
constructs:

• A countable set {C1 , C2, ... } of counter variables distinct from typed variables, whose
values are natural numbers.

• Assignment statements of the form Ci *- Ci + 1 and Ci *- Ci - I, which increment and
decrement a counter variable c;, assuming that counter variables are initialised to O. We
assume that if Ci has the value 0, then Ci *- Ci - 1 leaves Ci unchanged.

• Tests of the form while Ci = 0 do P, which terminate when the counter variable Ci has a
value other than O.

Let us call the extension ofWhileQL with integer arithmetic as defined above WhileInt. The
query language WhileInt is still not attribute query complete, since it still cannot determine
whether the cardinality of a relation is even or odd. It can be viewed as providing an interface
between a Turing-complete programming language and a first-order query language such as
SQL, where SQL statements can be embedded in the statements of the programming language.
(See also the recent Java Database Connectivity (JDBC) approach for executing SQL statements
from within a Java program [HCF97j.) It is evident that the expressive power of WhileInt
properly includes that of WhileQL, since the ability to manipulate counters gives Turing
machine capability to the language (see Subsection 1.9.4 of Chapter 1) and thus over ordered
relational databases WhileInt is attribute query complete.

The class of computable queries that can be expressed by the query language WhileInt is
robust as can be seen by its equivalence to the class of computable queries expressed by two
other query languages, which we now briefly describe [AV93j .

The first query language is called a relational machine. Such a machine consists of a Turing
machine and a relational store which holds a finite set of relations over a fixed set of relation
schemas partitioned into input relations and output relations. The tape of the Turing machine
is initially empty. The head of the relational machine can move left and right and can write
on the tape in accordance with the state transitions of a standard Turing machine transition
function with the following extensions. The machine can check whether the input relations
in the relational store satisfy a relational algebra query, i.e. return a non empty result, and the
machine can also assign to an output relation in the relational store the result of computing
a relational algebra query on the input relations in this store. In both cases the number of
typed variables in any relational algebra query is bounded by some constant. The relational
machine accepts its input relations if and only if it reaches its halting state. Its output can
then be found in the output relations in the store.

The second query language is an effective fragment of the infinitary logic L~lt)' The first
subscript indicates that conjunctions and disjunctions can be taken over arbitrary, possibly
infinite, sets of formulae and the second subscript indicates that only finite quantifier blocks
are allowed. The superscript indicates that every formula can only have a finite number k of
variables, for some natural number k, with k ~ 1.

The formulae of the infinitary logic L~lt) over a database schema R constitute the smallest set
of formulae containing relational algebra expressions over R having at most k typed variables
and closed under the usual logical connectives and quantifiers of first-order logic and, in
addition, are closed under conjunction and disjunction of arbitrary sets of formulae. That is,

382 Chapter 6. Computable Database Queries and the Expressiveness of the Relational Algebra

in the in finitary logic L~w the disjunction V <1> and the conjunction /\ <1>, where <1> is a set
containing an infinite number offormulae, are both well defined. The semantics of the logical
connectives including arbitrary conjunctions and disjunctions are the standard ones.

We can now define the formulae of the infinitary logic over a database schema R by

00

L~w=UL~.
k=l

For more details on the model theory of infinitary logic see [BF85] and for recent research
on infinitary logic in finite model theory see [KV92a, KV92b, AVV95, DLW95].

In order to define the effective fragment of the above infinitary logic, we say that a set S of
databases over R is recursively enumerable if there exists a recursive enumeration d1, d2 , • . .

of all databases over R such that a database d is in S if and only if there is some database which
is isomorphic to d and belongs to the enumeration. (See Subsection 1.9.4 of Chapter 1 for an
overview of recursively enumerable languages or sets.)

The effective fragment of infinitary logic is now defined as the set of formulae in L~w whose
set of finite models is recursively enumerable. The proof of the next theorem can be found in
[AVV95] .

Theorem 6.12 The following three query languages express the same class of computable
queries over a database schema R:

1) WhileInt.

2} Relational machines.

3} Effective fragment of infinitary logic.

Proof. We only sketch the proof.

The equivalence of (1) and (2) follows from the equivalence between Turing machines and
counter machines (see Subsection 1.9.4 of Chapter 1).

To show that part (2) implies part (3), let S be the set of all databases over R that are accepted
by some relational machine M and let dES. Intuitively, a computation of M that accepts d
can be described by a formula in L~w for some natural number k, due to the way in which a
relational machine interfaces with the relational algebra. It follows that the set of databases
S that are accepted by M can be described by a formula in the effective fragment of infinitary
logic, which is a countably infinite disjunction of a recursive set of formulae in L~w'

Finally, to show that part (3) implies part (2) suppose that cp is a formula over R in the
effective fragment of infinitary logic. It can be shown that given a relational database dover
R, there exists an ordered relational database d' over a database schema R' and a formula 1/J
over R' in the effective fragment of in finitary logic such that d is a model of cp if and only if d'
is a model of 1/J. We can now use this fact to encode d' on the tape of a relational machine M.
The relational machine M utilises its Turing-machine capability to accept d', if and only if d'
is a model of 1/J, by a recursive enumeration of those databases over R' which are models of
1/J. 0

6.8. Discussion 383

6.8 Discussion

In this chapter we have introduced and developed the fundamental concept of a computable
database query, which does not feature prominently in most of the current textbooks on
database theory. Although the development is theoretical in nature, the subclass of computable
queries implemented has an effect on the degree of portability of the database, in the sense
that two queries may yield the same result on different machines if and only if they are
C-encoding-independent. The notion of encoding-independence is thus strongly related to
the notion of physical data independence, which is one of the fundamental reasons that
relational databases are successful in practice. In addition, we have presented the concept of
a database language which is query complete; such a language allows for both attribute names
and domain values to be mentioned in queries. This concept refines the notion of attribute
query complete, which allows only attribute names to be mentioned in queries.

The notion of computable queries has interested database researchers since the beginning of
the 1980's and provides a link between relational database theory and the theory of computing.
It also provides a firm basis for developing database programming languages possessing
greater computational expressive power than the relational algebra.

Pioneering work on the computational complexity of various query languages can be found
in [Fag74, AU79, Cha81, Imm81, CH82, Var82a). More recent research in this area can be
found in [Imm86, BG87, Imm87, Cha88, Imm89, AV90, AV91a, AV91b, AV92, AV93, Fag93,
A V95, A VV97).

6.9 Exercises

Exercise 6.1 SQL3 is the emerging standard, which is to replace SQL2 [DD93, Mel96) (see
Subsection 3.2.2 of Chapter 3 and Section 10.2 of Chapter 10). One of the features of SQL3 is
the addition of procedural constructs to SQL2 including assignment, conditional and looping
statements. Thus SQL3 is computationally query complete. Argue for the usefulness of these
features of SQL3 and its potential impact on database programming.

Exercise 6.2 Aggregate functions provide an important and useful extension to the basic
operators of the relational algebra (see Definition 3.24 in Subsection 3.2.1 of Chapter 3).
Suggest how such an extension affects the expressive power of the relational algebra [Klu82,
AB95).

Exercise 6.3 It is a standard assumption in relational database theory that domain elements
are taken to be unordered. In practice domain elements are defined to be either strings or
numbers and thus tuples in relations have a natural lexicographical ordering that can be
utilised by the DBMS. Argue whether it is reasonable for the DBMS to use such an ordering
when processing queries and how such an ordering can be taken into account in the definition
of a computable database query.

Exercise 6.4 Discuss, with a motivating example, the connection between physical data
independence and encoding-independent computable queries.

384 Chapter 6. Computable Database Queries and the Expressiveness of the Relational Algebra

Exercise 6.5 Recall Definition 6.25 of the query language WhileQL. WhileQL is the result of
augmenting the relational algebra with an unbounded while loop mechanism as in QL, with
the restriction on generic variables that they be typed. Prove that WhileQL cannot determine
whether the cardinality of a relation is even or odd [CH82j.

Exercise 6.6 Recall that the query language Whilelnt extends the query language WhileQL
with integer arithmetic. Prove that when all the relation schemas of relations in the input
database to a Whilelnt program are monadic, i.e. contain a single attribute, then the resulting
program is equivalent to a relational algebra query [A V95j.

Exercise 6.7 Discuss the significance of Theorem 6.10 and Corollary 6.11 in Section 6.7 with
respect to the implementation of database programming languages.

Exercise 6.8 Suggest a parallel model of computation for relational algebra queries, where
given an input database d, such a model has available a polynomial number of processors in
the size of d in order to speed up the computation [Imm89j.

Exercise 6.9 It has been suggested that it is useful to add to query languages an operator that
selects a tuple from a relation at random. Discuss this suggestion with a concrete example
[ASV90j.

7. Temporal Relational Databases

The evolution of a relational database over time is not captured by the standard relational
data model we have presented in the previous chapters. For example, the inventory of items
in a warehouse changes over time as items are shifted from and to the warehouse, and the
details of employees that work in a company change over time as the database is updated with
new employees joining the company and old employees leaving the company. Many other
scientific, financial and business applications have a substantial temporal element associated
with them including applications that involve time series analysis. Although time can be
modelled within the standard relational model, this cannot be done in a straightforward
and unified manner, since there is no inherent support for temporal data. Thus due to the
importance of recording and manipulating temporal information, there is a need for a cohesive
and consistent extension of the standard relational model to handle such temporal data. The
research into temporal databases has been an active subarea of relational database theory for
well over a decade now. In order to merge and encompass the main proposals for temporal
relational database query languages, there has been a recent comprehensive specification of a
temporal extension of SQL, termed TSQL2. In this chapter we formalise a temporal extension
of the relational model, which provides a basis for understanding the way in which time can
be seamlessly incorporated into the data structures, the algebra and the fundamental integrity
constraints ofrelational databases.

We now briefly outline the contents of the sections that follow. In Section 7.1 we provide
motivation for modelling time in relations through an example. In Section 7.2 we provide
a taxonomy of the various interpretations of time and introduce the notions of rollback and
historical relations. In Section 7.3 we formalise the notion of a historical relation, which allows
us to store the valid time history of tuples in relations. In Section 7.4 we extend the relational
algebra so that it can manipulate historical relations and deal with time attribute values that
are time intervals. In Section 7.5 we define the notion of historical completeness of a temporal
extension of the relational algebra and state the result that the historical relational algebra
presented in Section 7.4 is complete. In Section 7.6 we give a brief overview of TSQL2, and
in Section 7.7 we extend the fundamental notion of a key so as to hold in historical relations.
Finally, in Section 7.8 we briefly discuss the issue of schema evolution when, in addition to
the database relations, the schema is also allowed to change over time.

7.1 The Importance of Modelling Time
Suppose that we are storing the information about the current salaries of employees in a
relation '0, over EMP _NOW, with schema(EMP _NOW) = {ENAME, SAL}, as it is shown in

385

386 Chapter 7. Temporal Relational Databases

Table 7.1. This relation does not supply us with any past information about employees'
salaries or with any future information about these salaries. The relation ro provides us only
with a snapshot of the information about employees' salaries, in particular only the present
information is made available. Let us first concern ourselves with past (or historical) and
present (or current) information, without referring to the future.

Table 7.1 The relation TO over EMP _NOW

ENAME SAL
Reuven 25

Dan 11
Eli 20

Naomi 20

In order to store past or historical information about employees' salaries we could redesign
the relation schema EMP _NOW and obtain a schema EMP, having the attributes ofEMP _NOW
andan additional attribute called DATE. A relation rl over EMP is shown in Table 7.2. Although
this relation captures the historical information which is needed it is not sufficient unless
direct support for time-based attribute domains is made available. Thus, for example, it is
not possible to pose a query asking for the current salary of an employee unless the notion
of "current time" is known to the database system. Also, queries such as: in the overlapping
years of two employees' salary history, which one of them earned a higher salary and when,
are awkward to pose in the relational algebra. Such queries view an employee's salary history
as a set of intervals, where each interval such as [1992, 1993] records the years in which an
employee earned a particular salary. The relational model does not support interval data; in
fact, if we allow intervals into the model then relations would violate INF. Support for defining
data types involving dates and times and for querying information over these types has been
considered important enough for including DATE and TIME as built-in data types in the SQL2
standard (a detailed description of these features can be found in [DD93, Chapter 17)).

Table 7.2 The relation TJ over EMP

ENAME SAL DATE
Reuven 22 1992
Reuven 22 1993
Reuven 25 1994

Dan 8 1991
Dan 8 1992
Dan 11 1994
Eli 20 1990
Eli 20 1993
Eli 20 1994

Naomi 18 1993
Naomi 20 1994

Now, suppose that we extend relation schemas to historical relation schemas so that such
schemas contain a special historical attribute, denoted by T, whose domain is interval-based.
The semantics of the T -values of a tuple over a historical relation schema are that this interval
represents the time points (or dates) when this tuple was valid. A distinguished time point,

7.1. The Importance of Modelling Time 387

denoted by now, represents the fact that the tuple is valid at the current time. A historical
relation r2 over EMpH, with schema(EMpH) = {ENAME, SAL, DATES_INT), is shown in
Table 7.3, where DATES_INT is a historical attribute. There are several advantages in the
representation of the historical information in r2 as opposed to the representation in rl>

shown in Table 7.2. Firstly, r2 is less redundant than r1, since the cardinality of r1 is 11 while
the cardinality of r2 is only 8. Secondly, querying r2 is easier than querying r1 assuming that we
extend the relational algebra with special purpose comparison operators to deal with intervals.
Finally, the current time is made explicit by using the distinguished time point now. Thus r2

need not be updated until a salary changes, while r1 will have to be updated in 1995 even if all
the salaries remain the same.

Table 7.3 The historical relation r2 over EM pH

ENAME SAL DATES_INT
Reuven 22 [1992,1993)
Reuven 25 [1994, now)

Dan 8 [1991,1992)
Dan 11 [1994, now)
Eli 20 [1990,1990)
Eli 20 [1993, now)

Naomi 18 [1993,1993)
Naomi 20 [1994, now)

Another example of a historical relation r3 over MGRH, with schema(MGRH) = {MNAME,
DNAME, DATES_INT), is shown in Table 7.4. In this relation there is an overlap between
the dates when Reuven and Hanna were managers of the Computing department. Time can
be considered as adding a third dimension to relations. A standard relation (or a snapshot
relation) can be viewed as a two-dimensional table, where its columns represent attributes
and its rows represent tuples. A historical relation can be viewed as a three-dimensional cube,
the third dimension being time. Thus a snapshot relation can be viewed as a two-dimensional
slice of a historical relation.

Table 7.4 The historical relation r3 over MGRH

MNAME DNAME DATES_INT
Reuven Computing [1992,1993)
Hanna Computing [1993, now)

Dan Arts [1991,1992)
Eli Economics [1990,1991)

Sara Economics [1992,1992)
Eli Economics [1993, now)

Naomi Medicine [1993, now)

In order to benefit from historical relations we extend the relational algebra to cater for
interval-based attribute values. The semantics of such an extension are based on temporal
logic. Temporal logic is an extension of classical logic whose aim is to overcome the
awkwardness of classical logic in capturing temporal relationships and giving semantics to
statements involving temporal reference [RU71). Apart from the area of databases temporal
logic is widely employed in the area of specification and verification of concurrent programs

388 Chapter 7. Temporal Relational Databases

[Eme90, MP92]. In addition, temporal logic is employed in the area of artificial intelligence
in order to formalise effective temporal reasoning mechanisms [A1l83]. A more recent
application of temporal logic in the area of information systems is in form ali sing navigation
semantics in Hypertext databases [SFR92, LL99c]. A comprehensive survey of the research on
the role of time in information systems up until the early 1980's can be found in [BADW82j.

7.2 A Taxonomy of Time in Databases

Herein we discuss various interpretations of time. We have already mentioned standard
relations as being snapshots of information. A snapshot relation represents only the current
state or instance of the stored information. When an update transaction takes place such
as changing an employee's salary, the state of the snapshot relation changes and the past
state becomes inaccessible as soon as the transaction commits (see Section 8.1 of Chapter 8).
The time as it is viewed by the database system with respect to the changes that are made to
snapshot relations via transactions is called transaction time. A relation which allows access
to the relation states prior to the commitment of transactions is called a rollback relation.

The simplest way to view a rollback relation is via the concept of timestamping (see
Section 8.7 of Chapter 8). We assume that the system has a clock which records the current
system time. A rollback relation, say r, is initially empty when it is created. Thereafter,
whenever a tuple is inserted into r it is timestamped with the current system time as it is being
inserted into r. On the other hand, whenever a tuple is deleted from r it is not physically
deleted, but rather it is times tamped with the current system time indicating when it was
deleted from r. (Recall from Subsection 3.2.4 of Chapter 3 that a modification of a tuple in a
relation can be viewed as a deletion followed by an insertion.)

In a similar way to recording temporal information in a historical relation we can record
the timestamps of tuples in a rollback relation by adding a special transaction attribute to
the relation schemas of rollback relations, whose domain is interval-based. For simplicity
we will represent transaction time by natural numbers. An interval [i,j] over the transaction
attribute of a tuple, t, in a rollback relation r, where i and j are transaction times and i ::: j,
represents the fact that t was inserted into r at transaction time i and was deleted from r at
transaction time j. We use the distinguished time point now to represent the fact that the
tuple is currently present in r. That is, if the interval [i, now] is the value of the transaction
attribute of a tuple t in r, then t was inserted into r at transaction time i and is still currently
present in r. An example of a rollback relation rover EMPR, with schema(EMpR) = (ENAME,
SAL, TIMES_INT), is shown in Table 7.5. The snapshot relation induced by r which contains
only the tuples that are currently present in r is shown in Table 7.1.

As opposed to transaction time recorded in rollback relations, historical relations record
valid time; that is, the time as it is in the real world. To illustrate the difference between
valid time and transaction time consider the tuples, t, = <Reuven, 22, [1992, 1993] > and t2 =

< Reuven, 25, [1994, now]> in the historical relation over EM pH shown in Table 7.3 and the
tuples, t3 = <Reuven, 22, [1, 2] > and t4 = <Reuven, 25, [3, now] > in the rollback relation
over EMPR shown in Table 7.5. The tuple tt indicates that Reuven earned 22 between 1992
and 1993 and the tuple t2 indicates that Reuven has earned 25 from 1994 up until now. The
tuple t3 indicates that the fact that Reuven earned 22 was inserted at time 1 and deleted at time

7.2. A Taxonomy ofTime in Databases 389

Table 7.5 The rollback relation rover EMPR

ENAME SAL TIMES-.lNT
Reuven 22 [1,2]
Reuven 25 [3, now]

Dan 8 [0,1]
Dan 11 [4, now]
Eli 20 [I, now]

Naomi 18 [2,3]
Naomi 20 [4, now]

A, A2 ...
A, A2 ... An t,

t, t2

t2 t3

t3 t4

I-
transaction time

Fig 7.1 The semantics of rollback relations

2 and the tuple t4 indicates that the fact that Reuven has earned 25 was inserted at time 3 and
has not been deleted. It may not be the case that the transaction times 1,2 and 3 are identical
to the valid times, 1992, 1993 and 1994, respectively. This is due to the fact that although
Reuven earned a particular salary at a particular valid time the transaction that recorded
this information may not have actually happened at identically the same valid time. Thus,
for example, the fact that Reuven was earning 22 from 1992 to 1993 may have been actually
inserted into the relation in 1993 (which is transaction time 1) and not in 1992, when this
salary became the then current salary. On the other hand, the valid time now is the same as
the transaction time now. Thus if the information in both the rollback and historical relations
is up-to-date, then the snapshot relation induced by the rollback relation will be identical to
the snapshot relation induced by the historical relation.

A relation which supports both valid time and transaction time is called a temporal relation.
As already mentioned a relation which supports only transaction time is called a rollback
relation and a relation which supports only valid time is called a historical relation. Finally, a
relation which supports neither valid time nor transaction time is called a snapshot relation.
The semantics of rollback relations is depicted in Figure 7.1 and the semantics of historical
relations is depicted in Figure 7.2.

With the emergence of new mass media storage technologies, such as optical disks, the cost
associated with storage overheads of maintaining temporal relations compared to snapshot
relations is becoming affordable. In addition, new implementation techniques for temporal
data mean that the physical organisation and query processing of such relations can be carried
out efficiently.

Apart from valid time and transaction time there is another type of time, called user-defined
time. As opposed to valid and transaction time, user-defined time is not interval-based, it
simply records a time point such as a date. An example of user-defined time is a birthdate of

390 Chapter 7. Temporal Relational Databases

A,
I I I
I I I ___ __ L ____ _ ~ _ _ __ __ _ _ _ J _ __ _ _

I I I
I I I _____ L _____ J _________ J ____ _

I I
I I

valid time

An

An
I I

I I I
___ __ L ____ _ ~ __ ___ ____ J ____ _

I I
I I __ __ _ L _ __ __ J __ _ _ _ __ _ _ J _ ___ _

I I I
I I I

A, A2 An
t, ~==;;A~=A?~==~~~A~

t2 ti
t3 t2

('. ,
- -- --,----- 1 - -- -- -- -- 4-----

t' t " I I I
3 2 I

I

t't -----~-----~- -- --- - --~-- - - -3 ! I I

Fig 7.2 The semantics of historical relations

I I I
I

an employee or the date an employee was hired. In order to support user-defined time the
database system needs to support the appropriate date types.

From now on we will restrict ourselves to historical relations which record valid time without
any reference to the future. We mention that it is also possible to record information that may
be valid in the future; for example, if an employee is expected to get a salary rise in a year's time
this can be recorded in a way similar to that of recording historical data. The approach that we
take is a tuple-based one; that is, we record the valid time of tuples in a historical relation. For
example, the interval [1992,19931 in the tuple, < Reuven, 22, [1992, 19931 > of Table 7.3, refers
to the whole entity represented by this tuple. A finer-grained approach associates time with
individual attributes. For example, we could have historical attributes associated with both
DEPT _NAME and SAL for an employee's relation schema containing attributes DEPT _NAME
and SAL, recording both the change in time of an employee's department and salary.

An orthogonal issue in representing time is the granularity of time itself. For example, if we
are recording the date an employee earned a particular salary, then we can record this date in
years only (as we have done in the above examples), but we could be more accurate if we also
record the month and even the day together with the year. The granularity of time actually
used depends on the application, the finer the granularity the more accurate the information.
For example, if we are recording the price of items in a shop, then a granularity which is finer
than that of years may be needed.

Finally, we mention that a time-based domain may be discrete or continuous. In the discrete
model such a domain is isomorphic to the set of natural numbers and hence it is a countable
domain. Thus in the discrete model time is not dense in the sense that given two times tl
and t2 we cannot always find a third time, say t3, between t\ and t2. For most data processing

7.3. Historical Relations 391

applications such as recording information about employees it is natural to employ a discrete
time model. This justifies our choice of using a discrete time model. In the continuous model
the time-based domain is isomorphic to the set of real numbers and hence it is an uncountable
domain. Thus in the continuous model time is dense in the sense that given two times tl

and t2 we can always find a third time, say t3, between tl and t2 . If we are recording physical
phenomena such as the weather it may be more appropriate to employ a continuous time
model.

7.3 Historical Relations

We now extend snapshot relations to historical relations. The formalisation is based on the
extension of a relation schema to contain a historical attribute whose domain is interval-based.
Each interval in such a domain is an ordered pair of time points contained in a time domain
(see Definition 7.1) which is a linearly ordered set.

We recall the definition of chain or equivalently linear order from Subsection 1.9.2 of
Chapter 1.

Defmition 7.1 (Time domain) A countable set T is a time domain if (T, <) is a chain. We
call the elements ofT time points (time points are also referred to in the temporal database
literature as chronons). We assume that T contains a distinguished top element, denoted by
now, i.e. for all vET - {now}, v < now. •

We assume that the time points in a time domain are all of the same granularity. The issue
of time granularity was discussed in Section 7.2. By refining the granularity, say from years to
exact dates and times, we can obtain more accurate historical information. In our examples
we have chosen the granularity of time to be years.

Definition 7.2 (Interval) Let T be a time domain and x and y be time points in T. We denote
the set of all consecutive time points between x and y, with respect to the linear order <,

including x and y by Ix, y). Such a set is called a closed interval in T (or simply an interval in
Twhen no ambiguity arises). Formally, the interval Ix,y] in T is defined by Ix,y] = {v I v E
T and x ~ v ~ y}. An interval of the form Ix, x] is called a single-point interval. We can
abbreviate the notation of a single-point interval Ix, x] simply to x.

We utilise two operators from and to, which given an interval [x ,y] in T as input return the
least value, x, and the greatest value, y, of [x, y], respectively. That is, from([x, y]) = x and
to(lx,y]) = y. •

Definition 7.3 (Relationships between intervals) Let [XI, yd and [X2, Y2] be two intervals.
The following ways in which two intervals can be related were given by Allen [A1l83]:

1) The interval [XI, yd overlaps with the interval [X2 , Y21 if XI ~ X2 ~ YI ~ Y2; if XI = X2
and YI = Y2 then the intervals are equal; on the other hand, if XI = X2 but y, < Y2
then [x" YI] starts the interval [X2, Y2], and finally if x, < X2 but y, = Y2 then [x" y,]
is finished by the interval [X2, Y21.

392 Chapter 7. Temporal Relational Databases

~~~~_ >--~_~. ___ ~_~_~_~_. overlaps
•
Xl ~ ~ ~

•
X2

• during
Y2

• •

• • • • meets
Xl Y2

• • • • before
Xl Y2

Fig 7.3 Relationships between intervals

2) The interval [XI, yd is during the interval [X2, Y2] if X2 < XI ::: YI < Y2.

3) The interval [Xl, yd meets with the interval [X2, Y2] if X2 - YI = 1.

4) The interval [xI,yd is before the interval [X2,Y2] if X2 - YI > 1. •
A diagram showing the ways in which intervals are related is shown in Figure 7.3.

Defmition 7.4 (Historical domain and attribute) A historical domain H over a time domain
T (or simply a historical domain H ifT is understood from context) is the set of all intervals I
in T such thatfrom(I) -=1= now.

A historical attribute T is a distinguished attribute, whose domain, DOM(T), is a historical
domain. •

The reason for the restriction on historical domains so that their first component cannot
be now is to make sure that all intervals have a lower bound; recall that now is the top element
of time domains and thus is unbounded if the time domain is infinite. Thus we allow now to
extend into the future until it is replaced by another time point. The intervals of time domains
are also referred to in the temporal database literature as lifespans indicating a period of time
over which an object (in our case the object will be a tuple) is defined.

Definition 7.5 (Historical relation schema) A historical relation schema is a relation schema,
RH, where exactly one of the attributes in schema(RH) is historical. A historical database
schema RH is a finite set {Rf, Rf, ... , R~} of historical relation schemas. •

Historical relation schemas are not in INF, since historical domains are not atomic. In fact,
the internal structure of intervals allows us to give the desired semantics to historical relations.

From now on we will assume that H is a historical domain over a time domain T.
Furthermore, we will assume that RH is a historical relation schema, where T E schema(RH)
is a historical attribute, with DOM(T) = H, and that RH = {Rf, Rf, ... , R~} is a historical
database schema, where VRf E RH, T; E schema(Rf) is a historical attribute, with DOM(T;)
=H.

7.4. A Historical Relational Algebra 393

Defmition 7.6 (Historical relation) A historical tuple (or simply a tuple) over a historical
relation schema RH with schema(RH) = {A 1, A2 , ... , Am} is a member of the Cartesian product

DOM(A 1) x DOM(A2) x ... x DOM(Am),

where T = Ai for some Ai E schema(RH).

A historical relation ~ over RH is a finite set of historical tuples over RH. A historical
database dH over R H is a set {rf, rf, .. . , r~} such that each 1 E dH is a historical relation
over RH E RH .

I

When no ambiguity arises we refer to a historical relation rH over RH simply as the relation
rover R and to a historical database dH over RH simply as the database dover R. •

Examples of historical relations are shown in Tables 7.3 and 7.4.

From now on we will assume that r is a historical relation over R. The above definition
of a historical relation and a historical database are the same as the definitions of a relation
and a database which are not historical. The difference manifests itself by the fact that each
historical tuple in a historical relation, over R, has one attribute value over T which is an
interval. The term historical relation is justified by the semantics of now as being the top
element of a time domain, on assuming that now actually represents the current valid time.

7.4 A Historical Relational Algebra

Let us assume that the (non-historical) relational algebra includes only the basic set of
relational operators; that is, union, difference, projection, selection, natural join and renaming.
There are two basic approaches to defining a historical relational algebra. In the first
approach the historical algebra retains the semantics of the relational algebra treating historical
attributes in the same manner as non-historical attributes. The selection operator is then
extended with the less than comparison operator, <, in order to compare single-point intervals
which are linearly ordered. Finally, new historical operators are introduced to deal with time.
In the second approach the basic relational operators are extended directly to deal with time.

Herein we take the first approach which retains the semantics of the relational algebra
operators and adds new operators to deal with time. In order to motivate the new historical
operators we remind the reader of the NEST and UNNEST operators defined in Subsection 1.7.4
of Chapter lover nested relations. Assuming only one level of nesting the NEST operator
transforms a flat relation into a nested relation and the UNNEST operator transforms a nested
relation into a flat relation.

The historical operators fold and unfold [LJ88, Lor93) are analogous to NEST and UNNEST,
respectively. The fold operator transforms a historical relation into a relation whose historical
attribute values are maximal intervals, by removing intervals which are during other intervals
and unioning intervals which overlap. The motivation for defining fold is to compress the
lifespan of a tuple into as few historical tuples as possible, i.e. to remove redundancy in the
representation of historical information. On the other hand, the unfold operator transforms
a historical relation into a relation whose historical attribute values are single-point intervals.
The motivation for defining unfold is to decompress the historical information so that it can

394 Chapter 7. Temporal Relational Databases

be manipulated by selection augmented with < in the same manner as snapshot relations are
manipulated (a single-point interval [x, x] can be viewed as the single value x).

We also add another historical operator, called instantiate, which replaces the distinguished
constant now by the current time and its inverse which replaces the current time by now. The
motivation for defining instantiate is that now is unbounded and thus when manipulating
historical information we often want to put an upper bound on the attribute values of historical
attributes.

We will refer to the historical relational algebra defined in this section as the Historical
Relational Algebra (or simply the HRA). The reader will find a comprehensive survey on
temporal relational algebras in the survey paper by McKenzie Jr. and Snodgrass [MS91].

Let R be a historical relation schema, with historical attribute T, and let X = schema(R) -
T. Informally, the unfolding of a historical relation rover R is the set of all tuples t which agree
on the X-values of some tuple u in r and such that the T-value of t is a single-point interval
contained in the T -value of u. Unfolding a historical relation can be viewed as decompressing
the historical information contained in the tuples of that relation.

Definition 7.7 (Unfold operator) The unfolding, iJ,(r), of a historical relation rover R is
defined by

iJ,(r) = {t I 3u E r, 3v E u[T] such that u[X] = t[X] and to(u[T]) f=. now
and t[T] = [v , vll u {t I t E rand to(t[T]) = now} . •

Example 7.1 Let r over DEPTH, with schema(DEPTH) = {ENAME, DNA ME, T}, be the
historical relation shown in Table 7.6. The historical relation iJ,(r) is shown in Table 7.7. •

Table 7.6 The historical relation r over DEPTH

ENAME DNAME T
Reuven Computing [1991,1992]
Reuven Computing [1993, now]

Susi Computing [1994, now]
Dan Arts [1990,1992]
Dan Languages [1993, now]
Eli Economics [1991,1992]
Eli Economics [1994, now]

Naomi Medicine [1990,1990]
Naomi Medicine [1991,1994]

Informally, the folding of a historical relation rover R is the result of repetitively removing
from r all tuples t\ whose X-value agrees with that of another tuple t2 and such that the T -value
of t\ is during the T -value of t2 as well as replacing the two tuples t\, t2, which agree on their
X-values and such that the T -value of t\ overlaps or meets with the T -value of t2, by a single
tuple whose T -value is the union of their intervals. Folding a historical relation can be viewed
as compressing the historical information contained in the tuples of that relation.

7.4. A Historical Relational Algebra 395

Table 7.7 The historical relation J1-(r) over DEPTH

ENAME DNAME T
Reuven Computing [1991,1991]
Reuven Computing [1992,1992]
Reuven Computing [1993, now]

Susi Computing [1994, now]
Dan Arts [1990,1990]
Dan Arts [1991,1991]
Dan Arts [1992,1992]
Dan Languages [1993, now]
Eli Economics [1991,1991]
Eli Economics [1992,1992]
Eli Economics [1994, now]

Naomi Medicine [1990,1990]
Naomi Medicine [1991,1991]
Naomi Medicine [1992,1992]
Naomi Medicine [1993,1993]
Naomi Medicine [1994,1994]

Definition 7.8 (Fold operator) The folding, vCr), of a historical relation rover R is defined
algorithmically as the output of Algorithm 7.1, designated FOLD{r). The pseudo-code of
FOLD{r), which given as input a historical relation rover R returns the unique historical
relation vCr), is presented as the following algorithm.

Algorithm 7.1 (FOLD{r»
1. begin
2. Result := r;
3. Tmp:= 0;
4. while Tmp "# Result do
5. Tmp := Result;
6. for each tl, t2 such that tl [X) = t2 [X) but tl [T) "# t2 [T) do
7. if tllT) is during t2 [T) then
8. Result := Result - {td;
9. end if
10. if tl [T) overlaps or meets with t2[T] then
11. t:= a tuple over R with t[X] = tllX] = t2[X],

from(t[T]) = from (tllT]) and to{t[T]) = to{t2[T]);
12. Result:= {Result - (tl, t2}) u {t};
13. end if
14. end for
15. end while
16. return Result;
17. end.

Note that v{p.(r» = vCr) but in general r "# vCr).

•

Example 7.2 The historical relation v(r), where r is the historical relation shown in Table 7.6,
is shown in Table 7.8. •

396 Chapter 7. Temporal Relational Databases

Table 7.8 The historical relation v(r) over DEPTH

ENAME DNAME T
Reuven Computing [1991, now]

Susi Computing [1994, now]
Dan Arts [1990,1992]
Dan Languages [1993, now]
Eli Economics [1991,1992]
Eli Economics [1994, now]

Naomi Medicine [1990,1994]

The next historical relational algebra operator allows us to substitute all the occurrences of
now with the current valid time.

Definition 7.9 (Instantiate operator) The instantiation, 8(T), of a historical relation rover
R, whose historical attribute is T, is defined to be the relation resulting from replacing
the occurrence of now in an interval of any tuple t in r by the domain value in DOM(T)
corresponding to the valid current time.

In order for 8(r) to make sense in the context of a historical relation we must assume that
the current valid time is always greater than or equal to the largest time point in an interval of
any tuple in r. .

The inverse of the instantiate operator of a historical relation rover R, denoted by 8- 1 (T),
is thus also well defined; r 1 (r) is the historical relation resulting from substituting all
occurrences of the current valid time in any tuple in r by the distinguished value now. •

The reason that the instantiate operator is necessary is that intervals of the form [v, now]
are infinite, since we have defined now to be the top element of the domain of a historical
attribute T. By instantiating a historical relation and then unfolding it we obtain a historical
relation such that all its historical attribute values are single-point intervals of the form [v , v]
(or simply v), which can easily be manipulated by the standard relational algebra operators
defined in Subsection 3.2.1 of Chapter 3.

A recent comprehensive exposition on the semantics of now in temporal databases can
be found in [CDI+97] . A pessimistic interpretation of now will give a negative answer to
the query, "Will Reuven be employed in the Computing department next year?". In this
approach now is a variable which can only refer to the current valid time. In the HRA we
can enforce this interpretation by always instatiating a historical relation prior to querying
it with a selection. On the other hand, an optimistic interpretation of now such as forever,
will give a positive answer to the above-mentioned query, and to any query on the future
employment of Reuven. Our semantics of now, as an end point of an interval, are compatible
with this optimistic approach. An intermediate approach is to interpret now as until changed
[WJL93]. Using the until changed approach we acknowledge the fact that, for example,
Reuven will eventually retire or leave the company, and therefore Reuven cannot be employed
forever. In order to make this interpretation more precise we could introduce indeterminate
instants, resulting in intervals such as [1997,2000 rv 2050], indicating that one of [1997,2000],
[1997,2001], . . . , [1997,2050] is the true interval but at the moment we do not know which
one.

7.4. A Historical Relational Algebra 397

Example 7.3 Let s be the historical relation over DEPTH, shown in Table 7.8, and assume that
the current valid time is 1994. The historical relation 8(s) over DEPTH is shown in Table 7.9
and the historical relation 8-1(8(s» over DEPTH is shown in Table 7.10. •

Table 7.9 The historical relation o(s} over DEPTH

ENAME DNAME T
Reuven Computing [1991,1994)

Susi Computing [1994,1994)
Dan Arts [1990,1992)
Dan Languages [1993,1994)
Eli Economics [1991,1992)
Eli Economics [1994,1994)

Naomi Medicine [1990,1994)

Table 7.10 The historical relation o-I(o(s)) over DEPTH

ENAME DNAME T
Reuven Computing [1991, now)

Susi Computing [1994 , now)
Dan Arts [1990,1992)
Dan Languages [1993, now)
Eli Economics [1991,1992)
Eli Economics [1994, now)

Naomi Medicine [1990, now)

All the standard relational algebra operators defined in Chapter 3 are considered to be part
of the historical relational algebra with the provision that when a standard operator is applied
to a historical relation then intervals are considered to be atomic values. In order to make
the historical relational algebra more expressive, we also extend simple selection formulae
by allowing expressions of the form T < v and 1j < 72, where T, 1j and 72 are historical
attributes. {The expression, T ~ v, is an abbreviation of the selection formula (T < v) v
(T = v), and similarly the expression, 1j ~ 72, is an abbreviation of the selection formula
(1j < 72) v (1j = 72).) The comparison operator, <, in combination with equality (=)
allows us to compare single-point intervals with respect to the linear order on time domains
in historical queries. (For simplicity we assume that < and = are generic in the sense that they
operate on any time domain.)

When we compare intervals (which may not be single-point) we can only use equality, since
we consider intervals to be atomic values. A further extension to simple selection formulae
which allows us to compare intervals (which may not be single-point) in a general manner is to
allow expressions of the form Top [VI , V2) and 1j op 72, where op is one of the relationships:
overlaps, meets, during or before. Such an extension is convenient but does not add expressive
power to the algebra, since by using instantiate and unfold we can always reduce any interval
to a finite set of single-point intervals.

We now give some examples of historical relational algebra queries which illustrate the
above definitions. Let r be the historical relation over DEPTH shown in Table 7.6.

398 Chapter 7. Temporal Relational Databases

The query "Retrieve the employees who were working in 1993" is given by

lrENAME(aT =1993(J,.l.(8(r)))).

The query "Retrieve the employees who were working before 1993" is given by

lrENAME(aT <1993(J,.l.(8(r)))).

The query "Retrieve the employees who were working during 1992 and 1993" is given by

Let HUSBAND and WIFE be historical relation schemas with schema(HUSBAND) = {Cm,
T} and schema(WIFE) = {Cm, T}, representing the years during which husbands and their
wives were studying for their first degree; the attribute cm is a unique identifier for each
husband and wife couple. Furthermore, let rl be a historical relation over HUSBAND and r2

be a historical relation over WIFE. The query "Retrieve the couples and the years in which
both husband and wife were studying for their first degrees" is given by

7.S Historical Relational Completeness

Herein we briefly discuss the concept of relational completeness of a query language in the
context of historical relations. Recall Definition 3.21 in Chapter 3 which stated that a query
language is relationallycomplete if it is at least as expressive as the relational algebra. Thus, the
HRA is a relationally complete query language, since it includes the basic relational algebra
operators. However, the HRA is not just relationally complete, since it also enables us to
manipulate historical information, and thus we need some further criterion to measure its
expressiveness.

In order to measure the expressiveness of an algebra with respect to the manipulation of
historical information we can give semantics to historical algebra queries in terms of temporal
logic. In particular, linear temporal logic serves this purpose, where relative to a given time
point, the previous temporal operator is used to refer to the time point just prior to the present
one, and the since temporal operator is used to refer to an interval in the past [Eme90, MP92j.
Correspondingly, relative to a given time point, the next temporal operator is used to refer to
the next time point in the future and the until temporal operator is used to refer to an interval
in the future [Eme90, MP92j.

Suppose that A and B are (non-historical) relational algebra queries which are either true
(i.e. their answer contains one or more tuples) or false (i.e. their answer is empty) with respect
to a snapshot relation at some time point Xj .

• The definition of previous A is given by
previous A is true at time point Xj if A is true at the time point just prior to Xj.

• The definition of next A is given by
next A is true at time point Xj if A is true at the time point just after Xj.

7.5. Historical Relational Completeness 399

• The definition of A since B is given by
A since B is true at time point Xj if B is true at some past time point relative to Xj' say Xi,

and A is true throughout the whole interval [Xi, Xj] •

• The definition of A until B is given by
A until B is true at time point Xj if B is true at some future time point relative to Xj' say
Xi, and A is true throughout the whole interval [Xj , xd .

A historical relational algebra is said to be historically relationally complete if it is equivalent
to a first-order linear temporal logic with the temporal operators, previous, since, next and
until. As with the relational calculus the semantics of such a first-order temporal logic must
be restricted to finite models. It is interesting to note that in [AHV95a, AHV96, TN96] it was
shown that it is not sufficient to enhance the standard relational algebra only with the future
temporal operators next and until, since we then obtain a strictly less expressive relational
algebra than the one where, in addition, we have the past temporal operators previous and
since. In particular, the query, "is there a time point, say Ti, at which a given relation contains
exactly the same tuples as it had in the first time point, say TI, when the relation became
nonempty, and such that TI < Ii?", is not expressible with the future temporal operators only
but is expressible by using both the past and future temporal operators.

If we enhance the relational algebra with the above temporal operators then all the
interaction of the resulting query language with the historical domain of relations is implicit
and encapsulated within the temporal operators. In this approach, which we call the temporal
operators approach, the historical attributes are essentially hidden from the user. As opposed
to the temporal operators approach, an alternative approach is to enhance the relational
algebra by adding to it a binary less than operator for comparing time points, wherein time is
referenced explicitly. The resulting logic is a first-order logic with equality and linear order.
This approach, which we call the linear order approach, was taken in the HRA defined in
Section 7.4, where we use the less than comparison operator, <, to explicitly compare two
time points.

In [AHV95a, AHV96, TN96] it was shown that a historical relational algebra defined by using
the temporal operators approach is strictly less expressive than a historical relational algebra
defined by using the linear order approach. In particular, the query, "are there two distinct
time points at which a given relation contains exactly the same tuples?", is not expressible in
a HRA of the temporal operators approach but is expressible in a HRA of the linear order
approach.

We leave it to the reader to verify the following theorem.

Theorem 7.1 The HRA is historically relation ally complete. o

The reader can find more details regarding historically relationally complete query
languages, both algebras and calculi, in [TC90, GM91, CCT93] and also in [KSW90]; the
latter deals with the problem of representing infinite temporal information. It is interesting
to note that historical completeness does not take into account the support needed to manage
and analyse time series data [SMDD95] (see [Cha96] for an introduction to time series).

400 Chapter 7. Temporal Relational Databases

7.6 TSQL2

Herein we give a brief overview of TSQL2 [Sn095j, which is an upwards compatible temporal
extension of SQL2 [DD93j. The rationale for defining TSQL2 is the growing demand for
consistent and cohesive DBMS support for temporal relations. TSQL2 is an attempt to
consolidate the main proposals for temporal relational query languages that have been
developed. We summarise, mainly through examples, TSQL2's support of temporal data
types, its support of specifying time points at different granularities and the ability to change
the granularity of time points, its support of both valid and transaction time, and its querying
facility over temporal relations.

In TSQL2 dates and times can be specified as one of three temporal data types: DATE, TIME
and TIMESTAMP. A literal over one of these data types is called a datetime. An example of a
date time literal of type DATE is given by

DATE '1996-08-23'

An example of a datetime literal of type TIME is given by

TIME '12 :44:20'

An example of a datetime literal of type TIMESTAMP is given by

TIMESTAMP '1996-08-23 12 :44 :20'

TSQL2 also supports two data types for specifying intervals. The first data type INTERVAL
specifies a duration of time with known length but without any specific starting or ending
datetimes. An example of a literal specifying an interval of two months is given by

INTERVAL '2' MONTH

An example of a literal specifying an interval of two hours, two minutes and two seconds is
given by

INTERVAL '2:02:02' HOUR TO SECOND

The second data type for specifying an interval is PERIOD, which defines a duration of time
with a starting and ending datetime. An example of a literal specifying a period of one month
is given by

PERIOD '[1997-08-01 - 1997-09-01]'

An example of a literal specifying a period of one month down to the granularity of seconds
is given by

PERIOD '[1996-08-0101:10 :00 - 1996-09-0123:30:59]'

TSQL2 also supports arithmetic operations, such as addition and subtraction, between
datetime literals and between interval and period literals. Moreover, comparison operators

7.6. TSQl2 401

between datetimes and between periods, which implement the semantics of Allen's operators,
i.e. overlaps, meets, during and before, are supported in TSQL2 (see Definition 7.3).

Moreover, TSQL2 supports multiple calendars such as the Gregorian calendar and the
Lunar calendar. In addition, TSQL2 allows users to specify time points in different ways. For
example, three different ways of specifying August 1, 1998 are:

DATE '1998-08-01'
DATE 'August 1, 1998'

DATE '01/08/98'

TSQL2 also supports the distinguished datetime now, which is treated as a variable that is
assigned the current datetime during query and update processing (see Definition 7.1).

Time points (called instants in TSQL2) can be specified at different granularities; for
example, salary increases are typically measured to the granularity of years, birthdates are
typically measured to the granularity of days and lecture timetables are typically measured
to the granularity of minutes. TSQL2 provides two operators SCALE and CAST which allow
users to change the granularity of instants. Several examples that illustrate the semantics of
SCALE are given below.

SCALE(DATE '1996-08-21' AS YEAR) = '1996'
SCALE(DATE '1996-08-21' AS MONTH) = '1996-08'
SCALE(DATE '1996-08-21' AS DAY) = '1996-08-21'
SCALE(DATE '1996-08-21' AS HOUR) = '1996-08-21 00' ~ '1996-08-21 23'
SCALE(DATE '1996-08-21' AS MINUTE) '1996-08-21 00:00' ~ '1996-08-21 23 :59'
SCALE(DATE '1996-08-21' AS SECOND) = '1996-08-21 00:00 :00' ~ '1996-08-21 23:59:59'

The symbol ~, in the last three examples above, means that the scaling of the datetime to the
granularity of hours results in an indeterminate instant, with the exact hour being somewhere
in between 00 and 23. Several examples that illustrate the semantics of CAST are given below.

CAST(DATE '1996-08-21' AS YEAR) = '1996'
CAST(DATE '1996-08-21' AS MONTH) = '1996-08'
CAST(DATE '1996-08-21' AS DAY) = '1996-08-21'
CAST(DATE '1996-08-21' AS HOUR) = '1996-08-21 00'
CAST(DATE '1996-08-21' AS MINUTE) '1996-08-21 00:00'
CAST(DATE '1996-08-21' AS SECOND) = '1996-08-21 00:00:00'

As can be seen from the above examples the behaviour of CAST is the same as that of
SCALE when converting from a finer granularity to a coarser granularity or one that has the
same granularity. On the other hand, when converting from a coarser granularity to a finer
granularity then a determinate instant is produced which is the first instant in the specified
granularity.

TSQL2 supports both valid time and transaction time. Herein we concentrate on TSQL2's
support of historical relations, i.e. temporal relations which record past valid time only.

In TSQL2 we can define a historical relation over the historical relation schema EMPH with
the TSQL2 create table statement as follows:

402

CREATE TABLE EMP
(ENAME CHAR(30),
SALARY DECIMAL(5),
PRIMARY KEY (ENAME»

AS VALID STATE;

Chapter 7. Temporal Relational Databases

The keywords AS VALID STATE define the table to be a historical relation recording valid
time. In addition, we can define a historical relation over the historical relation schema
DEPTH, with the TSQL2 create table statement as follows:

CREATE TABLE DEPT
(ENAME CHAR(30),
DNAME CHAR(20),
PRIMARY KEY (ENAME»

AS VALID STATE;

We now introduce the flavour of TSQL2 queries over the historical relations we have just
created via some examples.

The query asking for the employees who earned more than 15 in any year of their
employment is given by

SELECT SNAPSHOT ENAME
FROM EMP(ENAME, SAL) (PERIOD) AS E
WHERE E.SAL > 15

The keyword SNAPSHOT specifies that a snapshot relation, i.e. a standard relation, is
returned. The keyword PERIOD specifies that the EMP table should be folded or using TSQL2's
terminology that it be coalesced. The keyword AS defines a correlation name which is an alias
for a relation schema; in this case E is an alias for EMP.

The query asking when did Reuven work in the Computing department is given by

SELECT VALID(D)
FROM DEPT(ENAME, DNAME) (PERIOD) AS D
WHERE D.ENAME = 'Reuven' AND D.DNAME = 'Computing'

The keyword VALID specifies that a period representing the valid time of the tuples in the
answer relation be returned.

The query asking how many years did employees work and in which departments is given
by

SELECT SNAPSHOT ENAME, CAST(VALID(D) AS INTERVAL YEAR)
FROM DEPT(ENAME, DNAME) AS D

The CAST operator converts valid time periods into intervals of years and the SNAPSHOT
keyword specifies that the resulting relation is a standard one, noting that attributes in standard
relations can have a temporal data type.

The query asking for the department that Dan worked in immediately after he left the Arts
department is given by

7.7. Historical Key Dependencies

SELECT SNAPSHOT ENAME
FROM DEPT(ENAME, DNAME) (PERIOD) AS El E2
WHERE El.DNAME = 'Arts' AND E2.DNAME < > 'Arts'
AND El.ENAME = 'Dan' AND El.ENAME = E2.ENAME
AND VALID(EI) MEETS VALID(E2)

403

The query asking for the employees of the Computing department who earned more than
10 and when these employees earned such a salary is given by

SELECT E.ENAME, INTERSECT(VALID(E), VALID(D))
FROM EMP(ENAME, SAL) AS E, DEPT(ENAME, DNA ME) AS D
WHERE E.ENAME = D.ENAME AND DNA ME = 'Computing' AND SAL > 10
AND VALID(E) OVERLAPS VALID(D)

A critical evaluation of TSQL2 is given in [ART95], where clarifications and suggested
modifications to TSQL2 are discussed. Issues concerning the completeness of TSQL2 are
discussed in [BJS95].

7.7 Historical Key Dependencies

The notion of key dependency is fundamental to the relational model and thus it must be
extended to the temporal relational model. (See Definition 3.61 from Subsection 3.6.1 of
Chapter 3 for the notion of key in the relational model and Definition 4.1 from Section 4.1
of Chapter 4 for the notion of key dependency.) Herein we will consider the meaning of a
historical key dependency being satisfied in a historical relation r over a historical relation
schema R with historical attribute T.

Let S be a (non-historical) relation schema such that schema(S) = schema(R) - {T}. A key
dependency for R is a statement of the form, K ---* schema(S), where K is a subset of schema(S).
Intuitively, K ---* schema(S) is satisfied in r if the key dependency K ---* schema(S) is satisfied
in the projection onto schema(S) of all the partitions of the unfolding of r according to its
single-point intervals, and K is a minimal set of attributes satisfying this condition. In other
words, this means that the key dependency K ---* schema(S) is satisfied in all snapshot relations
induced by the time points recorded in r.

Defmition 7.10 (Historical key) Let r be a historical relation over R, with historical attribute
T, S be a relation schema such that schema(S) = schema(R) - {T} and K S; schema(S). Then
K ---* schema(S) is a historical key dependency for r if for all v E JrT(l'i(J.L(r))) the following
two conditions hold:

I) uniqueness: Jrschema(S) (aT =v(J.L(r))) satisfies the FD K ---* schema(S); and

2) minimality: for no proper subset X C K is X ---* schema(S) a historical key dependency
for r.

A set of attributes K S; schema(S) is a historical key for rover R if K ---* schema(S) is a
historical key dependency for r. •

404 Chapter 7. Temporal Relational Databases

Example 7.4 The unique historical key for the historical relation over EMPH shown in
Table 7.3 is {ENAME}. The unique historical key for the historical relation over MGRH
shown in Table 7.4 is {MNAME}. The unique historical key for the historical relation over
DEPTH shown in Table 7.6 is {ENAME}. •

There is an overhead in checking whether a set of attributes K is a historical key for a historical
relation compared with checking whether K is a key for a relation which is not historical. The
overhead is linear in the number of time points (or equivalently single-point intervals) in
JTT(p,(r}). (See Check_Primary_Key(r, X), which checks whether X is a primary key of r; the
pseudo-code for Check_Primary_Key(r, X} is given as Algorithm 3.6 in Subsection 3.6.1 of
Chapter 3.} In practice checking whether K is a historical key can be done incrementally when
the historical relation is updated.

Wijsen [Wij95] distinguished between two types of historical key dependency (or more
generally historical functional dependency). As an example of the first type consider the
historical key ENAME for DEPTH, which states that at all time points an employee works in
a single department. Assuming that an employee works in the same department at all times
then we have an example of a temporal key. As an example of the second type let us add the
attribute RANK to the historical relation schema EMpH, denoting the rank of an employee
in the department he/she works in. Then, stating that at any two consecutive time points the
{ENAME, SALARY}-value of an employee uniquely determines the employee's RANK and,
in addition, that {ENAME, SALARY} is a key at the current time, i.e. now, is an example
of {ENAME, SALARY} being a dynamic temporal key. Intuitively, {ENAME, SALARY} is a
dynamic temporal key if the rank of an employee changes only when their salary changes from
one time point to the next time point.

The notion of a foreign key can also be extended to historical relations, essentially by
asserting that the standard notion of referential integrity is satisfied at all time points recorded
in the historical database. More general integrity constraints, which specify that a first-order
formula is satisfied at all past time points recorded in the database, are discussed in [Ch094j.

We close this section by referring to [Via87, Via88j wherein a dynamic version of the FD is
investigated in the context of rollback relations. Let us call the state of a relation prior to the
commitment of a transaction an old relation and the state of a relation after the transaction
is committed a new relation. Then a Dynamic FD (or simply a DFD) specifies the evolution
of an FD from an old relation to a new relation. Let us assume that the EMP ~OW relation
schema has an additional attribute PERFORM, which records the current performance of an
employee as recorded in the employee's last assessment. Then a DFD from old PERFORM and
old SALARY to new SALARY specifies that an employee's new salary is uniquely determined
by his/her previous performance and his/her old salary. In the above-mentioned papers Vianu
also discusses the effect of the age of tuples on a given set ofFDs with respect to a set ofDFDs,
which constrain the transition from old relations to new relations. The age of a tuple is defined
to be the number of times that the tuple has been modified since it was originally inserted
into the relation. This leads to the notion of a set of tuples having survivability k if this set of
tuples can be validly modified k times, according to a set ofDFDs, and still satisfy a given set
of FDs and any new FDs which are logically implied by these DFDs.

7.8. Schema Evolution 405

7.8 Schema Evolution

So far we have not allowed the schema of relations to change over time, but in practice as
an application evolves so does its database schema. For the purpose of discussing schema
evolution it is more convenient to view a temporal database as a nonempty finite sequence,
k ::: I, of indexed pairs, namely

Each indexed pair (Ri, di)i, i E {I, 2, ... , kJ, which is called a version, consists of a database
schema Ri and a snapshot database (or simply a database) di over Ri, with i being the
timestamp associated with the pair. The set {I, 2, .. . , k} is the set of timestamps associated
with the temporal database; each timestamp represents the transaction time associated with
the relevant version. Thus a version denotes the database together with its schema as they are
at a particular transaction time during the evolution of the database.

Let us consider two consecutive versions (R; , d;); and (Rj, dj)j, withj = i + 1. If these two
versions are identical then no change has occurred between transaction times i and j. On
the other hand, if Ri = Rj but d; ::j:. dj, then the database schema has not changed between
transaction times i and j but the database has been updated. Finally, if R; ::j:. Rj and thus
also di ::j:. dj, then the database schema has evolved between transaction times i andj, which
implies that the database has also been updated correspondingly. Therefore, a temporal
database consisting of a sequence of versions supersedes the notion of a rollback database
(i.e. a set of rollback relations) by allowing both the database schema and the database to
change over time. In the rest of the section we will concentrate on the situation when the
schema evolves, i.e. where R; ::j:. Rj; see Subsection 3.2.4 of Chapter 3 which defines an update
language for the relational model, for the situation when R; = Rj but d; ::j:. dj. (Hereafter when
the database consists of a single relation r over a relation schema R, we will write (R, r); as a
shorthand for ({R}, (r})i.)

The following types of schema evolution operations are possible at transaction time i:

1) Change the domain of an existing attribute in a relation schema R E Ri.

2) Rename the name of an attribute in a relation schema R E R;.

3) Add a new attribute to a relation schema R E Ri.

4) Remove an existing attribute from a relation schema R E Ri.

5) Add an empty relation over a new relation schema, R if. R;, to the database di .

6) Remove an existing relation r and its associated relation schema R E Ri from the database
di.

The semantics of the above operations can be formalised in terms of a mapping which
transforms (Ri, d;); into (Rj, dj)j, where j = i + 1. To illustrate these semantics, consider the
relation rover EMP, where schema EMP consists of the attributes ENAME (employee name),
SAL (employee salary in pounds sterling) and EXT (employee phone extension). Viewed at
transaction time, say 1, we have the version (EMP, rh, shown in Table 7.11.

406 Chapter 7. Temporal Relational Databases

Table7.11 The version (EMP, rlJ
ENAME SAL EXT
Reuven 22 6712

Dan 10 6704
Eli 20 3684

Naomi 20 7214

Now, suppose that we would like to change the domain of SAL from pounds sterling to
Ecu (European currency unit). Then the transformation from (EMP, r)1 to (EMP, rah at
transaction time 2 can be defined in terms of an update routine which converts all the salaries
of employees in r from pounds sterling to Ecu, resulting in ra. Next suppose that we would
like to rename the attribute ENAME to be called EMP _NAME. Then the transformation from
(EMP, rah to (EMPa, rah at transaction time 3 renames ENAME in schema(EMP) such that
schema(EMPa) = (schema(EMP) - {ENAME}) U {EMP_NAME}, and leaves Ta unchanged.
Next, assume that we would like to add a new attribute, called EMAIL (email address), to
EMPa, so the transformation from (EMPa, rah to (EMPb , rb)4 at transaction time 4 adds this
attribute to schema(EMPa) such that schema(EMPb) = schema(EMPa) U {EMAIL}, and then
extends ra by an additional column for this attribute, resulting in rb, initially having a null
value as the EMAIL-value of the extended tuples; the resulting version at transaction time 4 is
shown in Table 7.12.

Table 7.12 The version (EMPb. rb)4

EMP~AME SAL EXT EMAIL
Reuven 26.8 6712 null

Dan 12.2 6704 null
Eli 24.4 3684 null

Naomi 24.4 7214 null

Thereafter in further versions, the actual email addresses of employees will replace the null
values. Suppose that the company decides to supply each employee with a mobile phone and
as a result to remove the attribute EXT from schema(EMPb). Then the transformation from
(EMPb, rb)4 to (EMP e, re)s at transaction time 5 deletes EXT from schema(EMPb) such that
schema(EMP c) = schema(EMPb) - {EXT}, and replaces rb by its projection onto schema(R)
- {EXT}, thus yielding re. The company then decides to create a new relation over a relation
schema, MGR, to store information about managers. Then (EMPe, re)s is transformed into
({EMPe, MGR), {Te, S})6 at transaction time 6, where s is the new relation in the database over
MGR. Initially s is empty, and eventually it will be populated with the relevant information
about managers. Finally, the company has decided to fire all of its managers as a result of
restructuring and thus ({EMPe, MGR), Ire, S})6 is transformed to (EMPe, reh at transaction
time 7.

We refer the reader to [Rod92] for an annotated bibliography on schema evolution and to
[Rod96] for a recent survey of the area. Schema evolution in the context of TSQL2, where
timestamping attributes are proposed, is discussed in [Sn095, Chapter 22] and in [DGS97j,
and for schema evolution in the context of object-oriented database systems see [ZCF+97,
Part VIj. Finally, the problem of evolving a set of data dependencies, and in particular a set of
FDs, was discussed at the end of Section 7.7.

7.9. Discussion 407

7.9 Discussion

Handling temporal information is a natural extension of the basic relational model capabilities.
Although the formalism we have presented deals only with historical data such as maintaining
the salary history of employees, it can also cater for future data such as yearly salary increases
and bonuses for employees. One of the main current challenges for temporal databases is
to solve the physical database problem of efficient storage and retrieval of temporal data. If
large volumes of temporal data are to be available online, then it must be organised efficiently.
This also has had an impact on logical database design; the effect of temporal databases on
normalisation theory is discussed in [JSS92, Wij95). A comprehensive collection of papers
on temporal database issues is [TCG+93). The field of temporal relational databases is still
an active and evolving area of research. For instance, it was recently shown that a point
based approach, which does not use intervals, is expressively equivalent to the interval-based
approach [Tom96). A temporal extension of SQL founded on the point-based approach is
proposed in [Tom97) .

We did not mention spatial databases [SA95], which are required in Geographic Information
Systems (GISs), but there is a close connection between temporal and spatial information.
See [RU71, Van83) for the logical aspects of spatial information as opposed to temporal
information. From a practical point of view spatial databases are mainly concerned with
the description and manipulation of geometric data consisting of points, lines, rectangles,
polygons and more general surfaces. A recent investigation of the expressive power of queries
for spatial databases based on first-order logic over the set of real numbers can be found in
[PVV94). An alternative semantics for spatial databases based on topological relationships
between regions such as disjointness, overlap, equality, containment and meet, can be found
in [PSV96).

7.10 Exercises

Exercise 7.1 A historical relation r over a historical relation schema RH is in First Historical
Normal Form (lHNF) if r = v(J./.(r}), i.e. r remains unchanged when we unfold r and then fold
it. Give an equivalent definition of IHNF in terms of the relationship between the intervals
over H for any two tuples in a historical relation r. Provide justification for the desirability of
lHNF (JSS92).

Exercise 7.2 Generalise Definition 7.10 of a historical key to that of a Historical Functional
Dependency (HFD).

Exercise 7.3 Use your definition of an HFD from Exercise 7.2 to define a generalisation of
BCNF for historical relations [JSS92).

Exercise 7.4 TSQL2 supports the built-in operators BEGIN and END, where BEGIN(P} returns
the starting date time of the period P and END(P} returns the ending datetime of the period
P. Show how Allen's overlaps operator can be implemented in TSQL2 using BEGIN and END
[Sno95, Chapter 8).

408 Chapter 7. Temporal Relational Databases

Exercise 7.5 TSQL2 supports indeterminate instants such as '1996-03' r..., '1996-11',
meaning that the exact month in 1996 is somewhere between March and November. In
addition, a probability distribution can be specified for such an indeterminate instant,
indicating the likelihood of each possible instant. Suggest, via an example, how this TSQL2
feature can be used to retrieve tuples that are more probable [Sn095, Chapter 18).

Exercise 7.6 Suggest the meaning of the aggregate functions MIN, MAX and COUNT
operating on datetime literals [Sn095, Chapter 20) . (See Subsection 3.2.1 of Chapter 3 for
a formalisation of aggregate functions in the context of the relational algebra.)

Exercise 7.7 Optimisation of historical queries is more difficult than optimisation of
snapshot queries mainly due to the fact that historical relations grow monotonically with
the number of transactions. Suggest how the fact that time is linearly ordered can be used by
a historical query optimiser [LM93).

Exercise 7.8 A temporal relation, as opposed to a historical relation, can store information
about the future, in addition to storing information about the past. Suggest how the data
model for historical relations can be extended to cater for temporal relations. For example, it
would be useful to be able to store the information that a supervisor meets his project students
once a week at a specified time (see [KSW90)).

Exercise 7.9 Suggest how spatial data can be represented via the framework of historical
relations by adding the new basic data type coordinate, representing a point, say (x , y), in
two-dimensional space (see [SA95)).

8. Concurrency Control

So far we have not addressed the problems relating to concurrently accessing a database in a
multi-user environment. In the real world single-user databases on microcomputer systems
are not adequate to meet the needs of many organisations and companies. Often more than one
user may wish to read or update the database simultaneously. This can lead to an inconsistent
database. As with any information, ifit is not accurate for whatever reason, its value is reduced
and it may cause problems for the user. The usefulness of a database system depends on the
reliability of its data at all times. For example, a database system which allowed two people
to book the same seat on an airline flight, with the resulting confusion and likely customer
dissatisfaction, would be oflittle use indeed, unless of course the airline has a deliberate policy
of double booking a certain percentage of seats.

Concurrent access control is required when two or more users have concurrent access to a
database system. This requirement is increased when simultaneous access is permitted and
where update of data is relatively unrestricted. Modern database systems, such as aircraft
reservation systems and banking systems, rely upon fast access to information. Delay in
accessing data is simply unacceptable. Hence, serial operation allowing only one user at a
time to access data at any given time is not acceptable. Support for concurrent usage of a
database system is needed and expected.

The concept of a transaction is central to the explanation of concurrency. A transaction
is a logical unit of work that transforms a database from one consistent state to another,
without being required to preserve consistency at all intermediate points in the transformation.
Transactions are required to be atomic, which means that either all the operations within a
transaction must be executed to completion or none at all. For example, the transfer of money
out of one account and into another in a banking database involves two distinct operations,
namely debit and credit, within the transfer transaction (see Algorithm 8.1). Yet either both
are performed to completion and the transfer is successful, or the transaction is terminated
and the transfer fails. The atomicity requirement ensures that one operation of a funds transfer
transaction cannot alter the data in one of the two accounts without completing the transfer.
This requirement helps to maintain the consistency of the database by ensuring that in the
event of a transaction failure, the database is returned to a state such that it could be considered
that the transaction never started. In fact, consistency of the database could be maintained in
this case via Algorithm 8.2 (in our case for i = 2), which should yield the same result prior to
the invocation of Algorithm 8.1 and after its successful completion.

In Section 8.1 we describe how the concurrency control problem arises. In Section 8.2
we deal with serialisability and in Sections 8.3, 8.7 and 8.8 we present three different

409

410 Chapter 8. Concurrency Control

approaches, respectively, for enforcing serialisability, namely locking, timestamp ordering
and serialisation graph testing. In Sections 8.4 and 8.5 we deal, respectively, with the
corresponding problems of deadlock and lock granularity, and in Section 8.6 we briefly
consider the software component of a DBMS that manages locks, i.e. the lock manager.

Algorithm 8.1 (Funds Transfer Transaction)
1. begin
2. read(Accounts[accountl), balancel};
3. read(Accounts[account2), balance2};
4. read(amount};
5. newBalancel := balance 1 - amount;
6. write(Accounts[accountl), newBalancel};
7. newBalance2:= balance2 + amount;
8. write(Accounts[account2], newBalance2};
9. commit;
10. end.

Algorithm 8.2 (Total Balance)
1. begin
2. total Balance := 0;
3. for i iterating though all account numbers
4. read(Accounts[i], balance};
5. totalBalance := totalBalance + balance;
6. end for
7. output(totaIBalance};
8. commit;
9. end.

8.1 Manifestations of Concurrency Control

In the following we assume that the database is partitioned into data items (or simply items).
The nature and the size of a data item are chosen by the system designer. In the relational
model a large data item could be a relation and a small data item could be a single tuple or
even a component thereof.

In the context of concurrency control there are only four essential operations pertaining
to a transaction; namely read, write, commit, and abort. A transaction ends with a commit if
all the changes made to a database instance are to become permanent. If a transaction ends
up with an abort all the aforesaid changes are to be undone, and we refer to such a situation
by saying that the transaction is rollbacked. We call this model of transaction operations the
Read/Write (RW) model.

The justification for employing this low level approach to transactions is that it deals only
with the fundamental DBMS operations and thus is independent of the conceptual model, i.e.

8.1. Manifestations of Concurrency Control 411

the relational model. The RW model is also the most widely accepted model for reasoning
about database concurrency issues. An alternative approach is to employ the conceptual
model of transactions presented in Subsection 3.2.4 of Chapter 3, which we hereafter call the
Insert/Delete/Modify (IDM) model [VV92]. The IDM model is semantically richer than the RW
model and thus there is more scope for transaction processing optimisation than in the RW
model by utilising Theorem 3.8 given in the above-mentioned subsection. On the other hand,
the formalisation of concurrency control in the context of the IDM model is more complex.

The following definition formalises transactions by considering only their essential
operations.

Defmition 8.1 (Transaction) A transaction is a sequence T of transaction operations (or
simply operations) such that

1) the positions of T are filled with one of: read(T, x), write(T, x), commit(T), abort(T),
where x is a data item (when T is understood from context then we abbreviate the above
to: read(x), write(x), commit and abort, respectively);

2) commit(T) occurs in T if and only ifT is not aborted;

3) if either commit(T) or abort(T) occurs in T, then it occurs in the last position ofT.

The operations of a transaction T are often referred to as the elementary steps of T. The
readset of a transaction T is the set of data items T reads, and the writeset ofT is the set of data
items T writes. •

A useful yardstick by which transactions can be evaluated is known as the ACID test.
Transactions pass the ACID test if they possess the following qualities:

• Atomicity. Each transaction must have no observable intermediate states. Hence, even
if the transaction amends a data item many times to achieve its final update, then
these changes should not be visible to any other transaction. This is equally true if the
transaction does not alter the database or if it fails .

• Consistency. The database is assumed to be in a consistent state at the start of a
transaction and at the end of it, whereby consistency refers to the database satisfying a
set of integrity constraints.

• Isolation. A transaction should not have any unintended side-effects. For example, if
the sole action of a transaction is intended to transform data item A into data item B,
then it should not transform, as a side-effect, another data item C into data item D.
Moreover, a transaction should be seen as if it were in single-user mode.

• Durability. If a transaction changes data item A into data item B then this change should
also last, i.e. be persistent, until another transaction wishes to update B. In the short
term, this means that an update should at least persist until the end of its transaction
without being overwritten by another transaction. In the longer term, this guideline
means that updates must be written to some form of permanent storage.

412 Chapter 8. Concurrency Control

The term concurrency should not incline the reader to assume that different transactions are
actually being carried out simultaneously. Assuming that there is only one central processing
unit in a database system, then only one operation can be carried out during one machine
cycle. Many processor operations or machine cycles may be needed to carry out just one
database transaction. The execution of two database transactions can however be interleaved,
with the processing of one transaction being started but not completed before the execution
of the other transaction begins. Indeed the execution of a transaction may depend upon the
processing of another concurrent transaction. In a multiprogramming environment, with
processor time shared among several concurrent transactions, access control is necessary.
We next give a succinct yet general definition of concurrency control.

Defmition 8.2 (Concurrency control) Concurrency control is the activity of coordinating the
actions of transactions that operate concurrently, access shared data, and therefore potentially
interfere with each other. •

Transactions interleaving their access to a database can result in interference. The problem
of avoiding this interference is termed the concurrency control problem. A concurrency con trol
algorithm is used to regulate the interleaving of concurrent transactions. This ensures that all
transactions are executed atomically and that no interference takes place between transactions.

We next consider various manifestations of the concurrency control problem. Data held in
a database system must be correct and reliable to sustain user confidence. Unless controls are
maintained on concurrent access to data, inconsistencies arise which undermine the integrity
of the data and render the database virtually useless. Executing concurrent transactions
without controls gives rise to classic anomalies which need to be addressed. There now
follows an explanation of these anomalies.

The best known of these anomalies is the lost update anomaly. This occurs where two
concurrent transactions read the same data, modify it, and write a value back to the database.
Depending upon the order in which operations are processed, interference between the two
transactions may result in one of the updates being ignored by the database system (see
Table 8.1). The contents of such a table are referred to as a transaction history (cf. schedule,
Definition 8.3).

Table 8.1 Example of the lost update anomaly

Steps Transaction TJ Transaction T2 Values
1 read{A); 200
2 read{A); 200
3 A:=A +30;
4 write{A); 230
5 A:= A * 2;
6 write{A); 400
7 commit;
8 commit; 400

As can be seen from Table 8.1, the net result is incorrect and the work performed by
transaction T2 is lost. The value written by transaction T2 at step 4 has been lost. At step 8
A = 400, whereas it should be 460, on the assumption that T2 should precede Ti> or 430 if Tl
should precede T2.

8.1 . Manifestations of Concurrency Control 413

Another anomaly closely related to the lost update anomaly is the inconsistent retrieval
anomaly (see Table 8.2). In this situation interference between two or more concurrent
transactions may result in retrieval of data which is inconsistent with the values held in the
database. The data items, A and B, are initialised to 100 and 200, respectively. Transaction TJ
is a transfer of money from A to B, and transaction T2 calculates the total of A and B.

As can be seen from Table 8.2, the total calculated for A and B at step 12 (A + B = 250) is
inconsistent with the values of A and B written to the database at step 11 (A = 50, B = 250).

Table 8.2 Example of the inconsistent retrieval anomaly

Steps Transaction T(Transaction T2 Values
1 read(A); 100
2 A:=A - 50;
3 write(A); 50
4 read(A); 50
5 read(B); 200
6 read(B); 200
7 C :=A+B;
8 write(C); 250
9 B:= B + 50;
10 write(B); 250
11 commit;
12 commit;

The next anomaly is known as the uncommitted dependency anomaly. This arises if
one transaction T2 is allowed to retrieve or update data that has been updated by another
transaction Tl> where TJ has not yet been committed. There is always the possibility that
TJ will never be committed, but that it will be rolled back instead. Therefore, transaction T2
might then process data which do not exist in the database (see Table 8.3). A is initialised to
100. As can be seen from Table 8.3, the value of A written by T2 was based on processing by
Tl> which was subsequently aborted.

Table 8.3 Example of the uncommitted dependency anomaly

Steps Transaction T(Transaction T2 Values
1 read(A); 100
2 A:=A + 50;
3 write(A); 150
4 read(A); 150
5 abort;
6 A:=A * 2;
7 write(A); 300
8 commit;

The final anomaly, known as the cascading abort anomaly, arises as a result of aborting
transactions. Having started executing a transaction can either run to a natural completion and
commit, or terminate its execution and abort. When a transaction is committed, its operations
are written to permanent storage in the database and the database system guarantees that

414 Chapter 8. Concurrency Control

the effects of the transaction will not subsequently be nullified. An abort is the premature
termination of a transaction, caused either by the user or by the database system.

The issue faced by a database system is what action to take if a transaction is aborted.
An abort can vary from only impinging ul'on one transaction to affecting a large number of
transactions. For example, if a transaction has utilised, and is therefore dependent on data
values written by an aborted transaction, then the dependent transaction must also be aborted
in order to maintain the consistency of the data within the database (see Table 8.4). Again A
is initialised to 100.

As can be seen from Table 8.4, transaction T2 is dependent on a value written by the aborting
transaction T" consequently T2 must also be aborted.

Table 8.4 Example of the cascading abort anomaly

Steps Transaction TI Transaction T2 Values
1 read(A); 100
2 A:=A *2;
3 write(A); 200
4 read(A); 200
5 A:= A + 30;
6 write(A); 230
7 abort;
8 ...

This type of knock-on effect is caused by a transaction aborting which requires one or more
other transactions to also abort. The cascading abort anomaly can be more problematic than
might appear from the example of Table 8.5, which shows one of the less obvious knock-on
effects, namely that of transaction T2 being forced to abort notwithstanding the fact that it has
not written the data item read from transaction TI •

Table 8.S Another example of the cascading abort anomaly

Steps Transaction TI Transaction T2 Values
1 read(A}; 100
2 A:= A* 2;
3 write(A}; 200
4 read(A}; 200
5 read(B) lOO
6 B:= B + 30;
7 write(B); l30
8 abort;

Whilst the situation in Table 8.5 is somewhat contrived and could have been avoided by a
better programming technique, so that transaction T2 does not read information prematurely,
it demonstrates quite clearly the need for a mechanism to closely monitor abort operations.

The database system must be capable of establishing exactly what effect an abort will have
on the database. This requirement is part of what is known as the recovery problem. It
is generally handled by a recovery algorithm, which monitors and controls the execution
of transactions to ensure that the effects of any aborted transactions are removed from the

8.2. Serialisability 415

database. Surprisingly, it is not uncommon to find one fifth of the database system code
dedicated to recovery [Cru84J.

8.2 Serialisability

In general, it is only safe to allow two transactions to interleave their database operations, if they
do not operate on the same data. However, this is not always the case since two transactions
can sometimes update the same data without any harmful side-effects. If a transaction update
operation is merely incremental (for example, A := A + 2), and another transaction update
operation is decremental (for example, A := A - 2), then it would not matter in which order
the update operations were performed. These transactions are effectively commutative and
are said to be serialisable. Consider the following pair of transaction histories, where we
abbreviate two consecutive steps such as A := A - 2; write(A) to the single step write(A - 2):

Steps Transaction TJ Transaction Tz
1 read(A);
2 write(A + 2);
3 read(A);
4 write(A - 2);

Steps Transaction T J Transaction Tz
1 read(A);
2 write(A - 2);
3 read(A);
4 write(A + 2);

For each of these transaction histories, at the end of step 4, data item A would have the same
value. However, this example of non-conflicting update operations on the same data is an
exception rather than a general rule. Consider the case where TJ's operation is, for example,
A := A * 3, and Tz's operation is A := A + 3, then the order of execution becomes important.
In fact, the transaction history

Steps Transaction TJ Transaction Tz
1 read(A);
2 write(A * 3);
3 read(A);
4 write(A + 3);

is obviously not equivalent to the transaction history

Steps Transaction TJ Transaction T2
1 read(A);
2 write(A + 3);
3 read(A);
4 write(A * 3);

Since interleaving of these operations can yield different results, they are said to be non
serialisable. Read operations on the same data item do not conflict with one another and
are always serialisable. However, any transaction history that includes an update operation

416 Chapter 8. Concurrency Control

may not be serialisable, and is treated initially as non-serialisable from the point of view of
concurrent access control strategies.

In a multitasking environment several transactions may be executed concurrently. The
database system must control the interaction among transactions in order to maintain the
consistency of the database. Ideally, to produce the desired result, concurrent transactions
should behave as if they were executed in a serial manner. A concurrent execution of
transactions is serialisable if interleaved execution of the transactions has the same effect as
some sequential execution; see, for example, Table 8.6, where A and B are initialised to 100 and
200, respectively, and the serial execution of Tl and Tz has the same effect as their interleaved
execution; in fact, the two schedules of Table 8.6 are conflict-equivalent (see Definition 8.6).

Table 8.6 A serial and interleaved execution of two transactions, TI and T2

Steps Transaction T1 Transaction T2 Values
1 read(A); 100
2 A :=A+30
3 write(A); 130
4 read(B); 200
5 B:= B + 50
6 write(B); 250
7 commit;
8 read(A); 130
9 A:=A+ 50;
10 write(A) 180
11 read(B); 250
12 B:= B + 50;
13 write(B); 300
14 commit;

Steps Transaction T1 Transaction T2 Values
1 read(A); 100
2 A:= A + 30;
3 write(A); 130
4 read(A); 130
5 A :=A+ 50;
6 write(A); 180
7 read(B); 200
8 B:= B + 50;
9 write(B); 250
10 read(B); 250
11 B:= B + 50;
12 write(B); 300
13 commit;
14 commit;

The execution sequence of read and write operations in a transaction or a transaction
history is called a schedule. A schedule represents the chronological order in which transaction
operations are executed in a database. We next proceed to define formally a schedule of a set
of transactions, and then a serial schedule.

Hereafter we let T = {TI , T2, ... , Tn} be a set of transactions.

8.2. Serialisability 417

Definition 8.3 (Schedule) A schedule for T is a sequence, say s, of the elementary steps of
the transactions in T satisfying the following conditions:

1) every elementary step of every transaction appears exactly once in s;

2) elementary steps in s occur in exactly the same relative order that they occur in the
transactions. •

In the following the terms operations and elementary steps (or simply steps) of a transaction
will be used interchangeably.

Defmition 8.4 (Serial schedule) A schedule s for T is serial if there exists a permutation
Til' Ti2, ... , Tin of T such that s consists of all the elementary steps of Til' followed by all the
elementary steps of Ti2' and so on, and ending with all the elementary steps of Tin ' •

8.2.1 Serialisability Theory

Serialisability theory allows us to prove whether or not a transaction schedule is serialisable.
We begin by introducing the concepts of conflict and conflict-equivalent schedules.

Definition 8.5 (Conflicting operations) Two operations of two distinct transactions are in
conflict ifboth of them involve the same data item and at least one of them is a write operation.

Let T be a set of transactions and let s E SCHED(T), where SCHED(T) denotes the set
of schedules for T. The conflict relation of s, designated by conf(s), over OP(T), the set of
operations of the transactions in T, is defined by

conf(s) = {(o , 0') I 0,0' E OP(T), 0 occurs before 0' in s, and 0 , 0' are in conflict). •

Defmition 8.6 (Conflict equivalence) Two schedules S,5 E SCHED(T) are conflict
equivalent (or simply equivalent), written s =c s', if conf(s) = conf(s'). •

Consider the transaction schedules Sl, S2, S3 and S4, presented in Tables 8.7, 8.8, 8.9 and 8.10,
respectively. Both A and B are initialised to 200; transaction TI debits the balance of A with
50 and credits the balance of B with 100, while transaction T2 credits the balance of B with 50
and reduces the balance of A by 90%.

On examination of the schedules Sl and S2, shown in Tables 8.7 and 8.8, respectively, we
observe that both conf(sl) and conf(s2) consist of the set of pairs

{(read(hA), write(hA}}, (write(hA), read(hA}}, (write(T\>A), write(T2,A}},

(read(hB), write(T2,B}}, (write(hB), read(T2,B}}, (write(TI>B), write(T2,B))).

On the other hand, on examination of the schedule S3, shown in Table 8.9, we see that
conf(s3} consists of the set of pairs

{(read(T2,A), write(TI>A», (write(T2,A), read(TI>A», (write(T2,A), write(hA»,

(read(T2,B), write(TI>B», (write(T2,B), read(hB», (write(T2,B), write(hB»).

418 Chapter 8. Concurrency Control

Table 8.7 Schedule 51

Steps Transaction T1 Transaction T2 Values
1 read(A); 200
2 A:=A - 50;
3 write(A); 150
4 read(B); 200
5 B:= B + 100;
6 write(B); 300
7 read(A); 150
8 A:=A*O.l;
9 write(A); 15
10 read(B); 300
11 B := B + 50;
12 write(B); 350

Table 8.8 Schedule 52

Steps Transaction T\ Transaction T2 Values
1 read(A); 200
2 A:= A-50;
3 write(A); 150
4 read(A); 150
5 A:=A*O.l;
6 write(A); 15
7 read(B); 200
8 B:= B + 100;
9 write(B); 300
10 read(B); 300
11 B:= B + 50;
12 write(B); 350

Furthermore, on examination of the schedule 54, shown in Table 8.10, conf(s4) consists of
the set of pairs

{(read(Tj,A), write(hA», (write(Tj,A), read(hA», (write(Tj,A), write(hA»,

(read(T2,B), write(Tj,B», (write(T2,B), read(Tj,B», (write(T2,B), write(Tj,B»}.

Thus 51 =, 52, SI =1=, 53, and 51 =1=,54 notwithstanding the fact that in schedules 51 and 54 the
final values produced for A and B are the same.

Definition 8.7 (Conflict-serialisability) A schedule 5 E SCHED(T) is conflict-serialisable (or
simply serialisable), if there exists a serial schedule So E SCHED(T) such that 5 =c So. •

Prior to establishing the fundamental theorem of conflict-serialisability, we define the
conflict digraph of a schedule 5 E SCHED(T).

Definition 8.8 (Conflict digraph) Let T be a set of transactions. The conflict digraph of 5 is
the digraph res) = (T, E), where (Ti, Tj) E E, if Ti =f. Tj and some operation of Ti is in conflict
with some operation of Tj. •

8.2. Serialisability 419

Table 8.9 Schedule S3

Steps Transaction T\ Transaction T2 Values
1 read(A); 200
2 A :=A * 0.1;
3 write(A); 20
4 read(B); 200
5 B:= B + 50;
6 write(B); 250
7 read(A); 20
8 A:=A- 50;
9 write(A); -30
10 read(B); 250
11 B:= B + 100;
12 write(B); 350

Table 8.10 Schedule S4

Steps Transaction T\ Transaction T2 Values
1 read{A); 200
2 A:= A-50;
3 write{A); 150
4 read(B); 200
5 B :=B+ 50;
6 write(B); 250
7 read{B); 250
8 B := B + 100;
9 write{B); 350
10 read{A); 150
11 A:=A*O.I;
12 write{A); 15

For example, the conflict digraph of both 51 and 52 is given in Figure 8.1 (a), while the conflict
digraph of 53 is given in Figure 8.1 (b) and the conflict digraph of 54 is given in Figure 8.1 (c).

Theorem 8.1 A schedule 5 E SCHED(T) is conflict-serialisable if and only if res) is acyclic.

Proof. Assume that res) is acyclic. Since the vertices of an acyclic digraph can be sorted in
topological order, we can list the elements ofT, i.e. Tl , T2, . .. , Tn, in such a way that i <
j if there exists an arc from Ti to Tj in res) . Consider the serial schedule, say So, resulting
from concatenating the sequence of operations of the set of transactions {Tl, T2,"" Tn}
topologically sorted.

We next show that 5 =c So. Let OP(Ti) stand for the set of operations in transaction h If
(0,0') E conf (5), where 0 E OP(Ti) and 0' E OP(Tj), then there exists an arc in r(5) and thus
i < j. Hence, in So the operations of Ti precede those of Tj and therefore (0,0') E conf(so).
Correspondingly, if (0, 0') E conf(so), then i < j. The implication of this is that 0,0' are
conflicting operations in 5 and consequently (0, 0') E conf(s). Since conf(s) = conf(so), it
follows that 5 =c So.

Conversely, assume that 5 is a conflict-serialisable schedule. Let So be a serial schedule such
that 5 =c 50. If r(s) = (T, E) is cyclic, then there must exist a sequence of transactions, say Tio'
Til' Til"'" Ti~' such that (Tiq, Tiq+l) E E, 0 .:s q .:s J-t - 1, and (Ti~' Tio) E E. This leads to a

420 Chapter 8. Concurrency Control

Tl T2 .• ----...

(a) (b) (c)

Fig 8.1 Conflict digraphs

contradiction, because in the serial schedule So the operations of Till follow those of Tio as a
result of the path Tio -+ Til -+ ... Till_2 -+ Till_I' whilst the operations of Til' precede those
of Tio as a result of the arc (Til" Tio) E E. Thus f(s) must be acyclic. 0

A more natural view of schedule serialisability would be based on view-equivalence, which is
a form of equivalence less stringent than that of conflict-serialisability given in Definition 8.7.

Consider two schedules 5, S' E SCHED(T). The schedules 5 and S' are said to be view
equivalent if the following three conditions are satisfied:

1) For each data item x, if Tj reads the initial value of x in 5, then Tj must, in 5', also read
the initial value of x, namely IR(s) ::: IR(s') (see Definition 8.9).

2) For each data item x, if Tj executes read(x) in 5, and that value was produced by Tj (if
any), then Tj must, in s', also read the value of x that was produced by Tj.

3) For each data item x, the transaction (if any) that performs the final write(x) in 5 must
also perform the final write(x) in 5', namely FW(s) ::: FW(s') (see Definition 8.9).

Conditions 1 and 2 ensure that each transaction reads the same values in both schedules s
and 5' and, therefore, performs the same computation. Condition 3, together with conditions
1 and 2, ensures that both 5 and 5' result in the same final database state.

It is easy to verify that schedules 51 and 52 of Tables 8.7 and 8.8, respectively, are view
equivalent, whilst schedules 51 and 53 of Table 8.9 are not view-equivalent.

Definition 8.9 (Set of initial reads and final writes) Given a schedule 5, we denote by IR(s),
the set of initial reads, which comprises the first operations read(Tj, x) for every data item x
for which such an operation exists. Correspondingly, FW(s), the set ofJinal writes, comprises
the final operations write(Tb x) for every data item x for which such an operation exists. •

In the context of view-equivalence in a schedule 5, Tj reads a data item x from Tj, i =I
j, if read(Tj, x) E OP(Tj) follows write(Tj, x) and no operation write(Tk, x) exists between
write(Tj, x) and read(Tj' x) for any transaction Tk participating in s.

The concept of a transaction reading a data item from another transaction allows us to give
a more concise definition of view-equivalence as follows. In essence conditions (1) and (2)
above coalesce.

8.2. Serialisability 421

Defmition 8.10 (View-equivalence) Let h Tj E T and 5, 5' E SCHED(T). The schedules 5

and 5' are view-equivalent, denoted by 5 =v 5', if

1) Tj reads from Ti in 5 if and only if Tj does this in 5' also; and

2) FW(s) = FW(s'). •
We observe that a pair of schedules can be view-equivalent but not conflict-equivalent.

Theorem 8.2 For all 5,5' E SCHED(T), if 5 =c 5' then 5 =v S.

Proof. Assume that 5 and 5' are conflict-equivalent. If Tj reads from Ti in 5, then for some data
item A write(Ti, A) E OP(Ti), read(Tj' A) E OP(Tj), with the latter following the former with
no write(Tk> A) between them. Hence (write(Ti, A), read(Tj, A)) E conf(s) = conf(s') and in
5' there is no write(Tk>A) between write(Ti' A) and read(Tj, A). Consequently, in 5' Tj reads
from Ti. The reverse can be proved similarly. This proves (1) of Definition 8.10.

Assume that write(T/, A) is the last write of data item A in s. If in 5' the last write of data
item A, write(TI', A), is different, I #- 1', then write(TI', A) would come after write(h A) in 5'.

Consequently, (write(T/, A), write(TI', A)) E conf(s'). Since conf(s) = conf(s'), in 5 write(TI',
A) would follow write(T/> A), which contradicts the fact that write(T/> A) is the last write of the
data item A in s. This proves (2) of Definition 8.10 0

The concept of view-equivalence leads to the concept of view-serialisability. We say that a
schedule 5 E SCHED(T) is view-serialisable if it is view-equivalent to a serial schedule. The
formal definition now follows.

Defmition 8.11 (View-serialisability) A schedule 5 E SCHED(T) is view-serialisable, if there
exists a serial schedule So E SCHED(T) such that 5 =v So. •

It has been shown by Papadimitriou [Pap79) that testing for view-serialisability is an NP
complete problem. On the other hand, testing for conflict-serialisability is a polynomial-time
problem. This is realised by applying Tarjan's depth-first algorithm [Tarn) to res) and then
identifying at least one back edge (arc), which signifies the existence of a cycle.

A more general notion of serialisability than view-serialisability is that of final-state
serialisability. We say that two schedules are final-state equivalent if they satisfy condition
(2) of Definition 8.10, i.e. for any input state of the database the resulting output states from
these two schedules,s and S, are identical. A schedule is final-state serialisable if there is some
serial schedule which is final-state equivalent to it. To verify the generality of this notion, the
reader can construct a schedule which is final-state serialisable but not view-serialisable. It
was shown in [Pap79) that the problem of testing whether a schedule is final-state serialisable
is NP-complete.

We motivate the next type of serialisability via an example. Consider the schedule 5 induced
by the transaction history shown in Table 8.11, which is final-state serialisable but neither
conflict-serialisable nor view-serialisable. For the sake of simplicity, assume that the database
contains only two distinct data items A and B. Moreover, let us partition the database into
two subdatabases one containing the data item A and the other containing the data item B; for

422 Chapter 8. Concurrency Control

example, in the context of a distributed database each subdatabase may be stored at a physically
different site. Let us construct two 5ub5chedule5, 51 and 52, which partition the schedule 5 in
accordance with the data items in each respective subdatabase. In this case SI contains steps
1 and 2 and 52 contains steps 3 and 4. It is evident that both SI and 52 are conflict-serialisable.
In general, if a situation such as this arises then we say that s is predicatewise serialisable
[RMB+98].

Table 8.11 A schedule which is final-state serialisable

Steps Transaction Tl Transaction T2
1 write(A);
2 read(A);
3 write(B);
4 read(B);

The concept of the execution of a schedule assumes that the database is left in a consistent
state. Thus in the case of predicatewise-serialisability the best that we can guarantee is that
after the execution of each subschedule the resulting subdatabase is consistent. However, in
general, this does not guarantee that the database as a whole is consistent. Thus in order
for predicatewise-serialisability to make sense we must impose further conditions so that
sub database consistency implies database consistency. In [RMB+98] several such conditions
are given.

By definition a transaction preserves database consistency, hence a serial execution of
transactions also preserves consistency. Since every serialisable execution has the same effect
as a serial execution, we conclude that a serialisable execution must indeed preserve database
consistency. It makes sense therefore for a database system to permit serialisable executions.

There are various approaches to enforcing serialisability. The two most commonly used
approaches are locking mechanisms and timestamp ordering. Other non-locking techniques,
such as serialisation graph testing, also merit consideration; this technique is considered in
some detail in Section 8.8.

We close this section with a discussion of serialisability in the context of the IDM model,
which was mentioned at the beginning of Section 8.1. A schedule is serialisable in the IDM
model, if it is equivalent to some serial schedule, i.e. for all input databases the schedule has
the same effect on the database as the effect of the execution of the transactions in some serial
order. (Recall Definition 3.42 of a transaction and its effect on a relation, and Definition 3.43
of equivalent transactions, which were both given in Subsection 3.2.4 of Chapter 3.) It has
been shown by Vianu and Vossen [VV92] that testing for serialisability in the IDM model is
an NP-complete problem. A polynomial-time testable subclass of schedules are the schedules
that are locally serialisable. A schedule is locally serialisable if, on repetitive invocation
of the commutativity rules for pairs of consecutive updates, we obtain a serial schedule.
(The commutativity rules for pairs of updates were given in [KKPV87, KV91]; for example,
we can insert two tuples in any order, and we can delete two sets of tuples in any order.)
Local-serialisability in the IDM model is analogous to conflict-serialisability in the RW model,
in the sense that two updates that are not commutative can be viewed as conflicting. This
observation gives rise to a polynomial-time test for local-serialisability based on the concept
of a local conflict digraph, which is analogous to the conflict digraph in the RW model. An

8.3. Locking 423

interesting result, shown in [VV92], is that in the IDM model, if we restrict updates to be
only insertions and deletions, i.e. we disallow modifications, then serialisability becomes
polynomial-time testable. As a final remark we note that, due to the fact that the IDM model is
defined within the relational model, we are also able to use knowledge of integrity constraints,
such as functional dependencies, for the purpose of testing serialisability.

8.3 Locking

Building on the serialisability concept that concurrent execution of transactions should have
the same result as a serial execution, then some form of control is required to enforce
serialisability. By ensuring that access to data is in a mutually exclusive manner, we can
guarantee that, while one transaction has access to a data item, no other transaction can
modify that particular data item. The most widely used mechanism for enforcing mutually
exclusive access to data is locking.

Over time many refinements to the general idea oflocking data items have been developed,
with a variety of locking modes currently in use. These modes oflocking are the subject of this
section.

Although there are various modes in which data items may be locked, typical locking
mechanisms have two basic modes of lock: shared and exclusive. If a transaction TJ obtains
a lock in shared mode on a data item, then TJ can read but not update the data item, whilst
if TJ obtains a lock in exclusive mode on a data item, then TJ can both read and update the
data item. In other words a shared lock permits other transactions to read the same data item
concurrently, but prevents any updating of this data item.

Definition 8.12 (Well-formed transaction) A transaction is considered to be well-formed if
it always locks a data item in shared mode before reading it and in exclusive mode before
updating the data item. Two transactions are in conflict if they want to lock the same data
with two incompatible modes oflock. •

Locking has a number of problems associated with it. The problem of deadlock is perhaps
the most undesirable side-effect of locking and its resolution represents an important area
of concurrency control theory. Deadlock is caused by a cyclical wait of transactions holding
resources required by other transactions and waiting in turn for resources held by these other
transactions. Another problem is the lock granularity problem, which is the size of the data
item (sub tuple, tuple, relation, or an entire database) to be locked. Clearly, it is undesirable to
lock an entire database or relation when a transaction intends, for example, only to access one
value in a particular tuple of that relation. Both of theses important issues will be discussed
further in Sections 8.4 and 8.5, respectively.

Whilst locking is the most widely used strategy to prevent undesirable interleaving, it should
not be assumed that it is the best approach in all contexts. Clearly, in single-user databases
there is no risk of conflicting access, so locking is not needed. Similarly, reference databases
such as bulletin boards and technical reference databases allow concurrent read access only.
Therefore, the use of locks in such databases would impose an overhead on the DBMS's
performance, without being necessary to maintain the integrity of the database. Finally,

424 Chapter 8. Concurrency Control

because data in a distributed database is stored over multiple sites or nodes, the management
of access to data items by locking may prove to be an inefficient and expensive approach.

We next consider various types oflock. We begin with exclusive locks. The simplest and
most commonly used lock strategy to prevent non-serialisable transactions from corrupting
one another is the exclusive lock. Exclusive locking gives a transaction an exclusive hold on
the data item it wishes to access or update, not allowing any other transaction to access that
data item for the duration of the lock. By prohibiting competing updates the transaction
knows that its own read or update will be executed safely, and by preventing competing read
operations the locking transaction guarantees that other transactions will be unaffected if it
decides to update the locked data item.

Exclusive locking works on the idea that a transaction locks a data item on access and that
another transaction wanting to access that data item must wait for the lock to be released. So
if transaction TJ holds an exclusive lock on a tuple t, then a request from transaction T2 for a
lock on t will cause T2 to go into a wait state until TJ releases its lock on t. When a transaction
wishes to update a data item it automatically acquires an exclusive lock on it.

A lock can be thought of as a control block that includes the identity (ID) of the locked data
item and the ID of the transaction holding the lock. The locking mechanism in a DBMS is
implemented by means of a lock manager. The lock manager maintains a lock table where it
records the locks that are currently operational on any data item. A transaction begins with
the DBMS searching for the required data item in the database. If the data item is already
locked then the lock manager instructs a component, called the transaction scheduler (see
Figure 8.9), to place the requesting transaction in a wait queue until the required lock or locks
become available. The lock manager then provides the necessary locks for the transaction to
proceed. Next the read and write operations are executed. Exclusive locks are retained until
the transaction ends with a commit or abort. Early releases of locks can lead to the type of
concurrency control problems discussed in Section 8.1.

We now discuss some problems associated with exclusive locking. Exclusive locking ensures
serialisability and solves the lost update, inconsistent retrieval and cascading abort anomalies
(see Table 8.12). In Table 8.12 rx(A) stands for "request exclusive lock on data item A", un(A)
stands for "unlock data item A" and A is initialised to 200. As can be seen from this table
the lost update problem exemplified in Table 8.1 has been rectified by the use of locks, with a
noticeable loss of concurrency.

Unfortunately, if we depend solely on exclusive locking, then all these anomalies are solved
at the expense of greatly reducing the level of concurrency. Moreover, the overheads incurred
by operating the lock manager may have a detrimental effect on the performance of the DBMS
in terms of processing speed and storage space required for the lock table.

We note at this point that the exclusive locking mechanism described above is prone to the
following problems:

• Difficulties in ascertaining the appropriate data items to lock.

• Dangers of premature lock release.

• Blocking of resources via deadlock.

• Lack of concurrency because access to data items is restricted to single transactions.

8.3. Locking 425

Table 8.12 Illustration of exclusive locking

Steps Transaction TJ Transaction T2 Values
1 rx(A); ... granted
2 read(A); 200
3 rx(A); .. .fail
4 A :=A *2; ... wait
5 write(A); ... wait 400
6 un(A); ... wait
7 commit; ... wait
8 rx(A); ... granted
9 read(A); 400
10 A:= A + 30;
11 write(A); 430
12 un(A);
13 commit;

It is also worth mentioning at this juncture that many reputable database products make
use of exclusive techniques to ensure serialisability.

We next look at shared locks. In a database environment transactions that query data
items without updating them are common. A shared lock can be applied to a data item
when a transaction only wishes to read that data item, with the certain knowledge that another
transaction is not going to change the data item during the read operation. No other transaction
can gain an exclusive lock to update a data item if another transaction already holds a shared
lock on that data item. (We call such modes of lock, in this case shared and exclusive,
incompatible.) Two or more transactions can, however, hold shared locks on the same data
item simultaneously without any danger of interference between transactions. This helps to
alleviate the loss of concurrency resulting from the dependence solely on exclusive locks.

We now define the notion of compatibility matrix in the context of a given set oflock modes.

Definition 8.13 (Compatibility matrix) Assume that a transaction Ti requests a lock of mode,
say ml> on a data item A on which another transaction Tj, i '# j, currently holds a lock of mode,
say m2. If transaction Ti can be granted immediately a lock of mode ml on data item A,
notwithstanding the fact that Tj has a lock of mode m2 on A, then we say that mode ml is
compatible with mode m2, otherwise ml is incompatible with m2. The compatibility relation
can be represented by a matrix, called the compatibility matrix. •

In order to read a data item a transaction must first request a lock on the data item in shared
mode. If the data item is already locked by another transaction in an incompatible mode,
the requesting transaction must wait until all incompatible locks have been released. While
shared locks on the same data item are compatible with each other, neither a shared and an
exclusive lock nor two exclusive locks are permitted (see Table 8.13). A shared lock on a data
item may require upgrading to an exclusive lock when a read operation needs to progress to
an update operation, but can do so only if there are no other shared locks on the data item
(see Table 8.14).

In Table 8.14 rs(A) stands for "request shared lock on data item A" and A and B are both
initialised to 200; this table illustrates the upgrade from shared lock to exclusive lock at
step 8. If there are other. shared locks on the said data item, the transaction must wait for

426 Chapter 8. Concurrency Control

the incompatible locks to be released before an upgrade of the lock to exclusive mode can
proceed. As a result of this waiting period, deadlock remains a potential problem.

Table 8.13 A lock compatibility matrix of shared and exclusive locks

SHARED EXCLUSIVE
SHARED YES NO

EXCLUSIVE NO NO

As well as being used in conjunction with exclusive locks, shared locks are employed almost
exclusively in certain situations. Such a situation might arise, for example, in a statistical
database of census data, where many people may wish to query the database simultaneously
while few changes to the data will be required. In general, statistical databases allow statistical
output only, without permitting the user to access the underlying data. In this situation
there is little danger of interference, in which case speed may take precedence over safety,
thus allowing the operating system to schedule simultaneous read requests as and when it is
required.

Table 8.14 Example showing the use of shared and exclusive locks

Steps Transaction Tl Transaction T2 Values
1 rs(A); ... granted
2 read(A); 200
3 rs(A); ... granted
4 read(A); 200
5 rs(B); ... granted
6 read(B); 200
7 rx(A); ... fail
8 rx(B); ... granted ... wait
9 B:=B+ 100; ... wait
10 write(B); ... wait 300
11 un(B); ... wait
12 un(A); ... wait
13 commit;
14 rx(A); ... granted
15 A :=A*3;
16 write(A); 600
17 un(A);
18 commit;

A DBMS using shared locks suffers from a tendency to produce an increased number of
deadlocks, while exclusive locking results in a lower degree of concurrency. In an attempt to
limit these difficulties some DBMSs employ an additional promotable lock, called the update
lock. An update lock on a data item indicates that a transaction may want to update the data
item on which it has such a lock. Thus any transaction that intends to update a data item
must first acquire an update lock on it. Subsequent update of the data item will promote the
update lock to an exclusive lock when this is required. This reflects more closely the read/write
requirements of many transactions, where a data item is read prior to being updated. Shared
locks are compatible with update locks, but update locks are not compatible with shared

8.3. locking 427

locks; thus in this case compatibility is not symmetric. Neither are update locks compatible
with other update locks or exclusive locks (see Table 8.15). A transaction cannot obtain an
exclusive lock on a data item which has been locked in update mode by another transaction.
We note that a transaction may not be safe from anomalies if it writes data items after reading
other data items locked in update mode by another transaction.

Table 8.15 Update lock compatibility matrix

SHARED UPDATE EXCLUSIVE
SHARED YES NO NO
UPDATE YES NO NO

EXCLUSIVE NO NO NO

Once a transaction has acquired an update lock on a data item, the transaction is guaranteed
to be able to update that data item eventually. By inspecting Table 8.16, where two concurrent
transactions TJ and T2, with TJ using an update lock and T2 using a shared lock, are accessing
the same data item, we see that promotion of the update lock at step 4 is not granted because
T2 holds a shared lock on data item A. When the shared lock is released, the update lock is
promoted automatically to an exclusive lock at step 6. In this table ru(A) stands for "request
update lock on data item A", update(A) stands for "request to promote update lock to exclusive
lock on data item A" and A is initialised to 200.

Table 8.16 Example of update and shared lock modes

Steps Transaction T1 Transaction T2 Values
1 ru(A); ... granted
2 rs(A); ... granted
3 read(A); 200
4 update(A);
5 ... wait un(A);
6 write(A * 2); 400
7 un(A);

If a transaction acquires an update lock on a data item, but does not subsequently update
that data item, then the update lock can be downgraded to a shared lock. In general, update
locking allows slightly more concurrency than direct exclusive locking.

In the context of what follows by database we mean the entire database which is assumed
to be composed of exactly a fIxed number of areas. In essence the areas constitute a partition
of the database.

When we change a data item we are implicitly, by association, changing the tuple (record),
relation (table/ftle), area and database containing the data item. The level at which a data item
is locked is referred to as locking granularity (see Section 8.5). Fine granularity is locking, for
example, at tuple level, while locking at relation or database level is called coarse granularity.
It is necessary to control the effects of fIne granule locking on coarse granules in order to
identify any potential conflicts. To this end we defIne a hierarchy of granularities whereby
small granularities are nested within larger ones. The hierarchy can be defIned graphically by
a rooted tree, whose highest level, i.e. the root node, represents the entire database, and the
lowest level, i.e. the leaf nodes, represent the tuples in the relations of the database.

428 Chapter 8. Concurrency Control

The aforesaid control can be achieved by giving each higher level lock an associated intent
lock, in order to indicate where small granules are nested within larger ones. For example,
each shared lock at fine granularity acquires an intent shared lock at all higher levels in the
database. Thus, the transaction scheduler (see Figure 8.9) in the DBMS can ensure that there
are no locks on ancestors of a data item that implicitly lock the data item in a conflicting
mode before a request to lock the data item is granted. In Table 8.17 (see [BK91J) we use the
abbreviations: S = Shared, X = Exclusive and I = Intent; this table presents the compatibility
matrix involving the intent lock.

Table 8.17 Intent lock type compatibility matrix

x S IS SIX IX
X NO NO NO NO NO
S NO YES YES NO NO
IS NO YES YES YES YES

SIX NO NO YES NO NO
IX NO NO YES NO YES

There is an intent lock associated with each shared and exclusive lock. An Intent Shared (IS)
lock implies that explicit locking is being done at a lower level in the database with shared locks
only. Similarly, an Intent Exclusive (IX) lock implies that locking with shared or exclusive
locks is being done at a lower level. Finally, a Shared Intent Exclusive (SIX) lock signifies that
within the data item locked explicitly by a shared lock, explicit exclusive locking takes place
at a lower level. Prior to granting a shared lock on a data item, say a sub tuple, the DBMS
must first set an intent shared lock on the database, area, relation, and tuple, for example, that
contain the data item (see Table 8.18).

In Table 8.18 we assume a hierarchy (rooted tree) consisting of four levels of nodes. Below
the root node (the highest level) are nodes of type area; each area has nodes of type relation
as its children and contains exactly those relations which are its children nodes. No relation
resides in more than one area. Finally, each relation has nodes of type tuple as its children.
As before each relation comprises exactly those tuples that are its children nodes and no tuple
resides in more than one relation. It is further assumed that area 1 contains relation 1. Thus,
in the context of this table, T2 and T4 are attempting incompatible locks at the database level,
while T2 and T3 are requesting incompatible locks at the relation level. So T2 must wait for T3
and T4 to commit.

The intent locking protocol can be summarised as follows:

1) All locks should be acquired in a top-down (root-to-Ieat) order.

2) Prior to requesting a shared or intent shared lock on a node (level), all ancestor nodes
must be locked with intent exclusive or intent shared locks.

3) Prior to requesting an exclusive, shared intent exclusive, or intent exclusive lock on a
node (level), all ancestors must be locked with intent exclusive or shared intent exclusive
locks.

4) All locks should be released in bottom-up (leaf-to-root) order.

Intent locking enables the DBMS to tell whether other transactions are already changing
the relation containing the data item being accessed. It also tells the database system

8.3. locking

Transaction TJ := Read tuple 1 in relation 1
lock the database with intent shared lock
lock area 1 with intent shared lock
lock relation 1 with intent shared lock
lock tuple 1 with a shared lock

Transaction T2 := Write tuple 2 in relation 1
lock the database with intent exclusive lock
lock area 1 with intent exclusive lock
lock relation 1 with intent exclusive lock
lock tuple 2 with an exclusive lock

Transaction T3 := Read all tuples in relation 1
lock the database with intent shared lock
lock area 1 with intent shared lock
lock relation 1 with a shared lock

Transaction T4 := Read the entire database
lock the database with a shared lock

Table 8.18 Implementation of intent locking showing the order and levels of locks

429

whether an ancestor of the data item has an exclusive lock granted to another transaction.
This enhanced locking mechanism affords more concurrency and may also reduce locking
overheads, particularly in applications that include a mix of short transactions, which access
only a few data items, and long transactions, which access an entire relation or a set of
relations. Intent locking facilitates relatively simple upgrades from shared to exclusive locks
and is employed in DBMSs to alleviate some of the concurrency loss and deadlock problems
that are caused by using only shared and exclusive locks.

We next look at the problem of how to allocate locks. We consider three ways of allocating
locks, namely:
Transaction scheduling. Transaction scheduling is a static approach to the allocation oflocks.
The idea is simply that a transaction requests locks on all the data items it may need, before it
starts executing. If it is not granted all of its requested locks then it is queued. The problems
with this approach are:

• Maintaining the queue and on each commit checking whether any waiting transaction
can have its set of desired locks granted.

• Dealing with priority requests and hence the additional overheads of keeping a priority
queue.

• The possibility of livelock, whereby a transaction may be unlucky enough never to have
a high enough priority to be granted its full set of desired locks. Avoiding livelock adds
complexity to the DBMS.

• The difficulty of determining in advance of processing which locks are needed. For
safety, it may be necessary to lock too much of the database, thereby reducing
concurrency.

Transaction rejection. An alternative to transaction scheduling is simply to reject any
transaction that cannot immediately obtain the locks it requires and retry at a later time.

430 Chapter 8. Concurrency Control

Although this approach has less overheads than transaction scheduling in maintaining queues,
it is prone to livelock, when several transactions are waiting to access a locked data item
and access is granted in a random manner. In order to make a rejection policy workable,
a mechanism is required to coordinate retries. Like the transaction scheduling approach,
transaction rejection suffers from uncertainty about the set of desired locks and is only viable
for batch run tasks.

Dynamic lock allocation. An alternative to the static allocation of locks we have so far
considered is to grant locks dynamically on a need to access basis, as the locks are required.
The important advantage of this approach is that it increases concurrency and throughput by
locking data items only if a lock is required. However, the benefits of dynamic lock allocation
are only fully realised if the locks are not prematurely released; this requirement can be met by
employing a two-phase locking policy. This locking policy is analysed in the next subsection.

8.3.1 Two-Phase Locking Policy

Any transaction that releases a lock and then goes on to acquire another lock always runs the
risk of producing incorrect results (see Table 8.19). Data items A and B are both initialised
to 200. As can be seen from Table 8.19 transaction T2 updates data item A after transaction
T, releases its lock at step 4. Hence transaction T, could be incorrect as it is based on an
earlier out of date read of data item A. So a transaction should not release any lock until it
has acquired all the locks necessary to complete its processing. This strategy is known as
Two-Phase Locking (2PL), whereby the set of locks of each transaction has a growing phase
for acquiring locks and a latter shrinking phase (or release phase) when it is safe to release its
locks.

Table 8.19 Two transactions not obeying the two-phase locking policy

Steps Transaction T\ Transaction T2 Values
I rs(A}; ... granted
2 read(A}; 200
3 rx(A}; ... fail
4 un(A}; .. . wait
5 rx(A}; .. . granted
6 read(A}; 200
7 A := A+ 100;
8 write(A); 300
9 un(A};
10 commit;
II rx(B}; ... granted
12 read(B}; 200
13 B := B + 150;
14 write(B}; 350
15 un(B};
16 commit;

One solution to the problem identified in Table 8.19 is to ensure that all transactions in a
schedule follow a set of rules, called a locking protocol, which indicates when a transaction may
lock and unlock each data item. Basic two-phase locking ensures that a transaction cannot

8.3. Locking 431

request any locks after it has released a lock. During the growing phase of this protocol new
locks are acquired, while locks are only released during the shrinking phase. In order to make
basic 2PL work in practice, shared locks may be released at any time during the shrinking
phase, but exclusive locks must be held until the transaction commits; these two rules preserve
serialisability and guarantee the isolation of transactions.

Theorem 8.3 Every schedule that obeys the basic 2PL protocol is conflict-serialisable.

Proof. Assume that a schedule s, which satisfies the basic 2PL protocol, is not
conflict-serialisable. Then there must exist in r(s) a cycle Til' Til" .. , Tip, Til' with P > 1.
That is to say, two conflicting operations exist in any two consecutive transactions Tik, Tik+ I, 1
.::: k .::: p - 1, and in Tip, Til' Consequently an un(Tik' x) in Tik is followed by either a read lock
on a data item x or a write lock on x in Tik+I' 1 .::: k .::: p - 1, and an unlock operation in Tip is
followed by a locking operation in Til' Thus un(Til' x) is followed by a locking operation in
Til; however, this contradicts the basic 2PL protocol. 0

Two-phase locking is the most widely used of the locking mechanisms employed in DBMSs.
Unfortunately, the basic 2PL protocol described above restricts the number of possible
transaction schedules and is prone to deadlock. A number of refinements of the protocol
have been suggested to overcome these shortcomings, thereby resulting in aggressive and
conservative implementations.

The most aggressive 2PL protocol implementation requires each transaction to request a
lock on each data item immediately prior to reading or updating the data item. This approach
increases concurrency by liberalising the approach to locking, at the expense of increasing
the possibility of conflicting operations. In contrast to the aggressive approach, the most
conservative 2PL protocol implementation requires each transaction to request all its locks at
the beginning of the transaction. This approach removes the possibility of conflicting locks,
but in doing so it decreases the level of concurrency and increases the level of transaction
queuing. The requirement to pre-declare all locks means that the full read and write sets of a
transaction must be known in advance of any processing.

Determining the most suitable version of 2PL for a particular application depends upon
the frequency of conflict between concurrently executing transactions. At low conflict levels
aggressive schedules require few operations to be rejected, while conservative schedulers
avoid rejecting operations at high conflict levels by deliberately delaying transactions until all
required locks are available. There is currently no precise set of rules available for tailoring
a scheduler to the performance specification of an application; thus intuition, trial and error,
and experience play an important role. In practice, however, a refined version of the basic
2PL, called strict 2PL, which requires all locks to be released at the commit or abort stage of a
transaction, is mostly used.

Locking on its own does not ensure a consistent database or efficient use of resources. The
performance of a particular locking mechanism can be evaluated in terms of the ACID test
and the following three criteria:

Throughput. The number of transactions that successfully complete, and therefore the average
time taken for each successful transaction. This provides a crude guideline to the effectiveness
of a database system.

432 Chapter 8. Concurrency Control

T, --------.... T2

!
T4 •• -------- T3

Fig 8.2 Circular wait of transactions resulting in deadlock

Fairness. Does each transaction have an equal chance of completion? If only a subset of all
users have successful transactions then the other users will not be very satisfied by the database
system.

Cost. A database may exhibit high throughput and fairness, but still be costly in terms of
memory and processing overheads.

As an epilogue we mention the recent study of Thomasian [Th093] pertaining to the
performance of 2PL. In this work it is shown that system performance is determined by
the fraction of transactions that are blocked, i.e. transactions that are waiting due to the denial
of a lock request. In particular, if this fraction exceeds a certain value then thrashing occurs,
i.e. throughput drops when the number of transactions in the database system is increased.

8.4 Deadlock

Deadlock or deadly embrace is an error condition in which processing cannot continue because
two elements of the process are waiting for an action from the other. In our context it results
from two or more transactions requesting resources, resulting in a circular wait situation (see
Figure 8.2).

Deadlock is an undesirable side-effect of locking. The most simple and by far the most
common deadlock situation arises when one transaction has locked a data item that is needed
by another transaction which has done exactly the same thing with a different data item (see
Table 8.20). In this case transaction TJ is waiting for a data item held by transaction T2 , which
in turn is waiting for another data item held by transaction TJ, thus resulting in a circular wait.

Table 8.20 Example of a deadlock situation

Steps Transaction T\ Transaction T2
1 rx(A); ... granted
2 rx(B); ... granted
3 rx(B); .. .fail
4 ... wait rx(A); .. .fail
5 ... wait ... wait
6 ... wait ... wait

We next consider the conditions that induce deadlock. Four necessary conditions leading
to deadlock are presented. All four conditions must obtain for deadlock to occur. The
four conditions are: mutual exclusion, hold and wait, no pre-emption, and the circular wait
exhibited above. Mutual exclusion involves at least one data item being held in exclusive
mode. For the hold and wait condition to be satisfied there must exist a transaction that is

8.4. Deadlock 433

holding at least one data item and is waiting to access additional data items that are being
held by other transactions. No pre-emption implies that a data item can only be released
voluntarily by the transaction holding it, after the transaction has completed its task. Finally,
for the circular wait condition to be satisfied there must exist a set of waiting transactions T"
T2, . .. , Tn such that T, is waiting for a data item held by T2, T2 in turn is waiting for a data item
held by T3 etc., and finally Tn is waiting for a data item held by T,. All techniques designed
to deal with deadlock attempt to prevent one of these conditions arising, thus eliminating the
possibility of deadlock occurring.

Deadlock may occur for different reasons; herein we discuss only four types of deadlock,
namely: circular deadlock, conversion deadlock, distributed deadlock, and phantom
deadlock.

Circular deadlock. Of the estimated 2% maximum of transactions that result in deadlock
[GHOK81] circular deadlock accounts for approximately one in twenty. As a result of a
circular wait arising among two or more transactions, processing is brought to a standstill
(see Figure 8.2). In fact, this type of deadlock rarely involves more than two transactions.
However, if it is not remedied it will eventually bring the whole database system to a halt.

Conversion deadlock. A deadlock may also arise when a single data item is accessed by
two transactions and incremental claims are accepted (see Table 8.21). When a read lock is
converted to a write lock the read lock must be maintained to satisfy the requirements of2PL.
Conversion deadlock is in turn part of the circular wait type of deadlock, emanating from lock
conversion.

It is often unclear in advance of transaction initiation whether a write operation will be
required, and it is also undesirable to exclusively lock a data item until this is absolutely
necessary. Hence lock conversion and its associated deadlocks are a common occurrence.

Table 8.21 Example of deadlock reSUlting from lock conversion

Steps Transaction T, Transaction T2 Values
1 rs(A); ... granted
2 read(A); 200
3 rs(A); ... granted
4 read(A); 200
5 rx(A); .. .fail
6 rx(A); ... fail
7 ... wait ... wait
8 ... wait ... wait

Distributed deadlock. In the context of a distributed database, with data items and processing
spread over different sites, deadlock between transactions at different sites cannot be detected
from an individual site. Each site has access only to the local Waits-For-Graph (WFG) (see
next section) which identifies circular wait cycles at that site. A global deadlock detector
is required to combine the various local WFGs in order to identify a global deadlock (see
Figure 8.3). The global deadlock detector can be run periodically at a chosen site to monitor
distributed deadlocks. However, this incurs additional communications overheads resulting
from joining together the local WFGs at the different sites.

434 Chapter 8. Concurrency Control

SITEA SITE B

----------1.~ T 2b

T 2 1----------- T lb

Fig 8.3 Distributed deadlock over two sites

Phantom deadlock. Adding to the complexity of distributed deadlock detection is the
possibility of a phantom deadlock being identified. For instance, if transaction T\ aborts
because of a system failure such as a failed buffer, then a deadlock detected between, say,
transactions T\ and T2, no longer exists. However, the global deadlock detector may not be
aware of T\ 's abort so it unnecessarily aborts T2 to break the phantom deadlock between the
two transactions.

There are two general approaches to dealing with deadlock: deadlock prevention which aims
to avoid deadlock by preventing it from occurring in the first place, and deadlock detection
which aims to identify the deadlocks that have arisen and then force one transaction to release
its locks so that the other transactions involved in the deadlock can proceed. This means that
one transaction is aborted. In practice, deadlocks rarely involve more than two transactions,
so the volume of rollbacks resulting from deadlock detection is limited.

8.4.1 Deadlock Detection

Deadlock detection methods are used in database systems that allow deadlock to occur. The
goal of detection is to identify any deadlocks that have occurred, and to determine precisely
those transactions and data items involved in a deadlock so that the deadlock can be eliminated
from the database system. Two methods of deadlock detection are widely used, namely:

1) Waits-For-Graphs (WFGs): data item allocation and request digraphs, and

2) Timeout Methods: timeout detection, lock count detection, and deadline detection.

Waits-for-graphs. Detection of deadlock via WFGs involves identifying a cyclical wait
in a digraph of transaction interdependence. A detection algorithm can be invoked at
different intervals, depending on how frequently we expect deadlocks to occur and how
many transactions will be affected. The frequency of deadlock will depend on the degree
of interaction among transactions. To maintain a WFG and run a deadlock check for each
lock may be too expensive in terms of processor and time overheads. The alternative is to run
a less frequent check; for example, once per hour or when CPU utilisation drops below 40%
or when a transaction times out [ACL87j.

To detect deadlock the database system examines the WFG to identify and eliminate from the
digraph of transaction interdependence all transactions that can complete without deadlock
(see Figure 8.4). Digraph reduction can be performed in any order. The transactions that
cannot be removed from the digraph constitute the deadlocked transactions (see Figure 8.5).

Timeout methods enable the transaction scheduler (see Figure 8.9) to detect delays in
processing, so that no transaction is blocked permanently.

8.4. Deadlock

Reducing by T 1

011
o
o

00

Key: 01 := Data Item
T:= Transaction

© Dataltem

D Transaction

Reducing by T 2

011

G)

Fig 8.4 Digraph reduction without any deadlocks

435

Timeout detection. Timeout detection is a commonly used method, and is based on setting
a clock on all lock requests by transactions. If a lock exceeds the specified time period, the
database system assumes that deadlock may have occurred and action is taken. This action
might simply be to assume deadlock and abort the transaction with the result that transactions
which are waiting, but not deadlocked, may be aborted (see Figure 8.6). By using a longer
timeout period the problem of unnecessary aborts is reduced; deadlocks may build up as
timeout detection will take longer. Consequently, the timeout period must be finely tuned so
that "must" abort transactions are actually deadlocked and moreover deadlocks are identified
without unnecessary delay. A refinement of the basic timeout approach could be, instead of
aborting delayed transactions, to check for deadlock by running a WFG.

Lock count detection. This method keeps a count of the number of times a transaction makes
an unsuccessful lock request. If the counter reaches a specified limit then deadlock is assumed
(see Figure 8.7).

Deadline detection. Deadline detection is another variation on the timeout approach. Each
transaction is given a specification of the length of time required to complete processing. If

436

Reducing by T2

Dll

Tl ~ T2

~~') I
~~ Dll

o T3 ~

D

Reducing by Tl

Dll

Chapter 8. Concurrency Control

r-"-y~) T2 I
~~ Dll

o T3 ~

D
Fig 8.5 Digraph reduction indicating deadlock

this specified time is exceeded, the database system assumes a deadlock has occurred (see
Figure 8.8).

The problem with all timeout methods of deadlock detection is tuning the clock or counter.
On the one hand, if the timeout period is too short then transactions which are not in deadlock
will be aborted unnecessarily. On the other hand, if the timeout period is too long then the
response efficiency of the database system will be reduced as deadlocked transactions are left
holding data items.

8.4.2 Deadlock Prevention

If one of the four necessary conditions for deadlock is eliminated, then it is impossible for
deadlock to occur. Therefore, all techniques employed to prevent deadlock endeavour to
eliminate one of these conditions. For example, to prevent deadlock by ensuring that the
hold and wait condition never arises, a protocol can be used which requires each process to
request and be allocated all of its data items before it starts execution, so a transaction that
holds all the data items needed must be allowed to complete; the no pre-emption condition
can be eliminated by enforcing the rule that if a transaction is refused access to a data
item then it must release all the data items it currently holds, so that only the transaction
holding the disputed data item is allowed to proceed. Or a transaction may be aborted and
restarted if there is a risk that a deadlock might occur. All of these approaches eliminate the

8.4. Deadlock 437

DEADLOCK--

Fig 8.6 Timeout detection

possibility of deadlock arising; thus the problems of deadlock detection and resolution are
avoided.

We next consider the implementation of two deadlock prevention strategies:

Transaction scheduling, whereby transactions are scheduled for execution so that two
transactions will not be executed concurrently if their data requirements conflict. This requires
that each transaction's data requirements are known prior to execution time through explicit
declaration or analysis of the program. As the precise requirements of a transaction are
not generally known until run-time, this approach to scheduling tends to be unnecessarily
pessimistic. Transaction scheduling is in fact a locking mechanism in which the lockable unit
is an entire set of tuples and locks are applied at program initiation time instead of during
execution.

Transaction rejection, whereby deadlock prevention requires the database system to reject
any lock request that could cause deadlock because a lock cannot be granted immediately.

438 Chapter 8. Concurrency (antral

>- , , ,
>- :z , :z
::::> ::::> ,

0 0 u u

DEADLOCK ---
Fig 8.7 Lock counter detection

This approach is more flexible than choosing a transaction for rollback, since the rejected
transaction may wait for a short time and then try again. If repeated retries fail, the transaction
can then be rolled back in an orderly fashion.

Finally, another way of preventing deadlock is to assign an arbitrary linear ordering (see
Subsection 1.9.2 of Chapter 1) to the data items, and thereafter require that all transactions
acquire their locks according to this ordering. The following theorem establishes this assertion.

Theorem 8.4 Let:s be an arbitrary linear ordering imposed on the data items and assume
that all transactions acquire their locks according to this ordering. Then no deadlock can
occur.

Proof. Let T = {Tl> T2 , •• . , TpJ be a set of deadlocked transactions and let A il :s Ai2 :s .. . ::S
Aim be the data items involved in the deadlock, namely each transaction Ti in T is waiting for
some other transaction in T to unlock a data item, say Aiv' amongst A = {Ail ' Ai2' .. . , Aim}'
We may assume that each Tj in T holds a lock on at least one of the data items Aiv E A,
1) = 1, 2, . . . , m, otherwise we could remove Tj from T and still have a deadlocked set of
transactions. Assume that Tk E T is waiting for a lock on Ail' where Ail is the least element

8.4. Deadlock

TRANSACTION
DURATION

/

DEADLOCK
Fig 8.8 Deadline detection

439

in A. It follows that Tk cannot hold a lock on any of the data items Aiv E A, with v '" 1. This
leads to a contradiction. D

In a centralised database system preventing deadlock is frequently too costly in terms of
resource overheads; thus deadlock detection and resolution is the standard approach. The
opposite tends to be the case in the context of a distributed database system. In general,
prevention may be used if there is a high probability that the database system will suffer from
frequent deadlocks. If there is a low occurrence of deadlock then detection and recovery may
be preferred to deadlock prevention.

Deadlock prevention is the ideal theoretical solution to the deadlock problem in the sense
that prevention must be considered better than cure. However, the restrictions imposed on the
database system by deadlock prevention can be difficult to accept and consequently deadlock
avoidance is more acceptable.

440 Chapter 8. Concurrency Control

The reader is referred to [IMBO 1 for a comprehensive overview of deadlock and its associated
problems in the general context of the management of resources in computer systems.

One issue related to the use of timeout methods, which needs to be addressed, is what to do
with locks already granted when a transaction times out. It seems unnecessarily wasteful to
remove locks on data items that no other transactions wish to access. In fact, only transactions
holding data items requested by other transactions merit rollback. All other transactions could
be allowed a delayed retry. Such modifications could give timeout methods more flexibility
and compensate to some degree for the imprecise approach to deadlock detection.

Finally, when we use WFGs to detect deadlock, all transactions, which remain after digraph
reduction, are aborted; however, aborting one transaction may be sufficient to break the
deadlock. The detection algorithm, therefore, should be able to identify a minimum set of
transactions that need to be aborted in order to eliminate deadlock.

8.5 Lock Granularity and Lock Manager

Lock granularity is the size of the data item to be locked. The granularity oflocks is significant
for the performance of a database system. Locking an entire relation, or a database is viewed
as coarse granularity while locking a data item which is a tuple or sUbtuple is viewed as fine
granularity.

The lock granularity required by a transaction will depend on the operation being
performed: To update a single tuple, only the relevant tuple need be locked, whilst multiple
tuple deletion or update could require a whole relation to be locked. Since different
transactions have different characteristics and requirements, it is desirable that the database
system provide a range of locking granules, called multi-granularity locking.

Not surprisingly, there is a trade off between providing multi-level granularity and the
processing costs involved. We can improve the efficiency of the locking mechanism by
considering the granularity of the locks to be applied. However, the overheads incurred
by the database system in managing multi-granularity locking can outweigh the performance
gains. Moreover, in order to provide multi-granularity locking it is necessary to use a lock
instance graph so as to control the potential conflict oflocks.

The larger the data items locked, the easier it is for the database system to administer the
locks. Coarse granularity incurs low locking overheads, since there are fewer locks to manage;
however, it reduces concurrency as operations are more likely to conflict. Thus transactions
have a better chance of completing successfully at the expense of forcing more transactions
to wait.

Locking smaller data items results in less contention among users since there are fewer
conflicting lock requests. Fine granularity locks improve concurrency by allowing a
transaction to lock only those data items it needs to access. However, it involves higher
overheads, since more locks are requested and the lock table is larger (see Table 8.22 and
Figure 8.10). The overheads consist of maintaining the lock table and status oflocks as well
as the I/O time spent on lock setting and releasing. It is interesting to note that the standard
unit of update in a database system is a page, so all lock granules will require I/O operations
which reflect this.

8.5. lock Granularity and lock Manager 441

The RW model of transactions advocates a static view of a database. In reality, when delete
and insert operations are supported, a database is dynamic as its size can change over time.
Taking a dynamic view of a database the phantoms problem may arise.

Consider a database having two relations rl and r2 . Relation rl stores information about
employees including their salary, and relation r2 stores aggregate information per department
about the employees recorded in rl such as their average salary. Suppose that a transaction
TI checks whether the aggregate salary recorded in r2 for the Computer Science department
is consistent with the information about the individual employees recorded in rl who work in
Computer Science. Moreover, assume that TI first locks all the tuples in rl of employees who
work in Computer Science and thereafter locks the tuple in r2 referring to Computer Science.
Next, suppose that a second transaction T2 inserts a new tuple into rl for an employee who
works in Computer Science, and then, prior to TI locking the tuple in r2 referring to Computer
Science, T2 locks this tuple and updates it with the new aggregate value. In this case TI's
aggregate information will be inconsistent, since it did not take the new employee tuple into
account. In addition, it can be verified that TI and T2 obey the two-phase locking protocol.
The new employee tuple which was inserted into rl by T2 is called a phantom tuple, because
from TI's point of view this tuple did not exist but despite this fact its presence affects the
consistency of the database.

A solution to the phantoms problem, proposed by Eswaran et al. [EGLT76], is to use
predicate locking. In our example, TI would lock all Computer Science employee tuples over
Rio where RI is the relation schema of rl. Thus all tuples over RI whose department value is
Computer Science, whether they be in rl or not, would be locked and therefore, under 2PL,
T2 would not be able to commence until TI has completed. Assuming that the attribute in
schema(Rd which refers to the department in which an employee works is DEPLNAME,
then the predicate (or equivalently, selection formula; see Definition 3.13 in Subsection 3.2.1
of Chapter 3), which locks all the Computer Science employees is: DEPT _NAME = 'Computer
Science' . . To test whether two predicates conflict we need to test if there exists a tuple that is
satisfiable by both predicates. Testing such conflicts is more expensive than testing read/write
conflicts. The complexity of maintaining predicate locks was considered in [HR79], wherein
it was shown that the problem is in general NP-complete.

Multi-granularity locking allows each transaction to use locking levels that are most
appropriate for its mode of operation. In a simple approach this might mean that long
transactions use coarse granularity and short transactions use fine granularity. In this way,
long transactions do not waste time setting many locks and short transactions do not block
others by locking data items that will not be accessed.

Long transactions, also known as long-duration transactions or Long-Lived Transactions
(LLTs), are transactions that by their nature take a substantial amount of computer time
relative to other transactions and may lock data items for long periods. For example, one of
the features of Computer Aided Design (CAD) is that of several groups of designers working on
the same project, whose details are stored in a shared database; different groups of designers
submit different transactions, which need to cooperate amongst themselves but may also have
conflicts [KKB90] . Taken separately the transactions of each group are short-lived but taken
together they form a single LLT. As another example, transactions that require human input,
as in an airline reservation system, are generally LL Ts, since there may be several inputs to
the database over a prolonged period of time while the human is logged onto the system. The

442 Chapter 8. Concurrency Control

problem is accentuated, since human interaction considerably slows down the throughput of
the database system.

LL Ts lead to major performance problems, since they tend to lock large portions of the
database, causing other transactions, waiting to access data items locked by LLTs, long delays.
There is also potential conflict between an LLT and other transactions, when the LLT writes to
many data items, causing additional scheduling and deadlock problems. Thus LLTs are also
more likely to abort than short-lived transactions, enhancing the need to relax the atomicity
requirement for an LLT.

Considering the airline reservation example, suppose that a human wishes to interactively
make several seat reservations on flights in a single transaction T. Each such seat reservation
can be viewed as a sub transaction Ti of T. As a whole T may require to lock a large portion of
the database, but taken separately each Ti would require locking only the data items related
to the flight, say Pi, which is accessed by Ti . Although T can commit only if all the T/s
have completed successfully, for scheduling purposes we can allow the subtransactions, say
Tl, T2, . .. , Tn, to be interleaved in any way with other transactions. Such an LLT is called
a saga [GS87j or, when several levels of subtransactions are allowed, a nested transaction
[BBG89j.

One problem we are now faced with is the situation where the subtransactions Tl , T2, .. . , T k>
with k < n, have all committed and subtransaction Tk+) aborts. Since, T), T2, .. . , Tk> have
already committed and the database could have been modified in the meanwhile by other
transactions we cannot simply rollback these transactions. Instead we execute compensating
transactions, say C) , C2 , . .. , Ck> which are transactions whose purpose is to undo the effects of
T), T2 , .. . , Tk . Each Ti in T must have a compensating transaction Ci attached to it, which was
defined prior to scheduling T; compensating transactions are usually user-defined as opposed
to rollback which is automatically generated by the system using the log files. As an example,
assume that a saga T reserves n seats on flights, Fi, via sub transactions, Ti, 1 ::::: i ::::: n, i.e.
each sub transaction reserves a single seat on a flight. In this case, if Tk+) , with k < n, aborts,
then the compensating transactions C) , C2, .'" Ck will be scheduled, where each Ci cancels
the reservation made by h with 1 ::::: i ::::: k.

Two-phase locking, introduced in Subsection 8.3.1, is the most common locking protocol
which enforces serialisability. An improvement in the presence ofLLTs is the altruistic locking
protocol proposed by Salem et al. [SGS94j . Intuitively, altruistic locking provides a transaction
with a third operation, called donate, in addition to the lock and unlock operations. A data item
that is locked but no longer accessed by a transaction may be donated by this transaction, thus
allowing other transactions to simultaneously lock it. The donating transaction may continue
to acquire new locks, and therefore altruistic locking is not necessarily two-phase.

Prior to defining the altruistic locking rules we define the notion of being in the wake of
another transaction. A transaction TJ is in the wake of another transaction T2 with respect to
a data item x, if Tl locks x and x was donated by T2. A transaction TJ is in the wake of another
transaction T2 if T) is in the wake of T2 with respect to some data item; a transaction cannot
be in the wake of itself. A transaction T) is completely in the wake of another transaction T2 ,
if Tl is in the wake of T2 with respect to all the data items TJ has locked.
Altruistic locking rule 1. Two transactions may simultaneously hold a lock on the same data
item only if one of the transactions has first donated the data item to the other transaction.

Altruistic locking rule 2. If transaction TJ is in the wake of another transaction T2, then T)
must be completely in the wake of T2 until T2 executes its first unlock operation.

8.6. lock Manager Implementation 443

Exercise 8.9 requires you to prove that a locking protocol based on the altruistic locking
rules leads to serialisable schedules. Returning to the airline reservation system, consider an
LLT consisting of subtransactions, TI. T2 • ... • Tn, where each Ti involves reserving a single
seat on a flight Pi, and thus locking all the data items relating to h Furthermore, assume
that no two distinct subtransactions access the same flight. In this case T can donate its locks
relating to Pi once Ti has completed. When subtransaction Tko withk ::: n, has completed,
then a transaction which accesses only flights in PI. P2 • ...• Pk can execute concurrently with
T. The altruistic locking rules we have presented do not distinguish between a read lock and
a write lock. A generalised altruistic protocol which caters for separate read and write locks
is considered in [SGS94).

The level of concurrency is strongly influenced by the size of the data items that can be
identified and locked. The choice of locking granularity represents a trade off between
concurrency and overheads. That is to say, the increased overheads of maintaining fine
granularity versus the possible loss of concurrency due to coarse granule locking. The choice
of granularity depends on the type of applications being run and the way applications utilise
the database system.

8.6 Lock Manager Implementation

A database system typically comprises a number of interrelated modules designed to satisfy the
functional requirements of database operations. These modules will in all likelihood include:

• a transaction manager,

• a lock manager,

• a transaction scheduler (or simply a scheduler),

• a recovery manager and

• a cache memory manager

The above modules appear in the diagram of Figure 8.9. Herein the recovery manager and
cache manager together are referred to as the data manager.

The lock manager performs lock and unlock operations, while the transaction manager
feeds the transaction scheduler. In practice, the transaction scheduler is usually implemented
as a combined operation of the lock manager and transaction manager.

When the transaction manager receives a read/write request from a transaction, it sends
the appropriate lock instruction to the lock manager. The lock manager sets the lock and
acknowledges that it is set, so the transaction manager can send the read/write operation to
the data manager.

The lock manager maintains a table oflocks to support the lock and unlock operations as
shown, for example, in Table 8.22.

In processing a lock, the lock manager attempts to set the specified lock by adding an entry
in the lock table. If another transaction holds a conflicting lock, then the lock manager does
not add the requested lock to the lock table, but enters it in a queue of waiting requests. An

444 Chapter 8. Concurrency Control

Database System

Transaction Scheduler

Data Manager

Database

Fig 8.9 Diagram of the core components of a centralised DBMS

Table 8.22 Example of a lock table

TRANSACTION-ID DATA-ITEM LOCK-MODE WAITING TRAN-ID
4846 A READ 4848
4847 B WRITE
...

unlock operation releases the specified lock and grants any waiting lock requests that are now
unblocked (see Figure 8.10). A locking protocol defines the restricted sequence of steps a lock
manager may perform (see Figure 8.1l).

Two situations may arise when it is necessary to abort a waiting lock request. Firstly, if a
deadlock occurs and the transaction which initiated the waiting lock request is aborted, then
the lock request will also be aborted. Secondly, when a timeout parameter facility is provided
and a lock request is waiting for longer than the set timeout parameter, then the lock request
will be aborted.

8.7. Timestamp Ordering

Lock Table

H LOCK
-- MANAGER

~

\
Request

Lock

\
Request

Lock

SCHEDULER

1 1 1

Grant
or Deny

Lock

\
Grant

Access,
Wait, or
Abort

888
~

!

Transactions following locking protocol

Fig 8.10 Overall relationship between the lock manager, scheduler, and locking protocol

445

The two main considerations for the lock manager with respect to computational effort
are the number of instructions and I/O operations needed to implement lock requests. To
increase the speed of locking and unlocking operations the lock manager can be optimised
for special cases that occur frequently, such as setting non-conflicting locks or releasing all
locks of a transaction simultaneously. This latter optimisation is achieved by linking together
all lock entries for each transaction in the lock table. Thus, all locks for a transaction can be
released simultaneously as soon as the acknowledgement of commit is received.

In practice, the lock table operates as a temporary file that the database system may keep
in main storage while the database is actually used. Often the lock table is implemented as a
hash file (see Exercise 1.5 from Chapter 1) with the data item identifier as key, because hash
files are especially fast for content-based retrievals. The table should be protected against
corruption; for example, by including it as part of the operating system, or in a protected area
of the database system. In addition, the lock table should only be accessible to those programs
that implement lock and unlock instructions.

In conclusion a lock manager provides the facilities necessary to perform locking operations.
The implementation of a lock manager will vary from database system to database system.
The factors which affect the implementation will include the protocols employed, available
lock modes, and lock granularity. Since locking operations are performed with extremely
high frequency, it is therefore important to consider carefully how locks are managed.

8.7 Timestamp Ordering

A timestamp is a unique identifier set at the start of a transaction, which allows chronological
ordering of transactions to be determined. The timestamp can be as simple as the value of a

446

PROCESS flOWCHART

I
the lock is
available

•
ACQUIRE

THE LOCK

the lock
becomes
available

+
ACQUIRE
THE LOCK

request a lock

I
I

the lock is
unavailable

1
wait
wait
wait

I

the lock
is still

unavailable

•
ABORT

THE REQUEST

Chapter 8. Concurrency Control

Fig S.11 Process flowchart showing the logic underpinning a locking protocol

counter, incremented at the start of each transaction. Such a simple implementation, however,
suffers from two weaknesses. Firstly, the maximum value of the counter is the maximum
integer value of a particular computer. Secondly, in a distributed database environment,
transactions initiated at different sites may be granted the same timestamp by the distinct
counters of the processors at the different sites.

A more practical approach to timestamp ordering is to employ the values of the computer's
clock as timestamps. The computer clock has a finer incremental scale and is also less likely to
crash. To produce a unique timestamp in a distributed database system, such systems usually
combine the computer's clock value as the major component, together with a site identifier as
the minor component. Consequently, although two or more transactions may have the same
clock value, the physical requirement that they started from different sites means that the site
identifier is different, thus the composite value is unique.

Following this latter approach to timestamp ordering, the values of timestamps are drawn
from a totally ordered domain. The following definition of timestamp ordering follows that
given in [BG81).

Definition 8.14 (Timestamp ordering) Timestamp ordering is the method of scheduling
whereby each transaction is assigned a unique timestamp and conflicting operations (see
Definition 8.5) from different transactions are scheduled to execute in timestamp order. •

8.7. Timestamp Ordering 447

The next theorem shows that adhering to the timestamp ordering method of Definition 8.14
results in serialisable schedules.

Theorem 8.5 If s is a schedule that obeys the timestamp ordering method of Definition 8.14,
then s is conflict -serialisable.

Proof. Assume that a schedule s, which satisfies the timestamp ordering method. is not
conflict-serialisable. Then there must exist in res) a cycle Til' Ti2" ..• Tip, Til' with P > 1.
That is to say, two conflicting operations exist in any two consecutive transactions Tip Tik+l'
1 ~ k ~ P - 1. and in Tip, Til' According to the timestamp ordering method the timestamp
of Tik is strictly less than the timestamp of Tik+l' 1 ~ k ~ P - 1. and the timestamp of Tip is
strictly less than that of Til' Thus the timestamp of Til is strictly less than the timestamp of
Til; however, this contradicts the timestamp ordering method. 0

Let Ti, Tj be two transactions with timestamps ti, tj, respectively. If ti < tj then Ti is said to
be older than Tj; if ti > tj then Ti is said to be younger than 1).

Timestamp ordering is an alternative to locking as a mechanism for concurrency control.
It is used primarily but not exclusively in distributed databases. Timestamp ordering allows
several users to apparently access the database simultaneously. while maintaining the integrity
of the data. As long as no two transactions are accessing the same data item. there is no danger
of transaction conflict or data corruption. When conflicting operations are being performed
by a database system. then timestamp ordering will prevent anomalies such as the lost update
by stopping a transaction writing to a data item that has already been read by a younger
transaction.

Timestamp ordering prevents concurrent access problems by ensuring serialisability of
transactions. as was shown in Theorem B.S. Timestamps are set at transaction start and every
operation by the transaction is associated with that start time. To maintain the integrity of
the database. every time a transaction tries to read or write to a data item. its timestamp
is compared to that of the data item being read or written. Depending on the temporal
relationship between the two timestamps. the transaction will either be processed or rolled
back. and in the latter case the transaction may restart with a new timestamp. That is. a
transaction, say T, with timestamp tl canno.t write to a data item with a read time of t2. if
t2 > tl' If T makes such an attempt. then it is out of date and therefore must abort and be
restarted. Similarly. T cannot read a data item with a write time of t2. if t2 > tl' Again if T
makes such an attempt, then it is out of date and therefore must abort and be restarted. Only
on transaction completion or restart is a timestamp released.

We next present five rules which have been identified for timestamp ordering mechanisms
by Ceri and Pelagatti [CP84aj. These rules are:

Rule 1. Every transaction is assigned a globally unique timestamp when it is initiated at its
site of origin. (This assumes a distributed computing environment.)

Rule 2. Each data item in the database carries the timestamp of the last transaction to have
read it (read timestamp) and the last transaction to have written to it (write timestamp).

Rule 3. Each read and write operation takes the timestamp of its issuing transaction.

Rule 4. For a transaction to read a data item, its timestamp must not be less (older) than the
last write timestamp of the data item. Otherwise. the transaction is aborted and restarted with

448 Chapter 8. Concurrency Control

a new timestamp. When the transaction has read the data item, the data item then takes the
timestamp of that transaction as its latest read timestamp.

Rule 5. For a transaction to write to a data item, its timestamp must not be less than either of
the data item's read or write timestamps. Otherwise, the transaction is aborted and restarted
with a new timestamp. When the transaction has written to the data item, then the data item
takes the timestamp of that transaction as its latest write timestamp.

Rule 4 above ensures that read/write synchronisation is maintained, while Rule 5 ensures
write/write synchronisation; in combination these two rules guarantee that conflicting
transactions are serialisable. While not enforced by the rules, it is worth stating here that
best practice would require that write operations are not written to the physical database
until commit is executed. Thus, transaction restart does not require physical rollback of the
database.

8.7.1 Timestamp Ordering Implementation

A number ofimplementation algorithms have been suggested for concurrency control by using
the timestamp ordering method, whereby every pair of conflicting operations is executed in
timestamp order. We briefly present an overview of three of them. (For algorithmic details
the reader is advised to consult [BHG87j .)

Basic timestamp ordering. This is essentially the implementation of the five basic rules given
above. Although these rules ensure serialisability of transactions, they do not guarantee
atomicity. Rules 4 and 5 are usually modified in basic timestamp ordering implementations,
so that write operations pre-write to a buffer (write-buffer). (See cache manager in Figure 8.9.)
The physical update of the database is only executed when the transaction has been committed.
Thus, the two-phase commit policy is adhered to by modifying these two rules. (Two-phase
commit is a protocol that allows a set of autonomous processes or agents to eventually all
commit or all abort; see [BHG87, BN97j for details on the two-phase commit protocol.)

Rule 4a. For a transaction to read a data item, its timestamp must not be less (older) than
the last write timestamp of the data item. Otherwise the transaction is aborted and restarted
with a new timestamp. If a transaction's timestamp is greater (younger) than the data item's
last write timestamp, then the read is executed provided there are no outstanding pre-writes
of the data item with a timestamp greater (younger) than that of the read operation. If there
are pre-writes outstanding, the read operation is placed in a buffer (read-buffer) until the
transaction(s) issuing the pre-write(s) is (are) committed.

Rule Sa . For a transaction to pre-write to a data item, the transaction's timestamp must not
be less (older) than either of the data item's last read or write timestamps. Otherwise the
transaction is aborted and then restarted. If the transaction's timestamp is greater (younger)
than both the data item's said timestamps, then the pre-write is executed and the data, with
its timestamps, is written to the buffer.

Rule Sb. A transaction's write operation to a data item will always be executed, but if a
pre-write on the data item with an older timestamp is still outstanding, the write operation
will be buffered until the execution of the outstanding pre-write has been completed.

While basic timestamp ordering completely overcomes the deadlock problem, by never
blocking transactions, it can suffer from frequent transaction restarts.

8.7. Timestamp Ordering 449

Conservative timestamp ordering. This method, which is applicable in the context of a
distributed database, prevents the numerous transaction restarts experienced by the basic
timestamp ordering, but at the expense of a lower degree of concurrency. Unfortunately, in
solving the problem of restart, the level of concurrency is adversely affected. The method
requires that:

• Each transaction has a home site from where it was initiated and its execution is
controlled.

• All sites must guarantee that transactions will commit in timestamp order; this is done
in order to prevent older transactions from attempting to write to a data item after a
younger transaction, thus resulting in restart.

• A queue of read and write requests must be maintained, with at least one read and one
write operation buffered at all times.

As operation requests are received, the following protocol is employed:

• If the timestamp of a read request is less (older) than that of the first data item in
the write-buffer, then the read operation is executed. Otherwise, the read operation is
buffered in the read-buffer until that write is executed.

• For a write request to be executed, the buffers must not contain any read or write requests
with a lesser (older) timestamp. Otherwise, the new request must be buffered in the
write-buffer until the above condition is met.

These rules ensure that all transactions are processed in strict timestamp order, by forcing
young requests to wait for older requests to complete. A problem with this conservative
timestamp mechanism is that if no read or write requests are sent for a long period of time
the buffers (read or write) may become empty, thus causing the database system to hang. To
prevent this problem from arising, timestamps for null requests must be sent to the buffers
periodically to ensure the database system continues to function. Moreover, since transactions
are permitted to wait, deadlock may occur.

Thomas's Write Rule (TWR) [Th0791. This is also known as the ignore obsolete write rule;
TWR provides an important modification to the basic timestamp ordering technique. The
rule allows a write operation to be acknowledged as completed, while ignoring to write the
data item to the database, provided that the transaction timestamp is less than that of the last
write timestamp of the data item. This is allowable because if the last write timestamp of the
data item is after the proposed write operation and the read timestamp of the data item is
before the proposed write operation, then the proposed write operation is obsolete and can
be ignored.

Prior to stating Thomas's write rule we introduce some relevant notation. Assume that
Tj issues the operation write(A). Let ts(Tj) denote a unique fixed timestamp associated with
transaction Tj. In addition, we associate with each data item, say x, two timestamp values
(referred to earlier), namely R_ts(x), which denotes the largest (youngest) timestamp of any
transaction that has successfully executed read(x), and W _ts(x), which denotes the largest
(youngest) timestamp of any transaction that has successfully executed write(x).

450 Chapter 8. Concurrency Control

Thomas's write rule states:

1) If ts(Tj) < R_ts(x), then write(h x) is rejected.

2) If ts(Tj) < W _ts(x) , then Tj is attempting to write an obsolete value of x. Thus the write
operation is ignored.

3) Otherwise the write operation is executed and W_ts(x) := ts(Tj).

After careful consideration it can be seen that Thomas's write rule utilises view serialisability
by essentially deleting obsolete write operations from those transactions that issue them
[BHG87].

Thomas's write rule deals with the timestamp issue of how to treat unsynchronised write
operations. It does, however, give rise to an interesting, counter-intuitive situation; consider
the following transaction history, where start Tj, for i = 1,2, stands for "initiate transaction
T/'.

Steps Transaction T(Transaction T2
1 start T(;
2 start T2;
3 write{A);
4 read{A);
5 write{A);

Under TWR case 1 the write at step 5 must be rejected because it conflicts with the read at
step 4, even though there is no direct conflict with the said read as the latter reads the value
written at step 3. Moreover, the write operation at step 5 would have been ignored under
TWR case 2. There is an implicit priority ordering between these two rules, with the absolute
reject rule taking precedence over the softer ignore rule. If we were to reverse the priority, it
would make perfect sense not to reject a write which has already been earmarked as an ignore
write.

Timestamp ordering provides an alternative concurrency control strategy to locking. It
ensures that the processing of transactions is equivalent to a specific (time-based) order
of execution. In addition, it does not incur the overheads associated with maintaining a
lock register. The fact that transactions do not need to wait means that deadlock is not a
problem.

On the downside, timestamp ordering may suffer from livelock due to automatic transaction
restarts. This problem can be managed by allowing a limited number of restarts before aborting
the transaction, with an error message being sent to the user. There is also the substantial
overhead of recording the timestamp of each data item. However, since such recording is
held in a table and changes constantly, the overhead can be kept to a minimum by purging
the table regularly of obsolete data items.

Each timestamp ordering implementation has its advantages and disadvantages, and
different system designers will have their own preferences. The choice of implementation is
therefore difficult to comment on meaningfully. The end product requirements will, however,

8.8. Serialisation Graph Testing 451

have a strong influence on the implementation choice, such as the use of multi-version
timestamp ordering [Ree83] for systems with an expected high probability of transaction
restarts. More generally, we can safely say that timestamp ordering offers a viable means
of ensuring data integrity, whilst not incurring excessive overheads and is particularly cost
effective in a distributed database environment.

8.8 Serialisation Graph Testing

We already know that transaction scheduling and serialisability can be achieved by using
locking or timestamp ordering. Serialisation Graph Testing (SGT) is an alternative approach
to transaction scheduling which ensures serialisability.

An SGT scheduler maintains a serialisation digraph (see Definition 8.8) of the transactions
it is executing. The node set of this digraph includes nodes for all active transactions, namely
transactions that have started and have not yet become committed or aborted, and the arcs
between the nodes represent dependencies that have been generated by a request to schedule
potentially conflicting operations. A cycle in the digraph indicates that the transactions are
not serialisable. As the scheduler sends new operations to the data manager, the serialisation
digraph is updated by the scheduler. SGT maintains serialisability by preventing any cycles
from forming in the serialisation digraph. The digraph has a node for every active transaction,
including recently committed transactions.

We next describe briefly two versions of SGT, namely Basic SGT and Conservative SGT.

Basic SGT. On receiving a request via the transaction manager, a basic SGT scheduler adds, if
one does not exist already, a node to the serialisation digraph if the requesting transaction is
new. An arc is then added from all the other transactions currently represented by the digraph
for every previous operation that conflicts with the scheduled operations of the requesting
transaction. A conflict arises if the serialisation digraph becomes cyclic. If the resulting
digraph is cyclic, then the scheduling of transactions would be non-serialisable. Therefore, the
scheduler rejects the offending transaction by sending an abort instruction to the data manager.
All scheduled operations of the offending transaction are removed from the scheduled queue.
When the data manager acknowledges the abort, the node of the offending transaction is
deleted from the serialisation digraph as well as all arcs incident with it. Ifthe resulting digraph
is acyclic, then the new transaction is scheduled once all previous conflicting operations have
been acknowledged by the data manager.

We illustrate basic SGT by considering the transaction history

Steps Transaction T1 Transaction T2
I read{A);
2 read{A);
3 write{A);
4 write{A);

At step 1 the digraph consists of a single node labelled by TJ and the said queue of waiting
operations contains <read(Tb A»; at step 2 the digraph comprises two nodes TJ and T2 and
the queue of waiting operations contains <read(TJ, A), read(T2, A»j at step 3 the digraph is as

452 Chapter 8. Concurrency Control

at step 2 together with the arc (Th T2) and the queue of waiting operations contains <read(Th
A), read(T2, A), write(T2, A». The third entry in the queue is a potential read-write conflict;
at step 4 the digraph is as at step 3 together with the arc (T2, Td. A cycle has arisen, so TI
is aborted, since it is the transaction that caused the cycle at step 4. After step 4, the digraph
consists of a single node labelled by T2 and the queue of waiting operations contains <read(T2,
A), write(h A» .

To detect conflicts with previously scheduled operations the database system maintains
the readset and writeset of every transaction (see Definition 8.1). The scheduler can delete
information about a terminated transaction only if the transaction could not be involved in a
future cycle of the serialisation digraph. A safe rule for deleting nodes from the serialisation
digraph is one such that information about a transaction may be discarded as soon as that
transaction has terminated and its associated node has no incoming arcs in the serialisation
digraph.

Conservative SGT. A conservative SGT scheduler does not reject any operations, but delays
(or blocks) them as in 2PL and timestamp ordering. It works by having each transaction pre
declare its readset and writeset by attaching them to the start operation. When a transaction
start, say start Ti, is received by the scheduler it saves the T;'s readset and writeset. A node
labelled by Ti is then created in the serialisation digraph and an arc (Tj, Ti) is added from every
node 1j in the serialisation digraph to Ti whenever there exists a conflicting operation between
1j and Ti. The scheduler must also maintain for each data item x, a queue, say queue[x], of
delayed operations that access the data item x. All conflicting operations in queue[xl are kept
in an order consistent with the order of operations indicated by the arcs in the serialisation
digraph. For example, if (Th T2) is an arc in the serialisation digraph, then TI's operation to
read(x) will be closer to the head of the queue than T2'S operation to write(x), so that TI's
read operation will be dequeued before T2's write operation. The order of non-conflicting
operations in queue[xl is not significant.

An operation at the h~ad of a particular queue may only be sent to the data manager by the
scheduler if the operation is ready. There are two conditions for readiness:
Condition 1. Any operations already sent to the data manager that conflict with the aforesaid
operation at the head of the queue must have been acknowledged by the data manager. This
condition ensures that the data manager processes conflicting operations in the order that
they were scheduled.

Condition 2. For every transaction TI that directly precedes a transaction T2 in the serialisation
digraph, with a pair of conflicting operations, TI's operation has already been sent to the
scheduler.

Condition 2 enables the scheduler to avoid abort operations by ensuring that the execution
is equivalent to a serial execution of TI followed by T2 . So if TI's read(x) conflicts with T2'S
write(x), then the read(x) must be scheduled first. So if T/s write(x) is received before TI's
read(x) it must be delayed. Otherwise, TI's read(x) would have to be rejected when it is
eventually received, as it would create a cycle in the serialisation digraph involving TI and T2.

When the scheduler receives T2'S write(x) from the transaction manager or an
acknowledgement of TI's read(x) from the data manager, it will check to see if the head
of the queue is ready. If so, it dequeues the operation at the head of the queue and sends it to
the data manager. The scheduler will then keep repeating this process with the new head of
the queue until the queue is emptied or the head thereof is not in a state of readiness.

8.9. Discussion 453

Finally, we mention that Hadzilacos and Yannakakis [HY89] derived necessary and
sufficient conditions for when it is safe to remove a completed, i.e. not active, transaction
(which is equivalent to deleting a node from the serialisation digraph) in several versions
of conflict-digraph-based schedulers. It is also shown therein that, in general, the problem
of deciding whether a transaction cannot be safely removed from the conflict digraph is
NP-complete.

8.9 Discussion

Concurrency control is a huge subarea in the context of database systems and research on
this topic continues unabated [Ku096, AJR97, RMB+98]. Specialised textbooks on the subject
have been written and we refer the reader to [Cas81, Pap86, BHG87, GR93, BN97]; a recent
collection of papers dealing with the practical issues pertaining to performance of concurrency
control algorithms is [Kum96]. Herein we have looked at concurrency control primarily
from the point of view of the relational model; concurrency control techniques need to be
modified when applied to other models such as an object-oriented data model (see for example
[GNS93]).

We next briefly indicate the support for concurrency control within SQL2 [DD93].
Transactions are sequences of SQL statements, which terminate either with a COMMIT or
a ROLLBACK statement, with their intended meaning. A transaction is initiated implicitly
within an application program when no other transaction is in progress within the same
program, and individual SQL statements are the primitive operations of such a transaction.
By default SQL transactions are SERIAUZABLE but various relaxations of serialisability are
possible. A recent critique of SQL's support for concurrency control has raised some serious
problems with the standard regarding its ambiguity and lack of support for locking [BBG+95].

We have not considered recovery, which is the topic referred to the process of restoring
a database to a consistent instance after some system failure, be it hardware or software,
rendering the current instance of the database inconsistent. Recovery is an important topic and
is closely related to concurrency control. In [Had88] and [AVA +94], respectively, reliability
and recovery issues are dealt with in great detail. In this respect we mention ARIES (Algorithm
for Recovery and Isolation Exploiting Semantics) [MHL +92], which is a relatively new and
important recovery algorithm that has been implemented in some current database systems.
In [Ku096] a model and verification of a data manager based on ARIES is presented.

We close the discussion with a brief historical account. The notion of serialisability was
introduced by Gray et al. [GLPT75]. In that seminal paper, issues related to lock granularity
according to a lock hierarchy from the entire database level down to the tuple level, and
the compatibility of various lock modes were also discussed. A central paper to the theory
of serialisability and two-phase locking is [EGLT76], where conflict-serialisability and the
basic 2PL protocol were introduced, and Theorems 8.1 and 8.3 were proved. In that paper
the phantoms problem was also raised and predicate locking was introduced as a solution
to the problem. Other early papers dealing with the theory of serialisability and locking
are [SLR76, BSW79]. In [PBR77, Pap79] is was shown that testing view-serialisability and
final-state-serialisability are both NP-complete problems, strengthening the case of adhering

454 Chapter 8. Concurrency Control

to conflict-serialisability. The technique of detecting deadlock via cycles in the Waits-For
Graph stems from an early paper by Holt [Holnj, who considered the general problem of
deadlock detection and prevention in operating systems. Timestamp ordering was introduced
by Thomas in his seminal paper [Th079j, and an early investigation of serialisation graph
testing was carried out by Casanova in his monograph [CasSlj.

We have seen that serialisability can be achieved by the three methods of locking
(2PL), timestamp ordering (TO) and serialisation graph testing (SGT). The techniques we
have presented are pessimistic in the sense that the scheduler checks the possibility of
nonserialisability after each operation it receives and makes an immediate decision whether
to accept, reject or block the operation. A different optimistic approach can be used which,
rather than check each operation as it comes, accepts all operations for the time being and
makes a final decision regarding whether to commit or abort a transaction at the time when the
transaction is ready to commit. Such an optimistic scheduler [KRSlj is also called a certifier.
Optimistic schedulers maximise throughput of transactions when the probability of conflict
between any two transactions is low.

We note that we have mainly dealt with the case of concurrency control in a centralised
multi-user environment but have occasionally also discussed the case of a distributed database
(see Section IO.S of Chapter 10). An early survey concentrating on concurrency control in
distributed database systems can be found in [BGSlj.

8.10 Exercises

Exercise 8.1 Construct an example of two schedules involving three transactions such that
the schedules are view-equivalent but not conflict-equivalent.

Exercise S.2 Consider a transaction model where each transaction is a sequence of lock and
unlock operations. We denote the operation that a transaction T locks a data item x by 10ck(T,
x), and the operation that T unlocks x by unlock(T, x); whenever T is understood from context
we abbreviate these operations to lock(x) and unlock(x), respectively.

Each data item locked must subsequently be unlocked, and whenever a data item is locked
by a transaction no other transaction can either read or write it until it is unlocked by the said
transaction. Moreover, whenever a transaction locks a data item, say x, it modifies the value
of x, and the value that x has when unlocked is essentially unique. Consider the following
algorithm.

Input: A schedule s for the set {Ti> T2, ... , Tk} of transactions.
Output: Yes if s is serialisable, No otherwise.
Method: Construct a digraph G, where the node set ofG is given by {Ti> T2,"" Td. The set
of arcs of G is constructed as follows: (Tj, Tj) is an arc of G, if there exists in 5 an unlock(Tj, x)
followed by a lock(Tj, x). If G has a cycle then s is not serialisable, otherwise perform a
topological sort to obtain a serial order for the set transactions.

Prove the correctness of the above algorithm and apply it to the schedule of transactions
Ti> T2, T3 and T4 given below.

8.10. Exercises 455

Steps T\ T2 T3 T4
1 lock(A);
2 lock(A);
3 lock(B);
4 unlock(A);
5 lock(A);
6 unlock(B);
7 lock(B);
8 unlock(A);
9 lock(B);
10 lock(A};
11 unlock(B);
12 lock(C);
13 unlock(A);
14 lock(A};
15 unlock(A);
16 unlock(B};
17 unlock(C);

Exercise 8.3 A blind write in a transaction T is a write operation at step, say i, to a data item
that is not preceded in T, at any previous step j < i, by a read operation to the same data item.
Prove that if transactions do not have any blind writes, then a schedule is conflict-serialisable
if and only if it is view-serialisable [Pap86].

Exercise 8.4 A subschedule S' of a schedule s of a set of transactions T is the subsequence of
the elementary steps of s formed by the elementary steps of a subset of the transactions in T.

Prove that a schedule s is conflict-serialisable if and only if all its subschedules S' are view
serialisable [Yan84].

Exercise 8.5 Use your solution of Exercise 8.4 to prove that a locking policy ensures view
serialisability if and only if it ensures conflict-serialisability [Yan84].

Exercise 8.6 Consider a relational database consisting of N tuples. Assume that there are
n + 1 transactions and that each transaction comprises m + 1 operations. Each operation
picks randomly a tuple from the set of N tuples and locks it. At the last step the transaction
commits, releasing all its locks. Each step takes one time unit, unless the transaction has to
wait for a lock held by another transaction in which case the step completes when the holding
transaction commits. Assume that nm « N (nm is very small compared to N), i.e. most of
the database is unlocked most of the time.

Estimate the probability that a single lock request will wait, and show that the probability a
particular transaction, say T, waits in its lifetime is approximately nm2/(2N). Show that the
probability that T participates in a cycle oflength two is approximately nm4/(4N2), and the
probability that any transaction deadlocks is approximately n2m4 /(4N2) [GR93].

Exercise 8.7 A schedule of the elementary steps of a set of transactions, such that the rules
pertaining to locks are obeyed, is called a legal schedule. Consider the transactions T} and T2.

Find in how many legal ways they can be scheduled. Identify the serialisable schedules
assuming that whenever a data item is locked by a transaction its value is modified.

456

lock(A);
lock(B);

unlock(A);
unlock(B);

Chapter 8. Concurrency Control

lock(B);
unlock(B);
lock(A);

unlock(A);

Exercise 8.8 Show that testing whether a schedule obeys the basic 2PL protocol can be done
in polynomial-time [Pap79j.

Exercise 8.9 Prove that a schedule which obeys a locking protocol which enforces the
altruistic locking rules, given towards the end of Section 8.5, is serialisable.

Exercise 8.10 Discuss the advantages and disadvantages of locking versus timestamp
ordering.

Exercise 8.11 Prove that the Ceri and Pelagatti timestamp ordering rules produce serialisable
executions.

Exercise 8.12 Construct examples to demonstrate the applicability of Thomas's write rule in
all three of its cases.

Exercise 8.13 Consider the transaction history

Steps Transaction Tl Transaction T2
1 start T1;

2 start T2;
3 read(A);
4 write(A);
5 write(A);

Assume that in TWR Case 2 takes precedence over Case 1. Discuss the implications of such a
change with respect to the above transaction history.

Exercise 8.14 Let T be a transaction, whose timestamp is t, attempting to perform an
operation X on a data item, whose read time and write time are, respectively, tT and two
Consider the algorithm

Algorithm 8.3
1. begin
2. if X = read and t ::: tw then
3. if t > tT then tT := t;
4. end if
5. if X = write and t ::: tT and t ::: tw then
6. if t > tw then tw := t;
7. end if
8. if X = read and t < tw or X = write and t < tT then abort(T);
9. end.

8.10. Exercises 457

Show that the above algorithm produces serialisable executions, and apply it to the following
schedule

Steps T\ T2 T3 T4
1 read(A}j
2 read(A}j
3 write(B}j
4 write(A}j
5 read(B}j
6 read(B}j
7 read(A};
8 write(C);
9 write(A};

on the assumption that the timestamps of Tl to T4 are, respectively,

(a) 310, 320, 330, and 340.
(b) 260,270,280, and 290.

The read time and write time of each data item is initialised to zero.

Exercise 8.15 Consider the safe rule for deleting nodes from the serialisation digraph in the
context of the basic SGT. Justify the rationale for it.

Exercise 8.16 Show that the conservative SGT scheduler, described in Section 8.8, produces
serialisable executions.

Exercise 8.17 In the context of the conservative SGT show that Condition 2 of readiness need
only consider transactions Ti which directly precede transaction Tj.

9. Deductive Databases

We have already introduced deductive databases in Subsection 1.7.5 of Chapter 1 and have
formalised the rule-based deductive database language, Datalog, in Subsection 3.2.3 of
Chapter 3. The investigation of deductive databases, also known as logical databases, has
been one of the most significant and prolific strands in database theory in the last decade. We
now discuss the motivation for researching deductive databases.

The primary motivation is that logic provides us with a formal and unifying foundation
for a data model. In fact, relational databases can be viewed as finite models for a first-order
language, whose predicate symbols are the relation symbols of the database schema and whose
constants are the domain values. By using a logic formalism the expressive power of relational
query languages can be extended with deductive capabilities. In particular, the rule-based
language Datalog is a significant extension of the relational algebra and calculus. Logic has
the advantage of providing an abstract and high-level declarative specification language for
expressing knowledge; it is a precise, well-understood and unambiguous language.

Related to the above motivation for investigating deductive databases is the fact that the
relational algebra has limited expressiveness. In particular, the relational algebra has no
iteration or recursion facilities. An early result, which was discussed in Subsection 3.2.1 of
Chapter 3, is that the transitive closure of a relation cannot be expressed within the relational
algebra [AU79). In Section 6.7 of Chapter 6 we discussed how to augment the relational
algebra with iteration (the for loop) and with recursion (the fixpoint) so as to gain extra
expressive power. The relational algebra is a procedural language and therefore it is natural
to investigate an alternative declarative query language such as Datalog in order to achieve
this higher expressiveness.

We next recall that due to Proposition 3.4, from Subsection 3.3.2 of Chapter 3, we need only
consider safe Datalog programs, which we refer to simply as Datalog programs. Moreover,
general Datalog programs may be recursive and may contain rules having negative literals in
their body. We further recall Theorem 3.18, from Subsection 3.3.2 of Chapter 3, which shows
the equivalence of the relational algebra and nonrecursive Datalog. As a direct consequence
of this theorem, the definition of the semantics, MEANING(P), of a Datalog program P, and
the definition of the semantics of fixpoint queries, we can state the following fundamental
result.

Proposition 9.1 Datalog is equivalent to the relational algebra augmented with a fixpoint
operator, i.e. they both express exactly the same set of polynomial-time computable queries.

o

459

460 Chapter 9. Deductive Databases

This proposition justifies basing a deductive database model on Datalog. Recall the
semantics ofDataloggiven by Algorithm 3.4 in Subsection 3.2.3 of Chapter 3, i.e. MEANING(P},
where P is a Datalog program. Informally, MEANING(P} is the inflationary jixpoint ofP, which
is obtained as follows. As an intermediate step, the immediate consequence of the current
state of the result, say I, is computed by concurrently finding all the safe substitutions e for
clauses C in P such that C is true with respect to e and I, and then all the facts eeL) are added
to the result, where L is the head of C. This process is iterated until no more facts can be added
to the current state of the result by invoking the intermediate step. By Proposition 9.1 the
maximum number of iterations necessary in order to obtain the fixpoint is polynomial in the
size of CONST(P), namely the set of constants appearing in P.

In addition, recall that SCHEMA(P} is the set of all relation schemas whose relation symbols
appear as literals of rules in P, and that DB(P} denotes the initial database ofP, i.e. the relations
induced by the set of facts in P.

As an example, recall the Datalog program, TC, which computes the transitive closure of a
binary relation, FAMILY:

TC(Xl, X2) : - FAMILY(xl, X2).
TC(Xl, X3) : - FAMILY(xl, X2), TC(x2, X3).

Moreover, assume that the Datalog program also contains some FAMILY facts such as:

FAMILY(Abraham, Isaac}.
FAMILY (Isaac, Jacob}.

The semantics of the Datalog program TC, obtained by computing MEANING(TC}, is a set
of FAMILY and TC facts, i.e. a database with two relations over FAMILY and TC, respectively.
The FAMILY relation, which comprises the FAMILY facts ofTC, is an extensional relation (or
a conceptual relation), and the TC relation, which comprises the TC facts that can be inferred
from TC, is an intensional relation (or a view relation).

In general, MEANING(P) of a Datalog program, P, contains both the extensional and
intensional relations, where the extensional relations comprise the facts which are present
in P and the intensional relations comprise the facts that can be inferred from P.

We now state three implicit assumptions that are made with respect to the underlying data
model [Rei841:

• The Unique Names Assumption (UNA), which states that any two constants in CONST(P)
are equal if and only if they are syntactically identical, i.e. they are have the same name.
(See Definition 3.2 in Section 3.1 of Chapter 3.)

• The Domain Closure Assumption (DCA), which states that the only available constants
are those that are explicitly mentioned in P, i.e. CONST(P). (This assumption manifests
itself in the semantics of Datalog programs, since we consider only safe substitutions
when computing MEANING(P).}

• The Closed World Assumption (CWA), which states that facts that are not present in
the current state of the database are assumed by default to be false. (This assumption
manifests itself in the semantics of Datalog programs via the definition of the truth of
clauses with respect to safe substitutions.)

9.1. Model-theoretic Semantics of Datalog 461

It is interesting to note that the CW A as stated above would not be valid if we further extend
Datalog so as to allow facts which are disjunctions of literals, such as

AGEOack, 21) v AGE(Jack, 23}.

The reason for this is that given the said disjunction we cannot be certain whether AGE(Jack,
21) is true or whether AGE(Jack, 23} is true, and so under the CWA we are forced to conclude
that both AGE(Jack, 21) and AGE (Jack, 23} are false. Thus we have derived a contradiction
and the database is deemed to be inconsistent. A generalisation of the CWA which handles
disjunctions correctly is given in [Min88al. In the above example, under the generalised
CWA we can deduce that either AGE(Jack, 21) is true or that AGEOack, 23) is true, which is
intuitively what we would expect.

Prior to outlining the contents of the sections that follow, we introduce the important
distinction between extensional and intensional database predicates. For a Datalog program
P, let us call a predicate which is the head of a nontrivial rule in P an intensional database (or
IDB) predicate, and all the other predicates in P extensional dftabase (or EDB) predicates.
In addition, let EDB{P} be the set of facts in P over EDB predicates and IDB{P} be the set of
facts in P over IDB predicates together with the nontrivial rules in P, i.e. IDB{P} is given by P
- EDB{P}. Given a Datalog program P, the set EDB{P} of facts can be considered as the input
database to P.

In Section 9.1 we formalise the model-theoretic semantics of Datalog programs. While
the semantics of Datalog programs that do not have any negation in them, called definite
Datalog programs and often referred to as pure Datalog programs, are undisputed, when
we allow negation in the body of Datalog rules various proposals have been put forward.
In the course of Section 9.1 we present these different semantics and discuss their relative
merits. In Section 9.2 we investigate the expressive power of Datalog in terms of the set
of computable queries that it can express according to the semantics used to compute the
meaning of programs. In Section 9.3 we discuss the problem of proving whether two Datalog
programs are equivalent in the sense that their meanings coincide for any given input set
of facts. The solution to the equivalence problem has implications for query optimisation,
since we prefer programs that do not have any redundant clauses in them. In Section 9.4 we
investigate an extension of definite Datalog, called Datalog not-equal, that includes equality
and inequality as built-in predicates. The significance of Data log not-equal is that its programs
are monotonic, i.e. if we add more facts to the input of such a program P, then the output from
P will contain at least as many facts as it did before the inclusion of the extra facts in the input
of P. In Section 9.5 we discuss the important issue of updating a deductive database, which
can be seen as an extension of the view update problem presented in Section 3.8 of Chapter 3.
Finally, in Section 9.6 we discuss another important issue, i.e. that of defining and maintaining
integrity constraints in deductive databases.

9.1 Model-theoretic Semantics of Datalog

A natural interpretation of the semantics of a Datalog program is via model theory. (We refer
the reader to Subsection 1.9.3 of Chapter 1 for the relevant background in first-order logic.)

462 Chapter 9. Deductive Databases

Thus we can associate with every Datalog program, P, a first-order language, C(P), whose
constants are those present in CONST(P) and whose relation symbols are those present in
SCHEMA(P). We can then associate with P a family {Mil of finite Herbrand interpretations.
Each such interpretation Mi is a set of facts that can be viewed as a database di over
SCHEMA(P) such that the active domain, ADOM(di), of di is a subset of CONST(P). (In
the following we write di and Mi interchangeably.) In order to make clear the notion of a
Herbrand model for a Datalog program we define the notion of satisfaction.

Definition 9.1 (Satisfaction of a clause by an interpretation) A Herbrand interpretation M
of P, (or equivalently, the database dover SCHEMA(P», where P be a Datalog program,
satisfies a clause C, written M F C (or equivalently, d F C), if one of the following conditions
is true:

1) C is a positive ground literal (or a fact) ofthe form Land L E M .

2) C is a negative ground literal of the form,L and M ~ L.

3) C is a rule of the form L : - L1, L2, ... , Ln and for all safe substitutions B for C such that
for all i E J, where J = {l, 2, ... , n}, M F Li, it is also the case that M FL..

Defmition 9.2 (Herbrand model for a Datalog program) A Herbrand interpretation M of
P is a Herbrand model ofP (or simply a model ofP) if for all clauses C in P, M F c.

A model M of P is minimal if no proper subset of M is a model of P, and a model M is
least ifit is included in every other model ofP. (Thus ifP has a least model then it has a unique
minimal model, since a least model is also minimal; on the other hand P may have more than
one minimal model and thus no least model.) •

In general, a Datalog program has many Herbrand models, since if M is a Herbrand model
of P, then by the definition of satisfaction any superset of M is also a Herbrand model of
P. Our first result states that the inflationary fixpoint of a Datalog program P is a Herbrand
modelofP.

Lemma 9.2 MEANING{P) is a Herbrand model ofP.

Proof. The result follows from the definition of satisfaction of a clause by an interpretation
and the definition ofMEANING(P). We leave the details to the reader. 0

Definition 9.3 (Defmite Datalog program) A Datalog program is definite if the bodies of all
its rules do not contain any negative literals or equality formulae. •

For example, the Datalog program computing the transitive closure, which was given in the
introduction to this chapter, is definite.

There is no loss of generality in allowing equality formulae in the bodies of rules, since the
equality formula x = y (written in prefix notation = (x ,y» can be defined by the definite
Datalog program given by

EQ(x , x) .
= (x, y) : - EQ{x, y).

9.1. Model-theoretic Semantics of Datalog 463

TA
STUD ~

PHD

LEC -----

Fig 9.1 The dependency graph of PI

We note that the rule defining EQ is not safe, but due to Proposition 3.4 of Subsection 3.2.3
in Chapter 3, there exists a safe Datalog program whose meaning is identical. That is, EQ will
be defined only with respect to the set of constants in CONST(P).

It is well known that when a Datalog program is definite then it has a least Herbrand model,
which is the intersection of all Herbrand models ofP [VK76, Apt90, NM90j; this result utilises
the celebrated Knaster-Tarski fixpoint theorem [Tar55j. Building upon this result it can be
shown that the fixpoint semantics of a definite Datalog program P coincide with the least
model semantics of P [VK76, Apt90, NM90j (cf. [KP91]). Th~s definite Datalog programs
have a very elegant model-theoretic characterisation.

Lemma 9.3
ofP.

IfP is a definite Datalog program then MEANING(P) is the least Herbrand model
o

Unfortunately, when negative literals are allowed in the body of a rule then a least model
does not always exist. We give several examples that illustrate the problems that arise with
the model-theoretic semantics in the presence of negation. Assume a university database
having the following entities: people (modelled by the unary predicate PERS), employees
(modelled by the unary predicate EMP), lecturers (modelled by the unary predicate LEC),
teaching assistants (modelled by the unary predicate TA), students (modelled by the unary
predicate STUD) and people having a PhD degree (modelled by the unary predicate PHD).

The following Datalog program, denoted by PI, states that a typical lecturer who is not a
student tends to have a PhD degree.

TA(Wilfred).
LEC(Mark).
PHD(x) : - LEC(x), -,STUD(x).

The dependency graph of PI is shown in Figure 9.1. (We have augmented the construction
of the dependency graph by labelling arcs, (R 1, R2), as being negative whenever the literal Rl
is negative.} PI has two minimal Herbrand models. The first model is given by

TA(Wilfred}.
LEC(Mark}.
PHD(Mark).

In this model Mark has a PhD degree and is therefore not a student. The reader can verify

464 Chapter 9. Deductive Databases

LEC
TA~

I STUD
PHD~

Fig 9.2 The dependency graph of P2

that MEANING(P) corresponds to the above model. The second model is given by

TA(Wilfred).
LEC(Mark).
STUD(Mark).

In this model Mark is a student and therefore does not have a PhD. The first model seems
more natural than the second one, since under the CW A we can deduce that ...,STUD(Mark)
is true. Therefore, we should give priority to minimising the STUD facts rather than the PHD
facts.

The following Datalog program, denoted by P2, states that a typical teaching assistant who
does not have a PhD degree tends to be a student.

TA(Wilfred).
LEC(Mark).
STUD(x) : - TA(x), ...,PHD(x).

The dependency graph of P2 is shown in Figure 9.2. P2 also has two minimal Herbrand
models. The first model is given by

T A(Wilfred).
LEC(Mark).
STUD(Wilfred).

In this model Wilfred is a student and therefore does not have a PhD degree. The reader
can verify that MEANING(P) corresponds to the above model. The second model is given by

TA(Wilfred).
LEC(Mark).
PHD(Wilfred).

In this model Wilfred has a PhD degree and is therefore not a student. In analogy to the
argument that the first model of PI is more natural than its second one, we can also argue
that the first model of P2 is more natural than its second model. In this case, we should give
priority to minimising the PHD facts rather than the STUD facts. We observe that in P2 the
priorities of the predicates STUD and PHD are reversed.

9.1. Model-theoretic Semantics of Datalog

I
~

PERS STUD EMP

~
I

Fig 9.3 The dependency graph of P3

I PERS EMPO-
Fig 9.4 The dependency graph of P4

465

The following Datalog program, denoted by P3, states that a person who is not an employee
is a student and a person who is not a student is an employee.

PERS(Dan).
STUD(x) : - -.EMP(x).
EMP(x) : - -.STUD(x).

The dependency graph of P3 is shown in Figure 9.3. P3 has two minimal models Ml =
(PERS(Dan), STUD(Dan)} and M2 = (PERS(Dan), EMP(Dan)}. Both of these models differ
from MEANING(P), which is the union of the two asserting that Dan is both a student and an
employee. It follows that in this case MEANING(P) is not a minimal model. It is not clear,
given P3, which of Ml or M2 is a more natural model.

The following Datalog program, denoted by P4 , states that a person who is not recorded as
an employee is in fact an employee.

PERS(Dan).
EMP(x) : - -.EMP(x).

The dependency graph of P4 is shown in Figure 9.4. P4 has a least model M = (PERS(Dan),
EMP(Dan)}, which coincides with MEANING(P).

The following Datalog program, denoted by Ps, assumes the nonempty binary predicate
ARC (modelling the arcs of a digraph), a binary predicate TC (modelling the transitive closure
of the digraph) and a binary predicate COMP (modelling the complement of the transitive
closure of the digraph). TC and COMP are defined by the following three rules:

TC(Xl , X2) : - ARC(Xl , X2).
TC(Xl, X3):- ARC(Xl , X2), TC(X2 , X3).
COMP(Xl, X2) : - -.TC(Xl , X2).

466 Chapter 9. Deductive Databases

ARC -O~COMP
Fig 9.5 The dependency graph of Ps

o I

ARC -TC ~COMP
~NOT_LAST/

Fig 9.6 The dependency graph of the modified version of Ps

The dependency graph of Ps is shown in Figure 9.5. Indeed in one of the minimal models of
Ps the predicate COMP stores the complement of the transitive closure TC of the digraph being
modelled. This preferred model is the one that gives priority to minimising the TC facts rather
than the COMP facts. Unfortunately, the inflationary semantics of Ps, i.e. MEANING(Ps), do
not coincide with the intended semantics of Ps. The reader can verify that in MEANING(Ps),
COMP is the Cartesian product of the node set of the digraph being modelled. In [AV91a)
it was shown how the complement of the transitive closure of a digraph can be computed
using inflationary semantics with the aid of two auxiliary predicates, which we call COpy
and NOT-LAST. COPY duplicates the TC facts which were added to the resulting database
in the previous iteration of the while loop in MEANING(P). On the other hand, NOT -LAST
duplicates the same TC facts unless all the TC facts that can be added are already in the resulting
database, i.e. TC has reached its fixpoint. The modified inflationary version of Ps is given by
the following rules:

TC(Xl, X2) : - ARC(Xl, X2).
TC(Xl, X3) : - ARC(Xl, X2), TC(X2, X3).
COPY(Xl, X2) : - TC(Xl, X2).
NOT -.LAST(Xl, X2) : - TC(Xl , X2), ARC(X3, X4), TC(X4, xs), --.TC(X3 , xs).
COMP(Xl, X2) : - --.TC(Xl, X2), COPY(X3, X4), --.NOT -.LAST(X3, X4) .

The dependency graph of the modified version of Ps is shown in Figure 9.6.
The following Data[og program, denoted by P6, is intended to describe the nodes that are

reachable and unreachable from a node, a, in a digraph modelled by the predicate ARC.

ARC(a, b).
ARC(c, d).
REACHABLE(a).

9.1. Model-theoretic Semantics of Datalog

ARC - REACHABLE0 ~ UNREACHABLE

Fig 9.7 The dependency graph of P6

MOVE
___ " JJi

Fig 9.8 The dependency graph of P7

REACHABLE(X2) : - REACHABLE(xJ), ARC(Xl, X2).
UNREACHABLE(x) : - REACHABLE(x).

467

The dependency graph of P6 is shown in Figure 9.7. Indeed, as in Ps, one of the minimal
models of P6 captures the intended semantics. This preferred model is the one that gives
priority to minimising the REACHABLE facts rather than the UNREACHABLE facts. As in
Ps the inflationary semantics of P6, given by MEANING(P6), does not capture the intended
semantics. We leave it to the reader to verify that the intended semantics of P6 can be captured
by modifying P6 in a way similar to the modification of Ps by adding to it two predicates COpy
and NOT-LAST.

The following Datalog program, denoted by P7, assumes the nonempty binary predicate
MOVE and a unary predicate WIN. It models a two-person perfect information game between
two players, where a fact MOVE(a, b) describes a legal move from position a to position b for
a player in position a, and a fact WIN(a) asserts that a player in position a wins the game. The
rules of the game are such that a player loses if he/she is in a position from which there is no
legal move; an example of such a game is nim [Bea89]. We observe that MOVE can be viewed
as a digraph, and that cycles in this digraph model positions from which neither player can
win.

WIN (x) : - MOVE(x, y), WIN(y).

The dependency graph of P7 is shown in ~igure 9.8. For example, consider the four facts
describing the legal moves of a game given by

MOVE(a, b).
MOVE(b, c).
MOVE(d, b).
MOVE(d, e).
MOVE(e, e).

468 Chapter 9. Deductive Databases

The intended semantics of this initial database of P7 are that position b is winning, positions
a and c are losing, while positions d and e are neither winning nor losing, i.e. they are drawing.
It is evident that MEANING{P} does not produce this intended meaning. Moreover, since a
position may not be winning or losing, we need to allow for facts to be undefined as well as
true or false. Thus Herbrand interpretations and models need to be extended so that they be
partial, i.e. allow for undefined facts.

We now describe some specific model-theoretic semantics of negation, apart from the
inflationary semantics [KP9I), which is the semantics we have attached to MEANING{P}. A
detailed survey of the semantics of negation in Datalog can be found in [Bid9I, Via97b) . In
particular, we will describe stratified program semantics [CH85, ABW88, Lif88, Van88, Apt90),
semipositive program semantics [ABW88), perfect model semantics [Prz88a, Prz88b, AB88,
Apt90, PP90), stable model semantics [GL88, Cos95, Sch95), well-founded model semantics
[Bry89, Prz89, Ros89, PP90, Prz90, Prz9I, VRS9I, Prz92, Van93b, Sch95) and default logic
semantics [BF9Ia, BF9Ib) (see also [CEG94) and cf. [Rei80, Rei87, Bes89]).

For a subset of the clauses C of P, we designate the set of predicates which are heads of the
rules in C as the set of the predicates defined by C. {Recall that a fact is a trivial rule having an
empty body.} Intuitively, a stratification of P is a partition, {PI, P2 , ... , PsI, of P into layers
Pi, called strata, which can be constructed as follows. All the clauses in C which define a given
predicate belong to the same stratum. In addition, every rule in P, whose head is H, imposes
the following constraints on the stratification of P. Firstly, the clauses in P which define the
positive literals in the body of the rule belong to the same or a lower stratum than the stratum
of H. Secondly, the clauses in P which define the negative literals in the body of the rule belong
to a lower stratum than the stratum of H. It follows that a definite Datalog program has a
stratification with a single stratum. The formal definition is now given.

Defmition 9.4 {Stratification of a Datalog program} A stratification of a Datalog program P
is a partition of P into a number oflayers, {PI , P2, .. . , PsI, called strata as follows.

For every rule
H :-AI,A2 ... , Am , ~BI' ~B2 " '" ~Bq

in P, with m, q ::: 0, where the Ai'S are the positive literals of the rule and the ~B;'s are the
negative literals of the rule, we have that

1) the set of clauses in P which define H all belong to the same stratum;

2} for all i E (I, 2, ... , m), stratum(Ai} ::: stratum(H}; and

3} for all i E (I , 2, ... , q), stratum(Bi} < stratum(H},

where stratum(L} = i if the clauses in P which define a predicate L belong to Pi. •
A Datalog program may have zero or more stratifications. The Datalog programs P3, P4

and P7 do not have any stratifications. A stratification for Ps which has two strata is such that
the first stratum consists of the first two rules of Ps and its ARC facts, and the second stratum
consists of the third rule of Ps. Another stratification for Ps which has three strata is such that
the first stratum consists of the ARC facts, the second stratum consists of the first two rules
of Ps and the third stratum consists of the third rule of Ps. Similarly, stratifications for PI, P2
and P6 can also be constructed.

9.1. Model-theoretic Semantics of Datalog 469

Recall Definition 3.29 of the dependency graph of a Datalog program, say P, which was given
in Subsection 3.2.3 of Chapter 3. For each rule in P we have an arc from Rl to R2 if Rl is the
relation symbol of a literal in the body of the rule and R2 is the relation symbol of its head. Let
us augment the construction of the dependency graph by further labelling arcs as positive or
negative according to whether the literal RI in the body of the rule is positive or negative.

Defmition 9.5 (Stratified Datalog program) A Datalog program P is stratified if the
dependency graph of P does not have a cycle containing an arc with a negative label. •

Note that we can safely assume that stratified Datalog programs do not contain equality
formulae, since as we have seen above, equality formulae can be defined by a definite Datalog
program containing the predicate EQ and an inequality of the form x =j:. y (written in prefix
notation =j:. (x, y») can defined by using negation, namely

=j:. (x, y) : - ~EQ(x, y).

On using Definition 9.5 it can be verified that, from the example Datalog programs given
above, PI , P2 , Ps and P6 are stratified whilst P3, P4 and P7 are not stratified.

The following theorem was shown in [ABW88].

Theorem 9.4 A Datalog program P is stratified if and only if there exists a stratification of P.
o

The reader can verify that it can be decided in polynomial time in the size of a Datalog
program P whether P is stratified or not, and if it is stratified then a stratification of P can
also be obtained in polynomial time in the size ofP (see [Tarn, AHU83] for efficient digraph
algorithms).

Intuitively, the meaning of a stratified Datalog program P is obtained by first stratifying
P and then iteratively computing MEANING(Q), where Q is the union of the meaning of the
previous strata and the current stratum.

Definition 9.6 (The meaning of a stratified Datalog program) The pseudo-code of an algo
rithm, denoted by STRATIFIED..MEANING(P), which realises the meaning of a stratified
Datalog program P is presented as the following algorithm. •

Algorithm 9.1 (STRATIFIED.MEANING(P))
1. begin
2. Result := 0;
3. Compute a stratification (PI, P2, ... , Psl of P;
4. for i = 1 to s do
5. CurP := Result U Pi;
6. Result:= Result U MEANING(CurP);
7. end for
8. return Result;
9. end.

470 Chapter 9. Deductive Databases

In order to define the model-theoretic semantics of a stratified Datalog program P we
define the concept of a perfect model. We first define the relative priorities amongst the
relation symbols in P.

Let P be a stratified Datalog program. We say that a relation symbol Rj has a lower priority
in P than a relation symbol Ri if there is a path in the dependency graph of P from Rj to Ri
having at least one negative arc.

For example, in the program PI STUD has lower priority than PHD and in P2 the converse
is true. In addition, in Ps TC has lower priority than COMP and in P6 REACHABLE has lower
priority than UNREACHABLE. In all these programs it is natural to minimise the predicates,
whose relation symbols have lower priority, as much as possible, even at the expense of
enlarging predicates whose relation symbols have higher priority.

Intuitively, a perfect model for a stratified program P is a Herbrand model that minimises
the relations over relation schemas whose symbols have a lower priority.

Definition 9.7 (Perfect model) Let P be a stratified Datalog program and MI and M2 be
two distinct Herbrand models of P. We say that MI is preferable to M2 with respect to P, if
for all facts in M I - M2 having relation symbol Ri> there exists a fact in M2 - M I having
relation symbol R2 such that R2 has a lower priority than RI'

We say that M is a perfect model of P if M is a Herbrand model of P and there are no
Herbrand models of P which are preferable to M with respect to P. •

The following fundamental result was shown in [Prz88a, Prz88b J.

Theorem 9.5 ' The following statements, where P is a stratified Datalog program, are true:

1) Every perfect model of P is a minimal model.

2) There is a unique perfect model ofP.

3) STRATIFIED_MEANING(P) is a perfect model ofP.

Proof. For part (1) if .1\1 1 ~ M2 then it follows that M I is preferable to M2 implying the
result.

For part (2) assume that there are two perfect models, MI and M 2 , such that each is
preferable to the other. It follows that M I and M2 are incomparable with respect to subset,
since both M I - M2 and M2 - M I must be nonempty.

Let RI be the relation symbol of a fact in MJ - M2. Then there is a relation symbol
R2 of a fact in M2 - MJ such that R2 has a lower priority than Rl> since MI is preferable
to M 2. However, M2 is also preferable to MJ and thus there is a relation symbol R3 of a
fact in MJ - M2 such that R3 has a lower priority than R2. Moreover, since P is stratified
RJ, R2 and R3 are pairwise distinct. Continuing this argument it follows that both M I and
M2 are infinite Herbrand models having an infinite number of relation symbols, leading to a
contradiction, since P has only a finite number of clauses.

For part (3) it can be verified that for every Herbrand model M of P STRATI
FIED-.MEANING(P) is preferable to M, since Algorithm 9.1 minimises relations over relation
schemas whose symbols have a lower priority. The result now follows by part (2). 0

9.1 . Model-theoretic Semantics of Datalog 471

We urge the reader to verify the above theorem with respect to the example Datalog programs
PI, P2 , Ps and P6 above.

The next corollary follows from the uniqueness of the perfect model semantics.

Corollary 9.6 If P is a stratified Datalog program then STRA TIFIED..MEANING(P) is
independent of the stratification ofP. 0

The class of semi positive Datalog programs is a proper subclass of the class of stratified
Datalog programs and a proper superclass of the class of definite Datalog programs.

Definition 9.8 (Semipositive Datalog program) A Datalog program P is semipositive if
whenever a negative literal appears in the body of a rule in P, then the relation symbol of
this literal is not the relation symbol of any literal which is the head of a nontrivial rule in
P. (We assume that equality formulae of the form x = y and thus inequalities of the form
-'(x = y), which are abbreviated to x i= y, are allowed as literals in the body of rules of
semipositive Datalog programs.) •

We note that allowing equality formulae as literals in the body of rules of semipositive
Datalog programs is equivalent to assuming that EQ is an EDB predicate representing equality
such that EQ(v, v) is a fact in the EDB if and only if v E CONST(P). If we do not allow
equality formulae in semipositive Datalog programs, then inequality cannot be expressed in
semipositive Datalog.

The reader can verify that the stratified Datalog programs PI and P2 , given above, are
semiposltlve. On the other hand, the stratified Datalog programs Ps and P6 are not
semipositive, since TC in Ps appears in a negative literal in the body of a rule and also in
the head of a rule and similarly for REACHABLE in P6.

It can be verified that each stratum in the stratification of a stratified Datalog program is
in fact semipositive. Thus an alternative definition of a stratified program is as a sequence of
semipositive programs that partition the original program. We observe that a semipositive
Datalog program can be transformed into a program with no negative literals by replacing each
negative literal-.L in P by the complement of Lin P with respect to CONST(P). This is consistent
with the interpretation of a Datalog program via the CWA (closed world assumption).

The next theorem follows from the fact that a semipositive Datalog program has a
stratification consisting of a single stratum.

Theorem 9.7 If P is a semipositive Datalog program then STRATIFIED..MEANING(P) =
MEANING(P) is a least Herbrand model ofP. 0

We now formalise the notions of Herbrand base and Herbrand program of a Datalog
program, both of which will be utilised below.

Defmition 9.9 (Herbrand base and Herbrand program) The Herbrand base of a Datalog
program P, denoted by H(P), is the set of all facts of the form R(VI, V2, . . . , Vk) such that
R is in SCHEMA(P), type(R) = k and {VI . V2 • .. . , Vk} is a subset of CONST(P). (The set of
constants CONST(P) is also known as the Herbrand universe of P.)

472 Chapter 9. Deductive Databases

The Herbrand program of P, denoted by 1t(P), is the Datalog program resulting from
applying all possible safe substitutions e to the clauses C in P. Formally, 1t(P) is a given by

1t(P) = {e(C) I C is a clause in P and e is a safe substitution for C in Pl . •

We observe that although 1t(P) does not contain any variables it is still a Datalog program;
1t(P) is also known as the ground instance ofP and the clauses in P are known as the ground
clauses ofP.

Consider the Datalog program P7 together with a single MOVE fact, given by

MOVE(a, b).
WIN(x): - MOVE(x,y), --'WIN(y) .

Its Herbrand program 1t(P7) is given by

MOVE(a, b).
WIN(a) : - MOVE(a, a), --.WIN(a).
WIN(a):- MOVE(a, b), --.WIN(b).
WIN(b) : - MOVE(b, b), --'WIN(b).
WIN(b) : - MOVE(b, a), --.WIN(a).

Due to the fact that Datalog programs, such as P3 , P4 and P7, are not stratified, there have
been proposals to extend the model-theoretic semantics of Datalog to a more general class of
programs. We next proceed to define such an extension in the form of stable model semantics
for Datalog programs.

Informally, the stable transformation of the Herbrand program of a Datalog program P,
with respect to an interpretation M of P, removes from H(P) any ground clause that is not
satisfied by M due to a negative ground literal, --.L, in the body of the clause such that M
satisfies L, and then removes all negative literals from the remaining ground clauses in 1t(P).

Defmition 9.10 (Stable transformation) For an interpretation M of a Datalog program P,
the stable transformation of the Herbrand program 1t(P) of P, with respect to M, denoted by
S(P, M), is the Datalog program obtained by

1) deleting each rule in 1t(P) that has a negative literal--.L in its body, where L E M, and

2) removing all negative literals in the bodies of the remaining rules in 1t(P). •

The stable transformation of S(P7, {MOVE(a, b), WIN(a))) is given by

MOVE(a , b).
WIN(a) : - MOVE(a, b).
WIN(b) : - MOVE(b, b).

On the other hand, the stable transformation of S(P7, (MOVE(a , b), WIN(b))) is given by

9.1. Model-theoretic Semantics of Datalog

MOVE(a, b).
WIN(a) : - MOVE(a, a).
WIN(b) : - MOVE(b, a).

473

The next lemma is an immediate consequence of Lemma 9.3, since S(P, M) is a definite
Datalog program.

Lemma 9.8 Given a Datalog program P, MEANING(S(P, M)) is a least model of S(P, M).
o

A stable model for a Datalog program P is a set of facts M such that M is the least fixpoint
of the stable transformation of1t(P) with respect to M.

Definition 9.11 (Stable model) If M = MEANING(S(P, M)) for an interpretation M of a
Datalog program P, then we say that M is a stable model of P and that P has stable model
semantics. IfP has a unique stable model then we say that P has unique stable model semantics .

•
We leave it to the reader to verify that the unique stable model of P7 above is {MOVE(a, b),

WIN(a)}, implying that a is the only winning position for this initial database of P7. The
reader can verify that as long as the digraph induced by the MOVE facts describing the game
does not have any cycles, then P7 has a unique stable model semantics. Thus stable model
semantics covers only win-lose games, where an outcome of a draw is not possible.

Apart from P3 and P 4 all the other example Datalog programs given earlier have unique stable
model semantics. The reader can verify that P3 has two stable models {PERS(Dan), EMP(Dan)}
and {PERS(Dan), STUD(Dan)) and that P4 has no stable models, since S(P4, {PERS(Dan)))
= {PERS(Dan), EMP(Dan)} and S(P4, {PERS(Dan), EMP(Dan))) = {PERS(Dan)}. Therefore,
stable model semantics is not defined for all Datalog programs as is the case for inflationary
semantics. On the other hand, it is debatable whether programs such as P3 and P4 have a
"natural" meaning.

The following result, which appeared in [GLSS], shows that stable model semantics include
perfect model semantics as a special case.

Theorem 9.9 If a Datalog program P is stratified then it has unique stable model semantics
and its unique stable model coincides with the unique perfect model of P. 0

We now describe a recent generalisation of the concept of a model to a three-valued
formalism, which allows facts to be unknown (or undefined) apart from true and false. This
gives rise to an alternative semantics of negation in a Datalog program, thus giving meaning
to all Datalog programs.

A Herbrand interpretation, say M, is two-valued or total, since the facts that are in Mare
taken to be true and the facts that are not in M are taken to be false. The underlying idea
in generalising the stratified and stable model semantics of Datalog programs is to consider
three-valued Herbrand interpretations [FitS5, KunS7].

474 Chapter 9. Deductive Databases

Defmition 9.12 (Three-valued Herbrand interpretations) A three-valued Herbrand inter
pretation of a Datalog program P (also called a partial Herbrand interpretation of P) is a pair
(T, F), where T and F are disjoint subsets of the Herbrand base B(P) of P, called, respectively,
the true and false sets of the interpretation. T contains all the facts which are true in the
interpretation, F contains all the facts that are false in the interpretation and U = B(P) - (T
U F) contains all the facts that are unknown (or undefined) in the interpretation.

rfU = 0 then the three-valued interpretation reduces to the standard two-valued Herbrand
interpretation (also called total Herbrand interpretation), whence T U F = B(P). •

We now generalise the concept of satisfaction of a clause in an interpretation to satisfaction
in a partial interpretation.

Defmition 9.13 (Satisfaction of a clause by a partial interpretation) A partial Herbrand in
terpretation M = (T, F) ofP, where P be a Datalog program, satisfies a clause C, written M ~
C, if one of the following conditions is true:

1) C is a positive ground literal (or a fact) of the form Land LET.

2) C is a negative ground literal of the form -.L and L E F.

3) C is a rule of the form L : - LI, L2, ... , Ln and for all safe substitutions 8 for C such that
for all i E I, where I = {I, 2, ... , n}, M ~ Li, it is also the case that M ~ L. •

Definition 9.14 (Three-valued Herbrand model of a Datalog program) A partialinterpreta
tion M = (T, F) of a Datalog program P is a three-valued Herbrand model of P (also called a
partial Herbrand model ofP, or simply a partial model of P) if for all clauses C in P, M ~ C.

A partial model reduces to a total model ifU = 0. •

Intuitively, a partial model is minimal if it minimises its true set and maximises its false set.

Definition 9.15 (Minimal partial models of a Datalog program) We say that a partial model
MI = (TI , PI) ofP is extended by a partial model M2 = (T2, P2) ofP if TI is a subset of T2

and PI is a superset of P2•

A partial model M is minimal if it is extended by all other partial models of P. •

Prior to defining the well-founded meaning of a Datalog program, we generalise the concept
of truth of a clause with respect to a partial interpretation, and correspondingly define the
new concept of falsity of a clause with respect to a partial interpretation.

Defmition 9.16 (Truth of a clause with respect to a partial interpretation) A literal L in the
body of a clause C in a Datalog program P is true with respect to a substitution 8 for C and a
partial interpretation M = (T, F) ofP, if one of the following conditions is satisfied:

1) e (L) is a ground atomicformula of the form R(VI, V2, ... , Vk) and R(VI, V2, ... , Vk) E T.

2) 8(L) is an equality, v = v, where v is a constant.

3) e (L) is a ground literal of theform -.R(VI, V2, ... , Vk) and R(VI, V2, ... , Vk) E F.

9.1 . Model-theoretic Semantics of Datalog 475

4) eeL) is a negative literal of the form, (Vj = Vj), where Vi and Vj are distinct constants,
i.e. Vi i= Vj.

A clause e in a program P is true with respect to a substitution e for e and a partial
interpretation M of P, if each of the literals in the body of e is true with respect to e and M .

•
Defmition 9.17 (Falsity of a clause with respect to a partial interpretation) A literal L in the
body of a clause e in a Datalog program P is false with respect to a substitution e for e and a
partial interpretation M = (T, F) ofP, if one of the following conditions is satisfied:

1) eeL) is a ground atomicformula of the form R(VI , V2, .. . , Vk) and R(VI, V2 , ... , Vk) E F.

2) eeL) is an equality, VI = V2, where VI and V2 are distinct constants.

3) e (L) is a ground literal of the form R(VI, V2, .. . , Vk) and R(VI, V2, .. . , Vk) E T.

4) eeL) is a negative literal of the form, -.(v = v), i.e. V i= v, where V is a constant.

A clause e in a program P is false with respect to a substitution e for e and a partial
interpretation M of P, if at least one of the literals in the body of e is false with respect to e
andM. •

Intuitively, the well-founded meaning of a Datalog program is a partial model obtained by
starting from the empty partial interpretation and iteratively deriving all the facts currently
known to be true or false.

Definition 9.18 (The well-founded meaning of a Datalog program) The pseudo-code of an
algorithm, denoted by WELLFOUNDED..MEANING(P), which realises the well-founded
meaning of a Datalog program P is presented as the following algorithm. •

Algorithm 9.2 (WELLFOUNDED..MEANING(P»
1. begin
2. Res_True:= 0;
3. Res_False := 0;
4. Tmp_Res := ({ <>}, {<>));
5. while Tmp_Res i= (Res_True, Res_False) do
6. Tmp-R.es := (Res_True, Res_False);
7. ltecTrue:= 0;
8. ltecFalse := B(P);
9. Tmp_lter:= ({<>}, {<>));
10. while Tmp_lter i= (ltecTrue, ltecFalse) do
11. Tmp_lter:= (ltecTrue, ltecFalse);
12. ImT := 0;
13. for all clauses e in P and safe substitutions e for e

such that e is true with respect to e and (Res3rue U ltecTrue, Res_False) do
14. ImT := ImT U {e(L»), where L is the head ofe;
15. end for

476 Chapter 9. Deductive Databases

16. lteLTrue := lteLTrue U ImT;
17. ImF:= 0;
18. for all facts G E B(P) do
19. if for all clauses C in P and safe substitutions e for C

such that G = e(L), where L is the head of C,
C is false with respect to e and (Res_True, Res_False U IteLFalse) then

20. ImF := ImF U {G};
21. end if
22. end for
23. IteLFalse := IteLFalse n ImF;
24. end while
25. Res_True:= Res_True U IteLTrue;
26. Res_False := Res_False U lteLFalse;
27. end while
28. return (Res_True, Res_False);
29. end.

Algorithm 9.2, which was formulated in [Prz88a, PP90j, is known as the iterated least
jixpoint of P. An alternative, yet equivalent, formulation of the well-founded meaning of
P, which is known as the alternating jixpoint, is given in [Van93bj. WELLFOUNDED
_MEANING(P) outputs a partial model, (Res_True, Res_False), which is constructed iteratively
using a temporary partial model (IteLTrue, IteLFalse) . Algorithm 9.2 contains two while
loops. The outer while loop beginning at line 5 and ending at line 27 constructs the partial
model (Res_True, Res_False), and the inner while loop beginning at line 10 and ending at line
24 constructs the partial model (IteLTrue, IteLFalse) given the current state of the partial
model (Res_True, Res_False).

Intuitively, IteLTrue contains new true facts which can be derived from P assuming the
current state of (Res_True, Res_False), and IteLFalse contains new false facts which can be
derived from P also assuming the current state of (Res_True, Res_False). The current state of
the partial model (IteLTrue, lteLFalse) is iteratively extended during each computation of
the second while loop (see lines 16 and 23). The current state of the partial model (Res_True,
Res_False) increases monotonically after each computation of the second while loop by adding
lteL True to Res-Irue at line 25, and by adding IteLFalse to Res_False at line 26.

As with the inflationary meaning of a Datalog program the well-founded meaning is also
defined for all Datalog programs. Thus all the example Datalog programs given earlier have
a well-founded meaning. The reader can verify that both WELLFOUNDED_MEANING(P3)
and WELLFOUNDED~EANING(P4) are equal to ({PERS(Dan)}, 0). In addition, the well
founded meaning of the rest of the example Datalog programs, apart from P7, coincide with
their unique stable model semantics. With respect to P7, when we consider games where
a draw is not possible, i.e. games whose induced digraph is acyclic, then its well-founded
meaning coincides with the unique stable model semantics. On the other hand, if we consider
games where a draw is possible, i.e. games whose induced digraph may contain cycles, then
the well-founded meaning is defined. Its set of true facts contains the winning positions, its
set of false facts contains the losing positions and its set of undefined facts contains the set of
drawing positions. In contrast, such a game with draws does not have unique stable model
semantics.

9.1 . Model-theoretic Semantics of Datalog 477

Part (1) of the next theorem was shown in [Prz89j and parts (2) and (3) were shown in
[VRS91].

Theorem 9.10 The following statements, where P is a Datalog program, are true:

I) WELLFOUNDED~EANING(P) is a minimal partial model.

2) IfP is stratified then WELLFOUNDED~EANING(P) = STRATIFIED~EANING(P).
3) IfWELLFOUNDED~EANING(P) is a total model, then such a model is a unique stable

model. 0

The following example program, taken from [VRS9Ij, shows that the converse of
part (3) of Theorem 9.10 does not, in general, hold. Thus it may be the case that
WELLFOUNDED~EANING(P) is not a total model but there exists a unique (total) stable
model for P.

Let Ps be the following Datalog program, where A, Band C are propositions (i.e. zero-place
predicates).

A:-....,B.
B :-....,A.
C :-....,c.
C:-....,B.

The reader can verify that ({A, C}, {B}) is a total model of Ps (i.e. A and Care
true and B is false), which is a unique stable model of Ps. On the other hand,
WELLFOUNDED~EANING(Ps) = (0, 0), i.e. all of A, Band C are undefined.

Intuitively, a preferred model for a Datalog program P is a partial model that minimises
the true facts of relations over relation schemas whose symbols have a lower priority and
maximises the false facts of relations over relation schemas whose symbols have a lower
priority.

Definition 9.19 (Preferred model) Let P be a Datalog program and M I = (TI , Fj) and
M2 = (T2 , F2) be two distinct partial models of P. We say that M I is preferable to M2 with
respect to P, if

1) for all true facts in TI - T2 having relation symbol Rj, there exists a true fact in T2 - TI

having relation symbol R2 such that R2 has a lower priority than Rj, and

2) for all false facts in F2 - FI having relation symbol RI, there exists a false fact in FI - F2
having relation symbol R2 such that R2 has a lower priority than RI'

We say that Mis a preferred model ofP if M is a partial model ofP and there are no partial
models ofP which are preferable to M with respect to P. •

The following fundamental result, which shows the connection between preferred models
and the well-founded meaning of a Datalog program, P, was shown in [Prz89j. In the theorem
we take the intersection of two partial models (TI , FI) n (T2, F2) to be the partial model
(TI n T2, FI n F2).

478 Chapter 9. Deductive Databases

Theorem 9.11 Let P be a Datalog program and M = WELLFOUNDED-.MEANING(P). Then
M is a preferred model, which is the intersection of all preferred models of P. D

The well-founded semantics of a Datalog program is seen to generalise the stable and
stratified semantics, whilst giving programs a more "natural" meaning than the inflationary
semantics. We note that the stable model semantics can be extended to a three-valued stable
model semantics, which coincides with the well-founded semantics of Datalog programs
[Prz90, Prz92) . As we shall see in the next section the expressive power of the well-founded
semantics is equivalent to that of the inflationary semantics. From a practical point of view
the stratified semantics, although less expressive than the well-founded and stable semantics,
seems the most "natural" due to its straightforward and elegant formalisation via the unique
perfect model.

We close this section with a brief and informal description of an alternative approach
whereby negation is viewed via default logic. In this approach a Datalog program becomes
a positivist default theory consisting of a set of facts, a set of positivist default rules and a
set of closed world (or CWA) default rules. Let us transform the example program PI into
a positivist default theory. The facts TA(Wilfred) and LEC(Mark) remain as they are in the
positivist default theory for PI' The rule

PHD(x) : - LEC(x), STUD(x).

becomes the positivist default rule

LEC(x) : M STUD(x)

PHD (x)

where M is read as "it is consistent to assume".

In this positivist default rule LEC(x) is called the prerequisite of the rule, STUD(x) is called
the justification of the rule and PHD(x) is called the consequent of the rule. Informally, the
semantics of this rule are as follows. Given a safe substitution () for the variables in the default
rule, we say that the positivist default rule is true in a partial Herbrand interpretation (T, F)
for the Datalog program under consideration if PHD«(} (x» E T whenever LEC((} (x» E T and
STUD«(}(x» ¢ T. In general, a positivist default rule may have a conjunction of prerequisites
and a conjunction of justifications. We say that a Herbrand interpretation M is an extension
of a positivist default rule, if for all safe substitutions () for the variables in the rule, the rule is
trueinM.

In addition, the positivist default theory for PI has the following four CW A default rules,
one for each predicate in PI, namely

: M STUD(x)
...... STUD(x) ,

: M PHD(x)
...... PHD(x) ,

9.1. Model-theoretic Semantics of Datalog

: M-.LEC(x)
___ ...c...:..., and

-.LEC(x)

: M-.TA(x)

-.TA(x)

Each CW A default rule is of the form

: M-.PRED(Xl, X2, ... , Xk)

-.PRED(Xl, X2, ... , Xk) ,

479

where PRED is a predicate symbol in the Datalog program under consideration. The
occurrence of PRED(Xl , X2, . .. ,xd in the numerator of the rule is called the justification
of the rule and the occurrence of PRED(Xl, X2, .. . , Xk) in the denominator of the rule is
called the consequent of the rule. (We note that CW A default rules are normal defa ult rules
[ReiSO, BesS9] .)

Given a safe substitution e for the variables in a CW A default rule, we say that the CW A
default rule is true in a partial Herbrand interpretation (T, F) for the Datalog program under
consideration ifPRED(e(Xl, X2, . .. , Xk)) E F whenever PRED(e(Xl, X2, ... ,xk)) Ii T.

Thus positivist default rules allow us to infer positive facts and CW A default rules allow us to
infer negative facts. In [BF91a, BF91b] it was shown that the default logic model semantics of a
Datalog program P can be given appropriate stratified program semantics which coincide with
the perfect model semantics ofP. Moreover, the more general result that the default logic model
semantics coincides with the stable model semantics ofP was shown in [BF91a, BF91b, SI93].

For extensions of Datalog which add to its expressive power see [Lae90, AV91a].
Moreover, for an extension of Datalog, which allows disjunction (v) in the heads of rules,
see [LMRS9, LRM91, EGM97]. The following disjunctive Datalog program solves the
3-colourability problem, which is known to be NP-complete [GJ79], showing that disjunctive
definite Datalog is more expressive than definite Datalog under minimal model semantics.

RED(x) v GREEN(x) v BLUE(x).
NOTCOLOURED : - ARC{Xl, X2), RED{xd, RED(X2).
NOTCOLOURED : - ARC(Xl, X2), GREE~{Xl)' GREEN{X2).
NOTCOLOURED : - ARC(Xl, X2), BLUE{xd, BLUE(X2)'
COLOURED v NOTCOLOURED.

The intuitive semantics of the above program are described as follows. The first rule assigns
each node in the input digraph to one of the three possible colours. The second, third and
fourth rules define the situations when the assignment of colours to the nodes of the input
digraph is an illegal colouring. Finally, the fifth rule states that the digraph is either coloured
or not coloured. Since we are only interested in minimal model semantics, in the result of
computing the meaning of this program, with any initial database for the arcs of the input
digraph, COLOURED will be true if and only if the input digraph is 3-colourable.

We do not discuss the proof-theoretic semantics ofP, where P is a Datalog program; such
semantics lead to a top-down approach when we compute the meaning of P in contrast to
the bottom-up approach of the fixpoint computation. The reader can consult [VK76, AVS2,
Apt90, CGT90, NM90] for details of the proof-theoretic approach in the context of logic

480 Chapter 9. Deductive Databases

programming. An extension of the CW A, which specifically caters for stratified databases,
leading to a proof-theoretic evaluation of the meaning ofP, when P is stratified, can be found
in [SI88]. For a more general discussion on the merits of the proof-theoretic approach versus
the model-theoretic approach we refer the reader to [NG78, Rei84] .

9.2 Expressive Power of Datalog

One of the fundamental motivations for investigating deductive databases is that of enhancing
the expressive power of the relational algebra. Herein we measure the expressive power of
Datalog in terms of the set of computable queries that it can express under a given semantics.
We will not provide full proofs of any of the results in this section but rather refer the reader
to the relevant references.

We will use the following terminology to denote the various semantics of Datalog examined
in Section 9.1:

1) Definite Datalog denotes the semantics of Data log programs P in terms ofMEANING(P),
when P is a definite Datalog program, and is undefined when P is not a definite Datalog
program.

2) Inflationary Datalog denotes the semantics of Datalog programs P in terms of
MEANING(P}.

3) Stratified Datalog denotes the semantics of Datalog programs P in terms of
STRA TIFIED~EANING(P), when P is a stratified Datalog program, and is undefined
when P is not a stratified Datalog program.

4) Semipositive Datalog denotes the semantics of Datalog programs P in terms of
STRATIFIED~EANING(P), when P is a semipositive Datalog program, and is
undefined when P is not a semipositive Datalog program.

s) Stable Datalog denotes the semantics of Data log programs P in terms of the intersection
of all stable models of P if P has at least one stable model, and is undefined when P has
no stable models.

6) Well-founded Datalog denotes the semantics of Datalog programs P in terms of
WELLFOUNDED~EANING(P}.

Recall the definition of an ordered relational database, containing a designated binary
relation SUCC, which is a successor relation that linearly orders the active domain of the
database (see Definition 6.24 in Section 6.7 of Chapter 6). In the context of a Datalog program
P the relation SUCC is a predicate which defines a linear order on CONST(P); we will use the
less than predicate, x < y (or equivalently, < (x, y», with its natural meaning, i.e. x < y if the
pair (x, y) is in the transitive closure of SUCC(x, y}. (By default we will assume that databases
are unordered.)

Definition 9.20 (Equivalent Datalog semantics) We say that two Datalog semantics are
equivalent if they express exactly the same set of computable queries. Correspondingly, we

9.2. Expressive Power of Datalog 481

say that a Datalog semantics is included in another Datalog semantics if the set of computable
queries expressed by the first semantics is included in the set of computable queries expressed
by the second semantics. If the inclusion is proper we say that the first semantics is properly
included in the second semantics. •

We observe that inclusion is a partial order on Datalog semantics, and thus one semantics
is equivalent to another if and only if they are both included in each other.

The next two theorems establish the inclusion and equivalence relationships that exist
amongst the various types of Datalog programs encountered so far.

Theorem 9.12 The following statements concerning Datalog semantics are true over
unordered databases:

1) Nonrecursive Datalog is properly included in stratified Datalog. (It is sufficient to
assume that EQ is an EDB predicate representing equality.)

2) Definite Datalog is properly included in semipositive Datalog.

3) Semipositive Datalog is properly included in stratified Datalog.

4) Stratified Datalog is properly included in inflationary Datalog.

5) Inflationary Datalog is equivalent to well-founded Datalog.

6) Well-founded Datalog is included in stable Datalog.

Proof. Part (1) is immediate, since the transitive closure of a relation can not be expressed in
nonrecursive Datalog.

For part (2) we utilise the fact that definite Datalog programs can only compute monotonic
(increasing) computable queries. Let P be a definite Datalog program and r be a relation, over
R, in the initial database DB(P) ofP such that type(R) = n. Let pi be the semipositive Datalog
program resulting from adding the following rule to P.

It follows that the complement of a relation in DB(P) can be expressed by a semi positive
Datalog program. The result follows, since computing such a complement is a nonmonotonic
computable query and thus cannot be expressed by a definite Datalog program.

Let 5-stratified Datalog be the subset of stratified Datalog whose programs have
stratifications with at most 5 strata. Part (3) follows from [Dah87, KoI91], where it was
shown that if 51 < 52 then 51-stratified Datalog is properly included in 52 -stratified Datalog.
(See example program Ps, which cannot be expressed by a semipositive Datalog program; Ps
computes the complement of the transitive closure of a digraph.)

For part (4) see [KoI91]' where a game-theoretic argument was used to prove the result.
(See example program P7, which is closely related to the game used in [KoI91] in proving the
result. Essentially, stratified Datalog is not expressive enough to distinguish between winning
and losing positions in the game modelled by P7.)

482 Chapter 9. Deductive Databases

Part (5) follows from the fact that both inflationary Datalog and well-founded Datalog
are equivalent to the relational algebra augmented with a fixpoint operator by the result in
[AV91a, KP91] and [VRS91, Van93b], respectively. (See Section 6.7 of Chapter 6.)

For part (6) see [Sch95]. 0

Theorem 9.13 The following semantics of Data log are all equivalent over ordered databases:

1) Inflationary Datalog,

2) Well-founded Datalog,

3) Stratified Datalog and

4) Semi positive Datalog, together with the additional two unary predicates MIN and MAX,
such that MIN(c) is true if and only ifYc' E CONST(P) such that c i= c', c < c' (i.e. cis
the minimal element in CONST(P», and MAX(c) is true if and only ifYc' E CONST(P)
such that c i= c', c' < c (i.e. c is the maximal element in CONST(P».

Proof (1) is equivalent to (2) by part (5) ofTheorem 9.12; in [Pap85, BG87] it was proved that
(4) is equivalent to (1) (see also Theorem 6.10 in Section 6.7 of Chapter 6); (3) is equivalent to
(4) by part (3) of Theorem 9.12 and the fact that stratified Datalog over ordered databases can
express MIN and MAX by

MIN(x) : -,PREV(x).
PREV(x) : - SUCC(y, x).
MAX(x) : -,NEXT(x).
NEXT(x) : - SUCC(x, y).

where PREY and NEXT are unary predicates such that PREV(x) is true if x has a predecessor
and NEXT(x) is true if x has a successor. 0

It is interesting to note that the semipositive rules given by

MIN (x) : - """SUCC(y, x).
MAX(x) : -,SUCC(x, y).

do not define MIN(x) and MAX(x) correctly, since """SUCC(v, v) is true for all constants v E

CONST(P).

Corollary 9.14 Inflationary Datalog, well-founded Datalog, stratified Datalog and semipos
itive Datalog with MIN and MAX predicates (as defined in the statement of Theorem 9.13)
are all equivalent over ordered databases and express exactly the set of all polynomial-time
computable queries. 0

We note that over ordered databases semipositive Datalog, with MIN and MAX, allows us
to express universal quantification by iterating over all the constants in CONST(P) from MIN
to MAX, which explains the above equivalence between stratified Datalog and semi positive

9.3. Equivalence Between Datalog Programs 483

Datalog. Both semipositive Datalog and stratified Datalog subsume the relational algebra,
which is essentially first-order logic defined over finite structures.

Recall from Subsection 1.9.4 of Chapter 1 that co-NP is the complement of NP (NP is
the class of all Turing-computable mappings whose time complexity is nondeterministically
polynomial in the size of the input). The following result, which characterises the expressive
power of stable Datalog, was shown in [Sch95) (see also [MT91)).

Theorem 9.15 Stable Datalog expresses exactly the set of all co-NP computable queries. 0

Suppose that we allow function symbols in predicates of ru~es of Datalog programs and
thus Herbrand universes may be infinite. A typical example of the use of function symbols is
shown in the following Datalog program, which uses a function symbol suee in order to define
the natural numbers:

NAT(O).
NAT(suee(x» : - NAT(x).

Another typical example is the following Datalog program, also using the function symbol
suee, which defines the set of even natural numbers:

EVEN(O).
EVEN(succ(x» : - --.EVEN(x).

The following interesting result was shown in [Sch95) .

Theorem 9.16 Over the class of infinite Herbrand universes (generated by a finite number
of constants and function symbols) stable Datalog and well-founded Datalog have the same
expressive power. 0

See [AB88, Apt90, MNR92, Sch95) for more results on Datalog programs which may have
function symbols in their predicates.

9.3 Equivalence Between Datalog Programs

Informally, two Datalog programs are equivalent if whenever their sets of input facts are
equal then their meanings coincide over a designated output relation schema. Thus the set
of facts present in a Datalog program P is considered to be its input database and the set
of facts generated by the program via MEANING(P) is considered to be its output database.
An important issue which we discuss in this section is the problem of deciding whether two
Datalog programs are equivalent. This is a significant problem confronted in optimising
Datalog programs. On the one hand, we may be able to optimise a Datalog program by
finding an equivalent program which is obtained by removing redundant rules and redundant
literals from the bodies of rules in the original program; such an optimised program is more
compact and thus likely to reduce the computation time of MEANING(P). On the other hand,

484 Chapter 9. Deduaive Databases

we may be able to optimise a Datalog program by finding a nonrecursive program which is
equivalent to the original program, and thus allowing us to compute its meaning without any
recursion via NEW -MEANING(P) instead of via MEANING(P). (For the detailed description
of NEW -MEANING(P) see Algorithm 3.5 in Subsection 3.2.3 of Chapter 3.)

It turns out that the equivalence problem is undecidable for the restricted class of
nonrecursive Datalog programs (or equivalently, the relational algebra) and also for the
restricted class of definite Datalog programs. In addition, it is also an undecidable problem
to test whether there exists a nonrecursive Datalog program which is equivalent to a given
recursive program. On the positive side there are some useful subclasses of Datalog
programs for which the equivalence problem is decidable; we present some of these subclasses
below.

Prior to the ensuing definition the reader is advised to recall the definition of the set of
extensional database facts EDB(P) and the definition of the set of intensional database facts
IDB(P).

Defmition 9.21 (The result of applying a Datalog program) A database d is said to be
compatible with P, where P is a Datalog program, if it contains a finite set of facts whose
relation symbols are those ofthe EDB predicates ofP. We denote by P(d) the Datalog program
resulting from replacing EDB(P) in P by d, i.e. P(d) = (P - EDB{P)) U d and thus EDB{P{d))
= d and IDB{P(d)) = IDB{P).

Given a Datalogprogram P, a predicate R in IDB{P) and a database dwhich is compatible with
P, the result for R of applying P to d, denoted by P(d, R), is the set of facts in MEANING{P{d))
whose relation symbol is R (or alternatively the relation over R in MEANING{P{d))) . •

We now formalise the notion of equivalence.

Defmition 9.22 (Equivalent Datalog programs) Let P and Q be Datalog programs, and let R
be an IDB predicate of P and S be an IDB predicate of Q such that type{R) = type{S). We say
that P is equivalent to Q if for every database d which is compatible with both P and Q, we
have that P{d, R) = Q{d, S). The equivalence problem for a class of Datalog programs is the
problem of deciding whether two Datalog programs in the class are equivalent. •

We next mention some results for subclasses of nonrecursive Datalog programs (or
equivalently, the relational algebra). A relational algebra query is said to be conjunctive if
it is a finite composition of selections with only simple selection formulae, projections and
joins (conjunctive queries are also called select-project-join expressions). A relational algebra
query is monotonic if it is a finite composition of unions, selections with only simple selection
formulae, projections and joins.

Theorem 9.17 The following statements are true:

1) The equivalence problem for conjunctive queries is NP-complete [CM77, ASU79j.

2) The equivalence problem for monotonic relational algebra queries is nf -complete
[SY80j . (Recall from Subsection 1.9.4 of Chapter 1 that nf is a computational complexity
class in the second level of the polynomial hierarchy.)

9.3. Equivalence Between Oatalog Programs 485

3) The equivalence problem for nonrecursive Datalog is undecidable [IL84bJ. (The result
is proved by a reduction from the word problem for finite semigroups, defined in
Subsection 1.9.4.) 0

In view of the undecidability of the equivalence problem for relational algebra expressions,
which may contain the difference operator, it follows that equivalence is also undecidable for
stratified Datalog. So we now consider a subclass of definite Datalog programs, called chain
Datalog programs.

Definition 9.23 (Chain Datalog program) A Datalog rule is a chain rule if it is of the form

where n :::: 2 is a natural number. A Datalog program is a chain Datalog program (or simply
a chain program) if all its nontrivial rules are chain rules. •

We observe that a chain rule is equivalent to the (n - I)-way project-join query (with a
suitable renaming of attributes if necessary) given by

(9.1)

The following theorem establishes an equivalence between a chain Datalog program and a
(possibly countably infinite) union of conjunctive queries. Thus given a database d, which is
computable with a chain program P, andan IDB predicate R ofP, there exists a set {PI, P2, ... }
of conjunctive queries such that

P(d, R) = PI (d, R) U P2(d, R) U

Theorem 9.18 A chain program (and in fact any definite Datalog program) is equivalent to
a (possibly countably infinite) union of conjunctive queries.

Proof. We sketch the construction of a union of conjunctive queries that is equivalent to P,
where P is a chain program. (A similar construction obtains for any definite Datalog program.)

Consider a fact, say R(VI, V2, ... , Vq), that is generated after the kth iteration of the while
loop in Algorithm 3.4 of Subsection 3.2.3 implementing MEANING(P), which is thereafter
added to the current state of Result. If k = 0 then this fact is already in P, and if k = 1 then
this fact can be generated by the project-join query shown in (9.1), where RJ, R2, . .. , Rn-I
are all EDB predicates. Inductively, assume that all the facts that are generated before the kth
iteration can be output by a union of conjunctive queries.

By the definition of a chain rule it must be the case that R(VI, V2, ... , vq) is generated
during the kth iteration by the project-join query shown in (9.1), where some of the predicates
RI, R2,"" Rn-I may be IDB predicates. The result now follows by induction hypothesis,
since we can replace each such IDB predicate, Ri(Xi, Xi+l), in this project-join query, where
i E {I, 2, ... , n - I}, by a conjunctive query. 0

The next corollary is an immediate consequence of the above proof.

486 Chapter 9. Deductive Databases

Corollary9.19 IfP is a chain program and {PI, P2, . . . } is a set of conjunctive queries whose
union is equivalent to P, then each Pi, with i E {I, 2, ... }, is a chain rule. 0

Recall the definition of a context-free grammar from Subsection 1.9.4. Informally, a context
free grammar is a set of production rules of the form A ~ ct, where A is a nonterminal symbol
and ct is a (possibly empty) string of terminal and nonterminal symbols; one of the nonterminal
symbols is designated as the start symbol. The language generated by a context-free grammar
G, with start symbol S, is the set of all terminal strings that can be generated from the production
rules of G starting from S.

Definition 9.24 (The context-free grammar of a chain program) Given a chain program P
and an IDB predicate, R, ofP we convert P into a context-free grammar, denoted by G(P, R),
as follows:

1) Replace each EDB predicate by a terminal symbol.

2) Replace each IDB predicate by a nonterminal symbol, with the symbol replacing R being
the start symbol S.

3) Replace each chain rule

R'(Xl, xn) :-R1(XI, X2), R2 (X2 , X3),···, Rn-I(Xn- l, xn)

by a production rule,
S' ~ SIS2 ... Sn-I,

where S' is the symbol replacing R' and Si is the symbol replacing Ri, with E

{I, 2, ... , n - I}. •

For example, the chain program computing the transitive closure can be converted into the
context-free grammar given by

T~f,

T~ Tf,

where T replaces TC andf replaces FAMILY. Another context-free grammar corresponding
to an alternative implementation of the transitive closure is given by

T~f,

T~fT.

Finally, the reader can verify that yet another context-free grammar corresponding to
another implementation of the transitive closure is given by

T~f,

T~ TT.

We can now prove the undecidability of the equivalence problem for definite Datalog
programs as a corollary of the undecidability of the equivalence problem for chain Datalog
programs [UU92, Shm931.

9.3. Equivalence Between Datalog Programs 487

Theorem 9.20 The problem of deciding whether two chain Datalog programs are equivalent
is undecidable.

Proof. We reduce the problem of whether two context-free grammars are equivalent to the
problem of the equivalence of two chain Datalog programs. Let GI and G2 be two context-free
grammars. We construct two chain programs PI and P2 by invoking the inverse of the
transformation given in Definition 9.24. We note that the inverse of this transformation is
well defined, since the variables in a chain rule can be implied once the predicate symbols in
the head and the body of the rule are known and, in addition, the variables in a chain rule can
always be renamed without altering its meaning. Thus GI is equivalent to G2 if and only if PI is
equivalent to P2 • The result follows, since the problem of whether two context-free grammars
are equivalent, i.e. generate the same formal language, is undecidable [Har78, HU79j. 0

We next define a useful subclass of Datalog programs, where the recursion is limited to at
most one literal in the body of rules. Such programs often arise in practice.

Definition 9.25 (Linear and bilinear Datalog programs) A Datalog rule is recursive if the
relation symbol of the head of the rule is also the relation symbol of one or more literals
in the body of the rule. A Datalog program is recursive if at least one of its rules is recursive.

A Datalog rule is linear recursive if the relation symbol of the head of the rule occurs as the
relation symbol of exactly one literal in the body of the rule. A Datalog program is linear if all
of its recursive rules are linear recursive.

Similarly, a Datalog rule is bilinear recursive if the relation symbol of the head of the rule
occurs as the relation symbol of exactly two literals in the body of the rule. A Datalog program
is bilinear if all of its recursive rules are either bilinear recursive or linear recursive and at
least one of its recursive rules is bilinear recursive. •

We note that our use of the term "recursive" rule is sometimes referred to as directly
recursive rule [ZYT90j. A more general definition of a recursive rule would make use of the
dependency graph of the Datalog program under consideration, calling a rule recursive if the
relation symbol of the head of the rule is involved in a cycle in the dependency graph. There
is no loss of generality in our definition, since the reader can verify that by replacing a literal,
which is the head of a rule, by its body with a suitable renaming of variables, we can always
transform a recursive rule under the more general definition into a recursive rule according
to Definition 9.25.

The rule given by

is bilinear recursive but not linear recursive, while the rule given by

is linear recursive.

The next corollary, whose proof is essentially the same as the proof of Theorem 9.20, is
an immediate consequence of the fact that the problem of whether two linear context-free

488 Chapter 9. Deduaive Databases

grammars are equivalent is undecidable [Har78, HU79]. (A context-free grammar is linear if
the right-hand sides of its production rules contain at most one nonterminal symbol.)

Corollary 9.21 The problem of deciding whether two linear chain Datalog programs are
equivalent is undecidable. 0

The following result, which implies that given a recursive definite Datalog program the
problem offinding whether there exists an equivalent linear recursive definite Datalog program
is undecidable, was shown in [FS92j.

Theorem 9.22 It is undecidable whether a bilinear recursive definite Datalog program has
an equivalent linear recursive definite Datalog program. 0

A simple recursive Datalog program is a definite Datalog program with two nontrivial rules,
one which is bilinear recursive and the other, which is not recursive, representing the base
case of the recursion.

Definition 9.26 (Simple recursive Datalog program) A Datalog program P is simple recur
sive if P is definite, has only one IDB predicate R, and only two nontrivial rules of the form

R(x) : -5(x).
R(x) : -R(Yl), R(Y2), 51 (ZI), 52(Z2), ... , 5k(Zk).

where x, Yl, Y2 and Zi, for i E {I, 2, ... , k}, are sequences of variables. The first rule is called
the basis rule of the simple recursive Datalog program. •

Consider a digraph with coloured arcs. Suppose that there are two relations, redarc and
bluearc, in the initial database (recall Definition 3.35 in Subsection 3.2.3 of Chapter 3);
REDARC(x,y) means that the arc from a node x to a node y is red and BLUEARC(x,y)
means that the arc from a node x to a node y is blue. The Datalog program P given by

PATH(Xl, X2):- REDARC(x1. X2).
PATH(Xl, X2) : - PATH(x1. X3), BLUEARC(X3 , X4), PATH(x4, X2).

is simple recursive, and can be seen to define paths consisting of alternating red and blue arcs
and ending in a red arc.

The following results were shown in [RSUV89, Sar89, Sar95j.

Theorem 9.23 The following statements are true:

1) The problem of deciding whether a simple recursive Datalog program has an equivalent
linear recursive definite Datalog program is NP-hard.

2) For a simple recursive Datalog program, where in Definition 9.26 x is a sequence of
distinct variables and all of the predicate symbols S1. S2, ... , Sk are distinct, the problem
of deciding whether such a program has an equivalent linear recursive definite Datalog
program can be decided in polynomial time in the size of the input program. 0

9.3. Equivalence Between Datalog Programs 489

We refer the reader to [Nau88, RSUV89, Sar89, Sar90, ZYT90, IW91, FS92, Sar95] for further
results concerning linear recursive definite Datalog programs, and to [CGKV88, AC89, Var89a,
GMSV93, Shm93, Shm95] for further results concerning the undecidability and decidability
of the equivalence problem for Datalog programs.

For semipositive Datalog programs the following result was obtained in [LMS93].

Theorem 9.24 The following statements are true:

1) The equivalence problem for semipositive Datalog programs whose EDB predicates are
all unary is decidable.

2) The equivalence problem for semipositive Datalog programs whose IDB predicates are
all unary is undecidable. 0

It is interesting to note that in [CGKV88] it was shown that the equivalence problem for
definite Datalog programs, whose IDB predicates are all unary, is decidable. The result of
Theorem 9.24 also holds with respect to the related problem of satisfiability, which is the
problem of determining whether for some IDB predicate R of P the result for R of applying P
to a database compatible with P, namely P(d, R), is nonempty [LMS93, MS94] .

A variation of the equivalence of Datalog programs in which IDB predicates are also
considered to be part of the input is called uniform equivalence [Sag87] . That is, when
considering uniform equivalence we modify the definition of a database compatible with a
Datalog program P to include facts whose relation symbols may be those of either EDB or IDB
predicates. Consider the following three rules:

TC(XI , X2): - FAMILY(x\, X2) .
TC(XI, X3): - FAMILY(XI , X2) , TC(x2 , X3) '
TC(XI, X3) : - TC(XI, X2), TC(x2 , X3).

Let TCI denote the first and second rule and TC2 denote the first and third rules. Both TCI
and TC2 are equivalent chain programs computing the transitive closure of FAMILY. However,
it can be verified that TCI and TC2 are not uniformly equivalent, since we can construct a
compatible database (as modified above), d, which contains no FAMILY facts but two TC facts
generating a third TC fact using the last rule.

The following result, which can be proved utilising the chase procedure of Subsection 3.6.4
with generalised chase rules, was established in [Sag87] .

Theorem 9.25 The problem of deciding whether two definite Datalogprograms are uniformly
equivalent is decidable. 0

Informally, a Datalog program is bounded if the number of iterations of the while loop
invoked when computing its meaning is less than some fixed natural number independently
of the input database. Boundedness is a desirable property, since if a Datalog program is
bounded then its recursion is independent of the input database and, as will be shown, it is in
fact nonrecursive and thus can be computed via a relational algebra expression.

490 Chapter 9. Deductive Databases

DefInition 9.27 (Bounded Datalog program) A Datalog program P is bounded with respect
to an IDB predicate R ofP (or simply bounded ifR is understood from context) if there exists
a natural number k depending on P such that for all databases d, which are compatible with
P, P(d, R) can be computed with at most k iterations of the while loop in Algorithm 3.4 of
Subsection 3.2.3 implementing MEANING(P(d». •

As a historical note we mention that the notion of boundedness has been introduced in
the context of the universal relation model (see discussion at the end of Section 2.4), where
it was shown that a universal relation can be constructed via a relational algebra expression
if and only if the set of data dependencies associated with the relation schema are bounded
[MUV84, Sag88]. (Intuitively a set of data dependencies is bounded if, when they are viewed
as a set of production rules, the universal relation can always be constructed with at most k
applications of the set of data dependencies to the original database.)

The next proposition shows an important connection between boundedness and
nonrecursiveness of Datalog programs.

Proposition 9.26 If a Datalog program is bounded then it is equivalent to some nonrecursive
Datalog program.

Proof. We prove the result by contraposition. Assume that for a recursive Datalog program
P there does not exist an equivalent nonrecursive Datalog program. Furthermore, assume
that for some database d, which is compatible with P, P(d, R) is computed with k iterations
of the while loop in Algorithm 3.4 implementing MEANING(P(d». Then we can always find
a database d', which is compatible with P, where d' properly contains d, and such that P(d',
R) cannot be computed with less than k + 1 iterations of the while loop in Algorithm 3.4
implementing MEANING(P(d'» . D

Consider the linear recursive definite Datalog program given by

BUYS(Xl, X2) : - LIKES(Xl, X2).

BUYS(Xl, X3) : - TRENDY(Xl), BUYS(x2 , X3) '

In this case BUYS in the second rule can be replaced by LIKES resulting in a nonrecursive
Datalog program which is equivalent to the original program. Now, consider the linear
recursive definite Datalog program (which is just the transitive closure program with its
relation symbols renamed) given by

BUYS(Xl, X2) : - LIKES(Xl, X2) .

BUYS(Xl , X3) : - LIKES(Xl, X2), BUYS(X2 , X3).

This Datalog program is inherently recursive, i.e. there does not exist a nonrecursive
program which is equivalent to it, due to the fact that the transitive closure cannot be expressed
within the relational algebra.

The problem of whether a definite Datalog program is bounded or not is called the
boundedness problem. The next theorem was proved in [GMSV93] by a reduction from
the halting problem for two-counter machines defined in Subsection 1.9.4.

9.3. Equivalence Between Datalog Programs 491

Theorem 9.27 The bounded ness problem is undecidable. o

In [Var88a) it was shown that boundedness is still undecidable with respect to linear
recursive definite Datalog programs with a single binary !DB predicate (see also [HKMV9l)).
Furthermore, in [Abi89) it was shown that boundedness is still undecidable with respect to a
definite Datalog program with a single recursive rule.

In [GMSV93) a variation of boundedness of definite Datalog programs, in which !DB
predicates are also considered as part of the input, called uniform boundedness, is considered.
It was shown therein that uniform boundedness is also undecidable (see also [HKMV9lJ).
(Contrast this result with that of Theorem 9.25 which states that the problem of deciding
whether two definite Datalog programs are uniformly equivalent is decidable.)

We next define another subclass of linear recursive Datalog programs.

Definition 9.28 (Basis linear recursive DataIog program) A Datalog program P is basis
linear recursive if P is a linear recursive definite Datalog program, having only one !DB
predicate R, and only two nontrivial rules of the form

R(x) : -QI (YI) , Q2(Y2) , . . . , Qm(Ym) .
R(x) :-R(y), SI(Z.), S2(Z2) , · · · , Sk(Zk).

where x, y, Yj and Zit withj E {l, 2, ... , m} and i E {l , 2, .. . , k}, are sequences of variables.
As with simple recursive Datalog programs, the first rule is called the basis rule of the basis
linear recursive Datalog program. The second rule is the recursive rule. •

The following decidable cases are of interest.

Theorem 9.28 The following statements are true:

l) The boundedness problem is decidable for definite Datalog programs whose !DB
predicates are all unary [GMSV93) .

2) The boundedness problem is decidable for chain Datalog programs [Kan90). (The result
follows, since it is decidable whether a context-free grammar is finite [Har78, HU79) .)

3) The boundedness problem for basis linear recursive Datalog programs whose only !DB
predicate symbol is binary is NP-complete [Var88a).

4) For basis linear recursive Datalog programs, where in Definition 9.28 x is a sequence of
distinct variables, the basis rule has a single literal in its body and the recursive rule has
two literals in its body, the boundedness problem can be decided in polynomial time in
the size of the input program [Nau89). 0

Further subclasses of definite Datalog programs for which boundedness is decidable were
investigated in [Ioa85, Sag88, Cos89, Sar95).

As a special case of Proposition 9.26 we can deduce that if a definite Datalog program
is bounded then it is equivalent to some nonrecursive Datalogprogram (or alternatively,
equivalent to some relational algebra query). In [Cos89) it was conjectured that the converse

492 Chapter 9. Deductive Databases

is also true, i.e. if a definite Datalog is equivalent to some nonrecursive Datalog program then
it is bounded, or alternatively by contraposition, if a definite Datalog program is unbounded
then it is not equivalent to any nonrecursive Datalog program. This result was settled in
[AG94].

Theorem 9.29 A definite Datalog program is bounded if and only if it is equivalent to some
nonrecursive Datalog program if and only if it is equivalent to a monotonic relational algebra
query (i.e. to a finite composition of unions, selections with only simple selection formulae,
projections and joins). 0

The next corollary follows from Theorem 9.29 and the fact that the transitive closure of a
relation can be expressed by an unbounded definite Datalog program.

Corollary 9.30 The transitive closure of a relation cannot be expressed by any relational
algebra query. 0

Surprisingly, Theorem 9.29 cannot be strengthened to general Datalog programs and thus
the converse of Proposition 9.26 does not always hold.

Suppose that the input database includes the predicates SUCC, MIN and <, with their
intended meaning, and an additional unary predicate INP containing a single constant v. Let
Q(INP, SUCC, MIN, <} be a Datalog program which defines a zero-place predicate OUT to
be true, if whenever < is a linear order with a minimal element and SUCC is consistent with
<, then for every x, with x < v, there exists y such that SUCC(x. y}. (SUCC is consistent
with <, if < is the transitive closure of SUCC.) We leave it to the reader to verify that Q(INP,
SUCC, MIN, <} can be defined via a nonrecursive Datalog program (i.e. a relational algebra
expression). An unbounded Datalog program, which computes Q(INP, SUCC, MIN, <) but
is not equivalent to any definite Datalog program, was exhibited in [AG94].

Another problem of interest is that of determining the equivalence of a given recursive
definite Datalog program to a given nonrecursive Datalog program. Let us call this
equivalence problem the definite nonrecursiveness equivalence problem. The definite
nonrecursiveness equivalence problem is different from the boundedness problem for definite
Datalog programs, which by Theorem 9.29 is the problem of the existence of some equivalent
nonrecursive Datalog program, and by Theorem 9.27 its solution is undecidable. In [CV92] it
was shown that the definite nonrecursiveness equivalence problem is decidable with a triply
exponential time lower bound. (It is claimed in [CV92] that their result also extends to the
decidability of determining whether a given Datalog not-equal program is equivalent to a
given nonrecursive Datalog program; see Section 9.4.) We note that this decidability result
cannot be extended to semipositive Datalog programs, since by part (3) of Theorem 9.17 the
equivalence problem for nonrecursive Datalog programs is undecidable.

Due to the high intractability of the definite recursiveness equivalence problem, some
special cases of this problem were investigated in [CV92, CV94a], namely the equivalence
of a given recursive definite Datalog program to a given union of conjunctive queries. In
[CV92) it was shown that for linear recursive Datalog programs the definite nonrecursiveness
equivalence problem is EXPSP ACE-complete. It was also shown that for linear recursive
definite Datalog programs, whose IDB predicates are all unary, the definite nonrecursiveness
equivalence problem is PSPACE-complete, and for recursive definite Datalog programs, with

9.4. Datalog Not-Equal 493

a single recursive rule, whose IDB predicates are also all unary, the definite nonrecursiveness
equivalence problem is NP-complete.

Despite the above undecidability and intractability results, in practice it is desirable to
optimise a Datalog program as far as possible. That is, given an input program we would
like to find an equivalent program which can be computed more efficiently than the original
input program. Some of the well-known optimisation techniques are semi-naive evaluation
[BR86, U1l89, CGT90, AHV95bj and magic sets [Ram88, U1l89, CGT90, BR91, AHV95bj. The
underlying idea of the semi-naive evaluation is to avoid duplication in the generation of new
facts when computing the meaning of a program. On the other hand, the underlying idea of the
magic sets technique is to transform the input Datalog program into a more efficient program
by essentially evaluating selection conditions as soon as possible (see [U1l89, CGT90, AHV95b j
for more details on optimisation issues).

The connection between context-free grammars and definite Datalog programs has been
instrumental in obtaining some of the above results. Of particular interest are Datalog queries
that can be implemented efficiently using parallel algorithms. Several classes of definite
Datalog programs, such as programs that have the polynomial fringe property are discussed
in [UV88, Ull92j. A definite Datalog program P has the polyn6mial fringe property if there
is a polynomialfCn), where n is the size of the input database, such that for any fact PCal, a2,
... , ak) that can be derived from P there is a proof tree whose fringe, i.e. its set of leaves,
is not greater thatfCn). A proof tree for peal, a2, ... , ak) with respect to P is a tree whose
root is peal, a2, .. " ak), whose leaves are facts and such that the children of any internal
node PiCaip ai2' ... , aik) are the facts in the body of a rule in the Herbrand program ofP (see
Definition 9.9), whose head is PiCail' ai2' ... , aik)'

9.4 Datalog Not-Equal

As we have seen in the previous sections a great deal of research effort has gone into studying
the properties of definite Datalog. Definite Datalog programs are monotonic, in the sense that
given a definite Datalog program P, an !DB predicate R of P, and two databases d l and d2

which are compatible with P, we have that if d l is a subset of d2 then P(dl> R) is also a subset of
P(d2 , R). Thus any nonmonotonic query such as computing the complement of the transitive
closure of a digraph cannot be expressed by a definite Datalog program. (In general, recursive
and also nonrecursive Datalog programs are nonmonotonic.)

Definite Datalog does not constitute the largest class of monotonic Datalog programs. So it
is natural to extend the expressiveness of definite Datalog without sacrificing monotonicity.
In this section we introduce such an extension.

Definition 9.29 (Datalog not-equal program) A Datalog not-equal program is an extension
of a definite Datalog program which allows equality and inequality formulae to appear in the
bodies of rules. An equality formula has the form x = y and an inequality formula, which
is the negation of an equality formulae, has the form x =1= y (this form is an abbreviation of
--.(x = y»). •

Intuitively, a homomorphism is a mapping between the active domains of two databases
which preserves their structure.

494 Chapter 9. Deductive Databases

Defmition 9.30 (Preservation under extensions and homomorphisms) Let P be a Datalog
program and dl , d2 be two databases that are compatible with P; as usual we let ADOM(d)
denote the active domain of a database d. (We assume without loss of generality that
CONST(IDB(P» is a subset of ADOM(d), i.e. that ADOM(d) contains all the constants in
IDB(P).)

The database d2 is an extension ofthe database db if ADOM(dl) is a subset of ADOM(d2) and
dl is the restriction of d2 to ADOM(dl)(i.e. ifafactRi(vl, V2, ... , Vk) isin d2 and {VI, V2, ... , Vk}
is a subset of ADOM(dl) then it is also the case that Ri(VI, V2, ... , vk) is in dl).

An IDB predicate R of P is preserved under extensions if whenever d2 is an extension of
db we have that P(d2, R) is a superset of P(db R). A Datalog program is preserved under
extensions if all its IDB predicates are preserved under extensions.

A homomorphism is a mapping h from ADOM(dl) to ADOM(d2) such that for all EDB
predicates Ri of P, Ri(VI, V2, ... , Vk) E dl implies that Ri(h(VI), h(V2), ... , h(Vk» E d2.
A homomorphism h is one-to-one whenever h is one-to-one. (For the purpose of a
homomorphism we include the built-in equality and inequality predicates together with the
EDB predicates when appropriate.)

An IDB predicate R of P is preserved under homomorphisms if whenever h is a
homomorphism,R(vl, V2, ... , Vk)EP(dbR)impliesthatR(h(vl), h(V2), ... , h(Vk» EP(d2,R).
A Datalog program is preserved under homomorphisms if all its IDB predicates are preserved
under homomorphisms. •

A homomorphism that is not one-to-one is a mapping that identifies constants in the active
domain of the database. We observe that a Datalog program is monotonic if and only if it
is preserved under extensions and one-to-one homomorphisms. In other words, a Datalog
program is monotonic if and only if the result relation does not decrease when adding constants
to the active domain of the database and adding facts to the relations in the input database.
We leave the proof of the next proposition to the reader.

Proposition 9.31 The following statements are true:

1) Definite Datalog programs are preserved under extensions and homomorphisms.

2) Datalog not-equal programs are preserved under extensions and one-to-one
homomorphisms (but do not necessarily preserve homomorphisms which are not
one-to-one).

3) Semipositive Datalog programs are preserved under extensions (but do not necessarily
preserve one-to-one homomorphisms). 0

The following Datalog not-equal program, which we denote by pTCN, computes all paths
in a digraph, from a node labelled Xl to a node labelled X2, which do not go through a node
labelled by some constant v.

TCN(XI, X2, v) : - ARC(XI, X2), Xl i= v, X2 i= v.
TCN(XI,X2, v):- ARC(XI, X3), TCN(x3,x2, v),x\ i= v.

It can be verified that the Datalog not-equal program pTCN does not preserve
homomorphisms that are not one-to-one, since we cannot identify the constant v with any

9.4. Datalog Not-Equal 495

other distinct constant. For example, let d = {ARC(l, 2), ARC(2, 3») be a database that is
compatible with pTCN and let v be the constant 1. Then pTCN (d, TCN) = {TCN(2, 3, I)}. Now,
let d' = {ARC(l, 1), ARC(l, 3)} be another database that is compatible with pTCN. It follows
that pTCN does not preserve homomorphisms, since the mapping that takes 1 to 1,2 to 1 and
3 to 3 is a homomorphism, but {(I, 3, I)} is not in pTCN (d', TCN), which is equal to the empty
set. We can now deduce by part (I) of Proposition 9.31 that pTCN cannot be computed by any
definite Datalog program.

The following semipositive Datalog program, which we denote by P, computes the
complement of an EDB predicate R (we assume an additional EDB predicate S so that, in
general, CONST(P) =f. 0}.

COMP(x} : -,R(x).

We verify by a counterexample that P does notl'reserve ~ne-to-one homomorphisms. Let
d = {S(1)} be a database that is compatible with P. Then P(d, COMP) = {COMP(l)}. Now,
let d' = {R(1}, S(l)} be another database that is also compatible(with P. It follows thatP does
not preserve one-to-one homomorphisms, since the one-to-one mapping that takes 1 to 1,
is a one-to-one homomorphism, but COMP(1) is not in P(d', COMP}, since P(d', COMP) is
equal to the empty set. We can now deduce by part (2) of Proposition 9.31 that P cannot be
computed by any Datalog not-equal program.

The next result establishes a hierarchy amongst definite Datalog, Datalog not-equal and
semipositive Datalog in terms of proper inclusion.

Theorem 9.32 The following statements are true concerning Datalog semantics:

1) Definite Datalog is properly included in Datalog not-equal.

2} Datalog not-equal is properly included in semipositive Datalog. (It is sufficient to
assume that EQ is an EDB predicate representing equality.) 0

It may be conjectured that all monotonic polynomial-time computable queries can be
computed by Datalognot-equal programs, but this is not the case. We now exhibit a monotonic
query that cannot be expressed in Datalog not-equal.

Given a digraph G and two distinguished nodes m and n in the node set of G, we call the
problem of deciding whether G contains a path of even length from m to n the directed even path
problem. The directed even path problem is monotonic and was shown to be NP-complete in
[LM89].

Obviously, if PTIME =f. NP, then the directed even path problem cannot be expressed by a
Datalog not-equal program, since only polynomial-time queries can be expressed in Datalog
not -equal. However, the proof that the directed even path problem cannot be expressed by any
Datalog not-equal program does not depend on the conjecture that PTIME =f. NP. As a note,
in [ACY91] a problem known as linear constraints, which is a monotonic polynomial-time
query, was shown to be inexpressible in Datalog not-equal.

We now describe a pebble game, played on two databases, which can be used to prove
that a Datalog program is not expressible as a Datalog not-equal program [LM89, KV95]. In

496 Chapter 9. Deductive Databases

particular, we can apply this technique to prove that the directed even path problem cannot
be expressed by a Datalog not-equal program.

For the purpose of the next definition we say that a database d is k-compatible with a Datalog
program P, for some natural number k, if the cardinality of ADOM(d) - CONST(IDB(P)) is
at least k. (It is possible in this case for the database schema of d to contain lOB relation
symbols.)

Defmition 9.31 (Existential k-pebble game) In the existential k-pebble game there are two
players I and II, playing on two databases d l and d2 , respectively, that are k-compatible with
a Datalog program P.

Each player has k distinct pebbles. In particular, PI, P2, ... ,Pk are the pebbles of player I
and ql, q2, ... , qk are the pebbles of player II.

The game is played on the active domains of d l and d2• Initially no pebbles are placed on
ADOM(d l) and ADOM(d2). The game consists of several rounds and each round proceeds as
follows.

In each round player I picks up some pebble, say Pi. If Pi has already been placed on
a constant in ADOM(dd, then player I removes Pi from ADOM(dd. Player II responds
by removing the corresponding pebble qi from ADOM(d2). On the other hand, if Pi has
not yet been placed on a constant in ADOM(dd, then player I places Pi on some constant
in ADOM(dd, say ai. Player II responds by placing the corresponding pebble qi on some
constant in ADOM(d2), say bi. It is assumed that the constants ai and bi are free, in the sense
that currently no pebbles are placed on them.

After each round let ¢ be the mapping that takes each constant ai in ADOM(d l), which has
a pebble Pi on it, to the constant bi in ADOM(d2), which has the corresponding pebble qi on
it. In addition, we require that ¢ maps the constants in CONST(IDB(P» to themselves (this
extra condition allows us to use constants in Datalog programs).

Player I wins the round if ¢ is not a one-to-one homomorphism between the restriction of
d l to the domain of ¢ (i.e. to the constants ai and CONST(IDB(P») and the restriction of d2

to the range of ¢ (i.e. to the constants bi and CONST(IDB(P))). On the other hand, player II
wins if the game goes on indefinitely, i.e. player I can never win a round in the game. (In this
case player II is said to have a winning strategy.) •

As noted in [KV95] if we relax the winning condition of player I in an existential k-pebble
game so that ¢ is not a homomorphism, then we can utilise Lemma 9.33 below in order to show
that a Datalog program is not expressible as a definite Datalog program. (In this modified
existential k-pebble game player II may sensibly choose, during any round, to place more than
one pebble on the same constant.)

For the purpose of the next lemma we say that a database d is k-compatible with a Datalog
program P and an lOB predicate R of P, if by removing from d all the facts in dover R we
obtain a database that is k-compatible with P, i.e. d is k-compatible with P and R if d is the
union of a database that is k-compatible with P together with some facts over the lOB predicate
R. Moreover, we say that a database d, which is k-compatible with P and R, satisfies P if r =
P(d - {r}, R), where r is the set of all facts in dover R, i.e. d satisfies P if, in addition to the EDB
facts in d, d contains exactly all the facts over R which are generated byMEANING(P(d - {r))).

9.4. Datalog Not-Equal 497

The next result, whose proof can be found in [KV95), states that we can utilise the existential
k-pebble game to show that a Datalog program P is not expressible as a Datalog not-equal
program.

Lemma 9.33 Let P be a Datalog program having an IDB predicate R. If for every natural
number k there are two databases d} and d~, which are k-compatible with P and R, such that
d~ satisfies P but d~ does not satisfy P, and player II can win the existential k-pebble game
on d~ and d~, then the Datalog program P is not expressible as a Datalog not-equal program.

o

We now apply Lemma 9.33 to the directed even path problem.

Theorem 9.34 The directed even path problem cannot be expressed byany Datalog not-equal
program.

Proof. A usual we model a digraph G bya binary predicate ARC, such thatARC(vI, V2) means
that there is an arc from VI to V2 in the arc set of G. Assume the existence of a Datalog program
P which defines a zero-place IDB predicate OUT to be true, if there is a path of even length
between two distinguished nodes, say m and n, in the digraph G, which is modelled by ARC.
(Thus for the purpose of this proof we assume that PTIME = NP holds contrary to common
belief.)

Let d} be a database that is k-compatible with P and OUT such that d} satisfies P, i.e. aUTO
is in d}, and the digraph modelled by d}, say G}, has a directed path of even length between
nodes m and n, with m # n. Moreover, let d~ be a database that is k-compatible with P and
OUT such that d~ does not satisfy P, i.e. aUTO is not in d~, and the digraph modelled by d~,
say G~, does not have a directed path of even length between m and n.

If k = 1 then we can easily construct Gl and G~ as follows. The digraph Gl comprises just
a single directed path oflength two from m to n, while the digraph G~ comprises just a single
directed path of length three from m to n. If player I puts his pebble on m or n, then player II
responds by putting his pebble on m or n, respectively. Otherwise, if player I put his pebble
on the other node in Gl, then player II responds by putting his pebble on one of the two other
nodes in G~.

If k = 2 then we can construct Gi and G~ as follows. The digraph Gi consists of a single
directed path of length eight from m to n. On the other hand, the digraph G~ consists of a
single directed path oflength five from m to n, together with a cycle of length three starting
and ending at the fourth node from m.

The idea behind the construction of G~ is that it has a walk oflength eight between m and
n, which is not a path. Thus player II can win each round by traversing this walk in the same
manner that player I traverses the single directed path of Gi. Since each player has only two
pebbles player I cannot detect the cycle oflength three and thus loses the game.

We leave it to the reader to complete the proof by using a similar construction for each
k > 2. The result follows on applying Lemma 9.33. 0

More results concerning Datalog not-equal programs can be found in [LM89, ACY91, Afr94,
KV95). As a historical note, pebble games such as that of Definition 9.31 originate from [Ehr61)

498 Chapter 9. Deductive Databases

and are also known as back-and-Jorth games or Ehrenfeucht-Fraisse games. In the context
of database theory such games are normally used to show that a particular computable query
is not expressible within a given query language. The original version of the k-pebble game
consists of k moves by each player; two moves one by each player constitute a round. In each
round player I can choose to place a pebble on a constant in either ADOM(d1) or ADOM(d2),

and player II must place a pebble on a constant in the opposite active domain (i.e. if player I
places a pebble on a constant in ADOM(dd then player II must respond by placing a pebble
on a constant in ADOM(d2) and vice versa). In the original version of the game the players
cannot remove pebbles once they are placed on a constant and a game consists of exactly k
rounds. Player II wins the game if the induced mapping between the pebbled constants is
an isomorphism between the restrictions of d1 and d2 , respectively, to the pebbled constants,
otherwise player I wins. Player II is said to have a winning strategy if this player can always
win the game no matter how player I moves. Player I is known as the spoiler and player II is
known as the duplicator.

Let Q be a computable query. A similar result to Lemma 9.33 can be shown for the original
pebble game referred to above with respect to the relational algebra. Specifically, if for every
natural number k there are two databases d~ and d~ such that d~ satisfies Q but d~ does not,
and player II has a winning strategy for the game on d~ and d~, then Q cannot be expressed
within the relational algebra (or equivalently, by any nonrecursive Datalog program). This
technique can be used to show that certain queries, such as computing the transitive closure
of a graph or testing whether a graph is connected, are not expressible within the relational
algebra. The reader should consult Subsection 1.9.5 of Chapter 1 for more details on the use
of Ehrenfeucht-Fraisse games for proving inexpressibility results.

9.S Updates in Deductive Databases

In Subsection 3.2.4 of Chapter 3 we have defined an update language for relational databases
based on the notion of a transaction, which is a composition of one or more update operations.
Here we consider only the primitive operations of insertion and deletion of facts, ignoring the
modification operation which can be defined as a deletion followed by an insertion. In the
context of a Datalog program P, we denote the insertion of a factJ into P by insert(j, P), and
correspondingly we denote the deletion of a fact J from P by delete(j, P).

The update problem is to determine the outcome of op(j, P), where op is either insert or
delete, in terms ofthe update that has to be effected on the extensional database ofP, EDB(P).
Logically we view P as a first-order theory over the first-order language £(P) associated with
P, and the semantics of P are viewed in terms of the Herbrand model of P generated by the
evaluation of the fixpoint ofP (Le. the semantics ofP consist of its set of facts together with the
set of all IDB facts which can be generated from P when computing MEANING(P». By viewing
a Datalog program in this way we consider both extensional and intensional predicates to be
first-class citizens of the database. If we insert or delete a fact over an EDB predicate then
the semantics of updating EDB(P) are the same as those considered in Subsection 3.2.4 of
Chapter 3, since EDB(P) is essentially a relational database. On the other hand, when we
insert or delete a fact over an IDB predicate, then we need to consider two situations.

9.5. Updates in Deductive Databases 499

We say that an IDB predicate R of Pis nonrecursive, respectively recursive, if the restriction
of the dependency graph G ofP to the predicates R' ofP, such that there is a directed path from
R' to R in G, is acyclic, respectively cyclic. If we insert or delete a fact over a nonrecursive IDB
predicate R of P, then the semantics of updating EDB(P) are the same as those considered in
Section 3.8 of Chapter 3, since a nonrecursive Datalog program is equivalent to a relational
algebra expression. In this case we are faced with the familiar view update problem for
relational databases. On the other hand, the problem of inserting or deleting a fact over a
recursive IDB predicate R of P is a new problem. We term the problem of inserting or deleting
a fact over an IDB predicate (which may be recursive or nonrecursive) the view update problem
for deductive databases.

We illustrate the problems that we face in solving the view update problem for deductive
databases with two examples. Let EMP be a binary predicate modelling a company's permanent
employees and the departments they work in, MGR be a binary predicate modelling the
company's departments and their managers and TMP be a binary predicate modelling
temporary employees and their direct managers. The definite Datalog program, EMG, which
outputs a binary predicate modelling employees and their managers is given by

EMG{Xl , X3):- EMP{Xl, X2), MGR{X2 , X3).
EMG{Xl , X2) : - TMP{Xl, X2).

The IDB predicate EMG is nonrecursive and thus defines a view which can be constructed
by a relational algebra expression (the union of TMP together with a projection of the join of
EMP and MGR).

Assume that the fact MGR(Computing, Steve) is in EDB(P). We can effect an insertion of
the IDB fact EMG(Saul, Steve) either by adding the fact EMP{Saul, Computing) to EDB(P) or
by adding the single fact TMP{Saul, Steve) to EDB{P). Thus in the absence of any additional
information this insertion is ambiguous.

Furthermore, assume that EMP(Saul, Computing) and MGR(Computing, Steve) are in
EDB{P). We can effect the deletion of the IDB fact EMG(Saul, Steve) either by deleting the fact
EMP(Saul, Computing) from EDB(P) or by deleting the fact MGR(Computing, Steve) from
EDB(P). Thus in the absence of any additional information this deletion is ambiguous.

As another example, we again consider the recursive definite Datalog program, TC, which
computes the transitive closure of FAMILY:

TC(Xl, X2) : - FAMILY{Xl , X2) .
TC(Xl, X3) : - FAMILY(Xl , X2), TC(X2 , X3.).

Assume that FAMILYUulia, Sara) is an EDB fact. Then inserting the IDB fact TCUulia,
Tamara) can be effected ei ther by inserting F AMIL Y (J ulia, Tamara) in to ED B(P) or by inserting
FAMILY(Sara, Tamara) into EDB(P). Furthermore, assume that FAMILY(Dan, Iris) and
FAMILY(Iris, David) are two EDB facts. Then deleting the IDB fact TC(Dan, David) can
be effected either by deleting FAMILY(Dan, Iris) from EDB(P) or by deleting FAMILY (Iris,
David) from EDB(P). In both cases, namely the insertion of TCUulia, Tamara) or the deletion
ofTC(Dan, David), in the absence of any additional information the update is ambiguous.

500 Chapter 9. Deductive Databases

Following [AT91, AT92j we provide a declarative semantic framework for such updates on
lOB predicates based on the notion of minimal change. An equivalent operational semantics
for such updates can also be found in [AT91, AT92j (see also [TomSS, Dec90]).

Defmition 9.32 (Potential results for insertions and deletions) Let P be a Datalog program
and f be a fact over an lOB predicate R of P. A potential result for the insertion insert(f, P) is
a Datalog program Q such that

1) f is in MEANING(Q), and

2) MEANING(P) is a subset ofMEANING(Q).

A minimal potential resultQ for the insertion insert(f, P) is a potential result for this insertion
such that there is no other potential result <1 for this insertion such that MEANING(Q') is a
proper subset of MEANING(Q).

A potential result for the deletion delete(f, P) is a Datalog program Q such that

1) f is not in MEANING(Q), and

2) MEANING(P) is a superset ofMEANING(Q).

A maximal potential result Q for the deletion delete(f, P) is a potential result for this deletion
such that there is no other potential result (f for this deletion such that MEANING«(f) is a
proper superset of MEANING(Q). •

Defmition 9.33 (Satisfiable facts) Let P be a Datalog program and f be a fact over an lOB
predicate R of P. The fact f is satisfiable by P if there exists a database d, which is compatible
with P, such thatf is in P(d, R).

The fact satisfiability problem is the problem of deciding whether a given fact is satisfiable
by a given Datalog program. •

Not all facts are satisfiable by a Datalog program as the next example shows. Consider an
EDB predicate NEW -EMP, which records the names of new employees in a company database.
The lOB predicate DEFAULT _DEPT defined below assigns such new employees by default to
the Computing department.

DEFAULT _DEPT(x, Computing) : - NEW _EMP(x).

The reader can verify that for any constant y the fact DEFAULLDEPT(y, Mathematics) is
un satisfiable by the above Datalog program.

Although by Theorems 9.20 and 9.24 the equivalence problem for semi positive Datalog is
undecidable, the following result was shown in [LMS93j.

Theorem 9.35 The fact satisfiability problem for semi positive Datalog is decidable. 0

The decidability of the fact satisfiability problem for definite Datalog programs was shown
in [Shm93j. In [LMS93j it was shown that, in general, the fact satisfiability problem for Datalog
programs is undecidable.

9.5. Updates in Deductive Databases SOl

The next proposition shows that the concepts of potential result for insertion and fact
satisfiability are equivalent.

Proposition 9.36 There exists a potential result for the insertion insertlf, P) if and only iff
is satisfiable by P, where P is a Datalog not-equal program. 0

Although the only if part of Proposition 9.36 is true for general Datalog programs, the if
part is false for semipositive Datalog programs when they are nonmonotonic.

Recall the following semi positive Datalog program, denoted by F, which computes the
complement of an EDB predicate R.

CONSTANT(1).
R(l).
COMP(x) : - -.R(x).

Due to the nonmonotonicity ofF there is no potential result for insert(COMP(l), F), since
as long as R(l) is in EDB(F) we cannot insert COMPO) into F. On the other hand, COMPO)
is obviously fact satisfiable by F, since COMPO) is in F({CONSTANT(l)}, COMP).

As the reader can verify from the previous examples, namely those defining the !DB
predicates EMG and TC, in general there may be several minimal potential results for an
insertion and correspondingly there may be several maximal potential results for a deletion.
We define an update to be deterministic if it is not ambiguous in the following sense.

Definition 9.34 (Deterministic updates) An insertion insertlf, P) is deterministic if it has a
unique minimal potential result. Correspondingly, a deletion deletelf, P) is deterministic if it
has a unique maximal potential result. •

Consider any !DB predicate R of a Datalog not-equal program P, which is defined by one
nontrivial rule such that all the predicates of the literals in its body are EDB predicates. Then
the insertion insert(R(VI, V2, ... , Vk), P) is deterministic. On the other hand, the insertion
insert(TCOulia, Tamara), TC) is nondeterministic. In fact, the reader can verify that every
insertion of a fact into TC is nondeterministic; similarly, every insertion of a fact into EMG is
also nondeterministic. These two statements obtain provided the inserted fact is not already
in TC and in EMG, respectively.

The deletion delete(TC(Dan, Iris), TC) is deterministic, since the only way it can be effected
with a maximal potential result is by deleting the fact FAMILY(Dan, Iris) from the EDB. On
the other hand, the deletion delete(TC(Dan, David), TC) is nondeterministic.

We leave it to the reader to verify that if a definite Datalog program allows deterministic
updates then it must be bounded. In other words, if a definite Datalog program is not bounded
then it does not, in general, allow deterministic updates. On the other, as was shown for the
definite Datalog program EMG, the fact that a definite Datalog program is bounded does not
imply that it allows deterministic updates. In order to test whether an insertion of a fact
into a Datalog program P is deterministic, we need to check whether the intersection over i of
MEANING(Pi) of all its potential results Pi for this insertion is a model of some potential result
for the insertion. Correspondingly, in order to test whether a deletion of a fact from a Datalog

502 Chapter 9. Deductive Databases

program P is deterministic we need to check whether the union over i of MEANING(Pi} of all
its potential results Pi for this deletion is a model of some potential result for the deletion.

The problem of dealing with nondeterministic updates can be solved in several ways. One
approach is to provide procedures for disambiguating the update according to some criteria
which assign priority to one of the potential results of an update in preference to another.
For example, we may prefer to minimise the number of update operations; note that such
a criterion on its own does not always disambiguate an update. Another approach is to
disambiguate an update with the aid of an appropriate user dialogue. A different approach
is to generalise the notion of a fact by allowing disjunctions and negations of facts, and then
to add the disjunction of all the potential updates to P as the unique update [RN89]. Using
this general semantics deletion of a fact J is interpreted as making -1 true in MEANING(P}.
Thus deleting FAMILY(Dan, Iris} or deleting FAMILY(Iris, David} from EDB(P} is represented
logically by adding,FAMILY(Dan, Iris} v,FAMILY(Iris, David) to P. Similarly, inserting
FAMILYOulia, Tamara) or FAMILY{Sara, Tamara) into EDB{P) is represented logically by
adding FAMILYOulia, Tamara) v FAMILY{Sara, Tamara) to P.

An overview of different approaches to the problem of updating deductive databases can be
found in [Win88a, Win95]. In [FUV83,FKUV86, Var86j a more generalframework for updates
is considered based on revising the underlying first-order theory of a deductive database. An
approach which uses dynamic logic [Tha89b j to formalise the update semantics of deductive
databases is given in [MW88b, Man89, NT89j. An interesting operational semantics of updates
in deductive databases in terms of abduction was considered in [KM90j. The underlying idea
is that in order to insert a fact J we need to explain J in terms of possible hypotheses on the
abductable (i.e. assumable) EDB predicates. Correspondingly, in order to delete J we need to
explain the negation, -1, ofJ. A recent approach is that of Reiter [Rei92a), who considers the
situation calculus [MH69j as a basis for database updates. In this context the infamous frame
problem arises, which is the problem of leaving unchanged the state of the database that is
unaffected by a given update. For example, if we update an employee's salary this should not
affect the employee's address or the employee's department. Another recent approach to the
update problem based on the philosophy of minimal change is that ofKatsuno and Mendelzon
[KM91aj (see also [KM91b]) in the context of the broader subject of belieJrevision [Gar88a].
Finally, an update semantics tailored specifically for incomplete deductive databases (see
Chapter 5) based on the possible-world approach is investigated in [AG85, Heg87, Win88bj.

9.6 Integrity Constraints in Deductive Databases

In Sections 3.4, 3.5, 3.6 and 3.7 of Chapter 3 we have dealt with integrity constraints in relational
databases. In terms of deductive databases a Datalog program consists of an EDB and an !DB
and thus it is natural to consider integrity constraints which are defined on both the EDB
and the !DB. We take integrity constraints to be first-order sentences (or equivalently, closed
first-order formulae), i.e. first-order formulae having no free variables.

We do not deal with the problem of inferring whether an integrity constraint holds in an
!DB predicate given a set of constraints defined over EDB predicates. Even if we restrict
ourselves to nonrecursive Datalog programs (i.e. to the relational algebra) and to FDs as
integrity constraints, the problem of deciding whether an FD holds in an !DB predicate is

9.6. Integrity Constraints in Deductive Databases S03

undecidable; if we drop the difference operator from the relational algebra then the problem
becomes decidable but it is still intractable (see [Klu80, KP82, IITK84J). Consider next a
definite Datalog program P and a set ofFDs defined over the EDB predicates ofP. The problem
of determining whether an FD holds over an IDB predicate of P was proved in [AH88a] to be,
in general, undecidable; the proof was obtained by a reduction from the Post correspondence
problem defined in Subsection 1.9.4. (In [LMS93] it was shown that satisfiability is undecidable
for a Datalog not-equal program P given a set of FDs defined over the EDB predicates of P;
recall that satisfiability is the problem of determining whether for some IDB predicate R of
P the result of applying P to a database compatible with P, namely P(d, R), is nonempty; see
Definition 9.21.)

Hereafter we will mainly restrict ourselves to integrity constraints defined only over EDB
predicates, i.e. we consider a relational database dover R; d can be viewed as a Datalog program
consisting only of EDB facts. Essentially we will study a general type of data dependency,
formalised as a first-order sentence; this was briefly mentioned at the end of Section 3.6 of
Chapter 3. Recall from Subsection 3.2.3 of Chapter 3 that an atomic formula is either a predicate
formula of the form R(YI,Y2, ... ,Yk) or an equality formula of the formYl = Y2. Herein we
assume that all the y;'s are variables ranging over the underlying database domain.

Definition 9.35 (Data dependency) A data dependency is a first-order sentence of the form

where for all j E {1, 2, ... , n), Aj is a predicate formula and B is an atomic formula (recall that
=} stands for logical implication and /\ stands for logical and, i.e. conjunction).

We assume that for all i E {1, 2, ... , m), Xi appears in at least one of the A/s and that there
is at least one Aj' i.e. n :::: 1. If B is a predicate formula then the data dependency is called
a Tuple Generating Dependency (abbreviated to TGD). Correspondingly, if B is an equality
formula then the data dependency is called an Equality Generating Dependency (abbreviated
to EGD).

We say that a data dependency is over a database schema R, if for all relation symbols R
mentioned in the predicate formulae of the data dependency there is a corresponding relation
schema R in R. For the rest of this section we assume that all data dependencies are over a
database schema R. •

We observe that a TGD can be viewed as a definite Datalog rule. The difference between
the two is that a Datalog rule is used to generate an IDB predicate, while a TGD is used to test
whether certain tuples have been generated (an EGD is used to test whether some equality is
satisfied).

For example, let R = {EMP, DEPT) be a database schema modelling employees and the
departments they work in. Furthermore, let schema(EMP) = {ENAME, DNAME), where att(1)
= ENAME models an employee's name and att(2) = DNAME models the department's name,
and let schema(DEPT) = {DNAME, MNAME), where att(1) = DNAME models a department's
name and att(2) = MNAME models the manager's name of the department. Suppose that
the constraints specified over R are the FDs: EMP : ENAME -+ DNAME, DEPT: DNAME -+
MNAME and DEPT: MNAME -+ DNAME, and the JD I><l(EMP, DEPT].

504 Chapter 9. Deductive Databases

The FD EMP : ENAME --+ DNAME is represented by the EGD

The FD DEPT: DNAME --+ MNAME is represented by the EGD

The FD DEPT: MNAME --+ DNAME is represented by the EGD

Let ED be an lOB predicate defined by the rule

Then the JD IXI[EMP, DEPT) is represented by the TGD

Another interestingTGD that can be represented is that of a binary relation being transitively
closed. For example, constraining FAMILY to be transitively closed can be represented by the
TGD

('lxI , X2, x3)«FAMILY(Xl , X2) /\ FAMILY(X2 , X3» =} FAMILY(Xl , X3» .

We call such a TGD a Closure Dependency (CD); see [GSS89) for an axiom system for FDs
and CDs and a discussion on the implication problem for FDs and CDs.

A more general definition of a data dependency is given in [Fag82b, BV84a, BV84c, FV84a,
Var88b), which allows existential quantifiers over variables that appear in the atomic formula,
B, appearing on the right-hand side of the implication. It is customary to call data dependencies
as given in Definition 9.35 having no existential quantifiers full. On the other hand, when
allowing at least one existential quantifier we call such data dependencies embedded.

The definitions of satisfaction and logical implication are essentially identical to those in
Section 3.5 of Chapter 3.

Defmition 9.36 (Data dependency satisfaction) Consider a relational database dover R; in
the context of deductive databases d can be viewed as a Datalog program consisting only of
facts. We say that d satisfies a data dependency a, written d 1= a, if d is a Herbrand model of a
with respect to the first-order language containing the relation symbols in R and the constants
in the active domain of d.

As usual, when ~ is a set of data dependencies, we say that d satisfies ~, written d 1= ~, if
Va E ~ , d 1= a . A set of data dependencies ~ over R is said to be satisfiable if there exists a
database dover R such that d 1= ~. •

For the sake of completeness we repeat the definition of logical implication for data
dependencies.

9.6. Integrity Constraints in Deductive Databases 505

DefInition 9.37 (Logical implication) We say that a set of data dependencies Lover R
logically implies a single data dependency a over R, written L F= a, whenever for all databases
dover R the following condition is true:

if d F= L holds then d F= a also holds. •
Assume that a set L of data dependencies is specified by the database designer. This gives

rise to a particular class of databases, i.e. the set of all databases that satisfy L, which we
denote by SA T(L) . On the other hand, suppose that we are given a class of databases, say r,
satisfying certain preservation properties such as the property of closure under intersection
or containment. Then it is of interest to know whether there exists a set of data dependencies
L such that r = SAT(L) . If such a set L exists then we say that r is axiomatisable by L.
Following [MV86] we characterise axiomatisability of a class of databases by the preservation
properties it satisfies. (We assume that all classes of databases are closed under isomorphisms;
an isomorphism from a database d1 over R to a database d2 over R is a homomorphism h
from ADOM(d1) to ADOM(d2) that is one-to-one and onto, implying that its inverse is a
homomorphism from ADOM(d2) to ADOM(d1).)

DefInition 9.38 (Axiomatisable classes of databases) A class r of databases is said to be
axiomatisable by data dependencies (respectively, by TGDs or by EGDs) if there exists a
set L of data dependencies (respectively, TGDs or EGDs) such that r = SAT(L). •

An important application of axiom at is ability relates to user views, which are defined by IDB
predicates. Specifically, we would like to know whether the set L is still satisfied in the user
view, i.e. whether or not the user view is in SAT(L). By knowing the preservation properties
of SAT(L) we may be able to give a quick answer to such a question.

Definition 9.39 (Empty and trivial databases) A database is empty if all its relations are
empty and is trivial if all its active domains are singletons and all its relations contain only a
single tuple. •

The reader can verify the next lemma.

Lemma 9.37 Empty and trivial databases satisfy any set of data dependencies. o

Intuitively, a data dependency is domain independent if in order to test its satisfaction by
a database, d, only the constants in the active domain of d need to be considered.

Definition 9.40 (Domain independent data dependencies) Recall that a database dover R
has an underlying countably infinite domain, which we denote by DOMj(R) where j is a
natural number; in general, DOM/A) =1= DOMk(A), for j =1= k. When we want to emphasise the
fact that DOM/R) is the underlying domain of d we will refer to d as the pair (d, DOM/R».

A data dependency a is domain independent whenever (d, DOMj(R» F= a if and only if (d,
DOMk(R» F= a. •

The reader can verify the next lemma, which follows from the fact that if we view data
dependencies as rules, then given a database d such values will not generate any new constants

506 Chapter 9. Deductive Databases

which are not in ADOM(d). (See Subsection 3.3.1 of Chapter 3 for the related concept of domain
independent queries.)

Lemma 9.38 Data dependencies are domain independent. o

Prior to the next definition the reader is advised to recall Definition 9.30 of an extension of
a database.

Definition 9.41 (Preservation under extensions, containment and intersections) A data
dependency ct is preserved under extensions if whenever a database d. over R is an extension
of a database d2 over Rand d l 1= ct, then it is also the case that d2 1= ct.

A database d l over R contains a database d2 over R, if for all R E R, r2 ~ rl, where r2 and rl

are the relations over R in d2 and db respectively.

A data dependency ct is preserved under containment if whenever a database d l over R
contains a database d2 over Rand d l 1= ct, then it is also the case that d2 1= ct.

The intersection of two databases d l and d2 over R, denoted by d l n d2, is the database over
R, such that for all R E R, rl n r2 is the relation in d l n d2 over R, where rl and r2 are the
relations over R in dl and d2 , respectively.

A data dependency ct is preserved under intersections if whenever d l and d2 are databases
over R such that d l 1= ct and d2 1= ct, then it is also the case that d l n d2 1= ct. •

The reader can verify the next lemma by inspecting Definition 9.35 and noting that by
Lemma 9.3 the intersection of two Herbrand models for a definite Datalog program P is also
a Herbrand model ofP.

Lemma 9.39 Data dependencies are preserved under extensions and intersections, and EGDs
are preserved under containment. 0

Intuitively, a set of data dependencies ~ allows unique minimal insertions if whenever dis
a database that satisfies ~ and a set of facts is inserted into d, then there is a unique database
d' containing the database resulting from the insertions such that d' satisfies :E.

Defmition 9.42 (Unique minimal insertions) Recall from Section 9.5 that insert(j, d)
denotes the insertion of a fact (or equivalently, a tuple) into a relation in the database d.
Let insert(F, d), where F is a finite set of facts, denote the database resulting from a sequence
of insertions of the form insert(j, d) for all f E :F. (Note that the database insert(F, d) does
not depend on the order in which the facts f are inserted into d.)

A set of data dependencies ~ allows unique minimal insertions if for every database d
such that d 1= :E, and for all finite sets of facts F, there exists a unique minimal database d'
containing insert(F, d) such that d' is an extension of d and d' 1= :E. •

The reader can verify that the next lemma is a direct consequence of Lemma 9.3, since TGDs
can be viewed as definite Datalog rules.

Lemma 9.40 Data dependencies allow unique minimal insertions. o

9.6. Integrity Constraints in Deductive Databases 507

Intuitively, a data dependency ex is preserved under duplicating extensions if whenever a
database d satisfies ex and d is augmented with an extra copy of itself, where a constant in dis
renamed to a new constant in the copy, then the resulting database also satisfies ex.

Definition 9.43 (Duplicating extensions) Let d be a database over R, VI E ADOM(d) be a
constant and V2 <I- ADOM(d) be another constant. Also, let h be a one-to-one and onto
homomorphism, i.e. an isomorphism, from ADOM(d) to (ADOM(d) - {VI}) U {V2} such that
it is the identity on ADOM(d) -{vd and h(vI) = V2·

The database d' over R is a duplicating extension of d if ADOM(d') = ADOM(d) U {V2} and
for all rEd over R, the relation r' E d' over R is given by r' = r U her).

A data dependency ex is preserved under duplicating extensions if whenever dl and d2 are
databases over R such that dl F ex and d2 is a duplicating extension of db then it is also the
case that d2 F ex. •

The reader can verify the next lemma.

Lemma 9.41 TGDs preserve duplicating extensions. o

We now define the closure properties of a class of databases r corresponding to the
preservation properties introduced in Definition 9.41.

Definition 9.44 (Closure properties) Let r be a class of databases. r is said to be domain
independent whenever (d, DOMj(R» E r if and only if (d, DOMk(R» E r. r is said to be
closed under extensions if whenever d l E rand d l is an extension of d2 then d2 E r. r is
said to be closed under containment if whenever d l E rand d l contains d2 then d2 E r. r
is said to be closed under intersections if whenever d l , d2 E r then d l n d2 E r . r is said to
be closed under insertion updates if whenever d l E rand F is a finite set of facts then there
exists a unique minimal database d2 containing insert(F, dd such that d2 is an extension of
d l and d2 E r, provided there is an extension of d l in r containing insert(F, d l). r is said to
be closed under duplicating extensions if whenever d l E rand d2 is a duplicating extension
of dl then d2 E r . •

The only if part of the next theorem follows from the preservation properties of data
dependencies; the proof of the if part can be found in [MV86].

Theorem 9.42 The following statements are true:

1) A class r of databases is axiomatisable by data dependencies if and only if it contains
a trivial database, is domain independent and closed under extensions and insertion
updates.

2) A class r of databases is axiomatisable byTGDs if and only if it contains a trivial database,
is domain independent and closed under intersections and duplicating extensions.

3) A class r of databases is axiomatisable by EGDs if and only if it contains a trivial database,
is domain independent and closed under containment and insertion updates. 0

508 Chapter 9. Deductive Databases

Definition 9.45 (Projection and join of database classes) We say that a class of databases r
is over a relation schema R, ifit contains only databases having single relations over R; without
any loss of generality we will consider a database d = {r} simply as the relation r.

If r is a class of databases over R, then the projection of r onto a set of attributes X ~
schema(R) is the set ofrelations {1l'x(r) IrE r}.

If rl is a class of databases over RI and r2 is a class of databases over R2, then the join of
r l and r2 is the set of relations {rl txl r2 I rl E r) and r2 E r2}. •

The next corollary is a direct consequence of part (1) of Theorem 9.42.

Corollary 9.43 The following statements are true:

1) If a class r of databases over a relation schema R is axiomatisable by data dependencies,
then any projection of r is also axiomatisable by data dependencies.

2) If two classes of databases rl, r2 over a relation schema RI are axiomatisable by data
dependencies, then their join is also axiomatisable by data dependencies. 0

Although a class of databases may be axiomatisable by a set of data dependencies, say
~, Theorem 9.42 does not guarantee that ~ is a finite set. A further investigation of
axiomatisability of a class of databases by a finite set of data dependencies, called finite
axiomatisability, can be foundin [Hu184, MV86] (see also [Mak87j). In particular, it was shown
in [Hu184] that both statements of Corollary 9.43 are false when we replace axiomatisability
by finite axiom at is ability. Intuitively, to formalise finite axiomatisability we need to add the
condition that the class of databases r is n-local for some natural number n, which implies
that the number of variables in any data dependency in ~ is bounded above by n. A class
of databases r is said to be n-local, if for a given database d2 , whenever r contains all the
databases dl such that d2 is an extension of dl and the cardinality of ADOM(dl) is at most n,
then r also contains d2.

It is possible to generalise further the notion of data dependency given in Definition 9.35
by allowing a data dependency to be any first-order sentence whose basic building blocks
are atomic formulae and such that no constants appear in the sentence. Let us call such a
generalised data dependency, which is restricted to be domain independent (according to
Definition 9.40), an integrity constraint. The problem of whether there exists a database
which satisfies a set ~ of integrity constraints is called the satisfiability problem. In general,
the satisfiability problem is undecidable [Man90]; see [BDM88] for an algorithm which tests
satisfiability by trying to generate a database satisfying ~ (due to the undecidability of the
satisfiability problem this algorithm may not terminate). Due to the said undecidability
result it is debatable whether such a generalisation of data dependencies is useful in
practice.

The problem of checking whether a particular database satisfies ~ when an update is
performed is considered in [Nic82, LST87]. An extension of the approach to the update
problem, in the context of a definite Datalog program, to include the specification of a set
of FDs, defined over the IDB predicates, is considered in [Tor94] . As was mentioned at the
beginning of Section 9.6 the problem of determining whether P(d, R) satisfies a set of FDs is,

9.7. Discussion 509

in general, undecidable given that d satisfies a set of FDs defined over the EDB predicates of
a Datalog program, P.

We have implicitly assumed that integrity constraints are static, which means that their
satisfaction is only determined by the current state of the database. Alternatively, we may wish
to consider dynamic integrity constraints whose satisfaction is determined by the transition
of the database from one state to another during an update operation. For example, we
may wish to assert that an employee's salary never decreases, i.e. when a salary is updated
its new value is not less than the old value. Maintaining such dynamic integrity constraints
can be dealt with naturally within a historical database (see Section 7.7 of Chapter 7) by
viewing dynamic integrity constraints as static integrity constraints over historical relations.
Alternatively, Nicholas and Yazdani an [NY78] suggest that we augment the database with
temporary relations, called action relations, which hold the previous state of the database
prior to an update, in order that the state transition can be expressed as a static integrity
constraint over the augmented database.

We finally mention Reiter [Rei92b] who uses a modal logic formalism [Tha89b] to
distinguish between knowledge about the external world (the real world) and what the database
knows about the external world. For example, we may know that there exists an employee in
the sales department but the database may not know who that employee is. Such an approach
is especially useful in the context of incomplete information [Lev84].

9.7 Discussion

Deductive databases enhance the expressive power of relational databases with the ability to
express recursion (for example, the transitive closure) and the general facility to define and
manipulate views via rules. The Datalog language has been central to the development of the
deductive database model as a declarative and logic-based query and update language.

Definite Datalog programs (i.e. programs without negation) have a well-defined semantics
in terms of the unique minimal model of the program, which is equivalent to the fixpoint
semantics of the program. Definite Datalog also has an equivalent and fairly straightforward
proof theory [VK76, Hod93]. (For a novel semantics of Datalog which is based on Petri net
theory [Pet8l] see [DL9l].) When we add negation to Datalog programs the situation is not
as straightforward, since we lose the minimal model semantics but we can recover from this
difficulty via the perfect model semantics of stratified Datalog programs. As we have seen,
further enhancements to the semantics of Data log have been proposed, since stratified Datalog
programs do not give semantics to the full class of Datalog programs.

Most of the deductive database research has concentrated on the query language aspect
of the model, stressing various optimisation techniques of queries [Ull88]. An area we have
not touched upon is that of giving semantics to aggregate functions in Datalog; several recent
such proposals can be found in [RS92, Van92, CM93]. There has been less research in the
important areas of updates and integrity constraints in deductive databases. In particular, the
area of data dependencies, which has been very instrumental in the broad area of relational
database design, may have a similar effect on the design of deductive database.

As deductive database technology is reaching maturity several prototype systems have
been implemented [RU95]. Since the basic technology is already available, it seems likely

510 Chapter 9. Deductive Databases

that existing relational database systems will enhance their capabilities with deduction via
the provision for defining and executing rules. For a historical perspective on the area of
deductive databases see [Min88bl.

9.8 Exercises

Exercise 9.1 Consider the following normal form for a deductive database P: P is in deductive
normal form if none of its rules are redundant and, in addition, none of the literals in the body
of its rules are redundant. What is the problem with the definition of deductive normal form
in terms of being a database design goal?

Exercise 9.2 Suppose that a Datalog program P has an IDB predicate TC that computes
the transitive closure of some binary EDB predicate R. Now, consider transforming P into a
program Q by removing TC from the IDB and adding a new predicate TCR to the EDB together
with the corresponding closure dependency that asserts that TCR is the transitive closure of
R. Discuss the advantages and disadvantages of the Datalog program P versus the Datalog
programQ.

Exercise 9.3 Consider the following Datalog program, P, given by

MOVE(a, b).
MOVE(b, c) .
MOVE(d, d).
WIN(x) : - MOVE(x, y), WIN(y) .

What is the well-founded meaning of P? In your answer give the details of the
intermediate states of the variables Res_True and Res_False during the computation of
WELLFOUNDED~EANING(P).

Exercise 9.4 Assume a binary EDB predicate CHILD, where CHILD(Tamara, Mark) means
that Tamara is the child of Mark, and a binary IDB predicate SG, where SG(Sara, Mark) means
that Sara and Mark are of the same generation. Consider the following rules, which define SG
and a unary predicate QUERY:

SG(x" X2) : - CHILD(x" X3)' CHILD(X2, X4), SG(X3, X4)'
SG(x, x).
QUERY(x) : - SG(Mark, x).

Let us call the Datalog program, which contains the EDB predicate CHILD and the IDB
predicates SG and QUERY, P. Consider the Datalog program Q, consisting of the EDB predicate
CHILD and the IDB predicates SGM, MAGIC and QUERY, given below:

SGM(x" X2) : - MAGIC(x,), CHILD(x" X3), CHILD(x2 , X4) , SGM(X3, X4).
SGM(x, x) : - MAGIC(x).
MAGIC(Mark).

9.8. Exercises

MAGIC(xI) : - MAGIC(x2), CHILD(X2 , XI)'
QUERY(x) : - SGM(Mark, x).

S11

Suppose that we would like to compute the answer to the Datalog query, : - QUERY(x).
Show that the Datalog programs P and Q are equivalent in the sense that for all databases,
which contain CHILD facts, the answer to the above query is the same with respect to either
PorQ.

The transformation from P to Q is called the magic set optimisation method [BR91j. Argue
why the magic set method is indeed a query optimisation technique.

Exercise 9.5 Assume that we have two EDB unary predicates STUD and LECT, where
STUD(Wilfred) means that Wilfred is a student and LECT(Tony) means that Tonyis a lecturer.
We can assign each student to a single tutor using the following Datalog program P:

In the above program the predicate CHOICE is a built-in predicate, which nondeterminis
tically chooses a subset of the <XI, X2> tuples that are true in the meaning ofP such that there
is a functional dependency from the XI values to the X2 values, i.e. from students to tutors.

Consider the following Datalog program, which finds the students that are enrolled for at
least one course, with ENROL and COURSE being EDB predicates, where ENROL(Wilfred,
Databases) means that Wilfred is enrolled in the Databases course and COURSE(Databases,
Computing) means that the Databases course is taught in the Computing department:

QUERY(xI) : - ENROL(XI, X2), COURSE(X2. X3).

Suggest how the choice predicate can be used to optimise the above Datalog program, given
a query: - QUERY(x) [NT89, GPSZ91).

Exercise 9.6 Let us define a term to be either a variable, a constant or an expression of the
form f(tl, t2 , ... , tm), where each ti is a term and f is a function symbol having m arguments.
Furthermore, let us define an atomicformula to be an expression of the form R(tt. t2 , ... , tn) or
of the form tl = t2, where each ti is a term. We also extend a fact to be either an atomic formula
of the form R(CI, C2, . .. , cn), called a relational fact, or of the form f (CI , C2 , ... , Cn-t) = Cn,
called a functional fact, where each Ci is a constant. Finally, we extend Datalog programs such
that atomic formulae are extended as above. For example, an extended Datalog program may
contain the following functional facts and rules with their obvious meaning:

EMPOohn).
DEPTOohn) = Computing.
MGR(Computing) = Jack.
COMP(x) : - EMP(x), DEPT(x) = Computing.
MGR(xI) = X2 : - EMP(XI), MGR(DEPT(xI)) = X2.

A set of facts is said to be consistent if whenever it contains two functional facts of the
formf(cl, C2,·.·, Cn-I) = c~ andf(cI , C2 , " " cn- d = c~, then c~ = c~. The meaning of an

512 Chapter 9. Deductive Databases

extended Datalog program P, i.e. MEANING(P), is modified accordingly, so that MEANING(P)
is defined if the resulting database of facts is consistent, and undefined otherwise.

Show that given an extended Datalog program P, the program P can be transformed into a
Datalog program Q, having no function symbols, together with a set of FDs F over schema(Q)
such that MEANING(P) is consistent if and only if MEANING(Q) satisfies F [AH88aJ.

Exercise 9.7 Assume that we have a ternary EDB predicate ARC describing a labelled digraph,
where ARC(nl , n2, c) means that there is is an arc from node nl to node n2 having a cost c,
where c ::: 0 is a real number. Now, let P be the following Datalog program:

PATH(Xl, Direct, X2 , X3) :- ARC(Xl, X2, X3).
PATH(Xl, X2 , X3, X4) :- SHORT(Xl, X2, xs), ARC(X2, X3, X6), X4 = Xs + X6·
SHORT(Xl, X2, X3): - X3 = MIN(x4), ARC(Xl, X2, X4)'

We assume that '+' is a built-in operator with its usual meaning of addition, and the
aggregate function MIN is a built-in operator that computes the minimum of a multiset of
facts (a multiset is a set which may contain duplicates). Thus, intuitively the above program
computes the minimum cost path between two nodes in the digraph represented by the
predicate ARC.

Give model-theoretic semantics to the above Datalog program, which includes an aggregate
function, in terms of its minimal models (RS92, CM93j.

Exercise 9.8 Let us extend Datalog with update predicates of the form +R(Yl, Y2, ... , Yn),
-R(Yl,Y2, .. . ,Yn), where R is an EDB predicate. The meaning of +R(Yl,Y2, . . . ,Yn) is
to insert the fact R(Yl , Y2 , ... ,Yn) into the EDB and, correspondingly, the meaning of
- R(YI , Y2 , . .. , Yn) is to delete the fact R(Yl, Y2, .. . ,Yn) from the EDB.

For example, assume a ternary EDB predicate EMP, where EMP(John, Computing, 30)
means that John works in the Computing department and earns 30 thousand pounds
sterling. The following Datalog program increases all the salaries of employees working
in the Computing department by 20%:

RAISE(Computing) : - EMP(X3, Computing, xd, X2 = Xl X 1.2,
-EMP(X3, Computing, xd, +EMP(X3, Computing, X2).

Give model-theoretic semantics to the above Datalog program in terms of minimal models,
where the + and - operators correspond to actions that transform the database from one
state to another [NK88, NT89j.

Exercise 9.9 Suppose that we extend Datalog by allowing lists as arguments in atomic
formulae, as, for example, in the following Datalog program:

SIBLlNGOohn, Mary).
CHILDREN(John, (Jack, Jill, Joe)).
CHILDREN(Mary, [Mark, Mel, Moe)).
COUSIN(Xl , X2):- CHILDREN(x3, Ld, CHILDREN(x4, L2),

MEMBER(Xl , Ld, MEMBER(X2, L2), SIBLlNG(X3, X4) .

9.8. Exercises S13

We assume that MEMBER(x, L) is a built-in predicate which is true if x is a member of the
list L (see [NT89] for more details on how lists can be used in Datalog programs).

Discuss the merits and demerits of extending Datalog with lists.

Exercise 9.10 Design a Datalog program to manipulate a family tree, where the EDB contains
at least a binary predicate PARENT such that P ARENT(Mary, Mel) means that Mary is the
parent of Mel, and a predicate PERSON which maintains all the personal information of the
people stored in the family tree database [NT89]. You are allowed to use aggregates and lists
in your Datalog program rules.

Exercise 9.11 Suggest an architecture for implementing a deductive database system on top
of a relational database management system [RU95].

10. Extensions to the Relational Data
Model and Recent Directions

So far we have covered the relational data model in detail including an extension to incorporate
time into the model. In this final chapter we will briefly survey various extensions of the
relational model which have been under development in recent years, and we will briefly
overview some new directions that are being researched.

The relational model has already gained acceptance in the market place to such a degree
that many database users expect their database systems to be relational by default. With the
acceptance of the relational model users are demanding new facilities which are not directly
supported by the model. Such facilities include support for deduction mechanisms (see
Chapter 9), complex non-first normal form data, object-oriented features and production
rules. The availability of database systems on a wide variety of computer platforms has meant
that there is a growing demand for the use of databases in non-business applications, such as:
office automation, computer-aided design (CAD), multimedia, text retrieval, expert systems
and scientific applications such as: geographical and statistical analyses. This demand is a
motivating factor for extending the relational model to provide new facilities such as the ones
we have just mentioned.

In Section 10.1 we give an overview of nested relational databases, in which relations are
not necessarily in first normal form. In Section 10.2 we give an overview of object-oriented
databases, taking the object-relational approach via an extension of relational databases.
In Section 10.3 we give an overview of graph-based databases and present a graph-based
model, called the hypernode model, which represents objects as labelled nested digraphs. In
Section 10.4 we give an overview of active databases, in which production rules, also known
as event-condition-action rules, are added to the database system.

An emerging field in the broad area of information systems is that of hypertext (or more
generally hypermedia), whose aim is to provide database support for networks of "electronic
documents" which are logically linked together. Hypertext is concerned with authoring,
managing, designing and navigating through the electronic documents of such networks. The
vision of virtual electronic libraries is becoming a reality and hence there is a strong need for a
formal data model of hypertext. Although it would be naive to consider a data model of such
an electronic library to be an extension of the relational model, relational database theory
can provide inspiration for the development of such a data model. In Section 10.5 we give an
overview of hypertext databases.

515

516 Chapter 10. Extensions to the Relational Data Model and Recent Directions

A hypertext database can be viewed as an instance of a semistructured database in the
sense that such a database does not come with a separate schema, since it does not have a
regular structure. Although the digraph representing a hypertext database is unstructured,
individual pages may have some structure attached to them. For instance, pages which are
HTML documents have some structure attached to them in the form of informational tags,
but these are insufficient for the purpose of constructing a relation schema over the document
space. Semistructured data is often self-describing in the sense that its internal structure,
when it exists, can be inferred from the data itself. In Section 10.6 we give a brief overview of
semistructured databases.

The area of Knowledge Discovery and Data mining in databases (KDD) is one of the most
exciting and fast growing of the recently developing areas in the database field. The term
knowledge discovery refers to the overall process offinding nontrivial and previously unknown
knowledge in data whereas the term data mining refers to the application of specific methods
and algorithmic techniques which extract patterns from data. KDD brings together the three
areas of databases, machine learning and statistics. In Section 10.7 we give an overview of the
underlying concepts involved in knowledge discovery and data mining.

In Section 10.8 we briefly mention other important areas in the database field that are being
currently researched and in Section 10.9 we conclude that the synergy of the database field
with other active areas in computer science will lead to further important advances in database
theory.

10.1 Nested Relational Databases

We have already introduced nested relations in Subsection 1.7.4 of Chapter 1. We refresh
the reader's memory with an example of a nested relation shown in Table 10.1. The attribute
PNAME is atomic, while the attributes (HOBBY)* and (CHILD, AGE)* are relation-valued.
We enclose relation-valued attributes by '(' and ')*', in order to differentiate them from
atomic attributes. Thus, PNAME-values are atomic, while (HOBBY)*-values are relations
over a relation schema with attribute HOBBY and (CHILD, AGE)*-values are relations over
a relation schema with attributes CHILD and AGE. We observe that relation-valued attribute
values can be empty, i.e. their value can be the empty set, 0. For example, Jack does not have
any hobbies and Carl does not have any children.

Table 10.1 A nested relation r

I PNAME ,,(HOBBY)* ,,(CHILD I AGE)* "
Jack Jill 8

Jacob 10
John 12

Carl chess
checkers
bridge

Miriam photography Maria 6
reading

10.1 . Nested Relational Databases 517

We next extend the notion of an attribute to nested relations.

Defmition 10.1 (Attribute, atomic and relation-valued) An attribute is defined recursively
by:

1) An element A E U is an attribute, also called an atomic attribute.

2) If X is a finite set of attributes then (X)* is an attribute, also called a relation-valued
attribute. •

The definition of a relation schema and database schema remain unchanged. A relation
schema R having a relation-valued attribute (X)* E schema(R) is called a nested relation
schema. Correspondingly, if schema(R) has no relation-valued attributes then R is also called
a flat relation schema. Moreover, a database schema having no nested relation schemas is
also called a flat database schema, otherwise it is called a nested database schema.

We now extend the notion of the domain of an attribute to nested relations.

Defmition 10.2 (Attribute domain, atomic and relation-valued) The domain of an attribute
is defined recursively by:

1) For an atomic attribute, A, the domain of A, denoted by DOM(A), is given by DOM(A)
~ D, recalling that D is the underlying database domain.

2) For a set of attributes, X = {AI, A2, ... ,An}, the domain of X, denoted by DOM(X), is
given by

DOM(X) = DOM(Al) x DOM(A2) x . .. x DOM(An),

where x is the Cartesian product operator.

3) For a relation-valued attribute, (X)*, where X is a set of attributes, the domain of (X)*,
denoted by DOM«X)*), is given by DOM«X)*) = P(DOM(X», where P is the finite
power set operator. •

An interesting argument for the inclusion of relation-valued attributes in the relational
model is given in [DD92b J. Therein, it is argued that if we interpret a domain as a data type,
which can have potentially arbitrary complexity, then we should also allow relation-valued
attributes as a special kind of data type. This is quite convincing realising that SQL supports
domains such as character strings and dates, which can be viewed as aggregates of simpler
data types, i.e. single characters and day, month and year, respectively (see also Section 3.7 of
Chapter 3).

The definition of a relation and a database remain unchanged. A relation over a flat relation
schema is also called a flat relation and a relation over a nested relation schema is called a
nested relation. Moreover, a database having no nested relation is also called a flat database,
otherwise it is called a nested database.

Retaining the notation of relation schema, relation, database schema and database is
convenient since it encapsulates both the flat and nested worlds. It is interesting to note
that in Codd's seminal paper, wherein he introduced the relational data model [Cod70), the

518 Chapter 10. Extensions to the Relational Data Model and Recent Directions

original definition of a relation does not assume that a relation schema is in INF. The restriction
to first normal form comes after the definition of a relation. Of course, if Codd had not defined
INF who knows if the relational data model would be as successful as it is? In any case INF
simplifies the model considerably, and only in the 1980's when relational database theory was
already well understood did database researchers tackle the problem of formalising the nested
relational model.

The definitions of the relational algebra operators given in Subsection 3.2.1 of Chapter 3
remain valid for both flat and nested relations. The only difference between flat and nested
relations with respect to these definitions is that equality of relation-valued attribute values
is taken to be equality between relations rather than between atomic values; this difference
does not affect the definitions. The nested relational algebra extends the relational algebra
with three additional operators, NEST and UNNEST, which restructure relations, and empty,
denoted by A, which creates a nested relation with a single relation-valued attribute, which is
empty. We first define NEST, which transforms a nested relation into a "more deeply" nested
relation.

Definition 10.3 (NEST) Let r be a relation over Rand Y S; schema(R). Then NESTy(r) is a
relation over S, with schema(S) = (schema(R) - Y) U {(Y)*}, which is defined by

NESTy(r) = (t I 3w E r such that t[schema(R) - Y] = w[schema(R) - Y] and

t[(Y)*] = (u[Y] I u E rand u[schema(R) - Y] = t[schema(R) - Y]}} .

•
We next define UNNEST, which transforms a nested relation into a "flatter" nested relation.

Definition 10.4 (UNNEST) Let r be a relation over Rand (Y)* E schema(R). Then
UNNEST(y)*(r) is a relation over S, with schema(S) = (schema(R) - {(Y)*}) U Y, which is
defined by

UNNEST(y)*(r) = {t 13w E rsuch that t[schema(R) - {(Y)*}] = wlschema(R) - {(Y)*}]

and tlY] E wl(Y)*]}. •

Some examples of NEST and UNNEST were given in Subsection 1.7.4 in Chapter 1. Let r
be the nested relation shown in Table 10.1. The nested relation UNNEST(HOBBy)*(r) is shown
in Table 10.2 and the nested relation UNNEST(CHILD,AGE)*(r) is shown in Table 10.3. The flat
relation given by

UNNEST (HOBBY)* (UNNEST (CHILD.AGE)* (r» = UNNEST (CHILD.AGE)* (UNNEST (HOBBY)* (r» ,

is shown in Table 10.4.

The definition of A now follows.

Definition 10.5 (Empty) Let R be a relation schema. Then ARO is a nested relation over a
relation schema R', with schema(R') = {(schema(R»*}, containing a single tuple t satisfying
tl (schema(R»*] = 0. (Note that the only parameter of the A operator is a relation schema.)

•

10.1. Nested Relational Databases

Table 10.2 The nested relation UNNEST (HOBBY)' {r}

I PNAME I HOBBY II (CHILD I AGE)* II
Carl chess
Carl checkers
Carl bridge
Miriam photography Maria 6
Miriam reading Maria 6

Table 10.3 The nested relation UNNEST (CHILD. AGE)' (r)

I PNAME II (HOBBY)* II CHILD I AGE I
Jack Jill 8
Jack Jacob 10
Jack John 12
Miriam photography Maria 6

reading

Table 10.4 The flat relation emanating from r

PNAME HOBBY CHILD AGE
Miriam photography Maria 6
Miriam reading Maria 6

519

We can create a tuple for Jack over a schema having the attributes, PNAME and (HOBBY)*,
with an empty set component for (HOBBY)* as follows. Let R be a relation schema with
schema(R) = {HOBBY}. Then the nested relation {<Jack>} XARO is shown in Table 10.5.

Table 10.5 A nested relation with a tuple having no hobbies

PNAME II (HOBBY)* II
I Jack II II

We will refer to the flat relational algebra as the basic set of relational operators, that is,
union, difference, projection, selection, natural join and renaming. Let us assume that apart
from NEST, UNNEST and A the nested relational algebra includes only the operators of the
flat relational algebra.

In [PV88] the following question was posed and answered with respect to the expressive
power of the nested relational algebra: are nested relational algebra queries, whose operands
are flat relation schemas and such that the schema of answers to such queries is also flat, more
expressive than queries expressed in the flat relation algebra?

The following theorem proved in [PV88] shows that the answer to the above question is
negative. Thus as long as the input and output to nested relational algebra queries is flat,
then the expressive power of the nested relational algebra is equivalent to that of the flat
relational algebra. So the power of the nested relational algebra lies in its ability to represent
and manipulate nonflat data rather than in its ability to pose additional queries that cannot
be expressed in the flat relational algebra.

Theorem 10.1 Let d be a flat database, Q be a nested relational algebra query and Q(d) be the
answer to Q such that Q(d) returns a flat relation. Then there exists a flat relational algebra
query q, such that Q(d) = q(d). 0

520 Chapter 10. Extensions to the Relational Data Model and Recent Directions

We now discuss some of the fundamental properties of the NEST and UNNEST operators.
Readers can convince themselves that the UNNEST operator is commutative, i.e.

UNNEST (X)* (UNNEST (Y)* (r» = UNNEST (Y)* (UNNEST (X)* (r)),

where r is a nested relation over Rand (X)* and (Y)* are relation-valued attributes in
schema(R). Therefore, the nested relation r has a unique flat relation emanating from it, which
can be obtained by a sequence of UN NEST operations. Due to the commutativity of UN NEST
all such sequences of UN NEST operations result in the same flat relation [TF86, VF88).

The pseudo-code of an algorithm, designated UNNEST*, which given the input nested
relation rover R returns the flat relation emanating from r, is presented as the following
algorithm.

Algorithm 10.1 (UNNEST*(r»
1. begin
2. Rel:= r;
3. Sch:= R;
4. while there exists a relation-valued attribute in schema(Sch) do
5. choose any relation-valued attribute (Y)* E schema(Sch);
6. Rel:= UNNEST(y)*(Rel);
7. schema(Sch) := (schema(Sch) - {(Y)*}) U Y;
8. end while
9. return Rel over Sch;
10. end.

We now demonstrate that the NEST operator is not commutative. Let s over S be the
flat relation shown in Table 10.6, where schema(S) = {A, B, q. Then the nested relation
NESTB(NESTc(s» is shown in Table 10.7 and the distinct nested relation NESTc(NESTB(S»
is shown in Table 10.8. The following proposition characterises the situation when two NEST
operations commute [JS82, FV84b, TF86, VF88).

Proposition 10.2 Let r be a relation over R, with X and Y being disjoint sets of attributes in
schema(R) and Z = schema(R) - XY. Then NESTy(NESTx(r» = NESTx(NESTy(r» if and
only iffor each distinct pair oftuples, t) and t2 in NESTy(NESTx(r» or in NESTx(NESTy(r»,
whenever tdZ) = t2[Z), then td(X)*) n t2[(X)*) = 0 and td(Y)*) n t2[(Y)*) = 0. 0

Table 10.6 The flat relation s

A B C
0 0 0
0 0 1
0 1 0

Table 10.7 The nested relation
NESTB(NESTds))

I A II (B)* II (C)* II

I : II 0 II ! II

Table 10.8 The nested relation
NESTdNESTB(S))

I A II (B)* II (C)* II

I : II : II 0 II

Finally, as was demonstrated in Table 1.6 of Subsection 1.7.4 in Chapter I, an UNNEST
operation cannot always be reversed with a NEST operation and thus we may lose information
when unnesting. Recall that this problem was called the INF normalisability problem and it
can be solved by introducing the keying operator. We give two additional examples of this fact.

10.1. Nested Relational Databases 521

Let rover R be the nested relation shown in Table 10.9, where schema(R) = {A, (B)*) . Then
the distinct nested relation NESTB(UNNEST(B)*(r», say r', is shown in Table 10.10. Also, let
r be the nested relation shown in Table 10.1. Then obviously both UNNEST(HOBBy)*(r) and
UNNEST(CHILD,AGE)*(r) lose information, since the tuples with empty components over the
relation-valued attributes, (HOOBY)* and (CHILD, AGE)*, respectively, are not represented
in the unnested relation.

Table 10.9 The nested relation r Table 10.10 The nested relation r'

A II (B)* II I A 1\ (B)* II

I II
o

II I II 0 II

We assume that the concept of a functional dependency (FD) remains the same as defined in
Subsection 3.6.1 of Chapter 3, where relations now may be flat or nested. As mentioned above
the only difference between nested and flat relations with respect to their definitions is that
equality of relation-valued attribute values is taken to be equality between relations rather
than between atomic values; this difference does not affect the definitions. The following
proposition characterises the situation when an UNNEST operation does not result in any
loss of information [TF86, VF88].

Proposition 10.3 Let r be a nested relation over R, with (Y)* E schema(R). Then

r = NESTy(UNNEST(y)*(r»,

if and only if

1) "It E r, t[(Y)*] oj:. 0; and

2) r satisfies the FD X -+ (Y)*, where X = schema(R) - {(Y)*). o

An important subclass of nested relations is now defined, wherein the atomic attributes of
the schema are superkey values at each level of the nested relation.

Defmition 10.6 (Hierarchical relation) Let r be a relation over R. Then r is a hierarchical
relation if and only if

1) r satisfies X -+ schema(R), where X is the set of atomic attributes in schema(R); and

2) for each tuple t E r and for all relation-valued attributes (Y)* E schema(R), t[(Y)"'] is a
hierarchical relation over a relation schema whose attribute set is Y. •

The reader can verify that the nested relation shown in Table 10.1 is a hierarchical relation.
Another example of a hierarchical relation, with two levels of nesting, is shown in Table 10.11.

Hierarchical relations satisfy both the desirable properties formalised in Propositions 10.2
and 10.3, namely the NEST operator is commutative, and the UNNESToperator does not cause
any loss of information, provided that all the relation-valued attribute values are nonempty.
Hierarchical relations can also be viewed as a normal form for nested relations, in the sense

522 Chapter 10. Extensions to the Relational Data Model and Recent Directions

Table 10.11 A hierarchical relation

I A III (B II (C)*)* III
1 2 4

5
3 5

2 2 4
6

3 4
4

that superkey dependencies are explicitly represented in the nested relation. (More details on
the design of nested relational databases can be found in [OY87b, AFS89, MNE96j.)

Defmition 10.7 (The tree induced by schema(R» The tree induced by R, denoted by
TREE(schema(R», is defined recursively as follows:

1) If schema(R) contains no relation-valued attributes then TREE(schema(R» consists of
a single node labelled by schema(R).

2) If X is the set of atomic attributes in schema(R) and {(Yd*, .. . , (Yd*} = schema(R)
- X is the set of relation-valued attributes in schema(R), then the root node, say n, of
TREE(schema(R» is labelled by X, and n has one child node ni for each (Yi)* such that
ni is the root node ofTREE(Yi), 1 :::: i:::: k.

We assume that the labels of nodes in TREE(schema(R» are pairwise disjoint; this
assumption corresponds to the URSA (see Definition 3.6 in Section 3.1 of Chapter 3). The path
set of a relation schema R is a family of sets oflabels one for each leaf node in TREE(schema(R»;
each such set consists of the union ofthe labels of nodes in one of the paths ofTREE(schema(R»
from a leaf node to the root node. •

The next theorem characterises hierarchical relations over R in terms of the flat relations
satisfying the join dependency induced by the path set ofTREE(schema(R». The proof of the
theorem can be found in [OY87b, Lev92j.

Theorem 10.4 The following two statements are equivalent:

1) r is a hierarchical relation over R, such that the empty set does not occur as a value in r
over a relation-valued attribute.

2) UNNEST*(r) satisfies the acyclic JD txl[Pj, where P is the path set ofR. o

The theorem that follows gives some interesting interactions between nested relations and
FDs. (More details on interactions between data dependencies and nested relations can be
found in [FSTV85j.)

Theorem 10.5 Let r be a relation over R and X, Y, Z s; schema{R). The following statements
are true:

1) NESTz{r) satisfies the FD X -+ (Z)*, where X = schema(R) - Z.

10.1. Nested Relational Databases 523

2) Assuming that XY n Z = 0, r satisfies the FD X --+ Y if and only ifNESTz(r) satisfies the
FD X --+ Y.

3) Assuming that X n Z = 0, r satisfies the FD X --+ Z if and only if

(i) NESTz(r) satisfies the FD X --+ (Z)*; and

(ii) Vt E NESTz(r), t[(Z)*] is a singleton. o

One of the reasons the UNNEST operator may cause loss of information is that a nested
relation may have empty attribute values over relation-valued attributes. The empty set allows
us to model information in situations such as a person having no hobbies or no children. These
situations can also be modelled in flat relations provided we extend attribute domains with
the following distinguished null value. Let dne be a distinguished null value denoting the fact
that a "value does not exist"; see Chapter 5 for more details on the semantics of null values.
Using dne as a HOOBY or CHILD attribute value we can model the fact that a person does
not have any hobbies or any children, respectively. Therefore, we can adopt the convention
that when we unnest an empty relation-valued attribute value over (X)*, where X is a set of
atomic attributes, we obtain a tuple over X whose A-value is dne for each A in X. Conversely,
when nesting dne we obtain 0. As an example of this convention the flat relation, shown in
Table 10.12, results from unnesting the nested relation shown in Table 10.1. If we modify
NEST and UNNEST to adopt this convention then there will be no loss of information during
unnest operations due to empty relation-valued attribute values.

Table 10.12 A flat relation with the dne null value
PNAME HOBBY CHILD AGE
Jack dne Jill 8
Jack dne Jacob 10
Jack dne John 12
Carl chess dne dne
Carl checkers dne dne
Carl bridge dne dne
Miriam photography Maria 6
Miriam reading Maria 6

Nested relations can be viewed in the wider context of complex object types. It is assumed
that a collection of atomic object types are available, where the values of each such atomic
type are taken from an atomic domain. An object type can now be defined as a tree whose
leaves represent atomic object types, and whose internal nodes represent the application
of either the tuple construct, which aggregates its children object types into a tuple, or the
set construct, which groups its single child object type into a set. Thus a nested relation
type is a special case of a complex object type, where the root of the tree represents a tuple
construct, each child node of a node representing a tuple construct either represents a set
construct or an atomic object type, and the single child node of a node representing a set
construct represents a tuple construct. One aspect of the study of complex object types is
that of query and update languages which generalise the nested relational algebra. Another
important aspect of the study of complex objects is that of comparing the information capacity

524 Chapter 10. Extensions to the Relational Data Model and Recent Directions

of complex object types that may have been obtained as a result of restructuring another
complex object type. Intuitively, one object type is absolutely dominated by another object
type if for all sufficiently large finite subsets S ~ 1) we can construct at least as many objects
of the second type as of the first type, where S is a superset of the active domains of all the
constructed objects; the active domain of an object is the set of all atomic values used to
construct that object. Moreover, one object type is query dominated by another object type
if any query over a collection of objects of the first object type can be translated into a query
over a collection of objects of the second object type. In [Hu186] it was shown that query
dominance implies absolute dominance and thus query dominance is a stronger criterion of
information capacity, but the converse implication does not always hold. The information
capacity of two object types is absolutely equivalent (query equivalent) if both object types
absolutely dominate (query dominate) each other. Restructuring operations which preserve
absolute equivalence were investigated in [HY84, AH88b] and it was shown that two complex
object types are absolutely equivalent if and only if they can both be reduced to a normal
form complex object type, which is based on some natural restructuring operators (see also
[HuI86]).

Recently, itwas shown in [VL97] that two nested relation schemas over hierarchical relations
are absolutely equivalent and, in this case are also query equivalent, if and only if the
sets of MVDs induced by the acyclic JDs of their respective path sets are equivalent. An
additional characterisation of absolute equivalence for two nested relation schemas Rl and
R2 over hierarchical relations, shown in [VL97], is now briefly described. Let compress be a
restructuring operator which coalesces two nodes nl and n2, when n2 is the only child of nl>
in TREE(schema(Rl}} or TREE(schema(R2}}. Assume that we apply compress repetitively to
the said trees. Then the information capacities of the object types represented by these two
trees are absolutely equivalent if and only if, after the aforesaid repetitive application of the
compress operator, the resulting trees are isomorphic whenever the corresponding unions
of the labels of the nodes in theses two trees, representing the underlying attributes of their
nested relation schemas, are identical.

The study of complex object types also lays the foundations for integrating persistent
database types into programming languages which allow application programmers to
explicitly define and manipulate complex object types. A survey of complex object data
types was presented in [Hu187] and a collection of papers on various issues concerning nested
relations and complex objects can be found in [AFS89].

10.2 Object-Oriented Databases

We have already introduced object-oriented databases in Subsection 1.7.6 of Chapter 1. Our
point of view there was that the structural part of an object-oriented data model can be the
same as that of the network data model. Here we take a different view, namely that relational
databases and object-oriented databases can be unified by extending the relational model.
One possible such extension is to let the data structures of the object-oriented data model
to be complex objects or nested relations. This is consistent with the view that the structure
of objects should not be restricted in any way. Taking this view the attributes of objects are
defined recursively using simple and complex object constructors. Simple object constructors
define attributes of type integer, real, string or Boolean, and complex object constructors define

10.2. Object-Oriented Databases 525

attributes of type tuple, set, bag, list or array of objects. In the nested relational model the only
complex object constructor is that of a set consisting of tuples of objects, which is sufficient
for most applications.

Herein we take a simpler view by extending (flat) relations with explicit object identity. Let
us assume that in addition to the set of attributesU there is a countably infinite set of attributes
I, which is disjoint from U. We call the attributes in I object attributes to distinguish them
from attributes in U. The domain of all object attributes in I is a countably infinite set of
object identifiers, 0, which for simplicity is assumed to be the set of natural numbers w. We
next define how to add explicit object identifiers to a relation.

Defmition 10.8 (The object identification operator) The object identification, id(s, A), of a
relation s over S with respect to the object attribute A is a relation over R, with schema(R) =
schema(S) U (A} such that

1) each tuple in 5 is extended to be a tuple over R,

2) id(s, A) has the same cardinality as 5, and

3) id(s, A) 1= A ~ schema(R), i.e. A is a simple key for R.

The attribute A is called an object identifying attribute ofR. A relation over a relation schema
having one or more object identifying attributes is called an object relation. A collection of
object relations is called an object database. •

We observe that a relation schema can have more than one object identifying attribute,
although in practice one such attribute is sufficient for the purpose of implementing object
identity. We assume that when a tuple is added to an object relation rover R, with object
identifying attribute A, then an appropriate A-value for this tuple such that A is a simple
key for R, i.e. such that r 1= A ~ schema(R), is created by the DBMS. Furthermore, once an
object identifier is created it cannot be modified. We also note that, given an object relation r
over R, schema(R) can have object attributes which are not object identifying attributes. Such
attributes are object identifying attributes of other relation schemas and serve the purpose of
referencing tuples (or objects) in the object relations over those relation schemas.

As an example {r[, rz} is an object database where the object relation r[over EMP is shown
in Table 10.13 and the object relation rz over DEPT is shown in Table 10.14. In this example
EID is the object identifying attribute of EMP and DID is the object identifying attribute of
DEPT. In addition, DID in EMP is an object attribute referencing DID in DEPT and MID in
DEPT is an object attribute referencing EID in EMP. We observe that once a relation schema
has an object identifying attribute it can be declared as the primary key of the schema.

Table 10.13 The object relation r[over EMP Table 10.14 The object relation r2 over DEPT
EID ENAME DID DID DNAME MID

1 Iris 6 6 Computing 2
2 Reuven 6 7 Maths 4
3 Brian 7 8 Economics 5
4 Naomi 7
5 Naomi 8

526 Chapter 10. Extensions to the Relational Data Model and Recent Directions

A desirable property of object identifiers is that they allow sharing. For example, in the
object relation rl, shown in Table 10.13, the first and the second tuples and the third and fourth
tuples share the same department by referencing the same DID. This allows tuples (or objects)
to be referenced in a straightforward manner. In addition, any update to a referenced tuple
does not have any effect on the reference, since as we noted earlier object identifiers cannot be
modified. Sharing through references also highlights the importance of referential integrity
constraints.

We now extend Armstrong's axiom system for FDs with an additional inference rule to take
object identifying attributes into account.

Defmition 10.9 (Identity inference rule for FDs) Let F be a set of FDs over schema R. The
identity inference rule for FDs is given by

FD8 Identity: if A is an object identifying attribute, then F f-- A -+ schema(R). •
We leave the proof of the next theorem to the reader; it is similar to the proof of Theorem 3.21

in Subsection 3.6.1 of Chapter 3 (see also [LL95a)).

Theorem 10.6 Armstrong's axiom system augmented with FD8 is a sound and complete
axiom system for FDs being satisfied in object relations. 0

It is our view that it is straightforward to cater for object identifying attributes within
existing relational DBMSs. In [Van93a] it was shown that nested relations can be represented
using object relations. It was also shown therein that the relational algebra augmented with
object identification operating on object relations can simulate the nested relational algebra
operating on nested relations. Therefore, object relations also cater for complex objects.

We have already briefly discussed the notion of an inheritance lattice in Subsection 1.7.6 of
Chapter 1 (see the inheritance lattice depicted in Figure 1.8). For simplicity we assume that
a class type specifies only an object type, i.e. we ignore any methods associated with the class
type. Thus in our context an object type is simply a relation schema, which may contain one
or more object attributes. We now formalise the notion of an inheritance lattice.

Defmition 10.10 (Inheritance lattice) We define a partial order in the set of relation schemas,
denoted by ~, as follows:

RI ~ R2 if and only if schema(RI) ;2 schema(R2),

where RI and R2 are relation schemas. When RI ~ R2 then we say that RI is a subclass of R2,
or alternatively, that R2 is a superclass of RI .

The inheritance lattice is a finite set of relation schemas, denoted by R, partially ordered
by ~ and having a bottom element (i.e. a least element), which we denote by ..1.. •

It follows that the inheritance lattice is a lattice in the sense of the formal definition of
a lattice given in Subsection 1.9.2 of Chapter 1. We denote the top element of R (i.e. its
greatest element) by T; normally T is taken to be the schema with the empty set of attributes.
Moreover, the least upper bound (or the join) of relation schemas RI, R2 E R, denoted by

10.2. Object·Oriented Databases 527

T

PERSON

PHD_STUDENT

~

Fig 10.1 An inheritance lattice

RJ UR2, is a relation schema R3 such that schema(R3) = schema(RJ) n schema(R2); the relation
schema R3 = RJ U R2 is called a generator of RJ and R2'

Example 10.1 Recall the inheritance lattice depicted in Figure 1.8, with n = {OBJECT, PER·
SON, STUDENT, EMPLOYEE, RA}. Assume that schema(OBJECT) = 0, schema(PERSON) =
{NAME, ADDRESS, AGE}, schema(STUDENT) = {NAME, ADDRESS, AGE, DEPARTMENT},
schema(EMPLOYEE) = {NAME, ADDRESS, AGE, SALARY} and schema(RA) = {NAME,
ADDRESS, AGE, DEPARTMENT, COURSE, SALARY}. It follows that RA I:::; EMPLOYEE,
RA I:::; STUDENT, STUDENT I:::; PERSON, EMPLOYEE I:::; PERSON and PERSON I:::; OBJECT.
Furthermore, STUDENT U EMPLOYEE = PERSON, RA =.1 and OBJECT = T. •

We now give an example of inserting a relation schema into an inheritance lattice.

Example 10.2 Let n = {T, PERSON, PHD.STUDENT, .l} be an inheritance lattice,
where schema(PHD.STUDENT) = schema(STUDENT) U {SUBJECT}. Additionally, let
BSLSTUDENT be a relation schema, with schema(BSLSTUDENT) = schema(STUDENT)
U {MAJOR}.

The inheritance lattice n is shown in Figure 10.1. The result of inserting BSLSTUDENT
into n is shown in Figure 10.2. We note that inserting BSC.STUDENT into the inheritance
lattice triggers the additional insertion of STUDENT into the lattice, since STUDENT =
PHD.STUDENT U BSC.STUDENT. •

We now give an algorithm, designated INSERT(n, R), for inserting a relation schema R into
an inheritance lattice n, which was presented in [MS89b]. Intuitively, whenever a relation

528 Chapter 10. Extensions to the Relational Data Model and Recent Directions

Fig 10.2 Inserting BSCSTUDENT into the inheritance lattice ofFigure 10.1

schema, say R, is to be inserted into the lattice R and the least upper bound ofR with another
relation schema in the lattice, say S, is not already in the lattice, then a generator R U S of R
and S is also inserted into the lattice. More efficient implementations ofINSERT(R, R) than
Algorithm 10.2 are considered in [MS89b].

Algorithm 10.2 (INSERT(R, R))
1. begin
2. R := R U {R}j
3. COMP:=0j
4. for each S E R do
5. if R u S 1. R then
6. COMP := COMP U {S}j
7. end if
8. end for
9. if COMP #- 0 then
10. for each S E COMP do
11. T:= Ru Sj
12. INSERT(R, T);
13. end for
14. end if
15. return Rj
16. end.

There are several important data modelling issues that we have not addressed such as the
semantics of types and classes, view maintenance, schema evolution, concurrency control,
object-oriented database design and object-oriented database programming languages.

10.2. Object-Oriented Databases 529

Several books have already been written on object-oriented databases [Kim90, ZM90,
GKP92, Kh093, KM94) and their number is growing. Moreover, a substantial part of several
books is devoted to object-orientation in databases; see [Kim95a, Part IA), [KL89b, Part
3) and [DLR95). We refer the reader who is interested in furthering their knowledge on
object-oriented data models and concepts to the papers [ABD+89, Bee90, LP9l, Ban92,
Van93a). Furthermore, articles that are concerned with extending the relational model to
cater for object-orientation can be found in [SS90, Van93a, Kim95b). An interesting proposal
to extend values of relations to be queries, which allows modelling of complex objects, is
suggested in [SAH87).

A recent book [SM96) specifically explores the marriage of relational databases with object
technology resulting in object-relational database systems. An object-relational DBMS can
be defined as one which supports SQL3 [DD93, MeI96); SQL3 is discussed below. Since the
SQL3 standard is still evolving, four fundamental characteristics of object-relational DBMSs
are identified in [SM96j; they are: (i) the ability to add to the database system user-defined
data types and functions operating on these types (this can be viewed as an abstract data type
facility), (ii) the ability to construct complex object types via general purpose type constructors,
(iii) the ability to define supertypes and subtypes together with the support of inheritance from
supertype to subtype, and (iv) support for active database rules or alternatively triggers (see
Section lOA).

A recent attempt is to try and merge together the concepts of object-oriented and deductive
databases in order to gain the best of both worlds [AK89, KL89a, KW89j. This approach has
been encouraged by the formation of a biennial international conference devoted solely to
deductive and object-oriented databases.

An interesting comparison between object-oriented and deductive databases can be found in
[U1l9lj. Ullman essentially argues that deductive database systems will eventually dominate,
due to their declarativeness and their upwards compatibility with relational database systems.
As we have shown in this section, it is possible to build an object-oriented database system as
an extension of a relational database system. Furthermore, as was shown in [AK89, KL89a,
KW89), it is possible to give logical foundations to deductive query languages that incorporate
object-oriented concepts such as object identity.

We next present some salient features of the support for object-orientation in the emerging
SQL3 standard [Ku193, Mat96j . SQL3 has a mechanism that allows database users and
application programmers to extend the type system of the DBMS with User-Defined-Types
(UDTs) and User-De fined-Functions (UDFs). We introduce this facility via some examples.

An example of creating a UDT ADDRESS is given by the SQL3 statement:

CREATE TYPE ADDRESS
(number INTEGER,
street CHAR(30),
city CHAR(20),
postcode CHAR(7));

An example of creating a UDT PERSON is given by the SQL3 statement:

530 Chapter 10. Extensions to the Relational Data Model and Recent Directions

CREATE TYPE PERSON
(name CHAR(30),
home ADDRESS,
birthda te DATE,
text VARCHAR(512),
picture BLOB(lM»;

We note that DATE and BLOB (Binary Large Object) are built-in data types and that the
UDT PERSON is a complex object type, since ADDRESS is a UDT.

An example of creating a UDF age, which returns the age of a person, is given by the SQL3
statement:

CREATE FUNCTION age (p PERSON) RETURNS INTEGER
RETURN YEAR(CURRENLDATE) - YEAR(p.birthdate);

END FUNCTION

We have assumed the existence of two built-in functions: CURRENT _DATE, which returns
today's date, and YEAR(d), which returns the year, given a date d.

An example of creating an EMPLOYEE UDT as a subtype of PERSON is given by the SQL3
statement:

CREATE TYPE EMPLOYEE UNDER PERSON
(salary INTEGER,
project CHAR(3),
location ADDRESS);

As a subtype of PERSON, the UDT EMPLOYEE inherits all the attributes and functions
which have been defined over PERSON.

The following SQL3 statements define tables (i.e. relations) over PERSON and EMPLOYEE:

CREATE TABLE PEOPLE OF PERSON;
CREATE TABLE EMPLOYEES OF EMPLOYEE;

Each row in the PEOPLE table is an instance of the UDT PERSON, and correspondingly
each row in the EMPLOYEES table is an instance ofUDT EMPLOYEE. Moreover, each row in
such an instance has a unique object identifier that is assigned to it when the row is created.

We also mention that SQL3 has extensive support for active rules, also referred to as triggers,
in order to improve the maintenance of database integrity. Apart from the object-relational
extensions in SQL3, procedural language constructs have also been added to SQL, thus making
SQL3 a computationally complete database language. Hence using these procedural constructs
UDFs can realise any computable database query. In addition, SQL3 supports recursive
execution of SQL select statements and thus transitive closure queries can also be formulated
naturally in SQL3. It is important to note that SQL3 has been designed in such a way that it is
upwards compatible with the current SQL2 standard [DD93J.

10.2. Object-Oriented Databases 531

We close this section with a brief discussion of the Object Database Management Group
(ODMG) proposal for an Object-oriented Database Management System (ODBMS) standard
[Cat96, CB97j. The main goal of the standard is to provide a means of source code portability
for database application programs through the integration of object-oriented database
capabilities with object-oriented programming language capabilities. This is achieved by
the ODBMS making database objects appear as programming language objects in existing
object-oriented programming languages such as C++, Java and Smalltalk. The proposal is
realised via an Object Definition Language (ODL) and an Object Query Language (OQL).
Moreover, the proposal defines the standard binding of both C++, Java and Smalltalk to the
ODBMS, showing how ODL and OQL can be invoked from within an application program.
OQL has been designed in such a way that its syntax is compatible with that of the SQL standard
in the hope that SQL3 and OQL will converge in the future. We next give two examples of data
definitions in ODL.

An example of creating a type PERSON is given by the ODL statement:

class PERSON
(extent persons
key name) {
attribute string name;
attribute set<string> nick-names;
attribute struct Address

{string street, string city, string postcode} address;
attribute enum sex {male, female};
relationship PERSON married_to;
relationship set<CHILD> children

inverse CHILD:: parent; };

The keyword class indicates that a type definition, i.e. schema definition, follows. The class
specifies the characteristics of the objects of the type that are visible to users of the objects.
The keyword extent declares a name given to the current collection of objects of the type in
the database. The ODMG object model distinguishes between literals which are constants
that do not have object identifiers such as the atomic literals string and integer, and objects
having unique identifiers which are retained throughout their lifetime. The keyword key is
followed by a list of candidate keys for the type, whose scope is the extent of the type. The
keywords attribute and relationship allow users to model the state of objects in terms of the
properties they possess. An attribute is defined over a single type while a relationship is defined
between two types. Attribute types are literals, namely atomic literals, collection literals such
as set < string>, structured literals having a r~cord format such as Address or an enumeration
of literals such as sex; ODL also supports the built-in structured literals date, interval, time
and timestamp. In a relationship the keyword set indicates that a set of objects are associated
with any object of the defined type. For example, in the relationship children a person may
have zero or more children, and in the relationship married_to a person can be married to at
most one other person. The keyword inverse allows the user to traverse a relationship in the
opposite direction; for example, parent is the inverse relationship of children. Operations can
also be defined as part of the class; such operations specify the behaviour of objects.

An example of creating a type EMPLOYEE as a subtype of PERSON is given by the ODL
statement:

532 Chapter 10. Extensions to the Relational Data Model and Recent Directions

class EMPLOYEE extends PERSON
(extent employees) {
attribute integer salary;
attribute string location;
relationship DEPARTMENT worksjn

inverse DEPARTMENT :: employs;
relationship set<PROJECT> involvedjn

inverse PROJECT :: has_staff; };

As a subtype of PERSON, the type EMPLOYEE inherits all the attributes and relationships
which have been defined for PERSON.

Finally, we give some examples of queries in OQL. The OQL query

SELECT struct(name: p.name, address: p.address)
FROM persons p
WHERE p.sex = 'male' AND COUNT(p.children) > 1

retrieves into a structure the names and addresses of persons who are male and have more
than one child. We note the use of the aggregate function COUNT.

The OQL query

SELECT P .married_to.address. postcode
FROM persons p
WHERE p.address.city = 'London'

retrieves the postcodes of spouses of people who live in London. An expression using the
dot notation of the form, p.married_to.address.postcode, is called a path expression. Path
expressions provide us with a means to navigate from an object to the data item we are
interested in. In this example the path expression, p.married_to.address.postcode, results in
the postcode of the address of the person married to p. We note that in the relational model
such a query would involve a join of persons with itself assuming the relationship married_to
was modelled by a foreign key attribute in PERSON.

The OQL query

SELECT p.name
FROM employees.involvedjn p
WHERE p.haLstaff.worksjn.name = 'Computer Science'

retrieves the names of projects of employees working in the Computer Science department,
assuming that PROJECT and DEPARTMENT both have an attribute called name.

10.3. Graph-Based Databases

$AIRLINES $PASSENGERS

$EA $BA $PASS1 $PASS2 $PASS3

$DA $AI $PASS4 $PASSS $PASS6

$FLlES

$PASS1 ~
$BA

$PASS4 ~

$PASS2 ~EA

$PASS3 ~

$PASSS ~$DA

$PASS6 ~$AI

Fig 10.3 Part of a passengers and airlines hypernode database

10.3 Graph-Based Databases

533

One of the important measures of performance of a database system is user productivity. With
the growing demand for complex object databases, as discussed in Sections 10.1 and 10.2, there
is a need for database user interfaces which are easier to use and which represent the data in a
more intuitive way. This need is accentuated in view of the availability of more sophisticated
query languages for complex objects and the ability to express recursion in query languages
as in Datalog. One way to address the problem is to base the data model on graph theory
in the hope that its visual representation will closely match its intuitive semantics. Such a
graph-based data model is built upon the traditional network and hierarchical data models
which were presented in Subsections 1.7.2 and 1.7.3 of Chapter 1. Thus in addition to having
a natural user interface a graph-based data model can address the problem of representing
complex objects.

Here we give a summary of the hypernode data model, which supports object identity and
arbitrarily complex objects [LPB+93, PL94, LL95bl. Rather than having a single database
digraph, a hypernode database consists of a finite set of interconnected digraphs, called
hypernodes; see Section 2.1 of Chapter 2 for the definition of a digraph. More specifically, a
hypernode is an equation of the form G = (N, E) such that (N, E) is its digraph and G is its
unique defining label.

In Figure 10.3 we illustrate part of a simple hypernode database, which models a simple
airline reservation system. The hypernode, whose defining label is $AIRLINES, contains the
defining labels of other hypernodes which describe the various airlines, and the hypernode,
whose defining label is $PASSENGERS, contains the defining labels of other hypernodes which
describe the booking information pertaining to passengers. The hypernode with defining label
$FLIES represents a relationship telling us with which airline a particular passenger is flying.
We note that labels are denoted by strings beginning with "$".

534 Chapter 10. Extensions to the Relational Data Model and Recent Directions

$PASSl $PASS2

NAME ~ Iris NAME ~ Hanna

DEPENDENT ~ $PASS2
~$PASS3

FLIGHT_NO ~ "BA212"

SEAT_NO " 12d

$PASS3

NAME ----------- Mary

DEPENDENT ---" null

FLIGHT_NO ~ "EA121"

SEACNO " 21a

DEPENDENT ~ $PASS4
~$PASS5

FLlGHCNO ~ "EA121"

SEAT_NO " 22b

$PASS4

NAME~Sara

~$PASS5
DEPENDENT $PASS6

$PASSl

FLIGHT_NO ~ "BA212"

SEAT_NO " 12c

Fig 10.4 Some passengers in the hypernode database

In Figure 10.4 we show the details of some of the passenger hypernodes. Given an arc
(u. v) in such a hypernode, we call u the anchor of the arc and v its destination. The anchor,
u, denotes an attribute name and the destination, v, denotes an atomic value (which is an
attribute value). We note that attribute names are denoted by strings of uppercase letters
possibly containing the underscore character, and atomic values are denoted either by strings
containing at least one lowercase letter, or by strings surrounded by double quotes.

We observe that the attribute name DEPENDENT in a passenger hypernode is used to
reference other passengers who in some unspecified way depend on this passenger; for
example, $PASS2 and $PASS3 may depend on $PASS1 to drive them to the airport. These
references between hypernodes can be viewed conceptually as a part-of relationship or
alternatively as encapsulating the data represented in the referenced hypernodes. We use
the distinguished atomic value null to indicate that a "value exists but is unknown". We note
that we can also model incomplete information of the type "value does not exist" by isolated
attribute names. For example, if we delete the arc (DEPENDENT, null) and the node null from
the digraph of the hypernode, whose defining label is $PASS3, our interpretation changes
from "$PASS3 has a DEPENDENT which is unknown" to "there does not exist a DEPENDENT
of$PASS3". This interpretation of isolated attribute names corresponds to the Closed World
Assumption (CW A), which was discussed in Section 5.2 of Chapter 5.

We assume the following two disjoint countable domains of constants are available. Firstly
we have a domain of Labels L whose elements are denoted by strings beginning with a "$" (when
no ambiguity arises we also use the uppercase letter G to denote a label). Secondly we have
a domain of Primitive nodes P which is partitioned into two disjoint domains one of Atomic
Values, AV, and the other of Attribute Names (or simply attributes), AN. We denote atomic
values either by strings containing at least one lowercase letter, or by strings surrounded by
double quotes, and we denote attributes by strings of uppercase letters possibly containing
the underscore character. We also assume that the domain of atomic values A V contains a
distinguished value null meaning "value exists but is unknown".

10.3. Graph-Based Databases 535

Definition 10.11 (Hypernode) A hypernode is an equation of the form

G = (N, E),

where GEL is termed the defining label of the hypernode (or simply the label of the hypernode
when no ambiguity arises) and (N, E) is a digraph, termed the digraph of the hypernode (or
simply the digraph of G), such that N ~ (L UP). •

We use the following terminology for a digraph (N, E). An arc (u, v) E E is said to be incident
with each of its two nodes u and v. We also say that u is adjacent to v and that v is adjacent
from u. The in degree of a node u EN is the number of nodes adjacent to u and the outdegree of
u is the number of nodes adjacent from u. A node with no incident arcs is said to be isolated.

We impose the following three syntactic restrictions on the arcs of a hypernode, G = (N, E):

E1 the indegree of nodes u E (AN n N), i.e. of nodes that are attributes, is zero;

E2 the outdegree of nodes u E (A V n N), i.e. of nodes that are atomic values, is zero; and

E3 if (u, v) E E and u E (L n N), i.e. the anchor node of the arc is a label, then v E (L n N), i.e.
the destination node of the arc is also a label.

In order to explain the motivation behind the above restrictions we recall the ER model
described in Chapter 2, which asserts that the real world can be described by entities (or objects
which in our case are hypernodes), which are in turn represented by a set of attributes and
their values, and by relationships between entities.

We observe that an arc set of a digraph can be viewed as a (binary) relation on the nodes
which are incident on its arcs. Thus, the semantics of restriction El are that attributes cannot
be in the range of the relation induced by the arc set. Furthermore, an arc whose anchor is
an attribute represents an attribute-value pair (i.e. a property) whose destination node is its
value, the value being either an atomic value or a label. Thus, when an arc is incident with
an attribute this attribute must be the anchor of the arc. The semantics of restriction E2 are
that atomic values cannot be in the domain of the relation defined by the arc set. Thus, when
an arc is incident with an atomic value this value must be the destination of the arc. Finally,
the semantics of restriction E3 are that when a label (which is an anchor) is in the domain of
the relation defined by the arc set, then the destination node of an arc incident with the said
anchor is also a label. That is, this arc represents a relationship between two hypernodes, i.e.
between two objects. Thus, a relationship between two hypernodes can be represented by an
arc which is incident with their defining labels. We observe that conceptually this kind of
relationship can be viewed as a referential relationship.

It can easily be verified thatthe hypernodes shown in Figures 10.3 and 10.4 satisfy restrictions
El, E2 and E3. As was discussed above these hypernodes model part of a simple airline
reservation system detailing information about passengers and indicating with which airline
a particular passenger is flying. We note that each arc in the hypernode with the defining label
$FLIES in Figure 10.3 represents a referential relationship and that each arc in the passenger
hypernodes of Figure 10.4 represents an attribute-value pair.

Defmition 10.12 (Hypernode database) A hypernode database (or simply a database), say
HD, is a finite set ofhypernodes satisfying the following two conditions:

536 Chapter 10. Extensions to the Relational Data Model and Recent Directions

HI no two (distinct) hypernodes in HD have the same defining label; and

H2 for any label, say G, in the node set of a digraph of a hypernode in HD there exists a
hypernode in HD whose defining label is G. •

We note that condition HI above corresponds to the entity integrity requirement of the
relational model, since each hypernode can viewed as representing a real-world entity. In
object-oriented terminology labels are unique and serve as system-wide object identifiers,
assuming that all of the hypernodes known to the system are stored in a single database.
Similarly, condition H2 corresponds to the referential integrity requirement of the relational
model, since it requires that only existing entities be referenced. This implies that a relationship
between two hypernodes can also be represented in terms of a reference from one hypernode to
the other (rather than a reference via an arc between two labels in the digraph of a hypernode).
We observe that conceptually this kind of relationship can be viewed as a part-of relationship,
which provides the hypernode model with inherent support for data encapsulation. (See
Subsection 3.6.1 of Chapter 3 for the definitions of entity and referential integrity.)

It can easily be verified that the hypernodes shown in Figures 10.3 and lOA comprise a
portion of a hypernode database (if we add hypernodes for $PASS5, $P ASS6, $EA, $BA, $DA
and $AI, whose node sets do not include any new labels, we would then have a database
satisfying conditions HI and H2). We note that by condition HI each hypernode representing
one of the objects in the database has a unique label. Furthermore, the defining labels of the
passenger hypernodes are part-of the hypernode with the defining label $P ASSENGERS. Thus,
by condition H2 there must be one hypernode in the database for each passenger.

The Hypernode Accessibility Graph (HAG) of a hypernode G = (N, E) E HD (or simply
the HAG of G, whenever HD is understood from context) is the digraph telling us which
hypernodes in HD are part-of (or encapsulated in) the hypernode with the defining label G,
when considering part-of as a transitive relationship.

DefInition 10.l3 (Hypernode accessibility graph) The HAG of G, denoted by (NG, EG), is the
minimal digraph which is constructed from hypernodes in HD as follows:

1) G ENG, and G is a distinguished node called the root of (NG, EG), and

2) if G' E NG and G' = (N', E') E HD (such a hypernode must exist by condition H2), then
(L n N') ~ NG and Yu' E (L n N'), (G', u') E EG. •

The HAG of G can be viewed as describing a composite object [Kim90]. We note that, in
general, the HAG of G may be cyclic. In Figure 10.5 we illustrate the HAG of $PASSl, where
the hypernode with defining label $PASSI is shown in Figure IDA. We note that the HAG of
$PASSI is cyclic and thus $PASS4 is part-of$PASSl and $PASSI is part-of$PASS4, indicating
that $PASSI and $PASS4 depend on each other.

We note that we have assumed that hypernodes are untyped, i.e. we do not put any further
constraints on the structure of hypernodes. Thus, hypernodes are dynamic in the sense
that nodes and arcs in hypernodes can be updated subject only to all of the above syntactic
restrictions. In this approach we do not classify entities according to the entity set to which
they belong but rather consider entities to be classless (see [U1l9l]), i.e. belonging to a single
set of entities. In particular, all the available hypernodes are members of a single database.

10.3. Graph-Based Databases 537

$PASSl

rl
$PASS2 $PASS3

(1
$PASS4 $PASS5

(~
$PASS6

Fig10.5 TheHAGofPASS1

We now briefly illustrate a procedural query and update language for the hypernode model,
called HyperNode Query Language (HNQL). For this purpose we assume a countable domain
of variables denoted by strings beginning with uppercase letters from the end of the alphabet
followed by a natural number; the domain of variables is disjoin t from the domains of labels
and primitive nodes. Variables in HNQL are untyped, i.e. their values range over the union
of the domains oflabels and primitive nodes. Although variables in HNQL are untyped there
is a provision for adding a type checking component to HNQL, whose semantics we now
briefly describe. The hypernode model can utilise a typing system based on the structural
similarity of graphs. Simply, types ofhypernode enforce the allowable structure ofhypernodes
to be instances of those types. For example, instances cannot contain types of nodes or
arcs not contained in their type definitions. More formally, we say that there must exist a
homomorphism from nodes in the instance to nodes in the type definition which maps each
node in the instance to a node in the type definition, and each arc in the instance to an arc
in the type definition, while preserving the adjacency of the nodes in the arcs of the instance.
Typing gives us a means of defining database schemas and of enforcing further constraints on
the structure and content ofhypernodes. A formal investigation of how to declare hypernode
types and how to type check hypernodes can be found in [PL94) . For the purpose of this
section it is sufficient to assume that if a type is associated with a hypernode in the database
then that hypernode must conform to its type.

We introduce the flavour ofHNQL via two simple examples but first give the meaning of
the relevant HNQL operators and predicates. We assume that HD is a hypernode database
and that all the operators we define are to be evaluated with respect to HD. We denote by
LABELS(HD) the set oflabels appearing in the hypernodes ofHD. We also assume that the
label $NULL fj. LABELS(HD) is reserved in order to return an error code when necessary.
Notationally, we will use strings beginning with the lowercase letter, v, to denote either a label
or a primitive node and strings beginning with the uppercase letter G to denote labels only.

The following five operators update hypernodes in HD:

1) inserLnode(G, v) returns G ifG = (N, E) E HD, and as a side effect v is inserted into N,
i.e. N := N U {v}; otherwise $NULL is returned.

538 Chapter 10. Extensions to the Relational Data Model and Recent Directions

2) delete_node(G, v) returns G ifG = (N, E) E HD and "Iv' EN there is no arc (v, v') E E or
(v', v) E E, and as a side effect v is deleted from N, i.e. N:= N - {v}; otherwise $NULL is
returned.

3) inserLarc(G, VI> V2) returns G ifG = (N, E) E HD and VI> V2 EN, and as a side effect (VI>

V2) is inserted into E, i.e. E := E U (VI, V2); otherwise $NULL is returned.

4) delete_arc(G, VI> V2) returns G if G = (N, E) E HD and (VI> V2) E E, and as a side effect
(VI> Vl) is deleted from E, i.e. E:= E - (VI> Vl); otherwise $NULL is returned.

5) rename_node(Gold, Gnew) returns Gnew if Gold E LABELS(HD) and Gnew ¢ LABELS(HD),
and as a side effect all occurrences of GOld in the hypernodes of HD are replaced with
Gnew; otherwise $NULL is returned.

The following two operators add or remove hypernodes from HD:

1) createO returns an arbitrary new label G such that G ¢ (LABELS(HD) U {$NULL}), and
as a side effect G = (0, 0) is added to HD, i.e. HD := HD U {G = (0, 0)}.

2) destroy(G) returns the label G if G = (N, E) E HD and for no hypernode G' = (N', E') E
HD is it true that G EN', and as a side effect G = (N, E) is removed from HD, i.e. HD:=
HD - {G = (N, E)}; otherwise $NULL is returned.

The following three predicates provide membership tests for a node, an arc or a defining
label in HD:

1) v E nodes(G) returns true if G = (N, E) E HD and v EN; otherwise false is returned.

2) (VI, Vl) E arcs(G) returns true ifG = (N, E) E HD and (VI, Vl) E E; otherwise false is
returned.

3) G E dbO returns true ifG = (N, E) E HD; otherwise false is returned.

We also allow the two equality tests: VI = Vl for nodes and (VI, V2) = (V3 , V 4) for arcs,
which return true or false as the case may be.

We define a simple condition to be either a membership test or an equality test. A condition is
now defined to be either a simple condition, the parenthesising of a condition used for grouping
purposes, the negation of a condition, say cond, denoted by !cond, or the conjunction of two
conditions, say cond l and cond1 , denoted by cond l &cond1•

The following three nondeterministic operators can be used to arbitrarily choose a node,
an arc or a defining label in HD:

1) any-Ilode(G) returns an arbitrary node V E N if G = (N, E) E HD and N =1= 0; otherwise
$NULL is returned.

2) any _arc(G) returns an arbitrary arc (VI , Vl) E E if G = (N, E) E HD and E =1= 0; otherwise
($NULL, $NULL) is returned.

3) anyJabelO returns an arbitrary label G such that G = (N, E) E HD, ifHD =1= 0; otherwise
$NULL is returned.

1003. Graph-Based Databases 539

We assume that all variables in HNQL have a current value, which is either a label or a
primitive node; these are always initialised to have the value $NULL. Thus, we extend our
earlier notation to allow strings beginning with the letters v or G to denote the current value
of a variable when appropriate. We now define an assignment statement to be an expression
of the form

lvalue := Tvalue,

where lvalue is a variable or a pair of variables, and Tvalue is a constant, or a variable, or any
of the possible pairs of these two, or one of the HNQL operators defined so far.

The semantics of an assignment statement are that the current value of lvalue becomes the
result of evaluating Tvalue on the current state of the hypernode database, HD (and possibly
updating HD as a side effect). We note that evaluating a constant on HD returns the constant
itself and that evaluating a variable on HD returns its current value. We assume that if the
assignment is undefined, for example, when trying to assign a pair of constants to a variable, or
a constant to a pair of variables, then lvalue is assigned the value $NULL or ($NULL, $NULL),
respectively.

HNQL statements are composed sequentially using the semi-colon symbol as a statement
separator. The keywords TB and TE denote transaction begin and transaction end,
respectively. They serve to delimit compound statements in analogy to the begin and end
keywords in Pascal. The for loop, beginning with the keyword fot-all, provides HNQL with
a bounded looping mechanism (see Section 6.7 in Chapter 6 for a discussion on looping
constructs). HNQL also has available an unbounded looping mechanism beginning with the
keywords while changes do, which repeatedly executes a given compound statement on the
current state of the hypernode database HD until no further changes are effected on the current
state ofHD.

The first example is an HNQL program, shown below, that selects the names of passengers
who are flying on flight number "BA2l2" and puts them into a new hypernode whose label is
$RESULT.

1. Xl:= createO;
2. X2:= rename(Xl, $RESULT);
3. X2:= inserLnode($RESULT, NAME);
4. for_all Xl E nodes($PASSENGERS) do
5. if (FLIGHT _NO, "BA2l2") E arcs(Xl) then
6. for_all (Yl, Y2) E arcs(Xl) do
7. TB
8. ifY! = NAME then
9. TB
10. X2:= inserLnode($RESULT, Y2);
11. X2:= inserLarc($RESULT, NAME, Y2);
12. TE
13. TE

The second example is an HNQL program, shown below, that modifies flight number
"BA2l2" to "BA345" for all passengers in the database.

540 Chapter 10. Extensions to the Relational Data Model and Recent Directions

1. for_all Xl E nodes($PASSENGERS} do
2. for_all (Yl, Y2) E arcs(Xl} do
3. TB
4. if (Yl, Y2) = (FLIGHLNO, "BA2l2") then
5. TB
6. X2:= delete_arc(Xl, Yl, Y2};
7. X2:= delete_node(Xl, Y2};
B. X2 := inserLnode(Xl, "BA345"};
9. X2 := inserLarc(Xl, Yl, "BA345"};
10. TE
11. TE

The details of the semantics of HNQL programs can be found in [LL95b] and a detailed
description of a rule-based counterpart ofHNQL, called Hyperlog, can be found in [PL94] . In
[LL95b) and [PL94), respectively, it was shown that HNQL and Hyperlog are query complete
languages (see Section 6.5 of Chapter 6 for the definition of query completeness).

We next summarise the main features of the hypernode model; it is based on a nested graph
structure which is simple and formal. In addition, it has the ability to model arbitrary complex
objects in a straightforward manner. Moreover, the hypernode can provide the underlying
data structure of an object-oriented data model. Finally, hypernodes can enhance the usability
of a complex objects database system via a graph-based user interface.

Apart from the hypernode model there have been several other proposals for graph-based
data models. The earliest proposals for graph-based formalisms were the network and
hierarchical data models which were presented in Subsections 1.7.2 and 1.7.3 of Chapter 1.
These data models were not designed to solve the usability problem for database systems but
rather addressed fundamental data modelling issues which were unresolved at the time. As
a result, the potential visual representation of these data models was not utilised to the full
through the development of user-friendly interfaces for them. Moreover, the network and
hierarchical data models are not fully data independent and thus do not have the flexibility
that the hypernode model has in modifying the structure of the database. An early proposal
for a graph-based data model as a user interface, which incorporates semantic notions into
the relational model, can be found in [BorBO].

A digraph can easily be represented in the relational model as a binary relation. An
interesting proposal, which builds on this fact, is to extend SQL with the ability to query
such binary relations [BRS90). More specifically, SQL is extended with an appropriate syntax
such that the set of all paths in a digraph that satisfy a given condition can be queried.

A recent data model, called Logical Data Model (LDM), which caters for arbitrary complex
objects through tuple, set and disjoint union type constructors, is described in [KV93). LDM
comes equipped with a query language based on first-order logic which has an equivalent
counterpart algebra. LDM can be viewed as an object-oriented generalisation of the relational,
network and hierarchical data models.

More recent proposals for graph-based data models are Graph-Oriented Object Database
(GOOD) [GPV90, PYA +92), GraphLog [CM90, CCM92, CM93) and Multimedia Object
Retrieval Environment (MORE) [LZ96). In all of these models the database consists of a

10.3. Graph-Based Databases 541

$LlNKS_TO

$REFI • $00(1

$REF2 • $00(2

$REF3 • $00(3

Fig 10.6 Modelling labelled arcs in the hypernode rnodel

single digraph, as opposed to a hypernode database which consists of a finite set of digraphs.
This unique feature of the hypernode model permits data encapsulation and the ability to
represent each real-world object in the database separately.

GOOD generalises the functional data model [Shi81) by expressing both the database
schema and the database instance as a digraph and by the provision of a graph-based query
language. GOOD embeds semantics into the nodes and arcs of the database digraph, nodes
being printable or non-printable and arcs being single-valued or multi-valued. GOOD's query
language is based on the notion of a pattern. Patterns are matched against the database digraph
and return subgraphs of the database digraph that correspond to the patterns.

Graphlog is a query language operating on a database digraph which corresponds to a
semantic network [Gri82) . The arcs in this digraph represent predicates. Graphlog queries
are formulated as digraphs whose arcs are annotated with predicates, transitive closures
thereof or, more generally, regular expressions. These query digraphs are matched against
the database digraph and return subgraphs thereof.

Both GOOD and Graphlog label their arcs. This is a useful facility which allows us to
express relationships between nodes. Arc labelling can be modelled in the hypernode model
by including all the arcs which have the same label in a single hypernode whose defining label
is the common label of the arcs. For example, the set of labelled arcs

$REFI --'J>$LINKS_TO $DOC1
$REF2 --'J> $LINKS_TO $DOC2
$REF3 --'J> $LINKS_TO $DOC3

are represented by the hypernode shown in Figure 10.6.

We conclude this section by mentioning another graph-based data model, called Graph
Storage System (GRAS), whose data structure comprises attribute graphs [LS88). Attribute
graphs are digraphs whose nodes represent objects which may have attached attributes,
and whose labelled arcs represent binary relationships between objects. In GRAS paths in
attribute graphs represent derived relations. GRAS comes equipped with a query language,
called Programmed Graph Rewriting System (PROGRESS), whose semantics are defined in
terms of graph transformations [Sch90). The basic building blocks of graph transformations
are subgraph tests and graph rewriting rules. Subgraph tests are conditions which test the
occurrence of a subgraph within the database digraph, and graph rewriting rules are graph
transformations which search for certain subgraphs within the database digraph and replace

542 Chapter 10. Extensions to the Relational Data Model and Recent Directions

each such subgraph with another one. Subgraph tests and graph rewriting rules are composed
into complex graph transformations via control flow diagrams.

10.4 Active Databases

So far we have assumed that the database system is passive, i.e. queries and updates to the
database are submitted to the system via users and application programs. Consider the
example of an inventory control system, where items need to be reordered when the stock
falls below a critical quantity. In a passive database an application program needs to be
written that polls the database periodically to check the various stock levels and to initiate a
reordering process when appropriate. Such an application program is active in the sense that
the program initiates an action when the environment is in a certain state; in the case of the
inventory control system when the stock is low. The problems in writing a specific program
for each active application are:

• If the polling is frequent then the program may be inefficient, on the other hand if the
polling is not frequent enough then the program might not react at the correct time.

• A different program needs to be implemented for each active application, so the
maintenance of such software is expensive.

• Active applications have some common semantics, which can be catered for in a uniform
and efficient way by the DBMS.

The solution to this problem is to make the database system active by adding to it a
component which polls the database for certain specified events and acts when appropriate
conditions are satisfied. Such production rules are known as Event-Condition-Action rules (or
simply ECA rules or just rules).

An important application for active databases is that of enforcing integrity constraints
[CW90j. As an example, suppose that employees' salaries have an upper limit. Then an
ECA rule can prevent any update to an employee's salary, which exceeds the limit. Similarly,
entity and referential integrity can be efficiently implemented by using appropriate ECA
rules. Another significant application is that of incremental maintenance of user views
[CW91j, which is a proposed solution to the view update problem discussed in Section 3.8 of
Chapter 3.

We present an active database model which extends the relational model by adding to it a
production rule language. A program in this language is a set ofECA rules. We now elaborate
on the notions of event, condition and action.

An event is a change in the database state which occurs asynchronously, as a result of an
update operation (insert, delete or modify; see Subsection 3.2.4 of Chapter 3 for the semantics
of updates). The update operation is part of a transaction against the database. Other database
operations such as transaction commit and transaction abort are also considered to be events
(see Chapter 8 for the semantics of these operations).

10.4. Active Databases 543

The above events are primitive and can be used to form composite events by taking the
disjunction of two events, the negation of an event and the sequential composition of two
events. An event can now be either primitive or composite.

Informally, a composite event maps an event history to another event history that contains
only the events that are satisfied according to the manner in which the composite event was
constructed. An event history is a sequence of primitive events, i.e. it is a linear ordering of
primitive events.

More specifically, let 1t be an event history. The meaning of a disjunction of two events el

and e2 with respect to 1t is the largest subset o£1t such that either el or e2 occur in this subset.
The meaning of the negation of an event e with respect to 1t is the largest subset of 1t such
that e does not occur in this subset. The meaning of the sequential composition of event el

and event e2 with respect to 1t is the largest subset of 11. such that el occurs before e2 in this
subset. Thus if the meaning of an event e with respect to 1t is 1t itself then 1t satisfies e.

An event is a regular expression and thus a finite automaton can be constructed that accepts
an event history if and only if this history satisfies the event. A formal treatment of composite
events can be found in [GJS92j (See Subsection 1.9.4 in Chapter 1 for the formal definition of
regular expressions and finite automata).

A condition is an integrity constraint (specified as a relational algebra expression, or
alternatively, an SQL query) that must be satisfied, i.e. be non empty or equivalently true,
with respect to a database state. A mechanism is available which allows the relations in a
condition to refer either to the database state prior to the occurrence of an event or after the
occurrence of an event; by default it is assumed that the current database state is the state of
the database after an event has occurred. Apart from data dependencies, such as functional
dependencies and inclusion dependencies, conditions can express transition constraints; for
example, stating that an employee's salary always increases with years of service.

An action specifies an update operation to be carried out on the current database state. Most
production rule languages allow more general actions such as specifying a rollback operation
to abort the current transaction. Since an action may be an update operation, it may trigger
other ECA rules, which in turn may trigger further ECA rules.

The syntax of an ECA rule is:

ON Event occurrence
IF database state satisfies Condition
THEN execute Action

The semantics of an ECA rule are that when the event specified in the ON clause occurs,
then the rule is activated. Thereafter, if the condition specified in the IF clause is satisfied
with respect to the database state after the update associated with the event is carried out on
the current database state, then the action specified in the THEN clause is executed. In the
THEN clause we can refer to the database state prior to the occurrence of the event by using
the keyword previous. When a rule is activated the process of checking the IF part of the rule
and executing the THEN part when appropriate will be referred to as firing the rule.

We give several examples, using an informal update syntax and a database comprising two
relations the first over EMPLOYEE, with schema(EMPLOYEE} = {ENAME, DNAME, SALARY},
and the second over DEPARTMENT, with schema(DEPARTMENT} = {DNAME, MGR}.

544 Chapter 10. Extensions to the Relational Data Model and Recent Directions

The first example specifies that an employee's salary cannot decrease.

ON modify to EMPLOYEE.SALARY
IF EMPLOYEE.SALARY < previous EMPLOYEE. SALARY
THEN rollback

The second example specifies that if a department's name is modified then the corresponding
name in the tuples of the employee relation is also changed to the new name.

ON modify to DEPARTMENT.DNAME
IF EMPLOYEE.DNAME = previous DEPARTMENT.DNAME
THEN modify EMPLOYEE.DNAME = DEPARTMENT.DNAME

The third example specifies that if an employee who is also a manager is fired then the
manager of the department managed by that employee becomes unknown.

ON delete from EMPLOYEE
IF DEP ARTMENT.MGR = previous EMPLOYEE.ENAME
THEN modify DEPARTMENT.MGR = unk

Let P be a program, i.e. a finite set of ECA rules. In general, the events of different ECA
rules are not mutually exclusive, so it is possible that two or more rules are activated at any
given time. In order to resolve such conflicts the rules in P can either be ordered and then the
activated rules are executed according to this predefined order, or alternatively the activated
rules can be executed concurrently.

The semantics of processing a program P, with respect to a set of integrity constraints I and
a database state d, are presented in the following algorithm.

Algorithm 10.3 (EXE(P, I, d»
1. begin
2. prev:= d;
3. while at least one rule in P is activated do
4. let S be the set of all the activated rules in P;
5. deactivate all the rules in S;
6. fire all the rules in S concurrently;
7. if the current state of d does not satisfy I then
8. return prev;
9. end if
10. end while
11. return the current state of d;
12. end.

We note that, in general, EXE(P, I, d) may not terminate, since, for example, one rule may
delete a certain tuple from a relation and another rule may insert the same tuple into this
relation. In the special case that none of the actions of any of the rules in P change the active
domain of the database and actions involve only insertions then termination is guaranteed,
since the current state of d is monotonically increasing towards a fixpoint.

10.4. Active Databases 545

We can construct a digraph for a program P, called the triggering graph ofP, such that the
nodes of the digraph are the rules in P and there is an arc from one rule to another rule if the
first rule can trigger the second one. In this case it can be shown that if the triggering graph
of P is acyclic then EXE(P, I, d) always terminates [AWH92j. When the triggering graph is
cyclic then, in general, we cannot decide whether EXE(P, I, d) will terminate or not.

More details on the semantics of rule evaluation can be found in [HJ91, WCL91, SKdM92j.

I t is also possible to specify differen t coupling modes for a given ECA rule, which determine
the timing of the execution of the rule relative to the database transaction, say T, that caused
the event in the ON clause of the rule to be activated. EC-coupling mode determines when
the condition specified in the IF clause of the rule is tested for satisfaction relative to T.
Correspondingly, CA-coupling determines when the action of the THEN part of the rule is
executed relative to T. Two possible coupling modes are:

1) immediate - test the condition, respectively execute the action, immediately when the
event occurs even ifT has not terminated; and

2) deferred - test the condition, respectively execute the action, only after T has terminated.

More on the different execution models can be found in [MD89, GJ91, SPAM91j including a
third coupling mode in which the condition, respectively the action, is evaluated in transactions
which are separate from T.

An important application of production rules is that of integrity constraint maintenance
[CW90j. Assume that an update is made to the current database state and that a set of integrity
constraints I needs to be enforced. Furthermore, we assume that the database is always
required to be in a consistent state. A constraint a E I may be an FD (for entity integrity
maintenance), an IND (for referential integrity maintenance), a domain dependency, or any
other type of constraint. Now, if the state of the database, after the update has been carried
out, is inconsistent, i.e. a or any other constraint in I is violated, then what actions should
the database system initiate in order to "repair" the database state, i.e. to transform it into a
consistent state, namely into one that satisfies a and all the other constraints in I. The standard
approach is to rollback the database into a consistent state and then abort the transaction which
updated the database. An alternative approach, which uses production rules, is to allow the
definition ofECA rules whose actions automatically correct the inconsistency by transforming
the database into a consistent state.

For example, if we are maintaining entity integrity and a key dependency is violated, for
example due to an insertion of a new EMPLOYEE tuple with an existing primary key, then
the action can be to delete the offending tuple from the EMPLOYEE relation thus maintaining
consistency. As another example, if we are maintaining referential integrity and a key-based
IND is violated, for example due to the insertion of a new EMPLOYEE tuple whose department
is nonexistent, then the action can be to insert a tuple having the new department name and
an unknown manager into the DEPARTMENT relation thus maintaining consistency.

It is shown in [CW90j that for a general class of integrity constraints, defined as SQL queries,
rule templates can be automatically derived which assist the user in defining the necessary ECA
rules needed in order to maintain such integrity constraints. Each rule template enumerates
the update operations and conditions that may cause the constraint to be violated, th us forming
the ON and IF clauses of a potential ECA rule.

546 Chapter 10. Extensions to the Relational Data Model and Recent Directions

Another important application of production rules is that of incremental view maintenance
[CW91j. Assume that a view is a relation that is defined as the result of a relational algebra
query (or equivalently, an SQL query); we refer to this query as the view definition.

Views may be materialised, i.e. they are physically stored in the database, or virtual, i.e.
they are computed each time the user poses a query over them; we assume that views are
materialised. The view maintenance problem is the problem of correctly updating the view
when an update is performed on one of the relations of the database (called a base relation)
that is referenced in the query that forms the view. A simple but inefficient solution is to
completely rematerialise the view. Consequently an efficient way of dealing with this problem
is to update only those portions of the view that have been changed due to the update carried
out on the base relation. In other words, we need to formulate the necessary ECA rules that
are activated by updates to the base relations such that when certain conditions are satisfied
implying that the view needs to be updated, then the appropriate action, which corresponds
to the update of the materialised view, is executed.

Suppose that the user has specified a set of key dependencies over the relation schemas
of the base relations in the database and that a view has been defined. Let V be the set of
attributes over the relation schema which defines the view. The set of attributes referenced
by V, denoted by REF(V), is defined as the largest set of attributes that includes V and all
attributes in the view definition that are equated to constants, and such that

1) if in the view definition an attribute A of a relation schema Ri is equated to an attribute
in REF(V), then A E REF(V); and

2) ifREF(V) includes a key for R;, then schema(Ri) ~ REF(V).

A base relation schema Ri is said to be safe in V if REF(V) includes a key, say K, for Ri.

It can now be shown that if d is a database and ri E d is a base relation over Ri then
insertions, deletions and modifications carried out on ri can be reflected incrementally in the
view, provided that Ri is safe in V. Consider an insertion of a new tuple t into rio Since t is
not in ri prior to the update, then t[Kj cannot be in the projection ofthe view onto K. Thus we
insert into the view only the tuples resulting from applying the definition of the view to the
database d, where ri E d is replaced by It}. A similar argument follows when the update is a
deletion or a modification.

It follows that when Ri is safe in V, then for every update of a base relation ri over Ri, an ECA
rule can be automatically generated that incrementally reflects the update in the view. When
Ri is not safe in V then, in general, only insertions can be updated incrementally, otherwise
the view needs to be fully rematerialised.

Assume that ENAME is the primary key of EMPLOYEE and that DNAME is the primary key
of DEPARTMENT; it follows that DNAME in EMPLOYEE is a foreign key referencing DNAME
in DEPARTMENT and thus inducing a referential integrity constraint. Now, let EMP-MGR
be a materialised view which is defined as the projection onto ENAME, DNAME and MGR of
the join of EMPLOYEE and DEPARTMENT, i.e.

IT(ENAME,DNAME,MGR} (EMPLOYEE tx:J DEPARTMENT).

It follows that REF(EMP-MGR) = {ENAME, DNAME, SALARY, MGR} and thus both
EMPLOYEE and DEPARTMENT are safe in the view EMP-MGR. Now, suppose that we insert
some new employee tuples. Then the generated ECA rule is given by

10.5. Hypertext Databases

ON insert into EMPLOYEE
IF true
THEN insert into EMP-MGR

where EMP-MGR.ENAME = inserted EMPLOYEE.ENAME AND
EMP-MGR.DNAME = inserted EMPLOYEE.DNAME AND
EMP-MGR.DNAME = DEPARTMENT.DNAME AND
EMP-MGR.MGR = DEPARTMENT.MGR

547

where the keyword inserted means that we are only referring to the tuples that were inserted
into the current state of the database. Note that when we insert a tuple into EMPLOYEE we use
the DNAME in order to obtain the MGR ofthe DEPARTMENT. Next, suppose that a manager
of a department is modified. Then the generated ECA rule is given by

ON modify DEPARTMENT.MGR
IF EMP-MGR.DNAME = modified DEPARTMENT.DNAME
THEN EMP-MGR.MGR = modified DEPARTMENT.MGR

where the keyword modified means that we are only referring to the modified tuples in the
current state of the database. Note that the IF clause of the rule guarantees that the correct
tuples are updated, since DNAME is the primary key of DEPARTMENT. Finally, suppose that
an employee is deleted. Then the generated ECA rule is given by

ON delete from EMPLOYEE
IF EMP-MGR.ENAME = deleted EMPLOYEE.ENAME
THEN delete EMP-MGR

where the keyword deleted means that we are only referring to the tuples that were deleted
from the current state of the database. Note that the IF clause of the rule guarantees that the
correct tuples are deleted, since ENAME is the primary key of EMPLOYEE.

Overviews of active databases can be found in [Cha89, DD91, Han92, DHW95), and for a
recent annotated bibliography of the subject see [JF95). Finally, a recent collection of papers
covering both the theory and applications of active databases can be found in [WC96].

10.5 Hypertext Databases

Traditional text which comes in book form is a linear sequence of words, defining the order in
which the text should be read. In order to make the reading easier words are combined into
sentences, sentences are combined into paragraphs, paragraphs into sections and sections
into chapters. In addition, a table of contents and an index are normally supplied so as to help
the reader find quickly some specific piece of information he/she is looking for without the
need to read the whole document. It it also common in textbooks for the authors to provide
a diagram, which we call a chapter dependency diagram, suggesting groups of chapters which
should be read together in a certain order, according to a particular topic that they cover. For
example, Figure 10.7 depicts a possible chapter dependency diagram for reading this book.

548 Chapter 10. Extensions to the Relational Data Model and Recent Directions

10

9 8

1 1
4 5 6 7

\1;/
3

1
2

1

Fig 10.7 Chapter dependency diagram

A dependency diagram is a simple form of hypertext. Hypertext organises documents in
a nonsequential (or nonlinear) order. It presents the reader with several different options of
reading a document, the choice of how to read the document being made by the reader at the
time of reading. Let us call a textual unit of information a page. A hypertext database consists
of a set of pages which are linked together according to the author's specification. Thus a
hypertext database is a digraph, where the nodes are the pages and the arcs are the links.

For example, Figure 10.8 shows a simple hypertext database consisting of five pages and
several links between them. You can start reading (or browsing) the text at any page. Say you
started at page PI. Once you have browsed through page PI you have a choice either to go to
page P2 or page P3. If you go to page P2, you then have the option of either going to page P4 or
page P5. Assume you have chosen to go to page P4. Once you have finished browsing through
page P4 you have a single option which is to go back to page PI. The process of traversing
links and following a trail of information in a hypertext database is called navigation (or
alternatively link following). Every link connects two nodes, the node we start at is called the
anchor node (or simply the anchor) and the node we finish at is called the destination node (or
simply the destination) . Most hypertext systems will also have a backtracking facility which
allows the reader to go back to the previously read page. In our example, we could backtrack
from page P4 to page P2 and from page P2 back to page PI. Backtracking is useful since
it allows the reader to reexamine pages and then to choose a different sequence of pages to
follow, i.e. to choose a new trail of information to navigate through.

As another example, consider the World Wide Web (WWW), which is undoubtedly the
largest hypertext database available [For94). A lower bound of 320 million WWW pages has
been recently estimated which is anticipated to grow ten-fold over the next few years [LG98).

10.5. Hypertext Databases

.

Paper 1

•
•

Fig 10.8 A simple hypertext database

Computer Science
Home page

• • Mark's Home page .

Paper2

. .

Paper3

Fig 10.9 An example of a WNW home page and its links

549

Without going into any detail, each unit of information on the WWW is known as a resource,
and each resource has a unique identifier describing where the resource resides and how to
retrieve it. (The mechanism used is that of a Unified Resource Locator, or simply URL, which
specifies the type of resource and a unique path for locating it.) Every WWW user has a home
page, which is a hypertext page authored by the user, providing information and links created
by the user. Thus the home page essentially connects the information provided by the user to
the larger body of information available on the WWW, via the links that can be followed from
the home page. Any other user visiting this home page can follow these links. Figure 10.9
shows how a home page is linked to other pages. In this example, Mark's home page is linked
to the Computer Science home page and to several papers.

550 Chapter 10. Extensions to the Relational Data Model and Recent Directions

Authors ofWWW pages can create document pages using the Hypertext Markup Language
(HTML) [Ar094J. HTML provides the facilities for formatting a document, including images
in documents, linking a document to other documents and interacting with user input through
forms. A recent proposal of a markup language, which supersedes HTML, is the Extensible
Markup Language (XML) [MFDG98J . XML is a metalanguage that allows you to design your
own document types, with their individual structure, as opposed to HTML, which is a regular
markup language in the sense that it defines a specific way of describing the information
content of document pages. In particular, HTML caters for the report style document type with
headings, paragraphs, lists and the like, with some provision for hypertext and hypermedia.
XML allows you to customise the information according to the application, in order to cater for
many classes of document where the markup is descriptive and the tags are more informative
than just for formatting purposes as in HTML. (There is a large amount of online information
on the WWW concerning XML and its recommended standard.)

Th us hypertext breaks the traditional view of text as a linear sequence of chapters, sections
and paragraphs. In hypertext a document, or more generally a collection of documents, is
organised as an arbitrary digraph of interlinked pages. Creating hypertext can be viewed as
a dynamic process whereby readers can also take on the role of authors by adding their own
pages and links to the database. The example of the WWW is very instructive in this case,
since it can be viewed as a continuously evolving hypertext database.

Hypertext nodes are not, in general, restricted to contain text and may contain different
multimedia objects such as graphics, sound and video. In this more general context hypertext
has been called hypermedia but herein we will prefer the original term hypertext.

Hypertext is a vastly developing area, which has gained a lot of momentum in the last ten
years. As mentioned above the WWW has created some real challenges for hypertext, since
the need to efficiently organise and navigate through the rapidly growing volume of available
information is quite urgent. Another impetus for hypertext is the current wide availability
of CD-ROM (Compact Disk-Read Only Memory) as a hardware device for storing large
amounts of text and multimedia data. For example, several encyclopaedias are available on
CD-ROM for which hypertext provides the technology for organising and navigating through
the information.

We now demonstrate that the hypernode model possesses a number of features which make
it a natural candidate for being a formal model for hypertext. In order to do so we slightly
extend the hypernode model by allowing arcs (i.e. links) to be labelled. The labels of links
allow us to store meta-information about these links in hypernodes having these defining
labels.

Firstly, a hypernode is a digraph structure with two built-in link types. The first link type
is the arc representing a referential relationship and the second link type is the encapsulating
label representing a part-of relationship. Furthermore, attributes allow us to give additional
semantics to nodes in the node set of a hypernode, which can be considered to be properties
of the hypernode to which the node set belongs. In fact, hypernodes can model arbitrary
complex objects. In order to support text directly we can assume that the domain of atomic
values is actually a domain of textual fragments over which full-text retrieval operations are
possible; the domain of atomic values can readily be extended to accommodate any multimedia
object. In Figure 10.10 we show part of a hypertext database, called PAPERS, which stores
online papers from scientific journals. In particular, the figure shows an overview diagram

10.5. Hypertext Databases 551

$INI
$PAP7

~UT2 ~
,,~

$OUT3

$IN2
$PAP3

Fig 10.10 Part of a hypertext database

of the papers that are adjacent to $PAP1 (i.e. $PAP7 and $PAP3) and adjacent from $PAP1
(i.e. $PAPll, $PAP4 and $PAP1S); we assume that $PAP1 is currently being browsed. The
hypernodes encapsulated in $IN1, $IN2, $OUTl, $OUT2 and $OUT3 are annotations oflinks.
An annotation of a link provides meta-information about the link such as the name of the
creator of the link, the date it was created and the subject matter of the link (see Figure 10.11
for the details of the annotation $OUTl). In addition to the annotation $OUTl, Figure 10.11
shows the hypernode $P AP 1, which is currently being browsed and two of its encapsulated
hypernodes, $AUTH1 (showing the details of one of the authors of the paper) and $TEXTl
(which contains the actual text of the paper).

Secondly, the hypernode model can provide for browsing and declarative querying facilities
via HNQL (more on database browsing in the context of the hypernode model can be found in
[PL94]). HNQL can also cater for authoring via its update facilities. Finally, within the context
of the hypernode model we can reason about integrity constraints in a hypertext database (in
[LL9Sb] it was shown how functional dependencies can be incorporated into the hypernode
model). In summary we view hypertext as a promising application of the hypernode model.

An important aspect of hypertext is that the reader be permitted to customise the
presentation of the information in the database [Ash94]. The basic requirement is the ability
to create annotations to the main text. Annotations are electronic footnotes, which contain
some relevant piece of text created by the reader, that are accessed by a link from the main text.
A more general requirement is to allow readers to create their own personal links between
pages, inducing a personal nonlinear ordering on the database. Such a facility is important,
since the built-in links may not be sufficient for the user's purposes.

Links can either be hard (equivalently static) or soft (equivalently dynamic). A hard link
is one, which given the anchor node, explicitly specifies the address of the destination node.
A soft link is one, which given the anchor node, implicitly specifies the address(es) of the
destination node(s) via a script that computes the set of destination nodes at the time the
link is followed. The advantage of soft links is that the addresses of the destination nodes
are not fixed and thus the dangling link problem is avoided. A dangling link is one which is
referencing a page at a nonexistent address.

The stale URL problem [St095] is the problem of a link pointing to a nonexistent URL, when
the URL of a WWW page is modified but the link remains unchanged. In effect a stale URL
is a dangling link. Current practice is to manually redirect the reader to the new URL by
creating an additional page which contains a link to the new URL. A more attractive approach,
suggested by Stotts [St095], is to provide the information about the new URL in an HTML file

552 Chapter 10. Extensions to the Relational Data Model and Recent Directions

$PAP1 $AUTH1

~
TITLE ''The Hypernode Model ... "

NAME "M.Levene"
ABSTRACT ~ $ABS1

AUTHOR
$AUTHl

$AUTH2

TEXT------. $TEXT1

$OUTl

CREATOR ~ "J .Bloggs"

~"22.4.92" DATE

SUBJECT ~ hypertext

COLLEGE "UCL"

ADDRESS London

$TEXT1

"Graphs have formed the foundation
of a number of data models, for
example the hierarchical, network
and various semantic data models.
Here we generalise graphs to
hypernodes ... "

Fig 10.11 Some of the hypernodes in the hypertext database

which is periodically read by the browser instructing it to automatically redirect the link when
it is accessed.

An attempt to formally describe the abstractions found in hypertext systems is the Dexter
hypertext reference model (or simply the Dexter model), so named because it was originally
proposed at a workshop which was held in 1988 at the Dexter Inn in New Hampshire [HS94aj .
The Dexter model attempts to define a common terminology for hypertext databases and to
serve as a reference for the development of hypertext systems.

The architecture of a hypertext system can be described by the following three layers:

• The run-time layer, which describes the basic tools for accessing, viewing and
manipulating hypertext databases.

• The storage layer, which describes the hypertext database (also referred to as the
hypertext network) in terms of nodes and links, and the mechanisms whereby the
nodes and links are "glued together" to form a hypertext database.

• The within-component layer, which describes the contents and structure within the
nodes and links of the hypertext database. This layer is actually not elaborated in the
Dexter model and it is assumed that other models will deal with the particular document
types and data structures needed for the application under consideration.

10.5. Hypertext Databases 553

The Dexter model contains two interfaces:

• The anchoring interface between the storage and the within-component layers. This
interface provides the mechanisms for addressing (or referring to) the locations or items
of individual components .

• The presentation specifications interface between the run-time and storage layers. This
interface provides the mechanisms for encoding the information about how components
in the database are presented to the user.

We briefly elaborate on the layers of the Dexter model. The fundamental entity in the
storage layer is the component, which is defined recursively as either an atom, a link or a
composite entity made out of other components. Atomic components are the nodes of the
database and their structure is described in the within-component layer. Links are components
that describe relationships between other components. Each component in the database
has a Unique Identifier (UID), by which it is accessed. UIDs are primitive entities and are
assumed to be unique across the whole hypertext database. In order to be able to create a link
within a substructure of a component, it is necessary that the anchor of the link has a unique
identifier (anchor id), which locates a specific region in that component. An anchor is thus
uniquely specified by a UID together with an anchor id. With each component there is an
associated component information, which describes the properties of the component other
than its contents, in the form of attribute-value pairs. The storage layer also includes update
operations, which insert, delete and modify a component. In addition, there are operations
for retrieving a component, given its UID and anchor id.

The fundamental concept in the run-time layer is the instantiation of a component, which
determines how the component is to be presented to the user. When a component is
instantiated it is assigned a unique instantiation identifier. The anchors of a component
are instantiated together with their component; an instantiation of an anchor is known as a
link marker. Thus a link marker refers to the presentation of the link in the viewed document.
The instantiated components are made available to the user for viewing and editing and
subsequently they are written back into the storage layer. A hypertext session defines the
boundaries of a transaction initiated by an instantiation of one or more components.

A formal specification of the Dexter model in the formal specification language Z [SpiBB)
was undertaken in [PSV94). Such a specification is a prerequisite to implementing a hypertext
system based on the Dexter model. We mention that an earlier reference model for hypertext,
called the Hypertext Abstract Machine (HAM) model, which is similar to the Dexter model, is
described in [eGBB).

One of the main unsolved problems confronting hypertext is the navigation problem,
namely the problem of having to know where you are in the database digraph representing the
structure of a hypertext database, and knowing how to get to some other place you are searching
for in the database digraph. In [LL99c) we investigated this problem by defining a formal
model for hypertext based on nodes and links and a query language, based on propositional
linear temporal logic [Eme90), which allows the user to specify a set of trails to be retrieved
from the hypertext database. The main result therein is that the computational problem of
finding whether there exists a trail in the database which satisfies an arbitrary user query is,
in general, NP-complete. This implies that it would be useful to devise approximate solutions

554 Chapter 10. Extensions to the Relational Data Model and Recent Directions

to the navigation problem which are computationally feasible. A preliminary investigation
of a probabilistic approach, which can utilise statistical information about trails that were
traversed in the past in order to speed up query processing, was undertaken in [LL99b].
Other formal models of hypertext, which deal with the navigation problem, can be found in
[Gar88b, CM89, AK90, BK90, AS92, SFR92, MW95].

Apart from querying the database users are most often browsing through pages of the
hypertext database by following links. During this process they may become "lost in hyper
space" [Con8?], meaning that they become disoriented in terms of what to do next and how
to return to a previously browsed page. In other words, readers may lose the context in which
they are browsing and need some orientation tools to assist them in finding their way. The
browser is the component of a hypertext system that helps users search for the information they
are interested in by graphically displaying the relevant parts of the database and by providing
contextual and spatial cues with the use of orientation tools.

A simple orientation tool is the link marker which acts as a signpost to tell the user what
links can be immediately followed and what links have just been passed. Maps and webs give
the user a more global context by displaying to them links which are at a further distance
than just one link from the current position. Maps can be displayed using a fisheye-view
that selects information according to its degree-oj-interest, which decreases as the page under
consideration is further away from the currently browsed page [TD92]. A set of tools that
aid the construction of maps by performing a structural analysis of the database digraph is
described in [RBS94]. A more sophisticated orientation tool is the guided-tour which actively
guides users through the database digraph by suggesting interesting trails that the user can
follow [MI89]. Another useful orientation tool is the book mark, allowing the reader to mark
a page which can be returned to on demand when feeling lost [Ber88]. The reader may also
mark pages which were already visited in order to avoid repetition; such marks are called
bread crumbs [Ber88].

A recent emerging subarea is that of adaptive hypertext and hypermedia [Bru96, BKV98],
whose aim is to build a model of an individual user using a hypertext system and apply this
model for the purpose of adapting the system to that user. A useful distinction is between
adaptive presentation which deals with adapting the contents of a page according to the
user's knowledge and goals, and adaptive navigational support, whose aim is to help the
user find the most relevant trails to follow by adapting the choice of links that the user can
traverse.

Most adaptive presentation techniques deal with text adaptation which is concerned with
tailoring the contents of a page to a particular user. Thus the content of a page changes
according to the user browsing it. An effective technique used to implement adaptive
presentation is that of conditional text. The text in a page is divided into several chunks,
each one being associated with a relevant condition.

The most common techniques for adapting link presentation are: direct guidance which
aims at suggesting the "best" link to follow, adaptive ordering which sorts the links according
to some criteria which are useful to the user, hiding which restricts the number of allowable
links by hiding links that are not relevant to the navigation session, and annotation which
augments the links with useful comments relating to the pages that can be reached by following
them.

10.5. Hypertext Databases 555

The main features that are candidates for adaptation are now outlined:

• The user's knowledge of the subject dealt with in the hypertext page.

• The user's goals; for example, is the user mainly interested in learning about a particular
subject, or simply searching for some specific information.

• The user's background, such as the user's profession, and the user's experience regarding
the structure of the hypertext system used.

• The user's preferences; for example, the user may prefer certain pages and links and
may prefer one presentation mode over another.

A recent challenge for adaptive hypertext research is that of managing personalised views,
where such a view consists of the subset of the hypertext system relevant to the user. Related
to this is the problem of creating adaptive web sites [PE98j (see also [JFM97]), where a web site
can be viewed as a localised collection oflogically interrelated pages. The goal of such adaptive
web sites is to automatically improve both their organisation and presentation by using the
information from log files of users who have visited the pages of the site under consideration.

Finally, we briefly discuss Information Retrieval (IR) issues which are crucial to the efficient
querying of a hypertext database. IR is based on a full-text search of the contents of pages in
the database for keywords specified by the user. Typically a query is a conjunction (and) of
keywords but, in general, a query may contain other Boolean operations such as disjunction
(or) and negation (not). Pages which match the query are usually sorted by a score which is
assigned to each page according to how well they match the query. Matching of a query can be
assisted by weighting the keywords according to some statistical relevance properties, and by
preferring pages whose links can be followed to reach other similar pages relevant to the query.
The term number ofhits in a page indicates the number of keywords that are matched in that
page; the number of hits may also include synonyms and related keywords in the page. In the
context of hypertext, the integration of query-based retrieval and browsing strategies which
include the links was investigated in [CT89j. Their model is based on a Bayesian inference
network which includes dependencies between hypertext nodes and between concepts. For a
survey on automatic IR techniques for measuring the similarity between textual documents,
see [Sa191j, and for a recent description of a prototype of a large scale WWW search engine,
which incorporates some novel search techniques, see [BP98j.

The reader can find surveys dealing with hypertext in [Con87, Hal88, SW88, FC92j. Two
recent books on the subject are [Nie90, Rad91) .

We close this section with a brief mention of the historical roots of hypertext. The inspiration
for Hypertext comes from the memex machine proposed by Bush [Bus45) (see also [NK89j).
The memex is a "sort of mechanized private file and library" which supports "associative
indexing" and allows navigation whereby "any item may be caused at will to select immediately
and automatically another". Bush emphasises that "the process of tying two items together
is an important thing". In addition, by repeating this process of creating links we can form a
trail which can be traversed by the user, in Bush's words "when numerous items have been
thus joined together to form a trail they can be reviewed in turn". Hypertext can be viewed as
the formalisation and realisation of Bush's original vision.

556 Chapter 10. Extensions to the Relational Data Model and Re<ent Directions

The term "hypertext" was coined by Ted Nelson in 1965 [NeISO]. Nelson considers "a
literature" (such as the scientific literature) to be a system of interconnected writings. The
process of referring to other connected writings, when reading an article or a document, is
that of following links. The links between documents are not always visible but they exist and
can be made concrete.

Nelson's vision is that of creating a repository of all the documents that have ever been
written and thus achieving a universal hypertext database. In [NeISO] Nelson discusses
the design of this hypertext system, which he calls Xanadu. In Xanadu all documents
are potentially interconnected, and thus the fundamental elements of Xanadu are not just
documents but links as well. A link is a connection between parts of text and is created by a
user of the system. Nelson distinguishes between several types of literary link:

1) the jump-link, corresponding to a footnote or a related item,

2) the quote-link, corresponding to a quotation from another document,

3) the correlink, which places a segment of one document next to a segment of another
document in order to structure a document, and

4) the equilink, which links two versions of the same document.

Nelson refers to a document as containing both text and links. The boundaries of a document
are defined by its owner. Xanadu is thus a collection of documents and links between them.
It can be viewed as a generalised memex system, which is both for private and public use.
In Xanadu all versions of a document are maintained and linked together by equilinks. The
system automatically keeps track of equilinks, and thus a full historical record of all versions
of any document is made available.

Nelson views his system as a network of distributed documents that should be allowed to
grow without any size limit and such that users, each corresponding to a node in the network,
may link their documents to any other documents in the network. Nelson's vision is in fact
materialised to a large degree in WWW,since he also views his system as a means of publishing
material by making it available on the network.

There is also an important connection between hypertext and semantic networks. Semantic
networks store factual knowledge in terms of nodes and associative connections between nodes
in the form oflinks. Seminal work by Wood [Wo07S] was instrumental in clarifying the notion
of a link. Wood distinguishes between assertionallinks which make an assertion about the
world, i.e. express a fact, and structural links which set up the subparts of a proposition
or description. In addition, Wood also distinguishes between intensional nodes representing
descriptions of the entities as opposed to extensional nodes which represent information about
the entities themselves. Rada [Rad91] advocates viewing a hypertext database as a semantic
network where a link provides the meaning of a relationship between two nodes.

10.6 Semistructured Databases

A hypertext database can be viewed as an instance of a semistructured database in the sense
that such a database does not come with a separate schema due to its irregular structure.

10.6. Semistructured Databases 557

Although the digraph representing a hypertext database is unstructured, individual pages in
the network may have some structure attached to them. For instance, pages which are HTML
documents have some structure attached to them in the form of informational tags, but these
are normally insufficient for the purpose of constructing a relation schema over the document
space. Semistructured data is often self-describing in the sense that its internal structure, when
it exists, can be inferred from the data itself.

Semistructured data is naturally modelled in terms of digraphs which contain labels giving
semantics to its underlying structure. Such databases subsume the modelling power of flat
relational databases, nested relational databases and object-oriented databases. For the
purpose of this section we will use the hypernode model, defined in Section 10.3, as our
data model for semistructured data. The hypernode model is well suited for this task as it is a
graph-based data model that supports both complex objects of arbitrary structure and cyclic
references between such objects. Moreover, in the hypernode model it is easy to embed the
schema information in the database, since appropriate attribute names can be used for this
purpose.

Example 10.3 below shows a fragment of a semistructured (hypernode) database. We have
chosen to represent the hypernode database textually rather than graphically, since in this
case such a representation is more economical and easier to comprehend. We use indentation
to represent a part-of relationship between a parent hypernode and the child hypernodes
encapsulated in the parent. In object terminology the child hypernodes are subobjects of
the parent hypernode object. For example, the contents of the child hypernode labelled $1
follow after the arc COUNTRY ~ $1, which is contained in its parent hypernode labelled
$Europe_HoteLGuide. As another example, the child hypernode labelled $1.1.3 follows after
the arc HOTEL ~ $1.1.3, which is contained in its parent hypernode labelled $1.1. We have
used the dot notation to make the object subobject relationship more transparent. Using
such a conven tion for labels could be useful for query optimisation and consistency checking
purposes. We note that we could represent the database in a more compact manner if we
embed semantics into the labels of hypernodes. For example, instead of the arc COUNTRY
~ $1, we could have COUNTRY ~ $U.K. and remove the arc NAME ~ "U.K." after it in the
hypernode labelled by $1. However, this approach has the disadvantage that we cannot reuse
such labels as $U.K. elsewhere in the database due to the uniqueness oflabels. Moreover, we
would lose the convenience of the dot notation for labels.

Apart from the need to bring to bear database technology in the organisation, maintenance
and querying of hypertext databases or more specifically WWW data, there are several other
motivating applications demonstrating the need for semistructured databases.

Data integration is the activity of combining data from several heterogeneous databases.
For example, we may want to integrate a relational database with an object-oriented database,
both of which store statistical information on student enrolment. The process of integrating
the two database schemas, say into a relational database schema, could turn out to be a
very time-consuming activity which is fraught with problems due to the incompatibility of
the two database systems. In the semistructured approach we do not attempt to integrate
the two schemas, but rather we embed the schema information in the database itself by
using a simple but expressive data model such as the hypernode model. As another
example, we may wish to integrate several relational databases storing information about
the retail prices of second hand cars. We do not expect that all retailers will use the same
database schema; for example, some retailers may store in their database information about

558 Chapter 10. Extensions to the Relational Data Model and Recent Directions

Example 10.3 (A semistructured database)
$EuropeJioteLGuide

COUNTRY --> $1
NAME --> "U.K."
CITY --> $1.1

NAME --> London
HOTEL --> $1.1.1

NAME --> "Hotel Good"
ADDRESS --> "High Street"
CATEGORY --> S-star
PRI CE --> expensive
NEAR_TO --> $1.1.2

HOTEL --> $1.1.2
NAME --> "Hotel Very Good"
NEAR_TO --> $1.1.1

HOTEL --> $1. I.3
NAME --> "Hotel Bad"
ADDRESS --> "Low St."
CATEGORY --> 2-star

CITY --> $1.2
NAME --> Glasgow
HOTEL --> $1.2.1

NAME --> "Hotel Rough"
COUNTRY --> $2

NAME --> France
CITY --> $2.1

NAME --> Paris
HOTEL --> $2.1.1

NAME --> "Hotel Luxury"
ADDRESS --> "Town centre"
CATEGORY --> 50 -plus

CITY --> $2.2
NAME --> Nice
HOTEL --> $2.2.1

NAME --> "Hotel Far"
ADDRESS --> "Far Lane"
PRI CE --> cheap •

the service history of the car and/or its previous owner, while others may not store such
information. In this case the various databases may also use different formats for recording
prices and dates, which makes the integration even more difficult. Integrating all these
databases, without any loss of information, into a single one with a unified database schema
would, as in the previous example, be time-consuming and fraught with problems, so the
semistructured approach which essentially maintains the original contents of each database
is attractive.

Another motivating example is that of modelling scientific data such as genome data
which does not have a regular structure. In such cases it is hard to design a relational or
object-oriented database schema that will capture all the semantics of the application. In a
semistructured database we can easily adapt to such diversity in the structure of the data by
embedding the schema information in the database itself.

Finally we mention the need for browsing through a database without having to know the full
details of the database schema. For example a dealer, not knowing the database schema, would
like to know which databases record the service history of their cars. As another example, we

, 0.6. Semistructured Databases 559

would like to find all tuples in the database which mention some car manufacturer regardless
of any attribute information. Such queries are difficult if not impossible in most conventional
database systems but do not pose any problems in a semistructured environment.

Since we use the hypernode model as our model for semistructured data we could simply
use HNQL, described in Section 10.3, as our query language. Moreover, since HNQL is query
complete, is has the full expressive power needed to query such a database. Despite this fact
there are several extensions of HNQL which would enhance its applicability to querying and
updating semistructured databases.

In practice primitive nodes should be typed according to a predefined set of primitive data
types such as string, integer, real and Boolean. Primitive nodes may also be typed according
to more complex types such as date, various measurement units such as kilometres and miles,
or pounds sterling and French francs. To ease the querying when data is not strictly typed we
perform coercion between data types, which for example returns true for equality conditions
such as 10.0 = 10, 10 = "10" and 20/11/97 = "20 November 1997".

Path expressions provide a navigational tool in a semistructured database, which allow us
to query information along a path in the Hypernode Accessibility Graph (abbreviated HAG,
see Definition 1O.l3), rooted by a specified label according to a sequence of attribute names
each being present in the hypernode defined by its respective label along the path. Formally,
a path expression is a sequence, L.AJ.A2 ... An, where L is a label of a hypernode in a database
HD, and AI, A2, ... ,An are attribute names. A data path matching such a path expression is
a sequence, LI.L2 . . . Ln, where LI, L2, . . . , Ln are labels ofhypernodes in HD, such that

1) LI = Land LI.L2 ... Ln is a walk in the HAG of L (recall that the nodes in a walk may
not be distinct; see Definition 2.2 of Section 2.1),

2) Ai is an attribute in the node set of the hypernode labelled by Li> for i = 1, 2, .. . , n, and

3) Ai ~ Li+1 is an arc in the arc set of the hypernode labelled by Li, fori = 1, 2, .. . , n - 1.

For example, the data path $Europe_HoteLGuide.$1.$1. 1.$ 1. 1.1 matches the path
expression $Europe_HoteLGuide.COUNTRY.CITY.HOTEL.PRICE, since COUNTRY E

nodes($Europe_HoteLGuide), COUNTRY ~ $1 E arcs($Europe_HoteLGuide), CITY E

nodes($l), CITY ~ $1.1 E arcs($I), HOTEL E nodes($1.1) HOTEL ~ $1.1.1 E arcs($1.1)
and PRICE E nodes($1.1.1). This demonstrates how we can retrieve the hotel prices from
the semistructured database of Example 10.6. Using the style of the Lorel query language
[AQM+97], we can retrieve from our database of Example 10.6 all the information on expensive
hotels in London, by the query

SELECT $Europe_HoteLGuide.COUNTRY.CITY.HOTEL
WHERE $Europe_HoteLGuide.COUNTRY.CITY.HOTEL.PRICE = 'expensive'

AND $Europe_HoteLGuide.COUNTRY.CITY.NAME = 'London'

We can also use wildcards in path expressions, when we do not know at what level in the
HAG of, say $Europe_HoteLGuide, the attribute information for, say CITY, appears. For
instance, we can retrieve the names of hotels having a 5-star category, by the query

SELECT $Europe_HoteLGuide. * .HOTEL.NAME
WHERE $Europe_HoteLGuide.*.HOTEL.CATEGORY = '5-star'

560 Chapter 10. Extensions to the Relational Data Model and Recent Directions

In the above query the wildcard in the select clause causes any data path of the form
$Europe_HoteLGuide.L2 ... Ln-I.Ln, with HOTEL E nodes(Ln_I), HOTEL --+ Ln E arcs(Ln_ l)

and NAME E nodes(Ln), to be considered. Similarly, the wildcard in the where clause causes
any data path of the form $Europe_HoteLGuide.L2 ... Ln-I.Ln, with HOTEL E nodes(Ln_ d,
HOTEL --+ Ln E arcs(Ln-d and CATEGORY E nodes(Ln), to be considered.

Path expressions are extended to generalised path expressions by allowing a regular
expression (see Subsection 1.9.4) to replace an attribute name in a path expression. Thus
as in the example above, we can also use the wildcard operator, denoted by *, in a generalised
path expression; this operator is also called the Kleene closure operator. (We observe that
the wildcard operator can lead to an infinite number of data paths being considered and
thus in practice cycles in the HAG of the initial label must be detected.) In addition, we can
use the union operator, denoted by +, in generalised path expressions, where for example
L.Ao.(AI + A2) matches a data path L.L' in the HAG of L such that Ao E nodes(L), Ao --+ L' E

arcs(L) and either Al E nodes(L') or A2 E nodes(L'). For a more concrete query, we can
retrieve either the price or category of hotels in the U.K. by the query

SELECT $Europe_HoteLGuide.COUNTRY HOTEL.(PRICE + CATEGORY)
WHERE $Europe_HoteLGuide.COUNTRY.NAME = ·U.K.'

Two recent surveys on the issues in the emerging field of semistructured databases can be
found in [Abi97] and [Bun97]. The problems of integrating and querying heterogeneous
information in the context of a semistructured database are discussed in [QRS+95] and
in a more general context in [HuI97]. The particular problems concerning biological data
are discussed in [DOB95]. A solution to the data integration problem in the form of an
object-relational extension is given in [LR096]. The more traditional multidatabase approach
to schema integration is reviewed in [KCGS95] with respect to relational and object-oriented
databases. An overview of the Lightweight Object Repository Language (Lore!) query language
and its semistructured data model is given in [AQM+97], and details of its rival query
language Unstructured Query Language (UnQL) and its underlying data model are presented
in [BDHS96]. Schema discovery is important for semistructured databases, since it can assist
the user in posing meaningful queries and browsing through the database. In addition, the
discovered schema can be useful in query optimisation via the creation of path indices and the
identification of data paths which give empty query results. Foundations of schema discovery
in the form of dynamic generation of structural summaries of the information contained
in semistructured databases, called representative objects, and their implementation, called
DataGuides, were investigated, respectively, in [NUWC97] and [GW97]. A discussion of
several important issues regarding the specification of views for semistructured databases was
presented in [AGM+97]. Finally, a recent investigation which formalises a measure which
allows us to test whether two semistructured databases have the same information content is
presented in [Lev98].

10.7 Knowledge Discovery and Data Mining

The area of knowledge discovery and data mining in databases (KDD) is one of the most
exciting recently developing areas in the database field. The term knowledge discovery refers

10.7. Knowledge Discovery and Data Mining 561

to the overall process of finding knowledge in data and the term data mining refers to the
application of specific methods and algorithms which extract patterns from data. KDD brings
together the three areas of databases, machine learning and statistics. In this short section we
explain the underlying concepts involved in KDD and give a simple example in the context of
mining data dependencies in a relational database. Our treatment of the subject is discursive
rather than theoretical, mainly because the theory of KDD is still in its infancy.

The need for KDD arises from the overwhelming number of available databases both in the
business and scientific sectors. Examples of business data are: information resulting from
bar coding goods, information resulting from credit card purchases and financial market
information. Examples of scientific data are: the Humane Genome database project and
NASA's Earth Observing System which is predicated to generate vast amounts of remotely
sensored image data from satellites. Traditional ad hoc database queries can provide useful
and informative answers, but they are not, on their own, capable of extracting knowledge and
analysing patterns in the data. KDD provides us with the tools which automatically analyse a
database in order to find and mine for nuggets of useful knowledge.

Knowledge discovery is defined more precisely as the process of extracting nontrivial,
potentially useful and understandable patterns which are implied from a given database.

Fayyad, Piatetsky-Shapiro, Smyth and Uthurusamy further formalise the concept of
knowledge.discovery [FPSSU96, Chapter 1) using the following notions:

1) A dataset (or database) d is defined as a set offacts, or tuples, each over a given relation
schema.

2) A pattern is an expression E in some language which describes a subset d[E) of a dataset d.
A pattern is nontrivial if it is a more concise representation than the simple enumeration
of the set d[E) of facts it describes.

3) A certainty measure C(E, d) is a measure of how well the pattern E describes d[E).

4) An interesting pattern is one which is nontrivial, useful and understandable from the
user's point of view; to make the notion of interesting more precise it is possible to
attach a measure to it.

A pattern that is interesting and whose certainty measure is above some predefined threshold
is called knowledge. We can now define data mining more precisely as the step in the knowledge
discovery process involving the particular methods and algorithms used to extract knowledge.

The KDD process involves the following steps:

1) Understanding the application and collecting the relevant prior knowledge.

2) Creating or selecting the dataset on which knowledge discovery is to be performed.

3) Data cleaning, i.e. removing any detected noise or outliers from the dataset which
correspond to errors in the data. Deciding how to handle missing and irrelevant data.

4) Data reduction and projection, i.e. reducing the number of variables under consideration
and transforming the data in order to find the useful features which represent the data.

5) Choosing the data mining methods to be used for the chosen data mining tasks and
executing them on the input dataset.

562 Chapter 10. Extensions to the Relational Data Model and Recent Directions

6) Interpreting the mined knowledge output from the previous step, and iterating any
previous steps if necessary.

7) Consolidating the output discovered knowledge, i.e. using this knowledge to our benefit.
This may involve using the discovered knowledge in an application or simply producing
a document detailing the results.

The KDD process can be further abstracted in the three main steps of data preparation,
data mining operations and data presentation. Data mining methods consist of the following
three components:

1) Model representation, which is the language for describing the patterns we are mining
for; for example, decision trees, rules and Bayesian networks are representation models.

2) Model evaluation, which is the estimate on how well an extracted pattern meets the
criteria of being knowledge; for example, statistical significance and simplicity with
respect to some known patterns can be used for evaluation.

3) Search, which is the process of finding a solution, in the form of a pattern, by examining
prospective solutions in the search space. Normally, heuristic searching techniques are
used, since the search space is, in most KDD applications, too large for an exhaustive
search to be computationally feasible. Heuristic search methods include probabilistic
algorithms which utilise samples from the data set during their execution.

The main goals of data mining methods are prediction and description. Prediction involves
using some attributes of the database schema to predict certain values of other attributes.
Description involves finding patterns which can be considered to be knowledge. The goals
of data mining are achieved by the following tasks: classification, regression, clustering,
summarisation, dependency modelling and time series modelling.

A related area to KDD that has recently attracted a great deal of attention is that of On
Line Analytical Processing (OLAP) [CCS93], rather than the traditional On-Line Transaction
Processing (OLTP). OLAP concerns the co-existence of transaction intensive databases and
decision support systems. OLAP arises from the requirement for multidimensional data
analysis tools in order to complement currently available DBMS tools. The activities of such
analytic tools against the database constitute a transaction, whose duration may be an order
of magnitude longer than a standard database transaction. OLAP transactions interact with
historical data in addition to snapshot data and are typically made up of numerous "what-if'
and "why" queries. In order to support OLAP the query language must provide facilities
for calculation, aggregation and data manipulation across any number of data dimensions.
A specific generalisation of the SQL GROUP BY operator, briefly introduced at the end of
Subsection 3.2.2 of Chapter 3, is the data cube operator [GCB+97]. Given a set of n attributes,
the data cube operator computes a GROUP BY query for each of the 2" possible combinations
of the attributes and summarises the results in a single table. Fast algorithms for computing
the result of applying the data cube operator are presented in [AAD+96].

The challenge of integrating OLAP into a relational database system can be addressed by
developing dedicated OLAP servers that in teract with the database in order to store and retrieve
data multidimensionally. The database with which an OLAP server interacts is called a data
warehouse [Inm96, Kim961. This term broadly refers to a database which contains a collection

10.7. Knowledge Discovery and Data Mining 563

POS Fact

ITEM Dimension
STORE Dimension STORE_KEY

ITEM_KEY

STORE_KEY QTY_SOLD
ITEM_KEY

r-- r-- NAME
CITY TOTAL]RICE

CATEGORY
REGION DATE_SOLD

UNICPRICE

Fig 10.12 The star schema for POS

of subject-oriented, integrated and historical data. Examples of data warehouses are: large
collections of scientific data and historical enterprise data such as sales data.

As an example of an OLAP application consider sales data, which has accumulated over a
period of time, detailing various products and the stores in which they were sold. A typical
OLAP query might ask to find the sales volume of each product type in each store. This
query may be refined by asking for a breakdown of the sales per month during the last
year. OLAP queries should also be able to analyse relationships which are inherent in the
data; for example, we may like to know whether there is a connection between the volume
of sales of particular products and the district of the shop in which they were sold. Queries
should also be capable of aggregating data according to hierarchical time periods and different
perspectives such as sales by product or by district of store. In addition, OLAP queries should
be able to carry out complex calculations, which may also be predictive in nature, such as
the expected profits per product. (See [CD97) for a recent overview of data warehousing and
OLAP technology).

In order to build a data warehouse the database system used should support a
multidimensional data model at the conceptual level. Most data warehouses use a star join
schema (or simply a star schema) [Kim96, Red98) to represent the multidimensional data
model. (See [GL97) for a proposal of a higher level mutlidimensional data model and a query
language for it, which could in principle be implemented on top of a relational database.) A
star schema is a database schema which resembles a star, having a central relation schema,
called the fact table, and surrounding relation schemas, called the dimension tables. For each
dimension table in the star schema the fact table contains a distinct foreign key referencing
the primary key of the dimension table. The amalgamation of all the foreign keys of the fact
table yields its primary key, which is composite assuming that there are at least two dimension
tables. In terms of entity-relationship modelling, the fact table expresses a many-to-many
relationship amongst the dimension tables, The fact table contains the core information
on the data being analysed and the dimension tables contain further properties of the core
data. The motivation behind the design of star schemas is that in data warehousing we
are primarily interested in efficient query processing rather than in efficient updating via
transaction processing [OG95).

As an example of a star schema, consider a point-of-sales data warehouse of a retail business
with many outlets, whose fact table is POS, with schema(POS) = {STORE_KEY, ITEM_KEY,
QTY _SOLD, TOT ALP RICE, DATE_SOLD}, and dimension tables are STORE and ITEM, with
schema(STORE) = {STORE_KEY, CITY, REGION} and schema(ITEM) = {ITEM_KEY, NAME,

564 Chapter 10. Extensions to the Relational Data Model and Recent Directions

CATEGORY, UNILPRICE}j see Figure 10.12. The relation over the fact table of this data
warehouse contains one tuple for each item sold on a particular datej the granularity of time is
fIxed for all such tuples and may be one day in this case. On the other hand, the relation over
the store dimension contains one tuple for each store of the business, and the relation over
the item dimension contains one tuple for each item supplied. The size of the relation over
the fact table is typically much larger than the size of any of the relations over its dimension
tables. Assume that the granularity of time is a single day, that the data warehouse stores
the point-of-sales information over a year, and that there are 100 stores in the business each
selling approximately 1000 different items per day, out of a possible 10,000 items. Then the
relation over the fact table contains approximately 36.5 million tuples, the relation over the
STORE dimension contains 100 tuples, and the relation over the ITEM dimension contains
10,000 tuples.

Data warehousing has also recently revived the area of view updates, since a data warehouse
can be defIned as a materialised view [GM95], which mayalsocontain aggregate data [MQM97].
The problem that arises when a view is materialised is the view maintenance problem,
which is the problem of consistently updating the materialised view when the underlying
database relations are updated (see the discussion at the end of Section 3.8 in Chapter 3).
View maintenance of IDB predicates of Datalog programs is considered in [DT92, DR97].
More specifically, the problem of whether a view, which materialises the transitive closure
predicate, can be updated via a nonrecursive Datalog program, referred to as the maintenance
in fIrst-order problem, is tackled. In [DT92] it is shown that when the updates involve the
insertion of edges to the underlying graph then the view can be maintained in first-order,
and in [DR97] it is shown that when adding certain constraints on node costs the view can
still be maintained in fIrst-order. Monitoring the updates carried out on the underlying
database can be done via an active database component (see Section lOA) as discussed in
[ZHKF95].

For surveys elaborating on the issues of KDD we have touched upon, and a wide selection
of papers on KDD see [PSF91, CT93, HS94b, FU95, CHY96, FPSSU96, FU96]. A recent
introductory book to KDD is [WI98].

As an example of KDD in relational databases we mention the following functional
dependency inference problem (FD inference problem):

Given a relation r over a relation schema R fInd a cover of the set of all FDs that are satisfIed
in r.

More formally, let r be a relation over Rand dep(r) be defIned by

dep(r) = {X ~ Y I X, Y s; schema(R) and r 1= X ~ Y}.

Then the FD inference problem is the problem of fInding a cover of dep(r)j note that r is an
Armstrong relation for dep(r) (see Subsection 3.6.2 of Chapter 3).

The following naive algorithm solves the FD inference problem.

10.7. Knowledge Discovery and Data Mining

Algorithm 10.4 {INFER{r, R}}
1. begin
2. F:= 0;
3. for each subset X S; schema{R} do
4. for each attribute A E schema{R} - X do
5. if r F= X -+ A then
6. F := F U {X -+ A};
7. end if
8. end for
9. end for
10. return F;
11. end.

565

This algorithm is obviously not practical, since it considers all the subsets of schema{R).
Mannila and Riiiha have developed several improved algorithms for solving the FD inference
problem that can be used in practice [MR86a, MR87, MR94] (see Exercise 10.29 for one
such algorithm). In [MR92b] they have shown that, in general, the FD inference problem is
exponential in the number of attributes, type{R), of schema{R}. Therefore no algorithm exists
which in all cases will solve the FD inference problem efficiently. An extension of the inference
problem to inclusion dependencies (the IND inference problem) was considered in [KMRS92).
The computational complexity of the IND inference problem is at least NP-complete for general
INDs, but can easily be shown to be polynomial in type{R) for unary INDs, since there are at
most type{R)2 possible unary INDs over R.

Example 10.3 Let r be the relation shown in Table 10.15, over R, with ENAME (E), DNAME
(D) and MGR (M) being the attributes in schema(R). The reader can verify that F = {D -+ M,
M -+ D, E -+ D} is a cover of dep(r). •

Table 10.15 A sample relation

ENAME DNAME MGR
Miriam Computing Eli
Naomi Computing Eli

Susi Mathematics Cyril

Due to the exponential computational complexity of the FD inference problem the following
approximate FD inference problem is appropriate:

Given a relation r over a relation schema R find a set of FDs F over R such that, with high
probability, F is close to a cover of dep{r).

In [AT94, KM95) the approximate FD inference problem is investigated using the framework
of Probably Approximately Correct (PAC) learning [VaI84). Therein, according to the
probability and closeness desired, sample sizes with respect to the input relation and schema
are derived which solve this problem. For related approaches to the dependency inference
problem see [Zia91, MGB93, PSM93, SF93, Sch93, BeI95a).

Finally, we mention Inductive Logic Programming (ILP) which is a subarea of machine
learning, whose goal is to induce first-order logic formulae from a set of training examples

566 Chapter 10. Extensions to the Relational Data Model and Recent Directions

and background knowledge [MD94, Dze96]. The training examples consist of positive and
negative facts, and the background knowledge is expressed in the form of first-order logic
formulae. Any induced logic formula in conjunction with the background knowledge should
be complete, i.e. it should logically imply the positive facts, and it should be consistent, i.e. it
should not logically imply the negative facts. In other words, an induced logic formula should
explain all of the positive facts and none of the negative facts. In the context of KDD, an
instantiation ofILP can be viewed as the inference of a nontrivial rule for a Datalog program
such that the head of the inferred rule has the same predicate symbol as the training examples.
In the context of Datalog, the background knowledge is a Datalog program and the training
examples are a separate set of facts, partitioned into positive and negative facts for the purpose
of the learning algorithm. As an example, consider a Datalog program with the background
knowledge being two unary predicates male and female, and a single binary predicate parent.
The ILP task could be to infer the binary predicate daughter given some positive and negative
daughter facts. Another more challenging example, which was tackled in [BM94, Mor94], is
that of learning playing strategies to solve chess endgames.

In a nonmonotonic setting for ILP the set of positive facts of the training examples is
considered to be part of the background knowledge and the set of negative facts of the training
examples is empty. Such negative facts, i.e. facts which should be false, are derived via the
CWA (closed world assumption).

10.8 Other Areas

There are several important areas in the database field which we would like to mention but
have not been covered as such in the book.

Firstly, the issues concerning the presentation of multimedia information are very
important, including apart from text, also other media such as graphics, video, sound,
and animation. In order to manage such multimedia information, tools need to
be developed that store and retrieve such information efficiently. Furthermore, the
Human-Computer-Interaction (HC!) problem for multimedia databases poses new problems
in the development of user interfaces for databases. A survey on the issues and current
approaches to integrating multimedia information into database technology is presented in
[CK95]. An interesting approach for giving semantics to query evaluation in a multimedia
system, which utilises fuzzy set theory, can be found in [Fag96]. A recent collection of papers
on the state of the art in the area of managing multimedia data is [ABH97].

Secondly, the use of high performance parallel computing technology is being utilised in
order to speed up processing of large amounts of data. One of the problems confronting the
use of such technology is that of devising efficient parallel join algorithms. In particular, such
an algorithm needs to partition the relations being joined into buckets so that each bucket is
processed in parallel. For a survey on parallel relational database systems see [Omi95].

A fundamental area which we did not cover in this book is that of managing distributed
relational databases [CP84a, 6V91, GH95]. A distributed relational database is a collection of
relational databases, called sites, which are connected via a communication network. Since
all the sites share the same data model, i.e. the relational model, the distributed database
is homogeneous. The fundamental principle underlying a distributed relational database is

10.S. Other Areas 567

that as far as the users are concerned the database system behaves exactly like a standard
nondistributed relational database system (see [Dat95, Chapter 21]). That is, the fact that the
database is distributed should be transparent to its users. A common example of a distributed
database is that of an airline reservation system, where each individual office has access to
part of the reservation information, which is distributed according to the home countries of
the airlines. To users of such a reservation system the actual distribution details should be
completely transparent.

Two important issues during the design of a distributed relational database are those of
fragmentation and replication of data. Fragmentation is the problem of dividing a relation
amongst the various sites at which it is to be stored. For example, in the airline reservation
system we may store the information about British Airways flights at the London site and
the information about Quantas flights at the Sydney site. From the users' point of view the
fragmentation of this relation is transparent. Replication is the problem of duplication of
tuples in a relation in two or more sites. For example, we may wish to replicate some of
the information concerning Quantas flights in Europe at the London site. Again from the
users' point of view the replication of tuples of this relation is transparent. The decisions
relating to fragmentation and replication of the data clearly have an effect on the efficiency
of query processing. The problems confronting distributed query processing and transaction
management are different from those encountered in the nondistributed case, since in many
cases the communication costs of transferring data between sites over the network will be the
overriding cost that needs to be minimised.

A special type of distributed system which is widely used is that of a client/server system. In
such a system some of the sites are clients (the frontend) and others are servers (the backend).
The database resides on the servers and the applications are run on the clients.

Another recent challenge to distributed database systems is that of mobile computing [IB92,
GH951. In such an environment users will be operating small portable computers, which will
be able to communicate with each other, possibly via a large database server. For example,
a minicab firm would like to keep track of all their cabs with the aid of a distributed mobile
database, where each minicab is considered to be a site with its own mobile computer and local
database. Each local database may contain the current location and destination of the minicab,
and information about the customers it has served during the day. In a mobile distributed
database the information is rapidly changing and thus it is update-intensive. For example,
the current location and passenger information of a minicab is ever changing. Therefore, we
may have to accept errors due to the data being out of date, and thus a margin of error may
have to be attached to the answer of certain queries. In addition, if the data is being acquired
from different sources then there may also arise the problem of dealing with inconsistencies
in the database [Lev961.

Database technology has moved a long way since the inception of relational databases in
the 1970's. Although the relational data model is currently dominating the database market
place there are many operational non-relational database systems which are still in current
use. Such systems are either legacy databases such as hierarchical or network databases,
or newer database systems such as object-oriented databases, whose underlying model is
incompatible with the relational one. In order to operate in such aheterogeneous environment,
in which several different databases are available, a multidatabase system is needed, which
provides a unified data model to users of the various databases. Such a database system
is also known as a federated database system, since each database system in the federation

568 Chapter 10. Extensions to the Relational Data Model and Recent Directions

maintains its autonomy, i.e. its local operation remains unchanged, but agrees to share part of
its information with other database systems in the federation. For a survey on the problems
confronting multidatabase systems and the interoperatabilityoflegacy databases see [Kim95a,
Part II).

10.9 What Lies Beyond?

Relational database technology has developed rapidly in the last two decades, and has reached
its current maturity by utilising the rich underlying mathematical foundations that were
developed in academia. The basic theory of relational databases has reached a relatively
stable state but as can be seen from the various extensions presented in this chapter, relational
database theory is still a very fluid and active subject. The synergy of database theory with
other areas in computer science, such as machine learning and statistics in the knowledge
discovery subarea and information retrieval in the hypertext subarea, is leading to important
advances in the field.

We expect that relational database theory will continue to be a major influence on the
development of DBMSs by providing sound modelling criteria and efficient algorithms for
implementing them. The theory also has the role of clearly mapping the boundary between
problems that have tractable solutions and problems that do not. In addition to stating which
problems are intractable, such as proving NP-completeness for a given problem, the theory
has the important role of discovering important subclasses of the problem that can be solved
efficiently, i.e. in polynomial time in the size of the input. Moreover, approximation algorithms
may be viable in cases where the problem is intractable and we expect that heuristic techniques
such as: hill climbing, simulated annealing, tabu search, genetic algorithms, neural networks
and probabilistic algorithms will be used.

10.10 Exercises

Exercise 10.1 It has been proposed in [SPS87] that the nested relational model act as an
internal level between the conceptual and physical levels of the DBMS, so that relations can be
hierarchically clustered as nested relations. Discuss how such an internal level can be useful
in the optimisation of flat relational queries at the conceptual level, and how it is related to
the concept of denormalising a database schema.

Exercise lO.2 Assume that we extend the definition of a simple selection formula to allow
expressions of the form (X)* ~ (Y)*, where (X)* and (Y)* are relation-valued attributes in
a nested relation schema R. Given a tuple t in a nested relation rover R, t logically implies
(X)* ~ (Y)*, if t[(X)*) ~ t[(Y)*) evaluates to true. Such formulae are called extended simple
selection formulae.

Show how the division operator of the relational algebra (Definition 3.18 in Subsection 3.2.1
of Chapter 3) can be expressed in a simpler manner in the nested relational algebra by using
one level of nesting and extended simple selection formulae.

10.10. Exercises 569

Exercise 10.3 The power set algebra comprises the nested relational algebra augmented with
a power set operator, which given a nested relation rover R, returns a nested relation r' over
R', with schema(R'} = {(schema(R}}*), where r' contains the set of all subsets of r.

Show that the power set algebra is strictly more expressive than the nested relational algebra;
for example, you can show that the transitive closure can be expressed in the power set algebra
but not in the nested relational algebra [HuI87j. In addition, show that either the nest or the
difference operator is redundant in the power set algebra, in the sense that the expressiveness
of the power set algebra is not diminished when either the nest or the difference operator is
removed from it [GV91j.

Exercise 10.4 The nest and unnest operators of the nested relational algebra allow us to
restructure nested relations according to a suitable schema. For example, we may want to
know the set of courses that a given student takes, or alternatively the set of students that take
a particular course. Illustrate the problems in restructuring hierarchical relations, when the
information content of a hierarchical relation r is represented by the flat relation UNNEST*(r}.
Suggest how the information content of a hierarchical relation may be better represented by a
flat database emanating from r, such that each flat relation in this database can be computed
from r via a nested relational algebra expression [AB86, Hu190j.

Exercise 10.5 Given a flat relation rover R, where schema(R} = {AI, A2, ... , Am, BI , B2,
... , Bn }, and a natural number k, prove that the problem of finding a nested relation s over
S, where schema(S} = {AI, A2, ... , Am, (BI)*, (B2)*, ... , (Bn)*), such that UNNEST*(s} =
rand s has at most k tuples, is NP-complete [Tak89j. (Hint: To establish NP-hardness,
give a polynomial-time transformation from the minimum disjunctive normal form problem
[GJ79j.)

Exercise 10.6 Let r be a relation over a relation schema R, with schema(R} = XYZ, where X n
Y = 0 and Z = schema(R) - XY. Show that the following statements are equivalent [FSTV85j:

I} X -+-+ Y I Z holds in r.

2} X -+ (Y)* holds in NESTy(r).

3} X -+ (Z)* holds in NESTz(r}.

4) X -+ (Y)*(Z)* holds in NESTy(NESTz(r».

5) X -+ (Y)*(Z)* holds in NESTz(NESTy(r».

Exercise 10.7 Let R be a nested database schema and let schema(R) denote the set of all
atomic attributes appearing in the nested relation schemas ofR. Then R is said to be in Nested
Normal Form (NNF) with respect to a set M of MVDs over schema(R), if the path set, P;, of
each nested relation schemaRj E Ris in 4NF with respect to M, and, in addition, M F I><l [{Pdj.
(A relation schema R is in Fourth Normal Form (4NF) with respect to a set M of MVDs, if
every MVD X -+ -+ Y in M is trivial.) Justify the definition of NNF in terms of the FDs that
are satisfied in the nested relations in databases over NNF schemas, with reference to BCNF.

Exercise 10.8 The object identity of a tuple can be implemented as the physical address of
the tuple, or alternatively, as a surrogate, which is a unique identifier that is generated by the

570 Chapter 10. Extensions to the Relational Data Model and Recent Directions

DBMS and is independent of the physical address of the tuple [KC86]. Discuss the advantages
of each implementation strategy, and argue that, when using surrogates, object identifiers
should be globally unique within the database rather than just locally unique within a relation.

Exercise 10.9 An important feature of an object-oriented database (that we have not delved
into) is the facility to introduce user-defined data types as attribute domains, in addition to
the standard attribute domains of numbers and strings. Such a facility should allow database
programmers to define new data types and the operations on these types [OH86, Sto86).
(See also the discussion in Section 3.7 of Chapter 3.) For example, in a geographic database
which needs to manipulate spatial data, we may need to define a data type, called region, and
operations such as; whether two regions are adjacent and whether one region is contained in
another. Assuming that the operations for user-defined data types can be implemented in a
computationally complete database query language, suggest how such data types can be used
in an extended relational algebra.

Exercise 10.10 Summarise the features that make a database system object-oriented, and
discuss the viability of extending a relational database system to support these features [SM96].

Exercise 10.11 Recall the definition of an ISA relationship in the ER model, which was
presented in Definition 2.12 in Section 2.4 of Chapter 2. Suggest how the semantics of ISA
relationships can provide a basis for extending the relational algebra with an inheritance
facility and describe what benefits are gained by such an extension.

Exercise 10.12 Suggest a declarative rule-based query language for the hypernode model
[PL94j.

Exercise 10.13 Design a user interface for the hypernode model.

Exercise 10.14 Suggest a normal form for hypernodes, wherein a hypernode database is
replaced by a single hypernode and such that there is no loss of information in the normal
form representation; two hypernodes having the same information content should have the
same normal form hypernode [Lev98].

Exercise 10.15 A hypernode database HD is said to be acyclic if for all defining labels, G,
of hypernodes in HD, the HAG of G is acyclic, otherwise HD is cyclic. Argue with examples
whether cyclic hypernode databases are more expressive than acyclic ones.

Exercise 10.16 A workflow management computer system describes the flow of control
between multiple processing steps, which may execute on different servers and such that the
duration of the activities being modelled may be long-running. You are given the following
outline specification of a workflow management hospital information system. A patient
arrives at the hospital and is admitted. Then the patient is examined by a physician and the
physician may prescribe several tests to be carried out at certain dates. In addition, the patient
may be required to be hospitalised and thus a room must be assigned to this patient and a daily
routine be arranged which includes meals and daily checkups. When the results of the tests
arrive, then the physician must assess them and reexamine the patient. As a result further
tests may be prescribed. When the patient is released, then the administrative records must

10.10. Exercises 571

be updated for billing purposes. Demonstrate how such a system could be implemented by a
program ofECA rules [DHL90, DHL91]; you may use pseudo-code where appropriate.

Exercise 10.17 Assume that P is a program consisting of a finite set of ECA rules and let :::J be
a partial order on the rules in P such that Ri :::J Rj implies that the rule Ri has a higher priority
than the distinct rule Rj' in the sense that if both Ri and Rj are activated at the same time, then
Ri is fired before Rj. Two distinct rules Ri and Rj are non-prioritised if neither Ri nor Rj has a
higher priority than the other.

We say that P is confluent, if the final database state resulting from processing the rules in P
is independent of the activation order of the set of non-prioritised rules in P. Furthermore, we
say that two distinct rules Ri and Rj commute if the database state, resulting from activating
Ri first and Rj second, is the same as the database state resulting from activating Rj first and
Ri second.

Show that if all pairs of distinct rules in P commute then P is confluent. Since some of the
rules in Pare priori tis ed, insisting that all pairs of distinct rules commute is too conservative a
condition for confluence to hold. Consider the following algorithm, where T(R) is a function
which returns the set of all rules, including the rule R, that can be triggered by R.

Algorithm 10.5 (PAIRS(P, Ri, Rj)}
1. begin
2. SI := {Ri};
3. S2 := {Rj};
4. while SI or S2 are modified do
5. SI := SI U (R E P IRE T(R 1) for some RI E SI and

R :::J R2 for some R2 E S2 and R =1= Rj};
6. S2 := S2 U (R E P IRE T(R2) for some R2 E S2 and

R :::J RI for some R1 E 51 and R =1= R;};
7. end while
8. return (SI, S2);
9. end.

Show that P is confluent if for every pair of distinct non-prioritised rules Ri and Rj in P,
when (51, S2) is returned by PAlRS(P, Ri, Rj), then every pair of rules RI E 51 and R2 E S2
commutes [A WH92] .

Exercise 10.18 A State-Transition Diagram (STD) [You89] is a diagram used in software
engineering analysis, which describes the time-dependent behaviour of a system under design.
An STD can be viewed as a finite automaton augmented with the ability to produce an output
on change of state; such a finite automaton is called a Mealy machine [HU79]. Give an outline
of how the semantics of a program consisting of a finite set of ECA rules can be described by
using Mealy machines. (See Subsection 1.9.4 in Chapter 1 for a formal definition of a finite
automaton.)

Exercise 10.19 Suggest how a hypertext database may be formalised as a finite automaton
and how such a formalisation can be used to specify the semantics of browsing [SFR92, LL99c].

572 Chapter 10. Extensions to the Relational Data Model and Recent Directions

Exercise 10.20 Develop a query language for hypertext databases based on temporal logic
[BK90, SFR92, LL99cl.

Exercise 10.21 In this exercise we investigate the definition of a relevance function for links
in a hypertext database, in order to facilitate the computation of fisheye-views [TD921.

Let G = (N, E) be a digraph representing a hypertext database and assume that all links
(n, m) in E have a natural number attached to them, denoted by rel(n, m), which represents
the relevancy of the arc from the user's point of view; in addition, let max]el denote the
maximal relevance of any link in E. Also, denote the ith path from a node n to a node m in the
transitive closure of G by [n , mli, where the paths from n to m are indexed in some manner.

The path-dependent a priori relevance of the ith path, [n , m Ii, denoted by apr([n , m I i), is a
real number, defined by

l} apr([n, nli) = 1.

2) apr([n, m]i) = rel(n , m)/max]el, if [n , m]i is the single arc (n, m) in E.

3) apr([n, m]i) = apr([n,p]j) x apr([p, m]k), where ([n,p]j) is the path resulting from
removing the last arc (p, m) from [n, m]i and [p, mh is the last arc of the path [n, mJi.

(For more details on the transitive closure operation, see Definition 3.22 in Subsection 3.2.1
of Chapter 3).

Finally, we define the path-independent a priori relevance of a link (n, m) in the transitive
closure ofG, denoted by APR(n, m), as follows:

l} APR(n, n) = 1.

2) APR(n , m) is the maximum of apr([n, m]i) over all paths [n, mli in G.

3) APR(n, m) is undefined if there is no path from n to m in G.

Prove that APR(n, m) :::: APR(n, p) andAPR(n, m) = APR(n, p) x APR(p, m), where all the
paths from n to m contain the node p. What are the shortcomings of the function APR?

Exercise 10.22 Show how a semistructured database can be formalised as a nondeterministic
finite automaton, where labels and atomic values correspond to states of the automaton and
attribute names correspond to transitions of the automaton from a given state to another
state. (See Section 1.9.4 of Chapter 1 for more on deterministic and nondeterministic finite
automata.)

A DataGuide for a semistructured database represented by a nondeterministic finite
automaton, M, is defined as a deterministic finite automaton which is equivalent to M. Give
an equivalent definition of a DataGuide in terms of how its path expressions relate to the
semistructured database over which it is defined [GW97, NUWC971. In addition, using
an example database, demonstrate the utility of DataGuides as an aid for formulating and
processing queries.

A minimal DataGuide for a semistructured database represented by a nondeterministic
finite automaton M is one which has a minimal number of states. Discuss the desirability of
minimal DataGuides by using an example database.

10.10. Exercises 573

Exercise 10.23 Propose an update language for semistructured databases.

Exercise 10.24 The view maintenance problem is the problem of correctly updating a view
when an update is performed on one of the relations of the underlying database (see Section 10.4
and the discussion at the end of Section 3.8 in Chapter 3). A view is self-maintainable with
respect to an update if it can be maintained without accessing the database relations. We
define an SP view to be a view formed from relation algebra expressions involving only
selection, projection and renaming over a single relation, and an SP] view to be a view formed
from relational algebra expressions involving only selection, projection, (natural) join and
renaming.

1) Show that all SP views are self-maintainable with respect to insertions.

2) Show that an SP] view that involves the join of two or more distinct relations is not, in
general, self-maintainable with respect to insertions.

3) Show that an SP view is self-maintainable with respect to deletions from a relation ri
over Ri, if some key K for Ri is included in the view definition, or K is equated to a tuple
of constants in a selection formula defining the view.

4) Show that an SP] view is self-maintainable with respect to deletions from a relation ri
over Ri, if for each occurrence of Ri in a join in the view definition, either some key K for
Ri is included in the view definition, or K is equated to a tuple of constants in a selection
formula defining the view.

5) An attribute in a relation schema Ri is exposed in a view, if, in the view definition, it is
either involved in some selection formula or is a join attribute. Show that an SP view
is self-maintainable with respect to modifications of unexposed attribute values of a
relation ri over Ri, if some key for Ri is included in the view definition.

6) Show that an SP] view is self-maintainable with respect to modifications of unexposed
attribute values of a relation ri over Ri, if for each occurrence of Ri in a join in the view
definition, some key for Ri is included in the view definition.

Exercise 10.25 Discuss with an example how historical relations can be utilised in the process
of building and maintaining a data warehouse. (See Chapter 7 for details on historical relational
databases.)

Exercise 10.26 Argue for the claim that the fact table of a star schema is naturally in a high
normal form, i.e. 3NF or BCNF, while it is a waste of time to normalise the dimension tables
of a star schema into such a high normal form.

Exercise 10.27 Design a star schema for an electronic mail order book store.

Exercise 10.28 Let r be a relation over R and X -+ Y be an FD over R. We say that an FD X
-+ Y is E-bad in r if

I {t E r I there exists U E r such that t[X) = u[X) and try) # u[Y]} I
Irl

where 0 < E < 1, recalling that I rl denotes the cardinality of a relation r.

> E,

574 Chapter 10. Extensions to the Relational Data Model and Re<:ent Directions

Show that if the FD X ~ Y is E-bad in r, then algorithm GOOD{r, X ~ Y, m), given below,
returns NO with probability of at least 1-8, where 0 < 8 < 1 [AT94, KM95]. (In the algorithm
we let m = (l/E)ln(l/8), where In stands for the natural logarithm and fml denotes the least
natural number greater than or equal to m.)

Algorithm 10.6 (GOOD{r, X ~ Y, m»
1. begin
2. repeat f m 1 times
3. t := random tuple from r;
4. if there exists a tuple u E r such that t[X] = u [X] and try] =F u [Y] then
5. return NO;
6. end if
7. end repeat
8. return YES;
9. end.

Exercise 10.29 In this exercise we investigate an algorithm for mining the FDs in a relation
r over a relation schema R [MR94].

Let lhs{r, A), where A E schema{R), denote the set of all left-hand sides, X, ofFDs such that
dep{r) F= X ~ A and for no proper subset Y C X is it true that dep{r) F= Y ~ A. Now, given
two tuples t and u in r we define the agreement set of t and u, denoted as agree(t, u), by

agree(t, u) = {B E schema(R) I t[B] = u[BJ).

The disagreement set of the tuples t and u, denoted as disagree(t, u), is defined by

schema(R) - agree(t, u).

The necessary set of an attribute A E schema{R) with respect r, denoted as nec(r, A), is
defined by

nec(r, A) = {disagree(t, u) - {A} I t, u E r and A E disagree(t, u)}.

Finally, we define the collection of all sets X in nec(r, A) that are not supersets of other sets
in nec(r, A), denoted by min_nec(r, A), as

min_nec(r, A) = {X E nec(r, A) I there does not exist Y E nec{r, A) such that Y eX}.

A database hypergraph, say H, over a relation schema R is a collection of subsets of
schema{R); we assume that H is simple, that is to say, if X, Y E H and X ~ Y then X =
Y. A subset T of schema{R) is a transversal of H, if for all sets of attributes X E H, T n X
=F 0. A minimal transversal T ofH is a transversal such that no proper subset T' C T is also a
transversal of H. The collection of all minimal transversals ofH is denoted by TRANS{H).

Prove that lhs(r, A) = TRANS{min_nec(r, A».

Exercise 10.30 Argue that due to the additivity problem Algorithm lOA is not sufficient for
the purpose of inferring the set of FDs that are weakly satisfied in an incomplete relation

10.10. Exercises 575

[L V97J. (See Section 5.5 of Chapter 5 for the formalisation of the additivity problem for FDs
holding in incomplete relations.)

Propose a solution for the FD dependency inference problem in incomplete relations [L V97J.
(Hint: consider the maximal subsets G of P+ with respect to Armstrong's axiom system such
that r ~ G if and only if for all X -+ Y E G, r ~ X -+ Y.)

Exercise 10.31 In this exercise we investigate data mining association rules such as 90% of
the customers that buy bread and jam also buy butter [AIS93, SON95, AMS+96j.

Let R be a relation schema having attributes {AI, A2, ... ,Am} such that the domain of all
the attributes Ai E schema(R) is {O, I} . The attributes Ai E schema(R} are called items, and
sets of attributes X S; schema(R) are called itemsets. A relation rover R is a finite set of tuples
over R, which are also called transactions. With each transaction t E r we associate an itemset
X S; schema(R), such that for all i = 1,2, . . . , m, Ai E X if and only if trAil = 1. We say that
X is an itemset of r to mean that X is an itemset associated with a transaction t E r.

An association rule (or simply a rule) is an implication of the form X ::::} A, where X is
an itemset, A is an item, and A fj. X. The rule X ::::} A is satisfied in a relation rover R with
confidence c, if at least c% of the item sets of r that contain X also contain A. The rule X ::::} A
has support s in the relation r, if at least s% of the item sets of r contain XA.

The problem of data mining association rules in a relation rover R is to generate all the
rules that are satisfied in r with confidence c and support s.

Discuss the significance of the support of a rule in a relation. Show that ifXB ::::} A is satisfied
in r with support s, then X ::::} A is also satisfied in r with support s, and show that the reverse
implication does not necessarily hold. In addition, show that if X ::::} A is satisfied in r with
confidence c, then XB ::::} A is not necessarily satisfied in r with confidence c, and show that
the reverse implication does not necessarily hold.

Exercise 10.32 Devise an algorithm for data mining association rules, which were defined in
Exercise 10.31, with confidence c and support s. (Hint: The support of a set of attributes X S;
schema(R) in a relation r, over R, is the percentage of itemsets in r that contain X. It follows
that X ::::} A is satisfied in r with confidence c, if the support of XA divided by the support of
X multiplied by 100 is greater than or equal to c.)

Bibliography

[AABM82J

[AB86J

[AB88J

[AB95J

[ABH97J

[Abi88J

[Abi89J

[Abi97J

[Abr74J

[ABU79J

[ABW88J

[AC75J

[AC83J

[AC84J

[AC89J

[AC91J

P. Atzeni. G. Ausiello. C. Batini. and M. Moscarini. Inclusion and equivalence between relational database
schemata. Theoretical Computer Science. 19:267-285. 1982. [233J

I. Annevelink. R. Ahad. A. Carlson. D. Fishman. M. Heytens. and W. Kent. Object SQL - A language for the
design and implementation of object databases. In W. Kim. editor. Modern Database Systems. The Object
Model. Interoperability. and Beyond. pages 42-68. Addison-Wesley. Reading. Ma .• 1995. [28J

S. Agarwal. R. Agrawal. P.M. Deshpande. A. Gupta. I.F. Naughton. R. Ramakrishnan. and S. Sarawagi. On
the computation of multidimensional aggregates. In Proceedings of International Conference on Very Large
Data Bases. pages 506-521 . Bombay. 1996. [562J

S. Abiteboul and N. Bidoit. Non first normal form relations: An algebra allowing data restructuring. Journal
of Computer and System Sciences. 33:361-393.1986. [569J

K.R. Apt and H.A. Blair. Arithmetic classification of perfect models of stratified programs. In Proceedings of
International Conference on Logic Programming. pages 765-779. Seattle. Wa .• 1988. [468. 483J

S. Abiteboul and C. Beeri. The power of languages for the manipulation of complex objects. The VLDB
Journal. 4:727-794. 1995. [383J

M.P. Atkinson. F. Bancilhon. D.I. DeWitt. K.R. Dittrich. D. Maier. and S.B. Zdonik. The object-oriented
database system manifesto. In Proceedings of International Conference on Deductive and Object-Oriented
Databases. pages 223-240. Kyoto. 1989. [27. 529J

P.M.G. Apers. H.M. Blanken. and M.A.W. Houtsma. editors. Multimedia Databases in Perspective. Springer
Verlag. London. 1997. [566J

S. Abiteboul. Updates. a new frontier. In Proceedings of International Conference on Database Theory. pages
1-18. Briiges. Belgium. 1988. [132]

S. Abiteboul. Boundedness is undecidable for Datalog programs with a single recursive rule. Information
Processing Letters. 32:281-287.1989. [491J

S. Abiteboul. Querying semi-structured data. In International Conference on Database Theory. pages 1-18.
Delphi. 1997. Invited talk. [560J

I.R. Abrial. Data semantics. In I.W. Klimbie and K.L. Koffeman. editors. Data Base Management. pages 1-59.
North-Holland. Amsterdam. 1974. [81J

A.V. Aho. C. Beeri. and I.D. Ullman. The theory of joins in relational databases. ACM Transactions on
Database Systems. 4:297-314.1979. [165. 199. 200J

K.R. Apt. H.A. Blair. and A. Walker. Towards a theory of declarative knowledge. In I. Minker. editor.
Foundations of Deductive Databases and Logic Programming. pages 89-148. Morgan Kaufmann. San
Francisco. Ca .• 1988. [468. 469J

M.M. Astrahan and D.D. Chamberlin. Implementation of a structured English query language.
Communications of the ACM.18:580-588.1975. [113J

P. Atzeniand P.P.-S. Chen. Completeness of query languages for the entity-relationship model. In P.P.-S. Chen.
editor. Entity-Relationship Approach to Information Modelling and Analysis. pages 109-122. North-Holland.
Amsterdam. 1983. [83J

A.K. Arora and C.R. Carlson. Normalization could be useful. The Computer Journal. 27:57-61.1984. [283J

F. Afrati and S.S. Cosmadakis. Expressiveness of restricted recursive rules. In Proceedings of ACM Symposium
on Theory of Computing. pages 113-126. Seattle. Wa .• 1989. [489J

P. Atzeni and E.P.F. Chan. Independent database schemes under functional and inclusion dependencies.
Acta Informatica. 28:777-799. 1991. [232]

577

578 Bibliography

[ACL87] R. Agrawal. M.J. Carey. and M. Livny. Concurrency control perfomance modeling: Alternatives and
implications. ACM Transactions on Database Systems. 12:609-654. 1987. [434]

[ACY91] F. Afrati. S.S. Cosmadakis. and M. Yannakakis. On Datalog vs. polynomial time. In Proceedings of ACM
Symposium on Principles of Database Systems. pages 13-25. Denver. Co .• 199\. [495.497]

[AD80J w. W. Armstrongand C. Delobel. Decomposition and functional dependencies in relations. ACM Transactions
on Database Systems. 5:404-430.1980. [195J

[AD93] P. Atzeni and V. De Antonellis. Relational Database Theory. Benjamin/Cummings. Redwood City. Ca .• 1993.
[377]

[ADS86] G. Ausiello. A. D·atri. and D. Sacca. Minimal representation of directed hypergraphs. SIAM Journal on
Computing. 15:418-431. 1986. [211]

[Afr94] F. Afrati. Bounded arity Datalog (;6) queries on graphs. In Proceedings of ACM Symposium on Principles of
Database Systems. pages 97-106. Minneapolis. Mn .• 1994. [497]

[AFS89] S. Abiteboul. P.c. Fischer. and H.-J. Schek. editors. Nested Relations and Complex Objects in Databases.
volume 361 of Lecture Notes in Computer Science. Springer-Verlag. Berlin. 1989. [522,524]

[AG85J S. Abiteboul and G. Grahne. Update semantics for incomplete databases. In Proceedings of International
Conference on Very Large Data Bases. pages 1-12. Stockholm. 1985. [502]

[AG94] M. Ajtai and Y. Gurevich. Datalog vs first-order logic. Journal of Computer and System Sciences. 49:562-588.
1994. [492]

[AGM+97] S. Abiteboul. R. Goldman. J. McHugh. V. Vassalos. and Y. Zhuge. Views for semistructured data. In
Proceedings of Workshop on Management of Semistructured Data. Tucson. Az .• 1997. [560]

[AGSS86] A.K. Ailamazyan. M.M. Gilula. A.P. Stolboushkin. and G.F. Schwartz. Reduction of a relational model with
infinite domains to the finite-domain case. Soviet Physics Doklady. 31:11-13. 1986. [\39]

[AGV89] S. Abiteboul. M. Gyssens. and D. Van Gucht. An alternative way to represent the cogroup of a relation in the
context of nested relations. Information Processing Letters. 32:317-324. 1989. [377]

[AH87] S. Abiteboul and R. Hull. IFO: A formal semantic data model. ACM Transactions on Database Systems.
12:525-565. 1987, [81 J

[AH88a] S. Abiteboul and R. Hull. Data functions. Datalog and negation. In Proceedings of ACM SIGMOD Conference
on Management of Data. pages 143-153. Chicago. II .• 1988. [503.512]

[AH88b] S. Abiteboul and R. Hull. Restructuring hierarchical objects. Theoretical Computer Science. 62:3-38.1988.
[524]

[AH91] A. Avron and J. Hirshfeld. On first-order database query languages. In Proceedings of IEEE Symposium on
Logic in Computer Science. pages 226-231. Amsterdam. 1991. [139]

[AHU83] A.V. Aho. J.E. Hopcroft. and J.D. Ullman. Data Structures and Algorithms. Addison-Wesley. Reading Ma .•
1983. [17,35.52,172,179,203,469]

[AHV95a] S. Abiteboul. L. Herr. and J. Van den Bussche. Temporal connectives versus explicit timestamps in temporal
query languages. In Recent Advances in Temporal Databases, Proceedings of the International Workshop on
Temporal Databases. pages 43-57. Zurich. 1995. [399]

[AHV95b] S. Abiteboul. R. Hull. and V. Vianu. Foundations of Databases. Addison-Wesley. Reading. Ma .• 1995. [379.
493]

[AHV96] S. Abiteboul. L. Herr. and J. Van den Bussche. Temporal versus first-order logic to querytemporaJ databases.
In Proceedings of ACM Symposium on Principles of Database Systems. pages 49-57. Montreal. 1996. [399]

[AIS93] R. Agrawal. T. Imielinski. and A. Swani. Mining associations rules between sets of items in large databases. In
Proceedings of ACM SIGMOD Conference on Management of Data. pages 207-216. Washington. D.C.. 1993.
[575]

[AJR97] P. Ammann. S. Jajodia. and I. Ray. Applying formal methods to semantic-based decomposition of
transactions. ACM Transactions on Database Systems. 22:215-254. 1997. [453]

[AK89] S. Abiteboul and P.C. Kanellakis. Object identity as a query language primitive. In Proceedings of ACM
SIGMOD Conference on Management of Data. pages 159-1 73. Portland. Oregon. 1989. [529]

[AK90] F. Afrati and C.D. Koutras. A hypertext model supporting query mechanisms. In Proceedings of European
Conference on Hypertext. pages 52-66. France. 1990. INRIA. [554]

[A1l83] J.F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM. 26:832-843. 1983.
[388,391]

[AM84] P. Atzeni and N.M. Morfuni. Functional dependencies in relations with null values. Information Processing
Letters. 18:233-238. 1984. [314,355]

Bibliography

[ANS7S]

[Apt90]

[Apt97]

[AQM+97]

[Arm74]

[Ar094]

[ART95]

[AS92]

[Ash94]

[ASU79]

[ASV90]

[AT91]

[AT92]

[AT94]

[AU79]

[AV82]

[AV85]

[AV88]

[AV89]

[AV90]

[AV91a]

[AV91b]

[AV92]

[AV93]

[AV95]

579

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I . Verkamo. Fast discovery of association rules. In
U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery
and Data Mining, pages 307-328. AAAI Press, Menlo Park, Ca., 1996. [575]

ANSI/X3/SPARC. Study group on database management systems, interim report. Bulletin of ACM SIGFIDET,
7(2), 1975. [287]

K.R. Apt. Logic programming. In J. Van Leeuwen, editor, Handbook of Theoretical Computer Science,
volume B, chapter 10, pages 493-574. Elsevier Science Publishers, Amsterdam, 1990. [463,468,479,483]

K.R. Apt. From Logic Programming to Prolog. Prentice Hall, Englewood Cliffs, NJ, 1997. [23,40]

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.L. Wiener. The Lorel query language for semistructured
data. InternationalJournal on Digital Libraries, 1:68-88, 1997. [559,560]

W.W. Armstrong. Dependency structures of data base relationships. In Proceedings ofIFIP Congress, pages
580-583, Stockholm, 1974. [148, 152, 158,227]

L. Aronson. HTML, Manual of Style. Ziff-Davis Press, Emeryville, Ca., 1994. [550]

I. Androutsopoulos, R.D. Ritchie, and P. Thanisch. Experience using TSQL2 in a natural language interface. In
Recent Advances in Temporal Databases, Proceedings of the International Workshop on Temporal Databases,
pages 113- 132, Zurich, 1995. [403]

B. Amann and M. Scholl. Gram: A graph data model and query language. In Proceedings of ACM Conference
on Hypertext, pages 201-211, Milano, Italy, 1992. [554]

H. Ashman. What is hypermedia? ACM SIGLINK Newsletter, 3:6-8,1994. [551]

A. V. Aho, Y. Sagiv, and J.D. Ullman. Equivalences among relational expressions. SIAM Journal on Computing,
8:218-246,1979. [484]

S. Abiteboul, E. Simon, and V. Vianu. Non-deterministic languages to express deterministic transformations.
In Proceedings of ACM Symposium on Principles of Database Systems, pages 218-229, Nashville, Te., 1990.
[384]

P. Atzeni and R. Torlone. Solving ambiguities in updating deductive databases. In Proceedings of Symposium
on Mathematical Foundations of Database Systems, pages 104-118, Rostock, Germany, 1991. [500]

P. Atzeni and R. Torlone. Updating intensional predicates in Datalog. Data and Knowledge Engineering,
8:1-17,1992. [500]

T. Akutsu and A. Takasu. On pac learnability of functional dependencies. New Generation Computing,
12:359-374, 1994. [565,574]

A.V. Aho and J.D. Ullman. Universality of data retrieval languages. In Proceedings of ACM Symposium on
Principles of Programming Languages, pages 110-120, San-Antonio, Texas, 1979. [24, 102,377,383,459]

K.R. Apt and M.H. Van Emden. Contributions to the theory of logic programming. Journal of the ACM,
29:841-862, 1982. [479]

S. Abiteboul and V. Vianu. Transactions and integrity constraints. In Proceedings of ACM Symposium on
Principles of Database Systems, pages 193-204, Portland, Oregon, 1985. [132,229]

S. Abiteboul and V. Vianu. Equivalence and optimization of relational transactions. Journal of the ACM,
35:70-120,1988. [130,132]

S. Abiteboul and V. Vianu. A transaction-based approach to relational database specification. Journal of the
ACM, 36:758-789, 1989. [132,229]

S. Abiteboul and V. Vianu. Procedural languages for database queries and updates. Journal of Computer and
System Sciences, 41:181-229,1990. [27,365,373,383]

S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates. Journal of Computer and
System Sciences, 43:62-124,1991. [365,373,379,383,466, 479, 482]

S. Abiteboul and V. Vianu. Generic computation and its complexity. In Proceedings of ACM Symposium on
Theory of Computing, pages 209-219, New Orleans, Lo., 1991. [365,373,383]

S. Abiteboul and V. Vianu. Expressive power of query languages. In J.D. Ullman, editor, Theoretical Studies
in Computer Science, pages 207-252. Academic Press, Boston, 1992. [383]

S. Abiteboul and V. Vianu. Computing on structures. In Proceedings of International Colloquium on
Automata, Languages and Programming, pages 606-620, Lund, Sweden, 1993. [381,383]

S. Abiteboul and V. Vianu. Computing with first-order logic. Journal of Computer and System Sciences,
50:309-335, 1995. [383,384]

G. Alonso, R. Vingralek, D. Agrawal, Y. Breitbart, A. EI Abbadi, H.-J. Schek, and G. Weikum. Unifying
concurrency control and recovery transactions. Information Systems, 19:101-115, 1994. [453]

S80

[AVV95]

[AVV97]

[AWH92]

[Bac69]

[Bac73]

[BADW82]

[Ban78]

[Ban92]

[Bar73]

[Bar77]

[BB79]

[BB92]

[BBG89]

[BCN92]

[BDB79]

[BDFS84]

[BDHS96]

[BDK87]

[BDLM91]

[BDM88]

[BDP94]

[Bea89]

[Bec78]

[Bee80]

[Bee90]

[Bel77a]

[Be177b]

Bibliography

S. Abiteboul. M.Y. Vardi. and V. Vianu. Computing with in finitary logic. Theoretical Computer Science.
149:101-128.1995. [382]

S. Abiteboul. M.Y. Vardi. and V. Vianu. Fixpoint logics. relational machines. and computational complexity.
Journal of the ACM. 44:30- 56.1997. [383]

A. Aitken. J. Widom. and J.M. Hellerstein. Behavior of database production rules: Termination. confluence.
and observable determinism. In Proceedings of ACM SIGMOD Conference on Management of Data. pages
59-68. San Diego. Ca .• 1992. [545,571]

C.W. Bachman. Data structure diagrams. Data Base. 1:4-10. 1969. [2,64]

C.W. Bachman. The programmer as a navigator. Communications of the ACM. 16:653-658. 1973. [2]

A. Bolour. T.L. Anderson. L.J. Dekeyser. and H.K.T. Wong. The role of time in information processing: A
survey. ACM SIGART Newsletter. 80:28-48. 1982. [388]

F. Bancilhon. On the completeness of query languages for relational data bases. In Proceedings of Conference
on Mathematical Foundations of Computer Science. pages 112-123. Zakopane. Poland. 1978. [377]

F. Bancilhon. Understanding object-oriented databases. In Proceedings of International Conference on
Extending Database Technology. pages 1-9. Vienna. Austria. 1992. [529]

J. Barwise. Back and forth through infinitary logic. In M.D. Morley. editor. Studies in Model Theory. volume 8.
pages 5-34. The Mathematical Association of America. Washington. D.C .• 1973. [55]

J. Barwise. On Moschovakis closure ordinals. The Journal of Symbolic Logic. 42:292-296. 1977. [57]

C. Beeri and P.A. Bernstein. Computational problems related to the design of normal form relational schemas.
ACM Transactions on Database Systems. 4:30-59. 1979. [160, 227,230.259]

L. Bole and P. Borowik. Many-Valued Logics 1: Theoretical Foundations. Springer-Verlag. Berlin. 1992. [303.
333,352]

C. Beeri. P.A. Bernstein. and N. Goodman. A model for concurrency in nested transactions systems. Journal
of the ACM. 36:230-269. 1989. [442]

H. Berenson. P.A. Bernstein. J. Gray. J. Melton. E.J. O·Neil. and P.E. O·Neil. A critique of ANSI SQL isolation
levels. In Proceedings of ACM SIGMOD Conference on Management of Data. pages 1-10. San Jose. Ca .• 1995.
[453]

C. Batini. S. Ceri. and S.B. Navathe. Conceptual Database Design: An Entity-Relationship Approach.
Benjamin/Cummings. Redwood City. Ca .• 1992. [68.80,82]

J. Biskup. U. Dayal. and P.A. Bernstein. Synthesizing independent database schemes. In Proceedings of ACM
SIGMOD Conference on Management of Data. pages 143-151. Boston. Ma .• 1979. [246,269]

c. Beeri. M. Dowd. R. Fagin. and R. Statman. On the structure of Armstrong relations for functional
dependencies. Journal of the ACM. 31:30-46.1984. [148, 159,231]

P. Buneman. S. Davidson. G. Hillebrand. and D. Suciu. A query language and optimization techniques for
unstructured data. In Proceedings of ACM SIGMOD Conference on Management of Data. pages 505-516.
Montreal. 1996. [560]

G. Burosch. J. Demetrovics. and G.O.H. Katona. The poset of closures as a model of changing databases.
Order. 4:127-142.1987. [148]

J. Biskup. J. Demetrovics. L.O. Libkin. and LB. Muchnik. On relational database schemes having unique
minimal key. Journal of Information Processing and Cybernetics. 27:217-225. 1991. [257]

F. Bry. H. Decker. and R. Manthey. A uniform approach to constraint satisfiability in deductive databases.
In Proceedings of International Conference on Extending Database Technology. pages 488-505. Venice. 1988.
[508]

P. Bosc. D. Dubois. and H. Prade. Fuzzy functional dependencies - an overview and a critical discussion.
In Proceedings of IEEE International Conference on Fuzzy Systems. pages 325-330. Orlando. Florida. 1994.
[341]

J.D. Beasley. The Mathematics of Games. Oxford University Press. Oxford. U.K .• 1989. [467]

L.L. Beck. On minimal sets of operations for relational database sublanguages. Technical Report CS 7802.
Department of Computer Science. Southern Methodist University. Dallas. 1978. [100]

c. Beeri. On the membership problem for functional and multivalued dependencies in relational databases.
ACM Transactions on Database Systems. 5:241-259. 1980. [194]

c. Beeri. New direction in database management systems. In Proceedings of Jerusalem Conference on
Information Technology, pages 500-506. Jerusalem. Israel. 1990. [529]

N.D. Belnap. How a computer should think. In G. Ryle. editor. Contemporary Aspects of Philosophy. pages
30-56. Oriel Press. Stocksfield. 1977. [352]

N.D. Belnap. A useful four-valued logic. InJ.M. Dunn and G. Epstein. editors. Modern Uses of Multiple-Valued
Logic. pages 8-37. Reidel. Dordrecht. Netherlands. 1977. [352]

Bibliography

[BeI95a]

[BeI95b]

[Ber76]

[Ber88]

[Bes89]

[BF85]

[BF9Ia]

[BF9Ib]

[BFH77]

[BFMY83]

[BG81]

[BG87]

[BGK85]

[BGP92]

[BH79]

[BH81]

[BH90]

[BHG87]

[Bid91]

[Bis78]

[Bis89]

[Bis98]

[B)89]

[B)091]

[BJS95]

[BK86]

[BK90]

[BK91]

581

S. Bell. Discovery and maintenance of functional dependencies by independencies. In Proceedings of
International Conference on Knowledge Discovery and Data Mining. pages 27-32. Montreal. 1995. [565]

S. Bell. The expanded implication problem of data dependencies. Technical Report LS-8 Report 16. Informatik
VIII. University of Dortmund. 1995. [215]

P.A. Bernstein. Synthesizing third normal form relations from functional dependencies. ACM Transactions
on Database Systems. 1:277-298.1976. [247.269]

M. Bernstein. The bookmark and the compass: Orientation tools for hypertext users. SIGOIS Bul/etin.
9:34-45. 1988. (554)

P. Besnard. An Introduction to Default Logic. Springer-Verlag. Berlin. 1989. [347,468,479]

). Barwise and S. Feferman. editors. Model-Theoretic Logics. Perspectives in Mathematical Logic. Springer
Verlag. Berlin. 1985. [382]

N. Bidoit and C. Froidevaux. General logical databases and programs: Default logic semantics and
stratification. Information and Computation. 91:15-54.1991. [468,479)

N. Bidoit and C. Froidevaux. Negation by default and unstratifiable logic programs. Theoretical Computer
Science. 78:85-1\2. 1991. [468,479]

c. Beeri. R. Fagin. and J.H. Howard. A complete axiomatization for functional and multivalued dependencies.
In Proceedings of ACM SIGMOD Conference on Management of Data. pages 47-61. Toronto. Canada. 1977.
[193]

C. Beeri. R. Fagin. D. Maier. and M. Yannakakis. On the desirability of acyclic database schemes. Journal of
the ACM. 30:479-513. 1983. [196,205,209,211,282]

P.A. Bernstein and N. Goodman. Concurrency control in distributed database systems. ACM Computing
Surveys. 13:185-221, 1981. [446,454]

A. Blass and Y. Gurevich. Existential fixed-point logic. In E. Borger. editor, Computation Theory and Logic.
volume 270 of Lecture Notes in Computer Science. pages 20-36. Springer-Verlag. Berlin. 1987. [383,482]

A. Blass. Y. Gurevich. and D. Kozen. A zero-one law for logic with a fixed-point operator. Information and
Control. 67:70-90. 1985. [59]

D. Barbara. H. Garcia-Molina. and D. Porter. The management of probabilistic data. IEEE Transactions on
Knowledge and Data Engineering. 4:487-502.1992. [354)

A. Blass and F. Harary. Properties of almost all graphs and complexes. Journal of Graph Theory. 3:225-240.
1979. [58J

C. Beeri and P. Honeyman. Preserving functional dependencies. SIAM Journal on Computing. 10:647-656.
1981. [168]

F. Buckley and F. Harary. Distance in Graphs. Addison-Wesley. Redwood City. Ca .• 1990. [33,63]

P.A. Bernstein. V. Hadzilacos. and N. Goodman. Concurrency Control and Recovery in Database Systems.
Addison-Wesley. Reading. Ma .• 1987. [448,450,453)

N. Bidoit. Negation in rule-based database languages: a survey. Theoretical Computer Science. 78:3-84. 1991.
[468J

). Biskup. On the complementation rule for multivalued dependencies in database relations. Acta Informatica.
10:297-305.1978. [194]

). Biskup. Boyce-Codd normal form and object normal forms. Information Processing Letters. 32:29-33.
1989. [258]

I· Biskup. Achievements of relational database schema design theory revisited. In B. Thalheim and L. Libkin.
editors. Semantics in Databases. pages 29-54. Springer-Verlag. Berlin. 1998. [227,282]

G.S. Boolos and R.C. Jeffrey. Computability and Logic. Cambridge University Press. Cambridge. U.K.. third
edition. 1989. [40]

P. Buneman. A. lung. and A. Ohori. Using powerdomains to generalize relational databases. Theoretical
Computer Science. 94:23-55.1991. [299)

M.H. Bohlen. C.S. lensen, and R.T. Snodgrass. Evaluating the completeness of TSQL2. In Recent Advances
in Temporal Databases, Proceedings of the International Workshop on Temporal Databases. pages 153-172.
Zurich. 1995. [403]

c. Beeri and M. Kifer. An integrated approach to logical design of relational database schemes. ACM
Transactions on Database Systems, 11:134-158, 1986. [198,249]

C. Beeri and Y. Kornatzky. A logical query language for hypertext systems. In Proceedings of European
Conference on Hypertext. pages 67-80. INRIA, France, 1990. [554, 5n]

N.S. Barghouti and G.E. Kaiser. Concurrency control in advanced database applications. ACM Computing
Surveys. 23:269-317.1991. [428]

582

[BKV98]

[BM87]

[BM94]

[BMSU81]

[BN97]

[Bor80]

[BP94]

[BP98]

[BPB95)

[BPP76)

[BPS64)

[BR84]

[BR86)

[BR91)

[BRS90)

[Bru96)

[Bry89]

[BS81a)

[BS81b]

[BS95)

[BSW79)

[Bu187)

[Bun97)

[Bus45)

[BV80)

[BV81)

Bibliography

F. Brusilovsky, A. Kobsa, and J. Vassileva, editors. Adaptive Hypertext and Hypermedia. K1uwer, Dordrecht,
1998. (554)

J. Biskup and R. Meyer. Design of relational database schemes by deleting attributes in the canonical
decomposition. Journal of Computer and System Sciences, 35:1-22, 1987. [248,269)

M. Bain and S. Muggleton. Learning optimal chess strategies. In K. Furukawa, D. Michie, and S. Muggleton,
editors, Machine Intelligence, volume 13, pages 291-309. Clarendon Press, Oxford, U.K., 1994. [566]

c. Beeri, A.O. Mendelzon, Y. Sagiv, and J.D. Ullman. Equivalence of relational database schemes. SIAM
Journal on Computing, 10:352-370, 1981. [201,202]

P.A. Bernstein and E. Newcomer. Principles of Transaction Processing for the Systems Professional. Morgan
Kaufmann, San Francisco, Ca., 1997. [448, 453]

S.A. Borkin. The semantic relation data model: Foundation for a user interface. In Proceedings of International
Conference on Data Bases, pages 47-64, Aberdeen, 1980. (540)

T. Beaubouef and F.E. Petry. Fuzzy set quantification of roughness in a rough relational database model. In
Proceedings of IEEE International Conference on Fuzzy Systems, pages 172-177, Orlando, Florida, 1994. [343]

S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In Proceedings of
International World Wide Web Conference, Brisbane, 1998. (555)

T. Beaubouef, F.E. Petry, and B.P. Buckles. Extension of the relational database and its algebra with rough
set techniques. Computational Intelligence, 11:233-245, 1995. [343]

G. Bracchi, P. Paolini, and G. Pelagatti. Binary logical associations in data modelling. In G.M. Nijssen, editor,
Modelling in Data Base Management Systems, pages 125-148. North-Holland, Amsterdam, 1976. [81]

Y. Bar-Hillel, M. Peries, and E. Shamir. On formal properties of simple phrase structure grammars. In
Y. Bar-Hillel, editor. Language and Information: Selected Essays on their Theory and Applications, pages
116-150. Addison-Wesley, Reading, Ma., 1964. [43]

F. Bancilhon and F. Richard. A sound and complete axiomatization of embedded cross dependencies.
Theoretical Computer Science, 34:343-350, 1984. [211]

F. Bancilhon and R. Ramakrishnan. An amateur's introduction to recursive query processing strategies. In
Proceedings of ACM SIGMOD International Conference on Management of Data. pages 16-52, Washington,
D.C., 1986. [493]

C. Beeri and R. Ramakrishnan. On the power of magic. Journal of Logic Programming, 10:255-299. 1991.
[493,511]

J. Biskup. U. Rasch, and H. Stiefeling. An extension ofSQL for querying graph relations. Computer Languages,
15:65-82. 1990. [540]

P. Brusilovsky. Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted
Interaction, 6:87-129, 1996. [554]

F. Bry. Logic programming as constructivism: a formalization and its applications to databases. In
Proceedings of ACM Symposium on Principles of Database Systems, pages 34-50, Philadelphia, Pa., 1989.
(468)

F. Bancilhon and N. Spyratos. Independent components of data bases. In Proceedings of International
Conference on Very Large Data Bases, pages 398-408. Cannes. 1981. (225)

F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Transactions on Database Systems,
6:557-575, 1981. [223-225)

R. Bagai and R. Sunderraman. A paraconsistent relational data model. International Journal of Computer
Mathematics, 55:39-55,1995. (352)

P.A. Bernstein, D.W. Shipman, and W.S. Wong. Formal aspects of serializability in database concurrency
control. IEEE Transactions on Software Engineering, 5:203-216,1979. (453)

W.1. Bullers Jr. A processing algorithm for master-detail records in a relational database. Software-Practice
and Experience, 17:701-717, 1987. (355)

P. Buneman. Semistructured data. In Proceedings of ACM Symposium on Principles of Database Systems,
pages 117-121, Tucson, Az., 1997. Invited talk. (560)

V. Bush. As we may think. Atlantic Monthly, 76:101-108,1945. (555)

C. Beeri and M.Y. Vardi. On the complexity of testing implications of data dependencies. Research Report.
Department of Computer Science, The Hebrew University of/erusalem, Jerusalem, Israel, 1980. [203]

C. Beeri and M.Y. Vardi. On the properties of join dependencies. In H. Gallaire, J. Minker, and l.-M. Nicholas,
editors. Advances in Database Theory. volume 1, pages 25-72. Plenum Press, New York, 1981. [202,211]

Bibliography 583

[BV84aJ C. Beeri and M.Y. Vardi. Formal systems for tuple and equality generating dependencies. SIAM Journal on
Computing, 13:76-98, 1984. [211, 504J

[BV84bJ c. Beeri and M.Y. Vardi. On acyclic database decompositions. Information and Control, 61:75-84, 1984.
[210J

[BV84cJ C. Beeri and M.Y. Vardi. A proof procedure for data dependencies. Journal of the ACM, 31 :718-741 , 1984.
[211,504J

[BV85J C. Beeri and M.Y. Vardi. Formal systems for join dependencies. Theoretical Computer Science, 38:99-116,
1985. [202J

[CA79J C.R. Carlson and A.K. Arora. The updatability of relational views based on functional dependencies.
In Proceedings of IEEE International Conference on Computer Software and Applications, pages 415-420,
Chicago, 11.,1979. [225J

[CA84J M.A. Casanova and J.E. Amaral de Sa. Mapping uninterpreted schemes into entity-relationship diagrams:
Two applications to conceptual schema design. IBM Journal of Research and Development, 28:82-94, 1984.
[81,243,263,277,281J

[Can55J G. Cantor. Contributions to the Founding of the Theory of Transfinite Numbers . Dover, New York, 1955. [46J

[Car88J l. Cardelli. A semantics of multiple inheritance. Information and Computation, 76:138-164,1988. [27J

[Cas81J M.A. Casanova. The Concurrency Control Problem for Database Systems, volume 116 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1981. [453,454J

[Cat96J R.G.G. Cattell, editor. The Object Database Standard, ODMG-93: Release 1.2. Morgan Kaufmann, San
Francisco, Ca., 1996. [28, 531]

[CB97J R.G.G. Cattell and D.K. Barry, editors. The Object Database Standard: ODMG 2.0. Morgan Kaufmann, San
Francisco, Ca., 1997. [28,531]

[CCM92] M.P. Consens, I.F. Cruz, and A.O. Mendelzon. Visualizing queries and querying visualizations. ACM SIGMOD
Record, 21:39-46, 1992. [540J

[CCS93J E.F. Codd, S.B. Codd, and C.T. Salley. Providing OLAP (On-Line Analytical Processing) to user-analysts: An
IT mandate. White Paper, E.F Codd & Associates, 1993. [562]

[CCT93] J. Clifford, A. Croker, and A. Tuzhilin. On the completeness of query languages for grouped and ungrouped
historical data models. In A.U, Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors,
Temporal Databases, Theory, Design, and Implementation, pages 496-533. Benjamin/Cummings, Redwood
City, Ca., 1993. [399]

[CD97] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record,
26:65-74,1997. [563]

[CDI+97] J. Clifford, C. Dyreson, T. Isakowitz, C.S. Jensen, and R.T. Snodgrass. On the semantics of "now" in databases.
ACM Transactions on Database Systems, 22:171-214,1997. [396]

[CEG94] M. Cadoll, T. Eiter, and G. Gottlob. Defaultlogic as a query language. In Proceedings of Principles of Knowledge
Representation and Reasoning, pages 99-108, Bonn, Germany, 1994. [468J

[CFP84] M.A. Casanova, R. Fagin, and C.H. Papadimitriou. Inclusion dependencies and their interaction with
functional dependencies. Journal of Computer and System Sciences, 28:29-59, 1984. [173, 174, 178, 180,
182,199]

[CFT91] M.A. Casanova, A.L. Furtado, and L. Tucherman. A software tool for modular database design. ACM
Transactions on Database Systems, 16:209-234, 1991. [226]

[CG88] B. Campbell and J.M. Goodman. Ham: A general purpose hypertext abstract machine. Communications of
the ACM, 31:856-861,1988. [SS3]

[CGKV88] 5.5. Cosmadakis, H. Gaifman, P.C. Kanellakis, and M.Y. Vardi. Decidable optimization problems for database
logic programs. In Proceedings of ACM Symposium on Theory of Computing, pages 477-490, Chicago, II.,
1988. [489]

[CGT90] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer-Verlag, Berlin, 1990. [2,479,
493]

[CH80] A.K. Chandra and D. Harel. Computable queries for relational data bases. Journal of Computer and System
Sciences, 21 :156-178,1980. [27,360,365,371, 372J

[CH82] A.K. Chandra and D. Harel. Structure and complexity of relational queries. Journal of Computer and System
Sciences, 25:99-128,1982. [379,380,383,384]

[CH85] A.K. Chandra and D. Harel. Horn clause queries and generalizations. Journal of Logic Programming, 1:1-15,
1985. [468]

[Cha76J D.D. Chamberlin. Relational data-base management systems. ACM Computing Surveys, 8:43-66, 1976. [1]

584

[Cha77)

[Cha80]

[Cha81]

[Cha88]

[Cha89]

[Cha96]

[Che76]

[Chem

[Che80]

[Che84]

[Che86]

[Chi68]

[Ch094]

[CHY96]

[CK85]

[CK86]

[CK90]

[CK95]

[CKV90]

[CKV94]

[CKV96]

[CLM81]

[CM77]

[CM87]

[CM89]

[CM90]

[CM91]

Bibliography

G. Chartrand. Introductory Graph Theory. Dover, Mineola, NY, 1977. [33, 63]

D.O. Chamberlin. A summary of user experience with the SQL data sublanguage. Research Report RJ2767
(35322), IBM Research Laboratory, San Jose, Ca., 1980. [113]

A.K. Chandra. Programming primitives for database languages. In Proceedings of ACM Symposium on
Principles of Programming Languages, pages 50-62, Williamsburg, Virginia, 1981. [378,383]

A.K. Chandra. Theory of database queries. In Proceedings of ACM Symposium on Principles of Database
Systems, pages 1-9, Austin, Texas, 1988. [379,383]

S. Chakravarthy. Rule management and evaluation: An active DBMS perspective. ACM SIGMOD Record,
18:20-28, 1989. [547]

C. Chatfield. The Analysis of Time Series: An Introduction. Chapman & Hall, London, fifth edition, 1996.
[399]

P.P.-S. Chen. The entity-relationship model- toward a unified view of data. ACM Transactions on Database
Systems, 1:9-36, 1976. [9,61-63,71,80,81]

P.P.-S. Chen. The Entity-Relationship Approach to Logical Database Design. QED Information Sciences,
Wellesley, Ma., 1977. [61-63,71, 80,81]

B.F. Chellas. Modal Logic: An Introduction. Cambridge University Press, Cambridge, U.K., 1980. [309]

P.P.-S. Chen. An algebra for a directional binary entity-relationship model. In Proceedings of IEEE
International Conference on Data Engineering, pages 37-40, Los Angeles, 1984. [81,83]

P. Cheesman. Probabilistic versus fuzzy reasoning. In L.N. Kanal and J.F. Lemmer, editors, Uncertainty in
Artificial Intelligence, pages 85-102. North-Holland, Amsterdam, 1986. [354]

D.L. Childs. Feasibility of a set-theoretic data structure, a general structure based on a reconstituted definition
of a relation. In Proceedings ofIFIP Congress, pages 162-172, Geneva, 1968. [227]

J. Chomicki. Temporalintegrityconstraints in relational databases. IEEE Data Engineering Bulletin, 17:33-37,
1994. [404]

M.-S. Chen, J. Han, and P.S. Yu. Data mining: An overview from a database perspective. IEEE Transactions
on Knowledge and Data Engineering, 8:866-883, 1996. Guest Editors, Special issue. [564]

5.5. Cosmadakis and P.C. Kanellakis. Equational theories and database constraints. In Proceedings of ACM
Symposium on Theory of Computing, pages 273-284, Providence, RI, 1985. [185]

5.5. Cosmadakis and P.C. Kanellakis. Functional and inclusion dependencies: A graph theoretic approach.
In P.c. Kanellakis and F. Preparata, editors, Advances in Computing Research, volume 3, pages 163-184. JAI
Press, Greenwich, 1986. [178, 182, 185,215]

C.C. Chang and H.J. Keisler. Model Theory. Elsevier Science Publishers, Amsterdam, third edition, 1990. [59]

S. Christodoulakis and L. Koveos. Multimedia information systems: Issues and approaches. In W. Kim, editor,
Modern Database Systems, The Object Model, Interoperability, and Beyond, pages 318-337. Addison-Wesley,
Reading, Ma., 1995. [566]

S.S. Cosmadakis, P.C. Kanellakis, and M.Y. Vardi. Polynomial-time implication problems for unary inclusion
dependencies. Journal of the ACM, 37:15-46,1990. [178,182,183,215]

G. Chen, E.E. Kerre, and J. Vandenbulcke. A computational algorithm for the FFD transitive closure and
a complete axiomatization of fuzzy functional dependencies (FFD). International Journal of Intelligent
Systems, 9:421-439,1994. [340]

G. Chen, E.E. Kerre, and J. Vandenbulcke. Normalization based on fuzzy functional dependency in a fuzzy
relational data model. Information Systems, 21:299-310,1996. [342,357]

A.K. Chandra, H.R. Lewis, and J.A. Makowsky. Embedded implicational dependencies and their inference
problem. Research Report RC8757 (38352), IBM Research Center, Yorktown Heights, NY, 1981. [200]

A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in relational data bases. In
Proceedings of ACM Symposium on the Theory of Computing, pages 77-90, Boulder, Co., 1977. [484]

E.P.F. Chan and A.O. Mendelzon. Independent and separable database schemes. SIAMJournal on Computing,
16:841-851,1987. [225]

M.P. Consens and A.O. Mendelzon. Expressing structural hypertext queries in GraphLog. In Proceedings of
ACM Conference on Hypertext, pages 269-292, Pittsburg, Pa., 1989. [554]

M.P. Consens and A.O. Mendelzon. GraphLog: a visual formalism for real life recursion. In Proceedings of
ACM Symposium on Principles of Database Systems, pages 404-416, Nashville, Te., 1990. [540]

L. CardeUi and J.C. Mitchell. Operations on records. Mathematical Structures for Computer Science, 1:3-48,
1991. [360]

Bibliography

[CM93]

[Cod70]

[Cod72a]

[Cod72b]

[Cod74]

[Cod79]

[Cod82]

[Cod90]

[Com79]

[Con87]

[Coo71]

[Cos89]

[Cos95]

[CP84a]

[CP84b]

[CP87]

[Cru84]

[CT88]

[CT89]

[CT93]

[CV83]

[CV85]

[CV92]

[CV94a]

[CV94b]

[CW90]

[CW91]

[DA87]

585

M.P. Consens and A.O. Mendelzon. Low-complexity aggregation in GraphLog and Datalog. Theoretical
Computer Science. 116:95-116. 1993. [509. 512. 540]

E.F. Codd. A relational model of data for large shared data banks. Communications of the ACM. 13:377-387.
1970. [2.89.91.227.517]

E.F. Codd. Further normalization of the data base relational model. In R. Rustin. editor. Data Base Systems.
pages 33-64. Prentice Hall. Englewood Cliffs. NJ. 1972. [247.250.282]

E.F. Codd. Relational completeness of data base sublanguages. In R. Rustin. editor. Data Base Systems. pages
65-98. Prentice Hall. Englewood Cliffs. NJ. 1972. [91,108.227]

E.F. Codd. Recent investigations in relational data base systems. In Proceedings of IFIP Congress. pages
1017-1021. Stockholm. 1974. [195.253,282]

E.F. Codd. Extending the database relational model to capture more meaning. ACM Transactions on Database
Systems. 4:397-434. 1979. [157.227]

E.F. Codd. Relational database: A practical foundation for productivity. Communication of the ACM.
25:109-117.1982. [2.9,227]

E.F. Codd. The RelationalModelfor Database Management: Version 2. Addison-Wesley. Reading. Ma .• 1990.
[157.227.318.346.352]

D. Comer. The ubiquitous B-tree. ACM Computing Surveys. 11 :121-137. 1979. [59]

J. Conklin. Hypertext: An introduction and survey. IEEE Computer. 20:17-41.1987. [2.554.555]

S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of ACM Symposium on Theory of
Computing. pages 151-158. Shaker Heights. Ohio. 1971. [50]

S.S. Cosmadakis. On the first-order expressibility of recursive queries. In Proceedings of ACM Symposium
on Principles of Database Systems. pages 311-323. Philadelphia. Pa .• 1989. [491]

S. Costantini. Contributions to the stable model semantics of logic programs with negation. Theoretical
Computer Science. 149:231-255.1995. [468]

S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems. McGraw-Hill. New York. 1984. [447.
566]

S.S. Cosmadakis and C.H. Papadimitriou. Updates of relational views. Journal of the ACM. 31 :742-760.1984.
[225.234]

R. Cavallo and M. Pittarelli. The theory of probabilistic databases. In Proceedings of International Conference
on Very Large Data Bases. pages 71-81. Brighton. 1987. [354]

R.A. Crus. Data recovery in IBM Database 2. IBM Systems Journal. 23:178-188.1984. [415]

M.A. Casanova and L. Tucherman. Enforcing inclusion dependencies and referential integrity. In Proceedings
of International Conference on Very Large Data Bases. pages 38-49. Los Angeles. Ca .• 1988. [60]

W.B. Croft and H. Turtle. A retrieval model for incorporating hypertext links. In Proceedings of ACM
Conference on Hypertext. pages 213-224. Pittsburg. Pa .• 1989. [555]

N. Cercone and M. Tsuchiya. Special issue on learning and discovery in knowledge-based databases. IEEE
Knowledge and Data Engineering. 5(6).1993. Guest Editors. Special issue. [564]

M.A. Casanova and V.M.P. Vidal. Towards a sound view integration methodology. In Proceedings of ACM
Symposium on Principles of Database Systems. pages 36-47. Atlanta. 1983. [178, 218]

A.K. Chandra and M. Y. Vardi. The implication problem for functional and inclusion dependencies is
undecidable. SIAM Journal on Computing. 14:671-677. 1985. [179.180.186]

S. Chaudhuri and M.Y. Vardi. On the equivalence of recursive and nonrecursive Datalog programs. In
Proceedings of ACM Symposium on Principles of Database Systems. pages 55-66. San Diego. Ca .• 1992. [492]

S. Chaudhuri and M. Y. Vardi. On the complexity of equivalence between recursive and nonrecursive Datalog
programs. In Proceedings of ACM Symposium on Principles of Database Systems.pages 107-116. Minneapolis.
Mn .• 1994. [492]

J.C. Cubero and M.A. Vila. A new definition of fuzzy functional dependency in fuzzy relational databases.
International Journal of Intelligent Systems. 9:441-448.1994. [341]

S. Ceri and J. Widom. Deriving production rules for constraint maintenance. In Proceedings of International
Conference on Very Large Data Bases. pages 566-577. Brisbane. 1990. [542.545]

S. Ceri and J. Widom. Deriving production rules for incremental view maintenance. In Proceedings of
International Conference on Very Large Data Bases. pages 577-589. Barcelona. 1991. [542.546]

K.H. Davis and AX Arora. Converting a relational database model into an entity-relationship model. In
Proceedings of International Conference on the Entity Relationship Approach. pages 271-285. New York.
1987. [81 , 281.285]

586

[Dah87)

[Dat86a)

[Dat86b)

[Dat86c)

[Dat86d)

[Dat90)

[Dat92a)

[Dat92b)

[Dat92c)

[Dat95)

[DB82)

[DD91)

[DD92a)

[DD92b)

[DD93)

[Dec90)

[Del78)

[DF92)

[DGS97)

[DHL90)

[DHL91)

[DHLM92)

[DHW95)

[DiP69)

[DK93)

[DL91)

[DLR95)

Bibliography

E. Dahlhaus. Skolem normal forms concerning the least fixpoint. In E. Borger, editor, Computation Theory
and Logic, volume 270 of Lecture Notes in Computer Science, pages 101-106. Springer-Verlag, Berlin, 1987.
(481)

C.I. Date. Referential integrity. In Relational Database: Selected Writings, pages 41-63. Addison-Wesley,
Reading, Ma., 1986. (60)

C.I. Date. The relational and network approaches: Comparison of the application programming interfaces.
In Relational Database: Selected Writings, pages 179-202. Addison-Wesley, Reading, Ma., 1986. (9)

C.I. Date. Relational Database: Selected Writings. Addison-Wesley, Reading, Ma., 1986. (2)

C.I. Date. Updating views. In Relational Database: Selected Writings, pages 367-395. Addison-Wesley,
Reading, Ma., 1986. [225)

C.I. Date. What is a domain? In Relational Database Writings 1985-1989, pages 27-57. Addison-Wesley,
Reading, Ma., 1990. (212)

C.I. Date. The default values approach to missing information. In Relational Database Writings 1989-1991,
pages 343-354. Addison-Wesley, Reading, Ma., 1992. (345)

C.I. Date. Entity/relationship modeling and the relational model. In Relational Database Writings 1989-1991,
pages 357-364. Addison-Wesley, Reading, Ma., 1992. (70)

C./. Date. Will the real fourth normal form please stand up? In Relational Database Writings 1989-1991,
pages 437-443. Addison-Wesley, Reading, Ma., 1992. (253)

C.I. Date. An Introduction to Database Systems. Addison-Wesley, Reading, Ma. , sixth edition, 1995. [2,567)

U. Dayal and P.A. Bernstein. On the correct translation of update operations on relational views. ACM
Transactions on Database Systems, 8:381-416,1982. (225)

K.R. Dittrich and U. Dayal. Active database systems, tutorial notes. In International Conference on Very
Large Data Bases, Barecelona, 1991. (547)

C.I. Date and H. Darwen. Into the great divide. In Relational Database Writings 1989-1991, pages 155-168.
Addison-Wesley, Reading, Ma., 1992. (228)

C./. Date and H. Darwen. Relation-valued attributes or will the real frrst normal form please stand up? In
Relational Database Writings 1989-1991, pages 75-98. Addison-Wesley, Reading, Ma., 1992. (517)

C./. Date and H. Darwen. A Guide to the SQL Standard. Addison-Wesley, Reading, Ma., third edition, 1993.
[113,213,225,383,386,400,453,529,530)

H. Decker. Drawing updates from derivations. In Proceedings of International Conference on Database
Theory, pages 437-451, Paris, 1990. [500)

C. Delobel. Normalization and hierarchical dependencies in the relational data model. ACM Transactions
on Database Systems, 3:201-222, 1978. (191)

C.I. Date and R. Fagin. Simple conditions for guaranteeing higher normal forms in relational databases.
ACM Transactions on Database Systems, 17:465-476, 1992. [254,284)

c. De Castro, F. Grandi, and M.R. Scalas. Schema versioning for multitemporal relational databases.
Information Systems, 22:249-290, 1997. (406)

U. Dayal, M. Hsu, and R. Ladin. Organizing long-running activities with triggers and transactions. In
Proceedings of ACM SIGMOD Conference on Management of Data, pages 204-214, Atlantic City, NI, 1990.
[57l)

U. Dayal, M. Hsu, and R. Ladin. A transactional model for long-running activities. In Proceedings of
International Conference on Very Large Data Bases, pages 113-122, Barcelona, 1991. (571)

I. Demetrovics, G. Hencsey, L. Libkin, and LB. Muchnik. Normal form relations schemes: A new
characterization. Acta Cybernetica, 10:141-143, 1992. [253,259)

U. Dayal, E. Hanson, and I. Widom. Active database systems. In W. Kim, editor, Modern Database Systems,
The Object Mode~ Interoperability, and Beyond, pages 434-456. Addison-Wesley, Reading, Ma., 1995. [547)

R.A. DiPaola. The recursive unsolvabilily of the decision problem for the class of definite formulas. Journal
of the ACM, 16:324-327, 1969. [135,227)

I. Demetrovics and G.O.H. Katona. A survey of some combinatorical results concerning functional
dependencies in database relations. Annals of Mathematics and ArtijicialIntelligence, 7:63-82, 1993. [154,
231)

M. Dahr and K. Lautenbach. Towards a formal theory of Datalog nets. Research Report 20/91, Computer
Science Department, University of Koblenz-Landau, 1991. [509)

c. Delobel, C. Lecluse, and P. Richard. Databases: From Relational to Object-Oriented Systems. International
Thomson, London, 1995. (529)

Bibliography 587

[DLW95] A. Dawar. S. Lindell. and S. Weinstein. Infinitary logic and inductive definability over finite structures.
Information and Computation. 119:160-175. 1995. [57.382]

[DM92] E. Dahlhaus and J.A. Makowsky. Query languages for hierarchic databases. Information and Computation.
101 :1-32.1992. [365]

[DOB95] S.B. Davidson. C. Overton. and P. Buneman. Challenges in integrating biological data sources. Journal of
Computational Biology. 2:557-572.1995. [560]

[Doe96) K. Doets. Basic Model Theory. Studies in Logic. Language and Information. CSLI Publications and FoLLI.
Stanford. Ca .• 1996. [59)

[DP84) P. De Bra and J. Paredaens. Horizontal decompositions for handling exceptions to functional dependencies.
In H. Gallaire. J. Minker. andJ .-M. Nicholas. editors. Advances in Database Theory. volume 2. pages 123-141.
Plenum Press. New York. 1984. [264.266)

[DP90] B.A. Davey and H.A. Priestly. Introduction to Lattices and Order. Cambridge University Press. Cambridge.
U.K .• 1990. [35.148.299]

[DR97] G. Dong and K. Ramamohanarao. Maintaining constrained transitive closure by conjunctive queries. In
Proceedings of International Conference on Deductive and Object-Oriented Databases. pages 35-51. Montreux.
Switzerland. 1997. [564]

[DT87] J. Demetrovics and V.D. Thi. Keys. antikeys and prime attributes. Annales Univ. Sci. Budapes~ Sect. Compo
8:35-52. 1987. [155. 156]

[DT88] J. Demetrovics and V.D. Thi. Relations and minimal keys. Acta Cybernetica. 8:279-285.1988. [ISS]

[DT92] G. Dong and R. Topor. Incremental evaluation ofDatalog queries. In Proceedings of International Conference
on Database Theory. pages 282-296. Berlin. 1992. [564]

[DT93) J. Demetrovics and V.D. Thi. Algorithms for generating an Armstrong relation and inferring functional
dependencies in the relational datamodel. Computers and Mathematics with Applications. 26:43-55. 1993.
(148.159]

[DT95) J. Demetrovics and V.D. Thi. Some observations on the minimal Armstrong relations for normalized relation
schemes. Computers and Artificial Intelligence. 14:455-467. 1995. [159)

[Dze96] S. Dzeroski. Inductive logic programming and knowledge discovery in databases. In U.M. Fayyad.
G. Piatetsky-Shapiro. P. Smyth. and R. Uthurusamy. editors. Advances in Knowledge Discovery and Data
Mining. pages 117-152. AAAI Press. Menlo Park. Ca .• 1996. [566)

[EF95] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag. Berlin. 1995. [59)

[EGLT76) K.P. Eswaran. J.N. Gray. R.A. Lorie. and I.L. Traiger. The notions of consistency and predicate locks in a
database system. Communications of the ACM. 19:624-633. 1976. [441.453)

[EGM97) T. Eiter. G. Gottlob. and H. Mannila. Disjunctive Datalog. ACM Transactions on Database Systems. 22:364-418.
1997. [479]

[Ehr61] A. Ehrenfeucht. An application of games to the completeness problem for formalized theories. Fundamenta
Mathematicae. 49:129-141. 1961. [55,497)

[Eme90) E.A. Emerson. Temporal and modal logic. In J. Van Leeuwen. editor. Handbook of Theoretical Computer
Science. volume B. chapter 16. pages 997-1072. Elsevier Science Publishers. Amsterdam. 1990. [388.398.553)

[End72] H.B. Enderton. A Mathematical Introduction to Logic. Academic Press. New York. 1972. [40)

[Fag74] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In R.M. Karp. editor.
SIAM-AMS Proceedings. Complexity of Computation. volume 7. pages 43-73. American Mathematical Society.
Providence. RI. 1974. [57.383]

[Fag76) R. Fagin. Probabilities on finite models. The Journal of Symbolic Logic. 41:50-58.1976. [58)

[Fag77a) R. Fagin. The decomposition versus the synthetic approach to relational database design. In Proceedings of
International Conference on Very Large Data Bases. pages 441-446. Tokyo. 1977. [249.284]

[Fag77b] R. Fagin. Multivalued dependencies and a new normal form for relational databases. ACM Transactions on
Database Systems. 2:262-278. 1977. [191, 199,227,247,249,253,284]

[Fag79) R. Fagin. Normal forms and relational database operators. In Proceedings of ACM SIGMOD Conference on
Management of Data. pages 153-160. Boston. Ma .• 1979. [249,264)

[Fag81] R. Fagin. A normal form for relational databases that is based on domains and keys. ACM Transactions on
Database Systems. 6:387-415.1981. [215,249)

[Fag82a) R. Fagin. Armstrong databases. Research Report RJ3440 (40926). IBM Research Laboratory. San Jose. Ca .•
1982. [148, 158)

[Fag82b) R. Fagin. Horn clauses and database dependencies. Journal of the ACM. 29:952-985.1982. [177.211,504]

588 Bibliography

[Fag83] R. Fagin. Degrees of acydicity for hypergraphs and relational database schemes. Journal of the ACM,
30:514-550,1983. [196, 205,211, 282]

[Fag93] R. Fagin. Finite-model theory - a personal perspective. Theoretical Computer Science, 116:3-31, 1993. [59,
383]

[Fag96] R. Fagin. Combining fuzzy information from multiple systems. In Proceedings of ACM Symposium on
Principles of Database Systems, pages 216-226, Montreal, 1996. [566]

[Fag97] R. Fagin. Easier ways to win logical games. In P.G. Kolaitis and N. Immerman, editors, Descriptive Complexity
and Finite Models, volume 31 of DIMACS series in Discrete Mathematics and Computer Science, pages 1-32.
American Mathematical Society, Providence, RI, 1997. [55,56]

[FC85] A.L. Furtado and M.A. Casanova. Updating relational views. In W. Kim, D.S. Reiner, and D.S. Batory, editors,
Query Processing in Database Systems, pages 127-142. Springer-Verlag, Berlin, 1985. [225]

[FC92] M.F. Frisse and S.B. Cousins. Models for hypertext. Journal of the American Society for Information Science,
43:182-192,1992. [555]

[Fit85] M. Fitting. A Kripke-K1eene semantics for logic programs. Journal of Logic Programming, 2:295-312,1985.
[473]

[Fit96] M. Fitting. First-order Logic and Automated Theorem Proving. Springer-Verlag, Berlin, second edition, 1996.
[39,40,291]

[FKUV86] R. Fagin, G.M. Kuper, J.D. Ullman, and M.Y. Vardi. Updating logical databases. In P.e. Kanellakis and
F. Preparata, editors, Advances in Computing Research, volume 3, pages 1-18. JAI Press, Greenwich, 1986.
[502]

[FMU82] R. Fagin, A.O. Mendelzon, and J.D. Ullman. A simplified universal relation assumption and its properties.
ACM Transactions on Database Systems, 7:343-360, 1982. [205]

[FMUY83] R. Fagin, D. Maier, J.D. Ullman, and M. Yannakakis. Tools for template dependencies. SIAM Journal on
Computing, 12:36-59, 1983. [234]

[For94] A. Ford. Spinning the Web: How to Provide Information on the Internet. International Thomson Computer
Press, London, 1994. [548]

[FPSSU96] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances in Knowledge Discovery
and Data Mining. AAAI Press, Menlo Park, Ca., 1996. [561,564]

[Fri71] H. Friedman. Algorithmic procedures, generalized Turing machines and elementary recursion theory. In
Proceedings of Logic Colloquium '69, pages 361-389, Manchester, U.K., 1971. [360]

[FS92] T. Feder and Y. Saraiya. Decidability and undecidability of equivalence for Iienar Datalog, with applications to
normal-form optimizations. In Proceedings of International Conference on Database Theory, pages 297-311,
Berlin, 1992. [488,489]

[FSS79] A.L. Furtado, K.e. Sevcik, and C.S. Dos Santos. Permitting updates through views of databases. Information
Systems, 4:269-283, 1979. [225]

[FSTV85] P.e. Fischer, L.V. Saxton, S.J. Thomas, and D. Van Gucht. Interactions between dependencies and nested
relational structures. Journal of Computer and System Sciences, 31:343-354,1985. [522,569]

[FT83] P.e. Fischer and D.-M. Tsou. Whether a set of multivalued dependencies implies a join dependency is
NP-hard. SIAM Journal on Computing, 12:259-266, 1983. [203]

[FU95] U.M. Fayyad and R. Uthurusamy, editors. Proceedings of International Conference on Knowledge Discovery
and Data Mining, Menlo Park, Ca., 1995. AAAI Press. [564]

[FU96] U.M. Fayyad and R. Uthurusamy. Data mining and knowledge discovery in databases. Communications of
the ACM, 39:24-68, 1996. Guest Editors, Special issue. [564]

[Fuh90] N. Fuhr. A probabilistic framework for vague queries and imprecise information in databases. In Proceedings
of International Conference on Very Large Data Bases, pages 696-707, Brisbane, 1990. [354]

[FUV83] R. Fagin, J.D. Ullman, and M.Y. Vardi. On the semantics of updates in databases. In Proceedings of ACM
Symposium on Principles of Database Systems, pages 352-365, Atlanta, Georgia, 1983. [502]

[FV83] R. Fagin and M.Y. Vardi. Armstrong databases for functional and inclusion dependencies. Information
Processing Letters, 16:13-19, 1983. [177]

[FV84a) R. Fagin and M.Y. Vardi. The theory of data dependencies - a survey. Research Report RJ4321 (47149), IBM
Research Laboratory, San Jose, Ca., 1984. [211,504]

[FV84b] P.C. Fischer and D. Van Gucht. Weak multivalued dependencies. In Proceedings of ACM Symposium on
Principles of Database Systems, pages 266-274, Waterloo, Ontario, 1984. [520]

[Ga182] Z. Galil. An almost linear-time algorithm for computing a dependency basis in a relational database. Journal
of the ACM, 29:96-102,1982. [194]

[Gan80] R. Gandy. Church's thesis and the principles for mechanisms. In Proceedings of Kleene Symposium, pages
123-148, Madison, Wisc., 1980. [360]

Bibliography

[Gar88a]

[Gar88b]

[GCB+97]

[GH95]

[GHOK81]

[Gil94]

[Gj79]

[GJ91]

[GJM96]

[GJS92]

[GKLT69]

[GKP92]

[GL82]

[GL88]

[GL97]

[GLPT75]

[GM85a]

[GM85b]

[GM91]

[GM95]

[GMSV93]

[GMV86]

[GNS93]

[Gog67]

[Got87]

[GPSZ91]

[GPV90]

589

P. Gardenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT Press, Cambridge, Ma.,
1988. [502]

P.K. Garg. Abstraction mechanisms in hypertext. Communications of the ACM, 31:862-870,1988. [554]

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data
cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Mining and
Knowledge Discovery, 1:29-53, 1997. [562]

H. Garcia-Molina and M. Hsu. Distributed databases. In W. Kim, editor, Modern Database Systems, The
Object Model, Interoperability, and Beyond, pages 477-493. Addison-Wesley, Reading, Ma., 1995. [566,567]

J. Gray, P. Homan, R. Obermarck, and H.F. Korth. A straw man analysis of probability of waiting and
deadlock. Research Report RJ3066 (38102), IBM Research Laboratory, San Jose, Ca., 1981. [433]

M.M. Gilula. The Set Modelfor Database and Information Systems. Addison-Wesley, Reading, Ma., 1994.
[27]

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman, New York, 1979. [32,52,155,208,305,328,331,362,479,569]

N.H. Gehani and H. V. Jagadish. Ode as an active database: Constraints and triggers. In Proceedings of
International Conference on Very Large Data Bases, pages 327-336, Barcelona, 1991. [545]

A. Gupta, H.V. Jagadish, and I.S. Mumick. Data integration using self-maintainable views. In Proceedings of
International Conference on Extending Database Technology, pages 140-144, Avignon, France, 1996. [226]

N.H. Gehani, H.V. Jagadish, and o. Shmueli. Composite event specification in active databases: Model
& implementation. In Proceedings of International Conference on Very Large Data Bases, pages 327-338,
Vancouver, 1992. [543]

Y.V. Glebskil, D.I. Kogan, M.l. Liogonkil, and V.A. Talanov. Range and degree of realizability offormulas in
the restricted predicate calculus. Kibernetika, 5:17-27, 1969. [58]

P.M.D. Gray, K.G. Kulkarni, and N. W. Paton. Object-Oriented Databases: A Semantic Data Model Approach.
Prentice-Hall, Hemel Hempstead, Hertfordshire, 1992. [529]

Y. Gurevich and H.R. Lewis. The inference problem for template dependencies. Information and Control,
55:69-79,1982. [200]

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proceedings of
International Conference on Logic Programming, pages 1070-1080, Seattle, Wa., 1988. [468,473]

M. Gyssens and 1. V .S. Lakshmanan. A foundation for multi-dimensional databases. In Proceedings of
International Conference on Very Large Data Bases, pages 106-115, Athens, 1997. [563]

J.N. Gray, R.A. Lorie, G.R. Putzolu, and 1.1. Traiger. Granularity of locks and degrees of consistency in a
shared data base. Research Report R/1654 (24264), IBM Research Laboratory, San Jose, Ca., 1975. [453]

J. Grant and J. Minker. Inferences for numerical dependencies. Theoretical Computer Science, 41:271-287,
1985. [231]

J. Grant and J. Minker. Normalization and axiomatization for numerical dependencies. Information and
Control, 65:1-17,1985. [231,264]

D. Gabbay and P. McBrien. Temporal logic & historical databases. In Proceedings of International Conference
on Very Large Data Bases, pages 423-430, Barcelona, 1991. [399]

A. Gupta and I.S. Mumick. Maintenance of materialized views: Problems, techniques, and applications. IEEE
Data Engineering Bul/etin, 18:3-18, 1995. [226,564]

H. Gaifman, H. Mairson, Y. Sagiv, and M.Y. Vardi. Undecidable optimization problems for database logic
programs. Journal of the ACM, 40:683-713,1993. [489-491]

M.H. Graham, A.O. Mendelzon, and M.Y. Vardi. Notions of dependency satisfaction. Journal of the ACM,
33:105-129,1986. [211]

P. Goyal, T.S. Narayanan, and F. Sadri. Concurrency control for object bases. Information Systems, 18:167-180,
1993. [453]

J.A. Goguen. L-fuzzy sets. Journal of Mathematical Analysis and Applications, 18:145- 174, 1967. [333]

G. Gottlob. On the size of nonredundant FD-covers. Information Processing Letters, 24:355-360, 1987. [233]

F. Giannotti, D. Pedreschi, D. SaccA, and C. Zaniolo. Non-determinism in deductive databases. In Proceedings
of International Conference on Deductive and Object-Oriented Databases, pages 129-146, Munich, 1991. [511]

M. Gyssens, J. Paredaens, and D. Van Gucht. A graph-oriented object database model. In Proceedings of
ACM Symposium on Principles of Database Systems, pages 417-424, Nashville, Te., 1990. [540]

590

[GPZ88]

[GR86]

[GR93)

[Gra78]

[Gra9\]

[Gri82]

[Gri94]

[GS82]

[GS83]

[GS86]

[GS87)

[GSS89]

[GT84]

[Gur66]

[Gur84]

[GV91]

[GW97]

[Gys86]

[GZ82]

[GZ88]

[Had88]

[HaI74]

[HaI88]

[Han92]

[Har78]

[Har87]

[Har88]

[HCF97]

Bibliography

G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of consistent views. ACM Transactions
on Database Systems, 13:486-524, 1988. [225)

G. Grahne and K.-J. Raihil. Characterizations for acyclic database schemes. In P.e. Kanellakisand F. Preparata,
editors, Advances in Computing Research, volume 3, pages 19-41. JAI Press, Greenwich, 1986. [211]

J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, San Francisco,
Ca. , 1993. [453,455)

G. Gratzer. General Lattice Theory. Academic Press, New York, 1978. [35,299]

G. Grahne. The problem of incomplete information in relational databases. In Lecture Notes in Computer
Science, volume 554, pages 1-156. Springer-Verlag, Berlin, 1991. [352]

R.L. Griffith. Three principles of representation for semantic networks. ACM Transactions on Database
Systems, 7:417-442,1982. [541]

R.P. Grimaldi. Discrete and Combinatorical Mathematics: An Applied Introduction . Addison-Wesley,
Reading, Ma., third edition, 1994. [33]

N. Goodman and O. Shmueli. Tree queries: A simple class of relational queries. ACM Transactions on
Database Systems, 7:653-677,1982. [211,282)

N. Goodman and O. Shmueli. Syntactic characterization of tree database schemas. Journal of the ACM,
30:767-786,1983. [209,211]

Y. Gurevich and S. Shelah. Fixpoint extensions of fIrst-order logic. Annals of Pure and Applied Logic,
32:265-280,1986. [122]

H. Garcia-Molina and K. Salem. Sagas. In Proceedings of ACM SIGMOD Conference on Management of Data,
pages 249-259, San Francisco, Ca., 1987. [442]

G. Gottlob, M. Schrefl, and M. Stumptner. On the interaction between transitive closure and functional
dependencies. In Proceedings of Symposium on Mathematical Fundamentals of Database Systems, pages
187-206, Visegrad, Hungary, 1989. [504]

N. Goodman and Y.C. Tay. A characterization of multivalued dependencies equivalent to a join dependency.
Information Processing Letters, 18:261-266, 1984. [198]

Y. Gurevich. The word problem for certain classes of semigroups. Algebra and Logic, 5:25-35, 1966. In
Russian. [48)

Y. Gurevich. Toward logic tailored for computational complexity. In M.M. Richter, E. Borger, W. Oberschelp,
B. Schnizel, and W. Thomas, editors, Computation and Proof Theory, volume 1104 of Lecture Notes in
Mathematics, pages 175-216. Springer-Verlag, 1984. [59]

M. Gyssens and D. Van Gucht. A comparison between algebraic query languages for flat and nested databases.
Theoretical Computer Science, 87:263-286, 1991. [569]

R. Goldman and J. Widom. Dataguides: Enabling query formulation and optimization in semistructured
databases. In Proceedings of International Conference on Very Large Data Bases, pages 436-445, Athens,
1997. [560,572]

M. Gyssens. On the complexity of join dependencies. ACM Transactions on Database Systems, 11:81-108,
1986. [211]

S. Ginsburg and S.M. Zaiddan. Properties of functional-dependency families. Journal of the ACM, 29:678-698,
1982. [167]

G. Gottlob and R. Zicari. Closed world databases opened through null values. In Proceedings of International
Conference on Very Large Data Bases, pages 50-61, Los Angeles, Ca., 1988. [293]

V. Hadzilacos. A theory of reliability in database systems. Journal of the ACM, 35:121-145, 1988. [453]

P.R. Halmos. Naive Set Theory. Springer-Verlag, New York, 1974. [33]

F.G. Halasz. Reflections on note cards: Seven issues for the next generation of hypermedia systems.
Communications of the ACM, 31:836-852, 1988. [555]

E.N. Hanson. An overview of production rules in database systems. Research Report RJ9023 (80483), IBM
Research Laboratory, San Jose, Ca., 1992. [547]

M.A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Reading, Ma., 1978. [52,488,
491]

D. Harel. Statecharts: A visualformalism for complex systems. Science of Computer Programming, 8:231-274,
1987. [82]

D. Hare!' On visual formalisms. Communications of the ACM, 31:514-530,1988. [82]

G. Hamilton, R. Cattell, and M. Fisher. JDBC™ Database Access with Java™: A Tutorial and Annotated
Reference. The Java Series. Addison Wesley Longman, Reading, Ma., 1997. [381]

Bibliography

[Heg84]

[Heg87]

[Heg90]

[Heg94]

[Her88]

[Her95]

[HF86]

[Hil91]

[HITK79]

[HI91]

[HKMV91]

[HLY80]

[Hod93]

[Hol72]

[Hon80]

[Hon82]

[HR79]

[HR96]

[HS93]

[HS94a]

[HS94b]

[HS94c]

[HU79]

[HuI84]

[Hu186]

[HuI87]

[Hu190]

[Hu197]

591

S.I. Hegner. Canonical view update support through Boolean algebras of components. In Proceedings of
ACM Symposium on Principles of Database Systems, pages 163-172, Waterloo, Ontario, 1984. [225]

S.I. Hegner. Specification and implementation of programs for updating incomplete information databases.
In Proceedings of ACM Symposium on Principles of Database Systems, pages 146-158, San Diego, Ca., 1987.
[502]

S.I. Hegner. Foundations of canonical update support for closed database views. In Proceedings of
International Conference on Database Theory, pages 422-436, Paris, 1990. [225]

S.I. Hegner. Unique complements and decompositions of database schemata. Journal of Computer and
System Sciences, 48:9-57, 1994. [225]

R. Herken, editor. The Universal Turing Machine: A Half-Century Survey. Oxford University Press, Oxford,
U.K., 1988. [52]

c. Herrmann. On the undecidability ofimplications between embedded multivalued database dependencies.
Information and Computation, 112:221-235, 1995. [200]

Y. Hanatani and R. Fagin. A simple characterization of database dependency implication. Information
Processing Letters, 22:281-283, 1986. [195]

I.R. Hill. Relational databases: A tutorial for statisticians. In Proceedings of Symposium on the Interface
between Computer Science and Statistics, pages 86-93, Seattle, Wa., 1991. [354]

K. Hagihara, M. Ito, K. Taniguchi, and T. Kasami. Decision problems for multivalued dependencies in
relational databases. SIAM Journal on Computing, 8:247-264,1979. [194]

R. Hull and D. lacobs. Language constructs for programming active databases. In Proceedings of International
Conference on Very Large Data Bases, pages 455-467, Barcelona, 1991. [545]

G.G. Hillebrand, P.c. Kanellakis, H.G. Mairson, and M.Y. Vardi. Tools for Datalog boundedness. In
Proceedings of ACM Symposium on Principles of Database Systems, pages 1-12, Denver, Co., 1991. [491]

P. Honeyman, R.E. Ladner, and M. Yannakakis. Testing the universal instance assumption. Information
Processing Letters, 10:14-19, 1980. [207]

W. Hodges. Logical features of Horn clauses. In D.M. Gabbay, C.I. Hogger, and I.A. Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic Programming, Logical Foundations, volume I, pages
449-503. Clarendon Press, Oxford, U.K., 1993. [509]

R.C. Holt. Some deadlock properties of computer systems. ACM Computing Surveys, 4:179-196,1972. [454]

P. Honeyman. Extension joins. In Proceedings of International Conference on Very Large Data Bases, pages
239-244, Montreal, 1980. [233]

P. Honeyman. Testing satisfaction of functional dependencies. Journal of the ACM, 29:668-677,1982. [\65,
211,231]

H.B. Hunt III and D.I . Rosenkrantz. The complexity of testing predicate locks. In Proceedings of ACM
SIGMOD Conference on Management of Data, pages 127-133, Boston, Ma., 1979. [441]

T. Harder and I. Reinert. Access path support for referential integrity in SQL2. The VLDB Journal, 5:196-214,
1996. [60]

R. Hull and I. Suo Algebraic and calculus query languages for recursively typed complex objects. Journal of
Computer and System Sciences, 47:121-146,1993. [365]

F.G. Halasz and M. Schwartz. The Dexter hypertext reference model. Communications of the ACM, 37:30-39,
1994. edited by K. Grenb",k and R.H. Trigg. [552]

M. Holsheimer and A.P.I.M. Siebes. Data mining: the search for knowledge in databases. Technical Report
CS-R9406, Computer SciencelDepartment of Algorithmics and Architecture, Centrum voor Wiskunde en
Informatica (CWI), 1994. [564]

R. Hull and I. Suo Domain independence and relational calculus. Acta Informatica, 31:5\3-524,1994. [230]

J.E. Hopcroft and I.D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison
Wesley, Reading, Ma., 1979. [52,488,491,571]

R. Hull. Finitely specifiable implicational dependency families. Journal of the ACM, 31:210-226,1984. [508]

R. Hull. Relative information capacity of simple relational database schemata. SIAM Journal on Computing,
15:856-886,1986. [233,524]

R. Hull. A survey oftheoretical research on typed database complex objects. In J. Paredaens, editor, Databases,
pages 193-256. Academic Press, Boston, 1987. [524,569]

G. Hulin. On restructuring nested relations in partitioned normal form. In Proceedings of International
Conference on Very Large Data Bases, pages 626-637, Brisbane, 1990. [569]

R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective. In Proceedings of ACM
Symposium on Principles of Database Systems, pages 51-61, Tucson, Az., 1997. Invited talk. [560]

592

[HY84]

[HY89]

[1B92]

[IITK84]

[IK89]

[IL84a]

[IL84b]

[IM80]

[lmi89]

[Imi91]

[Imm81]

[lmm86]

[Imm87]

[lmm88]

[lmm89]

[lmm95]

[lnm96]

[loa85]

[ITK83]

[IV89]

[IVV95]

[IW91]

(Jaj86)

(Jan88)

(Jan89]

(JF82]

(JF95]

Bibliography

R. Hull and e.K. Yap. The format model: A theory of database organization. Journal of the ACM, 31:518-537,
1984. [524]

T. Hadzilacos and M. Yannakakis. Deleting completed transactions. Journal of Computer and System Sciences,
38:360-379,1989. (453)

T. Imielinski and B.R. Badrinath. Querying in highly mobile environments. In Proceedings of International
Conference on Very Large Data Bases, pages 41-52, Vancouver, 1992. [567]

M.lto, K. M. Iwasaki, K. Taniguchi, and T. Kasami. Membership problems for data dependencies in relational
expressions. Theoretical Computer Science, 34:315-335, 1984. [219,503]

N. Immerman and D. Kozen. Definability with bounded number of bound variables. Information and
Computation, 83:121-139,1989. [57]

T. Imielinski and W. Lipski Jr. Incomplete information in relational databases. Journal of the ACM, 31:761-
791, 1984. [300]

T. Imielinski and W. Lipski Jr. On the undecidability of equivalence problems for relational expressions. In
H. Gallaire, J. Minker, and J.-M. Nicolas, editors, Advances in Database Theory, pages 393-409. Plenum, New
York, 1984. [485]

S.S. Isloor and T.A. Marsland. The deadlock problem: An overview. IEEE Computer, 13:58-78, 1980. [440]

T. Imielinski. Incomplete information in logical databases. IEEE Data Engineering Bul/etin, 12:29-40, 1989.
[300,328,356]

T.lmielinski. Abstraction in query processing. Journal of the ACM, 38:534-558,1991. [175,180)

N. Immerman. Number of quantifiers is better than number of tape cells. Journal of Computer and System
Sciences, 22:384-406, 1981. [359,383)

N. Immerman. Relational queries computable in polynomial time. Information and Control, 68:86-104,
1986. [57,379,383]

N. Immerman. Languages that capture complexity classes. SIAM Journal on Computing, 16:760-778, 1987.
[359, 383]

N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal on Computing,
17:935-938, 1988. [58]

N. Immerman. Descriptive and computational complexity. In J. Hartmanis, editor, Proceedings of Symposia in
Applied Mathematics, Computational Complexity Theory, volume 38, pages 75-91. American Mathematical
Society, Providence, RI, 1989. [57,359,383,384]

N. Immerman. Descriptive complexity: a logician's approach to computation. Notices of the American
Mathematical Society, 42:1127-1133,1995. [57]

W.H. Inmon. Building the Data Warehouse. John Wiley & Sons, Chichester, second edition, 1996. [562]

Y.E. loannidis. A time bound on the materialization of some recursively defined views. In Proceedings of
International Conference on Very Large Data Bases, pages 219-226, Stockholm, 1985. [491]

M. Ito, K. Taniguchi, and T. Kasami. Membership problem for embedded multivalued dependencies under
some restricted conditions. Theoretical Computer Science, 22:175-194, 1983. [200]

T.lmielinski and K. V. Vadaparty. Complexity of query processing in databases with or-objects. In Proceedings
of ACM Symposium on Principles of Database Systems, pages 51-65, Philadelphia, Pa., 1989. [328]

T. Imielinski, R. Van der Meyden, and K.V. Vadaparty. Complexity tailored design: A new design
methodology for databases with incomplete information. Journal of Computer and System Sciences,
51:405-432,1995. (351)

Y.E. loannidis and E. Wong. Towards an algebraic theory of recursion. Journal of the ACM, 38:329-381,
1991. [489]

S. Jajodia. Recognizing multivalued dependencies in relation schemas. The Computer Journal, 29:458-459,
1986. [232,283]

J.M. Janas. On functional independencies. In Proceedings of Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 487-508, 1988. [167]

J.M. Janas. Covers for functional independencies. In Proceedings of Symposium on Mathematical
Fundamentals of Database Systems, pages 254-268, Visegrad, Hungary, 1989. [167]

J.H. Jou and P.C. Fischer. The complexity of recognizing 3NF relation schemes. Information Processing
Letters, 14:187-190, 1982. [251]

U. Jaeger and J.e. Freytag. An annotated bibliography on active databases. ACM SIGMOD Record, 24:58-69,
1995. [547]

Bibliography 593

(jFM97] T. Joachims, D. Freitag, and T. Mitchell. WebWatcher: A tour guide for the World Wide Web. In Proceedings
of International Joint Conference on Artificial Intelligence, pages 770-775, Nagoya, Japan, 1997. [555]

[JNS83a] S. Jajodia, P.A. Ng, and F.N. Springsteel. Entity-relationship diagrams which are in BCNF. International
Journal of Computer and Information Sciences, 12:269-283, 1983. [81,281]

(jNS83b] S. Jajodia, P.A. Ng, and F.N. Springsteel. The problem of equivalence for entity-relationship diagrams. IEEE
Transactions on Software Engineering, 9:617-630, 1983. [81,281]

(joh90] D.S. Johnson. A catalog of complexity classes. In J. Van Leeuwen, editor, Handbook of Theoretical Computer
Science: Algorithms and Complexity, volume A, chapter 2, pages 67-161. Elsevier Science Publishers,
Amsterdam, 1990. [52]

(jS82] G. Jaeschke and H.-J. Schek. Remarks on the algebra of non first normal form relations. In Proceedings of
ACM Symposium on Principles of Database Systems, pages 124-138, Los Angeles, 1982. [22, 520]

(jS90] S. Jajodia and F.N. Springsteel. Lossless outer joins with incomplete information. BIT, 30:34-41,1990. [356]

(jS91a] S. Jajodia and R.S. Sandhu. A novel decomposition of multilevel relations into single-level relations. In
Proceedings of IEEE Symposium on Security and Privacy, pages 300-313, Oakland, Ca., 1991. [230]

(jS91 b] S. Jajodia and R.S. Sandhu. Toward a multilevel secure relational data model. In Proceedings of ACM SIGMOD
Conference on Management of Data, pages 50-59, Denver, Co., 1991. [230]

(jSS92] e.S. Jensen, R.T. Snodgrass, and M.D. Soo. Extending normal forms to temporal relations. Technical Report
TR 92-17, Department of Computer Science, University of Arizona, Tucson Az., 1992. [407]

[Kan80] P.e. Kanellakis. On the computational complexity of cardinality constraints in relational databases.
Information Processing Letters, 11:98-101, 1980. [215]

[Kan90] P.e. Kanellakis. Elements of relational database theory. In J. Van Leeuwen, editor, Handbook of Theoretical
Computer Science: Formal Models and Semantics, volume B, chapter 17, pages 1073-1156. Elsevier Science
Publishers, Amsterdam, 1990. [491]

[Kar72] R.M. Karp. Reducibility among combinatorical problems. In R.E. Miller and J.W. Thatcher, editors,
Complexity o/Computer Computations, pages 85-103. Plenum, New York, 1972. [50, 155, 168,208]

[Kat84] H. Katsuno. An extension of conflict-free multivalued dependency sets. ACM Transactions on Database
Systems, 9:309-326,1984. [198,206]

[KC86] S.N. Khoshafian and G.P. Copeland. Object identity. In Proceedings of Object-Oriented Programming Systems,
Languages, and Applications, pages 406-416, Portland, Oregon, 1986. [570]

[KCGS95] W. Kim, I. Choi, S. Gala, and M. Scheevel. On resolving schematic heterogeneity in multidatabase systems. In
W. Kim, editor, Modern Database Systems, The Object Model, Interoperability, and Beyond, pages 521-550.
Addison-Wesley, Reading, Ma., 1995. [560]

[KeI85] A. Keller. Algorithms for translating view updates to database updates for views involving selections,
projections and joins. In Proceedings of ACM Symposium on Principles of Database Systems, pages 154-163,
Portland, Oregon, 1985. [226,235]

[KeI86] A. Keller. The role of semantics in translating view updates. IEEE Computer, 19:63-73, 1986. [226]

[Ken79] W. Kent. Limitations of record-based information models. ACM Transactions on Database Systems, 4:107-
131,1979. [81]

[Ken81] W. Kent. Consequences of assuming a universal relation. ACM Transactions on Database Systems, 6:539-556,
1981. [79]

[Ken83a] W. Kent. A simple guide to five normal forms in relational database theory. Communications of the ACM,
26:120-125,1983. [282]

[Ken83b] W. Kent. Technical correspondence: The universal relation revisited. ACM Transactions on Database
Systems, 8:644-648, 1983. [79]

[Kh093] S. Khoshafian. Object-Oriented Databases. John Wiley & Sons, New York, 1993. [529]

[Kif88] M. Kifer. On safety, domain independence, and capturability of database queries. In Proceedings of
International Conference on Data and Knowledge Bases: Improving Usability and Responsiveness, pages
405-415, Jerusalem, Israel, 1988. [135, 139,229]

[Kim90] W. Kim. Introduction to Object-Oriented Databases. MIT Press, Cambridge, Ma., 1990. [2,529,536]

[Kim95a] W. Kim, editor. Modern Database Systems, The Object Mode~ Interoperability, and Beyond. Addison-Wesley,
Reading, Ma., 1995. [529,568]

[Kim95b] W. Kim. Object-oriented database systems: Promises, reality, and future. In W. Kim, editor, Modern Database
Systems, The Object Model, Interoperability, and Beyond, pages 255-280. Addison-Wesley, Reading, Ma.,
1995. [25,529]

[Kim96] R. Kimball. The Data Warehouse Toolkit. John Wiley & Sons, Chichester, 1996. [562,563]

594 Bibliography

[KK89) H. Kitagawa and T.L. Kunii. The Unnormalized Relational Data Model for Office Form Processor Design.
Computer Science Workbench. Springer-Verlag. Tokyo. 1989. [2J

[KKB90) H.F. Korth. W. Kim. and F. Bancilhon. On long-duration CAD transactions. In S.B. Zdonik and D. Maier.
editors. Readings in Object-Oriented Database Systems. pages 408-431. Morgan Kaufmann. San Francisco.
Ca .• 1990. [44IJ

[KKPV87) A. Karabeg, D. Karabeg. K. Papakonstantinou. and V. Vianu. Axiomatization and simplification for relational
transactions. In Proceedings of ACM Symposium on Principles of Database Systems. pages 254-259. San Diego.
Ca .• 1987. [132, 422)

[KL89a) M. Kifer and G. Lausen. F-logic: A higher-order language for reasoning about objects. inheritance and
scheme. In Proceedings of ACM SIGMOD Conference on Management of Data. pages 134-146. Portland.
Oregon. 1989. (529)

[KL89b) W. Kim and F.H. Lochovsky. editors. Object-Oriented Concepts. Databases. and Applications. ACM Press.
New York. 1989. [529)

[Kle56) S.C. Kleene. Representation of events in nerve nets and finite automata. In C.E. Shannon and J. McCarthy.
editors. Automata Studies. volume 34 of Annals of Mathematics Studies. pages 3-41. Princeton University
Press. Princeton. NJ. 1956. [41)

[Klu80) A. Klug. Calculating constraints on relational databases. ACM Transactions on Database Systems. 5:260-290.
1980. [219.503)

[Klu82) A. Klug. Equivalence of relational algebra and relational calculus query languages having aggregate functions.
Journal of the ACM. 29:699-717.1982. [113.383)

[KM80J P. Kandzia and M. Mangelmann. On covering Boyce-Codd normal forms. Information Processing Letters.
11:218-223.1980. [269)

[KM90) A.C. Kakas and P. Mancarella. Database updates through abduction. In Proceedings of International
Conference on Very Large Data Bases. pages 650-661. Brisbane. Australia. 1990. [502J

[KM9Ia) H. Katsuno and A.O. Mendelzon. On the difference between updating a knowledge base and revising it. In
Proceedings of International Conference on Principles of Knowledge Representation and Reasoning. pages
387-394. Cambridge. Ma .• 1991. [502)

[KM91b) H. Katsuno and A.O. Mendelzon. Propositional knowledge base revision and minimal change. Artificial
Intelligence. 52:263-294.1991. (502)

[KM94J A. Kemper and G. Moerkotte. Object-Oriented Database Management: Applications in Engineering and
Computer Science. Prentice Hall. Englewood Cliffs. NJ. 1994. [2, 529)

[KM95) J. Kivinen and H. Mannila. Approximate inference of functional dependencies from relations. Theoretical
Computer Science. 149:129-149. 1995. [565.574)

[KMRS92) M. Kantola. H. Mannila. K.-J. Raiha. and H. Siirtola. Discovering functional and inclusion dependencies in
relational databases. International Journal of Intelligent Systems. 7:591-607. 1992. [565)

[Knu73) D.E. Knuth. The Art of Computer Programming. volume I. Addison-Wesley. Reading. Ma .• second edition.
1973. [33)

[Ko191) P.G. Kolaitis. The expressive power of stratified logic programs. Information and Computation. 90:50-66.
1991. [481)

[KP82) A. Klug and R. Price. Determining view dependencies using tableaux. ACM Transactions on Database
Systems. 7:361-380.1982. [219,503)

[KP91) P.G. Kolaitis and C.H. Papadimitriou. Why not negation by fixpoint? Journal of Computer and System
Sciences. 43:125-144.1991. [122,463,468,482)

[KR81) H.T. Kung and J.T. Robinson. On optimistic methods for concurrency control. ACM Transactions on
Database Systems. 6:213-226,1981. (454)

[KRB85) W. Kim. D.S. Reiner. and D.S. Batory. editors. Query Processing in Database Systems. Springer-Verlag. Berlin.
1985. [27)

[KSW90) F. Kabanza, J.-M. Stevenne. and P. Wolper. Handling infinite temporal data. In Proceedings of ACM
Symposium on Principles of Database Systems. pages 392-403, Nashville, Te .• 1990. [399.408)

[KU84) A. Keller and J.D. Ullman. On complementary and independent mappings on databases. In Proceedings of
ACM SIGMOD Conference on Management of Data. pages 143-148. Boston. 1984. [225)

[Ku193J K.G. Kulkarni. Object-orientation and the SQL standard. Computer Standards and Interfaces. 15:287-300.
1993. [529)

[Kum96) V. Kumar. editor. Performance ofConcurrenyControlMechanisms in Centralized Database Systems. Prentice
Hall. Englewood Cliffs. NJ. 1996. [453)

Bibliography

[Kun85]

[Kun87]

[Kuo96]

[KV88]

[KV91]

[KV92a]

[KV92b]

[KV92c]

[KV93]

[KV95]

[KW89]

[Lae90]

[Lak86]

[Lev84]

[Lev92]

[Lev95]

[Lev96]

[Lev98]

[LG92]

[LG98]

[Lib91]

[Lib98]

[Lie79]

[Lie81]

[Lie82]

[Lie85]

[Lif88]

595

S. Kundu. An improved algorithm for finding a key of a relation. In Proceedings of ACM Symposium on
Principles of Database Systems, pages 189-192, Portland, Oregon, 1985. [154,230]

K. Kunen. Negation in logic programming. Journal of Logic Programming, 4:289-308,1987. [473]

D. Kuo. Model and verification of a data manager based on ARIES. ACM Transactions on Database Systems,
21:427-479, 1996. [453]

D. Karabeg and V. Vianu. Parallel update transactions. In Proceedings of International Conference on
Database Theory, pages 307-321, Briiges, Belgium, 1988. [132]

D. Karabeg and V. Vianu. Simplification rules and complete axiomatization for relational update transactions.
ACM Transactions on Database Systems, 16:439-475, 1991. [132,422]

P.G. Kolaitis and M.Y. Vardi. Fixpoint logic vs. in finitary logic in finite-model theory. In Proceedings of IEEE
Symposium on Logic in Computer Science, pages 46-57, Santa Cruz, Ca., 1992. [57,382]

P.G. Kolaitisand M.Y. Vardi. Infinitarylogic for computer science. In Proceedings of I nternational Colloquium
on Automata, Languages and Programming, pages 450-473, Vienna, 1992. [57,382]

P.G. Kolaitis and M.Y. Vardi. Infinitary logics andO-llaws. Information and Computation, 98:258-294, 1992.
[59]

G.M. Kuper and M.Y. Vardi. The logical data model. ACM Transactions on Database Systems, 18:379-413,
1993. [540]

P.G. Kolaitis and M.Y. Vardi. On the expressive power of Data log: Tools and a case study. Journal of Computer
and System Sciences, 51:110-134,1995. [495-497]

M. Kifer and J. Wu. A logic for object-oriented logic programming (Maier's O-logic revisited). In Proceedings
of ACM Symposium on Principles of Database Systems, pages 379-393, Philadelphia, Pa., 1989. [529]

E. Laenens. Foundations of Ordered Logic. PhD thesis, Department of Mathematics and Computer Science,
University of Antwerp, 1990. [479]

V.S. Lakshmanan. Split-freedom and MVD-intersection: A new characterization of multivalued dependencies
having conflict-free covers. In Proceedings of International Conference on Database Theory, pages 221-241,
Rome, 1986. [198]

H.J. Levesque. The logic of incomplete knowledge bases. In M.L. Brodie, J. Mylopoulos, and J.W.
Schmidt, editors, Conceptual Modelling: Perspective from Artificial Intelligence, Databases and Programming
Languages, pages 165-189. Springer-Verlag, Berlin, 1984. [509]

M. Levene. The Nested Universal Relation Model, volume 595 of Lecture Notes in Computer Science. Springer
Verlag, Berlin, 1992. [2,80,207,299,522]

M. Levene. A lattice view of functional dependencies in incomplete relations. Acta Cybernetica, 12:181-207,
1995. [318]

M. Levene. Maintaining consistency of imprecise relations. The Computer Journal, 39:114-123.1996. [567]

M. Levene. On the information content of semi-structured databases. Acta Cybernetica, 13:257-275. 1998.
[560,570]

T.-W. Ling and C.H. Goh. Logical database design with inclusion dependencies. In Proceedings of the
International Conference on Data Engineering, pages 642-649, Tempe. Az .• 1992. [243,263]

S. Lawrence and c.L. Giles. Searching the world wide web. Science. 280:98-100,1998. [548]

L. Libkin. A relational algebra for complex objects based on partial information. In Proceedings of Symposium
on Mathematical Foundations of Database and Knowledge Base Systems, pages 29-43, Rostock. Germany,
1991. [299]

L. Libkin. A semantics-based approach to design of query languages for partial information. In B. Thalheim
and L. Libkin, editors, Semantics in Databases. pages 170-208. Springer-Verlag, Berlin. 1998. [299]

Y.E. Lien. Multivalued dependencies with null values in relational databases. In Proceedings of International
Conference on Very Large Data Bases. pages 61-66. Rio de Janeiro, 1979. [352]

Y.E. Lien. Hierarchical schemata for relational databases. ACM Transactions on Database Systems. 6:48-69,
1981. [196]

Y.E. Lien. On the equivalence of database models. Journal of the ACM. 29:333-362,1982. [196,314,352]

Y.E. Lien. Relational database design. In S.B. Yao, editor, Principles of Database Design. Logical Organizations.
pages 211-254. Prentice Hall, Englewood Cliffs. NJ. 1985. [249]

V. Lifschitz. On the declarative semantics oflogic programs with negation. In J. Minker. editor, Foundations
of Deductive Databases and Logic Programming, pages 177-192. Morgan Kaufmann. Los Altos. Ca .• 1988.
[468]

S96

[Lip84]

[LJ88]

[LL86]

[LL89]

[LL92]

[LL93a]

[LL93b]

[LL94]

[LL95a]

[LL95b]

[LL96a]

[LL96b]

[LL97a]

[LL97b]

[LL97c]

[LL97d]

[LL98a]

[LL98b]

[LL99a]

[LL99b]

[LL99c]

[Ll087]

[LM67]

[LM89]

[LM93]

[LMG83]

[LMR89]

Bibliography

W. Lipski Jr. On relational algebra with marked nulls. In Proceedings of ACM Symposium on Principles of
Database Systems, pages 201-203, Waterloo, Ontario, 1984. [300]

N.A. Lorentzos and R.G. Johnson. Extending relational algebra to manipulate temporal data. Information
Systems, 13:289-296, 1988. [393]

N. Lerat and W. Lipski Jr. Nonapplicable nulls. Theoretical Computer Science, 46:67-82, 1986. [352,356]

M. Levene and G. Loizou. NURQL: A nested universal relation query language. Information Systems,
14:307-316,1989. [22]

M. Levene and G. Loizou. Inferring null join dependencies in relational databases. BIT, 32:413-429, 1992.
[299.352]

M. Levene and G. Loizou. A fully precise null extended nested relational algebra. Fundamenta Informaticae,
19:303-342,1993. [299]

M. Levene and G. Loizou. Semantics for null extended nested relations. ACM Transactions on Database
Systems. 18:414-459, 1993. [299]

M. Levene and G. Loizou. The nested universal relation data model. Journal of Computer and System Sciences,
49:683-717.1994. [299]

M. Levene and G. Loizou. A correspondence between variable relations and three· valued propositional logic.
International Journal of Computer Mathematics, 55:29-38, 1995. [361.526]

M. Levene and G. Loizou. A graph-based data model and its ramifications. IEEE Transactions on Knowledge
and Data Engineering, 7:809-823,1995. [62.82.533.540.551]

M. Levene and G. Loizou. Categorisation of computable database queries. Fundamenta Informaticae,
27:319-348,1996. [365]

T.-W. Ling and M.L. Lee. View update in entity-relationship approach. Data & Knowledge Engineering,
19:135-169.1996. [81]

M. Levene and G. Loizou. The additivity problem for functional dependencies in incomplete relations. Acta
Informatica, 34:135-149,1997. [317]

M. Levene and G. Loizou. A generalisation of entity and referential integrity in relational databases. Research
Note RN197184, Department of Computer Science. University College London, 1997. [321]

M. Levene and G. Loizou. How to prevent interaction of functional and inclusion dependencies. Research
Note RN1971129, Department of Computer Science. University College London, 1997. [187.189]

M. Levene and G. Loizou. Null inclusion dependencies in relational databases. Information and Computation,
136:67-108,1997. [324]

M. Levene and G. Loizou. The additivity problem for data dependencies in incomplete relational databases.
In B. Thalheim and L. Libkin, editors, Semantics in Databases, pages 136-169. Springer-Verlag, Berlin, 1998.
[324]

M. Levene and G. Loizou. Axiomatisation of functional dependencies in incomplete relations. Theoretical
Computer Science. 206:283-300,1998. [316]

M. Levene and G. Loizou. Database design for incomplete relations. ACM Transactions on Database Systems,
24,1999. To appear. [318.356]

M. Levene and G. Loizou. A probabilistic approach to navigation in hypertext. Information Sciences, 114:
165-186,1999. [554]

M. Levene and G. Loizou. Navigation in hypertext is easy only sometimes. SIAM Journal on Computing.
1999. To appear. [388.553.571.572]

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York, second edition, 1987. [40]

R.E. Levien and M.E. Maron. A computer system for inference execution and data retrieval. Communications
of the ACM. 10:715-721, 1967. [227]

V.S. Lakshmanan and A.O. Mendelzon. Inductive pebble games and the expressive power of Datalog. In
Proceedings of ACM Symposium on Principles of Database Systems, pages 301-310, Philadelphia, Pa., 1989.
[495.497]

T.Y.C. Leung and R.R. Muntz. Stream processing: Temporal query processing and optimisation. In A.U.
Tansel. J. Clifford, S. Gadia. S. Jajodia, A. Segev, and R. Snodgrass, editors, Temporal Databases, Theory,
Design, and Implementation. pages 329-355. BenjaminlCummings. Redwood City. Ca., 1993. [408]

K. Laver, A.O. Mendelzon. and M.H. Graham. Functional dependencies on cyclic database schemes. In
Proceedings of ACM SIGMOD Conference on Management of Data. pages 79-91. San jose. Ca., 1983. [211]

j . Lobo. j. Minker, and A. Rajasekar. Extending the semantics oflogic programs to disjunctive logic programs.
In Proceedings of International Conference on Logic Programming. pages 255-267. Lisbon. 1989. [479]

Bibliography

[LMS93]

[L078]

[Lor93]

[LP81]

[LP91]

[LRM9I]

[LR096]

[LS88]

[LST87]

[LT83]

[LT87a]

[LT87b]

[LTK81]

[LV97]

[LV99]

[LZ96]

[Mai80]

[Maj92]

[Mak77]

[Mak87]

[Man84]

[Man89]

[Man90]

[Mar94]

597

A.Y. Levy, I.S. Mumick, and Y. Sagiv. Equivalence, query-reachability, and satisfiability in Datalog extensions.
In Proceedings of ACM Symposium on Principles of Database Systems, pages 109-122, Washington, D.C., 1993.
[489,500,503]

c.L. Lucchesi and S.L. Osborn. Candidate keys for relations. Journal of Computer and System Sciences,
17:270-279, 1978. [154]

N.A. Lorentzos. The interval-extended relational model and its application to valid-time databases. In A.U.
Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors, Temporal Databases, Theory,
Design, and Implementation, pages 67-91. Benjamin/Cummings, Redwood City, Ca., 1993. [393]

H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall, Englewood Cliffs.,
NI, 1981. [52]

M. Levene and A. Poulovassilis. An object-oriented data model formalised through hypergraphs. Data &
Knowledge Engineering, 6:205-224,1991. [529]

M. Levene, A. Poulovassilis, K. Benkerimi, S. Schwartz, and E. Tuv. Implementation of a graph-based data
model for complex objects. ACM SIGMOD Record, 22:26-31,1993. [533]

I. Lobo, A. Rajasekar, and J. Minker. Semantics of Horn and disjunctive logic programs. Theoretical Computer
Science, 86:93-106, 1991. [479]

A. Y. Levy, A. Rajaraman, and J.J. Ordille. Querying heterogeneous information sources using source
descriptions. In Proceedings of International Conference on Very Large Data Bases, pages 251-262, Bombay,
1996. [560]

C. Lewerentz and A. Schurr. GRAS, a management system for graph-like documents. In Proceedings of
International Conference on Data and Knowledge Bases: Improving Usability and Responsiveness, pages
91-131, Jerusalem, Israel, 1988. [541]

I.W. Lloyd, E.A. Son enberg, and R.W. Topor. Integrity constraints checking in stratified databases. Journal
of Logic Programming, 4:331-343,1987. [508]

G. Loizou and P. Thanisch. Testing a dependency-preserving decomposition for losslessness. Information
Systems, 8:25-27, 1983. [246]

G. Loizou and P. Thanisch. Losslessness and project-join constructibility in relational databases. Acta
Informatica, 24:131-144, 1987. [204]

G. Loizou and P. Thanisch. On finding a worst-case optimal fourth normal form database decomposition.
BIT, 27:157-162,1987. [284]

T.-W. Ling, F.W. Tampa, and T. Kameda. An improved third normal form for relational databases. ACM
Transactions on Database Systems, 6:329-346,1981. [269]

M. Levene and M. W. Vincent. Recovery from inconsistency in incomplete relations. Research Note RN/97/81,
Department of Computer Science, University College London, 1997. [575]

M. Levene and M.W. Vincent. Justification for inclusion dependency normal form. IEEE Transactions on
Knowledge and Data Engineering, 1999. To appear. [243,263,282,284, 285]

D. Lucarella and A. Zanzi. A visual retrieval environment for hypermedia information systems. ACM
Transactions on Information Systems, 14:3-29, 1996. [540]

D. Maier. Minimal covers in the relational database model. Journal of the ACM, 27:664-674, 1980. [166]

M.E. Majster-Cederbaum. Ensuring the existence of a BCNF-decomposition that preserves functional
dependencies in O(N2) time. Information Processing Letters, 43:95-100,1992. [283]

A. Makinouchi. A consideration on normal form of not-necessarily-normalized relation in the relational
data model. In Proceedings of International Conference on Very Large Data Bases, pages 447-453, Tokyo,
1977. [19]

I.A. Makowsky. Why Horn formulas matter in computer science: Initial structures and generic examples.
Journal of Computer and System Sciences, 34:266-292,1987. [508]

H. Mannila. On the complexity of the inference problem for subclasses of inclusion dependencies. In
Proceedings of Winter School on Theoretical Computer Science, pages 182-193, Lammi, Finland, 1984. [178,
180]

S. Manchanda. Declarative expression of deductive database updates. In Proceedings of ACM Symposium on
Principles of Database Systems, pages 93-100, Philadelphia, Pa., 1989. [502]

R. Manthey. Satisfiability of integrity constraints: reflections on a neglected problem. In Proceedings of
Workshop on Foundations of Models and Languages for Data and Objects, pages 169-179, Aigen, Austria,
1990. [508]

V.M. Markowitz. Safe referential integrity and null constraint structures in relational databases. Information
Systems, 19:359-378, 1994. [243,263]

598

[Mas84]

[Mat96]

[MD89]

[MD94]

[MeI96]

[Men79]

[Men87]

[MFDG98]

[MG90]

[MGB93]

[MGKL88]

[MH69]

[MHL + 92]

[MI89]

[Mic87]

[Min69]

[Min88a]

[Min88b]

[Mit83]

[MM85]

[MM90]

[MMC76]

[MMS79]

[MMSU80]

[MNE96]

[MNR92]

[Mok97]

Bibliography

Y. Masunaga. A relational database view update translation mechanism. In Proceedings of International
Conference on Very Large Data Bases, pages 309-320, Singapore, 1984. [226]

N.M. Mattos. An overview of the SQL3 standard. Research Report, IBM Technology Institute, Santa Teresa
Lab., San Jose, Ca., 1996. [529]

D.R. McCarthy and U. Dayal. The architecture of an active data base management system. In Proceedings of
ACM SIGMOD Conference on Management of Data, pages 215-224, Portland, Oregon, 1989. [545]

S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal of Logic
Programming, 19,20:629-679, 1994. [566]

J. Melton. An SQL3 snapshot. In Proceedings of IEEE Conference on Data Engineering, pages 666-672, New
Orleans, Lo., 1996. [383,529]

A.O. Mendelzon. On axiomatizing multivalued dependencies in relational databases. Journal of the ACM,
26:37-44,1979. [193,194]

E. Mendelson. Introduction to Mathematical Logic. Wadsworth & Books/Cole, Monterey, Ca., third edition,
1987. [40]

S. Mace, U. Flohr, R. Dobson, and T. Graham. Weaving a better web. Byte, 23:58-68, 1998. [550]

R. Missaoui and R. Godin. The implication problem for inclusion dependencies: A graph approach. ACM
SIGMOD Record, 19:36-40, 1990. [232]

R. Missaoui, R. Godin, and A. Boujenoui. Extracting exact and approximate rules from databases. In
Proceedings of International Workshop on Incompleteness and Uncertainty in Information System, pages
209-221, Montreal, 1993. [565]

L.L. Miller, S.K. Gadia, S. Kothari, and K.e. Liu. Completeness issues for join dependencies derived from the
universal relation join dependency. Information Processing Letters, 28:269-274, 1988. [211]

J. McCarthy and P.J. Hayes. Some philosophical problems from the standpoint of artificial intelligence. In
B. Meltzer and D. Michie, editors, Machine Intelligetlce, volume 4, pages 463-502. Edinburgh University
Press, Edinburgh, 1969. [502]

e. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwartz. ARIES: A transaction recovery method
supporting fine-granularity locking and partial rollbacks using write-ahead logging. ACM Transactions on
Database Systems, 17:94-162, 1992. [453]

e.e. Marshall and P.M. Irish. Guided tours and on-line presentations: How authors make existing hypertext
intelligible for readers. In Proceedings of ACM Conference on Hypertext, pages 15-26, Pittsburg, Pa., 1989.
[554]

Z. Michalewicz. Functional dependencies and their connection with security of statistical databases.
Information Systems, 12:17-27, 1987. [230]

M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs, NJ, 1969. [52]

J. Minker. On indefinite databases and the closed world assumption. In M.L. Ginsberg, editor, Readings in
Nonmonotonic Reasoning, pages 326-333. Morgan Kaufmann, Los Altos, Ca., 1988. [293,461]

J. Minker. Perspectives in deductive databases. Journal of Logic Programming, 5:33-60,1988. [510]

J.e. Mitchell. The implication problem for functional and inclusion dependencies. Information and Control,
56:154-173,1983. [173,174,179-181,186]

I. Martin and e. McClure. Diagramming Techniques for Analysts and Programmers. Prentice-Hall, Englewood
Cliffs, NJ, 1985. [62,68]

V.M. Markowitz and I.A. Makowsky. Identifying extended entity-relationship object structures in relational
schemas. IEEE Transactions on Software Engineering, 16:777-790, 1990. [81,277,281]

A.S. Michaels, B. Mittman, and C.R. Carlson. A comparison of the relational and CODASYL approaches to
data-base management. ACM Computing Surveys, 8:125-151, 1976. [2]

D. Maier, A.O. Mendelzon, and Y. Sagiv. Testing implications of data dependencies. ACM Transactions on
Database Systems, 4:455-469, 1979. [165]

D. Maier, A.O. Mendelzon, F. Sadri, and J.D. Ullman. Adequacy of decompositions of relational databases.
Journal of Computer and System Sciences, 21:368-379, 1980. [210]

W.Y. Mok, Y.-K. Ng, and D.W. Embley. A normal form for precisely characterizing redundancy in nested
relations. ACM Transactions on Database Systems, 21:77-106,1996. [522]

W. Marek, A. Nerode, and I. Remmel. How complicated is the set of stable models of a recursive logic
program? Annals of Pure and Applied Logic, 56:119-135,1992. [483]

W.Y. Mok. On keys and normal forms. Information Processing Letters, 62:255-258,1997. [255,283]

Bibliography

[Mor94]

[MP92]

[MQM97]

[MR83]

[MR86a]

[MR86b]

[MR87]

[MR88]

[MR92a]

[MR92b]

[MR94]

[MRW86]

[MS89a]

[MS89b]

[MS91]

[MS94]

[MSY81]

[MT91]

[MU83]

[MU84]

[MUV84]

[MV86]

[MW88a]

[MW88b]

[MW95]

[Nau88]

[Nau89]

599

E. Morales. Learning patterns for playing strategies. ICCA Journal, 17:15-26, 1994. [566]

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer-Verlag, New
York, 1992. [388,398]

I.S. Mumick" D. Quass, and B.S. Mumick. Maintenance of data cubes and summary tables in a warehouse. In
Proceedings of ACM SIGMOD Conference on Management of Data, pages 100-111, Tucson, Az., 1997. [564]

H. Mannila and K.-J. Riiihii. On the relationship of minimum and optimum covers for a set of functional
dependencies. Acta Informatica, 20:143-158,1983. [166]

H. Mannila and K.-J. Riiiha. Design by example: an application of Armstrong relations. Journal of Computer
and System Sciences, 33:126-141, 1986. [148, 159,231,565]

H. Mannila and K.-J. Riiiha. Inclusion dependencies in database design. In Proceedings of IEEE Conference
on Data Engineering, pages 713-718, Los Angeles, Ca., 1986. [243,263,277]

H. Mannila and K.-J. Riiihii. Dependencyinference. In Proceedings of International Conference on Very Large
Data Bases, pages 155-158, Brighton, U.K., 1987. [565]

H. Mannila and K.-J. Riiihii. Generating Armstrong databases for sets of functional and inclusion
dependencies. Research Report A-1988-7, Department of Computer Science, University of Tampere,
Tampere, Finland, 1988. [177]

H. Mannila and K.-J. Riiihii. The Design of Relational Databases. Addison-Wesley, Reading, Ma., 1992.
[80-82,187,243,263,277,281]

H. Mannila and K.-J. Riiihii. On the complexity of inferring functional dependencies. Discrete Applied
Mathematics, 40:237-243, 1992. [565]

H. Mannila and K.-J. Riiihii. Algorithms for inferring functional dependencies from relations. Data &
Knowledge Engineering, 12:83-99, 1994. [565,574]

D. Maier, D. Rozenshtein, and D.S. Warren. Window functions. In P.e. Kanellakis and F. Preparata, editors,
Advances in Computing Research, volume 3, pages 213-246. JAI Press, Greenwich, 1986. [80]

V.M. Markowitz and A. Shoshani. On the correctness of representing extended entity-relationship structures
in the relational model. In Proceedings of ACM SIGMOD Conference on Management of Data, pages 430-439,
Portland, Oregon, 1989. [263,277,281]

M. Missikoff and M. Scholl. An algorithm for insertion into a lattice: Application to type classification. In
Proceedings of International Conference on Foundations of Data Organization and Algorithms, pages 64-82,
Paris, 1989. [527,528]

L.E. McKenzie Jr. and R.T. Snodgrass. Evaluation of relational algebras incorporating the time dimension in
databases. ACM Computing Surveys, 23:501-543,1991. [394]

I.S. Mumick and O. Shmueli. Universal finiteness and satisfiability. In Proceedings of ACM Symposium on
Principles of Database Systems, pages 190-200, Minneapolis, Mn., 1994. [489]

D. Maier, Y. Sagiv, and M. Yannakakis. On the complexity of testing implications of functional and join
dependencies. Journal of the ACM, 28:680-695,1981. [203]

W. Marek and M. Truszczynski. Autoepistemic logic. Journal of the ACM, 38:588-619,1991. [483]

D. Maier and J.D. Ullman. Maximal objects and the semantics of universal relation databases. ACM
Transactions on Database Systems, 8:1-14,1983. [211]

D. Maier and J.D. Ullman. Connections in acyclic hypergraphs. Theoretical Computer Science, 32:185-199,
1984. [211]

D. Maier, J.D. Ullman, and M.Y. Yardi. On the foundations ofthe universal relation model. ACM Transactions
on Database Systems, 9:283-308, 1984. [80,490]

J .A. Makowsky and M. Y. Yardi. On the expressive power of data dependencies. Acta Informatica , 23:231-244,
1986. [505,507,508]

D. Maier and D.S. Warren. Computing with Logic: Logic Programming with Prolog. Benjaminl
Cummings, Menlo Park, Ca., 1988. [23,115]

S. Manchanda and D.S. Warren. A logic-based language for database updates. In J. Minker, editor,
Foundations of Deductive Databases and Logic Programming, pages 363-394. Morgan Kaufmann, Los Altos,
Ca., 1988. [502]

A.O. Mendelzon and P.T. Wood. Finding regular simple paths in graph databases. SIAM Journal on
Computing, 24:1235-1258,1995. [554]

J.F. Naughton. Compiling separable recursions. In Proceedings of ACM SIGMOD Conference on Management
of Data, pages 312-319, Chicago, II., 1988. [489]

J.P. Naughton. Data independent recursion in deductive databases. Journal of Computer and System Sciences,
38:259-289,1989. [491]

600

[NeI80]

[NG78]

[Ng96]

[Nic82]

[Nie90]

[NK88]

[NK89]

[NM90]

[NT89]

[NUWC97]

[NY78]

[OG95]

[OH86]

[Omi95]

[Osb79]

[OV9I]

[OY87a]

[oY87b]

[Pap79]

[Pap85]

[Pap86]

[Pap94]

[Par78]

[Par96]

[Paw82]

[PBR77]

[PDGV89]

[PE98]

[Pet81]

Bibliography

T.H. Nelson. Replacing the printed word: A complete literary system. In Proceedings of IPIP Congress. pages
1013-1023, Tokyo, 1980. [556]

J.-M. Nicolas and H. Gallaire. Data base: theory vs. interpretation. In H. Gallaire and J. Minker, editors,
Logic and Data Bases, pages 33-54. Plenum Press, New York, 1978. [480]

W. Ng. Personal communication. Department of Computer Science, University College London, 1996. [214]

J.-M. Nicolas. Logic for improving integrity checking in relational databases. Acta Informatica, 18:227-253,
1982. [508]

J. Nielsen. Hypertext and Hypermedia. Academic Press, Boston, 1990. [2,555]

S. Naqvi and R. Krishnamurthy. Database updates in logic programming. In Proceedings of ACM Symposium
on Principles of Database Systems. pages 251-262, Austin. Texas. 1988. [512]

J.M. Nyce and P. Kahn. Innovation, pragmaticism, and technological continuity: Vannevar Bush's memex.
Journal of the American Society for Information Science, 40:214-220,1989. [555]

U. Nilsson and J. Maluszynski. Logic Programming and Prolog. John Wiley & Sons, Chichester, 1990. [463,
479]

S. Naqvi and S. Tsur. A Logical Language for Data and Knowledge Bases. Computer Science Press, New York,
1989. [2,502,511-513]

S. Nestorov, J.D. Ullman, J. Wiener, and S.S. Chawathe. Representative objects: Concise representations of
semistructured, hierarchical data. In Proceedings of IEEE International Conference on Data Engineering,
pages 79-90, Birmingham. 1997. [560, 5n]

J.-M. Nicholas and K. Yazdanian. Integrity checking in deductive data bases. In H. Gallaire and J. Minker,
editors, Logic and Data Bases, pages 325-344. Plenum, New York. 1978. [146,509]

P.E. O'Neil and G. Graefe. Multi-table joins through bitmapped join indices. ACM SIGMOD Record, 24:8-11,
1995. [563]

S.L. Osborn and T.E. Heaven. The design of a relational database system with abstract data types for domains.
ACM Transactions on Database Systems, 11 :357-373, 1986. [570]

E. Omiecinski. Parallel relational database systems. In W. Kim, editor, Modern Database Systems, The Object
Model, Interoperability, and Beyond, pages 494-512. Addison-Wesley, Reading, Ma., 1995. [566]

S.L. Osborn. Testing for the existence of a covering Boyce-Codd normal form. Information Processing Letters,
8:11-14,1979. [269]

M.T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice-Hall, Englewood Cliffs, NJ,
1991. [566]

M. Ozsoyoglu and L.-Y. Yuan. Reduced MVDs and minimal covers. ACM Transactions on Database Systems,
12:377-394,1987. [198]

Z.M. Ozsoyoglu and L.-Y. Yuan. A new normal form for nested relations. ACM Transactions on Database
Systems. 12:111-136,1987. [522]

G. H. Papadimitriou. The serializability of concurrent database updates. Journal of the ACM, 26:631-653,
1979. [421,453,456]

G.H. Papadimitriou. A note on the expressive power of Prolog. Bulletin of the EA TCS, 26:21-23, 1985. [482]

G.H. Papadimitriou. The Theory of Database Concurrency Control. Computer Science Press, Rockville, Md.,
1986. [453,455]

C.H. Papadimitriou. Computational Complexity. Addison·Wesley, Reading, Ma., 1994. [52]

J. Paredaens. On the expressive power of the relational algebra. Information Processing Letters, 7:107-111,
1978. [377]

S. Parsons. Current approaches to handling imperfect information in data and knowledge bases. IEEE
Transactions on Knowledge and Data Engineering, 8:353-372,1996. [354]

Z. Pawlak. Rough sets. International Journal of Computer and Information Sciences, 11:341-356, 1982. [342]

C.H. Papadimitriou, P.A. Bernstein, and J.B. Rothnie Jr. Some computational problems related to database
concurrency control. In Proceedings of Conference on Theoretical Computer Science, pages 275-282, Waterloo,
Ontario, 1977. [453]

J. Paredaens, P. De Bra, M. Gyssens, and D. Van Gucht. The Structure of the Relational Database Model,
volume 17 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1989. [264,266]

M. Perkowitz and o. Etzioni. Adaptive web sites: Automatically synthesizing web pages. In Proceedings of
National Conference on Artificial Intelligence, Madison, Wisconsin, 1998. [555]

J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, Englewood Cliffs, NJ. 198\. [509]

Bibliography

[Pet89]

[PL94]

[Pla92]

[PM88]

[Pos36]

[Pos46]

[Pos47]

[PP90]

[PPG80]

[Prz88a]

[Prz88b]

[Prz89]

[Prz90]

[Prz91]

[Prz92]

[PS87]

[PS89]

[PSF91]

[PSM93]

[PSV94]

[PSV96]

[PT86]

[PV88]

[PVV94]

601

S. V. Petrov. Finite axiomatization of languages for representation of system properties: Axiomatization of
dependencies. Information Sciences. 47:339-372.1989. [202]

A. Poulovassilis and M. Levene. A nested-graph model for the representation and manipulation of complex
objects. ACM Transactions on Information Systems. 12:35-68. 1994. [62.82,533,537,540,551,570]

R. Planche. Data Driven Systems Modeling. Prentice-Hall/Masson. Exeter. 1992. [62,82]

I. Peckman and F. Maryanski. Semantic data models. ACM Computing Surveys. 20:153-189.1988. [61]

E.L. Post. Finite combinatory processes. Formulation I. The Journal of Symbolic Logic. 1:103-105. 1936. [40]

E.L. Post. A variant of a recursively unsolvable problem. Bulletin of the American Mathematical Society.
52:264-268.1946. [48]

E.L. Post. Recursive unsolvability of a problem ofThue. The Journal of Symbolic Logic. 12:1-11. 1947. [48]

H. przymusinska and T. Przymusinski. Semantic issues in deductive databases and logic programs. In R.B.
Banerji. editor. Formal Techniques in Artificial Intelligence: A Sourcebook. pages 321-367. Elsevier Science
Publishers, Amsterdam. 1990. [468,476]

D.S. Parker Ir. and K. Parsaye-Ghomi. Inferences involving embedded multivalued dependencies and
transitive dependencies. In Proceedings of ACM SIGMOD Conference on Management of Data, pages 52-57.
Santa Monica, 1980. [199]

T.C. Przymusinski. On the declarative semantics of deductive databases and logic programs. In I. Minker,
editor, Foundations of Deductive Databases and Logic Programming. pages 193-216. Morgan Kaufmann, Los
Altos, 1988. [468.470,476]

T.C. Przymusinski. Perfect model semantics. In Proceedings of International Conference on Logic
Programming, pages 1081-1120, Seattle. Wa .• 1988. [468.470]

T.C. Przymusinski. Every logic program has a natural stratification and an iterated least fixed point model.
In Proceedings of ACM Symposium on Principles of Database Systems, pages 11-21, Philadelphia. Pa., 1989.
[468,477]

T.C. Przymusinski. Well-founded semantics coincides with three-valued stable semantics. Fundamenta
Informaticae, 13:445-464,1990. [468.478]

T.C. Przymusinski. Well-founded completions of logic programs. In Proceedings of International Conference
on Logic Programming, pages 726-744. Paris, 1991. [468]

T.C. Przymusinski. Two simple characterizations of well-founded semantics. In Proceedings of Conference
on Mathematical Foundations of Computer Science, pages 451-462, Prague. 1992. [468,478]

C. Parent and S. Spaccapietra. A model and an algebra for entity-relation type databases. Technology and
Science of Informatics. 6:623-642.1987. [81]

c. Parent and S. Spaccapietra. Complex objects modeling: An entity-relationship approach. In S. Abiteboul.
P.C. Fischer, and H.-I. Schek, editors. Nested Relations and Complex Objects, pages 272-296. Springer-Verlag,
Berlin, 1989. [81]

G. Piatetsky-Shapiro and W.J. Frawley. editors. Knowledge Discovery in Databases. AAAI Press. Menlo Park,
Ca., 1991. [564]

G. Piatetsky-Shapiro and C.I. Matheus. Measuring data dependencies in large databases. In Proceedings of
Workshop on Knowledge Discovery in Databases, pages 162-173. Washington, D.C., 1993. [565]

W. Penzo. S. Sola, and F. Vitali. Further modification to the Dexter hypertext reference model: A proposal.
Technical Report UBLCS-94-1. Laboratory of Computer Science, University of Bologna, 1994. [553]

C.H. Papadimitriou. D. Suciu. and V. Vianu. Topological queries in spatial databases. In Proceedings of ACM
Symposium on Principles of Database Systems. pages 81-92, Montreal, 1996. [407]

P. Pistor and R. Traunmueller. A database language for sets, lists and tables. Information Systems. 11:323-336,
1986. [22]

J. Paredaens and D. Van Gucht. Possibilities and limitations of using flat operators in nested algebra
expressions. In Proceedings of ACM Symposium on Principles of Database Systems, pages 29-38. Austin.
Texas. 1988. [519]

J. Paredaens, J. Van den Bussche. M. Andries. M. Gemis. M. Gyssens, I. Thyssens. D. Van Gucht, V. Sarathy.
and L. Saxton. An overview of GOOD. ACM SIGMOD Record. 21:25-31, 1992. [540]

J. Paredaens, J. Van den Bussche, and D. Van Gucht. Towards a theory of spatial databases queries. In
Proceedings of ACM Symposium on Principles of Database Systems, pages 279-288, Minneapolis. Mn., 1994.
[407]

D. Quass, A. Rajaraman. Y. Sagiv. J.D. Ullman. and J. Widom. Querying semistructured heterogeneous
information. In Proceedings of International Conference on Deductive and Object-Oriented Databases, pages
319-344. Singapore. 1995. [560]

602

[Rad91]

[Ram88]

[RBS94]

[Red98]

[Ree83]

[Rei78]

[Rei80]

[Rei84]

[Rei87]

[Rei92a]

[Rei92b]

[Res69]

[Ric53]

[RKB87]

[RM88]

[RN89]

[Rod92]

[Rod96]

[Rog87]

[Ros89]

[RS59]

[RS92]

[RSUV89]

[RU7l]

[RU95]

[SA95]

[Sac85]

[Sag83]

Bibliography

R. Rada. Hypertext: From Text to Expertext. McGraw-Hili. New York. 1991. [2,555.556]

R. Ramakrishnan. Magic templates: a spellbinding approach to logic programs. In Proceedings of
International Conference on Logic Programming. pages 140-159. Seattle. Wa .• 1988. [493]

E. Rivlin. R. Botafogo. and B. Shneiderman. Navigating in hyperspace: Designing a structure-based toolbox.
Communications of the ACM. 37:87-96.1994. [554]

Red Brick Systems. Star schema processing for complex queries. White Paper. Red Brick Systems. Los Gatos.
Ca .• 1998. [563]

D.P. Reed. Implementing atomic actions on decentralized data. ACM Transactions on Computer Systems.
1:3-23.1983. [451]

R. Reiter. On closed world databases. In H. Gallaire and J. Minker. editors. Logic and Data Bases. pages
55-76. Plenum. New York. 1978. [25.121]

R. Reiter. A logidor default reasoning. ArtificialIntelligence. 13:81-132. 1980. [347,468,479]

R. Reiter. Towards a logical reconstruction of relational database theory. In M.L. Brodie. J. Mylopoulos.
and J.W. Schmidt. editors. Conceptual Modelling: Perspective from Artificial Intelligence. Databases and
Programming Languages. pages 191-233. Springer-Verlag. Berlin. 1984. [460,480]

R. Reiter. Nonmonotonic reasoning. Annual Review of Computer Science. 2: 147 -186. 1987. [468]

R. Reiter. On formalizing database updates: preliminary report. In Proceedings of International Conference
on Extending Database Technology, pages 10-20. Vienna. Austria. 1992. [502]

R. Reiter. What should a database know? Journal of Logic Programming. 14:127-153. 1992. [509]

N. Rescher. Many-valued Logic. McGraw-Hili. New York. 1969. [303.333,352]

H.G. Rice. Classes of recursively enumerable sets and their decision problems. Transactions of the American
Mathematical Society. 74:358-366.1953. [46]

M.A. Roth. H.F. Korth. and D.S. Batory. SQLlNF: A query language for ~ 1 NF relational databases. Information
Systems. 12:99-114. 1987. [22]

K.V.S.V.N. Raju and A.K. Majumdar. Fuzzy functional dependencies and lossless join decomposition of
fuzzy relational database systems. ACM Transactions on Database Systems. 13:129-166. 1988. [339]

R. Rastogi. S. Mehrotra. Y. Breitbart. H.F. Korth. and A. Silberschatz. On correctness of nonserializable
executions. Journal of Computer and System Sciences. 56:68-82.1998. [422,453]

F. Rossi and S.A. Naqvi. Contributions to the view update problem. In Proceedings of International Conference
on Logic Programming. pages 398-415. Lisbon. 1989. [502]

J.F. Roddick. Schema evolution in database systems - an annotated bibliography. ACM SIGMOD Record.
21:35-40.1992. [406]

J.F. Roddick. A survey of schema versioning issues for database systems. Information and Software
Technology. 37:383-393.1996. [406]

H. Rogers Jr. Theory of Recursive Functions and Effective Computability. MIT Press. Cambridge. Ma .• 1987.
Original edition published by McGraw-Hili. New York, 1967. [52]

K.A. Ross. A procedural semantics for well founded negation in logic programs. In Proceedings of ACM
Symposium on Principles of Database Systems. pages 22-33. Philadelphia. Pa .• 1989. [468]

M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research and
Development. 3:114-125.1959. [42]

K.A. Ross and Y. Sagiv. Monotonic aggregation in deductive databases. In Proceedings of ACM Symposium
on Principles of Database Systems. pages 114-126. San Diego. Ca .• 1992. [509,512]

R. Ramakrishnan. Y. Sagiv. J.D. Ullman. and M.Y. Vardi. Proof-tree transformation theorems and their
applications. In Proceedings of ACM Symposium on Principles of Database Systems. pages 172-181.
Philadelphia, Pa .• 1989. [488,489]

N. Rescher and A. Urquhart. Temporal Logic. Springer-Vedag. New York. 1971. [387,407]

R. Ramakrishnan and J.D. Ullman. A survey of deductive database systems. Journal of Logic Programming.
22:125-145.1995. [28.509,513]

H. Samet and W.G. Aref. Spatial data models and query processing. In W. Kim. editor. Modern Database
Systems. The Object Model. Interoperability. and Beyond. pages 338-360. Addison-Wesley. Reading. Ma..
1995. [407,408]

D. Sacca. Closures of database hypergraphs. Journal of the ACM. 32:774-803.1985. [211]

Y. Sagiv. A characterization of globally consistent databases and their access paths. ACM Transactions on
Database Systems. 8:266-286.1983. [232]

Bibliography

[Sag87]

[Sag88]

[SAH87]

[Sal91]

[Sar89]

[Sar90]

[Sar95]

[Saz93]

[Sch77]

[Sch86]

[Sch90]

[Sch93]

[Sch95]

[Sci81]

[Sci82]

[Sci83]

[Sci86]

[SDPF81]

[SF93]

[SFR92]

[SGS94]

[She93]

[Shi81]

[Shm93]

[Shm95]

[Sho86]

[SI88]

603

Y. Sagiv. Optimizing Datalog programs. In Proceedings of ACM Symposium on Principles of Database Systems,
pages 349-362, San Diego, Ca., 1987. [489]

Y. Sagiv. On bounded database schemes and bounded Horn-clause programs. SIAM Journal on Computing,
17:1-22,1988. [490,491]

M. Stonebraker, J. Anton, and E. Hanson. Extending a database system with procedures. ACM Transactions
on Database Systems, 12:350-376, 1987. [529]

G. Salton. Developments in automatic text retrieval. Science, 253:974-980,1991. [555]

Y.P. Saraiya. Linearizing nonlinear recllrsions in polynomial time. In Proceedings of ACM Symposium on
Principles of Database Systems, pages 182-189, Philadelphia, Pa., 1989. [488,489]

Y.P. Saraiya. Hard problems for simple logic programs. In Proceedings of ACM SIGMOD Conference on
Management of Data, pages 64-73, Atlantic City, NJ, 1990. [489]

Y.P. Saraiya. On the efficiency of transforming database logic programs. Journal of Computer and System
Sciences, 51:87-109, 1995. [488,489,491]

V.Y. Sazanov. Hereditarily-finite sets, data bases and polynomial-time computability. Theoretical Computer
Science, 119:187-214, 1993. [365]

J.W. Schmidt. Some high level language constructs for data of type relation. ACM Transactions on Database
Systems, 2:247-261 , 1977. [10]

D.A. Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn and Bacon, Inc.,
Newton, Ma., 1986. [299]

A. Schiirr. PROGRESS: A VHL-language based on graph grammars. In Proceedings of International Workshop
on Graph Grammars and Their Application to Computer Science, pages 641-659, Bremen, 1990. [541]

J.e. Schlimmer. Efficiently inducing determinations: A complete and systematic search algorithm that uses
optimal pruning. In Proceedings of International Conference on Machine Learning, pages 284-290, Amherst,
Ma., 1993. [565]

J.S. Schlipf. The expressive powers of the logic programming semantics. Journal of Computer and System
Sciences, 51 :64-86, 1995. [468,482,483]

E. Sciore. Real world MVD's. In Proceedings of ACM SIGMOD Conference on Management of Data, pages
121-132, Ann Arbor, 1981. [196]

E. Sciore. A complete axiomatization of full join dependencies. Journal of the ACM, 29:373-393,1982. [202,
211]

E. Sciore. Improving database schemes by adding attributes. In Proceedings of A CM Symposium on Principles
of Database Systems, pages 379-383, Atlanta, 1983. [248]

E. Sciore. Comparing the universal instance and relational data models. In P.e. Kanellakis and F. Preparata,
editors, Advances in Computing Research, volume 3, pages 139-162. JAI Press, Greenwich, 1986. [171,244,
245]

Y. Sagiv, e. Delobel, D.S. Parker Jr., and R. Fagin. An equivalence between relational database dependencies
and a fragment of propositional logic. Journal of the ACM, 28:435-453,1981. [210]

I. Savnik and P. Flach. Bottom-up induction of functional dependencies from relations. In Proceedings of
Workshop on Knowledge Discovery in Databases, pages 174-185, Washington, D.C., 1993. [565]

P.O. Stotts, R. Furata, and J.e. Ruiz. Hyperdocuments as automata: Trace-based browsing property
verification. In Proceedings of ACM Conference on Hypertext, pages 272-281, Milano, Italy, 1992. [388,
554,571,572]

K. Salem, H. Garcia-Molina, and J. Shands. Altruistic locking. ACM Transactions on Database Systems,
19:117-165,1994. [442,443]

S. Shenoi. Multilevel database security using information clouding. In Proceedings of IEEE International
Conference on Fuzzy Systems, pages 483-488, 1993. [357]

D.W. Shipman. The functional data model and the data language DAPLEX. ACM Transactions on Database
Systems, 6:140-173,1981. [541]

O. Shmueli. Equivalence of Datalog queries is undecidable. Journal of Logic Programming, 15:231-341, 1993.
[486,489,500]

O. Shmueli. A single recursive predicate is sufficient for pure Datalog. Information and Computation,
116:91-97,1995. [489]

R.e. Shock. Computing the minimum cover of functional dependencies. Information Processing Letters,
22:157-159,1986. [166]

H. Seki and H. Itoh. A query evaluation method for stratified programs under the extended CW A. In
Proceedings of International Conference on Logic Programming, pages 195-211, Seattle, Wa., 1988. [480]

604

[5193]

[5191]

[SKdM92]

[SLR76]

[SM96]

[SMDD95]

[SMF92]

[Sn095]

[SON95]

[Sow76]

[SPAM91]

[Spi88]

[SPS87]

[5575]

[5577]

[5582]

[5589]

[5590]

[5594]

[ST95]

[Sto77]

[St079]

[St086]

[St095]

[SUM2]

[SW82]

[SW88]

Bibliography

C. Sakama and K. Inoue. Relating disjunctive logic programs to default theories. In Proceedings of
International Workshop on Logic Programming and Nonmonotonic Reasoning, pages 266-282, Lisbon, 1993.
[479]

R.S. Sandhu and S. lajodia. Honest databases that can keep secrets. In Proceedings of National Computer
Security Conference, pages 267-282, Washington, D.C., 1991. [230]

E. Simon, I. Kiernan, and C. de Maindreville. Implementing high level active rules on top of a relational
DBMS. In Proceedings of International Conference on Very Large Data Bases, pages 315-326, Vancouver,
1992. [545]

R.E. Stearns, P.M. Lewis II, and D.I. Rosenkrantz. Concurrency control for database systems. In Proceedings
of IEEE Symposium on Foundations of Computer Science, pages 19- 32, Houston, Texas, 1976. [453]

M. Stonebraker and D. Moore. Object-Relational DBMSs: The Next Great Wave. Morgan Kaufmann, San
Francisco, Ca., 1996. [28,60,529,570]

D. Schmidt, R. Marti, A.K. Dittrich, and W. Dreyer. Time series, a neglected issue in temporal database
research? In Recent Advances in Temporal Databases, Proceedings of the International Workshop on Temporal
Databases, pages 214-232, Zurich, 1995. [399]

S. Shenoi, A. Melton, and L. T. Fan. Functional dependencies and normal forms in the fuzzy relational
database model. Information Sciences, 60:1-28, 1992. [342]

R.T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer, Dordrecht, 1995. [400,406-408]

A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large
databases. In Proceedings of International Conference on Very Large Data Bases, pages 432-444, Zurich,
1995. [575]

I.F. Sowa. Conceptual graphs for adata base interface. IBMJournal of Research and Development, 20:336-357,
1976. [82]

U. Schreier, H. Pirahesh, R. Agrawal, and C. Mohan. Alert: an architecture for transforming a passive DBMS
into an active DBMS. In Proceedings of International Conference on Very Large Data Bases, pages 469-478,
Barecelona, 1991. [545]

I.M. Spivey. Understanding Z, A Specification Language and its Formal Semantics. Cambridge University
Press, Cambridge, U.K., 1988. [553]

M.H. Scholl, H.-B. Paul, and H.-I. Schek. Supporting flat relations by anested relational kernel. In Proceedings
of International Conference on Very Large Data Bases, pages 137-146, Brighton, 1987. [59,568]

H.A. Schmid and I.R. Swenson. On the semantics of the relational data model. In Proceedings of ACM
SIGMOD Conference on Management of Data, pages 211-223, Boston, Ma., 1975. [81 , 189]

I.M. Smith and D.C.P. Smith. Database abstractions: aggregation and generalization. ACM Transactions on
Database Systems, 2:105-133,1977. [61]

M. Schkolnick and P. Sorenson. The effects of denormalization on database performance. The Australian
Computer Journal, 14:12-18, 1982. [250]

Y. Sagiv and O. Shmueli. A characterization of finite FD-acyclicity. Journal of Computer and System Sciences,
38:380-404, 1989. [211]

M.H. Scholl and H.-I. Schek. A relational object model. In Proceedings of International Conference on
Database Theory, pages 89- 105, Paris, 1990. [25,529]

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge, Ma., second edition, 1994. [23, 115]

A.P. Stolboushkin and M.A. Taitslin. Finite queries do not have effective syntax. In Proceedings of ACM
Symposium on Principles of Database Systems, pages 277-285, San lose, Ca., 1995. [139]

L.I. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1 - 22,1977. [51]

R.R. Stoll. Set Theory and Logic. Dover, New York, 1979. [33,40]

M. Stonebraker. Inclusion of new types in relational database systems. In Proceedings of IEEE International
Conference on Data Engineering, pages 262-269, Los Angeles, Ca., 1986. [570]

P.D. Stotts. Timed links solve the "stale uri" problem. ACM SIGLlNK Newsletter, 4:6-7, 1995. [551]

F. Sadri and I.D. Ullman. Template dependencies: A large class of dependencies in relational databases and
its complete axiomatization. Journal of the ACM, 29:363-372,1982. [234]

Y. Sagiv and S.F. Waleca. Subset dependencies and a completeness result for a subclass of embedded
multivalued dependencies. Journal of the ACM, 29:103-117,1982. [199]

I.B. Smith and S.F. Weiss. An overview of hypertext. Communications of the ACM, 31:816-819, 1988. [555]

Bibliography 605

[SY80] Y. Sagivand M Yannakakis. Equivalences among relational expressions with union and difference operators.
Journal of the ACM, 27:633-655, 1980. [484]

[Tak89] K. Takeda. In the uniqueness of nested relations. In S. Abiteboul, P.c. Fischer, and H.-I. Schek, editors,
Nested Relations and Complex Objects in Databases, volume 361 of Lecture Notes in Computer Science, pages
139-150. Springer-Verlag, Berlin, 1989. [569]

[Tar55] A. Tarski. A lattice-theoretic fIxpoint theorem and its applications. Pacific Journal of Mathematics, 5:285-309,
1955. [463]

[Tar72] R.E. Tarjan. Depth-fIrst search and linear graph algorithms. SIAM Journal on Computing, 1 :146-160,1972.
[17,35,172,421,469)

[TC90) A. Tuzhilin and I. Clifford. A temporal relational algebra as a basis for temporal completeness. In Proceedings
of International Conference on Very Large Data Bases, pages 13-24, Brisbane, Australia, 1990. [399)

[TCG+93] A.U. Tansel, J. Clifford, S. Gadia, S. lajodia, A. Segev, and R. Snodgrass, editors. Temporal Databases Theory,
Design, and Implementation. Benjamin/Cummings, Redwood City, Ca., 1993. [2,407)

[TD92) K. Tochtermann and G. Dittrich. Fishing for clarity in hyperdocuments with enhanced fIsheye-views. In
Proceedings of ACM Conference on Hypertext, pages 212-221, Milano, Italy, 1992. [554,572)

[Te094) T.J. Teorey. Database Modeling & Design: The Entity-Relationship Approach. Morgan Kaufmann, San
Francisco, Ca., second edition, 1994. [68,80-83)

[TF76) R.W. Taylor and R.L. Frank. CODASYL data-base management systems. ACM Computing Surveys, 8:67-103,
1976. [2)

[TF82) D.-M. Tsou and P.c. Fischer. Decomposition of a relation schema into Boyce-Codd normal form. ACM
SIGACT News, 14:23-29, 1982. [255,269,271)

[TF86) S.I. Thomas and P.c. Fischer. Nested relational structures. In P.c. Kanellakis and F. Preparata, editors,
Advances in Computing Research, volume 3, pages 269-307. IAI Press, Greenwich, 1986. [520,521)

[TFC83) L. Tucherman, A.L. Furtado, and M.A. Casanova. A pragmatic approach to structured database design. In
Proceedings of International Conference on Very Large Data Bases, pages 219-231, Florence, 1983. [226)

[Tha89a) B. Thalheim. On semantic issues connected with keys in relational databases permitting null values. Journal
of Information Processing Cybernetics, 25:11-20,1989. [319,356)

[Tha89b) A. Thayse, editor. From Modal Logic to Deductive Databases. lohn Wiley & Sons, Chichester, 1989. [502,509)

[Th079) R.H. Thomas. A majority consensus approach to concurrency control for multiple copy databases. ACM
Transactions on Database Systems, 4:180-209,1979. [449,454)

[Th093) A. Thomasian. Two-phase locking performance and its thrashing behavior. ACM Transactions on Database
Systems, 18:579-625, 1993. [432)

[TK78) D. Tsichritzis and A. Klug. The ANSI/X3/SPARC DBMS framework report of the study group on database
management systems. Information Systems, 3:173-191 , 1978. (Guest editors). (5)

[TL76) D.C. Tsichritzis and F.H. Lochovsky. Hierarchical data-base management: A survey. ACM Computing
Surveys, 8:105-123, 1976. [2J

[TL86) P. Thanisch and G. Loizou. A polynomial-time dependency implication algorithm for unary multi-valued
dependencies. In Proceedings of International Conference on Database Theory, pages 397-408, Rome, 1986.
[203)

[TLI90J P. Thanisch, G. Loizou, and G. Jones. Succinct database schemes. International Journal of Computer
Mathematics, 33:55-69, 1990. [272]

[TN96] D. Toman and D. Niwinski. First-order queries over temporal databases inexpressible in temporal logic.
In Proceedings of International Conference on Extending Database Technology, pages 307-324, Avignon,
Frnace, 1996. [399)

[Tom88) A. Tomasic. View update translation via deduction and annotation. In Proceedings of International Conference
on Database Theory, pages 338-352, Bruges, Belgium, 1988. (500)

[Tom96) D. Toman. Point vs. interval-based query languages for temporal databases. In Proceedings of ACM
Symposium on Principles of Database Systems, pages 58-67, Montreal, 1996. (407)

[Tom97] D. Toman. A point-based temporal extension ofSQL. In Proceedings of International Conference on Deductive
and Object-Oriented Databases, pages 103-121 , Montreux, Switzerland, 1997. (407)

[Top87) R.W. Topor. Domain-independent formulas and databases. Theoretical Computer Science, 52:281-306,1987.
[136, 138)

[Tor94) R. Torlone. Update operations in deductive databases with functional dependencies. Acta Informatica,
31:573-600,1994. [508)

606

[Tra63]

[Tur36]

[Tur37]

[U1l83]

[U1l87]

[U1l88]

[U1l89]

[U1l91]

[UIl92]

[UV88]

[Val84)

[Van67]

[Van83)

[Van86]

[Van88)

[Van89]

[Van92]

[Van93a)

[Van93b]

[Var81]

[Var82a)

[Var82b]

[Var83)

[Var84a]

[Var84b]

[Var86)

[Var88a]

Bibliography

B.A. Trakhtenbrot. Impossibility of an algorithm for the decision problem in finite classes. American
Mathematical Society Traslations, Series 2, 23:1-5,1963. [53]

A.M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of
the London Mathematical Society, 42:230-265, 1936. [40,54]

A.M. Turing. On computable numbers, with an application to the Entscheidungsproblem. A correction.
Proceedings of the London Mathematical Society, 43:544-546, 1937. [40,54]

J.D. Ullman. Technical correspondence: On Kent's "consequences of assuming a universal relation". ACM
Transactions on Database Systems, 8:637-643,1983. [80]

J.D. Ullman. Database theory: past and future. In Proceedings of ACM Symposium on Principles of Database
Systems, pages 1-10, San Diego, Ca., 1987. [227]

J.D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1. Computer Science Press,
Rockville, Md., 1988. [59,60,509]

J.D. Ullman. Principles of Database and Knowledge-Base Systems, volume 2. Computer Science Press,
Rockville, Md., 1989. [27,229,493]

J.D. Ullman. A comparison between deductive and object-oriented database systems. In Proceedings of
International Conference on Deductive and Object-Oriented Databases, pages 263-277, Munich, 1991. [529,
536]

J.D. Ullman. The interface between language theory and database theory. In J.D. Ullman, editor, Theoretical
Studies in Computer Science, pages 133-151. Academic Press, Boston, 1992. [486,493)

J.D. Ullman and A. Van Gelder. Parallel complexity of logical query programs. Algorithmica, 3:5-42, 1988.
[493]

L.G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134-1142,1984. [565]

J. Van Heijenoort, editor. From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931. Harvard
University Press, Cambridge, Ma., 1967. [59]

J.F.A.K. Van Benthem. The Logic of Time. D. Reidel, Dordrecht, Holland, first edition, 1983. [407]

D. Van Gucht. Interaction-free multivalued dependencies. In Proceedings of International Conference on
Database Theory, pages 410-420, Rome, 1986. [198]

A. Van Gelder. Negation as failure using tight derivations for general logic programs. In J. Minker, editor,
Foundations of Deductive Databases and Logic Programming, pages 149-176. Morgan Kaufmann, Los Altos,
Ca., 1988. [468]

D. Van Dalen. Logic and Structure. Springer-Verlag, Berlin, 1989. [40,138]

A. Van Gelder. The well-founded semantics of aggregation. In Proceedings of ACM Symposium on Principles
of Database Systems, pages 127-138, San Diego, Ca., 1992. [509]

J. Van den Bussche. Formal aspects of object identity in database manipulation. PhD thesis, Department of
Mathematics and Computer Science, University of Antwerp, 1993. [365,526,529]

A. Van Gelder. The alternating fixpoint oflogic programs with negations. Journal of Computer and System
Sciences, 47:185-221,1993. [468,476,482]

M.Y. Vardi. The decision problem for database dependencies. Information Processing Letters, 12:251-254,
1981. [\35]

M.Y. Vardi. The complexity of relational query languages. In Proceedings of ACM Symposium on Theory of
Computing, pages 137-146, San Fancisco, Ca., 1982. [57,359,379,380,383]

M.Y. Vardi. On decomposition of relational databases. In Proceedings of IEEE Symposium on Foundations
of Computer Science, pages 176-185, Chicago, 11.,1982. [210]

M.Y. Vardi. Inferring multivalued dependencies from functional and join dependencies. Acta Informatica,
19:305-324,1983. [200,203]

M.Y. Vardi. The implication and finite implication problems for typed template dependencies. Journal of
Computer and System Sciences, 28:3-28,1984. [200,211]

M.Y. Vardi. A note on lossless database decompositions. Information Processing Letters, 18:257-260, 1984.
[246]

M.Y. Vardi. Issues in logical databases. In Proceedings of International Conference on Very Large Data Bases,
pages 103-127, Kyoto, 1986. [502]

M. Y. Vardi. Decidabilityand undecidability results for boundedness oflinear recursive queries. In Proceedings
of ACM Symposium on Principles of Database Systems, pages 341-35\, Austin, Texas, 1988. [491]

Bibliography

[Var88b]

[Var89a]

[Var89b]

[VB92]

[VF88]

[Via87]

[Via88]

[Via97a]

[Via97b]

[Vin91]

[Vin94]

[Vin98]

[VK76]

[VL97]

[VN95]

[VRS91]

[VS89]

[VS93]

[VT91]

[VV92]

[VW92]

[WC96]

[WCL91]

[WI98]

[Wie77]

[Wij95]

[Wil85]

[Wil92]

607

M.Y. Vardi. Fundamentals of dependency theory. In E. Borger, editor, Trends in Theoretical Computer
Science, chapter 5, pages 171-224. Computer Science Press, New York, 1988. [211,504]

M.Y. Vardi. Automata theory for database theoreticians. In Proceedings of ACM Symposium on Principles of
Database Systems, pages 83-92, Philadelphia, Pa., 1989. [489]

M.Y. Vardi. The universal-relation model for logical independence. IEEE Software, 5:80- 85,1989. [80]

c.R. Vela and A. Bahamonde. An algorithm to minimize representation of finite order relations. International
Journal of Computer Mathematics, 41 :\39-150,1992. [43]

D. Van Gucht and P.C. Fischer. Multilevel nested relational structures. Journal of Computer and System
Sciences, 36:77-105, 1988. [520,521]

V. Vianu. Dynamic functional dependencies and database aging. Journal of the ACM, 34:28-59,1987. [404]

V. Vianu. Database survivability under dynamic constraints. Acta Informatica, 25:55-84, 1988. [404]

V. Vianu. Databases and finite-model theory. In P.G. Kolaitis and N. Immerman, editors, Descriptive
Complexity and Finite Models, volume 31 of DIMACS series in Discrete Mathematics and Computer Science,
pages 97-148. American Mathematical Society, Providence, RI, 1997. [59]

V. Vianu. Rule-based languages. Annals of Mathematics and Artificial Intelligence, 19:215-259, 1997. [468]

M.W. Vincent. Equivalence of update anomalies in relational databases. In Proceddings of International
Conference on Management of Data, COMAD, pages 251-264, Bombay, 1991. [242]

M.W. Vincent. The Semantic Justification for Normal Forms in Relational Database Design. PhD thesis,
Department of Computer Science, Monash University, 1994. [282]

M. W. Vincent. Redundancy elimination and a new normal form for relational database design. In B. Thalheim
and L. Libkin, editors, Semantics in Databases, pages 247-264. Springer-Verlag, Berlin, 1998. [256,257,284]

M.H. Van Emden and R.A. Kowalski. The semantics of predicate logic as a programming language. Journal
oftheACM,23:733-742, 1976. [463,479,509]

M. W. Vincent and M. Levene. Restructuring partitioned normal form relations without information loss. In
Proceedings of International Conference on Management of Data, COMAD, pages 111-124, Bombay, 1997.
[524]

K. Vadaparty and S. Naqvi. Using constraints for efficient query processing in nondeterministic databases.
IEEE Transactions on Knowledge and Data Engineering, 7:850-864, 1995. [331,351]

A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general logic programs. Journal
of the ACM, 38:620-650,1991. [468,477,482]

D.A. Varvel and L. Shapiro. The computational completeness of extended database query languages. IEEE
Transactions on Software Engineering, 15:632-638, 1989. [365]

M. W. Vincent and B. Srinivasan. A note on relation schemes which are in 3NF but not in BCNF. Information
Processing Letters, 48:281-283,1993. [255,283]

A. Van Gelder and R.W. Topor. Safety and translation of relational calculus queries. ACM Transactions on
Database Systems, 16:235-278, 1991. [136]

V. Vianu and G. Vossen. conceptual level concurrency control of relational update transactions. Theoretical
Computer Science, 95:1-42, 1992. [411,423]

J.H. Van Lint and R.M. Wilson. A Course in Combinatorics. Cambridge University Press, Cambridge, U.K.,
1992. [33,154]

J. Widom and S. Ceri, editors. Active Database Systems: Triggers and Rules for Advanced Database Processing.
Morgan Kaufmann, San Francisco, Ca., 1996. [547]

J. Widom, R.J. Cochrane, and B.G. Lindsay. Implementing set-oriented production rules as an extension to
Starburst. In Proceedings of International Conference on Very Large Data Bases, pages 275-285, Barcelona,
1991. [545]

S.M. Weiss and N.Indurkhya. Predictive Data Mining: A Practical Guide. Morgan Kaufmann, San Francisco,
Ca., 1998. [564]

G. Wiederhold. Database Deisgn. McGraw-Hill, Tokyo, 1977. [60]

J. Wijsen. Design of temporal relational databases based on dynamic and temporal functional dependencies.
In Recent Advances in Temporal Databases, Proceedings of the International Workshop on Temporal
Databases, pages 61-76, Zurich, 1995. [404,407]

R.J. Wilson. Introduction to Graph Theory. Longman, Essex, third edition, 1985. [33,63]

R. Wille. Concept lattices and conceptual knowledge systems. Computers and Mathematics with Applications,
23:493-515,1992. [82]

608

[Wil94)

[Win88a)

[Win88b)

[Win95)

[W)L93)

[Won82]

[Wo075)

[Yan81)

[Yan84)

[Y092a)

[Y092b]

[You89)

[Zad65)

[Zad79)

[Zad86]

[Zan82)

[Zan84]

[ZC86)

[ZHKF95)

[Zia91)

[ZM81]

[ZM90]

[Z092a]

[Z092b]

[ZYT90)

Bibliography

M. Wild. A theory of finite closure spaces based on implications. Advances in Mathematics, 108:118-139,
1994. [167]

M. Winslett. A framework for comparison of update semantics. In Proceedings of ACM Symposium on
Principles of Database Systems, pages 315-324, Austin, Texas, 1988. [502]

M. Winslett. A model-based approach to updating databases with incomplete information. ACM Transactions
on Database Systems, 13:167-196, 1988. [502]

M. Winslett. Epistemic aspects of databases. In D.M. Gabbay, C.). Hogger, and).A. Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic Programming, Epistemic and Temporal Reasoning,
volume 4, pages 133-174. Clarendon Press, Oxford, U.K., 1995. [502]

G. Wiederhold, S.)ajodia, and W. Litwin. Integrating temporal data in a heterogeneous environment. In
A.U, Tansel,):Clifford, S. Gadia, S.)ajodia, A. Segev, and R. Snodgrass, editors, Temporal Databases, Theory,
Design, and Implementation, pages 563-579. Benjamin/Cummings, Redwood City, Ca., 1993. [396]

E. Wong. A statistical approach to incomplete information in database systems. ACM Transactions on
Database Systems, 7:470-488, 1982. [354]

W.A. Wood. What's in a link: Foundations for semantics networks. In D.G. Bobrow and A.M. Collins,
editors, Representation and Understanding: Studies in Cognitive Science, pages 35-82. Academic Press, New
York, 1975. [556]

M. Yannakakis. Algorithms for acyclic database schemes. In Proceedings of International Conference on
Very Large Data Bases, pages 82-94, Cannes, 1981. [206,211]

M. Yannakakis. Serializability by locking. Journal of the ACM, 31:227-244, 1984. [455]

L.-Y. Yuan and M. Ozsoyoglu. Design of desirable relational database schemes. Journal of Computer and
System Sciences, 45:435-470,1992. [198,249]

L.-Y. Yuan and M. OzsoyogIu. Unifying functional and multivalued dependencies for relational database
design. Information Sciences, 59:189-211,1992. [249]

E. Yourdon. Modern Structured Analysis. Prentice-Hall, Englewood Cliffs, N), 1989. [62,72,571]

L.A. Zadeh. Fuzzy sets. Information and Control, 8:338-353,1965. [333,338]

L.A. Zadeh. A theory of approximate reasoning. In).E. Hayes, D. Michie, and L.I. Mikulich, editors, Machine
Intelligence, volume 9, pages 129-194. Ellis Horwood, Chichester, 1979. [333,338]

L.A. Zadeh. Is probability theory sufficient for dealing with uncertainty in AI: A negative view. In L.N. Kanal
and).F. Lemmer, editors, Uncertainty in Artificial Intelligence, pages 103-116. North-Holland, Amsterdam,
1986. [354]

C. Zaniolo. A new normal form for the design of relational database schemata. ACM Transactions on Database
Systems, 7:489-499,1982. [269,283]

C. Zaniolo. Database relations with null values. Journal of Computer System Sciences, 28: 142-166, 1984. [289,
301]

A. Zvieli and P.P.-S. Chen. Entity-relationship modeling and fuzzy databases. In Proceedings of IEEE
Conference on Data Engineering, pages 320-327, Los Angeles, 1986. [81)

C. Zaniolo, S. Ceri, C. FaIoustos, R.T. Snodgrass, V.S. Subrahmanian, and R. Zicari. Advanced Databases
Systems. Morgan Kaufmann, San Francisco, Ca., 1997. [406]

G. Zhou, R. Hull, R. King, and).-C. Franchitti. Data integration and warehousing using H20. IEEE Data
Engineering Bulletin, 18:29-40, 1995. [564]

W. Ziarko. The discovery, analysis, and representation of data dependencies in databases. In G. Piatetsky
Shapiro and W.). Frawley, editors, Knowledge Discovery in Databases, pages 195- 209. AAAI Press, Meno
Park, Ca., 1991. [344,357,565]

c. Zaniolo and M.A. Melkanoff. On the design of relational database schemata. ACM Transactions on
Database Systems, 6:1-47,1981. [249]

S.B. Zdonik and D. Maier, editors. Readings in Object-Oriented Database Systems. Morgan Kaufmann, San
Francisco, Ca., 1990. [529]

Y. Zhang and M.E. Orlowska. The effect of unary inclusion dependencies on relational database design.
Computers and Mathematics with Applications, 24:49-59,1992. [183]

Y. Zhang and M.E. Orlowska. A new polynomial time algorithm for BCNF relational database design.
Information Systems, 17:185-193, 1992. [255]

W. Zhang, C.T. Yu, and D. Troy. Necessary and sufficient conditions to linearize doubly recursive programs
in logic databases. ACM Transactions on Database Systems, 15:459-482, 1990. [487,489]

Index

1-1 correspondence, see function, bijection
IHNF, see normal form. first historical
INF, see normal form, first
I NF normalisability problem, 21, 520

2NF, see normal form, second
2PL, see two-phase locking

3-colourability problem, 208
3NF. see normal form, third

4GL, see fourth generation languages
4NF, see normal form, fourth
4NF decomposition, 284

5NF, see normal form, fifth

abduction, 502
absolute reject rule, 450
absolutely dominated, 524
abstract data type, see data type, user-defined
abstraction, 61
ACID test, 411,431
action, 512, 543
active incomplete relation, 297
adaptive

navigational support. 554
presentation. 554

adaptive hypertext, 554
adaptive web site, 555
additivity problem, 312,324,574
administrator

application, 8
database, 8
enterprise. 8

ADT, see abstract data type
AFD, see data dependency, afunctional
afunctional dependency, see data dependency, afunctional
aggregate function, 105,383,408,512

algorithm, 107
Datalog, 509
in queries, 106

aggregation, 61
agreement set, 159,574
algorithm for recovery and isolation exploiting semantics, 453
alias, 402
annotation, 551
anomaly

cascading abort. 413
deletion, 239-241
inconsistent retrieval, 413
insertion, 238-240,241

609

lost update, 412
modification, 239,240,241
uncommitted dependency, 413
update, 238

antichain, 34, 296
antikey, ISS
application programmers,
approximation

lower, 343
space, 343
upper, 343

ARFNF, see normal fo rm, attribute redundancy free
ARIES, see algorithm for recovery and isolation exploiting

semantics
Armstrong relation, 284, 564
artificial intelligence, 388
assignment

HNQL, 539
QL, 372
variable, 38

asymptotic probability, 58
atomic

value, 397,534
atomic object type, 523
atomicity, 411,448
attribute, 12,61,71,79,87

atomic, 516,517
closed, 159,195,231
complete, 326
condition, 344
decision, 344
exposed, 573
fuzzy, 334
historical, 392
independent, 189,357
isolated, 205
maximal closed, 231
multi-valued, 71
name, 3,71,87,534
nonprime, 153,278
or, 326
prime, 153,250-252,318

problem, 155,252,318
redundancy, 261,262
relation-valued, 19,516,517
repeated, 173
single-valued, 71
superfluous, 357
transitively dependent, 251
value, 3,72

attribute name, see attribute
automorphism) 32

database, 375
autonomy, 568

610

axiom
comprehension, 29
extensionality, 29

axiom system, 132,147,152
Armstrong, 152,193,3 14,355
attribute bounded, 180
Beeri et aI., t 93
Casanova et al., 173
complete, 148
finite, 182
Lien and Alzeni, 314,315,332
Mitchell, 180
sound, 148
sound and complete, 132,152,173,183,193

axiomatisabiJity, 508
axiomatisable classes of databases, 505

backend, 567
Bayesian inference network, 555
BCNF, see normal form, Boyce-Codd
BCNF decomposition, 269
belief revision, 502
big-O notation, 52
bijection, see function, bijection
bill of materials problem, 101
binary, 68
binary decomposition tree. 270
binary large object, 530
binary relation, 30

composition. 32
domain, 31
equivalence, 31,33,165
inverse, 31
range, 31
reflexive, 31, 335
symmetric, 30,31,335
transitive, 31,335

bi.ological data, 560
blind write, 455
BLOB, see binary large object
Boolean expression, 351
boundedness problem, 491
browser, 554
browsing, 548, 558
B-tree,59
bucket, 60, 566
built-in relationship type assumption, 279

C++,531
cache memory manager. 443
CAD, see computer aided design
cardinality, 32,68
cardinality constraint, 145,212,214

unary. 214
with bound k, 214

Cartesian product, 30,33,98
extended, 305
fuzzy, 337

CASE, see computer· aided software engineering
CAST operator, 402
CC, see cardinality constrainl
CD-ROM, see compact disk-read only memory
ceiling, 35
certainty measure, 561
certifier, see scheduler, optimistic
chain, see order. linear
characteristic function. see function, membership
chase

algorithm, 174
indusion dependency, 174
step, 163

chase procedure, 159-161,313,329

algorithm, 162, 330
choice predicate. 511
chronon, see time point
Church-Rosser system, 163,175
Church-Turing thesis, 40
circular [NO problem, 274
dass, 25, 531

hierarchy, 26
indiscernibility, 343
subclass, 26, 526
superdass, 526
type, 526

classification, 562
dause, 116

body, 116
head, 116
Horn, 38
program, 39

client, 567
clientlserver system, 567
closed under

containment. 507
duplicating extension, 507
extension, 507
insertion update. 507
intersection, 507
isomorphism. 50S
projection, 167

Index

closed world assumption, 25,121,288,293,460,534,566
generalised, 293

closure, 41

algorithm, 160,316
integrity constraint, 148
of a language, 41
operator, 148
set of attributes, 152,314
transitive, 504

closure property, 507
clustering, 562
coalesce, 402
coercion, 559
cagroup

algorithm, 376
database, 375
relation, 375

collection of sets. see family of sets
collision. 60
common sense reasoning. 347
communication network, 566
commutative

diagram, 364
operator, 520
program, 571
rule, 422

compact disk-read only memory, 550
compactness theorem, 54
compatibility matrix, 425
compatible with a Datalog program, 496
complement, 40,101

language, 40
of relation, 10 I
relative, 30
set, 40
transitive closure. 465
translatable, 224
view, 224

complementary views, 234
complete view updates, 222
complex object type, 523 .
complexity, 52

average-case. 52
descriptive, 57

Index

complexity-cont.
logspace, 359
space, 49
time, 49
worst~case) 52

composition, 539
function, 32

compress operator, 524
computable, 40
computable query, see query
computational complexity. see complexity
computationally attribute complete, 370
computationally attribute query complete. see computationally

attribute complete
computationally query complete, 360,540
computer aided design, 441
computer~aided software engineering. 285
concatenation of two languages. 41
conceptual level. see database schema. conceptual
conceptual relation, see relation. extensional
concurrency control, 7,410,412,528
concurrent access control, see concurrency control
concurrent parallel random access machine. 359
condition, 125, 543

complete, 125
extended, 349
positive, 125
simple, 125,538

confidence, 575
conflict, 423

digraph, 418
equivalence, 417
equivalent, 454
serialisability, 418

conflict between functional dependencies and afunctional
dependencies, 265

confluent program, 571
algorithm, 571

conjunction, 38
consistency. 7,411

join, 207
pairwise, 207
problem, 331

consistent set of facts, 511
constant, 22, 23, 36

Skolem, 291
value, III

constant complement approach, 223
constraint, see integrity constraint

null-free, 318
construct

set, 523
tuple, 523

containment mapping, 184, 185
context-free

grammar, 42, 486
language, 42

control flow diagram, 542
correlation name, 402
correlink, 556
correspondence. see function
correspondence problem, see Post's correspondence problem
counter machine, see two-counter machine
coupling mode

deferred, 545
immediate, 545

cover
algorithm, 267
integrity constraint, 148
minimal, 165
minimum, 165,233, 267
nonredundant, 165,233

optimum, 166, 318
cover insensitive, 254
cover of another set of MVDs, 197
crisp data, 333
cross dependency, 211
current of run unit, see pointer. currency
current time, 386
CWA, see closed world assumption
cyclic relationship, see relationship, recursive

data
ambiguity, 288
analysis, 62
cleaning, 561
cube, 562
fragmentation, 567
genome, 558
historical, 562
imprecision, 288
integration, 557
item, 410,430
manager, 443
mappings, 6
mining method, 561
mining operation. 562
preparation, 562
presentation, 562
reduction and projection, 56 1
replication, 567
scientific, 558
warehouse, 562

data definition language, 7
data dependency, 54,85, 145, 149,490,503,509,543

afunctional, 264
axiomatisable, 507
domain independent, 505
embedded, 504
equality generating, 352
full, 504
preservation, 237
probabilistic, 354
satisfaction, 504
tuple generating, 352
typed, 234
untyped, 234

data dictionary. 6, 72
data flow diagrams, 82
data independence, 5,212, 368

conceplual, 9
physical, 8, 383

data manipulation language,
data model, 9,459

complex object, 2
deductive, 2, 22
functional, 541
hierarchical, 2, 16, 533
hypernode, 515,533,557
integrity part, 9, 10
logical, 2, 540
manipulative part, 9, 10
multidimensional, 563
nested relational, 2, 19
network, 2, 12
object-oriented, 2,25,453
object-relational, 28,60
relational, I, 10
structural part, 9, 10

data modelling, 1
data path, 559
data sharing, 7
data structurt diagram, 12, 13,64

611

612

data type
built-in, 386
coercion rules, 212
composite, 212
date, 212,386,400
datetime, 400
implementation, 212
interface, 212
interval, 400
period, 400
scalar, 212
simple, 212
time, 386, 400
type checking, 212
user-defined, 212, 226, 529, 570

database, 13,89,427
active, 515,542,564
area, 427
compatible, 484
complete, 322
conceptual, 5
consistent, 422
deductive, 22.459, 461.529
distributed, 433,449, 454
empty, 505
extension, 3,494
extensional, 461
flat, 517
geographic, 570
graph-based, 515,533
hierarchical network, 567
historical, 393, 509
hypertext, 388.515,547,548,550,571
incomplete. 322
inconsistent. 567
initial, 123
intension, 4
intensional, 461
legacy, 567
list, 363
logical, 459
nested, 90,517
nested relational, 515,516
network, 14
normalised, 90
object-oriented, 212,515,524,529.557,567, 570
ordered, 379, 480
passive, 542
physical, 5,407
probabilistic, 352
relational, 3, 557
restriction, 494
rollback. 405
semistructured, 516,556,560,572
spatial, 407
temporal, 407
trivial, 505

database application programmer, 359
database join query. 282

monotone, 282
database language

declarative, 10
procedural, 10
query complete, 383

database management system,
deductive, 513
distributed, 439,446
federated, 567
market, 28
object-oriented, 406
object-relational, 529

Index

database market-place, see database management system,
market

database programming language, 359, 383, 384
computationally complete, 27,60,530,570
object-oriented, 528

database schema, 88, 280
acyclic, 282
conceptual,S, 568
cover, 202
dominates. 233
equivalent. 202
FD-acyclic, 211
flat, 517
historical, 392
independent, 232
nested, 517
normalised, 88
physical, 5, 568
query-equivalent, 233
relational , 4
view, 5,568

database theory, 226, 568
database update

acceptable, 221
consisten t, 221

DataGuide, 560, 572
minimal, 572

Datalog, 23,115,379,459,566
basis linear, 491
bilinear, 487
bound, 490
chain, 485,486
definite, 461,462, 480,489,494,499,509
expressive power, 480
extension, 373
inflationary, 480,482
linear, 487,489
non recursive, 85, 485
not-equal, 461, 493,494,501
program, 23,116,117,124
pure, 461
recursive, 24
safe, 120, 140, 145, 459
semi positive, 468, 471, 480, 482, 494
simple recursive, 488
stable, 480
stratified, 468, 469, 480, 482, 509
well-founded, 480,482

Datalog programs
equivalent, 484

Datalog semantics
default logic, 468
disjunctive definite, 479
equivalent, 480
model-theoretic, 461
perfect model, 468,470,509
proof-theoretic, 479
stable model, 468,472,473
unique stable model, 473
weU-founded model, 468.475,478

dataset, 561
date type, 390
DBA, see administrator, database
DBMS, see database management system
DC, see domain, constraint
DCA, see domain closure assumption
DD, see data dictionary
DDL, see data definition language
deadline, 435
deadlock, 410,423,426,432,450

circular, 433
conversion, 433

Index

deadlock-cont.
detection, 434,454
distributed, 433
phantom, 434
prevention, 434, 436, 439

deadly embrace, see deadlock
decidable, 179, 180,491
decidable language, see Turing-decidable language
decision support system, 562
decoding, 362, 363
decomposition. 210, see database schema, relational

algorithm, 270
approach, 238,247
dependency preserving, 246,267,269
horizontal, 237,264
lossless, 272
lossless join, 161,201,245,267,269,270,318
lossy, 161
map, 210
nonredundant, 272
vertical, 237

default logic, 478
default rule

normal, 479
positivist, 478

default value, 288, 345
definable relation, 343
definable class of structures, 55
definite non recursiveness equivalence problem, 492
degree-of-interest, 554
deletion, 126

extended, 349
delimiter, 111
denormalisation, 237,249.568
denotational semantics, 299
dependency

diagram, 547, 548
modelling, 562

dependency basis, 193
depth-first search, 35
depth-first traversal, 17
derived, see view, virtual
description, 562
detDL, see deterministic transformation language
deterministic transformation language, 373
Dexter model, see hypertext, reference model
DFA, see finite automaton, deterministic
DFD. see functional dependency, dynamic
DFDs, see data flow diagrams
difference, 30,92

extended, 301,348
fuzzy, 337
operator, 569
relational algebra operator, 110, 118

digraph, see graph, directed
dimension table, 563, 513
directed even path problem, 495,497
directed graph, see digraph
disagreement set, 574
disjoint sets, 30
dis;ointness assumption for nonprime attributes, 278
disjunction, 38
disjunctive

information, 293, 350
tuple, 351

distributed
mobile database, 567
query processing, 567

division, 99, 568
generalised, 227
relational algebra operator, Ill, 119

DKNF, see normal form, domain-key

DML, see data manipulation language
dne. see nulls, dne
document, 556
does not exist null value. see nulls, dne
domain, 3,72,87

active, 90, 128, 133
atomic, 72, 88, 517
constraint, 213
dependency, 145
extended, 290
extended active. 295
historical, 392
independence, 133
independent query, 134
interval-based, 386
nested, 89
nonatomic, 89
relation-va1ued. 517
relational calculus, 85, 107
set-valued, 72
underlying, 134
variable, III

domain calculus
allowed, 136, 137, 141, 142, 145
expression, 108, III
query, 113, 136

domain closure assumption, 460
domain constraint, or-set. 326
donate operation, 442
dot notation, 532, 557
DTM, see Turing machine. deterministic
duplicator, 55,498
durability, 411
dynamic temporal key, 404

ECA, see rule, event-condition-action
ECA rule, see rule. event·condition-action
EDB, see database, extensional
EGD, see equality, generating dependency
EJD, see join dependency, embedded
element

greatest, 34
least, 34

elementary
equivalent, 54, 56
step, 411

embedded in a decomposition. 245
empty operator, 518
EMVD, see multivalued dependency, embedded
encapsulation, 26,212,534,536,541
encoding, 362

C-encoding, 368
free, 362, 363
mutually convertible, 362,363
reasonable, 363
standard, 363

end users. 8
entailment, 352
enterprise. 4
entity, 3,66,279,535

classless, 536
clustering, 83
set, 3
type, 4,65,66
weak type, 76,77

entity integrity, see integrity, entity
entity-relationship diagram, 61,65,285
entity-relationship model, 9,61, 238, 563
equality

formula, 116,462,503
generating dependency, 211, 503

613

614

equality-cont.
operator, III
symbolic, 291

equality for nulls, three-valued, 292,349
equilink, 556
equivalence, 291,343,369

class, 369
information-wise. 291
relation, 343, 369

equivalent
context-free grammar, 487
Datalog programs, 483
finite automata, 42
language, 132
query, 139
query language, 139
query trees, 229
transition. 131

ER model, see entity-relationship model
ERD, see entity-relationship diagram
ERNF, see normal form, entity relationship
event, 542

composite, 543
history, 543
primitive, 543

exclusion dependency, 218
exponential time. 269
EXPSPACE, 52

EXPSPACE-complete, 52,492
EXPTIME, 52

EXPTIME-complete, 52,185,324
extended operator, see extended relational algebra, operator
extended query, see extended relational algebra. expression
extended relational algebra

expression. 299
monotonic, 307

operator, 299
faithful, 299,300, 306
truth-preserving, 299,300,306

extensible markup language, 550
extent, 531
external level. see database schema, view

fact, 22, 116
delete, 512
functional, 511
insert. 512
relational, 511
table, 563, 573
undefined, 468,474,512

falsity of a clause, 475
family of sets, 32
family tree, 10 I
FD, see functional dependency
field, see attribute
file, 59

hashed, 60, 445
indexed, 59
sequential, 59

final-state
equivalent, 421
serialisability, 421
serialisable, 421

final write, 420
FIND statement, 14
finite automaton, 543,571

deterministic, 40
nondeterministic, 572

finite validity, 53,135
finitely controllable, 54

first-order
language, 38, 56

definable, 56
theory, 38,498

fish eye-view, 554, 572
fixpoint, 23,379,459

alternating, 476
inflationary, 122,377,460
iterated, 476
operator, 57
query, 377

flat database, see database, normalised
flat database schema, see database schema, normalised
flat relation, see relation, normalised
flat relation schema, see relation schema, normalised
floor, 35
fold operator, 395

algorithm, 395
for loop, 378,459
forest type, 16
formula, 36

atomic, 36, Ill, 116,503
closed, 37, 502
finitely satisfiable, 53
finitely valid, 53
ground atomic, 116
predicate, 116, 503
satisfiable, 36-38
selection, 94
simple selection, 94
sub formula, 112
unsatisfiable, 36,37
valid, 36, 38, 304
well-formed, 112

ForQL, 378
fourth generation languages, 10
frame problem, 502
free variable, 112
from operator to operator, 391
frontend, 567
full-text retrieval. 550
function, 31,69

argumen t. 31
bijection, 32
characteristic, 31
codomain, 31

image, 31
into, 31
membership, 333
one-to-one, 31
onto, 31,32
projection. 32, 33
restriction, 31
successor, 45
symbol, 36, 511
total, 31
zero, 45

Index

functional dependency, 145, 149, 150, 151, 158, 309, 423, 521
approximate, 565
canonical, 240
compatibility with join dependency, 206
cyclic, 233
dynamic, 404
elementary, 283
embedded, 167,232
historical, 404,407
incomparable, 233,316
inference problem, 564, 565
monodependent, 317,356
n-standard, 187
nonstandard, 151
projection, 167

Index

functional dependency-cant.
redundant, 148
satisfied, 155
standard, 151
strong, 316
unary, 214
weak, 316

fuzzy
database, 342
logic, 333
set, 333

game, 476
back-and-forth, 498
Ehrenfeucht-Fraiss~, 55, 498
existential pebble, 496
infinitary pebble, 56
round, 496,498
two-person perfect information, 467
win a round, 496
winning strategy, 55,57,496,498

game theory, 481
generalisation, 61
generator, 527
generic machine. 373
geographic information systems, 407
GET statement, 17
GIS, see geographic information systems
glb, see lower bound, greatest
Godel's completeness theorem. 53
GOOD, see graph-oriented object database pattern
Graham reduction algorithm, 205
granularity, 440

coarse, 427
fine, 427
hierarchy, 427
locking, 427

granularity of time, 390
graph, 30, 63, 69, 328

3-colourable, 328
acyclic, 63
attribute, 541
bipartite, 69
connected, 55, 56, 58, 63
cyclic, 63
cyde, 63
dependency, 117, 328, 463, 464, 469
directed, 30, 63

acyclic, 35,283
algorithm, 469
bipartite, 30
subdigraph, 63

forest, 64
nested structure, 540
network, 64
path, 56,63
planar, 58
structural similarity, 537
subgraph, 63
theory, 33, 533
tree, 63
triggering, 545
walk, 63,497,559

graph storage system, 541
graph-oriented object database pattern, 540, 541
Graphlog, 541
GRAS, see graph storage system
ground

clause, 472
instance, 472

growth independence, 9

HAG, see hypernode, accessibility graph
HAM, see hypertext, abstract machine
hang, 449
hashing algorithm, 60
Hel, see human·computer-interaction
Herbrand

base, 39,471
program, 471
universe, 38,471

Herbrand interpretation, 39, 474
finite, 462
partial, 474
three-valued, 474
total, 473,474
two-valued, 473,474

Herbrand model, 39,462,498
least, 39,462
minimal, 39,462
preferable, 470
three-valued, 474

heuristic
BCNF preserving, 274
cycle breaking, 275
key-based preserving, 275
missing attribute problem, 274
technique, 568

HFD, see functional dependency, historical
hierarchical model, see data model, hierarchical
hierarchical navigation. 17
hierarchical path, 17
higher priority rule, 571
historical relational completeness. 398
historically relationally complete, 399
hits, 555
hitting set problem, 168, 259
HNQL, see HyperNode, query language
hold and wait, 432
homogeneous distributed database, 566
homomorphism, 31,234,494,537
HTML, see hypertext markup language
human-computer-interaction. S66
hypergraph, 204-206,282

connected, 206
connected components, 206
path, 205
transversal, 574

Hyperlog, 540
hypermedia, 2, SIS, 550
hypernode, 82, 536

accessibility graph, 536, 559
data model, 550
database, 535, 570

acyclic, 570
cyclic, 570

defining label, 535
digraph, 535
query language, 537
type, 537
untyped, 536

hypertext, 2, SIS, 550
abstract machine, 553
network, 552
reference model, 552
session, 553

hypertext markup language, 550

IDB, see database, intensional
IDM model, see insert/delete/modify model
IDNF, see normal form, inclusion dependency
ignore obsolete write rule, 449
ignore rule, 450
ILP, see inductive logic programming

615

616

immediate consequence operator, 122
impedance mismatch problem, 10,27
implementation, 26
implication. finite. 48
implication problem, 54,85,147,178

FD and AFD, 266
functional dependency, 160
multivalued dependency, 194

inclusion dependency, 145,149,169,171,275
Armstrong database. 176
circular, 170, 171
cyclic, 275
inference problem. 565
key-based, 169,172,243,260,325,545
n-ary, 187
noncircular, 171,178,260
nonredundant, 232
proper circular, 175,177,178
proper cyclic, 275
superkey-based, 172
typed, 178,207
unary, 178,187,260,565

IND. see inclusion dependency
index, 59
indexed set, 32
induced logic formula

complete, 566
consisten t, 566

inductive logic programming, 565
inference

algorithm, 565
logarithm, 574

inference rule. 147
attribute introduction, 180, 181
augmentation, lSI, 192
chase functional dependency, 162, 184
chase inclusion dependency, 184
collection, 181,324
complementation, 190,192
decomposition, 151,192
embedded union, 200
functional dependency, 184
generalisation. 193
identity, 526
inclusion dependency. 184
k-cycle, 182
many-to-one, 214
mixed pseudo-transitivity, 193
null collection, 324
one-to-one, 214
permutation, 180
projection and permutation. 172
projection for embedded multivalued dependencies, 199
pseudo-transitivity, 151
pullback, 181,243,324
reflexivity, 151,172,192,214
subset, 192
substitutivity, 174
transitivity, 151, 172,192,214
unbounded, 202
union, 151,192

information
basic, 374
capacity, 523
component, 553
content, 560, 570
heterogeneous, 560
imprecise, 357,617
incomplete, 347,509
lattice, 288,310
ordering, 297
system, 388

temporal, 399
information retrieval. 555
information-wise equivalence. 349

relation, 297
tuple, 295

inheritance, 26.61,529
attribute, 78
lattice, 278,526
multiple, 26,78
single, 26

initial read. 420
insert algorithm, 528
insertJdelete/modifymodel, 411
insertion, 126

anomaly, 284
extended, 349
violation, 241,284

instant, 401
indeterminate, 396,401,408

instantiate operator, 394,396
integrity, 7

entity, II, 157,261,318,320,332,346,536,542,545
generalised, 261,263

Index

referential, 11,12,60,96,157,172,243,325,342,346,526,
536, 542, 545

integrity constraint, 145,461,502,508,509
class, 146
derived, 147
dynamic, 145,509
enforcing. 542
maintenance. 545
referential, 546
static, 145,509

integrity part, see data model, network, see data model,
hierarchical

interaction between functional and inclusion dependencies,
170,179,261

no, 186
interface, 26, 553

anchoring, 553
operation, 26
presentation specification, 553

interleaving. 415
internalleve1, see database schema, physical
interpretation, 38,53, 108
intersection. 29,92, 97

anomaly, 196
extended, 305
fuzzy, 336
relational algebra operator, 1l0, 119

intersection property, 196,233,316,356
interval, 391

closed, 35,391
open, 35
semi-closed, 35
single-point, 391

interval-based approach, 407
IR. see information retrieval
isolation, 411
isomorphism, 32
item, 575
itemset, 575

Java, 531
Java database connectivity, 381
JD, see join dependency
JDBC, see Java database connectivity
join. see join. natural

algorithm, 97
attribute, 96
consistency, 207
extended, 305

Index

join-cant.
natural. 96.97.110.119.207.209.305.355
outer, 306,355
plan. 209
relational algebra operator. 110. 119
tree, 209

join consistent database. 282
join dependency. 150.200.201

acyclic, 204
binary. 203
compatibility with functional dependencies. 206
embedded. 211
projected. 211

jump-link. 556

k-aryaxiomatisation, 181
KDD. see knowledge discovery and data mining
key. 73.153.154.237. 249. 531 . see key. historical

algorithm. 157. 158
alternate. 74. 153.279
candidate. 10.73. 153
composite. 74, 153
dependency. 232.240
foreign. 10. II . 145. 156. 157. 172. 237. 243. 249. 325. 346.

404. 546
historical, 403
minimal, 73
primary. 10.11.74.145.153.318.346.545. 546
simple. 73. 153
subkey. 230
superkey. 318
surrogate. 74
temporal. 404

key family
irreducible, 320
minimal. 320
nonredundant, 320
primary. 320

keying operator. 22. 520
Kleene closure operator, 560
Kleene star of a language, see closure, of a language
Knaster-Tarski fixpoint theorem. 463
knowledge. 561.566
knowledge discovery and data mining, 516, 560

label. 534
language. 40. 49. 85

declarative. 85
linear-time. 49
procedural . 85
rule-based. 459
update. 91

language accepted by DFA. 40
lattice. 35. 294

complete, 35
information. 294.295
inheritance, 26
meet-irreducible. 231

layer. 552
run-time, 552
storage, 552
within-component, 552

LDM. see data model. logical
less informative

relation. 297.327
tuple. 295.327
value. 294

lexicographical ordering. see order. lexicographic
lifespan. 392
lightweight object repository language. 560
linear constraint. 495
linear context-free grammar, 487

linear order approach. 399
linear temporal logic. 398

first-order. 399
linearly ordered set, see order, linear
link

assertional. 556
dangling. 551
directional, 323
dynamic. 551
following. 548. 556
hard. 551
marker, 553
soft. 551
static. 551
structural, 556

link presentation
adaptive ordering. 554
annotation, 554
direct guidance. 554
hiding. 554

list. 512
literal. 23. 38. 116

atomic, 531
collection. 531
enumeration, 531
ground. 116
negative, 116
positive, 116
redundant, 483
structured, 531

literature. 556
livelock. 429.450
LLT, see transaction, long-lived
local conflict digraph. 422
lock. 454

allocation. 429
altruistic, 442.456
count detection, 435
dynamic allocation, 430
exclusive. 423.424
granularity, 410,423,440,453
hierarchy. 453
incompatible. 428
instance graph. 440
intent, 428
intent exclusive, 428
intent shared. 428
manager. 410.424. 440.443
mode. 423
multi-granularity, 440
predicate. 441.453
protocol. 428. 430. 445. 446
shared. 423.425
shared intent exclusive. 428
table. 443
update. 426

logic
default. 59. 347
dynamic. 502
first-order. 381.483.565
flxpoint. 57. 59
four-valued. 352
fuzzy. 59
infinitary, 57,381
Kleene. 303
Lukasiewicz, 303
many-valued. 333
modal. 59.316.509
nonclassical, 59
non monotonic, 59
programming, 480
propositional linear temporal, 553

617

618

logic-coni.
second-order. 57
temporal. 59.387.572
three-valued. 59. 292.303.333
variable-confined, 56

logical connective, 35, III
logical consequence. 38
logical database. see database. deductive
logical implication, 94, 146, 505

fuzzy. 338
maybe. 349
strong. 314
true. 302
weak. 314.323

logicalleveJ. see database schema. conceptual
LOGSPACE. 52.57
LOGTIME. 52
looping mechanism. 377

bounded. 377.539
unbounded. 377.539

Lorel. see lightweight object repository language
lossless join, see decomposition.lossless join
lost in hyperspace, 554
lower bound. 34

greatest. 34
lub. see upper bound. least

M3SAT. see monotone 3-satisfiability
machine learning. 561
magic set. 493. 511
manipulative part. see data model . network, see data model.

hierarchical
map. see function
mapping. see function
marked nulls. 290. 308. 355
master-detail report, 355
Mealy machine. 571
meaning of a Datalog program. 122.469

algorithm. 122. 124.469.475
inflationary, 476
well-founded. 476

member typc, see record type. member
membership grade. 333
membership problem for data dependencies in views. 218
memex machine, 555
methods. 26. 526
minimal change. 500
minimal complement, 224
minimal key. see key
minimal transversal, 574
minimal view update, 235
minimum algorithm, 166
minimum disjunctive normal form problem, 569
missing attribute problem. 274
missing information, 73
mobile computing. 567
modal logic

necessity. 309
possibility. 309

model. 36. 38. 53
evaluation. 562
minimal. 470.474. 512
partial. 474
perfect. 470
preferred. 477
representation, 562
stable. 472.473
total. 474
well-founded. 475

model theory. 461
finite. 52. 382

modification. 126
anomaly. 285
extended. 349
violation. 241.285

modus ponens, 38
monoid, 48
monotone 3-satisfiability. 331
monotonic program, 461
MORE, see multimedia object retrieval environment
more informative

relation, 297
tuple. 295. 327
value. 294

multidatabase. 560. 567
multidimensional data. 562
multimedia. 2. 566
multimedia object retrieval environment, 540
multiset. 29
multivalued dependency. 150.189.190.352

conflict-free. 196.197
context. 190
degenerate. 195
embedded. 191
extended conflict-free. 199
full. 193
interaction-free, 197
left-reduced. 198
lhs-closed. 199
nonredundant, 194
nonstandard. 196
nontransferable. 198
projected. 204. 284
reduced. 198
right-reduced. 198
standard. 191
trivial. 191
unary. 203

mutual exclusion, 432
MVD. see multivalued dependency

n-ary relation. 31
naming function, 362
navigation, 548, 553
ND. see numerical dependency
NEST operator. 20.393.518.569
nested relational algebra, 20

Index

nested relational model, see data model, nested relational
network model, see data model, network
network traversal, 13

query language. 14
NFA, see nondeterministic finite automaton
nim. 467
NNF, see normal form, nested
no information is available, see nulls, ni
no pre-emption, 432
node

adjacent. 535
anchor. 534. 548
destination, 534
extensional, 556
incident. 535
indegree. 535
intensional, 556
isolated, 535
outdegree. 535
primitive, 534
reachable. 466
unreachable. 466

nondeterministic finite automaton, 41
nondeterministic Turing machine, 45
non-prioritised rule, 571
nonrecursive Datalog program, 117

Index

normal form. 237.249
attribute redundancy free. 262
Boyce-Codd. 188.249.253
deductive. 510
domain-key. 249
entity relationship, 277
fifth. 249
first. 19.88.212.249.518
first historical, 407
fourth. 249.253.283.569
inclusion dependency. 249. 260.261
nested. 521.569
non-first. 515
object. 258
project-join. 249
second. 249.250
third. 249. 251. 266

synthesis algorithm, 266
unique key, 257
value redundancy free, 256

NP. 49
co-NP. SO. 259. 483
NP-complete. 50.154. 155.166. 168.178.208.219.252.272.

305.321.328. 331 . 356. 421.422.441.453.479. 484. 491 .
495.569

NP-hard. 50. 272. 488
NpNP• 51
PTIMENP • 51

NPTIME. see NP
NTM, see nondeterministic Turing machine
nugget. 561
null-free constraint, 355
null value, see nulls
nulls. 11.219.287.289

applicable. 287
dne. 11, 156
inapplicable. 287
inc. 289.295.619
ni. 289
open, 294
unk. 11.156.321

numerical dependency. 231

object, 25,531.535
attribute, 525
classes. 213
complex. 25. 533
composite. 536
database. 525
identification operator. 525
identifying attribute. 525
identity. 25. 525. 533. 569
relation, 525
representative, 560
subobjects. 557
type. 4.526

object database management group. 531
object definition language. 531
object-orientation, see data model, object-oriented
object-oriented database management system. 531
object query language. 28.531
object SQL. 28
ODBMS. see object-oriented database management system
~OC, see domain constraint, or-set
ODL. see object definition language
ODMG. see object database management group
of the order of. see big-O notation
OFD. see ordered functional dependency
OLAP. see on-line analytical processing
OLTP. see on-line transaction processing

ONF. see normal form. object
on-line analytical processing, 562
on-line transaction processing. 562
open world assumption. 288. 292
operation, 26

conflicting. 417
operator

monotonic, 101
non monotonic. 10 1
transitive closure, 101

OQL. see object query language
or-set, 287
order. 33. 34. 294. 383

lexicographic. 34. 383
linear, 438
partial. 33. 294

ordered functional dependency. 234
ordering function, 362
orientation tools

book mark. 554
bread crumb. 554
guided-tour. 554
map. 554
web. 554

OSQL. see object SQL
OTM. see Turing machine. orade
overflow area, 60
overview diagram. 550
OW A. see open world assumption
owner type, see record type, owner

PAC. see probably approximately correct
pad operator. 306
page. 548

home, 549
similar, 555

pair
coordinate, 30
ordered. 30

pairwise consistent database, 282
pairwise disjoint sets. 30
paraconsistent. 352
parallel

algorithm, 493
computing, 566
join algorithm, 566
relational database, 566

partial relationship. see relationship, optional
partially ordered set. see order. partial

619

partially recursive functions. see Turing-computable. mapping
parts explosion problem, see bill of materials problem
path

expression, 532, 559
indices, 560
set. 522

pattern. 561
interesting. 561

PC, see personal computer
persistent database type, 524
persistent data. 4
personal computer. 1.59
Petri net. 509
phantom

problem. 441. 453
tuple. 441

physical level. see database schema. physical
PINF. see normal form. project-join
playing strategy. 566
PMVD. see multivalued dependency. projected
point-based approach. 407

620

pointer
chasing. 13. 227
currency. 14

polynomial
hierarchy. 50.51.484
many-to-one reducible. 50
time. 271

polynomial algorithm. 52
polynomial fringe property. 493
positive selection formula, 94
positivist default theory. 478
possibility

distribution, 333
measure. 333. 357
preserving. 355

possible world. 298. 323. 327. 502
Post's correspondence problem, 48
potential result, SOO

for deletions, 500
for insertions, 500
maximal. 500
minimal. 500

power set
algebra. 569
operator, 569

predicate, 22
binary. 465
calculus. 36
nonrecursive. 499
recursive, 499
symbol. 22.23. 36
unary. 489

predicatewise, 422
serialisability. 422

prediction. 562
preservation under

containment, 505, 506
duplicating extension. 507
extension. 494. 506
homomorphism. 494
intersections. 505.506

pre-write, 448
prime attribute, see attribute. prime
primitive domain, see domain
primitive recursive query, 378
probabilistic

data management. 354
or-set. 352

probabilistic approach. 287
probability. 357
probably approximately correct. 565
problem

intractable. 52
tractable. 52

problem satisliability. 489
programmed graph rewriting system. 541
programming language. 10. 524

computationally complete. 45
object-oriented. 27

PROGRESS. see programmed graph rewriting system
project-join mapping. 201
projection. 90.93

extended. 302
fuzzy. 335
of a set of functional dependencies. 245
relational algebra operator. 109.118

projection join database class. 508
Prolog. 23. 115
proof of an integrity constraint. 147
proof tree fringe. 493
property. 55
propositional calculus. 35

proximity relation. 334. 335
PSPACE. 49. 57. 380

PSPACE-complete. 50. 178.492
PTIME. 49. 57
pushdown automaton. 42

QL. 371
complementation operator, 371
extension operator, 371
intersection operator, 371
permutation operator, 371
program. 371
projection operator, 371
semantic, 371
semantics, 372
term. 371

quantifier. 111
existential, 36
relativised. 138
universal. 36. 482

Index

query. 113. 365. see relational algebra. query. see SQL. query
answer. 100.108.113.124
C-encoding-independent. 368
computable. 359.365.383.480
conjunctive. 484.485
Datalog. 124
domain independent, 138
encoding-independent. 367
generic. 368
isomorphism-independent. 367
monotonic, 484
or. 328
order-independent. 366
processing. 359. 567
recursive, 24

query complete. see computationally query complete
query dominated. 524
query equivalent. 524
query language. 85.91

embedded. 10
relational completeness. 100
rule-based. 85

query optimisation
logical. 228
physical. 228

quote-link. 556

random access. 60, 384
read operation, 410
read-buffer. 449
readiwrite model. 410
readset. 411
ready operation. 452
reconstruction map. 210
record. 12.59.360

database. 360
identity. 12
member. 12
owner, 12
tree, 16
variable length. 361

record type. 12. 16
leaf. 16
member, 12
owner, 12
root, 16
virtual. 16

recovery. 7.453
algorithm. 414
manager. 443

recursive Datalog program. 117

Index

recursive function
partially, 45
primitive, 45
totally, 45

recursively decidable language, see Turing-decidable language
recursively enumerable language, see Turing-enumerable

language
reduced set ofFDs and INDs, 186
redundancy problem, 238-240,242,255
redundant attribute problem, 274
referential dependency, 325
register machine, see two-counter machine
regression, 562
regular

expression, 41,543,560
language, 41
sets, 41

relation, 3, 36, 86, 89, 90
action, 509
Armstrong. 148,158,322
base, 546
complete, 290, 352
complex object, 25
connected, 356
consistent, 290, 352
deletion-viable, 195
extensional, 460
flat, 19
fuzzy, 288, 333
fuzzy rough, 344
hierarchical, 521,569
historical. 385,389,393
incomplete, 288, 290, 290, 352
inconsistent, 290,352
insertion-viable, 195
intensional, 460
nested, 19,90,377,517,526
normalised. 90
or, 326
probabilistic, 353
reduced, 296
rollback, 385, 389, 404
set-theoretic, 68
shallow, 20
snapshot, 386-389,402
symbol, 36
temporal, 389, 408
transition, 42, 4S
union-compatible. 91
X-complete, 264

relation schema, 3,88, 167,405
historical, 392
multilevel, 230
nested, 517
normalised, 88
redundant, 205,272
relation, 3

relation symbol
higher priority, 470
lower priority, 470

relational algebra, 85,91,100,140,142,145,359
expression, 100,217,543
expressive power, 374
flat, 519
historical, 385, 393, 394
nested, 518, 526
query, 100,374

relational calculus. see domain, relational calculus
relational data file, 227
relational database schema, acyclic, 282
relational DBMS, 1
relational extension data model. 515

relational information language, 227
relational machine, 381
relational model, see data model. relational
relational store, 381
relationship, 535

binary, 81
built-in, 278,280
cardinality-based, 279
ID, 278
ID type, 77
ISA, 61,278
ISA type, 77
mandatory, 68
many-to-many, 68
many~to-one, 68
n-ary, 82,281
one-to~many. 68
one-la-onc, 68
optional, 68
part-of, 534,536,550,557
recursive, 16.278
referential, 535, 550
ternary, 70
type, 65,66,74

relationship between intervals. 391
before, 392,397,401
during, 392, 397, 401
equal, 391
finish, 391
meet, 392,397,401
overlap, 391,397,401
start, 391

release phase, see two-phase locking, shrinking phase
relevance

path-dependent, 572
path-independent, 572

renaming, 98
attribute, 79
extended, 307

repeating dependency, 174
restriction, 94

extended, 302
of a condition, 129
relational algebra operator, 109, 118

restructuring operator. 524
Rice's theorem, 46,369
role name, 75,76
rough

relation, 343
set, 342

rule
active, 529, 530
algorithm, 544
association, 575
basis, 488, 491
bilinear recursive, 487
body, 23
chain, 485
consequent, 478
directly recursive, 487
event-condition-action, 213,515.542
firing, 543
graph rewriting, 541
head, 23
justification, 478
linear recursive, 487
nontrivial, 116
prerequisite, 478
production, 486,515,542
recursive, 487, 491
redundant, 483
template, 545

621

622

Russell's paradox. 29
RW model. see read/write model

safe
base relation, 546
Datalog program. 119
rule for deleting nodes, 452

safety. 119. 139
saga, 442
satisfaction

additive, 3 tl
algorithm. 313
clause, 462,474
embedded muItivalued dependency, 192
functional dependency, 151.310,311
fuzzy, 339- 342
global. 231,232
inclusion dependency. 171,322
join dependency. 201
local. 232
multivalued dependency. 191
of a condition, 125
of a formula, 112
probabilistic, 354
rough, 344
strong, 309.310, 311
superkey family. 319
weak. 309,310,311,322,329,356

satisfiability problem, 508
fact, 500

schedule, 416,417
conflict-equivalent, 417
conflict-serialisable, 419,447
legal. 455
serial, 417
view-equivalent, 420

scheduler
conflict-digraph-based, 453
optimistic. 454
pessimistic, 454

schema, see relation schema
discovery, 560
evolution, 385,405,528
integration, 560
physical, 5
view, 5

schema evolution operation
add attribute, 405
add relation, 405
change domain. 405
remove attribute, 405
remove relation, 405
rename attribute, 405

schema of Datalog program. 121
score, 555
script. 551
search, 562
security. 8,230

lattice, 230
level, 357

SELECT statement, 114
select-project-join expression, 484
selection, 94, 109, 118

extended, 302, 303
formula, 302
fuzzy, 338
positive extended, 303
relational algebra operator. 109, 118

semantic network. 556
semantics

least fixpoint, 57
partial ftxpoint, 57

semi· naive evaluation, 493
semigroup. 48

finite. 48
finite implication. 48
free. 48
word problem. 48

sentence, see formula, closed
sequence, 32

of attributes. 170
serialisability. 409. 415

local. 422
serialisation digraph. 451
serialisation graph testing, 410,422,451,454

basic, 451,457
conservative. 451,452.457

server, 567
set, 29

boundary. 343
class. 33
countable, 32
crisp. 334
definable. 343
elementary. 343
empty. 12. 29.523
fuzzy. 287.566
occurrence, 12
or, 325
partition. 33
power, 30
recursively enumerable, 382
rough, 288
singleton, 30
size. 32
standard encoding, 32
type, 12
uncountable, 32
universal. 30
universe, 36, 53

set theory, 29
sets of sets, see family of sets
SGT, see serialisation graph testing
sharing. 526
similarity type, 88
simple selection formula, see formula, simple selection
site, 566

home, 449
situation calculus, 502
Smalltalk, 531
software engineering, 62
spatial data, 408
specialisation. 61
split axiom, 129
split-freeness property. 197,233,317.356
spoiler, 55,498
SQL, 11,91,113,114.138,292,381.453,540

query, 60.114,543.546
second version, 113
subquery, 115
temporal extension, 385,407
third version. 529

SQL2. see SQL, second version
SQL3, see SQL, third version
stable transformation, 472
stack, 42
standard encoding string, 49
star join schema, 563
star schema, see star join schema
state, halt, 44
state transition

constraint, 146
diagram, 41, 571
table, 41

Index

Index

statistic, 561
STD, see state transition, diagram
stochastic independence, 353, 354
structural part, see data model, network, see data model,

hierarchical
structure, 37,53

finite, 53,483
structured query language, see SQL
subdatabase, 421
subgraph, 63
subschedule, 422, 455
subset, 29

proper, 29
property, 197

substitution, 121
safe, 122

subtype, 529
summarisation, 562
superkey, 73, 153

family, 319,355
cardinality k problem, 155,318

super type, 529
support, 575
surrogate, 569
survivability, 404
symbol

constant. 52
function, 483
relation, 52,88, III

synthesis approach, 238,247
algorithm, 267

system clock, 388

tableau, 162
tabular form, see relation
tautology. see formula, valid
TD, see template dependency
template dependency, 234

trivial, 234
temporal operator

next, 398
previous, 398
since, 398, 399
until, 398, 399

temporal operators approach, 399
temporal reasoning, 388
term, 36
terminal

string, 43
symbol, 42

text
adaptation, 554
conditional. 554

TGD, see tuple, generating dependency
Thomas's write rule, 449,456
thrashing, 432
time, 385
time domain, 391

continuous, 390
discrete, 390
now, 391
top element, 391

time point, 391,401
forever, 396
now, 387,388,392,393,396,401
until changed, 396

time series modelling, 562
timeout, 434,435
timestamp, 445

multi-version, 451
timestamp ordering, 410,422,445,446,450, 451,454, 456

basic, 448

conservative, 449
rule, 447,456

timestamping, 388
TM, see Turing machine
TO, see timestamp ordering
topological

order, 419
sort. 35,419

topological relationship
containment, 407
disjointness, 407
equality, 407
meet, 407
overlap, 407

total relationship, see relationship, mandatory
totally ordered set, see order, linear
trail, 553, 555
transaction, 7, 128,350,409, 411,575

abort, 410,542,543
active, 451

atomic. 409
commit, 410,453, 542
committed. 7
compensating. 442
equivalent, 128
history, 412
interleaved. 4) 2
long-duration, 441
long-lived, 441
management, 7, 567
manager, 443
nested, 442
normal form, 128
older, 447
parameterised, 229
rejection, 429,437
restart, 448
rollback, 7,410,453,543
scheduler, 424,428,443
scheduling, 429,437
schema, 229
start time, 447
time, 388,40 1,405
wake, 442
well-formed, 423
younger, 447

transformation, see function
transient data. 4
transitive closure, 459, 466, 564, 569

algorithm, 104
directed graph, 103
query, 377
relation, 103, 359, 492

translation. 221
acceptable, 221
consistent, 221

translator, 223
tree

family, 513
rooted, 428
type, 16

trigger, 529, 530
truth

assignment, 35
clause, 121
value, 35

truth of a clause, 474
truth table, 36

three-valued, 303
TSQL2, see SQL, temporal extension

623

624

tuple. 3.30.89.211. 290
age. 404
compatible. 241
complete. 290. 326
consistent. 290.326
dangling. 96
fuzzy. 333
generating dependency. 211.503
historical. 393
incomplete. 290. 326
inconsistent, 290, 326
or. 326,356

Turing machine, 40,43,381
configuration, 44
deterministic. 44
finite control, 43
halting problem, 46
instantaneous description. 44
k-tape, 44
orade. 50
query. 50
tape, 43

Turing-computable
function, 45
mapping, 45, 359, 360, 362

Turing-decidable language, 46
Turing-enumerable language. 46
two-counter machine. 47

halting problem. 490
program, 47

two-phase commit, 448
two-phase locking, 430,431,442,453

aggressive, 431
conservative. 431
growing phase, 430,431
shrinking phase, 430, 431
strict, 431

TWR, see Thomas's write rule

UDF, see user-defined. function
UDT, see user-defined, type
UID, see unique identifier
UKNF, see normal form. unique key
UNA, see unique names assumption
undecidable, 178.487,489,491,500
undecidable problem. 48
undirected graph, see graph
unfold operator, 394
unified resource locator. see URL
uniform boundedness, 491
uniform distribution. 353
uniform equivalence. 489
union, 29,91,110,118,158,300,336,348

disjoint, 158
extended, 300, 348
fuzzy, 336
operator. 560
relational algebra operator, 110, 118

unique identifier, 55]
unique minimal insertion. 506
unique names assumption, 88. 460
uniquely marked or-set, 327
uniqueness condition, 232
universal closure, 38
universal relation, 206, 210

model. 490
one-flavour assumption. 80
schema assumption. 27. 79. 89
unique role assumption, 80

universe, see set, universe
universe of attributes, 87
unk, see nulls, unk

unknown null value, see nulls, unk
unlock. 454
unmarked nulls, 290, 308, 355
UNNEST operator, 20,393,518,569

algorithm. 520
UnQL, see unstructured query language
unstructured query language, 560
update, 126,347.509

blocking policy, 60
deterministic. 501
extended, 349
language, 125
nondeterministic, 502
operation, 348
propagation policy, 60

update problem. 498, 508
for deductive databases, 498,499
for relational databases. 499

upper bound. 34
least, 34,310,311,329,526

upwards compatible, 28
URL, 549

stale, 551
URSA, see universal relation, schema assumption
user interface, 533

graph-based, 540
user-defined

abstract data types, 60
data type, 212,226,529,570
function, 529
type, 529

user-defined time, 389

vague information, 357
valid time, 388, 401, 402
value does not exist, see nulls, dne
value exists but is unknown, see nulls, unk

Index

value exists but is unknown at the present time, see nulls, unk
value is applicable and missing at the present time, see nulls, unk
value is inapplicable, see nulls, dne
value is inconsistent. see nulls. inc
value redundancy, 256
variable, 23, 36

bound, 37
counter, 381
distinguished, 162
free, 37
generic. 371 , 378
negative, 136
non distinguished, 162
positive. 136
typed, 378

version, 405
vertex cover problem, 155,272
view, 215

equivalence. 421
equivalent. 454
incremental maintenance, 542,54t
independent, 225
maintenance, 226, 528, 564, 573
materialised, 215,226,546,564
monotonic, 225
personalised, 555
self-maintainable, 226.573
serialisability, 421
translation, 219
virtual, 215, 226, 546

view level, see database schema. view
view relation. see relation, intensional
view update problem. 86.215.216. 461,542
visual formalism, 82
VRFNF, see normal form, value redundancy free

Index

wait
circular. 432
queue. 424

waits-for-graph. 433.434.454
weak instance approach. 207.211.231
weight. 352
WFG. see waits-for-graph
Whilelnt. 384
WhileQL. 380.381.384
wildcard operator, 560
winning row, 163

workflow management, 570
world wide web. 548
write-buffer. 449
write operation, 410
writeset. 411
WWW.seeworld wide web

Xanadu. 556
XML, see extensible markup language

zero-one law, 58

625

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF000d004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

