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Preface

Finite model theory, the model theory of finite structures, has roots in clas-
sical model theory; however, its systematic development was strongly influ-
enced by research and questions of complexity theory and of database theory.

Model theory or the theory of models, as it was first named by Tarski in
1954, may be considered as the part of the semantics of formalized languages
that is concerned with the interplay between the syntactic structure of an
axiom system on the one hand and (algebraic, settheoretic, ...) properties
of its models on the other hand. As it turned out, first-order language (we
mostly speak of first-order logic) became the most prominent language in this
respect, the reason being that it obeys some fundamental principles such as
the compactness theorem and the completeness theorem. These principles are
valuable modeltheoretic tools and, at the same time, reflect the expressive
weakness of first-order logic. This weakness is the breeding ground for the
freedom which modeltheoretic methods rest upon.

By compactness, any first-order axiom system either has only finite models
of limited cardinality or has infinite models. The first case is trivial because
finitely many finite structures can explicitly be described by a first-order
sentence. As model theory usually considers all models of an axiom system,
modeltheorists were thus led to the second case, that is, to infinite structures.
In fact, classical model theory of first-order logic and its generalizations to
stronger languages live in the realm of the infinite. Basic methods such as the
methods of constructing models, and basic aims such as a structure theory
for first-order axiomatizable classes of structures are essentially concerned
with infinite structures and transfinite or settheoretic combinatorics.

Nevertheless, there are natural reasons to consider finite structures. His-
torically, the most important one is the finite model property for certain
classes of first-order formulas, that is, the equivalence of satisfiability and
satisfiability in the finite. It was this property that settled the positive cases
of the decision problem for prefix classes of first-order logic.

However, it took some twenty years until the middle of the twentieth
century to really ask questions of a modeltheoretic flavour within the world of
finite structures. The first landmarks here are Trahtenbrot’s Theorem (1950)
on the failure of the completeness theorem in the finite and the formulation
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of the spectrum problem by Scholz (1952) that asks for a characterization of
spectra in the finite of first-order sentences.

In both cases, computational aspects play their part: Trahtenbrot’s proof
rests on the undecidability of the halting problem for machines, and the spec-
trum problem turned out to be intimately linked to the question whether de-
terministic and nondeterministic polynomial time complexity coincide. The
influence of computational aspects can be explained in various ways. First
of all, finite structures can be coded as words and hence, can be objects of
computations. Moreover, finite structures can serve to describe finite runs of
machines. Finally, formulas of a logical language often can be interpreted as
programs that, given a structure as input, perform the corresponding evalua-
tion. This viewpoint is of importance, for example, in database theory, where
relational databases are considered as finite structures.

We now give a short description of the contents of the book, at the same
time motivating the choice of material and the emphasis it has been given.

Chapter 1 provides basic material concerning first-order logic. Chapters
2 and 3 are of a purely modeltheoretic character. When restricting oneself
to finite structures, the essential theorems of first-order logic fail (this is
documented at the end of Chapter 3) and important methods get trivial
or useless. However, the gametheoretic methods of Ehrenfeucht and Fraissé
survive or even gain a special power. They are developed for first-order logic
in Chapter 2 and for second-order and infinitary extensions in Chapter 3. Our
representation is strongly based on isomorphism types (or, Hintikka formulas)
as a unifying feature.

When turning to the finite, settheoretic combinatorics get replaced by
finite combinatorics. As a consequence, there are new questions, for instance,
questions of the kind: What is the relative frequency of graphs versus struc-
tures or of connected graphs versus graphs? Chapter 4 is dedicated to results
aiming in this direction, so-called 0-1 laws, for first-order logic and some ex-
tensions. They say that for relational formulas either almost all or almost no
finite structure is a model.

Chapter 5 treats the finite model property for some fragments of first-
order logic, namely for the two-variable logic that consists of first-order for-
mulas with only two variables, and for the class of V3-formulas. The choice
of the first logic is motivated by the methodological role of logics with a re-
stricted number of variables, the choice of the second one by its relationship
to concepts of the preceding chapter.

As has already been remarked, many questions in finite model theory are
related to or even arose from questions in complexity theory. Chapter 6 gives
an account of these connections on the computational level of finite automata.

When considering automata or even more powerful machines, it quickly
becomes clear that first-order logic does not provide an adequate framework
on the logical side because first-order logic lacks the ability of adequately
expressing recursive procedures. This weakness of expressive power corre-
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sponds to a similar phenomenon in classical model theory, and in a similar
way as there, one can try to overcome this deficiency by introducing more
powerful languages. In finite model theory, various so-called fixed-point log-
ics have turned out to be promising candidates. They allow to speak about
fixed-points of definable iteration procedures; the weakest one just allows to
speak about the transitive closure of a definable binary relation.

Chapter 7 (together with Chapter 8) forms the core of the book. After
a short introduction to fixed-point logics it develops what is known as the
theory of descriptive complexity. Given a resource-bounded machine model,
say the model of polynomially time-bounded Turing machines, and a suitable
logic £, say least fixed-point logic, then for every machine M of this kind there
is a sentence ¢ of £ whose models are just the structures accepted by M,
and for every sentence ¢ of £ there is a machine M of this kind that just
accepts the models of . Hence, the classes of structures that are acceptable
by a polynomially time-bounded machine, correspond to the classes that are
axiomatizable in L. In this way, one obtains logical descriptions of complexity
classes and, therefore, logical analogues of major problems in complexity
theory. For example, the PTIME = PSPACE-problem now amounts to the
question whether two fixed-point logics have the same expressive power in
finite structures. The chapter gives an account of the most important results
of this kind. As it turns out, they mostly presuppose that the structures
considered are ordered. This assumption seems to be natural, since we induce
an ordering on the universe of a structure, when encoding it as an input string.
On the other hand, some major open problems of descriptive complexity
theory are concerned with the question to what extent the descriptive results
can be generalized to structures without an ordering.

The proof indicated above, for the fact that least fixed-point logic corre-
sponds to PTIME, yields that any sentence ¢ of this logic is equivalent to
a sentence describing the behaviour of a machine and hence, has a special
syntactical structure. So, as a byproduct of the logical characterizations of
complexity classes, one gets certain normal forms for the logics involved.

Chapter 8 (with parts of Chapter 9) presents the model theory of fixed-
point logics for finite structures. The material presented includes a thorough
discussion of transitive closure logics, as well as connections to second-order
logic and infinitary logics.

Chapter 9 takes up the viewpoint of formulas as programs or queries,
introducing a bunch of programming languages of the DATALOG family
in database theory. The main aim here is to show the equivalence of these
languages with certain fixed-point languages, thus opening another method-
ological gateway to the latter ones. The way pays, as can be seen by new and
far reaching possibilities of obtaining normal forms. The chapter concludes
with the investigation of the fine structure of fixed-point languages.
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Chapter 10 lies outside the mainstream of the book. It is concerned with
a logically-oriented representation of optimization problems, but is restricted
to basic material.

Chapter 11 is concerned with one of the most prominent open problems
of finite model theory, namely whether there is a logic that captures PTIME
also on unordered structures. As it turns out, this question is linked to the
problem of feasibily characterizing finite structures by invariants. By coding
structures in graphs we reduce the problem to the case of graphs. The chapter
ends by providing positive answers for some classes of graphs, thus illustrating
an at the present time active direction of research.

Finally, Chapter 12 discusses a concept that is well-known from classical
model theory, the concept of a quantifier. The idea here is the following: In
order to find a logic £ that corresponds to a complexity class C in the sense
described above, one can try to start with a simple logic, say first-order logic,
and add a quantifier that incorporates a C-complete problem. When pursuing
this idea, one has to find analogues of notions from complexity theory such
as reductions, hardness, completeness, etc. The chapter concludes with an
example of the analogy between quantifiers in logic and oracles in complexity
theory.

As the preceding description shows, the core of the book is centered
around modeltheoretic issues related to descriptive complexity. Such a con-
centration seemed to be necessary in order to come along with a book of a
reasonable size. Among the major gaps the reader will encounter we mention
two ones lying at opposite ends of the spectrum of possible topics: the theory
of circuits on the more computational side and the work related to a struc-
ture theory for the finite on the more modeltheoretic side. Concerning topics
of the first group we refer the reader to Neil Immerman’s recent monograph
“Computational Complexity”.

Some chapters are as independent from each other as their contents allows.
In particular, a reader interested in descriptive complexity theory should not
have problems to start with Chapter 7. And a modeltheorist interested in the
finite model theory of fixed-point logics can start with Chapter 8.

This second edition is a thoroughly revised and enlarged version of the
original text, the most relevant addition being the new Chapter 11. Moreover,
we have tried to take into consideration criticism and suggestions of readers
of the first edition. Again, with gratitude we mention Martin Grohe: his
proposals and his results have influenced and enriched considerable parts of
the text.

Freiburg, April 1999 Heinz-Dieter Ebbinghaus
Jorg Flum
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1. Preliminaries

The purpose of this section is to fix notations and terminology for the basic
notions related to first-order logic. We assume that the reader has already
some familiarity with these concepts, as it is obtained by an introductory
course in mathematical logic. For more detailed information we refer to text-
books such as [32, 35]. Parts of our exposition in part B follow [9].

A Structures

Vocabularies are finite sets that consist of relation symbols P, @, R, ... and
constant symbols (for short: constants) c, d, ....} Every relation symbol is
equipped with a natural number > 1, its arity. We denote vocabularies by
T,0,.... A vocabulary is relational, if it does not contain constants.

A structure A of vocabulary 7 (by short: a 7-structure) consists of a
nonempty set A, the universe or domain of A, of an n-ary relation R* on A
for every n-ary relation symbol R in 7, and of an element ¢ of A for every
constant ¢ in 7. (Mostly we use the notations R4 for R* and ¢* for ¢*.) An
n-ary relation R4 on A is a subset of A", the set of n-tuples of elements of
A. We mostly write R“a; ...a, instead of (ay,...,a,) € RA. A structure A
is finite, if its universe A is a finite set.

We give some examples of structures that will play a prominent role in
the book.

Al Graphs

Let 7 = {E} with a binary relation symbol E. A graph (or, undirected graph)
is a 7-structure G = (G, EY) satisfying

(1) for all @ € G: not E%aa
(2) for all a, b € G: if E%ab then E%ba.

By GRAPH we denote the class of finite graphs. If only (1) is required, we
speak of a digraph (or, directed graph). The elements of G are sometimes called
points or vertices, the elements of E¢ edges. The following figures represent

! Usually also function symbols are allowed in vocabularies. For the purposes of
this book our definition does not represent an essential restriction. We explain in
part D how the results can be extended to vocabularies with function symbols.
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the graph ({a,b,¢,d}, {(a,b), (b, a), (b, ¢), (¢, ), (b, d), (d, b), (¢, d), (d, ¢)}) and

the digraph ({a,b,c,d},{(a,b) (b a), (b, c),j( d), ( o)}).
d d
a c a .\\. c
b b

A subset X of the universe of a graph G is a clique, if E€ab for all a,b € X,
a#b.
Let G be a digraph. If n > 1 and

E%agay, EGalaQ, ..., E%an_1an
then ay, .. .,a, is a path from ag to a, of length n. If ag = a,, then ag,...,a,
is a cycle. G is acyclic if it has no cycle. A path ag, ..., a, is Hamiltonian if

G = {ao,...,an} and a; # q; for i # j. If, in addition, E%ay,a¢ we speak of
a Hamiltonian circuit.

Let G be a graph. Write a ~ b if a = b or if there is a path from a to b.
Clearly, ~ is an equivalence relation. The equivalence class of a is called the
(connected) component of a. G is connected if a ~ b for all a,b € G, that is,
if there is only one connected component. Let CONN be the class of finite
connected graphs.

Denote by d(a, b) the length of a shortest path from a to b; more precisely,
define the distance functiond : G x G — NU {cc} by 2

d(a,b) = oo iff a%b;‘ d(a,b) =0 iff a=1¥
and otherwise,
d(a,b) = min{n > 1| there is a path from a to b of length n}.
Obviously,
d(a,c) < d(a,b) + d(b,c),
where we use the natural conventions for co.

For simplicity, we give the following definitions only for finite digraphs. A
vertex b is a successor of a vertex a (and a a predecessor of b) if ESab. The
in-degree of a vertex is the number of its predecessors, the out-degree the
number of its successors. In graphs the in-degree and the out-degree of a
vertex a coincide and are called the degree of a.

2 N denotes the set of natural numbers, N = {0,1,2,...}.
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A root of a digraph is a vertex with in-degree 0 and a leaf a vertex with
out-degree 0.

A forest is an acyclic digraph where each vertex has in-degree at most 1.
A tree is a forest with connected underlying graph, i.e., a forest (G, E¥) such
that (G,{(a,b) | ESab or E“ba}) is connected. Note that a finite tree has
exactly one root. Let TREE be the class of finite trees.

A2 Orderings

Let 7 = {<} with a binary relation symbol <. A T-structure A = (4, <*) is
called an ordering if for all a, b, ¢ € A:

(1) not a <* a
(2) a<Ab or b<ta or a=b
(3) ifa<?b and b<?c then a<?ec.

Sometimes we consider finite orderings also as {<, S, min, max}-structures.
Here S is a binary relation symbol representing the successor relation and
min and max are constants for the first and the last element of the ordering.
(When considering the natural ordering on {0,...,n} we often refer to min
as the zero-th element.) Thus, a finite {<, S, min, max}-structure A4 is an
ordering if, in addition to (1), (2), (3), for all a,b € A :

(4) S%ab iff (a <A bandforalle, ifa<?cthenb<?corb=c)

(5) min? <4 a or min? =a

(6) a <A max? or a=max?.

For other purposes it might be advantageous to consider finite orderings as
{<, min, max}-structures. Suppose that 7o is a vocabulary with {<} C 75 C
{<, 8, min, max} and let o be an arbitrary vocabulary with 7y C . Later in
this book the class O[o] of finite ordered o-structures will play a prominent
role. Here a finite o-structure A4 is said to be ordered, if the reduct Al
(i.e., the 7p-structure obtained from 4 by forgetting the interpretations of
the symbols in o \ 75) is an ordering.

A3 Operations on Structures

Two 7-structures A and B are isomorphic, written A4 = B, if there is an
isomorphism from A to B, i.e., a bijection 7m: 4 — B preserving relations and
constants, that is,

— for n-ary R€ 7 and ay,...,a, € A,

R4y ...an iff RB7T(CL1) co7w(ay)

~ for c € 1, w(c4) = cP.

For r-structures 4 and B, the product A x B of A and B is the 7-structure
with domain A x B := {(a,b) | a € A,b € B}, which is given by
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— for n-ary R in 7 and (aq,b1),...,(an,bn) € A X B,
RAXB(al,bl) oo an, by) iff R ...a, and BBy ... b,

—for cin 7, ¢A%B := (¢4, cP).

For relational 7 we introduce the wunion (or, disjoint union) of structures.
Assume that A and B are T-structures with AN B = (). Then A4UB, the union
of A and B, is the 7-structure with domain 44U B and

RA9® = RAURP

for any R in 7. In case A and B are structures with AN B # ), we take
isomorphic copies A’ of A and B’ of B with disjoint universes (e.g., with
universes 4 x {1} and B x {2}) and set AUB := A'UB".

Note that the union of ordered structures is not an ordered structure.
The situation is different for the so-called ordered sum: Let 7 with <€ 7 be
relational and let 4 and B be ordered 7-structures. Assume that ANB = 0.
Define A <1 B, the ordered sum of A and B, as AUB but setting

<A = AU <BU{(a,b)|ac Abe B},

that is, in A < B all elements of A precede all elements of B.

Note that A x B = B x A4, AUB = BUA but, in general, A 9B 2 B < A.
The definition of product, union, and ordered sum can easily be extended to
more than two structures setting, for example, A 1B <C = ((A < B) a(C).
For a finite nonempty set I we denote by A!, U;A, and <1;A the product,
the union, and the ordered sum, respectively, of ||I}| copies of A. Here ||I||
denotes the cardinality of I.

B Syntax and Semantics of First-Order Logic

We now turn to the syntactic notions of first-order logic FO. Fix a vocabulary
7. Each formula of first-order logic will be a string of symbols taken from the
alphabet consisting of

— V1,U2,V3,... (the variables)
-,V (the connectives not, or)
-3 (the existential quantifier)

- = (the equality symbol)

_)7(

— the symbols in 7.

A term of vocabulary 7 is a variable or a constant in 7. Henceforth, we often
shall use the letters z, y, z, ... for variables and ¢, ¢;, ... for terms.

The formulas of first-order logic of vocabulary 7 are those strings which are
obtained by finitely many applications of the following rules:
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(F1) If tp and #; are terms then ¢y = ¢; is a formula.

(F2) If R in 7 is n-ary and t1, ..., ¢, are terms then R ...¢, is a formula.
(F3) If o is a formula then —¢ is a formula.

(F4) If ¢ and v are formulas then (¢ V %) is a formula.

(F5) If ¢ is a formula and x a variable then 3zy is a formula.

Denote by FO[r] the set of formulas of first-order logic of vocabulary . For-
mulas obtained by (F1) or (F2) are called atomic formulas. For formulas ¢
and 1 we use (v A ), (p = ¥), (v © ), and Yzp as abbreviations for the
formulas —(—p V ), (mp V), (- V) A (=9 V ), and =Iz—ep, respec-
tively.

We shall often omit parentheses in formulas if they are not essential such
as the outermost parentheses in disjunctions (¢ V ¢). In examples, different
letters z, y, z ... will always stand for different variables.

The axioms for graphs stated above have the following formalizations in

FO[{E}]:

Ve-Ezz
VaVy(Exy - Eyz),

those for orderings the following formalizations in FO[{<}]:

Ve—r <z
VaVylz <yVy <zVz=y)
VeVyVz((z <y Ay < 2) > z < 2).

For orderings as {<, S, min, max}-structures we need in addition
VaVy(Szy « (x <y AVz(z <z = (y < z2Vy = 2))))
Vz(min < z Vmin = z)
Ve(r < max V & = max).

All these formulas are sentences, i.e., formulas in which every variable in
an atomic subformula is in the scope of a corresponding quantifier. Such
occurrences are called bound occurrences. The last occurrence of z in

(Vz—Ezxz A JyEzy)

is not in the scope of a quantifier binding it. Such occurrences are called free.
The notion of a free variable of a formula ¢ is made precise by the following
definition, a definition by induction on (the length of) ¢: The set free(yp) of
free variables of a formula ¢ is defined by:

— If ¢ is atomic then the set free(y) of free variables of ¢ is the set of
variables occurring in ¢

— free(—p) := free(yp)

— free(p V1) := free(yp) U free(y)

— free(Jzp) := free(yp) \ {z}.
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It is common practice to use the notation ¢(z1,...,2z,) to indicate that
Zi,..., Ty are distinct and free(y) C {zi1,...,2,} without implying that
all z; are actually free in ¢ (in some chapters of the book we shall give
another meaning to this notation). Often we abbreviate an n-tuple z1, ..., z,
of variables by Z, for example, writing ¢(T) for p(z1,...,z,). Usually we do
not make explicit the length of T (here n), its size either being inessential or
clear from the context. Moreover, we often omit commas writing, for example,
T=21...Tp-

So far, terms and formulas of FO are simply finite strings of symbols. We now
assign the intended meanings to the logical symbols so that, in particular,
the sentences above really formalize the axioms of graphs and orderings. We
do this by defining the satisfaction relation A |= @ between structures on the
one hand and sentences on the other hand.

Let A be a 7-structure. An assignment in A is a function o with domain
the set of variables and with valuesin 4, « : {v, | n > 1} — A. Think of « as
assigning the meaning a(x) to the variable z. Extend « to a function defined
for all terms by setting a(c) := ¢ for ¢ in 7. Denote by a? the assignment
that agrees with o except that a%(z) = a.

‘We define the relation
A F ¢la]

(“the assignment « satisfies the formula ¢ in A” or “p is true in A under
o) as follows:

A E t1 = ta]a] iff alty) = a(ts)

AE Rty ... ty[a] iff RAa(ty) ... alty)

A E —plal if not 4 E y[a]

AR (pv )] i Al pla] or A = ¢fa]

A = Jzpla] if there is an a € A such that A |= ¢a2].

Note that the truth or falsity of A = ¢[a] depends only on the values of
a for those variables z which are free in . That is, if @i(z) = as(z) for
all z € free(y), then A = plai] iff A | plag]. Thus, if ¢ = @(z1,...,2,)
and a1 = a(z1),...,8, = a(z,), then we may write A E ¢lar,...,an]
for A |E ¢[a]. In particular, if ¢ is a sentence, then the truth or falsity of
A = ¢[a] is completely independent of a. Thus we may write A = ¢ (read:
A is a model of ¢, or A satisfies ), if for some (hence every) assignment c,
A = ¢la]. For a set ¢ of formulas, A = ®[a] means that A = ¢[a] for all
p € @. ¢ is satisfiable if there is a structure .4 and an assignment, « in A such
that A = ¢[a].

A formula ¢ is a consequence of ¢, written & |= 1, if A = ¢[a] whenever
A |= &[a]. The formula 9 is logically valid, written |= 9, if @ |= ¢, that is, if
1) is true in all structures under all assignments. And formulas ¢ and v are
logically equivalent if |= ¢ ¢ 1. When only taking into consideration finite
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structures, we use the notations @ =gy % and |=an ¢, and speak of equivalent
formulas; hence, ¢ and v are equivalent if =g, p < @, that is, if ¢ + ¥
holds in all finite structures under all assignments.

At some places it will be convenient to assume that first-order logic contains
two zero-ary relation symbols T, F. In every structure, T and F are interpreted
as TRUE (i.e., as being true) and FALSE, respectively. Hence, the atomic
formula T is logically equivalent to 3zz = z and F to —-Jzz = z. f & =
{1, -, ¢n} we sometimes write A & for p1A.. . Ap, and \/ & for o1 V.. .V, .2
In case & = () we set A® =T and \/ & = F. Then, for arbitrary finite &,

AR N\e if forallped, Ao

We introduce some further syntactic notions and notations. The quantifier
rank qr(yp) of a formula ¢ is the maximum number of nested quantifiers
occurring in it:

ar(p) = 0, if ¢ is atomic; ar(~p) = aqr(e);
ar(p V) = max{ar(p),ar(¥)};  ar(@zp) = ar(p) + 1.

It can be shown that every first-order formula is logically equivalent to a for-
mula in prenex normal form, that is, to a formula of the form Q127 ... Qszs%,
where Q1,...,Qs € {V¥,3} and where ¢ is quantifier-free. Such a formula is
called ¥, if the string of quantifiers consists of n consecutive blocks, where
in each block all quantifiers are of the same type (i.e., all universal or all ex-
istential), adjacent blocks contain quantifiers of different type, and the first
block is existential. II,, formulas are defined in the same way, but now we
require that the first block consists of universal quantifiers. A A, -formula is
a formula logically equivalent to both a ¥,-formula and a IT,,-formula.

t1...t,

If o(z1,...,2y,) is a formula and #1,...,%, are terms then ¢ = or, more
simply, @(t1,. .., t,) denotes the result of simultaneously replacingnall free oc-
currences of £1,...,%, by t1,..., s, respectively. This presupposes that none
of the variables in t,...,1,, gets into the scope of a corresponding quanti-
fier; otherwise, the bound variables in ¢ must be renamed in some canonical
fashion before replacing.

Given a formula ¢(z,z) and n > 1,

EIZ”:mp(x,E)

is an abbreviation for the formula
Jzy .. Tz, /\ wlzi,2) A /\ z; = ;)
1<i<n 1<i<i<n

3 For definiteness, given the vocabulary 7, fix an ordering on the alphabet of first-
order logic and interpret a conjunction A @ for a finite set ¢ as the iterative
conjunction of the elements of @ in the induced lexicographic ordering, say.
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expressing that there are at least n elements z with ¢(x,%). 3= zp(x,z) and
JI<"zp(z,Z) are defined similarly. Moreover, we set

P 1= ez =2 Yoy =3 2T = x; P<p 1= IS = g
Clearly,
AEpsn i A 20

and, similarly, for ¢—, and @<,.

C Some Classical Results of First-Order Logic

First-order logic has been used as a framework to analyze the notion of math-
ematical proof. A result of this analysis is G6édel’s Completeness Theorem:
A mathematical proof of ¢ from & shows that @ |= ¢, i.e. that ¥ is a conse-
quence of @. A natural question is whether the converse holds, too, that is,
whether for any consequence there is a proof. To give an answer, Godel used
a notion of formal proof that is based on a finite system of formal rules. A
formal proof of ¢ from @ consists of a sequence of applications of these rules
leading from the formulas in @ to .* In a natural way every formal proof
corresponds to a mathematical proof. Thus, if 4 is formally provable from @
then ¢ is a consequence of ¢. Moreover, Godel showed:

Theorem 1.0.1 (Completeness Theorem) 1 is a consequence of ¢ iff 1
18 formally provadle from &.

Two immediate consequences are:

Theorem 1.0.2 The set of logically valid sentences of first-order logic is
recursively enumerable.

Theorem 1.0.3 (Compactness Theorem) (a) If1 is a consequence of ¢
then ¢ is already a consequence of a finite subset of ®.
(b) If every finite subset of ¢ is satisfiable then ® is satisfiable.

The proof of the Completeness Theorem often leads to a proof of

Theorem 1.0.4 (L6wenheim-Skolem Theorem) If & has a model then
@ has an at most countable model.

Neither 1.0.2 nor 1.0.3 remain valid if one only considers finite structures.
A counterexample for the Compactness Theorem is given by the set @, :=
{¢>n | n > 1}: Each finite subset of &, has a finite model, but @, has no
finite model.

The failure of 1.0.2 is documented by

Theorem 1.0.5 (Trahtenbrot’s Theorem) The set of sentences of first-
order logic valid in all finite structures is not recursively enumerable.

* 'We do not give detailed definitions, since we do not need them later.
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A proof will be given in section 7.2.

We derive a consequence of the Compactness Theorem, which will be used
in section 2.5.

Lemma 1.0.6 Let ¢ € FO[r] and for i € I, let ' C FO[r]. Assume that

() Fee N\

icl

Then there is a finite Iy C I and, for every i € Iy, a finite & C D' such that

Eope \//\@6.

i€ly

Proof. For simplicity we assume that ¢ is a sentence and that every &' is
a set of sentences. By hypothesis, for i € I we have & |= ¢; hence, by
the Compactness Theorem, & = ¢ for some finite ¢} C ¢*, and therefore,
= Vier, N®6 — @ for each finite subset Iy C I. If there is no such Iy with
E ¢ = Vier, AP, then each finite subset of {¢} U{- A& | i€ I} has a
model. Hence, by the Compactness Theorem, there is a model of ¢ which for
all 4 € I satisfies = A @%. This contradicts (x). O

Structures A4 and B (of the same vocabulary) are said to be elementarily
equivalent, written A = B, if they satisfy the same first-order sentences. The
preceding lemma has the following

Corollary 1.0.7 Let & be a set of first-order sentences. Assume that any
two structures that satisfy the same sentences of & are elementarily equiva-
lent. Then any first-order sentence is equivalent to a boolean combination of
sentences of & (that is, is equivalent to a sentence obtainable by closing &
under = and V).

Proof. For any structure A4 set

{blved, ARYU{w | ed, A}

Let ¢ be any first-order sentence. By the preceding lemma it suffices to show

that
Eee \V A2
Al=p
Clearly, if B |= ¢ then B =V 4, A #(A), since B |= ¢(B). For the converse,
suppose B |= V 4, A #(A). Then for some model A of ¢, B | &(A). By
definition of #(A), A and B satisfy the same sentences of & and hence, by
hypothesis, are elementarily equivalent. Therefore, B |= . O

®(A)

Il

® This means that under any assignment in any structure, ¢ is true iff for some
1 € I all formulas in @* are true.
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D Model Classes and Global Relations

Fix a vocabulary . For a sentence @ of FO[r] we denote by Mod(y) the class
of finite models of . If 7 is an isomorphism from A to B, p(zy,...,z,) €
FO[r], and ay,...,a, € A, then an easy induction on formulas shows

(1) A l:go[al,...,an] iff B ':(p[ﬂ-(al)r"'ﬂr(an)]'

In particular, if ¢ is a sentence then
A= i B = .
Hence, Mod(y) is closed under isomorphisms, that is,
(2) A € Mod(p) and A = B imply B € Mod(p).

For p(z1,...,z,) € FO[7] and a structure A let

) = {lansean) AR Glar, - an])
be the set of n-tuples defined by ¢ in A. For n = 0 this should be read as®

@) 4 _ [ TRUE if AEg
¥ T | FALSE if AW o

Using this notation we can rewrite (1) as
(4) if 7: A= B then 7(pA(2)) = ¢”()

where for X C A™ we set m(X) = {(n(a1),...,7(an)) | (a1,...,a,) € X }.

Later we are going to study various logics that extend first-order logic. In
all of these logics only structural properties, that is, properties invariant
under isomorphisms, will be expressible. So the analogues of (2) and (4) will
be true. In particular, (2) says that only classes of structures closed under
isomorphisms can be axiomatizable in these extensions. Only such classes will
be of interest. We therefore agree upon the following convention:

Throughout the book all classes K of structures considered will tacitly be
assumed to be closed under isomorphisms, i.e.,

Ac K and A=B imply B¢ K.
(4) shows that properties expressible in logics correspond to so-called global
relations:

& TRUE corresponds to the set {#} (consisting of the “empty sequence” @) and
FALSE to the empty set .
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Definition 1.0.8 Let K be a class of 7-structures. An n-ary global relation
I' on K is a mapping assigning to each 4 € K an n-ary relation I'(A) on A
satisfying

I'(A)ay ...ap iff I'(Byr(ay)...w(an)

for every isomorphism 7 : A = B and every aq,...,a, € A. If K is the class
of all finite 7-structures, then we just speak of an n-ary global relation. [

Examples 1.0.9 (a) Any formula p(z1,...,2z,) of FO[r] defines the global
relation A - o?(_).

(b) The “transitive closure relation” TC is the binary global relation on
GRAPH with

TC(G) := {(a,b)]|a,b€ G, thereis a path from a to b}.
(c) For m > 0, I, is a unary global relation on GRAPH, where
(@) = {a] I{b € G | ESab}|| = m}
is the set of elements of G of degree m. O

In the definition of a global relation we also allow the case n = 0. There
are only two 0-ary relations on a structure, TRUE and FALSE. Often one
identifies a 0-ary global relation I" on K with the class

{A € K| I'(A) = TRUE}.

By this identification, the global relation associated with a first-order sentence
 is the class Mod(y) of finite models of ¢ (compare (3)).

An important issue in model theory is the study of properties of classes
of structures that are axiomatizable in a given logic £ and, in particular,
to determine what classes of structures are axiomatizable and what global
relations are definable in £. However, since we only consider “function-free”
vocabularies, how can we examine such problems, say, for the class of groups?

Nearly all the methods and results presented in this book can directly be
extended to vocabularies containing function symbols. Moreover, by replacing
functions by their graphs one can always pass to function-free vocabularies.
We sketch how to get rid of the function symbols in a vocabulary 7. The price
is the introduction of a new (n + 1)-ary relation symbol F' for every n-ary
f € 7. Let the vocabulary 7" consist of the relation symbols and constants
from 7 together with the new relation symbols. Thus 7" is function-free. For
a T-structure A, let A" be the 7"-structure obtained from A by replacing
every n-ary function f# by its graph F4,

FA = {(al,...,an,f(al,...,an))|a1,...,an€A}.

(So, for example, we look at a group (G,o% e”) as the {R,el}-structure
(G, R%,e%), where the ternary relation R is interpreted as the graph of o,
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i.e., R = {(a,b,a 0% b) | a,b € G} of 0%.) The class of 7"-structures of the
form A" is the class of models of the conjunction of the formulas

V.. Ve, 3 'yFe, .. .zay

where f € 7. For every T-sentence ¢ there is a 7"-sentence ¢ and for every
T"-sentence ¥ there is a 7-sentence ¥~ " such that for every 7-structure 4 we

have
ARy i ARy
AE=EyT iff A" E 1.
(For example, if ¢ := JaVy f(g(y)) = z then ¢ = JxVyTu(Gyu A Fuz), and
if ¢ 1= VeIy(Fzc A —~Gey) then =" = VaIy(f(z) = ¢ A —¢g(c) = y). Note
that, in general, qr(¢”) > qr(¢).) Hence, a class K of 7-structures is the class

of models of a first-order sentence iff K" := {A" | A € K} is the class of
models of a first-order sentence.

E Relational Databases and Query Languages

Suppose that a database contains the names of the main cities in the world
and the pairs (a, b) of such cities such that a given airline offers service from
a to b without stopover. We can view the database as a first-order structure,
namely as a digraph G = (G, EY), where G is the set of cities and ECab
means that there is a flight without stopover from a to b. Now, first-order
logic can be considered as a query language. For example, let

plz,y) = FEzyvz(Lzz A\ Ezy).

If ¢ is thought of as a query to the database, then the response is the set
of pairs (a, b) of cities such that b can be reached from e with at most one
stop. (We obtain a global relation if we assign to any database (digraph) the
response corresponding to the query .)

First-order logic provides a rich class of database queries. However, some
plausible queries are not first-order expressible. For example, it is impossible
to express the query “Can one fly from x to y” by a first-order formula such
that we get the right answer in all possible databases (digraphs). We thus
are led to ask for stronger logics (or, query languages).

The last two sections have revealed a close relationship between classes of
structures, global relations, and queries. Depending on the type of problem
we are studying and the methods that are involved, we shall use one or the
other terminology, even though we mostly use the terminology related to
classes of structures.



2. The Ehrenfeucht-Fraissé Method

The Ehrenfeucht-Fraissé method is among the few tools of model theory
that survive when we restrict our attention to finite structures. We present
the method in its gametheoretic, its algebraic, and its logical form (due to
Ehrenfeucht, Fraissé, and Hintikka, respectively). Later we shall see that
generalizations are also available for some extensions of first-order logic. The
detailed presentation for the case of first-order logic will help to understand
these extensions, where in each case we only will indicate the changes that
are necessary.

We always refer to a fixed vocabulary 7. As already mentioned in the
preliminaries, T contains only relation symbols and constants.

2.1 Elementary Classes

The Ehrenfeucht-Fraissé method is a useful tool for showing that a given
class of structures or a given global relation is (not) definable in first-order
logic. We start with some easy remarks concerning the expressive power of
first-order logic in the finite.

Proposition 2.1.1 Every finite structure can be characterized in first-order
logic up to isomorphism, i.e., for every finite structure A there is a sentence
wa of first-order logic such that for oll structures B we have

BEya iff A=B.
Proof. Suppose A = {a1,...,a,}. Set @ =ay ...a,. Let

O, := {¢¥ | % has the form Rz, ...2p, 2 =y, orc==z,
and variables among vy, ...,v,}

and

0a = Fur.. T (AW | Y€ On, AEYa]}A
N €O, AE WE]} A Vuri1(Une1 =01 V.o .V Opp1 = Un)).

O
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Corollary 2.1.2 Let K be a class of finite structures. Then there is a set
of first-order sentences such that

K = Mod(®),
that is, K is the class of finite models of ®.

Proof. Let K be a class of finite structures. For each n there is only a
finite number of pairwise nonisomorphic structures of cardinality n. Let
{A1,..., Ax} be a maximal subset of K of pairwise nonisomorphic struc-
tures of cardinality n. Set

Y 1= (pan = (P Voo Vou)),
where ¢_,, is a first-order sentence expressing “there are exactly n elements”
(see 1.B)). Then K = Mod({#,, | n > 1}). O

In many situations we want to know more, namely whether a class K of
finite structures or, equivalently, a property of finite structures, is axiomati-
zable by a single first-order sentence, i.e., whether K is elementary in the
sense of the following definition.

Definition 2.1.3 Let K be a class of finite structures. K is called azioma-
tizable in first-order logic or elementary, if there is a sentence ¢ of first-order
logic such that K = Mod(y).2 O

For structures A and B and m € N we write A =,, B and say that A
and B are m-equivalent, if A and B satisfy the same first-order sentences of
quantifier rank < m. The following theorem contains necessary and — as we
shall see in 2.2.12 — sufficient conditions for a class K to be elementary. Since,
in general, it is used to prove nonaxiomatizability results (see 2.3.5-2.3.9),
we formulate it in the corresponding way.

Theorem 2.1.4 Let K be a class of finite structures. Suppose that for every
m there are finite structures A and B such that

AcK B¢K, and A=, B.
Then K is not axiomatizable in first-order logic.

Proof. Let ¢ be any first-order sentence. Set m := qr(p). By our assumption
there are A and B such that 4 € K, B ¢ K, and A=, B; hence, K #
Mod(yp). O

! In case k = 0 recall our convention that the empty disjunction is F; one also
could set ¥, := (p=n — =Izz = z) in this case.

2 In the literature, instead of aziomatizable one often uses the term finitely az-
tomatizable. In (general) model theory a class of arbitrary structures K is called
elementary if, for some ¢, K is the class of arbitrary models of ¢. And given
classes Ko and K with Ko D K, it is said that K is elementary relative to Ky if,
for some ¢, K is the class of models of ¢ in Kg. In this terminology our notion of
elementary corresponds to elementary relative to the class of finite structures.
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2.2 Ehrenfeucht’s Theorem

In this section we present a purely gametheoretic characterization of the
relation =,,. It will be a useful tool, in particular, for applying Theorem
2.1.4 to concrete classes, at the same fime helping us to understand the
expressive power of first-order logic. One of the central ingredients of the
characterization are partial isomorphisms.

Definition 2.2.1 Assume A and B are structures. Let p be a map with
do(p) C A and rg(p) € B, where do(p) and rg(p) denote the domain and the
range of p, respectively. Then p is said to be a partiel isomorphism from A
to B if

— p is injective

— for every ¢ € 7: ¢ €do(p) and p(c?) = P

— for every n-ary R € 7 and all a4,...,a, €do(p),

R%ay...an iff REp(ay) ... plan).

We write Part(A, B) for the set of partial isomorphisms from A to B. O

In the following we identify a map p with its graph {(a,p(a)) | a € do(p)}.
Then p C g means that ¢ is an extension of p.

Remarks 2.2.2 (a) The empty map, p = @, is a partial isomorphism from
A to B just in case the vocabulary contains no constants.

(b) If p # (} is a map with do(p) C A and rg(p) C B, then p is a partial
isomorphism from A to B iff do(p) contains ¢ for all constants ¢ € 7 and
p :do(p)? 2rg(p)® (where do(p)* and rg(p)?® denote the substructures of A
and B with universes do(p) and rg(p), respectively).

(c) For@ =ay...as € Aand b=b,...b, € B the following statements are
equivalent:

(i) The clauses
pla;)) =bfori=1,... s

and
p(c?)y =cP forcin

define a map, which is a partial isomorphism from A to B (henceforth
denoted by @ > b, a notation that suppresses the constants).

(i) For all quantifier-free p{vy,...,vs): A= a] il B = ¢fb].

(iii) For all atomic ¢(v1,...,vs): A= @] iff B k= ¢[b].

Proof. Note that for an arbitrary structure P and d in D,

di = dj iff D ': v = ’Uj[d]
P =d; i DEc=uvjd
RPcPdd; iff D Revv;[d]
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(¢, R € 7, R ternary). Using such equivalences, it is easy to show that (i) and
(iii) are equivalent. Clearly, (ii) implies (iii), and (ii) follows from (iii), since
every quantifier-free [ormula is a boolean combination of atomic formulas. O

In general, a partial isomorphism does not preserve the validity of for-
mulas with quantifiers: Let 7 = {<}, A = ({0,1,2},<), B= ({0,1,2, 3}, <),
where in both cases < denotes the natural ordering. Then pg := 02 + 01 is
a partial isomorphism from A4 to B such that

A Jug{vr < vg Avg <) [0,2]

but
B bﬁ 31)3(’01 <wvzAv3 < 'U2) [p0(0)7p0(2)]

Since
A '—_— ('Ul <vz3Awvg < ’UQ) [0,2,1]

we see that, for any p € Part(A, B) with do(p) = {0, 2}, the validity of

B[ Jus(v1 < vs Avs < vz) [p(0),p(2)]

is equivalent to the existence of some ¢ € Part{A4, B) which extends p and
has 1 in its domain.

This example indicates that the truth of formulas with quantifiers is pre-
served under partial isomorphisms provided they admit certain extensions. It
embodies the basic idea behind the algebraic characterization of =,, we have
in mind: The m-equivalence of structures amounts to the existence of partial
isomorphisms that can be extended m times. In the gametheoretic terms in-
troduced by the next definition, @ — b is such a partial isomorphism if the
duplicator has a winning strategy for the Ehrenfeucht game G,(A,@, B, b).

Let A and B be 7-structures, @ € A% b € B®, and m € N. The Ehrenfeucht
game G, (A, @, B,b) is played by two players called the spoiler and the dupli-
cator. Each player has to make m moves in the course of a play. The players
take turns. In his i-th move the spoiler first selects a structure, A or B, and
an element in this structure. If the spoiler chooses e; in A then the duplicator
in his i-th move must choose an element f; in B. If the spoiler chooses f; in
B then the duplicator must choose an element e; in A.

Aa|B,b
first move e S
second move es fo
m-th move em fm

Asillustrated by this table, at the end elements e1, ..., em in Aand fi,..., fm
in B have been chosen. The duplicator winsiff ae s b f € Part(A, B) (in case
m = 0 we just require that @ — b € Part(A, B)). Otherwise, the spoiler wins.
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Equivalently, the spoiler wins if, after some i < m, @e; ...e; — bfy ... f; is not
a partial isomorphism. We say that a player, the spoiler or the duplicator, has
a winning strategy in G,,(A,@, B,b), or shortly, that he wins G,,(A,a, B, b),
if it is possible for him to win each play whatever choices are made by the
opponent. We omit a formal definition of the notion of a winning strategy;
it is implicit in the algebraic characterization given below (cf. the proof of
Theorem 2.3.3). If s = 0 (and hence @ and b are empty), we denote the game
by G (A, B).

Lemma 2.2.3 (a) If A = B then the duplicator wins Gn, (A, B).
(b) If the duplicator wins Gp,11(A, B) and ||A|] < m then A= B.

Proof. (a) Suppose 7 : A = B. A winning strategy for the duplicator consists
in always choosing the image or preimage under 7 of the spoiler’s selection;
that is, if the spoiler chooses @ € A then the duplicator chooses #n(a); and if
the spoiler chooses b € B then the duplicator answers with 7=!(b).

(b) Suppose that the duplicator wins G,,41(A, B), and assume that A =
{ai,...,an}. Consider a play where the spoiler, in his first m moves, chooses
G1,--.,0m- Let by, ..., by, be the responses of the duplicator according to his
winning strategy. Then p : @+ b € Part(A, B) with do(p) = A. It even is
an isomorphism from A onto B. Otherwise, we have rg(p) # B. Then the
spoiler, in the last move of the play, chooses some element b € B \ rg(p). As
there is no answer for the duplicator leading to a win, we get a contradiction.

(|

The following lemma collects some facts about the Ehrenfeucht game.
Their proofs are immediate from the definition.

Lemma 2.2.4 Let A and B be structures, @ € A%, b€ B®, and m > 0.
(a) The duplicator wins Go(A, @, B,b) iff @+ b is a partial isomorphism.
(b) For m > 0 the following are equivalent:

(i) The duplicator wins G,,(A,a,B,b).

(il) For all a € A there is b € B such that the duplicator wins the game
Gm-1(A,aa,B,bb) and for all b € B there is a € A such that the
duplicator wins G,_1 (A, da, B, bb).

(c) If the duplicator wins G, (A, @, B,b) and if m’ < m, the duplicator wins

G (A, @, B, b). O

Parts (a) and (b) give us a hint how to relate the game to the validity of
formulas.

Let A be given. Fora = a1 ...a; € A and m > 0 we introduce a formula
2 (vy,...,v,s) that describes the gametheoretic properties of @ in any game
Gn(A,TG,...); more precisely, we want to define ¢ in such a way that for

any Band b="b,...b, € B,

BEe™ B iff the duplicator wins G, (A4,@, B, b).
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If the structure A is not clear from the context, we use the notation @5 for
7. We also allow s = 0, the case of the empty sequence # of elements in A4,
and write ¢’ for the sentence ¢’} 4.

Definition 2.2.5 Let T be vy,...,vs.

L) = /\{ga(ﬁ) | ¢ atomic or negated atomic, 4 | ¢[a]}

and for m > 0,

@) = N sl @vep) A Vs \ o @oe). O
acA aEA

2 describes the isomorphism type of the substructure generated by @ in
A; and for m > 0 the formula ¢Z* tells us to which isomorphism types the
tuple @ can be extended in m steps adding one element in each step. 7" is
called the m-isomorphism type (or m-Hintikka formula) of @ in A.

Since {p(v1,...,vs) | ¢ atomic or negated atomic} is finite, a simple in-
duction on m shows:

Lemma 2.2.6 For s,m > 0, the set {¢7t; | A a structure and @ € A®} is
finite. O

In particular, the conjunctions and disjunctions in the above definition
are finite.

Lemma 2.2.7 (a) qr(¢?) =m.

(b) A = ¢[a].
(c) For any B and b in B,

B = o] iff @+ b € Part(A, B).

Proof. The proofs of (a) and (b) are straightforward. (c) holds by part (c) of
2.2.2. O

Theorem 2.2.8 (Ehrenfeucht’s Theorem) Given A and B, @ € A® and
b e B® and m > 0, the following are eguivalent:

(i) The duplicator wins G,,(A, @, B,b).

(i) BE eml.
(iii) @ and b satisfy the same formulas of quantifier rank < m, that is, if
p(x1,...,zs) is of quantifier rank < m, then

(%) Akl f BEb]

Proof. (iii) implies (ii) since qr(p®) = m and A | ¢2[a]. We prove the
equivalence of (i) and (ii) by induction on m. For m =0

the duplicator wins Go(A,@, B,b) iff @ b€ Part(4,B) (cf. 2.2.4(a))
iff Bl b (by 2.2.7(c)).
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For m > 0,

the duplicator wins G,,(A, @, B, b)

iff for all @ € A there is b € B such that the duplicator wins
Gu-1(A,aa, B,bb), and for all b € B there is a € A such that
the duplicator wins G,,—1(A,aa,B,bb)  (cf. 2.2.4(b))

iff for all a € A thereis b € B with B |= go"?;l[gb], and
for all b € B there is a € A with B |= 2 '[bb] (ind. hyp.)

it B t: /\aEA 32)54_1(,06& (U:DS-H) A Vvsi1 vaeA ‘Paa_l(ﬁa 'Us+1)[5]
iff B ¢fb).

(i) = (iii): The proof proceeds by induction on m. The case m = 0 is handled
as above. Let m > 0 and suppose that the duplicator wins G,,,(A,@,B,b).
Clearly, the set of formulas ¢(xzy,...,z,) satisfying (x) contains the atomic
formulas and is closed under - and V. Suppose that ¢(Z) = Jyv and qr(p) <
m. Since y ¢ free(¢), we can assume that y is distinct from the variables in
Z. Hence, ¥ = (%, y). Assume, for instance, A |= p[a]. Then thereis a € A
such that A = v[a,a]. As, by (i), the duplicator wins G, (A, @, B,b), there is
b € B such that the duplicator wins G,,_1 (A, @a, B, bb). Since qr(¢)) < m—1,

the induction hypothesis yields B [= [b, b], hence B = o[b]. O
Corollary 2.2.9 For structures A, B and m > 0 the following are equivalent:
(i) The duplicator wins Gp (A, B). (ii) B ¢7.

(iii) A=, B. O

By 2.2.3(b) we get
Corollary 2.2.10 Let A be a structure with ||A|| < m. Then for all B,
Bt iff A=B. O
The next result shows that the formulas ¢ give a clear picture of the
expressive power of first-order logic.
Theorem 2.2.11 Let o(vi,...,vs) be a formula of quantifier rank < m.
Then

=y e \/{tpﬁﬁ | A a structure, @ € A, and A | ©la]}.?

Proof. Suppose first that B = ¢[b]. Then the formula 308 7 is a member of the

disjunction on the right side of the equivalence, which therefore is satisfied
by b. Conversely, suppose B |= \/{¢} ; | A E ¢[a]}[b]. Then, for some A and

@ such that A [= gla], we have B = ¢ - ~[b]. By 2.2.8, @ and b satisfy the
same formulas of quantifier rank < m and therefore, B |= ¢[b]. O

3 By 2.2.6 the disjunction is taken over a finite set.
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The following result contains the desired characterization of classes ax-
iomatizable in first-order logic. As 2.1.4, we formulate it in a “negative” form,
since the implication (ii) = (i) turns out to be one of the main tools to obtain
nonaxiomatizability results for first-order logic.

Theorem 2.2.12 For a class K of finite structures the following are equiv-
alent:

(1) K is not aziomatizable in first-order logic.

(if) For each m there are finite structures A and B such that

Ae K, BgK and A=, B.

Proof. (ii) = (i) was proven in 2.1.4. For the converse, suppose that (ii) does
not hold, i.e., that for some m and all finite A and B,

AeKand A=, B imply Be K.
Then K = Mod(V{¢7 | A € K}), and thus K is axiomatizable. 0O

2.3 Examples and Fraissé’s Theorem

To apply Ehrenfeucht’s characterization to concrete examples, it is more con-
venient to use an algebraic version due to Fraissé, even though it lacks the
intuitive appeal of the gametheoretical approach.

Given structures A, B and m € N, let W,,,(A, B) :=
{@+>b|s>0,ac A%b € B, the duplicator wins G,,(A,a,B,b)}

be the set of winning positions for the duplicator. The sequence of the
Wi (A, B) has the back and forth properties as introduced in the following
definition.

Definition 2.3.1 Structures 4 and 5 are said to be m-isomorphic, written
A =, B, if there is a sequence ()< with the following properties:
(a) Every I; is a nonempty set of partial isomorphisms from A to B.

(b) (Forth property) For every j < m, p € I;11, and a € A there is ¢ € I;
such that ¢ D p and a € do(g).

(c) (Back property) For every j < m, p € Ij;1, and b € B there is ¢ € I;
such that ¢ D p and b € rg(q).

If (I;);<m has the properties (a), (b), and (c), we write (I;)j<m : A =Zm B

and say that A and B are m-isomorphic via (I;)j<m. O

Exercise 2.3.2 Suppose (I;)j<m : A=y B. Then (Ij)j<m : A=, B with
I; :== {q € Part(A,B) | ¢ C p for some p € I;}. In particular, § — @ € I; for
all § < m. Moreover, W;(A, B) = W;(A, B).
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Using the results of the preceding section we obtain:

Theorem 2.3.3 For structures A and B, @ € A% b € B, and m > 0 the
following are equivalent:

(i) The duplicator wins G,,(A,a, B,b).

(i) @~ b€ Wn(A,B) and (Wi(A,B))j<m : A=y B.

(ili) There is (I;)j<m with @ b € I, such that (I;)j<m : A =, B.
(iv) B =gt

(

v) @ satisfies in A the same formulas of quantifier rank < m as b in B.

Proof. By the definition of W;,(A, B) and 2.2.4, (i) implies (ii). Obviously,
(i) implies (iii). Therefore it suffices to show the implication (iii) = (i),
the remaining equivalences being clear from 2.2.8. For (iii) = (i) suppose
that (I;)j<m : A=, B and @~ b € I,,. We describe a winning strategy
in G,,(A,a,B,b) for the duplicator: In his i-th move he should choose the
element e; (or f;, respectively) such that for p; : @e1 ...e; = bfi ... f; it is
true that p; C g for some g € I,,_;; this is always possible because of the back
and forth properties of (I;);<,,. Looking at i := m we see that the duplicator
wins. O

For s = 0 in view of Exercise 2.3.2 the preceding theorem yields the
following extension of 2.2.9.

Corollary 2.3.4 For structures A, B and m > 0 the following are equivalent:
(i) The duplicator wins Gy, (A, B). (i) (W;(A B))j<m : A= B.

(i) A=, B. (iv) B = ¢'7.

(v) A=nB. O

The equivalence of (iii) and (v) is known as Fraissé’s Theorem. The proof
of the preceding theorem, and especially that of the equivalence of (i) and
(iil) shows, that Ehrenfeucht’s Theorem and Fraissé’s Theorem are different
formulations of the same fact. In particular, the proof exhibits the close rela-
tionship between sequences (/;);<m and winning strategies for the duplica-
tor in G, (A, @, B,b). Therefore, one often speaks of the Ehrenfeucht-Fraissé
game or the Ehrenfeucht-Fraissé method.

Example 2.3.5 Let 7 be the empty vocabulary and A and B be 7-structures
(i.e., nonempty sets). Suppose ||Al] > m and ||B|| > m. Then A=, B. In
fact, (I;)j<m : A =y B with [; := {p € Part(A4, B) | ||[do(p)|| < m — j}.

As a consequence the class EVEN]r] of finite 7-structures of even cardi-
nality is not axiomatizable in first-order logic. In fact, for each m > 0, let A,,
be a structure of cardinality m. Then, A, € EVEN[r] iff A,,41 ¢ EVEN][7],
but A, =, Ami1- Now apply 2.2.12. The reader is encouraged to show for
arbitrary 7 that EVEN[7] is not axiomatizable. a
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Example 2.3.6 Let 7 = {<, min, max} be a vocabulary for finite orderings
as introduced in 1.A2 and m > 1. Suppose that A and B are finite order-
ings, ||All > 2™ and ||B}| > 2™. Then A %, B. Hence, the class of finite
orderings of even cardinality is not axiomatizable in first-order logic. Clearly,
the last statement remains true, if we consider orderings as {<, .S, min, max}-
structures.

For a proof, given any ordering C, we define its distance function d by
d(a,a') = |{beCl(a<b<d)or(a <b<a)ll.

And, for j > 0, we introduce the “truncated” j-distance function d; on C' x C
by

i 3 ! ¥l
di(a,a) = { d(a,a") if d(a,a") < 2
00 else.
Now, suppose that A and B are finite orderings with ||A]|, || Bl > 2™. For
7 < m set

I, = {pePart(AB)]|d;la,a’) = d(p(a),p(a')) for a,a’ € do(p)}.

Then (I;)j<m : A =, B: By assumption on the cardinalities of A and B we
have {(minA, min®), (max4, max?)} ¢ I; for every j < m. To give a proof of
the forth property of (I;);<m (the back property can be proven analogously),
suppose j < m, p € Ij11, and a € A. We distinguish two cases, depending

on whether or not the following condition
(%) there is an a’ € do(p) such that d;(a,a’) < 27

is satisfied. If (x) holds then there is exactly one b € B for which pU{(a,b)} is
a partial isomorphism preserving d;-distances. Now assume that () does not
hold and let do(p) = {a1,...,a,} with a; < ... < a,. We restrict ourselves
to the case a; < a < a;41 for some ¢. Then, d;(a;,a) = 0o and d;(a,ai41) =
oo; hence, djy1(as,a:41) = oo and therefore, djii(p(ai),plait1)) = oo
Thus there is a b such that p(a;) < b < plaiy1), dj(plai),b) = oo,
and d;(b,p(ai+1)) = oo. One easily verifies that ¢ := p U {(a,b)} is a
partial isomorphism in I;. [l

Example 2.3.7 Let 7 = {<, min, max} be as in the preceding example and
o = TU{E} with a binary relation symbol E. For n > 3 let A, be the ordered
T-structure with A, = {0,...,n}, min?” = 0, max?* = n, where < is
the natural ordering on A,,, and

EAn = {(27.7) | |Z _.]l = 2} U {(O,TL), (TL,O), (1,n—1),(n—1,1)}.

(An, E4~) is a graph that is connected iff n is odd. Now, let m > 2 and
ILk>2m
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&

n=3 n=4

Let I; be the set of partial isomorphisms from A;|7 to Ag|7 as introduced in
the preceding example. For j > 2 any p € I; preserves E, too, that is, I; C
Part(A;, Ar). Hence, (Ij12)j<m—2 : Al Zm—2 Ag, and, by 2.2.12, we obtain:

— The class of finite connected ordered graphs is not first-order axiomatizable.
O

The following example is related to the preceding one, but does not involve
orderings.

Example 2.3.8 For [ > 1, let G; be the graph given by a cycle of length
!+ 1. To be precise, set

Gp:=1{0,...,1}, EC :={(,i+1)|i<}U{G+1,9)]i<1}U{0,1),(,0)}

Thus, for I,k € N, the disjoint union G;\U Gy consists of a cycle of length { + 1
and of a cycle of length k + 1 (for A4; as defined in the preceding example we
have AJ{E} 2 G, for | odd, and AJ|{E} = Q%AU G forl even). We show:

If I,k > 2™ then G; =, G and G; =, GUG,.
In fact, for j € N, define the distance function d; on a graph G by

; j+1
d;(a,a') { d(a,b) if d(a, b) < 27

00 else

(where d denotes the distance function on G introduced in 1.A1). To show,
say, that G; and G;U G, are m-isomorphic, one verifies (I;)j<m : Gi Zm GIUG;
where I; is the set of p € Part(G,,G,UG;) with

lldo(p)ll <m —j and  d;(a,b) = d;(p(a), p(b)) for a,b € do(p)

(the proof is similar to that of Example 2.3.6). We note two consequences.

— The class CONN of connected finite graphs is not axiomatizable in first-
order logic.

In fact, by 2.2.12, CONN is not axiomatizable, since for each m we have

Gym € CONN, GomUGom € CONN, Gom =y, GomUGom.
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— The global relation TC (cf. 1.0.9), the relation of transitive closure on the
class GRAPH of finite graphs, is not first-order definable.

In fact, suppose ¥(z,y) is a first-order formula defining TC on GRAPH. Then
CONN would be the class of finite models of VaVy (mz = y — ¥(z,y)) (and
the graph axioms). 0

Exercise 2.3.9 Set 7 = {E}. For [ > 1 let B, and D; be the r-structures
given by

By :=10,...,0}, EB ={(i,i+1)]i<I},
Dy :={0,...,0}, EPv={(,i+1)|i<I}U{(,0)}.

Given m > 0, show that B; =, B;UD; for sufficiently large I. Conclude that
the class of finite acyclic digraphs (cf. 1.A1) is not axiomatizable in first-order
logic. |

Proposition 2.3.10 The product, the disjoint union, and the ordered sum
(¢f. 1.A3) preserve =, i.e.,

(a) If ./41 =m Bl and Az =m Bg then A1 X AQ =m Bl X Bg.
(b) If A1 = Bi and Ay =, By then AlUAg =mn 31082.
(C) If A1 = B1 and As =, By then A < Ay =, By <1 Bs.

Proof. Suppose A1 =,, By and A =, B». By Ehrenfeucht’s Theorem
there are winning strategies for the duplicator in the games G,,(4:,B1) and
G (A, B2). We refer to these strategies as S7 and Ss.

(a) The following gives a winning strategy for the duplicator in the game
G (A1 x Az, B1 x By): We simultaneously play games in G,,,{A;,B1) and
Gy (A2, B2). Suppose that in his i-th move the spoiler chooses, say, (a1,a2) €
A; x Ay, Let by € By and by € By be answers to a; and as according to Sy
and Ss, respectively. Then the duplicator chooses (b, bs).

(b),(c) The proofs for parts (b) and (c) proceed in the same way. So let
x € {U, <t}. The following represents a winning strategy for the duplicator in
Gy (A1 x Az, By B2) (when describing it we use moves of plays in G,,(A;, By)
and G, (As, B2)). Suppose that in his i-th move the spoiler selects, say, a €
A % A;. Then the duplicator gets his answer by applying S; if ¢ € A4;, and
Sy if a € As. O

The last proof yields more:

Corollary 2.3.11 (a) If (A1, @) =m (B1,b1) and (A, @) =, (Bs, by) then
(Alqu,al,ag) =m (81082,[—)1752).

(b) If (41,a1) =m (Zilagl) and (A2,d2) = (BQ,EQ) then (A; < A2, G1,T2)
=m (Bl 482,[)1,1)2).4 O

4 In this corollary, @1 and @2 can be sequences of different length.
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Exercise 2.3.12 Suppose that 7 = {Ry,..., Rz} with unary relation sym-
bols R;. For o : {1,...,k} — {0,1} and a 7-structure A denote by A, the
subset X1 N...NXg, where X; := R;“ if a(?) =1, and X; := A\R;4 otherwise.
Show for any 7-structures A, B and m > 1 that A =, B ill min{||A.]|,m} =
min{||Ba|l,m} holds for all . Conclude that every sentence ¢ from FO[7] is
equivalent to a boolean combination of sentences of the form 3='z R%z, where
Rz := @1 A ... ANy with ¢, = Rz if o(i) = 1, and ¢; = Rz if a(i) = 0.
Hint: First, consider sentences ¢ of the form ¢"t. Then apply 2.2.11. O

Exercise 2.3.13 Let < be a binary symbol of the relational vocabulary 7.
For rn > 1 and I,k > 2™ show that <'A =, <* A holds for ordered .A. Here
<! A denotes the ordered sum of I copies of A. (Hint: Use the idea of the

proof of 2.3.6). O
Exercise 2.3.14 Show for @+~ b € Part(A4,B) and m > 0 that

BE b if (A,@) =, (B,b). O
Exercise 2.3.15 Show that (I;);<m : A =y B implies I; C W;(A,B) for
j<m. B

Remark 2.3.16 Let £ := (Z,<) and Q := (Q, <) be the integers and the
rationals with their orderings, respectively. For

¢ = drdylzx <yAVz(z <zAz<y))
we have
(%) Zl=¢ and QI .

Hence, Z #3 Q and therefore, Z %3 Q. The spoiler can “transform” the
information (%) into a winning strategy for the game G3(Z, Q) as given by
the table

N
o

H <o 2
o>

0O ot
[

M‘

We have underlined the selections of the spoiler. Note that no third move of
the duplicator will lead to a partial isomorphism (since for a < b we have
a < %b < b and there is no integer between 5 and 6). In this strategy of the
spoiler his selections in Z correspond to the existential quantifiers in ¢ and
his selections in Q to the universal quantifiers. This connection can be made
precise and is implicit in the proof of 2.2.8. It is the reason why moves in
G (A, B) in which the spoiler chooses an element of A (of B) are sometimes
called 3-moves (V-mouves). O

As in the present section, the formulas ¢’y -, the m-isomorphism type of @
in A, will also play a crucial role in subsequent considerations. In our opinion
their methodological importance stems from the following two facts:
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(1) They have a clear algebraic meaning.
(2) Every first-order formula is equivalent to a disjunction of such formulas
(see 2.2.11).

Classical model theory has been characterized by the equation
model theory = universal algebra + logic

(see [20]). By (1) and (2) above, it is clear that the formulas <pf4’a provide a
bridge between structures and first-order formulas, that is, between our main
notions from (universal) algebra and from (first-order) logic, respectively.
Therefore the experience that they are a valuable tool in model theory might
not come as a surprise.

There is a more algebraic, sort of logic-free, way to define m-isomorphism
types, say for@ = ay...as; in A by

IT°(A,@) = {¢|AkEyla, ¢(v,...,v,) atomic}
and
™t (4,@) = {IT™(A,@a)|ac A}.
One easily verifies that for any B and b € B,
IT™(A,@) = IT™(B,b) iff Pha= P55

2.4 Hanf’s Theorem

All vocabularies in this and the next section will be relational unless stated
otherwise. For a nonempty subset M of a structure A we denote by M the
substructure of A with universe M.

Given a structure A, we define the binary relation E4 on A by

EA := {(a,b) | a # b, and there are R in 7 and ¢ € A such that R4¢
and a and b are components of the tuple ¢}.

The structure G(A) := (A, E4) is called the Gaifman graph of A. Obviously,
if A itself is a graph then G(A) = A. For a in A and r € N we denote by
S(r,a) (or SA(r,a)) the r-ball of a,

S(ra) = {be A|d(ab) <r}S

S(r,a) (or S*(r,a)) stands for the substructure of 4 with universe S(r,a).
Note that for b,c € S(r,a) we have d(b,c) < 2r. For @ = ay ...as we set
S(r,a) := S(r,a;)U...US(r,a,).

% d denotes the distance function of G(A) as defined in 1.A1.
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We define the r-ball type of a point a in A to be the isomorphism type
of (8(r,a),a), i.e., points a in A and b in B have the same r-ball type iff
(84(r,a),a) = (S°(r,1),b).

In 2.3.8 we showed for certain graphs that they are m-isomorphic and hence,
m-equivalent, using a sequence (I;)j<m, where — in the terminology just intro-
duced ~ for each p € I and a € do(p) there was an isomorphism of $(2/ —1, a)
onto $(27 — 1, p(a)) compatible with p. We use generalizations of this idea to
show two further theorems on the expressive power of first-order logic. The
first one (Hanf’s Theorem) is obtained by applying the idea just mentioned
to graphs of structures. In the second one (Gaifman’s Theorem) the require-
ment of isomorphism of corresponding balls is weakened to I-equivalence for
a suitable [.

Theorem 2.4.1 (Hanf’s Theorem) Let A and B be T-structures and let
m € N. Suppose that for some e € N the 3™-balls in A and B have less than
e elements® and that for each 3™-ball type ¢, (i) or (ii) holds where

(i) A and B have the same number of elements of 3™-ball type 1,
(ii) both A and B have more than m - e elements of 3™-ball type ¢.

Then A=, B.

Proof. Since for n < [ the [-ball type of an element determines its n-ball
type, we see that for n < 3™ and every n-ball type ¢, 4 and B have the same
number of elements of n-ball type ¢ or both, 4 and B, have more than m - ¢

elements of n-ball type ¢.
We show that (I;)j<m : A =, B, where I; is the set

{@ b e Part(A4,B) | (S(37,a),a) = (S(37,5),b) and length(@) < m — j},

and where, for length(a) = 0, we set (S(37,a@),a) = P and agree that § = ().
Therefore, we have §) — @ € I,,,. Concerning the back and forth properties
it is enough, by symmetry, to prove the forth property. Thus suppose that
0<j<m,a€Aandaw b€ Iy, say,

(+) ©: (S(3711,3),3) = (S(37+1,5), D).

Case 1: a € S(2- 37 a).

Then S(37,aa) C S(37t1,a). Setting b := 7(a), we have 7 : (§(37,aa),daa) =
(S(37,bb), bb), hence @a > bb € I;.

Case 2: a € S(2-37,@) (and hence, S(37,a) N S(37,@) = 0).

Let ¢« be the 39-ball type of a. By (x), S(2-37,a@) and S(2 - 37,b) contain
the same number of elements of 37-ball type ¢ which, by our assumption
on the cardinality of balls, is < length(@) - ¢ < m - e . Therefore, by (i) or

5 Note that for finite A and B there is always such an e.
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(ii), there must be an element b ¢ S(2 - 37,b) with 37-ball type ¢. Choose
7' (8(87,a),a) = (5(37,b),b). Then the corresponding restriction of = U '
is an isomorphism of (S(37,@a),aa) onto (S(37, bb), bb). O

We give an application. Note that a graph G is connected if each nonempty
subset of G closed under the graph relation E¢ contains already all elements
of G, i.e., if G is a model of the “second-order sentence”

VP((3zPz AVaVy((Pz A Ezy) — Py)) — VzPz).

We are going to show that the class of connected graphs is not axiomatizable
by a second-order sentence of the form 3P ...3P.¢, where P,..., P, are
unary and ¢ is first-order (see section 3.1 for a precise definition of second-
order logic). ‘

For | > 1, let Dy = (Dy, F;) be a digraph consisting of a cycle of length
[+1,eg.

D, = {0,...,[}, E, = {(’i,i-(-l) | 1< l}U{(Z,O)}

Lemma 2.4.2 Supposer = {E,Py,...,P.} where Py, ..., P. are unary, and
let' m > 0. Then there is anly > 1 such that for anyl > ly and any 7-structure
of the form (Dy, Py,...,P.) there are a,b € Dy with disjoint and isomorphic
3™ -balls.

Proof. For the structures under consideration any 3™-ball contains exactly
2-3™ 4+ 1 elements (note that Pp,...,P. are unary and therefore do not
influence the distances induced by the underlying digraphs). Let i be the
number of possible isomorphism types of 3™-balls. Then in a structure of
cardinality > lo := (i + 1)(2-3™ 4 1) there must be two points with disjoint
3™ -balls of the same isomorphism type. O

Lemma 2.4.3 Suppose (Dy, Py,..., P,) is a 7-structure (7 as in the pre-
ceding lemma) containing elements a and b with disjoint and isomorphic 3™-
balls. Denote by a— and b_ the elements of Dy with Eja_a and Ejb_b, respec-
tively (see the figure below). Let (D, Ej, Py,...F,) be the structure obtained
by splitting the cycle (D, Py,..., P) into two cycles by removing the edges
(a_,a),(b_,b) and adding edges (b_,a), (a_,b) instead; more formally:

E = (B \{(a-,a),(b-,5)U{(b,a),(a-,b)}.
Then (D, Py,...,P,) =, (D, El,Pi,..., P).

Proof. Immediate by Hanf’s Theorem, since both structures have the same
number of 3™-balls of any given isomorphism type. O
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by

Since a partial isomorphism between digraphs is a partial isomorphism of
the associated graphs, we get from the two preceding lemmas:

Lemma 2.4.4 For 7 = {E,Py,...,P.} and m > 0 choose ly according to
2.4.2. Letl > ly and (G1, Py, ..., P.) be a7-structure, where G, is the Gaifman
graph G(Dy) of Dy, that is, Gy is a cycle of length 1+ 1. Let G| be the Gaifman
graph G((Dy, E})), where (Dy, E]) is defined as in the preceding lemma. Then

(gl,Pl,.‘.,P,»)Em(g;,Pl,...,Pr). |

We are now in a position to show:

Proposition 2.4.5 The class of finite and connected graphs cannot be az-
iomatized by a formula of the form

(*) 3P, ...3P,

where Py, ..., P. are unary relation symbols and 1 is a first-order sentence
over the vocabulery {E, P1,...,P.}.

Proof. Suppose that for the sentence (x) and any finite graph G, we have:

G is connected iff for some Py,..., P, CG: (G,P,...,P.) =1.

For m := qr(¢) choose Iy as in 2.4.2. Since Gy, is connected, there are
Pi,..., P, such that (G, Pi,..., P) = 4. Then, (G, ,P,...,P) = ¢ by
2.4.4, but G, , is not connected, a contradiction. (]

On the other side we have

Proposition 2.4.6 The class of finite and connected graphs can be axioma-
tized by a formula of the form AR, where R is binary and v is a first-order
sentence over the vocabulary {E, R}.
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Proof. Let ¥ be a sentence expressing that R is an irreflexive and transitive
relation with a minimal element, and that Ezy holds for any immediate R-
successor y of x; that is, v is the conjunction of

Vz-Rzx AVaVyVz((Rzy A Ryz) — Rzz),
Jxvy(z = y V Ray),
VaVy((Rzy AVz-(Rxz A Rzy)) — Exy).

Let G be a graph. Clearly, if G is a model of IR, say (G, R?) |= ¢, then
for any element of G there is a path connecting it with the minimal element;
hence, G is connected. Conversely, suppose G is connected. Choose an ar-
bitrary @ € G. For n € N set L, := {b | d(a,b) = n} and take as R the
transitive closure of {(b,¢) | Ebc and for some n, b€ L, and ¢ € L, }. O

Exercise 2.4.7 Show the results corresponding to 2.4.5 and 2.4.6 for the
class of finite acyclic digraphs (cf. 1.A1). (Hint: Denote by H; the digraph
({0,...,1},{(6,i+ 1) | ¢ < 1}). For the nonaxiomatizability result use Hanf’s
Theorem similarly as above, cutting off in some (H;, P, ..., P,) an interval
with endpoints a and b for suitable ¢ and b and forming a cycle out of it.)
Moreover show that the class of finite acyclic digraphs can be axiomatized
by a sentence YP1, where P is unary and ¢ is a first-order sentence over
{E, P} O

Exercise 2.4.8 Show that there is a formula 1 (z, y) of the form FPy, where
P is unary and ¢ is a first-order formula over {E, P}, expressing in finite
graphs that z and y are in the same connected component. In fact, as ¥ (z, y)
one can take a formula expressing that x = y or that there is a subset P (a
“path from z to y”) containing = and y such that both z and y have an edge
to exactly one member of P and every other member of P has an edge to
precisely two members of P. Conclude that VaVyd Py is not equivalent to a
sentence of the form 3P, ... 3P, x with unary Pi,..., P, and first-order x.

O

2.5 Gaifman’s Theorem

Fix a relational 7. Let A be a 7-structure. A subset M of A is l-scattered, if
the distance (in the Gaifman graph G(A)) between any two elements of M
exceeds [. Given r,n > 1 and a 7-formula (), it is easy to write down (see
below) a first-order sentence asserting that there is a 2r-scattered subset M
of cardinality at least n such that S(r,a) = ¥[a] for all @ € M." Gaifman’s
Theorem states that every first-order sentence is logically equivalent to a
boolean combination of such sentences. It thus is a further formulation of

7 Note that, due to 2r-scatteredness, the balls S(r,a) for a € M are pairwise
disjoint.
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the fact already present in Hanf’s Theorem that first-order sentences only
capture local properties of structures.

In order to give a more precise formulation we need some notations. First
note that there is a 7-formula 8, (x,y) such that for any 7-structure .4 and
a,b e A,

A= 0,(2,y) [a,b] iff d(a,b) <n

In fact, set 0p(z,y) := = = y and (denoting by a(R) the arity of R)

Opr1(z,y) = Op(z,y) V 32(0 \/ Juy ... Fug(ry
Rer
(Rul.‘.ua(R)/\ \/ (ui =z Auy =y))).
1<i,j<a(R)

From now on we write d(z,y) < n for 8,(x,y). For T =z, ...z, let

d@,y) <n = (dz,y) <n V...V dzm,y) <n).

Let k£ € N. With every 7-formula ¢ = ¢(Z,7) we associate a formula
%82 (F, 5) such that for any r-structure A, @ € A, and b € S(k,a),

AR PSEPEE i Ska) E el bl

To define ¢S} first replace any bound occurrence in ¢ of a variable in
by a new variable and then inductively relativize the quantifiers to S(k,T),

e.g.,
[Bz)’B) = F2(d(z,z) < k A 5FT)),
Call a sentence basic local if it has the form

3y ... 3z, /\ (d(zi,2;) > 2r A P52 (2,),

1<i<j<n
where 1y = () is a first-order formula. Note that for [ < k,
r: LpS(l,'z“) o [(pS(k,T)]S(l,'z') and ': (pS(l,E) o [QOS(Z,E)]S(k,T);

in particular, any sentence of the form

Bey .3z, N\ (di,zg) > 20 A 5B ()
1<i<i<n
with [ < r is logically equivalent to a basic local sentence.

A local sentence is a boolean combination of basic local sentences.

Theorem 2.5.1 (Gaifman’s Theorem) Ewvery first-order sentence is log-
ically equivalent to a local sentence.
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By 1.0.7 it suffices to show
Lemma 2.5.2 Suppose A and B satisfy the same basic local sentences. Then

A=B.

Proof. We show that A =, B for m € N. The argument parallels that for
Hanf’s Theorem. There the sets I; consisted of partial isomorphisms @ — b
such that length(@) < m — j and

(S(3%,a),a@) = (S(37,b),b).

Here we replace 2 by =) and take balls of radius 7/; the values g(0), g(1),. ..
of the function g can be defined by induction: g(j) only has to be greater than
some values which one gets in the course of the proof.

So let I; comprise all the partial isomorphisms @ > b from A to B such
that length(a) < m — j and

(S(77,@),a) =45 (S(77,b),b).

Again, in case length(a) = 0, we set (S(77,a),@) = 0 and agree that () =, () for
all k. In particular, @ — § € I,. We show (I;)j<m : A =, B. By symmetry,
we can restrict ourselves to the forth property. Thus suppose 0 < j < m, a €
Aambe Ii11; hence

(1) (8(7j+1,6),6) =g(+1) (S(?Hl,g),g).
We introduce a useful abbreviation: For d in a structure D let
. ) S$(79 %)
J(my . 9(J4) =
W@ = ¢ @)

that is, ¢ I (%) expresses that (S(77,d), d) =,(;) (S(79,%),Z) (recall that gplpﬁ
denotes the l-isomorphism type of d in D).
Case 1. a € S(2-7,0).

Then ‘ A
S(P* @) b= 3z(d(@,z) <2- 7 AL, (@2)).

2)
We assume that the quantifier rank of this formula is < g(j + 1) (this gives
us a first condition on the value of g(j + 1)). Hence by ( ),

ST | 32(d(b,2) < 2- 7 A ¢, (B2)),
so that for some b we have
(8(77,@a), aa) =4y (S(77,Db), bb).

Therefore Ga — bb € I i
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Case 2. a ¢ S(2-7,a@), ie., S(7,a)NS(7,a)=0.
For s > 1, the following formula 84(z1,...,2;) expresses that {z1,...,2s} is

a 4-77-scattered set of elements whose 77-ball has the same g(j)-isomorphism
type as that of a:

5 = N\ dana) >4-T A N wia).

1<i<k<s 1<1<s

Compare the cardinalities (e and i below) of maximal 4 - 7/-scattered sets in
S8(2-77,a) and in A, respectively, consisting of such elements. More precisely,
let e and ¢ be such that

(2) SLa) = 3oy . Fwe (A <y, d@ 2a) S 27 A 6
(3)  S(PtLa) 3 .. et 1(Ar<pcers d@ zr) <2 A Gest)
(4) .A l: 3:171 o Elxiéi, .A bé 3371 [N E|,Z'¢+16i+1;

if no such 7 exists, set 4 = oo (note that ¢ is bounded by the length of
@ (and hence by m), since any two elements of the same ball of radius
2 - 77 have a distance at most 4 - 77). Clearly, e < i. Moreover we claim
that the corresponding numbers ¢ and i determined in S(77%!,5) and B,
respectively, are the same: Concerning B, this holds since the sentences in
(4) are basic local up to logical equivalence. Concerning S(7/+1, b) note that
(S(77+1,0),@) =41 (S(7971,b),b) and that g(j + 1) is greater than the
quantifier rank of the sentences in (2) and (3) (this gives a second condition
on the value of g(j + 1); recall that e is bounded by m).

Case 2.1. e=1.

Then all elements satisfying v/ () have a distance
<4- 7427 =67 <7

from @ (in fact, if one such element o' satisfies d(@,a’) > 6-77 then a’ together
with e many witnesses for (2) show that ¢ > e + 1). In particular, this holds
for a. Since a ¢ S(2- 771! q),

S(FA) E 227 <d@,2) <6-7 A i(z) A $L@).
Then, by (1),
ST B) 3227 < d(b,2) <67 A $i(z) A ¢L(E))

(this gives us a third condition on the value of g(j +1)). Thus there is b with
2-7 < d(b,b) <67, and



34 2. The Ehrenfeucht-Fraissé Method

(5) (S(7.a), a) =¢(j) (S(7,b),b).
Moreover,
(6) (8(7,a),a)) =40) (S(?j,l_)),l_)).

Since the universes of the structures on the left sides of (5) and (6) are
disjoint, and the same applies to the right sides, we obtain from 2.3.10(b
that

(S(77,@a), @a) =4(;y (S(77,Bb), bb),

thus @a — bb € I;.
Case 2.2. e < i.

Then
B ,: E'.’L‘l e 3x€+1(55+1.

Hence there must be an element b in B such that
S, )nS(7,0) =0 and B ¥ (x)[b],

in particular, (S(77,a),a) =4 (S(7/,b),b). Now one can argue as at the end
of the preceding case. O

We close with an application of Gaifman’s Theorem which will be used
in Chapter 9. In the rest of this section all structures are assumed to be
finite. Recall that 7 is relational. Given 7-structures A and B, a mapping
h: A — B is a homomorphism if for all R € 7 and @ € A, Ra implies Rh(a).
The homomorphism is said to be strict if, in addition, forall R € T and @ € A
with RPh(a) there is € € A such that R4 and h(€) = h(a).

A sentence @ is preserved under (strict) homomorphisms if for all A, B and
any (strict) homomorphism h: A — B,

A= ¢ implies Bl .

Exercise 2.5.3 Every existential positive sentence, that is, every sentence
built up from atomic formulas with the connectives A and V, and the quan-
tifier 3, is preserved under homomorphisms. J

A model A of a sentence ¢ is said to be minimal if no proper substructure
is a model of ¢, that is, if

BCAand By imply B=A.

Exercise 2.5.4 For any ¢, every model of ¢ contains a minimal model, that
is, if B |= @ then there is A C B such that A is a minimal model of ¢ (recall
that we restrict ourselves to finite structures). O
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Theorem 2.5.5 If ¢ is preserved under strict homomorphisms then there
are I and m such that no minimal model of v contains an [-scattered subset
of cardinality m.

Proof. By Gaifman’s Theorem, p is logically equivalent to a boolean combi-

nation of basic local sentences @1, ..., k. Suppose
S(ri,es
pi=3w . 3, (N dzs,ze) > 20 AT (24)))
1<s<t<n;

Set r := max{r; | 1 <i <k}, :=2r and m := 2% + 1. Let A be a minimal
model of . We show that A contains no [-scattered subset of cardinality
m. By contradiction, suppose that M is [-scattered and ||M|| > m. For i =
1,...,k let p;(u) express “there is v such that d(u,v) < r; and z/)f(r"’v) (v)”.
By choice of m there are a,a’ € M such that a Za’ and fori =1,... k,

A= pila] it A pila].

Let B be the substructure of 4 with universe A\ {a}. Then B [& ¢, since A
is a minimal model of . )

Set n := max{n; | i = 1,...,k}, By := U, B (the disjoint union
of n copies of B), and A,, := AUB,,. The projection of B,, to B is a strict
homomorphism, therefore, By, [~ . Since the inclusion map of A to A, is
a strict homomorphism, too, and A |= ¢, we have A,, = ». We obtain the
desired contradiction, if we show that fori =1,...,k,

An E i i Bn i

Fix i. Suppose first that By, |= ;. Then, for some b € B, SP"(r;, b) = ¢4[b)].
View b as an element of B. Then the B,-part of A4, contains n; — even
n — copies of the element b, which are pairwise at infinite distance. Since
S8 (rs,b) = 84 (r4,b), we obtain A, = ¢;.

Assume now that A, = ¢;. Choose e € 4, such that §4n (ri,e) = ile].
If a ¢ SA(r,e) then S (r;,e) = SB(r;,e), and we argue as above. Finally,
assume that a € S4(r;,e). Then, A | p;i[a], and hence, A | pi[a’]. Thus
there is €/ € A such that d(e',a’) <r and §%(r;,e') E ¢;[€]. Now d(e',a) >
d(a’,a) — d(a',e') > | —r = 2r —r > r;. Therefore, a ¢ S*(ri,€'), and
hence SA(ri,e') =~ S$B(r;,e'). Therefore, B, contains n; copies of €', and
thus, B, | ¢;. O

Notes 2.5.6 As already mentioned in the introduction to this chapter, the
algebraic characterization of m-equivalence is due to Fraissé [43], its game-
theoretic version to Ehrenfeucht [33]. The j-isomorphism types were intro-
duced by Hintikka [85] in a different context. Theorem 2.4.1 is due to Hanf
[79], Theorem 2.5.1 to Gaifman [45], and Theorem 2.5.5 to Ajtal and Gure-
vich [7]. Further references for the results in this chapter are [5, 78, 39]. The
“local” character as it becomes apparent for first-order logic in the theorems
of Hanf and Gaifman is studied in [83, 115, 116, 69].
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In this section we show that for some fragments and extensions of first-order
logic there are corresponding variants of the Ehrenfeucht-Fraissé method.
First we deal with second-order logic, mainly with monadic second-order
logic, then with infinitary languages, and finally with restrictions of these
infinitary languages and of first-order language to fragments consisting of
formulas which only contain a fixed finite number of variables.

3.1 Second-Order Logic

Second-order logic, SO, is an extension of first-order logic which allows to
quantify over relations. In addition to the symbols of first-order logic, its al-
phabet contains, for cach n > 1, countably many n-ary relation (or predicate)
variables V", VJ*, . .. To denote relation variables we use letters X,Y,.... We
define the set of second-order formulas of vocabulary 7 to be the set generated
by the rules for first-order formulas extended by:

— If X is n-ary and t1,...,1, are terms then X¢;...t, is a formula.
— If ¢ is a formula and X is a relation variable then 3X ¢ is a formula.

The free occurrence of a variable or of a relation variable in a second-order
formula is defined in the obvious way and the notion of satisfaction is ex-

tended canonically. Then, given ¢ = @(z1,...,2n, Y1, ..., Ys) with free (in-
dividual and relation) variables among xy,...,%n,Y1,...,Ys, a T-structure
A, elements ay,...,a, € A, and relations Ry,..., Ry over A of arities corre-

sponding to Y7,...,Y}, respectively,
A IZ gp[al,...,an,Rl,...,Rk]

means that ay,...,a, together with Ry,..., Ry satisfy ¢ in A.

For any 7 the class EVEN[r] of finite 7-structures of even cardinality is
axiomatizable in second-order logic (but not in first-order logic, as we saw in
2.3.5). In fact, EVEN[7] = Mod(y), where @ is a sentence expressing “there
is a binary relation which is an equivalence relation having only equivalence
classes with exactly two elements”, e.g.,
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AX (VzXzx A VeVy(Xzy — Xyz) A VaVyVz(Xzy A Xyz) = Xzz)
AVzI=y(Xay A y # 1)),

We are mainly interested in the fragment MSO of second-order logic known as
monadic second-order logic. In formulas of MSO only unary relation variables
(“set variables”) are allowed. We write A =MS© Bif 4 and B satisfy the same
monadic second-order sentences of quantifier rank < m (the quantifier rank
is the maximal number of nested first-order and second-order quantifiers).

As in first-order logic, =MS© can be characterized by an Ehrenfeucht-
Fraissé game, MSO-G,,,(A, B). The rules are the same as in the first-order
Ehrenfeucht-Fraissé game, but now in every move the spoiler can decide
whether to make a point move or a set move. The point moves are as
the moves in the first-order case. In a set move the spoiler chooses a sub-
set P C A or @ C B, and then the duplicator answers by a subset
@ € B or P C A, respectively. After m moves, elements ay,...,a, and
subsets Py,...,P; in A, and corresponding elements bq,...,b, and subsets
Qi,...,Qs in B (with m = r + s) have been chosen. The duplicator wins if

@ b€ Part((A,Pr,...,P), (B,Q1,...,Q)).
Theorem 3.1.1 A =M5° B iff the duplicator wins MSO-G.,, (A, B).

The following exercise leads to a proof of this theorem (along the lines of
the proof of the corresponding result 2.2.8). O

Exercise 3.1.2 Given A, (= a; ...a,) in 4, and P (= P ... P;) a sequence
of subsets of A, define the formulas wé 5 similar to the j-isomorphism type

@%, but now taking into account also the second-order set quantifiers:

1,0 —
wE,F T

Aolvr, ..o v, Vi, .., Vi) | @ atomic or negated atomic, A | ¢[a, P}}

J+1
dja,ﬁ T
., J i J J
aé\A HUTHQ/JE“P AVor a\e/A ¢a“’ﬁ " P/C\A Werilgpp AVt P\C/A Vapr

Show the equivalence of

(i) The duplicator wins MSO-G,,((A, P,a), (B, Q,b));

() B F v,

(iii) g,ﬁ satisfies in 4 the same formulas of MSO of quantifier rank < m as

b,Q in B. O

As in first-order logic (compare 2.2.6) or by a direct proof, one easily gets

the following result which we need later.

Proposition 3.1.3 For a fived vocabulary and m € N, the relation =M5C s

an equivalence relation with finitely many equivalence classes. 0O
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We give an application of the gametheoretic characterization.

Proposition 3.1.4 The disjoint union and the ordered sum' preserve the
relation =M5C | i.e., for relational T we have:

(a) If .A1 E%SO Bl and ./42 E%SO BQ then ./410./42 E%SO 81082.
(b) If ./41 =MSsO Bi and A, E%SO By then A1 < Az =MS0 B < Bs.

m —m

Proof. The proofs for (a) and (b) proceed in the same way. So let x € {U, <1}.

Assume
.Al E%SO Bl and ./42 E%SO Bg.

By hypothesis and the last theorem there are winning strategies S; and Ss
for the duplicator in the games MSO-G,, (A1, B1) and MSO-G,,,(As, Bs), re-
spectively. Then the following represents a winning strategy for the duplicator
in MSO-G,,(A; * Ag, By * B2) (when describing it we use moves of plays in
MSO-Gp, (A1, B1) and MSO-G,, (A2, B2)). Suppose first that the i-th move
of the spoiler is a point move where he selects, say, a € A; * Ay. Then the
duplicator gets his answer by applying Sy if a € Ay, and Sy if a € As. Now
assume that the spoiler selects, say, P C A; U Ay. Set P, := PN A; and
Py := PN As. Let (1 and Q2 be the selections of the duplicator according to
Sy and Ss, respectively. Then, in the game MSO-G,, (A1 * A2, By * Bs), the
duplicator chooses Q1 U Q-. O

An easy induction using equivalences such as
= -3Xp o VX -, E(pVvVYY) & VY (pVey) ilY isnot free in g,

shows that each (M)SO-formula is logically equivalent to an (M)SO-formula
in prenex normal form, that is, to a formula of the form

Qlal ... QSCYS?,[J,

where Q1,...,Q,s € {¥v,3}, and where ay,...,a; are first-order or second-
order variables and v is quantifier-free. Moreover, since

l: dxQyoy ... Qsas'gb — EXQlozl - Qsas(ﬂzlmXac /\VT(X.’L' — ¢)),
EVzQia...Qsast < YXQia1...Qas(F z Xz — Va(Xz — 7)),

every {(M)SO-formula is logically equivalent to one in prenex normal form in
which each second-order quantifier precedes all first-order quantifiers. Such a
formula is called (M)}, if the string of second-order quantifiers consists of
n consecutive blocks, where in each block all quantifiers are of the same type
(i.e., all universal or all existential), adjacent blocks contain quantifiers of
different type, and the first block is existential. (M)II}-formulas are defined
in the same way, but now we require that the first block consists of universal

quantifiers.

! Compare 1.A3 for the definition of disjoint union and ordered sum.
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In particular, 3XAYVZVzIye with quantifier-free ¢ is a 3i-formula.
Clearly, the negation of a X.1-formula is logically equivalent to a II!-formula,
and the negation of a II}-formula to a ¥} -formula. Moreover, denoting by
AL the set of formulas that are logically equivalent to both a ! -formula and
a [T} -formula, we have up to logical equivalence

< < S
! m

which can easily be verified by adding dummy variables. The same inclusions
hold for the monadic classes.

It can be shown that for arbitrary models all the inclusions above are
proper (this also holds for MSO). The question to what extent the hierarchies
are proper in the finite is related to important questions of complexity theory
(cf. Chapter 7). We have seen in section 2.4 that the class of finite, connected
graphs is MII} -axiomatizable but not M1 -axiomatizable. Thus, in the finite,
M1 # MII.

3.2 Infinitary Logic: The Logics Ly, and L,

In recent years even infinitary logics have turned out to be relevant in the
context of finite model theory. In fact, they contain some of the logics impor-
tant in descriptive complexity theory (see Chapter 7), but — in contrast to
them — their expressive power allows a manageable characterization in terms
of games, similar to that of first-order logic. In this and the next section we
introduce these logics and deal with their gametheoretic aspects.

The infinitary logics L, and L, allow arbitrary and countable dis-
junctions (and hence conjunctions), respectively. More formally: Let 7 be a
vocabulary. The class of L, ~formulas over 7 is given by the following clauses:

— it contains all atomic first-order formulas over 7

— if ¢ is a formula then so is @

— if @ is a formula and z a variable then Jxy is a formula
— if ¥ is a set of formulas then ¥ is a formula.

For L, we replace the last clause by
— if ¥ is a countable set of formulas then \/ ¥ is a formula.

The semantics is a direct extension of the semantics of first-order logic with
V¥ being interpreted as the disjunction over all formulas in ¥; hence, ne-
glecting the interpretation of the free variables,

AI:\/W iff for some ¢ € ¥, A E .
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Weset AW :==\/{= |y € ¥}. Then A ¥ is interpreted as the conjunction
over all formulas in @. By identifying (¢ V ¢) with \/{p, ¥} we see that Lo,
and L,,. are extensions of first-order logic.

Examples 3.2.1 (a) For any 7, the models of the L,,,,-sentence

\/{(p:n | n > 1}7

where @, is a first-order sentence expressing that the universe has cardinal-
ity n, are the finite 7-structures. The L, ,-sentence \/{¢=2, | n > 1} axiom-
atizes the class EVEN[7]. Similarly, if M is any nonempty set of positive nat-
ural numbers, then the class of models of the L, ,-sentence \/{o— | k € M}
corresponds to the query “||A|| € M?”. In particular, we see that nonrecur-
sive queries are L, -definable. We get even more:

(b) Any class of finite structures is axiomatizable in L,,,,,. In fact, let K be a
class of finite structures. Choose, using 2.1.2; a set @ of first-order sentences
such that K = Mod(®). Then K = Mod(y) for the L, ,-sentence ¢ := A &.

(¢) “Connectivity” is a property of graphs expressible in L, by

VaVy(—x =y — \/{@n(wyﬂ) | n>1}),

where @, (z,y) is a first-order formula saying that there is a path from z to
y of length n,

pn(z,y) = 3zp...32(zo0 =2 A zn =9y ANEzgz1 A...A Ezp_12,). O

Loow-sentences are Lo, -formulas without free variables. While L., -formulas
may have infinitely many free variables (\/{—-v; = v; | 1 <4 < j} is an
example), it can easily be seen that subformulas of L..,-sentences only have
finitely many free variables. In the following we restrict ourselves to L~
formulas with only finitely many free variables.

The next two propositions — and in particular the proof of the first one —
show that we need not more than L, in the context of finite model theory,
although it has become popular — and we follow this tradition — to mainly
consider Loy .

Proposition 3.2.2 (a) In the finile, every Lo, -formula ¢(T) is equivalent
to an L, -formula ¢(T).

(b) Assume A and B are finite. For every Lo, -formula o(F) there is an
FO-formula ¢(T) such that

AEVE(p(®) & p(®) and B VE(p(@)  $(@).

In both cases, (a) and (b), the formula v can be chosen such that free(y)) C
free(p) and that every variable occurring in ¢ (free or bound) occurs in .
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Proof. The proofl of (a) and (b) is by induction over the rules for Loo,-
formulas. The translation procedure preserves the “structure” of formulas
and only replaces infinitary disjunctions by countable ones (by finite ones in
(b)). In the main step suppose that

0@ = \{w:(@ |iel}

is an Lo, -formula. For each finite structure C with universe {1,2,...,||C||}
(for C € {A,B} in (b)) and each ¢ € C, if there exists an i € I such that
C |= ¢;[é], choose such an i. Let I be the set of i’s chosen in this way. Then
Iy is countable (finite in (b)) and \/{;(Z) | i € I} and \/{p:(Z) | i € Iy} are
equivalent in the finite (in 4 and B). O

Since every finite structure can be characterized in first-order logic, we
obtain the following improvement of part (a) of the preceding proposition (cf.
3.2.1(b)):

Proposition 3.2.3 In the finite, every Loo,-formula o(T) is equivalent to a
countable disjunction — and hence to a countable conjunction - of first-order
formulas. In fact, in the finite, ¢(T) is equivalent to

Ve (@) | A finite, a € 4, A [ ¢[a]}.

Proof. For simplicity we restrict ourselves to sentences. Let 5 be a finite
structure. If B | ¢ then w‘llgB”H is a member of the disjunction which,
therefore, is satisfied by B. Conversely, if B satisfies the disjunction, then for
some finite 4 with A |= ¢ we have B | @&A”H. Therefore by 2.2.10, A = 5;
hence, B |= . O

We say that A and B are Loow-equivalent, A=Y~ B, if A and B satisfy the
same Lo, -sentences. In order to characterize ==+, one needs Ehrenfeucht
games with infinitely many moves.

Definition 3.2.4 Let A and B be structures, @ € A%, and b € B®. The game
Goo(A,@,B,b) is the same as the game G,,(A,@,B,b) up to the fact that
now each player has to make infinitely many moves. Thus, in the course of a
play of Goo (A, @, B, b), elements e;, ez,...in A and fi, fs,. .. in B are chosen.
The duplicator wins the play if Ge; ...e; = bfy ... fi € Part(A,B) for all i,
and the spoiler wins if @e;...e; — bf;...fi; & Part(A,B) for some i. The
duplicator wins G (A, @, B,b) if he has a winning strategy. O

Immediately from the definition we get:

Lemma 3.2.5 Suppose that the duplicator wins G (A,@, B,b). Then
(a) @+ b€ Part(A4,B).
(b) For a € A there is b € B such that the duplicator wins G (A,a, B, bb).
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(c) For b€ B there is a € A such that the duplicator wins Gu(A,da, B, bb).
[l

Since we want to give the Ehrenfeucht-Fraissé type characterization of
=beoo in its different forms we define:

Definition 3.2.6 (a) A4 and B are said to be partially isomorphic, written
A =00 B, if there is a nonempty set I of partial isomorphisms from A to
B with the back and forth properties (that is, for every p € I and every
a € A (b€ B) thereis ¢ € I with ¢ D p and a € do(q) (b € rg(q))). We then
write I : 4 500 B.

(b) Weo (A, B) =
{a—b|seN,ac A% b€ B, the duplicator wins G (A,a, B,b)}

is the set of winning positions for the duplicator. O
Loow-equivalence and the notions just introduced are intimately related:

Theorem 3.2.7 For structures A and B, @ € A®, and b € B® the following
are equivalent:

(i) The duplicator wins Go (A, a, B, b).

(i) @+ b€ Woo(A,B) and W (A, B) : A =art B.

(iii) There is a set I with a — bel such thatI: A & art B.
(

iv) @ and b satisfy the same formulas of Loo, in A and B, respectively, that
is, if o(x1,...,25) s a formula of Lo, then

AlEylal W BE b

Proof. For (i) = (ii) see the preceding lemma; clearly (ii) implies (iii). For
(iii) = (i) note that a set I with a—b € [T and I : A ~oart B can be
viewed as a winning strategy for the duplicator for the game G (A, @, B, b).
Hence, it suffices to show the equivalence of (iii) and (iv). Let I be as in
(iii). By (transfinite) induction on the quantifier rank of the L., -formula
w(x1,...,Ts) Wwe prove

(%) AlEvle it Bl elf]

for any e1...es = f1... fs € I. The case of quantifier rank 0 is handled by
part (c) of 2.2.2. For arbitrary quantifier rank note that the class of formulas
satisfying () contains the atomic formulas and is closed under — and V/.
Suppose that p(z1,...,zs) = Iy (z1,...,z,,y). Assume, for example, that
A= gler, ..., es]. Then thereis a € A such that A = ¢[e1,...,es,a]. By the
forth property of I, there is b € B such that ey ...ega+ f1... fsb € I. Since
qr(y) < gr(y), the induction hypothesis yields B = ¥[f1,..., fs, b]; hence,
B l: (p[fla-”)fs]'
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Suppose now that (iv) holds, and let I be the set of all partial isomor-
phisms e;...e, =+ fi...f. (with r > 0) such that for all L.,,-formulas
e(xy,..., ), _

Al i BRI
By (iv), @~ b € I. We show that I has the back and forth properties. So,
let ey...ep, = f1...fr € I and a € I. For each b € B, if there is a formula
o(z1, ..., 2p,2) of Ly, such that

Af= p(@,z)fea] and B = —o(z,2)[T,

let (T, z) be such a formula; otherwise, set ¢p(Z,z) := =z = z. Since

A E 32 AMys | b € B}[e], we have B = 3z A{py | b € B}[f]. Hence, there
is o' € B such that B = A{ws | b € B}[ft']. Using the definition of ¢, one
ecasily sees that ea and fb' satisfy the same formulas of L., in A and B,

respectively, and hence, €a — fb' € I. The back property is proven similarly.

[
Since Weo (A, B) Z 0 if § — 0 € W (A, B) (cf. 3.2.7), we obtain the
Corollary 3.2.8 For A and B the following are equivalent.
(i) The duplicator wins Goo (A, B). (i) Weo(A,B) 1 A Zpere B.
(iii) A Zpart B. (iv) A =bt=- B, O

To give some applications we first show:

Lemma 3.2.9 Let A and B be countable.
(a) If A =par B then A= B.

(b) If I - A=par B and po € I then py can be extended to an isomorphism
from A onto B.

Proof. Let A = {a1,a2,...} and B = {b,bs,...}. It suffices to show (b).
Suppose I : A =p,+ B and py € I. By repeated application of the back
and forth properties, one obtains py,p2,... in I such that pp € p; C ...
and such that a; € do(p1),b1 € rg(p2),as € do(ps),.... Then |, ~opn is an
isomorphism from 4 onto B5. a O

Corollary 3.2.10 If A and B are countable and L, -equivalent then they
are isomorphic.

Proof. The claim follows immediately from 3.2.8 and 3.2.9(a). a

The following example will be of importance in the next chapter.

Example 3.2.11 Let 7 be relational. For r > 0 let A, be the set

Aypiq = {e(v1,..., 00, vp11) | ¢ has the form RZ, where R € 7 and
where v,+1 occurs in T}.
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For a subset @ of A, the sentence yg :=2

Yoy .. Vo, ( /\ v; # vj = Fue( /\ Vi # Upr1 A /\50/\ /\ 1))

1<i<j<r 1<i<r ped pEPe

where ¢ := A, ;1\ P, is called an extension aziom, more preciscly, an (r+1)-
extension ariom. The set Tianq of all extension axioms gives the random
structure theory.® Clearly,

— every model of Ti,pq is infinite.

The extension axioms in Tyunq guarantee for any models 4 and B of Tyanq
that the set

I = {@—blacA beB, aﬂd(ﬂgt,a:‘/’%z}

has the back and forth properties. For a proof let @ — b € I, where @ =
ai...a, and aq,...,a, can be assumed to be distinct, and let, say, a, ;1 be

in A\ {a1,...,ar}. Set & = {p(v1,...,vr1) | ® € Ariy, A | @laa,11]}
As B = xg, there is an element b,..; € B such that @%,Eb,,ﬂ = 99?4,6m+1’

that is, @a,,1 + bb, 1 € I. Moreover, since 7 is relational, the empty partial

isomorphism is in /. Hence, [ : A 22,4 B. By 3.2.8 we get:

— Any two models of Tiang are Looo-equivalent and thus, for each L,
sentence ¢, Trand E ¢ OF Trand = .

Finally we show

— Tiand has a countable model and hence by 3.2.10, an (up to isomorphism)

unique countable model R, the so-called infinite random structure.

In fact, let (an)n>0 be an enumeration of all pairs (77, x ), where T is a tuple
of distinct natural numbers and x is an (r + 1)-extension axiom, where r :=
length(7); moreover suppose that for a,, = (7, x) all entries of T are not
greater than n. By induction on n we define structures A4,, with

An:{(),...,n} and Aog.A] QAZQ

such that A := v, An is a model of Tiana: Let Ao = (Ao, (0)rer) (each
relation symbol is interpreted by the empty set). Suppose A,, has been defined
and a,, = (my,...,mp, x) with x = xg. Define A,, ;1 with universe A, such
that A, C A,+1 and such that for ¢ € A,y

An+l ’:W[ml""ym’l”an_l_l] iff @6515

(note that v,y occurs in every formula of A,y;). This ensures that A :=
U,>0 Ar is a model of x. O

% In case r = 0 this sentence reduces to In(Nyes PN Apese 70)-
® The name will become clear in Chapter 4.
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We close with a further application of 3.2.8. For a sentence ¢ let the
spectrum Spec(p) of ¢ be the set

Spec(p) == {m > 1| there is A = ¢ with [|A|| = m}.

Proposition 3.2.12 For any first-order sentence ¢ at least one of Spec(p)
or Spec(—y) is cofinite (i.e., for some ng,{n | ng < n} C Spec(p) or {n |
no < n} C Spec(—p).

Proof. Let @ be the set of the sentences
(i) ¢>m form >1

(iiy VZRZT for Rer

(iii) e=d for ¢,d € 7.

Clearly, & is satisfiable and any two models 4 and B of ¢ are partially
isomorphic via I := {p € Part(A4,B) | do(p) finite}, and hence by 3.2.8,
elementarily equivalent. Therefore, given a first-order sentence y, we have
P = por =y, say, ? = ¢. By the compactness theorem there is a finite
Py C & such that &y |= ¢. Let ng be larger than any m such that @>,, is in
Py. Then ¢ and hence, ¢ has a model of cardinality n for each n > ng. O

Exercise 3.2.13 Prove the previous result for “vocabularies” containing
function symbols. Hint: Compare the passage from such a vocabulary to a
function-free one given in 1.D. For any new relation symbol F' corresponding
to some f € 7, in (ii) above take the sentence VZ(3='xFTz A FTz;) instead
of VZz FZx. C

Exercise 3.2.14 For any A and B we have

Show that in case A or B is finite there is an mg < 1 + min{||A][, [|B||} such
that
WolA,B) D ... D> Wp(A,B) = W (A, B). g

3.3 The Logics FO? and LJ_

In first-order logic FO, every finite structure A can be characterized up to
isomorphism by a first-order sentence ¢ 4 which, in general, needs ||4]| + 1
variables (compare, for example, the proof of 2.1.1). Hence, an arbitrary class
K of finite structures can be axiomatized in Ly, by the sentence

Vi{eal Ae K}

which, in general, contains infinitely many variables. Since every class of fi-
nite structures is axiomatizable in it, Lo, is too powerful in the finite to
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yield new general principles. The observation above motivates the restriction
to formulas of Ly, containing only finitely many variables. In the present
section we shall see that this approach really leads to logics which are inter-
esting from the perspective of finite model theory.

Fix s > 1. We denote by L2_  and FO? the fragments of L., and FO, respec-
tively, containing only formulas, whose free and bound variables are among
v1,...,Vs. Moreover, we set

LY, = | L

s>1

Whereas FO = J,-., FO?, the formula \/{¢—y | n > 1} belongs to L., but
not to LY. -

Let x = v,y = ve, and z = vz in examples.

Examples 3.3.1 (a) Let 7 = {<}. There are FO’-formulas 1, (z) and X,
such that for orderings A, a € A, and n > 0,

A |E ¥n]a] iff a is the n-th element of <4,

and in case n > 1,
AExn it (Al =n.
In fact, define inductively
Yo(z) == Vy—y <z, Pnr1() := Vy(y <z &\ (@ =y Adi(2)),
i<n
and set xp = Jxtvp_1(x) A "3zep, ().
(b) For each n > 1 there is an FO?-formula ¢, (z, y) that in digraphs expresses
that there is a path of length at most n from x to y. In fact, let

pi(z,y) = Euxy,
eni1(z,y) = wnl@,y) V I2(Ezy AJy(y = 2 A pn(z,y)))-
Concerning the quantifier rank we can do better than in v, and ¢,: Let ¢ be

an LS -formula and 7 a permutation of 1, ..., s. By simultaneously replacing
both the free and the bound occurrences of vi,...,vs by vr1y,...,Vr(s) One

obtains a formula
Un(1) -+ Ux(s)
@ ( V1 ... Vg ) ’

AI:@( Un(1) oo Un(s) )[a] i AE glan),. s an).

vy ... Vg

Clearly,
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Now in the preceding examples we can replace 3, and ¢, by the formulas
! and ¢, of quantifier rank < n + 1, where

x
Yo = Yo, Y = Vyly <z Vignwg ( v ))>

zy
)

T2y
TYz

!

¥t

01, Pney = @V IZ(Ezy Al (

We write A =° B, A =V~«B, and A =, B to express that A and B satisfy
the same sentences in FO?, in L, and in FO® of quantifier rank < m,
respectively.

In view of 3.2.2(b) together with the last remark of 3.2.2 we have

Proposition 3.3.2 Assume A and B are finite. For every LS -formula ¢
there is an FO®-formula ¢ with free(v)) C free(y) such that

AEVr . Vo (p & ¢) and BEVr .. V(e < ¢).
Corollary 3.3.3 If A and B are finite then
A=*B  implies A ="euB.
Proof. Given an L -sentence ¢, choose ¢ according to the preceding propo-

sition. Then
AEe i A9y
if BE®y
iff Bl=e.
O

Clearly, if ¢ € FO? (or, ¢ € L) then every subformula of ¢ contains at
most s free variables (namely, at most vy, ..., vs). This property characterizes
the formulas of FO? up to logical equivalence:

Proposition 3.3.4 Assumes > 1. If every subformula of p(v1,...,vs) € FO
has at most s free variables, then o is logically equivalent to a formula of FO®.
The statement remains true, if we replace FO and FO® by Loo, and L2,
respectively.

Proof. By induction (on the quantifier rank) we associate with every formula
@(v1, ... ,vs) all of whose subformulas have at most s free variables, a formula
" with

E oo e, free(p) =free(p™), ¢" € FO°.
For atomic ¢ set ¢* := ¢, for ¢ = —x and ¢ = (x1 V x2) set ¢* := —-x* and
w* = (xT V x3), respectively. Now, let ¢ = Jyy. Then,

(%) free(x) C {v1,...,vs,y} and |/free(x)|] < s.
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If y ¢ free(y) then x = x(v1,...,vs) and x* is defined by induction hy-

pothesis. We set ¢* := x*. If y € free(x) and y € {vy,...,vs} then, again,

x = x(v1,...,vs) and x* is deflined, and we set ¢* := Jyx*. Finally sup-

pose y € free(x) and y ¢ {vi,...,vs}. Then, by (%), there is an ¢ such
Y

that v; ¢ free(x). Set xo := X< v?j . (as in the preceding example,
3

Xo ‘= X < Ugj Z > is obtained from y by simultaneously replacing all oc-
1

currences of y and v; by v; and y, respectively). Then, = ¢ < Ju;yo,

free(xo) C {v1,...,vs}, and every subformula of xo has at most s free vari-

ables. Thus, x§ is defined and we can set ¢* := Jv;x§.

3.3.1 Pebble Games

Our next aim is an Ehrenfeucht-Fraissé type characterization of the equiva-
lence of structures in FO® and in LZ_,. To motivate the intended games we
look at v = zdy(z < y AJry < z) and the orderings A := ({a,b}, <) and
B:= ({c,d, e}, <) where a < band ¢ < d < e. Since A |5 ~¢ and B | ¢, the
spoiler has a winning strategy in Gs(A, B). How is the fact that ¢ only con-
tains two variables reflected in the course of a play? A play won by the spoiler
is given in the following table, where his selections have been underlined.

A|B

first move a | c

second move b | d
third move 7| e

There is no third move of the duplicator leading to a partial isomorphism.
Apparently, the strategy of the spoiler consists in choosing, for the first two
quantifiers Jz3y, the elements ¢ for x and d for y in B in order to have:

BE(z<yAdry < x)ed].

The only selections for the duplicator leading to a partial isomorphism are
a for z and b for y. Now, for the second quantifier 3z, the spoiler selects in
B the element e, thereby getting a witness for B = Jzy < z[d]. Obviously
the old value ¢ for z is no longer relevant. Therefore, the play above may be
represented more informatively by

first move second move third move
A B A B A B
© x-box a C a c ? e
y-box * * b d b d

where the z-boxes and the y-boxes always contain the actual value for z and
1y, respectively, and * stands for an empty box.
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This example motivates how to adapt the Ehrenfeucht-Fraissé method
to our situation: As always, fix a vocabulary 7. By convention, * will not
belong (o the universe of any structure. For @ € (AU {x})*,@ = d1...as,
let supp(@) := {i | a; € A} be the support of @, and if a € A, let @% denote
a1...G; 100541 ... 5. Fora € (AU{x})* and b € (BU{*})* we say that @ — b
is an s-partial isomorphism from A to B, if supp(a@) = supp(b) and @ b is
a partial isomorphism from A to B, where @ and 7 are the subsequences of
@ and b with indices in the support.

Let A and B be structures, @ € (A U {*})*,b € (B U {x})® with
supp(a) = supp(b). In the example above we had available a box for each
relevant variable. It has become customary to replace the boxes by pebbles.
Thus, in the pebble game G&,(A,@, B,b) we have s pebbles aq,...,a, for A
and s pebbles g1, .., 0, for B. Initially, «; is placed on a; if a; € A, and off
the board if a; = %, and similarly, 3; is placed on b; € B or off the board.
Each play consists of m moves. In his j-th move, the spoiler selects a struc-
ture, A or B, and a pebble for this structure (being off the board or already
placed on an element). If he selects 4 and «;, he places a; on some element
of A, and then the duplicator places 5; on some element of B. If the spoiler
selects B and 3;, he places §; on an element of B and the duplicator places a;
on some element of A. (Note that there may be several pebbles on the same
element.)

The duplicator wins the game if for each j < m we have that € — f is
an s-partial isomorphism, where € = e, ...e, are the elements marked by
ay, ..., after the j-th move (e; = * in case «; is off the board) and where
f = fi...fs are the corresponding values given by fi,...,8s. For j = 0 this
means that @ — b is an s-partial isomorphism.

The pebble game G (A,a,B,b) with infinitely many moves is defined
similarly. We use G2 (A, B) as abbreviation for G (A, *...%,B,*...%) and
G (A, B) for G2 (A, *...%, B, %...%).

The following theorem shows that the logics and the games fit together.
Here and later, when writing A = ¢[a] for @ € (AU {*})® we tacitly assume
that the free variables of ¢ have indices in supp(@) (that is, ¢ € supp(a)
whenever v; € free(y)).

Theorem 3.3.5 For structures A and B, and for @ € (AU {*})* and b €

(B U {*})® with supp(a) = supp(b) the following hold:

(a) @ satisfies in A the same FO®-formulas of quantifier rank < m as binB
iff the duplicator wins G5,(A,a, B, b).

(b) @ satisfies in A the same LY, -formulas as b in B iff the duplicator wins
G, (A,a,B,b).

In particular,

(c) A= B iff the duplicator wins G5 (A, B).

(d) A =V>uB iff the duplicator wins G5 (A,B).
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Before proving the theorem we give some examples, whose claims are
easily verified.

Examples 3.3.6 (a) Let 7 = 0 and let A4 and B be 7-structures (i.e.,
sets) I |A|l, [|1B]] > s then the duplicator wins G2 (A, B) (or, equivalently,
A =L%. B). Moreover, for arbitrary A and B, the duplicator wins G2 (A, B)
ifl he wins G5(A, B).

(b) For I > 3, let G; and G;UG, be the graphs consisting of one and two
cycles, respectively, of length | 4+ 1 (cf. 2.3.8). Then the duplicator wins
G2 (G;,G,UG,) and hence by the theorem, §; =Y G,UG;. Note that
G #£l%w GUG,, since - in the notations of Example 3.3.1(b) — the sen-

tence VaVy(z = y V V 50 on(z,y)) of LE, expresses connectivity. In fact,
the spoiler wins G2_(G;, G;UG)). O

Further examples are contained in the following exercises.

Exercise 3.3.7 (a) Assume that the relation symbols in 7 = {<,...} are at
most binary. Show that for finite ordered structures A and B,

A=B iff the duplicator wins GZ (A, B).

(b) For m > s show that the duplicator wins G2 (A, B) iff he wins the game
G: (A, B) with the additional condition that in the first s moves distinct
pebbles have to be chosen (so that after s moves all pebbles are placed on
elements).

(c) Suppose that 7 is relational and all its relation symbols are of arity < s.
Assume that the duplicator wins G5, (A, B) and that |A]| = ||B|| < s+ 1.
Show that A4 = B. O

A proof of Theorem 3.3.5 can easily be obtained from the corresponding
proofs for FO and Ly,: We introduce for FO® and L¢_,, the further notions
related to the Ehrenfeucht-Fraissé method (namely, the back and forth prop-
erties, the m-isomorphism types, and the set of winning positions), and give
the corresponding statements 3.3.9 and 3.3.10 which imply Theorem 3.3.5.

Definition 3.3.8 Structures A and B are s-m-isomorphic, A =, B, iff there
is a sequence (I;);<m of nonempty sets of s-partial isomorphisms with the
following properties:

IN

(s-forth property) For j < m, @ — b € Ly, 1 < i s,anda € A

there is b € B such that a2 — b% € I;.
(s-back property) For j < m, @ — b € I, 1 <40 <8
there is @ € A such that a2 — b € I;.

We then write (I;)j<m : A =5 B.
The notions s-partially zsomorphzc, A= o Band I : A=, B are
defined similarly. O

andb € B
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For m € N, any structure A, and @ € (A U {*})%, the s-m-isomorphism
type Yt (= Y 5) of @in A is given by:

YD) = /\{d) | ¢ atomic or negated atomic, and A = ¥[a]}

(recall that when writing A | ¢[a] we assume that the free variables of
have indices in supp(@)),

GEPE = wen NN o ave o).

1<i<s a€A a€A
In particular, 97 := 4" , is an FO®-sentence of quantifier rank m.

Finally we introduce the sets W3 (A, B) and W2 (A, B) of s-partial isomor-
phisms corresponding to winning positions in the respective games,

WS (A,B) := {@w b| the duplicator wins G2 (A,a,B,b)},
W2 (A,B) := {aw b| the duplicator wins G2 (A,a,B,b)}.

Now the following two theorems can be proven completely parallel to those
for FO and Ly, .

Theorem 3.3.9 Let @ € (AU {*})* and b € (B U {*})* with supp(a) =
supp(b).
(a) The following are equivalent:

(i) The duplicator wins G5 (A,

a
(ii) @~ be W5 (A, B) and (W;(

(iii) There is (I;)j<m with @~ b
(iv) B = g,
(v) @ satisfies in A the same formulas of FO® of quantifier rank < m
as b in B.
(b) The following are equivalent: B
(1) The duplicator wins G5 (A, @, B,b).
(i) @ be WL (A, B) and WS (A, B): A=5,, B.
(iii) There is I with @~ b€ I such that T : A= . B.

(iv) @ satisfies in A the same formulas of LS., as b in B. d

,B,b).
A B))j<m : A=, B.
€ I, such that (I;)j<m + A=, B.

Corollary 3.3.10 (a) The following are equivalent:
(i) The duplicator wins G;,(A,B). (i) (WF(A,B))j<m : A=, B.
(iii) A =5, B. (iv) By
(v) A=: B.
(b) The following are equivalent:
()  The duplicator wins G5, (A, B). (i) WL (A,B): A=, , B.
(iii) A=, B. v (iv) A =leeB. O
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Example 3.3.11 For s > 1 let ¢; be the conjunction of the finitely many
r-extension axioms with r < s (cf. 3.2.11). Clearly, ¢, € FO®. We have:

— Every model of ¢, has at least s elements.
— Every two models 4 and B of ¢, are s-partially isomorphic.

(The last statement is proved as the corresponding one in 3.2.11.) Therefore,
by the corollary, any two models of ¢, are LI -equivalent, and we get:

— For every Lf_ -sentence ¢, either €5 = ¢ or €5 = -, a

The next result provides us with an algebraic tool to show that a class of
finite structures is not axiomatizable in L, or in LY (= U, LS..)-

Theorem 3.3.12 Let K be a class of finite structures.

(a) For s > 1 the following are equivalent:
(i) K is not ariomatizable in LS .

(ii) There are finite structures A and B such that
A€eK, B¢K, and A=}, B.

(b) The following are equivalent:
(1) K is not ariomatizable in LY.

(ii) For every s > 1 there are finite structures A and B such that
A€eK, B¢K, and A=, B.

Proof. Clearly, (b) follows from (a). To show (ii) = (i) in (a), suppose by
contradiction, that K = Mod(yp) for some ¢ € LZ_ . Choose A and B as given
by (ii). Then A = ¢ (since A € K), B [ ¢ (since B ¢ K), and A =V~ B
(since A =, B), a contradiction.

Conversely, suppose that the condition in (ii) is not satisfied. Then for all

finite 4 and B,
(%) Ac Kand A=LxwB imply BeK.

We show that K = Mod(yp) for the L -sentence ¢ := V ,cx Apnso 7%
Clearly, K C Mod(yp), since B |= A,,~, %% holds for any B. To obtain the
inclusion Mod(y) C K, assume that B is a finite model of . Then, for some
A € K and all m > 0, we have B = 4" and hence, A =}, B. Thus, A =° B.
By 3.3.3, we get A === B, and hence by (*), we obtain B € K. O

The corresponding nonaxiomatizability result for FO® is part (a) of Ex-
ercise 3.3.14 below.

Example 3.3.13 Let 7 be the empty vocabulary. The class EVEN][7] is not
LY -axiomatizable, since for s > 1 and structures A and B with ||4|| = s
and || B|| = s + 1, we have A € EVEN[7] iff B ¢ EVEN[7]; but A ="« B by
3.3.6(a). Extend the result to arbitrary 7. d
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Exercises 3.3.14 Let K be a class of finite structures. Show:
(a) The following statements are equivalent:

(i) K is not axiomatizable in FO°.

(ii) For m > 1 there are finite structures A and B such that

Ae K, B¢ K, and A= B.

(b) For any global n-ary relation I' on K with n < s the following are
equivalent:
(i) I' is L, -definable, i.e. there is an LZ_ -formula ¢ such that for
A€ K anda e A",

AEla  iff  aerl(A).

(ii) I"is “closed under the game GZ,”, that means, if A,B € K, @ €
I'(A), b€ B™ and the duplicator wins G5, (A, @ ...%,B,b*...%),
then b € I'(B). O

Exercise 3.3.15 Assume that 7 is relational and contains only unary re-
lation symbols. Fix s > 1 and let .4 and B be 7 structures. Show that
WE(A,B) =W (A,B). O

Exercise 3.3.16 For an FO’-formula ¢(T) of quantifier rank < m show that

Fee \/{wﬂﬂ | A a structure, @ € 4, and A = y[a}

(argue as in the proof of 2.2.11).

3.3.2 The s-Invariant of a Structure

In this section we associate with every s > 1 and every structure A a structure
A/s, whose isomorphism type captures the L5 -type of A in a one-to-one
fashion (see 3.3.17 below for the precise statement). Later we shall see that
there is a uniform way to define an ordering on A/s. This will enable us to
translate some problems from arbitrary structures to ordered ones. For sim-
plicity, let 7 be relational (we encourage the reader to also treat vocabularies
with constants).

Let A be a r-structure. The binary relation ~ defined on A% by
(%) a~b iff @ and b satisfy the same LS, -formulas in A

is an equivalence relation on A4°. By 3.3.9(b), we have @ ~ b iff the duplicator
wins G2_(A,a, A,b). Let [a@] denote the equivalence class of @ and

AJs = {[@]|ae A%}

the set of equivalence classes. We endow A/s with a 7/s-structure 4/s: for
every [@] € A/s, the relations on A/s capture the properties of @ in any game
GZ.(A,a,...). The relation symbols in 7/s (together with their meaning in

A/s) are:
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— for every k-ary R € U {=} and any i1,...,4 with 1 <ij,...,ip < sa
unary relation symbol Ry, ;, ;

RM: = {[a] | @€ A°, R%ay, ...ai,}

21 ...k

(the Rﬁ( sZk capture the isomorphism type of @);

— for ¢ =1,...,s a binary relation symbol S;;
SM* = { (@,[@]) | @,@ € A°®, thereis a € A such that [@] = [a2]}

(SZA /* encodes the possible moves of the i-th pebble).
A/s is called the s-invariant of A. It captures the LS -theory of A:
Theorem 3.3.17 For structures A and B,

A=leeB  iff  A/s=B/s.

Proof. Suppose first that A/s and B/s are isomorphic and 7 : A/s = B/s.
Set

I = {a—blac A’ be B, «(a)) =[b]}.

We show that I : A =7, . B and hence, A =l%wB. I is a nonempty set of
s-partial isomorphisms (use the relations R;,. ;). To show, say, that I has
the s-forth property, assume that @ — 6 € 1,1 < i < s, and a € A. Then
5{°[a][@2], hence S/*[Blr([@%]). By the definition of S/*, there is b € B
such that [b2] = w([@%]), hence @2 — b% € I.

Conversely suppose that A =l=wB. Then W5, (A4, B) :
and b € B® set

B.Fora € A

part

w(@) =[] if G be W (A B).
Hence, by 3.3.9(b),
w([a]) = [b] iff @in A satisfies the same L?__-formulas as b in B.

By this equivalence and by the definition () of the equivalence relation, 7 is
well-defined and injective; moreover, do(m) = A/s by the s-forth property of
WE (A, B) and rg(n) = B/s by the s-back property. Obviously, 7 is compat-
ible with the interpretations of the R;,.  ;,, and also with the interpretations
of the S; (use once more the s-back and s-forth properties of W2 (A, B)).
Therefore, 7 : A/s = B/s. O

We close this section by showing that for finite structures we can replace LI,
by FO?. In fact, in view of 3.3.2 we have
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Proposition 3.3.18 Let A and B be finite structures, @ € (AU {*})° and
b € (B U {*})* with supp(@) = supp(b). If

for all p € FO* (A= gfa] if B & o[b)
then

for all p € L, (A= la] iff B olb]). a

Corollary 3.3.19 (a) Let A be a finite structure and ~ be defined as in (x)
above. Then, fora,be A?,

@~b iff T andb satisfy the same FO®-sentences.
(b) For finite structures A and B,
A=B iff A/s=B/s.

Proof. (a) is immediate from the preceding proposition and (b) follows from
3.3.17 by 3.3.3. O

3.3.3 Scott Formulas

For a finite structure A4 we saw in 2.2.10 that a single FO-sentence, e.g.
@&A”H, characterizes A up to (isomorphisms and therefore up to) Lou-
equivalence. We are going to show a similar result for FO* and LZ_, in this
way strengthening 3.3.3.

Proposition 3.3.20 Let A and B be structures. Then

(a) Wi(A,B) DW(AB) D ...

(b) If A and B are finite then there is an m < (J|A|| + 1)* - (|| B|| + 1)® such
that W5 (A, B) =W, (A, B).

(c) Form > 0, if Wi (A, B) = W} 1 (A,B) and W} (A,B) is nonempty,
then Wi (A, B) : A Zpan B.

Proof. (a) follows immediately from the definition of the W7 (A, B). (b) fol-
lows from (a), since there are at most (J|A|| +1)* - (|| B|| + 1)® s-partial iso-
morphisms from A to B.

(c) Suppose that W3 (A, B) = W;, (A, B). Then W2 (A, B) has the s-back
and the s-forth property: To show, say, the s-forth property, let @+ b €
We(A,B),1<i<s,and a € A. By assumption, @+ b € Wei1(A, B), and
therefore there is b € B such that a2 — 5% € Wi (A, B). If, in addition,
W2 (A,B) # 0, we altogether have W} (A, B) : A =pq B. O

Fix a finite structure A and let @, b range over (A U {x})°. By the propo-
sition we know that

WG (A, A) 2 WP(AA) 2...2Wo(AA) 2. ..
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and that there must be a j with W?(A, 4) = W2, (A, A). The minimal j
having this property is called the s-rank r(A) of A, r(A) = r(s, A). For given
@, the [ormula

oz = YRYA N Vo el o g
be(AU{*})®

(more exactly, oz = *o437) is called the s-Secott formula of @ in A. Tt is an
FO®-formula of quantifier rank r(A4) + 1 + s. In particular, 64 := 0., is an
FO®-sentence. It captures the whole L2 -theory of A:

Theorem 3.3.21 Let A be finite.

(a) For any structure B,
BlEoa iff A =l B.

(b) Fora e (AU {*})*, any structure B and b € (B U {+})* with supp(a) =
supp(b),

B = oz[b] iff @ satisfies in A the same LS, -formulas as b in B.

Proof. We restrict ourselves to (a). Since A |= 04, we have that A =l~wB
implies B |= o 4. Now suppose that B |= 0.4, that is,

T I8 r(A
BEYIYA N Yor. V(] — gl
be(AU{+})*

Since B = wT(A), we get x...x > ...k € WS (A B) (by 3.3.9(a)).
By the validity of the second conJunct in B, we have W (A B) C
Wiay+1 (A B) and hence, W7 4 (A B) = Wi (A B). Therefore by
3.3.20(c), Wy (A, B) : B and thus, A zLin. O

part

Corollary 3.3.22 In the finite, each LS -formula o is equivalent to a count-
able disjunction of FO®-formulas. In fact, ¢ is equivalent to the L, -formula
V{oz | A finite,a € A, A = plal}. Moreover, if K is any class of finite
structures, then ¢ and \[{oz | A€ K, a € A, A p[al} are equivalent in all
structures of K. d

Exercise 3.3.23 For finite A and B show that W?(A, A) = W7 (A, A)
and A =l B imply W2(B,B) = W2, (B, B). Conclude: If A =Leo B then
r(A) = r(B). O

As an application of the formulas oz we give a condition for L, and
FO? to coincide in expressive power.

Let K be a class of finite structures. We say that K is s-bounded if the set
{r(A) | A € K} of s-ranks of structures in K is bounded. The class K is
bounded if it is s-bounded for every s > 1.
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Theorem 3.3.24 Let K be a class of finite structures.
(a) For s > 1 the following are equivalent:
(i) K is s-bounded.
(ii) On K, every L, -formula is equivalent to an FO®-formula.
(iif) On K, every L -formula is equivalent to an FO-formula.
(b) K is bounded iff FO and LY, have the same expressive power on K.

Proof. As (b) is a consequence of (a), it suffices to prove (a). First suppose
that K is s-bounded and set m := sup{r(A) | A € K} < oo. Thus, for
A € K and @ in A, the quantifier rank of oz is < m + s+ 1 . Let ¢ be any
L. -formula. Then the disjunction in the preceding corollary is a disjunction
of formulas of quantifier rank < m + s + 1 and hence, it is a finite one. This
shows that (i) implies (ii). The implication from (ii) to (iii) is trivial. To show
that (iil) implies (i) assume, by contradiction, that K is not s-bounded. Let
Ao, A1, ... be structures in K of pairwise distinct s-rank. For A/ C N let

oM = \/{UAi | i e M}.

By 3.3.23,if L,M C N and L # M then not K = ¢ + ¢a.* Hence on
K, L, contains uncountably many pairwise nonequivalent sentences and is
therefore more expressive than FO. d

Example 3.3.25 (a) Suppose 7 = § and let A be a 7-structure. Then
WE(A, A) = WF(A, A). Hence, r(A) = 0 and the class K of finite T-structures

is bounded. Therefore, FO and LY, , have the same expressive power on K.

(b) By Exercise 3.3.15, the class K of all finite 7-structures is bounded, if 7
contains only unary relation symbols. Therefore, FO and L%, have the same
expressive power on K. 0

Exercise 3.3.26 LY, is stronger than FO on the class of finite orderings

and on the class of graphs. (Hint: Use 3.3.1.) O

3.4 Logics with Counting Quantifiers

To express in first-order logic that there are, say, seven clements with the
property () we need, in general, at least seven quantifiers:

Jzy .. Fer(plz) AL A p(x) A /\ -z = ;)
1<i<j<7

{by 3.3.6(a) we see that in case p{x) := z =  we really need seven quanti-
fiers).

4 Recall that K |= ¢ means that every structure in K is a model of ¢.
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Let FO(C), so-called first-order logic with counting quantifiers, and Lo, (C)
(by short, Cuoy), so-called Lo, with counting quantifiers, be the logics ob-
tained from FO and L., respectively, by adding, for every I > 1, a new
quantifier 32! with the intended interpretation “there are at least {”. More
precisely, extend the calculus of formulas for first-order or infinitary logic by
the following rule:

— If p is a formula and [ > 1 then 32z is a formula

(here, 32!z is considered as a new quantifier (binding #) and not as an ab-
breviation as in 1.B). Fix the interpretation of these quantifiers by adding
for p = p(Z,z) and @ € A the clause

AE Flogla) i |{be Al AE glabl}] > 1.

Since the quantifiers 32! are first-order definable, the languages FO(C) and
Cwow have the same expressive power as FO and L., respectively. The
situation changes if we restrict ourselves to FO(C)® and C2_, which are
the fragments consisting of the formulas with variables among vi,...,vs.
For example, 327z = z is a sentence in FO(C)' not equivalent to any
sentence in FO'. And \/,5,(3Z%zz = z A =322z = z) is a CL-sentence
axiomatizing the class EVEN(1] of structures of even cardinality that (by
3.3.13) is not equivalent to any sentence of LY, . We set C%, := J,5; C. -

For [ > 1, set 3=lzyp = F2lzp A 232120, and let 3=%zp := Va—p. Then
32z is equivalent to -/ <l F=Ixp. Hence, we would obtain logics of the
same expressive power when adding the quantifiers 3= instead of 32¢.

Examples 3.4.1 (a) Suppose A and B are finite structures. If 4 =Fo(®)' B ,

that is, if A and B satisfy the same sentences of FO(C)', then ||4|| = ||B||
(note that 3=14lz z = 7 is a sentence in FO(C)!).

{(b) Let 7 = {<}. The finite models of the sentence of FO[r]

Vemz <x AVaVyVz((z <y Ay <z) =z <z)A
VaVyVz(ly <z Ahz<z) = (y<zVy=2zVz<y))

(< is irreflexive and transitive, and the predecessors of any element are lin-
early ordered) are called finite <-forests. For a <-forest A and a € A the
height h 4(a) is defined by

hala) = |{be Alb<al,
and the height h(A) by
hA) = max{has(a)|aec A}.

The element a is a root if h4(a) = 0. Every finite <-forest can be character-
ized, up to isomorphism, in FO(C)Z, i.e., for every finite <-forest A there is
a sentence ¢ in FO(C)? such that for all finite <-forests B,
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BEyp iff B A

To prove this one shows by induction on the height, that for <-forests A
with exactly one root there is a formula ¢ 4(z) in FO(C)” such that for any
<-forest B and b € B one has

Bl=wab] iff B

where By is the substructure of B with universe {¥’ € B|[b=0' Vb <b'}. In
the induction step, for A with root a, ¥ 4(z) gives the number of elements
of A and, for any isomorphism type of some .4; with b € A\ {a}, says how
many trees A, with ¢ € A\ {a} are of this type.

1

A,

(¢) For s > 1 there are <-forests 4 and B that satisfy the same sentences in
FO? but are not isomorphic, e.g., <-forests consisting only of roots, the first
one having s roots, the second one s + 1 roots. 0

We conclude this section by adapting the Ehrenfeucht-Fraissé method to
the case of counting quantifiers and by demonstrating with an example its
value for investigating the expressive power of the logics FO(C)® and C2_ .

In the corresponding pebble games C-G2, (A, @, B,b) with m moves and
C-G2,(A,a, B,b) with infinitely many moves, each move now consists of two
steps:

1. The spoiler chooses one of the two structures, say .4, and a corresponding
pebble, say «;. He then chooses a subset X of A. The duplicator must
answer with a subset Y of B of the same cardinality as X.

2. The spoiler places 8; on some element b € Y. The duplicator answers by
placing «; on some a € X (X and Y can now be forgotten).

The definition for winning is given as in the previous pebble games; it only
takes into consideration the chosen elements, not the subsets.

To understand what is going on in the two steps of a move suppose that
the spoiler attempts to show that

A F'2p(x), but not B = 37 zp(x).

He chooses a subset X consisting of [ elements witnessing that A | 32'z¢(z).
The duplicator claims that the elements of the subset Y witness that B |=
3Zlzp(x). According to the spoilers conviction there is a b € Y with not
B = @[b]. The duplicator means that some element a in X behaves as b.

Exercise 3.4.2 Let A and B be finite <-forests and assume that the du-
plicator has a winning strategy in C-G2 (A, B). Show that A and B are
isomorphic. O

The reader will encounter no difficulties when trying to prove the following
theorem like corresponding preceding results.
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Theorem 3.4.3 Let A and B be structures, @ € (AU{x})® and b € (BU{*})*

with supp(a@) = supp(b).
(a) The following are equivalent: _

(i) Forall o(T) € C3 - AEvyl@ iff BE= b

(ii) The duplicator wins C-G (A, @, B,b).
(b) A=Cxe B iff the duplicator wins C-G2 (A, B).> 0
We now use this theorem to show that for coloured graphs the expressive
power of C2_ corresponds to a natural graph-theoretical property.

Let C1,C5,... be unary relation symbols, the “colour relations”. A
coloured graph is, for some r, an {E,Ci,...,C,}-structure G, where for
G =(G,EY,CE,...,C%) the following holds:

- (G, E%) is a graph;
— C8U...UCY =G, that is, each vertex satisfies exactly one colour relation.

For a € G the colour type ct(a) is defined as
ct(a) = (i,n1, ..., 1),
where
a€Cf and n;:=||{be CJ»G | E9ab}||.
G is stable if for a,b € G,
ct{a) = ct(b) iff a,be C; for some i.

The proof of the following statement is straightforward.

Proposition 3.4.4 Let G = (G, E¢,CFC,...,CY) be a stable coloured graph

and a,b € G. Then the following are egquivalent:

(i) Forj=1,...;,r: a€C;iffbeC;.

(i) The duplicator has a winning strategy in the game C-G2 (G, ax*,G,bx).
(I

We introduce a process of colour refinement leading from a coloured graph
G = (G,E,CF,...,C%) to a stable coloured graph: Let m := ||{ct(a) |
a € G} and order the set {ct(a) | a € G} lexicographically. Set G' :=
(G,EC,Cy,...,CL), where C} is the set of elements a € G such that ct(a
is the k-th element in this ordering. Clearly,

(%) each C¢ is the union of some Cj,.
Moreover, if C}, is the set of elements of colour type (i,n1,...,n,), then
C.={acG|GECizn A\ Fy(FEzxyAC,y))lal}, that is

J=1,..,7r

® Of course, the corresponding results for FO(C)® hold, too.
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. each colour class of G’ is definable in G by a formula of C2_,
) of quantifier rank < 1,
where we extend the definition of quantifier rank for first-order logic by the
clause qr(32'zp) := 1 + qr(y).

Obviously, G is stable if m = 7, i.e., if there is no proper colour refinement.
If G' is not stable, define G?) := (G')'. By (), we get that after finitely many
steps, say after n steps, we must reach a stable coloured graph g("), the
stable coloured refinement of G. A simple induction, using (%), shows that
each colour class of G is definable by a C? _-formula of quantifier rank
< n. This fact yields (i) = (i) of the following theorem.

Theorem 3.4.5 For elements a and b of a coloured graph G the following
are equivalent:

(i) a, b are in the same colour class of the stable coloured refinement of G.
(ii) For all p(z) € CZ,,

GrEvld iff G olb.

To prove (i) = (ii), use the preceding proposition (note that by (), a win-
ning strategy for the coloured refinement of G is a winning strategy for G). O

For a graph G = (G, E) let the stable coloured refinement be that of the
coloured graph (G, E,G). Then

Corollary 3.4.6 For elements a and b of a graph G the following are equiv-
alent: :

(i) a, b are in the same colour class of the stable coloured refinement of G.
(ii) For all p(z) € C2,,

GEylal i G | ¢lb]. O

3.5 Failure of Classical Theorems in the Finite

We have seen that in the finite the compactness theorem for first-order logic
fails and we shall see in Chapter 7 that there is no sound and complete proof
calculus.

These facts raise the question whether and why first-order logic can serve
as a useful means for the investigation of finite structures. The question
demands for an answer even more as other central methods of classical model
theory (such as the use of ultraproducts or saturated structures) become
useless and, as we shall see in this section, further important results fail
when restricted to finite structures. The examples we give include Beth’s
definability theorem, Craig’s interpolation theorem, and some preservation
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theorems. Nevertheless, we hope to convince the reader that new methods
and results intrinsic to the finite compensate for this loss. As a new aspect
we mention the stronger impact of combinatorics which, in particular, will
become apparent in connection with probabilities (see Chapter 4). Moreover,
the restriction to the finite motivates the use of other languages, for example
languages that are able to grasp notions of recursion or induction, in this way
building a bridge to computational aspects (see Chapter 7).

Recall that = denotes the consequence relation with respect to arbitrary
structures and gy that for finite structures; so ¢ FEqn % means that every
finite model of ¢ is a model of 4.

The Beth Property and the Interpolation Property

Let £ be any logic considered so far, e.g. FO, Looy,... Let R be an n-ary
relation symbol not contained in the vocabulary 7. An £[T U {R}]-sentence ¢
defines R implicitly (in the finite), if every (finite) r-structure A has at most
one expansion (A, B4) to a 7 U {R}-structure satisfying . We say that R
is explicitly definable (in the finite) relative to p, if there is an L[r]-formula
() such that

¢ Fan) VI(RT < 9(T)).

Obviously, if R is explicitly definable relative to ¢ then ¢ defines R implicitly.
We say that £ has the Beth property (in the finite), if the converse holds, i.e.,
whenever an L-sentence ¢ defines a relation symbol implicitly (in the finite),
then there is an explicit definition of it (in the finite) relative to .

Beth’s theorem states that first-order logic has the Beth property. It ex-
hibits a certain balance between syntax and semantics: every implicitly de-
finable, i.e., “semantically” definable, relation has an explicit, a “syntactic”
definition.

Proposition 3.5.1 First-order logic does not have the Beth property in the
finite.

Proof. We consider orderings in the vocabulary 7 := {<, S, min, max}. Let
R be a unary relation symbol and let ¢ be the conjunction of the ordering
axioms and of the following sentence fixing R as the set of even points,

~Rmin AVaVy(Szy — (Rz < —Ry)).
Clearly, ¢ defines R implicitly in the finite. Suppose

¢ Fin Vo (Re < ¢(z))

for some FO[r]-formula (). Then 1 (max) together with the ordering axioms
would define the class of finite orderings of even cardinality, contradicting
2.3.6. O
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Closely related to the Beth property is the interpolation property (or, Craig
property) (more precisely, the Beth property is a consequence of the interpo-
lation property): The logic £ has the interpolation property (in the finite) ifl
for all vocabularies o and 7 and any L-sentences ¢ and v in the vocabularies
o and T, respectively, such that ¢ =sn) 9, there is an interpolant, that is,
an L[o N 7]-sentence x such that

¢ FE@n) X and X Fsn) .

Craig’s theorem states that first-order logic has the interpolation property.
We shall see that in the finite the interpolation property fails for first-order
logic. Our counterexample deals with a special case of the interpolation prop-
erty that will be important later. Given a logic £, some classes K of finite
T-structures happen to be axiomatizable in L, if we equip the structures in
K with an arbitrary ordering, that is, there is a sentence ¢ in the vocabulary
7U{<} such that for

K. = {(A4,<)| A€ K, < an ordering on A},

we have
K. =Mod(yp).

The logic £ is said to be closed under order-invariant sentences in the finite,
whenever in this situation there is an £[r]-sentence v such that Mod(y)) = K.
If ¢ = (<) axiomatizes K. and <’ is a new binary relation symbol, then

o(<) Ean (“<' is an ordering” — ¢(<')).

Clearly, if ¢ is any interpolant then Mod(y)) = K. Hence, a logic with the
interpolation property is closed under order-invariant sentences in the finite.
In particular, in the following proposition part (b) follows from part (a).

Proposition 3.5.2 (a) First-order logic is not closed under order-invariant
sentences in the finite.
(b) First-order logic does not have the interpolation property in the finite.

We sketch a proof of (a). Let K be the class of finite Boolean algebras with an
even number of atoms. Using the Ehrenfeucht-Fraissé method, one can show
that K is not axiomatizable in first-order logic. However, K . is axiomatizable
in first-order logic. In fact, let ¢ be the conjunction of the axioms for Boolean
algebras and the axioms for orderings and of a sentence expressing that there
is an element containing exactly the atoms at an even position (in the ordering
induced on the atoms) and containing the last atom. O

Exercise 3.5.3 In the finite, L., has the Beth property, the interpolation
property, and is closed under order-invariant sentences. Hint: Use the fact that
every class of finite structures is axiomatizable in Ly, (cf. 3.2.1(b)). E.g.,
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for the interpolation property argue as follows: If ¢ |=an 9 for the Ly, o [o]-
sentence ¢ and the L, ,[7]-sentence ¢ then every L, .[c N 7]-sentence x
axiomatizing the class

{Al(c N 1) | A a finite g-structure with A4 | ¢}
is an interpolant. |

Exercise 3.5.4 (a) For 7 = {<} let ¢ be a {<}-sentence expressing that <
is an ordering and, for n > 1, let x,, be the sentence of FO? introduced in
part (a) of 3.3.1, which says that an ordering has exactly n elements. Then
(for both = and |=4n),

Esn (<A N x2n(<) = (0(<) =\ xea(<).
n>1 n>1

Show that there is no interpolant in L¢ . Hence, LY, does not have the
interpolation property (in the finite).

(b) For s > 2 and unary P, let p(P) and ¥(P) be the FO® sentences

e(P) := “there is exactly one element satisfying P”
Y(P) := “there are at least s elements not satisfying P”.

Then for unary @,
Fin) (p(P) AP(P)) = (9(Q) = ¥(Q)),

but there is no interpolant in FO®. Hence, FO® does not have the interpolation
property (in the finite).

(c) Show that FO! and Ll have the interpolation property (in the finite)
in case 7 is relational. 0

Preservation Theorems

In the model theory for arbitrary structures certain closure properties of the
class of models of a sentence ¢ are reflected by syntactic properties of ¢.
Most of these so-called preservation theorems fail when literally translated
to the finite. We give some examples.

Call a first-order formula wniversal (existential) if it is built up from
atomic and negated atomic formulas using only the connectives A,V and
the universal (existential) quantifier. If ¢ is a universal sentence, a simple
inductive proof shows

BCAand A=y imply Bl ¢,
that is, @ is preserved under substructures. Similarly, if ¢ is existential then

BCAand By imply Ak o,
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that is, o is preserved under extensions. Moreover, in classical model theory
one proves that every FO-sentence preserved under substructures is logically
equivalent to a universal FO-sentence. We give an example of an FO-sentence
that, in the finite, is preserved under substructures but is not equivalent to
a universal first-order sentence.

Let the universal sentence g be the conjunction of the ordering axioms
in {<, min, max} and of the following sentence expressing that R is a “partial
successor relation”,

VaVy(Rzy — ¢ < y) AVaVyVz((Rey Az < z) = (y =2V y < 2)).

Let ¢ be the sentence Vz(—z = max — JyRzy) expressing that R is the
“total” successor relation. For finite structures A and B,

(%) Al o, BE(poAp1), and BC A imply A = B.
Using a new unary relation symbol @), we set

@ = o A(pr = FyQy).

In finite models, ¢ is preserved under substructures: Suppose (A, Q%) = ¢
and (B,QF) C (A,Q%). Since o is universal, B |= ¢o. If B £ 1 then
(B,QP) |= . If B |= ) then by (%), B = A, therefore (B,QF) = (4,Q4)
and hence, (B, QF) |= ¢.

Assume by contradiction, that ¢ is a universal first-order sentence with
Ean @ ¢ ¥, say, ¥ = Vai...Va,x with quantifier-free x (every univer-
sal FO-formula is logically equivalent to one of this form!). Look at a {<,
min, max, R}-structure A with n + 3 elements, where (A, <A min?, max*)
is an ordering and where R# is the successor relation. Set @** = . Then

(A, Q4) ¥ ¢, and hence, (A4, Q4) | 3z, ... 3z, say,
(A,Q") = —xlay, ... , Q-

Choose a € A\ {ai,...,an, min”, max?} and set Q' = {a}. Since x is
quantifier-free, (A4, Q") = —x[a1, ..., an] and therefore, (A4, Q') ¥ V1. Vo, x.
On the other hand, (A4,Q") | ¢. Hence ¢ and 1 are not equivalent in the
finite.

This example gives part (a) of

Proposition 3.5.5 (a) There is a first-order sentence which, in the finite, is
preserved under substructures but not equivalent to a universal first-order
sentence.

(b) There is a first-order sentence which, in the finite, is preserved under
extensions but not equivalent to an existential first-order sentence.

Proof. (b) Let ¢ be according to (a). Then -y is preserved under extensions
and not equivalent to an existential sentence. 0
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We close with some remarks concerning “monotone” formulas. Fix a relation
symbol R of 7 of arity r. A sentence ¢ is monotone in R (in the finite) if

(A, R1) E ¢, (A finite) and Ry C Ry € A™ imply (A, R2) E .

A first-order formula ¢ is positive in R if ¢ is built up from atomic formulas
using —, A, V,V, 3 and any occurrence of the relation symbol R in ¢ is within
the scope of an even number of negation symbols. An easy inductive argu-
ment shows that a sentence positive in R is monotone. While any first-order
sentence monotone in R is logically equivalent to a formula positive in R,
this is no longer true in the finite. We state this result; for a proof we refer
to the example in Exercise 3.5.8.

Proposition 3.5.6 There is a first-order sentence which, in the finite, is
monotone in R, but not equivalent to a first-order sentence positive in R.

As we have seen, preservation theorems of first-order logic fail when lit-
erally translated to the case of finite structures. However, it is still open
whether — say, in the case of sentences preserved under substructures — there
is a syntactically defined or, at least, recursive set of sentences preserved
under substructures in the finite such that, in the finite, every first-order
sentence preserved under substructures is equivalent to a sentence in this set.

Exercise 3.5.7 Define the notions of a universal L, -sentence and of an
L., »-sentence positive in R and show:

{(a) In the finite, every L, ,-sentence preserved under substructures is equiv-
alent to a universal L, ,-sentence.

(b) In the finite, every L, -sentence monotone in R is equivalent to an
L., »-sentence positive in R.

Hint for (a): Consider a variant of the Ehrenfeucht game by prescribing that
in each move the spoiler has to choose an element of the second structure
and argue with the corresponding isomorphism types defined by

o ._ 0 j-+1 . __ j
Xo = po and xIT = Vo \/ XL,
acEA

For (b) omit subformulas —R¢t; ...t in ¢2, defining 2 for m > 0 as usual.
0

Exercise 3.5.8 (a) Assume that 7 = o U {R}, where R ¢ o is an r-ary
relation symbol, and let A and B be T-structures. Let Partt (A4, B) be the set

{p € Part(A|o, Blo) | for all @ € do(p), if R*@ then R®p(a)}.
Write

A=t B iff for all FO[r]-sentences ¢ with qr(p) < m that
are positive in R: if A = ¢ then B = ¢,
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and

A=t B iff  there is a sequence (I;)j<m of nonempty subsets
of Part™ (A, B) with the back and forth properties.

Show that A =/ B iff A2 B.

(b) Let 0 = {S} and 7 = ¢ U {<} with binary S, <. For n,k € N let G, ; be
the structure with

Gpr = {0,...,n}x{0,...,k},
Sk = {((0,4), (1,5 + 1) i <moj < kY
U{{(5,5),G+1,5+1)i<n,j<k}
U{{(n,5), (0,5 + 1) | J <k},
<Grk .= transitive closure of ¢+,

Gn.x can be pictured as a circular net of circumference (n + 1) and height
k, where S-arrows are going from a point (that is not in the upper edge) to
its upper and to its upper right neighbour. We say that a point (i, ) has
(geographical) length ¢ and (geographical) latitude j.
Ifa <% b, let g;f;ﬁb) be defined as G, i, setting <O = (G \{(a,b)}.
Show for n = 4-(2™+1) : If a <= b, a has latitude 2 +1, b has latitude
3-(2™ + 1), and if a and b have length difference k := 2 - (2™ + 1), then

gn,k A:J; gg{ff) .

Hint: Let ¢ and d in G, ; have latitude 2™ + 1 and the lengths of a and b,
respectively, and show that (G, x,¢,d) =5 (G'®Y g b). For I < m, take as I

nn

the set of those p € Partt((Gn 4, ¢, d), (G'%P) 4, b)) that

n,m

— preserve lengths;

— preserve the upper and the lower edge;

— preserve differences of latitudes up to 2! for points whose lengths differ by
at most 2! and for points on the edges;

— do not decrease differences of latitudes.

(c) Set o =VaVy(Szy = (mz =y Az <y)) A (@1 V2 Vs) where

p1 = “< is transitive”
wy = JrTylz <yAy <)
w3 = dxdy(z <y AVz(Szy = (- = 2 Ak(2))))
with
k(z) = VwVyVuVo((y 2w A SwzAv < uA Suy) —

W<yAv<wAv<zAy=<2)).
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k(z) guarantees that < is transitive on the set consisting of z and its iterated
predecessors; more precisely, if A = &[ag] and S”a;+1a; fori > 0 then a; < a;
for 0 < j <.

Show that G,, 1 = ¢ and g;”j;f) E -, where n, k,a,b are as in (b).

(d) Show that, in the finite, ¢ is monotone in < but not equivalent to a
sentence positive in <. Hint for the monotonicity: Let A, B be given such
that B = A, S8 = §4, and <2 D <* and such that A & . As ¢, is positive
in <, assume A = —s3. Consider the cases A | @3 and A E o1 A ~ps3. In
the first case, if (a,b) witnesses @3 in .4 but not in B, find a chain (a,b) =
(a0, bo), (a1, b1),. .. with a; <& by, (biy1,b;) € TC(SA), and (a;, b;) € TC(SH)
that ends with a pair witnessing ¢3 in B.

(e) Show that ¢ is not monotone in < for arbitrary structures. Hint: Start
with a model of ¢ that consists of the negative integers with the natural
successor relation and ordering together with an additional point. O

Notes 3.5.9 A reference for second-order logic is [133]; for the model theory
of Lisow and L, we refer the reader to [8, 100]. The first study of fragments
with finitely many variables is due to Henkin [84]. The languages L, and the
corresponding pebble games were first introduced by Barwise [10] and then
reinvented and successfully used by Immerman [90] and Poizat [130]. Further
references are [96] and [40]. Compare [30] for most results in subsection 3.3.3.
An exposition of the model theory of LY, , is contained in [86]. Surveys on re-
cent results for finite variable logics are [58, 66]. (Infinite) counting quantifiers
and the corresponding Ehrenfeucht-Fraissé method have been considered in
various contexts, e.g. in [145]. A thorough treatment in the context of finite
model theory is contained in [125]. The results on graphs presented in section
3.4 are from [97]. The failure of many classical interpolation and preservation
theorems was first presented explicitly in [70]. The example given in 3.5.8 is
from [135], the first such example was presented in [6].
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So far we mainly looked at techniques and results which were developed for
arbitrary structures, and we analyzed to what extent they remain valid if we
restrict ourselves to finite ones. In the present chapter we study a concept
that is genuine to the finite (even though there are extensions to arbitrary
structures): the probability for a finite structure to be a model of a given
sentence. A starting point was the observation that for a relational vocabulary
7 and a first-order sentence ¢, either nearly all finite structures are models
of ¢ or nearly all finite structures are models of —p (for example, nearly
all {E}-structures are not digraphs, that is, nearly all {E}-structures are
models of ~Vz~Fzx). One describes this property by saying that first-order
logic satisfies the 0-1 law.

There are different ways of how to count structures and hence, there are
different versions of 0-1 laws which we study for FO and for LY  in the
first and the third section. The second section treats relativized versions, for
example, 0-1 laws inside a class of structures, say, inside the class of graphs.
After some applications in section 4.4, we study the case of monadic second-
order logic and disprove the 0-1 law for it in section 4.5.

In this chapter n is always a natural number greater than 0.

4.1 0-1 Laws for FO and Le

As always we refer to a fixed vocabulary 7. For a class K of structures let
L,,(K) be the number of structures in K with universe {1,2,...,n},

Lo(K) == |[{Ae K| A={L,... n}}|

Sometimes, structures A with A = {1,...,n} are called labeled structures,
since every element in such a structure is labeled with a natural number.
Hence, L, (K) is the number of labeled structures in K of cardinality n. If K
is the class of models of a sentence ¢ or the class of all 7-structures, we denote
L, (K) also by L,() and L,(1), respectively. Let 1,(K) be the fraction of
structures with universe {1,...,n} which are in K,

Ln(K)
Ln(r)’

In(K)
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In case it exists, [(K) := lim, o0 15, (K) is called the labeled asymptotic prob-
ability of K. Similarly as above, I,(¢) stands for I,(Mod(y)) and I(y) for
[{(Mod()). If I(p) = 1 we say that ¢ holds in almost all finite structures or
that ¢ almost surely holds.

A class ¥ of sentences of a logic is said to satisfy the labeled 0-1 law if

p)=1 —or  Up)=0

holds for every ¢ € ¥ (or, equivalently, for ¢ € ¥ either ¢ or —¢ holds in
almost all finite structures).

Examples 4.1.1 (a) Suppose 7 = {P,c}, where P is unary. Since for any
r-structure (A4, P4, c?),

(A, PA N l=Pe  if (A4,A\ P M) [ P,

we see that [,(Pc) = § and thus, I(Pc) = 1.

(b) For the “vocabulary” 7 := {f} with a unary function symbol f consider
the first-order sentence Vzf(x) # z expressing that f has no fixed-point.
Then

Livaf@) 0 = () = (1-2)"

n
(since on the universe {1,...,n} one can fix the values of f independently

and since for each argument i the n — 1 possible values # ¢ do not lead to a
fixed-point). Hence, {(Vz f(z) # z) = e 1.

(c) If K is the class EVEN[7] of all 7-structures of even finite cardinality,

then
1 if n is even

In(K) = { 0 if nis odd

and hence, [(K') does not exist. Therefore, [(¢) does not exist for the second-
order sentence ¢ expressing “there is a binary relation which is an equivalence
relation having only equivalence classes with exactly two elements” or for the
L., . -sentence szl Ok

(d) Let K be a class of structures for a relational 7. Construct a “random”
structure of vocabulary 7 on {1, ...,n} by the following experiment: For every
m-ary relation symbol R in 7 and for every 41, ... ,9m € {1,...,n}, toss a fair
coin to decide whether Rij .. .4, is true. Then [,,(K) is the probability for
the outcome A of the experiment to belong to K. OJ

Examples (a) and (b) show that we can expect a labeled 0-1 law for first-
order logic only for relational vocabularies. In fact, it then holds. The central
point of the proof we give is the fact that the extension axioms hold almost
surely and that for any ¢, either ¢ or -y is a consequence of the extension
axioms.

In the following suppose that 7 is relational. Recall (cf. 3.2.11) that an
(r+1)-extension axiom is a sentence xg =



4.1 0-1 Laws for FO and L%, 73

Yoy ... Vu( /\ v; # U; — ppa( /\ Vi £ Upry A /\Lp/\ /\ )

1<i<j<r 1<i<r ped pepe
where @ is a subset of

Aryr = {p(v1,...,0r,v041) | ¢ has the form RT, where R € 7 and
where v,y occurs in T}.

Lemma 4.1.2 Any extension aziom holds in almost all finite structures.

Proof. Given &, we have to show that the asymptotic labeled probability
I{x#) equals 1. For any tuple aq,...,a, of distinct elements in a structure 4
and any further object a let § be the probability that aq,...,a,,a satisfies
PU{~p | ¢ € $°}, when adding a to A as a new element and randomly
fixing the truth values of Rb for any R in 7 and any sequence b in AU {a}

containing a. Clearly, if ¢ is the number of subsets of A, 1, then § = %; in
particular, 6 > 0. Thus
l(mxe) = LG Jor(A i vi 7 UiA

Vore1(Vicicr Vi = vrtt V Voea 70 V Ve 9)))
< nr(%)n—r — n’"(l _5)n—r_
Therefore, I(—xa) = limy— 00 In(—xa) = 0. |
Recall that by Trana (= Trana(7)) we denote the set of extension axioms.
Corollary 4.1.3 Let ¢ be a first-order sentence.
(a) If Trana | ¢ then l(p) = 1. (b) If Trana =~ then I(p) = 0.

Proof. (a) If Tyand = ¢ then by compactness, Ty = ¢ for some finite subset
Ty of Tyana- Since Ty is a set of extension axioms, (A Tp) = 1 by the preceding
lemma. Hence, I(p) = 1.

(b) If Trana = —¢ then by (a), I(—p) = 1 and therefore, I(¢) = 0. O

For s > 1, let ¢; be the conjunction of the finitely many r-extension
axioms with r < s. Since l(es) = 1 we obtain

Corollary 4.1.4 Let ¢ be an LY  -sentence.
(a) If es = @ then (@) = 1. (b) If €5 = —p then l(y) = 0. O

Theorem 4.1.5 Let 7 be relational. Then both FO[r] and LY [7] satisfy the
labeled 0-1 low.

Proof. The assertions follow from the above corollaries, since we know that
for ¢ in FO[7] (cf. 3.2.11)

Trand E @ or Trand ': %
and that for p € L[] (cf. 3.3.11),

s E or € | . O



74 4. 0-1 Laws

Exercise 4.1.6 Let 7 be relational and m € N. Forn, k > 1let f(n, k) be the
probability that A 22, B holds for random structures .4 and B with universe
{1,...,n} and {1,...,k}, respectively. Show that lim, ;o f(n,k) =1. O

Exercise 4.1.7 Let 0 < p < 1. Alter the construction of 4.1.1(d) of a ran-
dom structure with universe {1,...,n} using a biased coin, so that Riy ...in,
now holds with probability p. For any extension axiom ¢ show that with
probability one this random structure is a model of . The situation changes

drastically if p is allowed to depend on the number n of elements (see [132]).
O

Exercise 4.1.8 Let 7 be relational. Extending the construction of 4.1.1(d),
define an infinite random structure over {1,2,...} in the following way: For
every P in 7, say of arity m, and every m-tuple iy, ..., 4., of positive integers
toss a coin to decide whether Pi; ...%,, is true. Show that with probability 1
(with respect to the canonical product measure) this infinite random struc-
ture is a model of Tiang and hence, it is the (up to isomorphism) uniquely
determined countable model R of Tyana (cf. 3.2.11). Therefore, R is called
the infinite random structure. O

Exercise 4.1.9 Show that for the infinite “vocabulary” 7 = {P, P»,...}
with unary P; there is an LY [7]-sentence without labeled asymptotic prob-

ability. 0]

4.2 Parametric Classes

Does every first-order sentence or its negation hold in almost all graphs? To
treat such questions we introduce conditional probabilities. Slight modifica-
tions of the arguments given in the preceding section show that the 0-1 law
holds for the conditional probabilities with respect to classes of structures
which are axiomatizable by means of “parametric” axioms. The classes of
graphs and digraphs are prominent examples.

We start with the definition of conditional probabilities: Suppose that K and
H are classes of T-structures. Define the labeled probability L,,(K|H) by

L.(KNH) |

L (K|H) T

If it exists, I{K|H) := limp_ 00 I, (K|H) is called the labeled asymptotic prob-
ability of K with respect to H. Notations such as I, (¢|H) or I,{(K|r) should
be self-explaining.

Obviously, I,(K|7) = l,(K), and [,,(CONN|GRAPH) is the number of
connected graphs on {1,...,n} divided by the total number of graphs on

{1,...,n}.

! This fraction is defined only in case H contains a structure of cardinality n.
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Let Vdistinct z1 ... x5 ¢ abbreviate Vo, ... Vo, (-1 =22 A-zp =23 A L. A
—zs_1 = xs) — t) (which is V19 in case s = 1).

Definition 4.2.1 Let 7 be relational. A first-order sentence ¢ is called para-
metric, if it is a conjunction of sentences Vdistinctz; ... x4, where s > 1
and 1 is a boolean combination of formulas of the form Ry, ...y, with R € 7

and {y1,...,yn} = {z1,...,25}. (Note that s cannot exceed the maximum
of the arities of relation symbols in 7.) A class K of structures is said to be
parametric, if K = Mod(yp) where p is a parametric sentence. O

Examples 4.2.2 (a) Vz—-Rzx AV distinct zy(Rezy — Ryz) and Va-Rzz are
parametric sentences axiomatizing the classes of graphs and digraphs, respec-
tively.

(b) The class of tournaments is axiomatized by the parametric sentence
Vz-Rzx AV distinct zy(Rzy <> —~Ryz).

(c) For relational T the class K of all 7-structures is parametric, since K is
the class of models of the empty conjunction.

{(d) Note that
¥ distinct zyz((Rzy A Ryz) — Rxz)

is not a parametric sentence (since, e.g., {z,y} # {z,y,z}). In fact, from
our analysis of parametric classes it will become clear that, for example, the
classes of transitive relations, equivalence relations, partial orderings, and
orderings are not parametric, transitivity being the only obstacle.

(e) If R is k-ary, Vdistinctzy ... 2 (Rx1 ... 25 A 2Rz ... 2y) is a parametric
sentence that is true in all structures of cardinality < k, but has no model of
cardinality > k. O

The following considerations will demonstrate that the sentence in (e) is a
“sharpest” example of a parametric sentence having only models of bounded
cardinality.

Let k& be the maximum of the arities of the relation symbols in 7. A
parametric sentence (and its model class) is called nontrivial, if it has a
model of cardinality > k. We show that nontrivial parametric sentences have
arbitrarily large models: Suppose that g is a nontrivial parametric sentence.
If B is any nonempty set, then the following procedure, where we stepwise
fix the relations on B, leads to a model of ¢ with universe B: For any s < k
and any distinct b1,...,bs € B, we choose an arbitrary model A of yg of
cardinality > s and distinct a1,...,a5s € A and define, for all R in 7, the
“Ib1,...,bs}-part of RP” as a copy of the “{ay,...,as}-part of R4”; more
precisely, we define this part of R® such that for ¢(vy,...,vs) = Ryi...yn
with {y1,...,¥n} = {v1,..., 05}

BE olbi,...,bs] iff A= play,. .. a4
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Since in B every s-tuple of distinct elements behaves as some s-tuple in some
model of ¢y and as g is parametric, B itself is a model of ¢y. Thus we have
proved:

(1) ¢o has models in all cardinalities.
Call an (r+1)-extension axiom
Vdistinct vy ... vp Jvpg( /\ —V; = Upp1 A /\ w A /\ —p)
1<i<r ped pede
compatible with g if

{eo}U{For... B, v, N\ ~vi=v; A Non A -0}

1<i<j<r+1 pEeP pede

is satisfiable. Let Trand (o) be the set of sentences consisting of ¢y and of all
extension axioms compatible with . The proof in Example 3.2.11 showing
that any two models of Trana are partially isomorphic, also works for Tiana (o)
and yields:

(2) Any two models of Tiana(po) are partially isomorphic and hence, Loy~
equivalent. Therefore,

Trand(po) or Trana(o) FE —¢

holds for any L. -sentence 4.

Also the proof of 3.2.11 leading to a countable model of Tyanq can be trans-
ferred to Trana(wo), since by the construction process described above the
corresponding 4;’s can be chosen as models of ¢. Hence,

(3) Trand(wo) has an (up to isomorphism) unique countable model R(iq).

For s > 1, we denote by ¢§ the conjunction of ¢¢ with the finitely many
r-extension axioms with » < s that are compatible with ¢g. By a similar
argumentation, one obtains:

(4) Any two models of ¢f are s-partially isomorphic and hence, L? -
equivalent. Therefore, for any L{_ -sentence 1,

wolEY o pi Y.
Finally, we have:
(5) If v is an extension axiom compatible with ¢q then {(1]pq) = 1.

To give a proof, one can argue as for 4.1.2, but now restricting oneself to mod-
els of o and taking as ¢ the number of subsets @ of A, that correspond
to (r+1)-extension axioms compatible with . (Given &, distinct ay,. .., ay,,
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and a new a, we can satisfy @ by a; . ..a,a, applying the construction proce-
dure described above to any a;, ... q;, a with 1 <i; <iy < ... <4y <71.)

Let H be a class of structures and ¥ a class of sentences. We say that H
satisfies the labeled 0-1 law for ¥ if

WIH) =1 or  I@|H) =0
holds for any ¢ € ¥. From (2)—(5) we obtain:

Theorem 4.2.3 Let H be a nontrivial parametric class. Then H satisfies
the labeled 0-1 law for LY, and hence, for FO. O

4.3 Unlabeled 0-1 Laws

We saw in 4.1.1(d) that from a probabilistic point of view the definition of
1,(K) is quite natural. But note that for 7 := {P} with unary P and i =
1,...,n the structures A; := ({1,...,n}, P4) with P4 := {4} are counted
as n different structures in the definition of [,,(K), even though they are
isomorphic. In this section we study the so-called unlabeled probability u,,(K),
which is the proportion of isomorphism types of structures of cardinality n
in K. Similarly, we define unlabeled conditional probabilities. It turns out
that the labeled and unlabeled asymptotic conditional probabilities coincide
in case almost all structures in the underlying class are rigid.

Fix a vocabulary 7. For a class K let U,(K) be the number of isomorphism
types of structures of cardinality n in K or, equivalently,
U,(K) := number of isomorphism types of
structures in K with universe {1,...,n}.
Un(7) and Uy{yp) stand for U,(K), where K is the class of all 7-structures

and the class of models of ¢, respectively.
For arbitrary K we set

and denote (in case it exists) by u(K) := lim, s u,(K) the unlabeled as-
ymptotic probability.

If K and H are classes of structures we call
Un(K N H)

un(K|H) U (D)

the unlabeled probability and
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u(K|H) = nlLIr;Oun(K[H)

the unlabeled asymptotic probability of K with respect to H.

Thus, ©#,(CONN|GRAPH) is the number of isomorphism types of con-
nected n vertex graphs divided by the total number of isomorphism types of
n vertex graphs.

When studying the relationship between labeled and unlabeled proba-
bilities, a prominent role is played by the class RIG (= RIG[7]) of rigid
structures. A structure A is called rigid if the identity on A is the only auto-
morphism of 4.

Lemma 4.3.1 (a) L,(K) <U,(K)-n
(b) If K CRIG then L,(K)=U, (K)
(¢) If K CRIG® 2 then L,(K) < Un(K )-"'
Proof. Since L,(K) = L,(K NRIG) + L,(K NRIG®) and similarly for Uy,
it suffices to show (b) and (c).
Let A be a structure with universe {1,...,n}. There are n! permutations

of {1,...,n}. Every permutation = gives a structure A, on {1,...,n} such
that = : A = A,. Clearly, for permutations 7 and p of {1,...,n} we have

() A=A, iff 7 lop: A= A
Hence, if A is rigid, we have

A=A, iff T =p.

Thus each rigid structure leads to n! distinct structures on {1,...,n}. This
shows (b).
If A is not rigid and p is a nontrivial automorphism of A, then by (%),
Ar = A?TOp

for any permutation w. Hence, any nonrigid structure leads to at most %’
distinct structures on {1,...,n}. This proves (c). O

Lemma 4.3.2 For any class H, u,(RIG|H) < 1,(RIG|H). In particular,
uw(RIG|H) =1 implies (RIG|H) =1.

Proof.

Un(RIGN H) - n!

un(RIG|H) = U,(RIGN H) -nl + U, (RIG° N H) - nl
L,(RIGN H)
3.1
= Lnp(RIGN H) + L,(RIG* N H) a3y
= [,(RIG|H).

d

2 Recall that RIG® denotes the complement of RIG, the class of 7-structures not
in RIG.
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As suggested by (b) and (c) of Lemma 4.3.1, almost all structures in a
class H are rigid iff L,,(H) = U,(H) - n!. In fact:

Proposition 4.3.3 Let H be a class of structures. Then

_ , . La(H)
Proof. As
Lo(H)  Lnp(RIGNH) L,(RIG°N H)
U H)-nl — Un(H) -nl Un(H) -1l
La(RIGS N H)

u, (RIGIH) + (by 4.3.1(b)),

Un(H) -n!

we get, using 4.3.1(c),

Ln(H) 1 ety _q L ¢
So, w(RIG|H) = 1 implies limy, s %’)ﬂn, =1, and limy_q0 % =1
implies «(RIG®|H) = 0, that is, w(RIG|H) = 1. a

The following theorem will be used to extend for parametric classes the
0-1 laws from the labeled to the unlabeled case.

Theorem 4.3.4 Let H be a class of structures. If almost all structures in
H are rigid, i.e., if u(RIG|H) = 1, then for any class K the labeled and the
unlabeled asymptotic probabilities with respect to H coincide, that is,

WK|H) = w(K|H) (= u(KRIG N H)).?

Proof. By assumption, u(RIG|H) = 1 and therefore, [(RIG|H) = 1 by 4.3.2.
Immediately from the definitions we get

(K|H)=U{K|RIGNH) and u(K|H) = u(K|RIGN H).
Therefore, the claim follows from

L.(KNRIGNH
L(KRIGNH) = L( RIGA T ) = (by 4.3.1(b))
Un(K NRIG N H) - n!

Un(RIG N H) - n!

= u,(K|RIG N H).
m

% Clearly, limy,— e Ly (K|H ) =limy-s00 un (K|H ) means that both sides converge
to the same number or else that both of them diverge.
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Let Hy be the parametric class consisting of all 7-structures A such that
RA ={ for all R € 7. Then L,(Hy) = Un(Hy) = 1 and u,,(RIG|Hy) = 0 (for
n > 2). On the other hand, almost all structures in a “free” parametric class
are rigid. Intuitively speaking, a parametric class H is free if for some r > 2
there is a real choice when fixing the parts of the relations corresponding
to r-tuples of distinct elements. More precisely: If H = Mod(pg) with a
parametric g, then H is free, if for some m > 2 there is a relation symbol
R, say of arity r, and a surjection 4 : {1,...,r} = {1,...,m} such that

wo A 321 ...E!thm(RZ’i(l) STy A /\ Ty = 1@y)
1<k<i<m

and
wo A Jzy ... Fzm( ﬂRZ‘i(l) Ty A /\ - = xp)
1<k<I<m
are satisfiable.
The class Hy introduced above is not free. The class of graphs is free, and
for any relational 7 containing at least one relation symbol of arity > 2, the
class of all T-structures is a free parametric class.

Proposition 4.3.5 Let H be a nontrivial free parametric class. Then almost
all structures in H are rigid, that is, w(RIG|H) = 1.

For H the class of all structures we prove the proposition in the appendix
of this section.
Together with Theorem 4.3.4 we now obtain the following

Corollary 4.3.6 Let H be a nontrivial free parametric class. Then the la-
beled and the unlabeled asymptotic probabilities with respect to H coincide.
O

We extend this result to:

Proposition 4.3.7 Let H be any nontrivial parametric class. Then the la-
beled and the unlabeled asymptotic probabilities with respect to H coincide.

Before giving a proof we state a consequence. The class H satisfies the
unlabeled 0-1 law for the set @ of sentences if for all ¢ € @,

u(plH) =1 or u(plH) = 0.

Then we have by 4.2.3:

Theorem 4.3.8 Let H be a nontrivial parametric class. Then H sotisfies
the unlabeled 0-1 law for LE,  and hence, for FO. O

Proof (of 4.3.7). By 4.3.6 we only have to consider the nonfree case. First we
prove the claim for vocabularies containing only unary relation symbols. So
suppose 7 = {R1, ..., Ry} with unary Ry,..., Ry, and let ¢ be a nontrivial
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parametric sentence. For o : {1,...,m} = {0,1} set R*z := 1 A ... A oy,
where ¢; = Rz if a(i) = 1, and ¢, = R,z if «(i) = 0. Then there are
distinct ayq, ..., a such that

wo and Vaz(R*z V...V R%zx)

are logically equivalent (note that any boolean combination of formulas R;x
can be written as a disjunction of formulas R*z). We assume ¢ > 2, as the
case ¢t = 1 is trivial. Since for 4 = 1,...,t and k > 0 the sentence 3>%z R% ¢
is a consequence of the set Tiana{wo) of extension axioms compatible with
o, we have

(1) 1(3=*z R¥ x| ) = 0.

The isomorphism type of a model A of g is determined by (ni,...,n:),
where n; = ||[{a € 4| A |E R*z[a]}||. Using induction on n and — in the
induction step — on t, it is easy to show that

(2) the number of t-tuples (n1,...,n) such that ny +...+n, = n equals the

binomial coefficient (”j_tzl), a polynomial in n of degree ¢ — 1.

Hence, Un(po) = ("1 h.

By 2.3.12 and 3.3.25(b), any sentence of LY, [7] is equivalent to a finite
boolean combination of sentences of the form 3=*z Rz (where £ > 0 and
a:{1,...,m} — {0,1}). Thus it suffices to show that

w3z Rz o) = (T *z Rox | o) € {0,1}.

If a # a1,...,a # aq then u(I3=*z R%z|pg) = 1(3*x R*z|po) = 0 or
1 depending on whether & > 0 or £ = 0. Let a = ;. Then by (2),
Un(F=Fz Rz A po) = ("711F7?), a polynomial in n of degree ¢—2, and
Un(po) = ("/*]"), a polynomial in n of degree ¢—1. Hence,

U,(F7%z R%z A o)
Un(spo)

and thus by (1), u(3™%z Rz | o) = (3% 2 R*z|pg) = 0.

Finally, we turn to arbitrary vocabularies. Let H be a nontrivial para-
metric class which is not free. By the definition of freeness, if A € H then
any bijection of the universe that preserves the induced unary relations
{a | R%...a} for R € 7, is an automorphism of A. Hence, the counting
arguments in the preceding special case remain valid. O

(3% z Rz|pq) = limy, o0 =0,

Exercise 4.3.9 Let 0 = {P} and 7 = {P, R} where P, R are binary. Show
for the FO[o]-sentences ¢ := JxJy Pry and ¢ := “Pis an ordering” Vv
323y Poy that 1° (pl) = 1, u” (plg) = § and I"(pl¢) = o7 (ple) = 1. O
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4.3.1 Appendix

In the following we prove (part of) Proposition 4.3.5. Fix a vocabulary 7 and

n > 1, and let A, B, ... range over 7-structures with universe {1,...,n} and
T, p, - .. over permutations of {1,...,n}. We set
Aut(4) = {n]n: A=A}
Str(m) = {A}m: A=A}

Lemma 4.3.10 U,(7) - n! = > ||Str(#)]].

Proof. Uy,(7) is the number of equivalence classes of the relation ~ where
A~B iff A=B.

Clearly,
A= B implies ||[Aut(A4)| = ||[Aut(B)]].

Given A and 7, once more we let A, be the structure A with = : 4 = A,.
We have already remarked that

A=A, iff 7o p e Aut(A).

Thus, {[{B | A ¢ B}|| is the index of the subgroup Aut(A) in the group of all
permutations of {1,...,n}; hence,

n‘

|Aut(A)]| = m

Therefore, for fixed A,

S lAaw@)l= Y fAut(A)] =n.

B,B=A B,B=A

Taking into account that there are U,(7) many equivalence classes with re-
spect to 22, we have

(1) % |Aut(B)|| = Un(7) - nl.
On the other hand,

(2) % 1AutB)| = [I{(m, B) | = € Aut(B)}]| = L [|Stx()ll.

(1) and (2) yield the desired equation. O
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Let M be finite and f : M — M be a bijection. Denote by c(f) the
number of f-cycles,* by spt(f) the support of f,

spt(f) :=={a € M | f(a) # a},

and set s(f) := ||spt(f)||- Since a € M \ spt(f) gives rise to the f-cycle {a}
and since the f-cycle of any a € spt(f) has at least two elements, we have

3) e(f) <M - s(f) + & < [|m]| - =L,

Proposition 4.3.11 Let 7 be a relational vocabulary that contains at least
one relation symbol of arity > 2. Then uw(RIG) = 1.

Proof. Obviously, we can assume ||7|| = 1. For simplicity, we restrict ourselves

to T = {E} with binary E. By 4.3.3 it suffices to show that lim, L#(;)

T.(r)ynl =
1, or equivalently, that
Un(r) - n!

m ————— =1
n—00 Ln(T)
Clearly,
(4) Lp(r) = o’
Fix n and remind our convention that =,p,... denote permutations of
{1,...,n} and A, B, ... denote T-structures with universe {1,...,n}.
Each 7 induces a permutation 7 of {1,...,n} x {1,...,n},

w((i,5)) = (w(@),=(j)).
If = is an automorphism of A and {a, #(a), #(7(a)),...} a #-cycle, then
(5) EAq iff EA%(@) if EAR(7(a))...

that is, we have E4b for all elements b of the #-cycle of @, or for none.
Therefore, 7 is an automorphism for exactly 2™ many r-structures,

(6) [IStr(m)]| = 265

By the preceding lemma, (4), and (6), we obtain

Un(T) -n! _ er ”Str(ﬂ)” _ e(7)—n?
R P

™

We must show that >~ 2¢(®)=n" _, 1. Since for 7 the identity on {1,...,n}
we have c(7) = n?, this is equivalent to

* For a € M the set {a, f(a), f(f(a)),...} is the f-cycle of a.
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> 2e(M-n* _y
w#id

For any =,
spt(7) x {1,...,n} C spt(%);

hence, by (3), ¢(7) < n? — i’;lﬂ and thus,

Z 26(7})77’12 S Z 2—3(;—)41.
reid wid
For k = 2,...,n the number of permutations 7 with s(7) = kis < (:)k' < nk.
Therefore, for n > 2-logn, we have
—s(m)n k- 1
Zﬂ';éld 2 < Zk 2 ’I’L _Tn = ZIZ:Z 2—514'(” - 10g Tl)

< (Tl—l) R 2-(n~2~10g n)

(for the last inequality note that k& = 2 gives the largest summand of the
third sum). Since (n—1)-2=("=216") _, ) we obtain the desired result. [

4.4 Examples and Consequences

In the present section we give several examples concerning graphs and draw
some consequences for fragments of second-order logic. We start with some
general remarks.

Fix a nontrivial parametric sentence . By the results of section 4.2,
Trana(wo) has a uniquely determined countable model R(yg), the random
model of yg. Some results of the preceding sections are summarized in:

Proposition 4.4.1 For an LY, -sentence @ the following are equivalent:

(1) Trana(wo) E ¢ (if) R(po) =
(iil) {lpo) =1 (iv) ulplpo) = 1. 0

Using the extension axioms in Tranq(wg) we show:

Proposition 4.4.2 (a) Let B be a finite model of po. Then almost all finite
models of py contain a substructure isomorphic to B.

(b) Let B be a finite model of po and mo an isomorphism of a substructure A
of B into R(po). Then o can be extended to an isomorphism of B into

R(o).

Proof. (a) Let B consist of s elements and let ¢f be the conjunction of gy
and the finitely many r-extension axioms of Trana(ipe) with r < s. Clearly,
any model of ¢§ contains a substructure isomorphic to B. As {(pf|we) = 1



4.4 Examples and Consequences 85

the claim follows.

(b) Let A = {@} and B = {@,b}. Then (note that %=

i

W%,E)

VE(QO?LLE(,T}) - HESD%;EE(E w))
is a consequence of the extension axioms in Trana(wo) and hence, R(po)
is a model of it. Since A4 go?A,E[E] and ¢% ; is quantifier-free, we have

R(po) = % zlm0(@)], and therefore there are d in R(yo) such that R(po) =
Lp% az[71'0 (@),d). So @b~ mo(@)d is the required isomorphism. O

By a back and forth argument we get:

Proposition 4.4.3 If B and C are isomorphic finite substructures of R{o),
then there is an automorphism of R(pg) mapping B onto C.

Proof. Assume that R(wg) has universe {ag, a1, as,...} and that = : B = C.
Take the finite substructure B, of R(gpo) with B; = BU {ao}. By part (b)
of the preceding proposition, there is an isomorphism = : By = C; for a
suitable C; C R(yo) that extends 7. Similarly, we get my : Bo = Cy with
7r(') C mo, By € R(wo), Co € Ripg), and Cy = C(l) U {ao}. Continuing this
way we obtain a sequence 7o C w1y C o C ... with a; € do(m;)Nrg(m;). Thus,
7 := ;>0 7 is the desired automorphism of R(yo). O

Graphs

Let g be a parametric sentence axiomatizing the class of graphs. Tiana(¢0a)
is equivalent t0 Trand,¢ = {Pa,P>2}U

n 14
{Vdistinet 21 ... 2p01 .. .ylElz(/\ Ez;z A /\(ﬁEyiz A=y, =2)) | n+1>1}.

i=1 i=1

In fact, the sentences in Tiang,¢ are implied by the extension axioms in
Trand(p@); hence, any model of Tiana(g) is a model of Trand,¢. On the
other hand, a back and forth argument using the axioms in Tiang,¢ shows
that any two of its models and hence, any model of Tiand,¢ and any model
of Tranda(pq) are partially isomorphic; therefore, any model of Tigng,¢ is a
model of Trana(ea)-

It is well known that a graph cannot be planar if it contains the subgraph
K5, a clique with 5 elements. Thus, by part (a) of 4.4.2, we get:

Proposition 4.4.4 Almost all finite graphs are not planar. d
Moreover, we have:

Proposition 4.4.5 R{pq), the random graph, and almost all finite graphs
G are connected, the diameter D(G) := max{d(a,b) | a,b € G} being 2.
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Proof. Note that, by the extension axioms, R(p) and almost all finite graphs
are models of

(%) 3zdy ~Exy AVzVy3z(Ezz A Eyz).
But any graph G satisfying this sentence is connected with D(G) = 2. O

Even though “connectedness” is not expressible in first-order logic, the
first-order sentence (x) of the preceding proof is a property of almost all
graphs that implies “connectedness”. The situation for “rigidity” is different:

Proposition 4.4.6 (a) Almost all finite graphs are rigid.

(b) R(pg) is not rigid.

(¢) No L%, -definable property of almost all graphs implies rigidity.

Proof. For part (a) cf. 4.3.5 and 4.3.2. Part (b) is an immediate consequence
of 4.4.3 (for B and C take two substructures of cardinality one). Part (c)

follows from (b) because any L% -definable property of almost all graphs
holds in R{pqg) (cf. 4.4.1). O

Fragments of Second-Order Logic

Connectedness of graphs can be expressed by a I1}-sentence, for example by
wconn = VX (VaXz VVz-XzVIzdy (Xz A -Xy A Ezy)).
Nonrigidity is expressible by

AXVaVyVuVodz 3z Tw (X212 A Xzze A - Xww A
(Xzy A Xuv) = ((z =u & y =v) A (Ezu < Eyv)))),

a so-called %1(V*3*)-sentence , that is, a sentence of the form
3X1 . E]styl .. .Vym3z1 e Ele

with s,m,l € N and x quantifier-free. Similarly, ¥1(3*V*)-sentences have the

form
3X1 . EXSEIyl PR Hym\izl .. VZlX

where x is quantifier-free.

Part (a) of the following proposition generalizes the fact mentioned above
that connectedness is implied by a first-order property of almost all graphs.
Part (b) shows that nonrigidity cannot be expressed by a ¥1(3*V*)-sentence
(otherwise almost all finite graphs would be nonrigid).

Proposition 4.4.7 Suppose that pg is nontrivial parametric.

(a) Let o be a I} -sentence. If R(po) |= o then there is a first-order sentence
¥ such that
WWlp) =1 and  Ev o
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(b) Let v be a X}(I*V*)-sentence. If R(po) |E ¢ then there is a first-order
sentence v such that

u()po) =1 and Ffn ¥ — .
Proof. (a) Assume that R(pg) E ¢ holds for the I1}-sentence
p=VX1...VXsx,

where x contains no second-order quantifiers. Then the set Tranda{po) U {—x}
of U {Xy,...,X,}-sentences has no model (otherwise, by the Léwenheim-
Skolem theorem, it would have a countable model whose 7-reduct would be
(isomorphic to) the unique countable model R{wg) of Trand{e); but then
Rpo) E 3X1...3Xs—yx, contrary to R(pg) E VX;...VX,x). By compact-
ness, there is a finite subset 75 of Trana{wo) such that Tp U {—x} is not sat-
isfiable. Let 9 be the conjunction of the sentences in Ty. Then u(ilpe) = 1
and =9 — x, hence ¢ — VX, ... VX,x.

(b) Suppose that for the i (3*V*)-sentence
¢ = 13X, ...3X, 35y

with quantifier-free x we have R(wo) E ¢, say, (R(vo), X1,...,Xs) = ITV7x.
Choose @ in R{po) such that

(*) (R(po), X1, ..., Xs) = Vox[a)

and denote by Ay the submodel of R(po) with universe {a}. Since ITp2(Z)
holds in R (), there is a ¢ that is the conjunction of ¢y and of finitely many
extension axioms compatible with yg such that = ¢ — 3Tp%(Z). Obviously,
u(t|po) = 1. We show that =an ¥ — .

So let B be a finite model of . Choose d in B such that B |= ¢2[d]. Then
d + @ is an isomorphism from the substructure of B with universe {d} into
R(pg). By 4.4.2(b), there is an extension 7 of d — @ that is an isomorphism
of B onto a substructure B’ of R(i). It suffices to show that B’ is a model
of . By (%), as Vg is universal,

(B, X1NnB, ..., X;NB') = Vyxla],
hence (B, X; N B',...,X,NB'") = 3@vyy, thus B’ | 3X; ...3X, Izvyyx. O

As a consequence we get:

Theorem 4.4.8 Let ¢y be nontrivial parametric and let ¢ be a T1(3*V*)-
sentence.

(@) If R(wo) = ¢ then u(plpo) = 1.
(b) If R(po) £ ¢ then u{plpo) = 0.
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Proof. (a) If R(po) E ¢ then, by part (b) of the proposition, there is a
first-order sentence ¢ such that u(1}pg) = 1 and |=an ¥ — . In particular,
u(glpo) = 1.

For (b), assume that R(po) = ~. Since = is (logically equivalent to) a
I1}-sentence there is, by part (a) of the proposition, a first-order sentence
such that u(¢|wp) = 1 and |= ¢ — —p. Therefore, u(—plpo) = 1 and hence,
u(ip|po) = 0. o

By 4.3.7, the preceding results remain valid for the labeled probability as
well. Hence, we have:

Corollary 4.4.9 %1(3*V*) satisfies the labeled and the unlabeled 0-1 law
with respect to nontrivial parametric classes. O

The satisfiability problem for 3*V*-sentences is decidable, and we have
just seen that ¥1(3*V*) has the 0-1 law. This is a special case of a general
phenomenon: It has turned out that the satisfiability problem for a prefix
class @ of first-order logic is decidable just in case the 0-1 law holds for %1&
(:={3Ryp | ¢ € B}), cf. [126].

Orderings

In the preceding exposition we dealt with pararmetric classes; the following
examples show, among other things, that the class of orderings is not para-
metric.

Examples 4.4.10 (a) Let 7 = {<, P} with unary P and let O = O[r] be
the class of T-structures ordered by <. Denote by ¢ a first-order sentence
expressing that the first element of the ordering is in P, say, ¢ = Jz(Pz A
Yy -y < z). Then

u(pl0) = 1(l0) = 5

(argue as in 4.1.1(a)). By 4.2.3, O is not parametric.

(b) For 7 = {<} consider the class ORD of orderings. By 2.3.6, for any first-
order sentence o we have u(ip|ORD) = I(p|ORD) = 1iff ({0,...,2%},<) & ¢,
where k is the quantifier rank of . Therefore, ORD satisfies the labeled and
the unlabeled 0-1 law for FO. On the other hand, ORD does not satisfy the
(labeled or unlabeled) 0-1 law for L2_ . In fact, the probabilities /(¢|ORD)
and u(p|ORD) do not exist for any 12 -sentence ¢ expressing that the
ordering has an even number of elements. (As ¢ one can take \/ .| X2n,

where Y2, are the FO*-formulas introduced in Example 3.3.1(a).) O

4.5 Probabilities of Monadic Second Order Properties

Already in 4.1.1(c) we saw that, in general, the (labeled or unlabeled) as-
ymptotic probabilities do not always exist for second-order sentences. In the
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present section we show that this is true even for monadic ¥1i-sentences, that
is, for sentences of the form

X ... 3X e

where X1,...,X,, are unary and v is first-order. Moreover, we shall show
the corresponding result for nontrivial free parametric classes.

Theorem 4.5.1 Let g be a nontrivial free parametric sentence in a rela-
tional vocabulary 79. Then there is a monadic X1 -sentence ¢ of vocabulary 1o
such that the labeled asympiotic probability 1(p|ys) does not ezist.

Since the class of all finite T-structures is a nontrivial parametric class in case
T contains an at least binary relation symbol, we obtain

Corollary 4.5.2 Let 7 be a vocabulary that contains an at least binary re-
lation symbol. Then there is a monadic X} -sentence of vocabulary T without
labeled asymptotic probability. O

Proof (of 4.5.1). Let vy be a nontrivial free parametric sentence and H its
class of finite models. Then the following lemma 4.5.3 tells us that there is a
first-order formula &(z,y, X,Y, Z,U) with unary relation variables X,Y, Z,U
such that

AX3IY3IZ3AU(“k(.,, X,Y, Z,U) is an ordering of the universe”)

almost surely holds on H. Therefore, with a new unary relation variable V,
the sentence

IXAVIAZIUAV (“k(,, ., X,Y,Z,U) is an ordering of the universe
whose first element belongs to V' and whose last element does not
belong to V? AVzVy (“if y is the x-successor of  then (V& + =Vy)”)

almost surely holds for the structures in H of even cardinality and almost
surcly gets wrong for the structures in H of odd cardinality. So it has no
labeled asymptotic probability (recall that o is nontrivial and thus, has
models in all cardinalities). O

Lemma 4.5.3 There is a first-order formule «(z,y, X,Y,Z,U) with unary
relation variables X,Y, Z, U such that with

w = IXIAY3ZIU(“k(., ., X,Y,Z,U) is an ordering of the universe”)
the labeled asymptotic probability l{wlpo) equals 1.

Proof. As ¢g is free, there is a relation symbol R in 7 of arity r > 2, an
m > 2, and a surjection i: {1,...,r} = {1,...,m} such that both

wo ANz ... awm(R.I'i(l) A T CORA /\ T 7 xp)
1<k<i<m
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and

wo ANz ... me(—\R:Ei(l) STy N /\ Ty 7 a:l)

1<k<I<m

are satisfiable. We set

Y(T1,...,2,m) = Rmi(l) c Ty A /\ T # I

1<k<l<m
and
YAz, Ty) = _‘R$i(1) c Ty A /\ Ty # 1.
1<k<i<m

Then, among the 0-isomorphism types of m distinct elements satisfiable in
some model of g, there are types implying ¥(x1,...,2,) and types imply-
ing ¥7(z1,...,Zm). Hence, the fraction p of types implying ¥ (z1,...,Zm)
satisfies 0 < p < 1. Interchanging ¢ and ¢, if necessary, we may assume
that

1
0<p< —.
P=5

Intuitively, if we take distinct elements aq,...,a,, in a model A4 of gy, the
probability for ¢[ai,...,am,] to hold in A is p.

We first consider the case m = 2 and write ¢(z,y) for ¢¥(z1,z5). The idea
behind our argumentation is as follows: We show that with high probability
models of gy contain a subset of logarithmic size ordered by 4 (z,y). The
ordering can suitably be extended to an ordering of the whole universe; this
will be done in two steps.

We come to the details. Given n, we set

c = —log,n,
1 . 1
roo= | icj, the integer part of 36
s = |3c],
n
t = —| -1
g~ 1

X ={1,...,r} and Z:={n—-s+1,...,n}

Note that for sufficiently large n, the sets X and Z are disjoint.

In the following we equip the set of models of g over {1,...,n} with the
uniform probability distribution.

Claim 1. Almost surely in models of g over {1,...,n} there is a set Y of
power 7 disjoint from X U Z such that

WY(z,y) = YeAYyATe(XzAt(ze) A (zy)
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defines an ordering on Y.

Claim 2. Almost surely in models of 4 over {1,...n}, for any subset V" of
{1,...,n} of cardinality r which is disjoint from X U Z, we have

(1) VaVy(Zz A Zynz #y = 22Y 2 A =((z,2) & ¥(z,9))));
(2) with U :=(YuZz)°:

VaVy(Uz AUy Az £ y) = 32(Z2 A=((z,2) © $(z,9)))).

Then we are done: If ¢Y (z,y) defines an ordering on Y and (1), (2) of Claim
2 are valid, then

wf (z,y) = xz#yAZzAZy A “for the ypY-smallest element z of ¥’
with =(¥(z,z) <> ¥(z,y)) we have ¥(z,z)”

defines an ordering on Z and

vY(z,y) = z#AyAUzAUy A “for the ypZ-smallest element z of Z
with =(¢(z,z) <> ¥(z,y)) we have ¢¥(z,z)”

defines an ordering on U.

Therefore, with

k(z,y, X, Y, Z,U) = “X,Y,Z are disjoint and U = (Y U Z)?” A

WZ(z,y) Vei(z,y) VPL(a,y)
V(Y A-Yy)V(Zz AUy)),

claims 1 and 2 yield that
I(3X3Y3Z3U“k(., ., X,Y, Z,U) defines a linear ordering” | po) = 1.

So, we have ¢ as claimed in the statement of the lemma.

We give the proofs of Claim 1 and Claim 2. To prove Claim 1, for i € {1,...,t}
we set

Y(@E) = {r-i+1,...,7r-i+r}

Note that the Y (i) are pairwise disjoint and disjoint from both X and Z (as
r-t+7 <% <n-—s+1). We show that almost surely in models of @y over
{1,...,n} thereis an i € {1,...,¢} such that

(%) for all a,b € X, ¢y(a,r-i+b) holds iff a <b.

Then almost surely there is a Y, namely ¥ = Y (i) for an i satisfying (x),
such that for all di,ds € Y
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there is an @ € X such that ¢(a,d;) holds and —(a,d>) holds iff
do < dl,

that is, ¥ (z,y) defines an ordering on Y.

For i € {1,...,n} let ¢ be the probability that i satisfies (x) (where we
refer to the uniform probability distribution on the set of models of py over
{1,...,n}). Then

Hence, the probability that no ¢ € {1,...,t} satisfies (x) is
1

< - < a- o
< (- MFEE 0

We now come to a proof of Claim 2. Given Y, the probability of the failure
of (1) is

= <;) ’ (P2 + (1 _p)Z)T <5 02 ) (p2 + (1 - p)2)\/;71 ——n—oo O?

and the probability for the failure of (2) is

'
< <2> (P + (1 -p)?)°
< 0@ (A -p)En
< n2. (p2 +(1 _p)2)1°gp2+(1fp>2 n"t—1 (note that p2 +(1 —p)2 >p)
1

n-(p+(1-p)?)
Altogether the case m = 2 is settled.

We finally sketch a proof for the case m > 2. The model construction method
for parametric classes given in section 4.2 shows that for distinct elements
ai,...,am the probability for ¢(ay, ..., am) to hold in a model over {1,...,n}
remains the same if we fix as, ..., a,;. Therefore, the preceding proof for the
case m = 2 remains valid with the following changes:

(i) We consider structures over {1,...,n,n+1,...,n+m — 2}.

(i) Wefixzzbyn+1,...,2, by n+m —2.

(iii) We replace U = (Y U Z)¢ by the complement of Y U Z within {1,...,n}.

(iv) We put n + 1,...,n + m — 2 at the end of the ordering defined on
{1,...,n} for the case m = 2.

This leads to the following changes in the definition of ¢:
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(i) We add “Jzs...3dz,,” to the prefix.

(ii) We add the conjunct “A;p <, Tk 7 21" to the kernel.

(iil) We define (z,y,Ts,...,Tm, X, Y, Z,U)asincasen = 2 with 3, ..., Zm,
as parameters stemming from ¥(z,y, 23, ...,z ) and then replace it by
the disjunction of the following formulas

/\3gk§m T F T A Vggkgm Y =Tk,
Vickam Vicjom (@ =26 Ay = y5),

/\3Sk5m($ 7‘—‘é T ANy 7[: mk) A I‘L(.’L’,y,SIJg, cee 7-7:maX17Y,7 Z’a UI)

where, e.g., X' is X \ {x3,..., 2}
|

Exercise 4.5.4 Let 7 contain the relation symbol < and at least one further
relation symbol of arity > 2. Let Ofr] be the class of ordered 7-structures.
Then there is a first-order ¢ such that I(¢|O[r]) does not exist. (Hint: Argue
as in the preceding proof, but now let intervals take over the role of the
subsets X,Y,Z and U.) 0

Notes 4.5.5 The 01 law for first-order logic was independently proven by
Glebskij, Logan, Liogonkij, Talanov [47] and Fagin [37], its extension to para-
metric classes is due to Oberschelp [123], and its extension to LY,  to Kolaitis
and Vardi [109]. The papers [107, 108] contain, among other things, the re-
sults on fragments of second-order logic presented in section 4.4. The last
section is based on [98] (cf. also [99, 141]) and the Appendix 4.3.1 on [38].
Survey articles on 0-1 laws are [21, 72, 111, 146].



5. Satisfiability in the Finite

A classical question having its origin in the decision problem for first-order
logic, asks for specific classes & of sentences whether they have the finite
model property, i.e., whether every satisfiable sentence of ¢ has a finite
model. We are going to consider two examples where we can demonstrate
the methodological usefulness of techniques and results we have developed so
far.

A first-order sentence ¢ expressing that < is a partial ordering without max-
imal elements is satisfiable but has no finite model. As ¢ we can take (1) or

(2):
(1) Ve—z < 2z AVa2VyVz((z <y Ay < z) >z < z) AVadyz <y
(2) VaVyVezdu(-z <z A ((z <yAy <z) sz <z)Az<u)

The sentence in (1) uses only three variables, the sentence in (2) is a V33-
sentence. These sentences are “best” possible ones: We show in section 5.1
that every satisfiable sentence with at most two variables has a finite model
and in section 5.2 that the same holds for every satisfiable V?3*-sentence
without the equality sign.!

5.1 Finite Model Property of FO?

We prove that every satisfiable sentence with at most two variables in a re-
lational vocabulary has a finite model. As a consequence, every sentence of
modal logic has a finite model (cf. 5.1.8). We remark that one can remove
the restriction on constants {cf. 5.1.7), but the result is not valid for “vocab-
ularies” with function symbols: Consider the sentence with two variables

Vay(f(z) = fly) =z =y) A IV f(z) =y
expressing that f is injective but not surjective.

Fix a relational vocabulary 7 and let # := v; and y := vs. For the purpose
of this section we say that a first-order formula (possibly containing second-
order variables) is normal, if it has the form

! Furthermore, any satisfiable universal sentence has a finite model.
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Vayyp A J\ VoI

i=1

where 1, 1; € FO? are quantifier-free. We shall use the next lemma to re-
strict ourselves to normal sentences when proving the finite satisfiability of
satisfiable FO?-sentences.

Lemma 5.1.1 Every sentence 3X (¢ A VaVy), where ¢ is normal and ¢ €
FO? is equivalent to a sentence of the form 3Y x, where x is normal.

Proof. We proceed by induction on the number of quantifiers in 3. If
contains no quantifiers, the result is immediate. In the induction step we
show how to eliminate a quantifier in 4. So let, say, Vz1g be a subformula of
1 with quantifier-free 5. Then, 1 is logically equivalent to

X (Vy(Xy <> Vo) A VaVy ')

where 1’ results from 14 by replacing Vg by Xy, and hence, it is logically
equivalent to

AX (VaVy(Xy — o) A Vydz(—pe V Xy) A VaVyy')

and thus to

IX (VaVy(Xy — o) A YaTy(—iho (ZD V Xz) A VaVyy')

(Yo (gjj) is obtained from % by simultaneously replacing all occurrences of

and y by y and =, respectively).
Altogether, 3X (¢ A VaVy1)) is equivalent to

X IX (¢ A VaVy(Xy — o) A Yay(—o (Z) VXz) A VaVy')
where the first conjunct is normal and ' has less quantifiers than ¢. By

induction hypothesis, we obtain our claim. O

Corollary 5.1.2 Every sentence of FO? is equivalent to a sentence of the
form 3Y x, where x is normal.

Proof. Given an_ FO®-sentence 1/, apply the preceding lemma to IX(p A
VaVyy), where X is the empty sequence and ¢ := VaVyz = z. |

We now formulate the main result of this section.

Theorem 5.1.3 FEvery satisfiable first-order sentence with at most two vari-
ables in o relational vocabulary has a finite model.
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Proof. Let ¢ be such a sentence. We apply the corollary above. Since 3Y y
and y have models over the same universes, we may assume that ¢ has the
form

@ =Vavyy A N\ Vadye;
i=1

where 9, ¢; € FO? are quantifier-free. Moreover, we may suppose that

fori=1,...,r, YiEz#y

since over structures with at least two elements Yz3yw;(z,y) is equivalent to

Vzdy(z # y A (Wilz,y) V iz, @))).

Let A be a model of ¢. An element a € A is a king (in A) if there is no
other element b of A with the same O-isomorphism type, i.e., ¢ , = % ,. If
A = t);a, b], we call b a child of a (in A), more exactly, an i-child. For a € A
and i € {1,...,7} we let a’ be a fixed i-child of a. Then, a # a*. We set

C:= U {a,a',...,a"}.

a€A, aking
Clearly, C is finite. We show that there is a B such that

(i) B=CU({¢%,laec Anoking} x{1,...,r} x {0,1,2}).
(i1) Each 0-isomorphism type of a pair of elements of B is realized in A.
(iil) Fori=1,...,r, all elements of B have an i-child in B.

Then B is a model of VaVy ¢ by (ii), and of \[_, Vz3yy; by (iii); thus by (i),
B is a finite model of .

To define B, we fix the 0-isomorphism type of all pairs of elements of B in
a suitable way to ensure (ii) and (iil). The rest — in case 7 contains relation
symbols of arity > 3 — can be fixed in an arbitrary way.

Step 1. For a,b € C,a # b, we set

PBap = Phab
Step 2. Let b € B. We aim at providing children for bin B. Soleti € {i,...,r}.

—If b € C and b is a king or b has an i-child in A that lies in C, b has an
i-child in B because of Step 1.

— If b = @? for a king a, but b has no i-child in C, we let b’ := (Lpgh(aj)i,i,())
be an i-child of b in B by setting

0 e 0
PB.bbt T PAed (ad)it

{(In case there are several possibilities for @ and j, we fix one choice; and
we also do so in similar situations.)
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—1f b= (¢% 4. 4,k) (and, hence, a € A is not a king in A) and o’ is a king
in A, we let a® be an i-child of b in B by setting
0 — 0
PBbai = PAaair
- Ifb= (cp%a,j, k) and if a’ is not a king in A, we let &' := (% .4, (k+1)
(mod 3)) be an i-child of b in B by setting
‘P%,b,b' = (p?4,a,ai‘
In all of these cases, by fixing a type cp%%b, we of course at the same time
also fix ¢, .-

Step 3. 1f, e.g., for d € C, b := (9% ,,4,k), and b’ := (9% .., j', k') the 0-
isomorphism type of (d,b) or of (b,b') has not been fixed in the first two
steps, we set

0 0 0 — 0
¥YBdb = PAda O PBpy ‘= PAaa

respectively. Note that the definitions we have made do not contradict each
other, as for ¢ € C' we have ¢} . = ¢% . and for b = (% ,,5,k) we have
go%,b = ¢% ,- By construction, (i) and (iii) are satisfied. O

Corollary 5.1.4 For any relational vocabulary T, the set & of logically valid
first-order sentences with at most two variables is decidable.

Proof. By the completeness theorem for first-order logic the set @ is enumer-
able. For its “complement”

& = {p FO?[r]-sentence | ¢ is not logically valid}
we have by the preceding theorem that

$™ = {p FO?[r]-sentence | =y has a finite model}.
Therefore, ™V is enumerable too, and hence, & is decidable. d

We remarked after Corollary 4.4.9 that the classical prefix classes with a
decidable satisfaction problem correspond to fragments of ¥ with a 0-1
law. Even though we just have shown that FO? has a decidable satisfaction
problem, the 0-1 law does not hold for the class £1-FO? := {3X ¢ | ¢ € FO?},
cf. [114].

An analysis of the proof of the main theorem leads to the statement of the
following exercise.

Exercise 5.1.5 Show that to any first-order sentence ¢ in at most two vari-
ables one can effectively assign a natural number m such that:
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—  has a model if and only if  has a model of power < m.
— If ¢ has a model of power > m then ¢ has a model in each cardinality
>m. 0

Exercise 5.1.6 Let 7 = {<} with < binary. Show that for all n > 1 there
is a satisfiable FO?[7]-sentence having only models of cardinality > n. (Hint:
Use the formulas introduced in part (a) of 3.3.1, but note that the class of
orderings is not axiomatizable in FO?.) O

Exercise 5.1.7 Show that any satisfiable sentence with at most two vari-
ables in a vocabulary possibly containing constants has a finite model. (Hint;:
Let ¢ be such a sentence and denote by C the set of constants. For any n-ary
relation symbol P and any map 7 : {1,...,n} — C U {x,y} introduce a new
2-ary relation symbol P™. Apply the theorem to the sentence obtained from ¢
by replacing any subformula Pr(1)...n(n) by P™zy and treating equations
and quantifiers appropriately.) ]

Exercise 5.1.8 Show that any satisfiable sentence of modal logic has a finite
model. The sentences of modal logic are built up from propositional variables
P1,D2,--- by means of the propositional connectives, say — and V, and the
“necessity operator” 0. A structure (or frame) M is a triple (A4, R, F) where
A is a nonempty set, the set of “states”, R is a binary relation on A, and
F :{p1,p2,...} = Pow(A), Pow(A) being the power set of A. For s € A, the
satisfaction relation M}=_« is defined by induction on the complexity of a:

M=, pi iff s € F(p:)

M=, ~a iff not Mk, a

M (aVP) iff M, a or ME_p

M Da iff M|=,a for all t such that Rst.

If M a for all s € A, then M is said to be a model of a. To solve the
exercise, let the propositional variables occurring in a be among p;,...,pn.
Associate with « a formula ¢, (z) € FO2[{R, Py,...,P,}], where P1,..., P,
are unary, such that for all (4, R, F) and s € A,

(A, R, F) ':s @ iff (AaRa}—(pl)v"'aj:(pn)) ':90(1[3]- n

5.2 Finite Model Property of V?3*-Sentences

We fix a relational vocabulary 7. In the preceding section we have proved
that every FO2-sentence has models in the same cardinalities as a sentence
of the form

Vavyyp A\ VaTyp
=1

with quantifier-free 1, 1);. This sentence is equivalent to
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r

(*) Vay3y - 3y (P(zy) A N vele, vi)-

i=1
We then have proved the finite model property for these sentences.
By a V23*-sentence we mean a first-order sentence of the form

\/;171V:r23y1 cee E’ykwl

where k£ > 0 and ¢’ is quantifier-free. In particular, the sentence (%) is a
V23*_sentence. In this section we extend the result about the finite model
property for sentences of the form (*) to arbitrary V23*-sentences, however
under the proviso that they have models without kings. (Recall that a € A4
is a king in the structure A if for no b € A,b # a, we have ¢ = ¢9.)

Theorem 5.2.1 Suppose that T is a relational vocabulary. If 1 is a ¥V?3*-
sentence which has a model without kings, then it has a finite model.

We first draw a consequence. For a structure A in a relational vocabulary
7 and | > 2, denote by A x [ the structure which for every element of A
contains | duplicates; more precisely: A x [ is the 7-structure with universe
A x{0,...,1—1} such that for any n-ary R in 7,

RM™ = {((a1,i1)y -+, (@nyin)) | RAa1 .. ap, 0<4q,... in <1—1}.

Clearly, A x [ is a structure without kings, and a routine proof by induction
shows that

Ay iff  AxlEy

holds for all sentences ¢ without (the) equality (sign). As a corollary of the
above theorem we therefore obtain:

Corollary 5.2.2 Suppose that T is a relational vocabulary and v is a V23*-
sentence without equality. If v is satisfiable then it has a finite model.

As in 5.1.4 for FO? we now get:

Corollary 5.2.3 The set of logically valid VY>3 -sentences without equality
in a relational vocabulary is decidable. d

Proof (of 5.2.1). In models with at least two elements a V?3*-sentence
Vvl\ﬁ)gﬂvg cee E|’Uk7,/)/(’(}1, cen ,Q)k)
is equivalent to the sentence

Vo Voeday ... JzgTzs . .. eg (v = v9 — (' (01,01, 23, ..., 21)
/\’L/)I(’Ul,UQ,Zg,...,Zk))),

and, for example, a sentence of the form
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Yoy Yos 3z yyy (v1, v, T, y)
is equivalent to
Vo Voo 3e 3y (¢ (v1, v2, ¢, 2) V o (v1, 02, 2,9)) A -z = y).
Therefore, we can assume that our V?3*-sentence 1 has the form

Yo Voo Jus ... Fug (o = v — (" (01, ..., 08) A /\ —v; = vj))
3<i<si<k

where 9’ is quantifier-free.

Choose a model A of ¢ without kings and let
S = {¢%|a€ A} and T :={o% |a,b€ A,a#b}

be the 0-isomorphism types of elements and of pairs of elements of A, respec-
tively. If p(v1, ..., v;) is a O-isomorphism type of any I-tuple and 1 < m,n <1
with m # n, let pp(v1) and pp, n(v1,v2) be the induced O-isomorphism types
of v,, and of v,,, v,, respectively; in particular, for any B and by,...,b € B,

B plbi,....b) implies ¢) = pm and @) 4 = pm,n-
As A has no kings, we get:
(1)  Forall p,¢' €S thereis a x € T such that ¢ = x1 and ¢’ = xa.
Morcover, since A is a modcl of 4, we have:
(2) For every x € T there is a O-isomorphism type p(v1,...,vx) with

(a) p;eSfori=1,... k
() pmm €T for 1 <m<n<kandp 2=y
(C) l—_—p—>’ll)l(’l}1,...,’l)k)-

To get the statement of the theorem it suffices to show:
Suppose that S and T' are nonempty sets of 0-isomorphism types

(+)  of elements and of pairs of elements, respectively, satisfying (1)
and (2). Then v has a finite model.

Let s := ||S|| and t := ||T|| and fix an ordering on S. To prove (+), we
give a method to construct, for every n > k, structures B with universe
{1,2,...,n-s} (afterwards we show that with nonvanishing probability these

structures are models of v). The 0-isomorphism types of elements are fixed
by a deterministic algorithm while the O-isomorphism types of tuples of more
than one element are chosen randomly. The exact construction procedure of
B reads as follows:
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(i) Haed{l,2,...,n-s}anda=14-s+j for some 4, such that 0 <i < n
and 1 < j < s, ensure that 9 is equal to the j-th element in S.

(it) a, be{l,2,....,n-5}, 1 <a<b<n-s, choose at random a y in
{xeT|x1=¢% x2 = )} (this set is nonempty by (1)) and ensure

that ¢, = x.
(iii) If R is an m-ary relation symbol in 7, define the truth value of Ra; ... an,
at random for any a1,...,an € {1,2,...,n- s} containing at least three

and at most k& distinct members.
(iv) If Ris an m-ary relation symbol in 7, define the truth value of Ra; ... a,,
to be “false” if a; ... a,, contains more than k distinct members.

Let Str(n) be the collection of possible values of B with {1,2,...,n - s}
as universe. Equip Str(n) with the uniform probability distribution u. Let
@ = ay ...a; denote pairwise distinct elements of {1,2,...,n-s} and let d be
the number of formulas Rv;, ...v;, where R € 7 and {v;,,...,v;, } contains
at least three and at most k distinct variables.

Claim 1. Suppose that x € T and that the 0-isomorphism type p(vy,...,vg)
satisfies (2) with respect to x. Then the conditional probability

N(‘P%:P | (10210.2 :X,(/’gi =pi fori:37“'ak)
k
is > 6, where § = (%)G)_1 . (%)d, that is,

w({B| B pla} | {B| B xla1,as), B pias] for i = 3,...,k}) > 6.

Proof. The proof is immediate by the definition of d and the fact that, once

@) fori=1,...,k and @%1@ are fixed, O-isomorphism types according to

(ii) have to be chosen for (,

) — 1 pairs of distinct elements.

Claim 2. Fix a1, as. Then

p({B| B Fus ... Jue (@ (a1, 0,03, ..., 0) A N\ wi#£v))}) < (1-6),
1<i<j<k

. : : v -2
where f is the integer part of 2=5.

Proof. Let x € T and choose (for x) a corresponding p(vy, - . . ,vg) according
to (2). Tt suffices to prove that the conditional probability

(3)  p({B| B ;... 3vkplar, az,v3, ..., v6)} | ©2.0, = %) < (1-0)7.

By (i), in any B every 0-isomorphism type in S is realized by n (> 2+ f-(k—2))
distinct elements. Therefore, for i = 3,...,k and j = 1,...,f there are
pairwise distinct elements a] € {1,2,...,n-s}\{a1,a2} with @21: = p;. Under

the given conditions the events B = p(al,ag,ag, .. .,a{;) for 1 < j < f are
independent (compare the construction procedure). Now,
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{B| B 3vs... Jugplar,as,vs,...,08)}
C{B| forj=1,...,f, B%p(al,ag,ag,...,ai)}.

Therefore, by Claim 1 we obtain (3).
Since {B | B £ ¢} =

U {B| B Jvs... I (a1,a2,v3,...,06) A /\ vi #v;)},
1.0 1<i<j<k
a1F#az

we obtain by Claim 2 that

p({BIB Y} <n-s-(n-s—1)-(1-8)7.

As [ is the integer part of 2=2, for n big enough we have n-s-(n-s—1)-

(1—6)f < 1. Then the probability that 13 satisfies 1 is positive, and therefore
some member of Str(n) satisfies 9. O

Exercise 5.2.4 Let 7 be a vocabulary (which perhaps contains constants).
Show that any satisfiable ¥?J*-sentence without equality has a finite model
(argue as in 5.1.7). Conclude that any satisfiable 3*V23*-sentence without
equality has a finite model. O

Notes 5.2.5 Theorem 5.1.3 is due to Mortimer [121], Corollary 5.1.4 for
sentences without equality was already known before (cf. [131]). The proof of
5.1.3 given here incorporates simplifications from [55]. Together with [44] it
shows that the satisfiability problem for FO? is NEXPTIME-complete. The
papers [59, 60, 127, 144] discuss the decidability of extensions and fragments
of FO?. Corollary 5.2.2 goes back to Gddel [48]; the proof given for 5.2.1 is
taken from [75]. For formulas with equality the corresponding satisfiability
problem is undecidable ([49]; see also [50]). For thorough information on the
decidability and the finite model property of fragments of first-order logic we
refer the reader to [13].



6. Finite Automata and Logic: A Microcosm of
Finite Model Theory

One of the major aims of finite model theory consists in characterizing the
queries in a given complexity class by means of a logic in which they can be
described. In this way one obtains a new measure of complexity: the complex-
ity of formal descriptions. Moreover, the characterizations allow to translate
problems on complexity classes into purely modeltheoretic problems, thus
opening them to modeltheoretic methods. In general, this relationship be-
tween complexity classes and logics turns out to be useful for both, complex-
ity theory and logic.

Our considerations will show that first-order logic which has played a cen-
tral role so far is not adequate for descriptive complexity. What is missing?
Which features of computations cannot be expressed in first-order logic and
which natural extensions of first-order logic capture these features? Once
these questions are clear they show the way to stronger systems such as log-
ics with fixed-point operators that we shall treat in the next chapters. These
extensions have natural modeltheoretic properties and thus may turn out to
be useful in other areas of model theory, too.

The present chapter deals with the — historically first — logical character-
ization of a complexity class: the characterization of the class of languages
recognized by automata by means of monadic second-order logic. It turns out
that this simple case already reflects some of the crucial aspects encountered
later, at the same time witnessing that the interplay between model theory
and complexity theory is fruitful for both sides.

Even though we include all definitions and proofs, a certain familiarity with
automata will be helpful.

6.1 Languages Accepted by Automata
We recall some definitions and notations. Let A be a finite alphabet and A*

and A1 the set of strings (or words) and the set of nonempty strings over A,
respectively. Thus, A* = AT U {A}, where X is the empty word. In automata
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theory subsets of AT are called languages.! A nondeterministic automaton
M, in short, an NDA (over the alphabet A) is given by a tuple

M= (S7q076aF)7

where S is a finite set, the set of states, qo € S is the initial state, ¥ C S
is the set of (accepting or) final states and 6 C S x A x S is the transition
relation (intuitively, (¢, a,p) € 0 means: if M is in state g and reads a, then
M can pass into p). This relation induces a function § : S x A* — Pow(S),
where Pow(S) denotes the power set of S; é is given by

&g, A = {dg}

5(g,wa) = {p|(r,a,p) € J for some r € §(g,w)}.

In particular, 6(g,a) = {p | (¢,a,p) € 8} for a € A. If §(¢,a) is a singleton
for every a € A, then M is said to be a deterministic automaton or, by short,
an automaton. Clearly, in this case §(¢,w) is a singleton for any w € A*. If

6(q,w) = {p}, we simply write d(g,w) = p (and similarly, 6(g,a) = p stands

for 8(q,a) = {p}).
The language recognized (or accepted) by the NDA M is defined by

L(M) = {weA" |, w)NF #0}.
Hence, in case M is deterministic,
L(M) = {we A" |(g,w) € F}.

Let us state the main result of this chapter, even though we still have not
introduced all concepts appearing in it. With respect to the logical charac-
terizations we have in mind, we are mainly interested in the equivalence of
(ii) and (vi). The other equivalences are not only useful for the proof, but
also interesting in their own.

For a language L C At the following are equivalent:

(i) L is the union of equivalence classes of an invariant equivalence
relation on AT of finite indez.

(if) L s recognized by an automaton.

(ili) L is recognized by an NDA.

(iv) L is regular.

(v) L is definable in monadic second-order logic by a ¥1-sentence.

(vi) L is definable in monadic second-order logic.

! In the literature languages, in particular languages recognized by automata, may
contain the empty word. Since to any word we will assign a structure whose
cardinality coincides with the length of the word, it is more convenient for our
purposes to exclude the empty string.
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Note that (ii) = (iii) and (v) = (vi) are trivial. We prove the other implica-
tions by a series of propositions starting with those which mainly deal with
automata; monadic second-order logic will be treated in the next section.

An equivalence relation ~ on A" is called invariant if
w,v,w €AT andu ~v imply ww ~vw.

Denote by [u] the equivalence class of u and by At /.. the set of equivalence
classes. The index of ~ is the cardinality of A* /..

Proposition 6.1.1 Let ~ be an invariant equivalence relation on At of fi-
nite index. Suppose that the language L C AT is the union of equivalence
classes,

L = [u]U...U[u,)

for some u1,...,u, € AT, Then L is recognized by an automaton.

Proof. Add [}], “the equivalence. class of A7, as a new object to AT /. and
define the automaton M = (S, ¢o, 6, F') by

S:= AT/ U{N}, =[N, 6(u]a):=[ua), F:={uw),...[u]}

By invariance of ~, the transition function § is well-defined. For u,v € A*, a
simple induction on the length of v shows that d([u],v) = [uv], in particular,
d([A],v) = [v]. Therefore,

L(M) = {ve At |dqo,v) e F} ={ve AT |[v] € F} = [w]U...Ufu,] = L.
]

For later applications we state the following result:

Lemma 6.1.2 (Pumping Lemma) Let ~ be an invariant equivalence re-
lation on AT of finite index. Then there is an n > 0 such that for any word
u € AT with |u| > n ? there ezist v,w € AT and x € A* with

u=wvwr, vw|<n, and vw® ~wvw for all k> 0.
Hence, by invariance, vw*y ~ vwy for all k > 0 and y € A*.

Proof. Let I be the index of ~ and set n := 1+ 1. Suppose that v € AT, u =

ai...as, where aq,...,a, € A and s > n. Then, for some i and j with 1 <
t<j<n,wehavea,...a; ~ay...a;. Let v=a1...a; and w = asy1...4;.
Thus v ~ vw, and by invariance of ~, vw ~ vw? ~ vw? ~ ... O

We now turn to a description of the languages recognized by automata
in terms of simple, so-called regular expressions. First some notations: The
concatenation of languages Ly and Ly, denoted by Ly Lo, is the set {uwv | u is

% |u| denotes the length of w.
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in L; and visin Lo }. Define L' := L and L" := L™ 'L for n > 1. The plus (or
positive) closure L of L is the set LT := |J -, L™ The regular ezpressions
(over A) are strings over the alphabet {§} U {a | a € A} U {u, t,),(}.
Together with the languages they denote, the regular expressions are defined
recursively as follows:

(a) 0 is a regular expression and denotes the empty set.

(b) a is a regular expression and denotes the set {a}.

(¢) If » and s are regular expressions denoting the languages R and S, re-
spectively, then (r Us), (rs), and T are regular expressions that denote
the sets RU S, RS, and R, respectively.

A language is regular if it is denoted by some regular expression. For conve-
nience we often omit parentheses in regular expressions (such as in r1U. . .Urg)
that have no influence on the language they denote. Moreover, we assume that
* has higher precedence than concatenation or U, and that concatenation has
higher precedence than U.

Proposition 6.1.3 If L is recognized by an NDA then L is reqular.

Proof. Let L be recognized by the NDA M = (S,90,6,F) with § =
{g0s.--,qn}. Let L be the set of all nonempty strings that M can read
starting in ¢; and ending in ¢; without going through any state numbered
>k,

Lfg : {bl bs | s> 1,by,...,bs € A there are ig,...,%4s such that
i1y-nyis 1 < k,ig=1,14s =4, and (qlmjbm_s_l,qzmﬂ) €4 for m < s}.

Since L(M) = U, e Ln+1, it suffices to show that all L” are regular. We

proceed by induction on k. As LY = {a € A | (qz,a g;) € 6} is a subset of
A, say LY = {a1,...,a,}, LY is denoted by (a; U...Ua,), or by @ in case
r=0.

For the induction step note that a nonempty string is in Lk] 1, If it can
be read without visiting any state numbered > k + 1, thereby starting in
gi, ending in ¢;, and passing through g zero times or one or more than one
time. Hence,
=LY ULELE U LR (LTI

ij
Lk+1

By induction hypothesis, for all 7', j' there is a regular expression rzj " denot-

ing sz Therefore, LY

441 is denoted by

ij ik kj ik kk\+ ki
JUrgr Urp (gt )Ty O

6.2 Word Models

We turn to languages definable in monadic second-order logic. In order to
bridge the gap between automata and logic, we introduce a correspondence
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between words and structures. Once more we fix an alphabet A and let 7(4)
be the vocabulary {<} U {P, | a € A}, where < is binary and the P, are
unary. For a given v € A", say u = ay ...ay, we consider structures of the
form

(Ba < (Pa)aEA)

where the cardinality of B equals the length of u, < is an ordering of B, and
P, corresponds to the positions in u carrying an a,

P, = {be B| for some j, b is the j-th element of < and a; = a}.

We call them word models for u and denote the class of word models for «
by K. For example, if A = {a,b} and u = abbab, the structure

({1,...,5}, <, Pa, By,

where < is the natural ordering on {1,...,5}, P, = {1,4}, and P, = {2, 3,5}
is a word model for w.

Any two word models for u are isomorphic. For simplicity we therefore
often speak of the word model for u, denoting it by B,,.

Note that for u,» € AT we obtain a word model for uv by forming the
ordered sum (cf. 1.A3) B, <1 B,.

A language L C AT is definable in monadic second-order logic, if there is a
sentence ¢ in MSO[7(A)] such that Mod(@) = {J,,c;, Ku, or, more succinctly
(but not fully correct), Mod{w) = {B,, | w € L}. The notion of definability in
FO is introduced similarly.

Let ow be the first-order sentence

pw = “< is a total ordering” AVz \/ P,z A /\ Vz—(P,z A Pyx).
a€A a,beA
aFb

Then, Mod(pw) is the class of all word models, Mod(pw) = {B, | u € At },
and therefore the language AT is definable in first-order logic.

As the next step in the proof of the main result stated at the beginning
of this chapter we shall show that any regular language is definable in
monadic second-order logic. First we introduce some notations: Let ¥min(x)
and ¥max () be first-order formulas defining the first and the last element of
the ordering, respectively:

Ymin(z) = Yy -y < z, Ymax () 1= Yy <y.

For any formula ¢ of MSO and variables z and y let ¢!*¥ be a formula
expressing that the closed interval [z,y] satisfies o, and similarly, ©/*¥! a
formula expressing that the half-open interval |z, y] satisfies ¢. Such formu-
las can be obtained from ¢ by relativizing the first-order quantifiers to the
interval, the main clause of an inductive definition being (for z # =,z # y)
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(Fzip)l® Y] z(z <z Az <y Al
(Fz)*¥ = Tz <zAz<yA®Y.

Proposition 6.2.1 Any regular language is definable in monadic second-
order logic by a ¥1-sentence.

Proof. First we prove by induction on the length of the regular expression
r that there is a sentence p, of MSO defining the language denoted by r.
Afterwards we show that we can replace ¢, by a Xi-sentence.

wp = Jx-z =2, ©y:=ew AJ2Vyly =z A P,zx)
Prusy = PwW A (()07“ v ()OS)
©rs) = ww A “the universe is partitioned into two intervals sat-

isfying ¢, and ,, respectively”
= ow AJry32(Ymin(@) AY < 2 A Pmax(2) A @2V A Q12
W+ = ow A “there is a set of right endpoints of intervals, which
partition the universe, all parts satisfying ¢,”
= ow AIX(FY(Xy A max(y)) A
Ty (thmin () A Xy AVz(z <y — =X 2) Apl®¥) A
VaVy
(x <yAXzAXyAVz(z < z <y — ~X2)) = @=¥)).

Now, one obtains a ¥1-sentence by inductively bringing all existential second-
order quantifiers to the front. In general, a monadic second-order formula
VZ3Y x with first-order x is not equivalent to a monadic ¥i-formula (cf.
2.4.8). However, in the case of the formula in the last two lines of ¢,.+ we can
argue as follows: Suppose that ¢, is equivalent to 3Y7 ... 3Y,,x. In models of
ow (and only these are relevant) the formula in the last two lines is equivalent
to

3y; ... 3V, VaVy((z <y AXz A XyAVz(z < z <y = ~Xz)) = xlov)

(for the nontrivial implication of the equivalence piece Yi,...,Y,, together
from corresponding subsets chosen in the (disjoint) intervals). O

With the next proposition we close the last gap in the proof of the main
result.

Proposition 6.2.2 Let L C At be definable in monadic second-order logic.
Then there is an invariant equivalence relation on AT of finite index such
that L is a union of equivalence classes.

Proof. Assume that Mod(p) = {B,, | v € L} where ¢ is a sentence of MSO.
Let m be the quantifier rank of ¢ and define ~ on A™ by

u~v iff B, =MS° B,

U —m
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(recall that A =MS© B means that A and B satisfy the same sentences of
MSO of quantifier rank < m). Clearly, ~ is an equivalence relation. Since,
up to logical equivalence, there are only finitely many sentences of quantifier
rank < m (cf. 3.1.3), the relation ~ is of finite index. By definition of m,

By, E @ and u ~ v imply By = .

Thus, L = J{[u] | v € AT, B, | ¢}. Finally, ~ is invariant: Assume u ~ v
and w € AT. Then B, =MS0 B,. Since =MSO0 ig preserved by ordered sums
(cf. 3.1.4), we obtain

that is, uw ~ vw. a

Summing up we have shown the result stated at the beginning of section
6.1:

Theorem 6.2.3 For a language L C A* the following are equivalent:

(1) L is the union of equivalence classes of an inveriant equivalence relation
on AT of finite index.

(ii) L is recognized by an automaton.

(i) L s recognized by an NDA.

(iv) L is regular.

(v) L is definable in monadic second-order logic by a 1 -sentence.

(vi) L is definable in monadic second-order logic. ]

In particular, this theorem shows that a language is accepted by an automa-
ton just in case it is definable in monadic second-order logic. Another de-
scription of languages accepted by automata is given by means of the regular
expressions. Is that a logical description too? What makes a logic? We shall
address this problem later.

6.3 Examples and Applications

By the following examples and applications we try to exhibit the method-
ological usefulness of Theorem 6.2.3.

Proposition 6.3.1 (a) The class of languages over A accepted by automata
is closed under the boolean operations (complementation and union).

(b) (Pumping Lemma). Let L be accepted by an automaton. Then there is
n > 0 such that for any v € AT with |u| > n there ezist v,w € AT and
x € A* with

u = vwz, |vw| < n, and for k>0 andy € A* : vwby € L iff vwy € L.
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Proof. Part (a) holds, since monadic second-order logic is closed under the
boolean connectives — and V, and part (b) is a reformulation of the Pumping
Lemma 6.1.2. Both results also have simple direct proofs. Ol

Example 6.3.2 Let A = {a}. Identify @a...a with the natural number n
n-times

and thus, AT with the set N, of positive natural numbers. A subset L of N

is accepted by an automaton iff L is ultimately periodic, that is, if there are

p,7 € N, such that for all m > p,

m+7 €L iff m € L.

In fact, assume first that L is accepted by an automaton. By the Pumping
Lemma there are n, j,r7 € Ny and [ > 0 with n = j + r + [ such that for all
k>0and s € N,

jH+kr+sel iff j+r+sel.
In particular, if m > p:=j+r, say m = j +r + s, then (take k = 2)
m+rel iff m e L.

Now let L be ultimately periodic. Choose corresponding p,r € N. Set L; :=
{m e L|m < p}and Ly :={m € L | p<m < p+r}. Then, by periodicity,
L=LiULyU{m+kr|me Ly, k >1}. So L is the union of the finite (and
hence regular) sets Ly and Ls and of the languages denoted by the regular
expressions a™(a”)" with m € Ly. Thus L is regular. O

As a consequence, the classes of finite ordered structures of vocabulary
{<} that are axiomatizable in MSO coincide with the ultimately periodic
ones.

Example 6.3.3 For A = {a,b} the set
L := {we€ AT | the number of a’s in u equals the number of b’s in u}

is not accepted by an automaton. Otherwise, choose n and a representation
vwz of a™b™ according to the Pumping Lemma. Since |vw| < n, we have
w € {a}T. Hence the string vw?z contains more a’s than b’s and therefore,
vw?z € I (while vwz = a™b™ € L), a contradiction. O

We use this example to prove nonaxiomatizability results for monadic
second-order logic: A graph (G, EY) is bipartite, if there is an X C G such
that B9 C (X x (G\X))U((G\ X) x X), and it is balanced, if the set X can
be chosen such that, moreover, || X|| = [|G'\ X||. Denote by BAL the class
of finite balanced graphs and by BAL. the class of finite balanced graphs
carrying an arbitrary ordering on their universe,

BAL. := {(G,<)|G € BAL, < an ordering of G'}.
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Proposition 6.3:4 The class BAL. — and hence the class BAL - is not
aziomatizable in monadic second-order logic.

Proof. Suppose that BAL. = Mod(y) for a sentence ¢ of MSO. Let A =
{a,b} and let L be as in the preceding example. For u € AT recall that
B, = (Bu, <, P,, P,) denotes a word model associated with u, say, with
B, = {1,...,|u|} and < the natural ordering. Let G, = (By, R,) be the
bipartite graph given by

R, = {(i,j) € Bu x By | Pyi iff Pyj}.
Then,
(Gu,<) €BAL. iff wel
and
Gu<)Ee ff B, F:(p(Pa'--Eib—)

(where ¢ (PL'E}??E—‘) is obtained by replacing any subformula in ¢ of the form

Ezxy by (P,z + Pyy)). Therefore, Mod(y (—P‘—‘—Ef’—?’—“)) = {By|u € L}. Theo-
rem 6.2.3 now implies that I is accepted by an automaton, which contradicts
the preceding example. O
Corollary 6.3.5 (a) Let HAM be the class of finite graphs with a Hamil-
tonian circuit. Then, HAM and HAM. are not aziomatizable in MSO.
(b) Let CHS be the set of finite graphs which contain a clique of at least half
their size. Then, CHS and CHS. are not aztomatizable in MSO.
Proof. (a) A graph of the form (XUY, E) with £ = {(a,b) | (a € X,b€Y)
or (a € Y, b € X)} has a Hamiltonian circuit iff it is balanced. If HAM. =
Mod(y) for an MSO-sentence ¢, then the sentence
X... & -X_
o ( )

AX (VaVy(Ezy — (Xz < - Xy)) A 7

)

would axiomatize the class BAL..

(b) Suppose that CHS. = Mod(¢) for some ¢ of MSO. Then an axiomati-
zation of BAL. in MSO would be given by
AX (VaVy(Ezy — (Xz & -~ Xy))
(X AX A= =) (X AKX Ao =
B.._ 14 E.._

(note that the conjunction in the last line implies that both X and its com-
plement have size at least half of the universe). O

_))

Ay

Exercise 6.3.6 Show that a graph G is bipartite iff it contains no cy-
cle of odd length (ie., for no n > 0 there are aj,...,a2,41 such that
a1 E%ay, asE%as, ..., a0, ECasn41, and as, 1 E%a;). Conclude that the class
of bipartite graphs is not first-order axiomatizable (of course, it is axiomati-
zable in MSO). O
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6.4 First-Order Definability

We turn to the problem of characterizing the languages that are accepted
by automata and are first-order definable. The proof of 6.2.1 shows that
second-order quantifiers are only needed for the positive closure, that is, in
the transition from a regular expression r to rt. Therefore, if » does not
contain the symbol T, the language L denoted by r is first-order definable.
But a simple induction on the length of such an r shows that then L must
be finite.

Example 6.4.1 Let A be an alphabet. For a € A the language AT \ {a} is
infinite but first-order definable by

ow A (3z=min (2) V I2(min (2) A =Poz))

(for the definition of pw and ¥, compare section 6.2). |

We thus see that the class of languages denoted by regular expressions
without * is not closed under complementation whereas the class of first-order
definable languages is. Therefore, we add closure under complementation in
the definition of plus free regular expressions:®

— 0, a (for a € A) are plus free regular expressions.
— If r and s are plus free regular expressions then so are ~r, (r U s), (rs).

If r denotes the language L, then ~r denotes AT \ L. A language is said to
be plus free reqular if it is denoted by a plus free regular expression.

Theorem 6.4.2 A language is plus free reqular iff it is definable in first-
order logic.

Proof. 1f the language L is definable by the first-order sentence ¢, then AT\ L
is definable by (¢w A ). This observation together with the corresponding
parts of the proof of 6.2.1 shows that any plus free regular language is first-
order definable.

We turn to the other direction. Recall that 7(A) = {<}U{P, | a € A}. For
convenience, we add a constant min to this vocabulary, which henceforth will
always denote the first element; more precisely, we shall only look at models of
©w APmin (min). By induction on the quantifier rank of the FO[r(A)U{min}]-
sentence ¢ we show for a language L that if

Mod(¢ow A ¥min(min) A @) = {(Bu,minB“) |ue L}

then L is plus free regular. (This gives the claim.)
First assume that ¢ is atomic. Then ¢ is min = min or P, min for some
a € A In the first case, L is AT, which can be denoted by the plus free

3 In the literature languages and, in particular, languages accepted by automata,
may contain the empty word. Then the operation * is replaced by the operation
*, where L* := LT U {)\} and the role of ‘plus free’ is taken over by ‘star free’.
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regular expression ~ (). Let ¢ be P, min. Then L = {a} U {a}A™. Therefore,
L is denoted by a U a(~ 0).

If the languages defined by the sentences ¢ and ¢ are denoted by the plus
free expressions r and s, then ~ r and r U s correspond to the sentences —p
and (p V 1), respectively.

Let ¢ = Jz4)(z). Then Mod{pw A Ymin(min) A Jzp(z)) =

(%) Mod(ew A ¥min{min) A ¢(min))
*
U Mod(ow A ¢¥min(min) A Jz(—z = min AY(z))).

By induction hypothesis, the first class of structures in (*) corresponds to
a plus free regular language. Concerning the second class, let ¢ be a new
constant. Then the finite models of ww A Py (min) A Jz{—z = min AY(z))
are the 7(A) U {min}-reducts of the finite structures (.4, min“, c#) such that

(A, min?, ) = ow A Ymin(min) A =¢ = min A (c).
Note that any such structure can be written in the form
(A, min?, ¢4) = (A, <Az, min4, ¢4),

where <1 denotes the ordered sum and where (A, min?) = (@w Athmin (min))
and (Az,c?) E (0w A ¥min(c)). Let m be the quantifier rank of 1. Choose
the — up to logical equivalence — finite set {(;(min), x;(¢c)) | i € I} of pairs
of FO-sentences of quantifier rank < m such that

(Al,minAl) E (oW A ¥min(min) A ¢;(min))
and (AQ, CAQ) IZ (SOW A ¢min (C) A Xi (C))
mply (v, min®) < (As, c) = (c).

By induction hypothesis there are plus free regular expressions r; and s;
denoting the languages defined by pw A tmin(min) A ¢;(min) and ew A
Ymin(min) A x;(min), respectively. Then the plus free regular expression
Uies(risi) denotes the language defined by (pw A Ymin(min) A Jz(-z =
min Ai(z))). Note that, if (A; <1 Ay, min4?, ¢42) |= ¥(c) then (by 2.3.11) the
pair (go&hmin a1y P e AQ)) of m-isomorphism types belongs (up to logical
equivalence) to {(;(min), x;{c)) | 7 € I}. O

Again, for A = {a} identify AT with the set N of positive natural num-
bers. Examples 6.3.2 and 6.3.3 show that automata do not have the ability to
count; for instance, they cannot recognize if a given string has prime length;
more explicitly, the set {p | p a prime} is not accepted by an automaton.
On the other hand, we saw in Example 6.3.2 that automata are capable to
count modulo a natural number, e.g. the set {5n | n > 1} is accepted by an
automaton. But first-order logic even lacks this restricted counting ability;
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in fact, it is an immediate consequence of 2.3.6 that a subset L of N, is
first-order definable iff for some n > 1

{m|m>n}NnL=9 or {m|m>n}CL.

Before we state the corresponding theorem for word models over arbitrary
alphabets, we remark that we encounter this noncounting feature of first-
order logic at various points in the book.

Theorem 6.4.3 For a language L C AT accepted by an automaton the fol-
lowing are equivalent:

(i) L is definable in first-order logic.
(ii) L is noncounting in the sense that there is an integer k > 1 such that for
every y € AY and x,z € A*,

b2 e L iff zy*tlz e L.

Proof. We only prove the implication from (i) to (ii) and refer the reader
to the literature for the involved proof of the other half (cf. 6.4.4). Suppose
{By, | u € L} = Mod(yp) for ¢ € FO[r(A)]. Let k := 2™ + 1, where m is the
quantifier rank of ¢. Then by 2.3.13, for any y € AT we have

By = "By =, <FB, = By
Using 2.3.10, we obtain

Bzykz > B.« Byk 1B, =, B:<« Byk+1 B, = Bzyk+1z.

In particular,

Bxykz ': ‘2 iff Bzyk+1z P: 2

and hence,
zyfz e L iff eyt tlz € L. O

As the results of this section show, the plus operation cannot be captured
in first-order logic. An instance of this operation can be viewed as the fixed-

point of a monotone operation. In fact, let L. C AT be a language. Define
Cr : Pow(A*) — Pow(A*) by

Cy(M) = LUML.

Then

(a) Cp, is monotone, that is, M; C My implies Cr(My) C CL(M>).
(b) Forn>1,Cr(...(Cr(9)...)=LUL>U...UL™
—_——

n-times
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M is a fixed-point of Cp, if C, (M) = M. Tt can easily be proved that the least
— with respect to set-theoretical inclusion — fixed-point of C}, is given by

Cr@ uCL(Cr(®) uCL(Cr(Cr®)u...

Hence by (b),
LT is the least fixed-point of Cy..

Fixed-points of monotone operations play a prominent role in the general
theory. We shall study them in Chapters 7 and 8. In particular, we shall see
that polynomial time queries on structures with an underlying ordering can
be captured in a logic extending first-order logic by adding the ability to
express fixed-points of definable monotone operations.

Notes 6.4.4 The connection between finite automata and monadic second-
order logic as expressed in Theorem 6.2.3 is due to [15, 140]. For a proof
of Theorem 6.4.3 and references on finite automata compare [136] or [138§].
Some examples are taken from [17].



7. Descriptive Complexity Theory

In Chapter 1 we gave the example of a database D that contains the names
of the main cities in the world and the pairs (a,b) of cities such that a given
airline offers service from a to b without stopover. D may be interpreted
as a first-order structure, more precisely, as a digraph G = (G, EY), where
G is the set of cities and E®ab means that there is a flight from a to b
without stopover. Now, first-order logic may be viewed as a query language.
For example, let

plz,y) = FEzyVIz(Ezz A Ezy).

If ¢ is thought of as a query to D, the response will consist in the set of
pairs (a, b) of cities such that a can be reached from b with at most one stop.
First-order logic provides a rich class of database queries. However, there are
plausible queries which are not first-order expressible. The query @ “Is it
possible to fly from z to y using only the airline in question?” to databases of
type D is an example. Also from a computational point of view answers to ()
are more complex than answers to . Descriptive complexity theory analyzes
the complexity of all queries definable in a given logic, the central question
being the following: Given a complexity class C, is there a logic £ such that
the queries definable in £ are precisely the queries in C7 For short: Given
a complexity class C, is there a logic that captures C? In the positive case,
there mostly will be an effective procedure translating every formula of such
a logic into a program for the corresponding query. In this sense the logic can
be viewed as a higher programming language for C.

In the first section we briefly introduce some extensions of first-order logic
which have been considered with this aim in mind. Their model theory will be
studied in Chapter 8. The second section is devoted to complexity classes of
structures. In particular, we describe how structures may be viewed as inputs
to Turing machines. In section 7.3 we show how certain logics can be used
to describe computations of a given complexity class. In section 7.4 we look
at the other direction and study the complexity of the satisfaction relation
of such logics. By bringing together both sides we are lead to the descriptive
characterizations of complexity classes we aim at, thus constituting a bridge
between complexity theory and model theory. First consequences are given
in the last section of this chapter.

Throughout this chapter all structures will be finite.



120 7. Descriptive Complexity Theory

7.1 Some Extensions of First-Order Logic

We introduce inflationary fixed-point logic, partial fixed-point logic, deter-
ministic transitive closure logic, and transitive closure logic. These logics are
obtained from first-order logic by adding operations well-suited to describe
iterative and recursive procedures, for example, the behaviour of comput-
ing machines. As already remarked in the introduction to this chapter, their
model theory will be studied in Chapter 8.

Let M be a finite nonempty set. Denote by Pow (M) the power set of M. A
function F' : Pow(M) — Pow(M) induces a sequence

0, F(0), F(F(0)),...

of subsets of M. For its members we write Fy, Fy,.... So Fy = 0 and F,, 11 =
F(F,). Suppose there is an ng > 0 such that F, 11 = F,,, that is, F(F,,) =
Fry. Then F,,, = F,, for all m > ng. We denote F,,, by F, and say that
the fized-point Fi, of F exists. In case the fixed-point F, does not exist, we
agree to set Fo, := 0.

F is said to be inflationary if for all X C M,
X CF(X).

Lemma 7.1.1 (a) The sequence (Fy,)n>0 is periodic, more precisely: There
are m < 21 gnd 1 > 1 such that Fj, = Fyyy for allk > m.

(b) If F exists then Foo = Fyynay_;.

(c) If F is inflationary then Fu exists and Fio = Fjng)-

Proof. (a) As Pow(M) has 2™l elements, there are m < 2™l and 1 > 1
such that £y, = Fyq. Therefore, Frypy = F(Fy) = F(Fny) = Fnti4,
Frt2 = Fngoql, - - -

(b) Choose m < 2™l and { > 1 according to (a). If F,, = Fp1 then
F,, = Fomi_y = Fe. If Fyy # Fppa then, by (a), for s > m, we get
(Fr =) Fingsit # Fint14.51 (= Finp1) and hence, Fo, does not exist.

(¢) By assumption, Fy € F; € ... € M. Since M has ||M]| elements, this
sequence must get constant not later than with Fjay . O

Let ¢(z1,...,71,%,X,Y) be a formula in the vocabulary 7, where the
relation variable X has arity k; moreover, let 4 be a 7-structure, b an inter-
pretation of @ in A, and S an interpretation of ¥ over A. Then ¢, A, b, and
S give rise to an operation F¥ : Pow(A*) — Pow(A*) defined by

F¢R) = {(a,...,ax) | A plar,...,ax,b, R, S|}

(The notation F¥ does not make explicit all relevant data.)
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To give an example, let G = (G, EY) be a graph and
wolz,y, X) = (EzyV Iz(Xzz A Ezy))

with 2y corresponding to Z above. Then, Ff° = §, F/° = F*(}) = E®,
FY° = F¥(E%) = EY U {(a,b) | (E%ac and Ecb) for some ¢ € G}. By
induction on n one shows that

F?° = {(a,b) | there is a path of length < n from a to b},

and hence,
F2 = {(a,b) | there is a path from a to b}.

Note that for ¢ as above the function F(X2V¢) (

tionary.

One obtains Inflationary Fized-Point Logic FO(IFP) and Partial Fized-Point
Logic FO(PFP) by closing first-order logic FO under inflationary and arbi-
trary fixed-points of definable operations, respectively. We state the precise
definitions.

For a vocabulary 7 the class FO(IFP)[r] of formulas of FO(IFP) of vocabulary
T is given by the calculus (we use the succinet notation

where T =z ...xzy) is infla-

Ply---¥n
¥
for the clause “If 1, ..., p, are formulas then ¢ is a formnla”)
. where ¢ is an atomic second-order formula over 7
14
. P . _wY ¥
o T (pvy) T 3z

. QIFPSO—Z where the lengths of 7 and # are the same
[IFPz,x¢] and coincide with the arity of X.

For FO(PFP) we replace the last rule by

. «ﬁpi——_— where the lengths of T and 7 are the same
[ z.x]t and coincide with the arity of X.

Sentences are formulas without free first-order and second-order variables,
where the free occurrence of variables is defined in the standard way, adding,
for example, for FO(IFP) the clause

free([IFPz x¢|f) := free(f) U (free(p) \ {Z, X }).
The semantics is defined inductively w.r.t. the calculus above,

[IFP; x @] meaning that #e FX7V¥)
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and
[PFP; x¢]f meaning that € F2.

More precisely: If X is k-ary and if the variables free in [IFPz x ¢ t are among
wand Y, and b and S are interpretations in A of @ and Y, respectively, then

AE[IFP; x| [5,8]  iff  (t1[B], ..., t[B]) € FLXTV9),

A = [PFPz x ] [b,5] iff (t1[b], ..., tr[b]) € FL.
Examples 7.1.2 (a) In the language of graphs the formula

to(z,y) = [[FPgy x (Exy V I2(Xx2 A Ezy))|zy

of FO(IFP) expresses that z,y are connected by a path. Hence, the class
CONN of connected graphs is axiomatizable in FO(IFP) by VaVy(~z = y —
Yo(z,y)) (and the graph axioms). It is not axiomatizable in FO (cf. 2.3.8).

(b) For 7 = {<, S, min, max} the sentence
-[IFP, x(z = min V3y3z(Xy A Syz A Szz))] max

of FO(IFP) together with the ordering axioms axiomatizes the class of or-
derings of even cardinality. The same holds for the class of orderings of odd
cardinality and the FO{PFP)-sentence 3z [PFP, x ¢(z, X )] ¢ where

Pz, X) = (Vy - XyAz = min)V(X max A z = max)VIy(XyASu(SyuASuzx)).
O

To compare the expressive power of logics we introduce the following
relations.

Definition 7.1.3 Let £, and £3 be logics.

(a) L1 < Ly (read: £4 is at most as expressive as Lq) if for every 7 and every
sentence ¢ € L,[7] there is a sentence ¥ € L3[7] such that Mod(p) =
Mod(z)).*

(b) £1 = L (read: L1 and L2 have the same expressive power) if £1 < Lo
and Lo < L.

(C) L1 < Loif Ly < L2 and not Lo < L. O
In most cases, a proof of £1 < L, even yields that every formula of £; is

equivalent to a formula of £s. In particular, £ < £, implies that £; < £,

holds for all formulas of £; containing only free individual variables (one

simply replaces these variables by new constants). Thus, £ < £y will imply
that every global relation definable in £, is also definable in L.

By Example 7.1.2(a), we have FO < FO(IFP).

! £[7] denotes the class of formulas of £ of vocabulary 7.
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Proposition 7.1.4 FO(IFP) < FO(PFP).
Proof. Note that [IFPz x ] is equivalent to [PFPz x (XT V ¢)]%. |

Let R be a binary relation on a set M, R C M?2. The transitive closure
TC(R) of R is defined by

TC(R) := {(a,b)€ M? | there exist n > 0 and eg,...,e, € M such
that a = eg, b = e,, and for all ¢ < n, (e;,e;41) € R}.

And the deterministic transitive closure DTC(R) is defined by

DTC(R) := {(a,b)€ M? | there exist n > 0 and eg,...,e, € M such
that a = eg,b = e,, and for all i < n, e;y1 is the
unique e for which (e;, e) € R}.

Transitive Closure Logic FO(TC) and Deterministic Transitive Closure Logic
FO(DTC) are obtained by closing FO under the transitive closure and the
deterministic transitive closure of definable relations, respectively. More pre-
cisely: For a vocabulary 7 the class of formulas of FO(TC) of vocabulary
is given by the calculus

) where ¢ is an atomic first-order formula over 7

¢
I L . -
o (pVy) T Fap

. —TC—(’O—T where the variables in Z7 are pairwise distinct and
[TCay ¢]5t where the tuples Z,%,5, and  are all of the same
length, 5 and # being tuples of terms.

\

For FO(DTC) the last rule is replaced by W with the same
side conditions. We define
free([TCzy¢]5t) := free(3) U free(t) U (free(p) \ {Z,7}),

and similarly for FO(DTC).
The meaning of [TCz 3 (%, 7, )] 5t is

(5,1) e TC{(®,7) | (7,79, W)}),
and the meaning of [DTCgz 5 ¢(Z,7,u)] 5t is
(5,t) € DTC{(Z,7) | v(Z,7,0)})

(here {(Z,7) | ¢(Z,7,u)} is considered as a binary relation on the set of
length(Z)-tuples of the universe).

Thus a graph is connected if it is a model of VaVy(—z = y — [TCy,y Exy] zy).
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Proposition 7.1.5 (a) FO(DTC) < FO(TC).
(b) FO(TC) < FO(IFP).

Proof. For (a) note that
|:ﬁn [DTCE,ﬂ(p(Ea y7 ﬂ)] §f A [TCE,E(@(Ea ga ﬂ) A VE(SD(fa Ea U) —Z= y))] §Z
and for (b) that

':ﬁn [TCE@SD(E,?, H)] 5l [IFPE@X (W(Ta Y, ﬂ) \ BE(Xfﬁ A 90(5, Y, H)))] st.

In the following, axiomatizability in a logic (in the sense of the following
definition) will be a major issue.

Definition 7.1.6 Let K be a class of 7-structures and £ a logic. K is axioma-
tizable in L, if there is a sentence of £ of vocabulary 7 such that K = Mod ().
O

Sometimes, when relating logics and complexity classes it is convenient to
restrict oneself to sufficiently large structures. This does not affect problems
of axiomatizability. In fact, for a class K of structures and m > 1 denote by
K, the subclass of K of structures of cardinality > m,

Kn = {A]ACK,|A|2m).

For every finite structure A4 there is a sentence w4 of FO characterizing A
up to isomorphism (cf. 2.1.1}, that is,

BEeps ifft B=A
holds for all B. Hence, for any logic £ with FO < L,
K is axiomatizable in £ iff K,, is axiomatizable in L.

In fact, setting ¢m = V{pa | A € K, ||A|| < m} we have that K = Mod(y)
implies K, = Mod(pA-p,,), and K,;, = Mod(¢) implies K = Mod(¥V ¢,,).

7.2 Turing Machines and Complexity Classes

The aim of the present section is to recall basic definitions and results from
computation theory, to fix our computation model for structures as inputs,
and to introduce the corresponding complexity classes. It is not intended as
a substitute for a course in computation theory, and some familiarity with
the basic notions will be helpful. For references compare the notes 7.5.26.
We adopt a computation model which belongs to the most popular ones
in theoretical computer science, the Turing machine model. Our choice is
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motivated by the fact that Turing machine computations allow for simple
descriptions and for natural definitions of complexity classes. However, as
Turing machines deal only with strings, any other data must be coded by
strings. The tedious work of encoding is one price we have to pay for the
advantages. Moreover, the model does not well reflect parallel, distributed,
or real time computations, as only local changes are made in a step. However,
these shortages are not really important for our aims.

For the following, we fix a finite alphabet A. A Turing machine M is a finite
device that performs operations on a tape which is bounded to the left and
unbounded to the right and divided into squares (or cells). The machine
operates stepwise, each step leading from one situation to a new one. In any
situation every square of the tape either contains a single symbol from A or is
blank. In the latter case we say that it contains the symbol “blank”. There is
one exception: the leftmost or “virtual” cell always contains an endmark, the
“virtual” letter a (which is not in A). M has a head which, in any situation,
scans a single square of the tape and, in any step of a computation, erases or
replaces the scanned symbol by another one and moves one cell to the left or
to the right or remains at its place (we speak of a read-and-write head).

In every situation, M is in one of the states of a finite set State(M), the
set of states of M. State(M) contains a special state sq, the initial state, and
special states sy, the accepting state, and s_, the rejecting state. We assume
that sp, sy, and s_ are pairwise distinct. The action or behaviour of M in
a situation depends on the current state of M and on the symbol currently
being scanned by the head. It is given by Instr(M), the set of instructions of
M. Each instruction has the form

(%) sa — s'bh

where

— 5,8 € State(M), s # sy, s # s_

—a,be AU{a,blank} and (a=«a iff b= a)
—he{-1,0,1},and if a = o then h # —1.

The instruction (*) means: If you are in state s and your head scans a cell
with symbol a, replace a by b, move your head one cell to the left (b = —1),
or to the right (h = 1), or don’t move (h = 0); finally, change to state s'.

A machine M is deterministic, if for all s € S and a € AU {a, blank}
there is at most one instruction of the form (%) in Instr(M). In order to
emphasize that a machine is not required to be deterministic we sometimes
call it nondeterministic.

As usual, denote by A* the set of words over A and by A" the set of
nonempty words over A. Let u € A*, u = a1 ...a, with aq; € A. M is started
with u if M begins a computation (or run) in state sg in the situation
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head

« a a2 R ar | blank

The computation proceeds stepwise, each step corresponding to the execution
of one instruction of M. The machine stops when it is in a state s scanning
a symbol a € AU {a,blank} such that there is no instruction of the form ()
in Instr(M). If then s = s; we speak of an accepting run, and if s =s_ of a
rejecting run. M accepts u if there is at least one accepting run of M started
with u, and M rejects u if all runs started with u are finite and rejecting.

Subsets of AT are called languages. A language L C AT is accepted by M
if for all u € AT,

M accepts u iff u € L.

L is decided by M if, in addition,
M rejects u iff ué L.

Clearly, if M decides L then M accepts L. L is said to be decidable if it is
decided by some deterministic Turing machine, and acceptable or enumerable
if it is accepted by some nondeterministic Turing machine.

For a function f : N —» N we say that M is f time-bounded, if for all
u € AT accepted by M there is an accepting run of M started with u which
has length at most f(|u|) (recall that |u| denotes the length of the word w).
And M is f space-bounded, if for all u € At accepted by M there is an
accepting run which uses at most f(Ju|) cells before stopping.

Denote by N[z] the set of polynomials with coefficients from N. A lan-
guage L C AT isin PTIME (“polynomial time”) or in PSPACE (“polynomial
space”), if it is accepted by a deterministic machine that is p time-bounded
or p space-bounded, respectively, for some polynomial p € N[z]. The classes
NPTIME (“nondeterministic polynomial time”) and NPSPACE (“nondeter-
ministic polynomial space”) are defined similarly, now allowing nondetermin-
istic machines.

Immediately from the definitions one gets

PTIME C NPTIME and PTIME C PSPACE C NPSPACE,
and one can show that
NPTIME C PSPACE and PSPACE = NPSPACE.

Hence,
PTIME C NPTIME C PSPACE (= NPSPACE).
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Let A = {a,b} and L := {u € A" | u contains an even number of a’s}. One can
easily design a machine that accepts L and is time-bounded by the polynomial
x + 2: the head just runs over the string, the state being “even” or “odd”
depending on whether the number of a’s already scanned is even or odd,
respectively. Essentially, this machine does not need any “working space” but
only the space for the input. In order to measure only the working space and
to introduce complexity classes like LOGSPACE and NLOGSPACE, where
the working space needed is smaller than the input space, it is convenient to
separate the input and to introduce machines with an input tape and a work
tape. For other purposes it might be useful to introduce several input tapes
and several work tapes, maybe also (if calculating a function, for example)
one or more output tapes, with a head for each tape, where the heads can
move independently of each other. It turns out that the definition of the
usual complexity classes does not depend on the number of tapes or on other
peculiarities such as the form of the tape, i.e., whether it is unbounded to
both sides or not. We shall often use this robustness, choosing, for example,
the number of input and work tapes according to needs and to convenience.

7.2.1 Digression: Trahtenbrot’s Theorem

We have already remarked that first-order logic, when restricted to the finite,
does not admit a complete proof calculus. In the following we give a proof of
Trahtenbrot’s Theorem which immediately implies this fact.

Fix an alphabet A. It is well-known that it is not decidable whether a
deterministic Turing machine M accepts the empty word, by short, whether
M halts (“Undecidability of the Halting Problem”).? We use this result to
show for a certain vocabulary o(A):

Theorem 7.2.1 (Trahtenbrot’s Theorem) Finite Satisfiability is not de-
cidable, that is, the set

Sat[o(A)] := {¢ | ¢ is a sentence of FO{o(A)] satisfiable in the finite}
is not decidable.

Proof. We assign, in an effective way, to every deterministic machine M over
A a sentence @ of FO[o(A)] such that

(%) @ is satisfiable in the finite iff A4 halts.

This gives the claim by the result just mentioned. Without loss of generality
we may restrict ourselves to deterministic Turing machines M whose set
of states is an initial segment {0,...,s5s} of the natural numbers, sg := 0
being the initial state and 1 the accepting state, and which stop only in the
accepting state. We number the cells of the tape as indicated by

% More exactly: One encodes Turing machines M in some natural way as words
wps. Then the language {wys | M halts} is not decidable.
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In particular, the number 0 is given to the virtual cell. If the machine M
makes at least n steps, we let C), denote the n-th configuration. C,, contains
the following data: the state, the number of the cell scanned by the head,
and the tape inscription after n steps.

Let 79 = {<, S, min, max} be the vocabulary for orderings. In the follow-
ing we sometimes write 0 instead of min. In addition to the symbols of 7
the vocabulary o(A) contains relation symbols State (binary), Head (binary),
and for every a € AU {a,blank} a binary relation symbol Letter,,.

For every natural number n > sp (recall that {0,...,sp} is the set
of states of M) we define a structure A, with universe {0,...,n}, which
reflects the initial segment Cy,. .., C), of the computation of M started with
the empty word (however, only Cy,...,Cy with £ < n if M stops after k
steps). For s, < n,

Stated~st iff according to C; the state is s
Head“~it iff according to C the head is in cell §
Letter;“"it iff according to Cy the letter a is in cell ¢.

The sentence s will have the properties (a) and (b) which immediately give
the equivalence (x) stated above:

(a) If M, started with the empty word, stops after k steps (in the accepting
state) and n > spr, k, then A, E o

(b) If A is a finite model of ¢ and M, started with the empty word, runs
at least k steps, then [|A|| > k.

As ppr we take the conjunction of the {<, S, min, max}-ordering axioms to-
gether with the conjunction of the sentences in (1)-(4) (where we write 0 for
min, 1 for the successor of min, etc.):

(1) “The universe has at least sps + 1 elements.”

(2) State 00A Head 00A Letter, 00 A Vz(—z = 0 — Letterpjank x 0)
(at time O the state is 0, the head scans the virtual cell, the virtual cell
contains «, and all other cells are empty).

(3) For each instruction sa — s'bh a conjunct (g, s sn, which describes the
changes due to this instruction. For example, if & = 0 then wsuqpp is
the sentence

VyVt((Statest A Headyt A Letter,yt)
— J'(Stt' A States’t’ A Headyt' A Letterpyt'

/\V’U(‘W’U =y — /\ (Lettera vt — Letter, Utl))))'
acAU{a,blank}
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We leave it to the reader to write down the sentence @gsq_spp for h = —1
and h = 1.

(4) 3t State 1¢
(the accepting state is reached). n

Coding o(A)-structures by graphs (cf. 11.2.5), one obtains from the un-
decidability of Sat[o(A)], that for a binary relation symbol E the set

Graph-Sat = {p | is an FO[{E}]-sentence satisfiable in a finite graph}

is not decidable. Hence, for any vocabulary 7 containing an at least binary
relation symbol, the set

Sat[r] = {¢ |y is an FO[r]-sentence satisfiable in the finite}

is not decidable.

Clearly, there is a decision procedure that, for any finite structure A whose
universe is a set of natural numbers and for any first-order sentence , checks
whether A | . Since  is satisfiable in the finite iff there is a model A of
w with A = {0,...,n} for some n, we can use this decision procedure to
enumerate Sat[r]. Together with Trahtenbrot’s Theorem this shows:

Theorem 7.2.2 If 1 contains an at least binary relation symbol then the set
Val[r] = {v € FO[r]| ¢ is a sentence valid in all finite structures}
of sentences valid in all finite structures is not enumerable.

Proof. For any sentence ¢ we have
(+) w ¢ Sat[r] iff -y € Vallr].

If Val[r] would be enumerable, then by (+), FO[7]\ Sat[r] would be enumer-
able, too. This would lead to a decision procedure for Sat[r] (contradicting
Trahtenbrot’s Theorem): Given a sentence ¢, start enumeration procedures
for Sat[r] and FO[r] \ Sat[r] until one of them yields . O

Now we have the negative result concerning the proof calculus: If there
would be a complete proof calculus for first-order logic in the finite, we could
effectively enumerate all possible formal proofs and hence, also the sentences
valid in the finite, contradicting Theorem 7.2.2.

7.2.2 Structures as Inputs

We fix the conventions which allow to regard finite structures as inputs to
Turing machines. Note that, in general, structures are abstract objects and
the same holds for their elements, so that there is no canonical way of repre-
senting structures by strings (or by sequences of strings). If the same structure
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has different representations, the machine should produce the same answer
on all the representations. We postpone this problem and first make life easier
by restricting our attention to ordered structures. Recall the definition (cf.
1.A2):

Definition 7.2.3 Let {<} C 75 C {<, S, min, max} and 70 C7. A 7-struc-
ture A is ordered if the reduct A|7g is an ordering (that is, <# is an ordering
and S, min, and max, if present, are interpreted by the successor relation, the
least and the last element of the ordering, respectively). O[7] is the class of or-
dered 7-structures. If ¢ is a sentence in the vocabulary 7, ordMod(v) denotes
the class of ordered models of 9, or equivalently, ordMod(v/) = Mod(% A ¢y),
where 1)y is the conjunction of the ordering axioms for the vocabulary 7. O

Let A € O|r] be an ordered structure with ||A|| = n. By passing to
an isomorphic copy we can assume — and always will tacitly do so — that
A ={0,...,n — 1} and that <* is the natural ordering on this set; that is,
we identify or “label” the least element of <4 in A with 0, its successor with
1, etc.?

Suppose T = 1oUr, say 1 = {Ru1,..., Rk, c1,...,¢} (when writing 7
in this way we tacitly assume that the symbols in 7 are given in the order
Ri,...,Rg,c1,...,¢), and 79 as in the preceding definition.

A Turing machine for T-structures will have 1 + k + [ input tapes and m
work tapes for some m > 1. All tapes are bounded to the left and unbounded
to the right. Their cells are numbered as indicated by*

-1 0 1 2 3 4

The “virtual” cell is numbered by —1 and always contains the virtual letter
a. All input tapes will contain an input word followed by the virtual letter w
indicating the end of the input word. Each tape has its own head. The heads
can move independently of each other. Those on input tapes are read-only
heads (i.e., they do not change the scanned letter), while those on the work
tapes are read-and-write heads. The alphabet only contains the symbol “1”.
Moreover, we identify “0” with “blank”; thus during a computation almost
all cells contain 0.

% By this convention, for isomorphic A, B € O[7] a Turing machine M started with
A will have the same input inscriptions as M started with B.

1 For the purposes of the next sections this numbering is more appropriate than
that of the section on Trahtenbrot’s Theorem, where we numbered the virtual
cell by 0.
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With an ordered 7-structure A we associate the following input inscrip-
tions on the 1+ &+ input tapes (numbered from 0 to k 4 [): The 0-th tape,

the “universe tape”, contains a sequence of 1's of length n := || A][,
@ 1 1 1 w
-1 0 1 n—-1 n

For 1 < i < k, the i-th input tape contains the information about R := R;
coded as follows: Suppose R is r-ary, that is, R4 C {0,...,n—1}". Of course,
[1{0,...,n—1}"|| = »". Then, for j < n", the j-th cell will contain “1” just in
case the j-th r-tuple in the lexicographic ordering of {0,...,n —1}" is in R.
More formally: For j < n”, let |j|. be the j-th r-tuple in the lexicographic
ordering of {0,...,n — 1}", i.e., look at the unique n-adic representation of

7
j=g 0" e n T G4, with 0<j;<n

and set |ji, := (41,.-.,4r). (If n is not clear from the context, we write |j|7
instead of |j|,.) Then the i-th input tape has the inscription

-1 0 1 2 3 n"—1 n"

where
a;j=1 iff  RAY,
(and hence, a; = 0 iff not R4|j],.).
For 1 <4 <, the (k + i)-th input tape contains the binary representation of
j = ¢! without leading zeros.

We say that a Turing machine M is started with A, if the input tapes contain
the information on 4 in the way just described, the work tapes are empty,
and each head scans the cell numbered 0 of its tape. As in the case of one-tape
machines, M has finite sets State(M) of states and Instr(M) of instructions.
State(M) contains an initial (or starting) state so, an accepting state s;, and
a rejecting state s_. Instructions now have the form

t 1 !
(*) sby...bprici...cm —=scy...cpho. . hgrim

with the meaning
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If you are in state s, your heads scan by; ..., bg4; on the input tapes
and ¢y, ..., cm on the work tapes, replace ¢1,...,¢m by ¢, ..., ¢,
move the i-th head according to h; and, {inally, change to state s'.

Here, s,s' € State(M), bo,...,bprt € {0,1,,w}, c1,. .. Cm, €, ... ¢ €
{0,1,a}, and hg, ..., hpyirm € {—1,0,1}. Moreover,

—ifbj = « then h,j #—1

(if the head scans the leftmost square it cannot move left)
if bj = w then h; #£1

— if ¢ = a then hgyi4; # —1 and ¢ = @

if ¢; € {0,1} then ¢} € {0,1}

s# sy and s # s_.

The base of the instruction in (*) is given by
SbOn-bk—Hcl e Cipe

M is said to be deterministic, if no two distinct instructions in Instr(M) have
the same base. Sometimes, to emphasize that we do not require a machine
to be deterministic, we speak of a nondeterministic machine.

The notions of accepting run, rejecting run, and of “M accepts A" are
adapted from section 7.2 in the obvious way. For a function f : N — N
we say that M is f time-bounded, if for any A accepted by M there is an
accepting run of M, started with A, of length at most f(||A]|). And M is f
space-bounded, if for all A accepted by M there is an accepting run which
uses at most f(||A]]) squares on each work tape before stopping.

Let K be a class of ordered r-structures. M accepts K if M accepts
exactly those ordered 7-structures that lie in K. For classes of structures
the definitions of PTIME (“polynomial time”), NPTIME (“nondeterminis-
tic polynomial time”), PSPACE (“polynomial space”) are introduced in the
obvious way. For example,

— K is in PTIME iff there is a deterministic machine M and a polynomial
p € N[z] such that M accepts K and M is p time-bounded.

And we define

— K isin NLOGSPACE, “nondeterministic logarithmic space” (LOGSPACE,
“deterministic logarithmic space”) iff there is a (deterministic) machine M
and d > 1 such that M accepts K and is d-log space-bounded (log n stands
for the least natural number > log, n).

Exercise 7.2.4 Denote by I1(4) the sum of the lengths of the input words
on the input tapes of a machine started with A. Show that in the definitions
of the complexity classes mentioned above we can replace ||A|] by I(4). O
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At the end of section 7.1 we have observed that for a class K of ordered
structures and m > 1 the class

Ky = {AeK||A]| 2m}

is axiomatizable in a logic £ iff K is axiomatizable in £. Analogously, for any
of the complexity classes C introduced so far, we have

KeC - iff K,elC

(since we can change a machine, without essentially effecting its time and
space bounds, in such a way that it runs on a given finite set of inputs in
a prescribed form; cf. Exercise 7.2.5 below). We give an application of this
fact. Suppose that K is in PSPACE. Then K, is in PSPACE, too, say, it
is accepted by a machine M that is ¢ space-bounded, where g(z) = a,2® +
as—12° 1 +...+ajz+ag. For suitable d, g(n) < nd for all n > 2. Thus M is z¢
space-bounded. These observations will allow us to restrict ourselves to monic
polynomials p(z) = z? when considering PSPACE (or PTIME, NPTIME).

Exercise 7.2.5 For fixed 7 and m > 1 there is ¢, € N such that for any

K COQO[r] and any f: N —» N:

(a) If K is accepted by an f time-bounded machine, then K, is accepted by
an [+ 2-(m+ 1) time-bounded machine, where f + 2-(m + 1) denotes
the function whose value for n is f(n) +2-(m + 1).

(b) If K, is accepted by an f time-bounded machine, then K is accepted by
an f + ¢, time-bounded machine.

(¢) K is accepted by an f space-bounded machine iff K,, is accepted by an
f space-bounded machine. O

7.3 Logical Descriptions of Computations
Let K be a class of ordered 7-structures, K C O[r]. We write K € IFP if K

is axiomatizable in FO(IFP), and use similar notations for the other logics.
Our main goal is to show

K € LOGSPACE iff K e DTC
K € NLOGSPACE iff K eTC
K € PTIME iff K ¢ IFP
K € NPTIME iff Kex!
K € PSPACE iff K € PFP.

(X1 denotes the fragment of second-order logic consisting of the sentences of
the form 3X; ...3X,,9 where 1 is first-order, cf. section 3.1).

These results provide the bridge between logic and complexity theory
we have aimed at, by relating purely machine-oriented characterizations and
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characterizations by means of logical definability. Section 7.5 exemplifies the
methodological possibilities they offer.

In this section we prove the implications from left to right; the other
implications will be settled in the next section.

Let C be one of the complexity classes above and £ the logic associated to C
by the corresponding equivalence. Assume that K € C, and let M be a Turing
machine witnessing that K € C. We are going to describe the behaviour of
M by a formula @p; of £ in such a way that for any ordered structure A4,

AE pu iff M accepts A

and hence,
K = ordMod(¢ar)-

The reader familiar with classical recursion theory will observe the analogy
of the proofs given below with usual proofs showing the p-recursiveness of
Turing computable functions. There, the transition from one configuration
to the next is coded by “simple” (e.g. primitive recursive) functions, and the
p-operator is used to detect the end of a computation. Similarly here, using
the ordering relation, we can describe the transition from one configuration to
the next by means of a “simple” logic, mostly first-order logic. The additional
expressive power, for example the operator IFP, is used to find out whether
the computation stops and to get its outcome. In recursion theory the proof
of the equivalence shows that one application of the p-operator suffices. Sim-
ilarly we shall obtain, say, that every formula of FO(IFP) is equivalent to a
formula with only one occurrence of TFP.

For the following we fix a vocabulary 7 = 79Ur; where, for simplicity, we
assume that 79 = {<, S, min,max} and n is relational, n = {Ry,..., Ri}
with r;-ary R;. For convenience we set ro = 1.

A Turing machine M for 7-structures has 1 4+ & input tapes and a certain
number m of work tapes. In order to describe computations that M performs
when started with a structure, we introduce configurations which contain the
relevant data of possible situations of a computation. These data are:

— the current state
— the current inscriptions of the work tapes
— the current position of the heads on both the input and the work tapes.

An accepting configuration is a configuration with state s;. A configuration
CONTF’ is said to be a successor of the configuration CONF, if an instruction
of M allows M to pass from CONF to CONF’ in one step. For convenience,
we extend this definition by saying that any accepting configuration is a
successor of itself. If M is deterministic then every configuration has at most
one Successor.

Let M be a (nondeterministic) Turing machine for r-structures which is
z¢ space-bounded, that is, if M accepts an ordered structure .4, then there
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is an accepting run that scans at most n¢ squares on each work tape, where
n := ||A||. We may assume that r; < dfori=1,...,k (r; being the arity of
R;). Fix a structure 4. By the remarks at the end of the last two sections
when proving that a class of structures is axiomatizable in a logic or ac-
ceptable by a Turing machine of a certain complexity bound, we can restrict
ourselves to sufficiently large finite structures. Here we look at structures .4
such that for n := ||A]| we have n > k+m and n > ||State(M)]]. We assume
that State(M), the set of states of M, is an initial segment of the natural
numbers and that so = 0 is the starting state.

Let CONF be a configuration, where at most the n® first cells of each work
tape are not empty and where the heads scan one of these cells. A first at-
tempt to code the contents of these cells could consist in dividing the relevant
part of each work tape into ; (?gdn =: r blocks of length log n and reading each
block as a natural number < n in binary representation. This would require
variables x1, ..., z, for each tape. Then a formula bearing the information on
successive configurations would contain at least the variables z1,...,z, and
would, therefore, depend on the cardinality n of the universe. We overcome
this difficulty for PTIME, NPTIME, and PSPACE by using relation variables

instead of individual variables.

To code the data of CONF we first introduce the “state relation” STYONF
the “end-of-tape relations” EYONF, the “head relations” HYONF, and the “in-
scription relations” I$ONF. The last ones are only introduced for the work
tapes, since the inscriptions of input tapes are given by the input structure
and kept fixed during the whole computation. We introduce: The unary re-

lation
STYONF .= {5} where s is the state of CONF;

for 0 < 7 < k + m, the unary

{0}, if the j-th head faces «
ESONF .= & {n—1}, if the j-th head faces w
0, otherwise;

for 0 < j <k, the rj-ary®

HYONF .= {le|,, | 0 < e, the j-th head scans the e-th square
and this does not contain w};

for k+1 < j < k4 m, the d-ary
HYONE .= {le|s | 0 < e, the j-th head scans the e-th square};

for k+1 < j < k+m, the d-ary

® Recall that lelr; is the r;-tuple given by the n-adic representation of e and that
the square containing « is numbered —1.
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IYONF = {lel4 | 0 < e < n? and the e-th square of the
j-th work tape contains the symbol 1}.

Obviously, CONF is uniquely determined by these relations. The starting
configuration CONFy, for example, is given by

STCONFO — {0}7 E?ONFO — @) H?ONFO — {(O, . '70)}’ and I;_]ONFO — (D

For technical convenience we encode CONF in a single (d + 2)-ary relation
COONF C {0,...,n—1}%*2 by joining the preceding relations as follows (we
add two first coordinates to distinguish these relations and fill up with zeroes
in the middle to get arity (d + 2)):8

COONF .—  £(0,0)} x {0} x STUONF

J U {(17.]>} X {6} X E‘?ONF
0<j<k+m

u U {25} x {0} x HFONF
0<i<k+m

U U {35} x IFONE,
k4+1<j<k+m

Clearly, given C' C {0,...,n—1}4"2 we can easily decide whether there is
a configuration CONF of M, where only the first n® cells of each work tape
are relevant, such that C = CYONY or as we shortly say, whether C is an
n-bounded configuration.

The following lemma now states how the behaviour of M can be described
by suitable formulas.

Lemma 7.3.1 Let M be a Turing machine which is z® space-bounded. There
is a first-order formula pstart (T) and there are first-order formulas pgyee (T, X)
and Yeuee (X, Y) (more precisely, second-order formulas without second-order
quantifiers) such that for all sufficiently large A € O[1] and @ € A%"? we
have:

(a) “pstart(T) describes the starting configuration”: If Cy denotes the starting
configuration of M started with A then

A ': Pstart [E] Zﬁ a & Co.

(b) “psuce(T, X) describes the successor of X ”: If M is deterministic and C
is an n?-bounded configuration of M (where n := ||Al|) then

A E @suce[@, C] iff C has an n-bounded successor C' and @ € C'.

® By 0 we denote constant sequences 0 . .. 0 of appropriate length; in general, & will
denote a sequence of the form c...c.
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(€) “Wsuce(X,Y) expresses that Y is a successor of X 7: If Cy is an n?-
bounded configuration of M and Cy a further (d + 2)-ary relation on A
then

A E Ysuce[C1,Co] iff Oz is an n-bounded configuration of M
which is a successor of C1.

We postpone the proof of this lemma and first draw some consequences.

Theorem 7.3.2 Let K C O[7| be a class of ordered structures. If K is in
PSPACE then K is aziomatizable in FO(PFP).

Proof. Let M be a deterministic machine witnessing K € PSPACE. By pre-
vious remarks we can assume that M is % space-bounded for suitable d. We
set

0@ X) = (-FGXYA @star(T)) V (FYXY A Psuce (T, X)),

where Ystare and gyee are the formulas assigned to M in the preceding lemma.
Let A be an ordered structure and n := ||A||. By this lemma, F, F}’, Fy, ...
is the sequence 9, Co, C1,... where

— () is the starting configuration

— if C; is an n%bounded configuration of M with an n®bounded successor
configuration C then C;1q = C. In particular, if C; is accepting then
Ci = Ci+1 - Ci+2 [N

— if C; is an n%bounded configuration without a successor configuration or
with a successor configuration which is not n%bounded, then C;;; = 0,
Ciio = Cpy, Ci13 = Cy, ..., that is, the sequence has no fixed-point.

Summarizing, we have
M accepts A iff F£ is an accepting configuration
iff FY is a configuration with state s..

“FZ is a configuration with state s_”

STCONF_part of CUONF)

is expressed by the formula (recall the

Jy(“y is the sy -th element of <” A [PFPz x| min minﬁl\ifly). 7
We abbreviate it by [PFPz x¢] min min min s,. Then,

Ae K iff M accepts A
iff A= [PFPz x| minminmins,,

that is, K = ordMod([PFPz x ] min min min s, ). 0

" Compare footnote 6.
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Corollary 7.3.3 Let K C O[] be in PSPACE. Then K is aziomatizable by
a sentence of FO(PFP) with only one occurrence of PFP. O

We now turn to PTIME and will realize that we can do better. Whereas ac-
cepting runs of polynomially space-bounded machines may have exponential
length, we here only have to consider runs of polynomial length. This enables
us to code the whole run into a single relation which can be obtained as the
fixed-point of an inflationary process. On the logical side we therefore can
replace PFP by IFP.

Consider a (finite or infinite) run Cp, Ci,... of an z¢ time-bounded (and
hence, z¢ space-bounded) deterministic machine started with a structure of
cardinality n. If the run accepts the structure, C,4_; must be an accepting
configuration. The inflationary process indicated above is given by a formula
(3,7, Z) with

5T __
Fz( TTV ) _ U {Imld}xc7m F(Sosz\/w) - U {|m|d}><Cm,
C T dstined ol ;eg;’ed

that is, we use the first d coordinates as time stamps when coding the run in
one relation (as above, |m|qs denotes the m-th tuple of {0,...,n — 1}¢ in the
lexicographic ordering).

Theorem 7.3.4 Let K C O[r] be a class of ordered structures. If K is in
PTIME then K is aziomatizable in FO(IFP).

Proof. Let M be a deterministic machine witnessing K € PTIME. We can
assume that, for suitable d, M is z¢ time-bounded. For 7 = vy .. . v4_1 we set

0@, T, Z) = (U=minA gsars(Z)) V IG(SUT A Qsuce(T, ZT-.)).

Here, 7 = min abbreviates vo = min A ...A vg-1 = min; ST stands for
“v is the successor of @ in the lexicographic ordering”, and succ(T, Zu-)
is obtained from @gucc(Z, X) by replacing subformulas X7 by Zui. Then we
have for A € O[] with n := ||A]|:

Ae K iff M accepts A

iff the (n?—1)-th configuration of M, started
with A, is defined and has state s

i A [IFP3z z¢|max min min min Sy,
that is, K is the class of ordered models of a sentence of FO(IFP). O

Corollary 7.3.5 Let K C O[r] be in PTIME. Then K is aziomatizable in
FO(IFP) by a sentence with only one occurrence of IFP. O

It is now easy to extend the previous result to NPTIME.
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Theorem 7.3.6 Let K C O[r] be a class of ordered structures. If K is in
NPTIME then K is aziomatizable in SO by a ¥i-sentence.

Proof. Choose M witnessing K € NPTIME and assume that M is 2% time-
bounded. Then, for A € O[r] with n := || 4],

Ae K iff thereis arun of M, started with A, of length < n? that
accepts A
iff there is a sequence Cy, ..., Cpa_; of n?-bounded
configurations of M, started with A, such that Cp is the
starting configuration, C;11 is a successor configuration
of C;, and s is the state of Ca_;

ff AR,

where ¢ is the sentence (the intended meaning of the second-order variable
Z being |} {|lmla} x Cn):

m < n?

¢ 1= FZ(VZ(ZmInT © Ystars (F)) A VOVB(SUUT — thsuee( LU, ZU_))

A Zmax min min min s ).
O

We now come back to a proof of the key lemma 7.3.1.

Proof (of 7.3.1). Let M be an z? space-bounded machine for T-structures.
Recall the specific coding of an n?-bounded configuration CONF in a sin-
gle relation CCONF comprising relations STUONE ECONF HYONF and I?ONF
that contain the information on the state, the endmarks, the head positions,
and the inscription of the work tapes. Let T be the sequence of variables
TYTL ... T4

For (a) we can set

2

= “the state is sg’
(z=2A0<y<k+mAz ...z =0) “the heads scan
the 0-th cell”

Pstart (E) =

< 8

where, for example, 0 < y < k 4+ m means that y is equal to or less than
the (k+m)-th element in the ordering < and 0 stands for min. Also in the
following we shall use such self-explanatory abbreviations.

For parts (b) and (c) we first introduce, for every instruction instr €
Instr(M),

instr = sbg...bgiyc1 . ..0m = 8¢t .. cyho s PRgripm,

a formula ;s (Z, X) which for n-bounded configurations X expresses
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“X has base sb¢, and if the successor configuration according to
instr is not nbounded, then {T | @instr(T,X)} = 0, otherwise
{Z | Yinstr (T, X)} is this successor configuration”.

Moreover, we need a formula @ace(X) which for n?-bounded configurations
X expresses
“X is an accepting configuration”.

Using @instr(Z, X) and @aec(X), we get the desired formulas pgsyce and Ysuee
of parts (b) and (c¢) as (recall that we agreed to set Cy,1 = C), for accepting
configurations Cf,)

Gsuce(Z, X) = (Qace(X) A XE) v \/ Qinstr (T, X),
instr € instr(M)

and

Ysuce (X, Y) = (0acc (X)AVE(YT & XT)) V
V  (OF (@ X) AVEYT 4 Qinse(T, X))).

instr € instr( M)
It remains to give Qinser (T, X ) and @acc(X). We set
Vace(X) = X000s,.
The formula @ingi, (%, X ) has the form
Pinstr (T, X) 1= 9, 5:(X) A ¢y 2 5(T, X)),
where, for an n%bounded configuration X, the formula P, 5:(X ) expresses

“X has base 5,b,27,
and @, - 7(Z, X) expresses

“if the successor Y of X according to s’,, h is not nbounded then
Tl 2 75@ X)) =0,else {T| ¢, - 757, X)} =Y.
For easier reading of the formulas below we introduce the following abbrevi-
ations:

ENDMARK yz := X1y0z “the y-th head faces the endmark 2”
(which is 0 for a and n—1 for w)

HEAD yz := X240z “the y-th head is on position |z|”
ONE yz := X3yz “the y-th work tape contains 1 on
position |z]”.

Now we take as ¢, ;. (X) the conjunction of
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X 000s
“s is the state”
A ENDMARK jmin A A ENDMARK (k+j) min

b;=a cj=a

“heads at the left end of a tape”
A ENDMARK jmax

b]-:w
“heads at the right end on input tapes”
A Fz1... 3z, (HEAD §0z; .. Tr; ANRjxy.. 3py)
b;=1
“heads of input tapes facing a 1”

A Fzi...3z,, (HEAD j0z; .. Zp, ARG Ty))
v “heads of input tapes facing a 0”

A 3z1...3z4 (HEAD (k+7)21...24 A ONE (k+j)z1 ... 24)
v “heads of work tapes facing a 1”

A 3z1...3z4 (HEAD (k+j)x1...24 A "ONE (k+j)z1...24)

c; =0
“heads of work tapes facing a 07.

Finally, we take as ¢, - 3 (%, X) the conjunction (1 A ¢,), where ¢, is
A —HEAD jiax

hj =1
k+1<j<k+m

“heads of work tapes moving to the right do not face the
(nd—1)-th square”

and where ¢ is the disjunction of
(t=y=0Az1...29.1 =0 A zq4=5")
“s’ is the new state”

\Y (-HEAD jz;...24 A ONE jz1 ...24 Az =3 Ay = j)
k1< <k+m
“work tape content unchanged on squares not scanned”

’\/ (HEAD jaz1...ag Az =3 ANy=k+])
o “new content 1 on scanned squares of a work tape”

V (ENDMARK jOAz=2Ay=jAz1...24 =0)
v “heads scanning « and moving to the right come to position 0”
V (ENDMARK jOAz=1Ay=j Azy...24=0)
v “unchanged position of heads facing o”
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V (ENDMARK jmax Az =2Ay=jAz1...24-r, =0
hj=-1
Axd_rj+1...md:r?15/x)

“heads scanning w and moving to the left come to position n" —1"
V (ENDMARK jmax Az =1 Ay=j Azi...24_1 =0 A 4 = max)

h;=0
“unchanged position of heads facing w”

V (HEADjOAz=1Ay=jAz...24=0)
“heads scanning « from their new position”

HEAD j0max... max Az =1 Ay=j A zy...249-1 =0
j\S/k ( : . , ¥y=J 1 1
hi=1 7;-times

A T4 = Max)
“heads of input tapes scanning w from their new position”

V  Jur...Fug(“zr...zqa=u1...ug+h;” AHEAD jus...ug Az =2
i<k+m

Ay = j)
“new head position of heads on ‘interior’ squares.” a
We come to the corresponding results for LOGSPACE and NLOGSPACE.
Recall that K € NLOGSPACE means that there is a (nondeterministic)
machine M and some d > 1 such that M accepts K and is d-log space-
bounded. Every natural number ¢ < n codes a word over {0,1} of length
logn, namely its binary representation |i|120gn of length logn. Thus, using d
variables, we can represent the relevant contents of a work tape. Moreover, by
restricting ourselves to sufficiently large structures 4, we can assume that d -
logn < n (where n := ||A]]). Hence, each head position can be represented by
a single number < n. Altogether, we can describe the data of a configuration
by a sequence of natural numbers < n of length independent of n, where we
agree to use the first number to represent the state. The exact definitions will
be given later when proving the following lemma.

Lemma 7.3.7 Let M be d-log space-bounded. Then there are formulas
Xstars (Z) of FO and Xsuce(T,T') of FO(DTC) such that for all sufficiently
large A€ O[7] and @ in A,

(a) A xstart[@] #f @ is the (description of the) starting configuration.
(b) For any (d-log||Al|)-bounded configuration @ and any b,

A E Xsuce[@ 0] iff b is a (d-log||A||)-bounded successor
configuration of @.

Before we give a proof we derive some consequences.

Theorem 7.3.8 Let K C O[] be a class of ordered structures. If K €
LOGSPACE then K is aziomatizable in FO(DTC).
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Proof. Let M be a deterministic machine witnessing K € LOGSPACE, say,
M is dlog space-bounded. Let Xstars and Xsuce be the formulas corresponding
to M according to the preceding lemma. Then, by (a) and (b) of this lemma,
we have for A € O[7]:

M accepts A

iff there is a sequence @y, . .., ax of (d-logl|A4]|)-bounded configurations
such that @, is the starting configuration, @;y; is the successor
configuration of @;, and @y, is an accepting configuration

il A FE 37 (Xstart () A TZ([DTCz 7 Xsuee (T, T TT A zf = 54)).
Hence, K is the class of ordered models of a sentence of FO(DTC). O

Theorem 7.3.9 Let K C O[r] be a class of ordered structures. If K €
NLOGSPACE then K is aziomatizable in FO(TC).

Proof. Let M be a machine witnessing K’ € NLOGSPACE. Since M is non-
deterministic we just have to replace DTC by TC in the last proof. In fact,
we have for A € Ofr]

M accepts A
A E 3T(Xstare (F) A 3T ([TCxz Xsuce (T, )| TT ATy = 54)).

Since FO(DTC) < FO(TC), we have obtained a sentence of FO(TC) axiom-
atizing K. |

Denote by FO(posTC) the class of formulas of FO(TC) which only contain
positive occurrences of TC, that is, each such occurrence is in the scope of
an even number of negation symbols. In 8.6.12 we will see that FO(DTC) <
FO(posTC). Thus the preceding proof yields

Corollary 7.3.10 If a class of ordered structures is in NLOGSPACE then
it is axiomatizable by a sentence of FO(posTC). O

We turn to a proof of Lemma 7.3.7. As already remarked above, in the
case of log space-bounded machines we code configurations not by relations
but by numbers. This change requires to define some arithmetical functions
and predicates in FO(DTC). The next two lemmas serve this purpose.

Lemma 7.3.11 There are FO(DTC)-formulas

<,0+(x,y,z), 90.(-'17,'!/,25), (,02(37,:1/), and @log(universe)(m)

such that for any ordered structure A with A = {0,...,||A|| — 1} and any
a,b,c€ A,

AE ¢ila,b,c] iff a+b=c

AEgla,b,q if a-b=c

A= pala, b if 2°=0b

A ': Plog(universe) [a] Zﬁ a = log ||A||
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Proof. For better readability, instead of describing the natural numbers in
terms of the ordering, we use constants 1, 2,....
Given numbers z and y, the path

0,2) > (Lz+ D)= (2,2+2) = ... > (y,z+y)
from (0, ) to (y,z + y) shows that as ¢4 (x,y,2) we can take the formula
(y=min Az =2z) V [DTCyuyuww (Suu’ A Svv')]minzyz.
Similarly, the path
(0,0) = (1,z) > (2,2.2) > (3,3-2) > ... = (y,y-x)
shows that we can set
v (x,y,2) = (y=min Az = min)
V[DTCuy uo (Sut’ A (v, z,v"))] min minyz

and the path
0,1) > (1,2) =» (2,4) —» ... = (2,27)

shows that we can set
pa(z,y) = (¢ =min Ay =1)
V [DTCypuv (Sut’ A @ (v,2,v"))] min lay.
Finally, let
Plog(universe) (T) = —3ypa(®,y) AV2(z < z — ypa(z,9))- O

Let [ := logn — 1. Then 2! < n. Recall that for m with m < 2! and
mo,...,mi—1 € {0,1} we have

. 1 _
|m|l2:m0...ml_1 it m=mo-2"" m 272y 2+ .

We then say that my is the k-th digit of |m/|?. If n, and hence [, is clear from
the context, we denote |m|? by [m]. We write @ for ug . ..uq and @ < 2 for
uo < 28 AL A ug < 2% similarly with @', %, and 7.

Lemma 7.3.12 There are formulas of FO(DTC) which, in ordered struc-
tures A, define the following relations (where n = ||Al}, l =logn —1):

One mk iff m <2 k<, and the k-th digit of [m] is 1

Zero mk iff m <2, k<, and the k-th digit of [m] is 0

One, uk iff uw<?2, k< (d+1):1, and the k-th digit of the
concatenation [ug). .. [ug] is 1

Zerog Tk iff u<?2, k< (d+1)-1, and the k-th digit of the

concatenation [ug] .. .[ug] is O
Equaly uwku' iff wu,u <2', k< (d+1)-1, and the words [ug]. .. [ud]
and [ug] ... [ul] differ at most at the k-th position.
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We denote the corresponding formulas by @one(Z, 2), @zero(Z, 2), Pd-one (T, 2),
Pd-gero(T, 2)s and Pg-equal (%, 2, T ), respectively.

Proof. Note that for m < 2' and k < [ the k-th digit of [m] is 1 iff
JyeNTzeNm=y-2F 42 A 25F 1 <2 <2l

Using this fact one easily shows, for example, the following equivalences,
which immediately can be formalized with the help of the formulas of the
preceding lemma.

Onemk if m<2PAk<IA
JyTz(m =y - 27F 42 A 2171 <z < 207K

Oney ugur kb iff  (up < 28 A up <28 A k <1A Oneugk)V
(1< k<21 A Oneuy (k—1)

Equalywk®w iff @<2 A <2 A k< (d+1)-IA
Vi((i < (d+1)-INi # k) = (One, ui <+ Oney @'i)).
O

Finally, we come to the

Proof (of 7.3.7). Let M be a logarithmically space-bounded machine for 7-
structures, say, M is d - log space-bounded. For simplicity we assume that
7 = {R} with binary R and that M only has one work tape. We restrict
ourselves to structures of cardinality n with n > d-logn, (d+1)-1 > d-logn,
and n > sy + 1 (recall that [ :=logn — 1 and that {0,...,sap} is the set of
states of M). When M is started with a structure A, where A = {0,...,n—1},
we can code the data of a resulting configuration by a tuple

(Zﬂuonuw’u:vaa”wa’UO:Ulawa7w7y07 R 7yd)

where

— z 1s the state
— g, Uy, 4 code the position of the head on the 0-th input tape (the “universe
tape”) by
" — { 0 if the head does not face «
7 1 n—1 ifthe head faces o

w = 0 if the head does not face w
v n —1 if the head faces w

and u is the number of the cell faced by the head if it is an interior one,
otherwise u = 0

— similarly, v, vy, vg, v1 code the position of the head on the first input tape,
the tape for the binary relation R; the variables vg,v1 represent the head
position vg - n + v1
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— W, w code the position of the head on the work tape (note that d-logn < n)
— the concatenation [yp] ... [y4] is the inscription of the first (d + 1) -1 cells
of the work tape.

Sometimes, for notational simplicity, we denote the sequence zuguy ...Y4
simply by T.
Concerning part (a) of the lemma, we can set
Xstart (EL'—) = I = 6
Concerning part (b), we define xguee(Z,T') by

Xsuce (f, fl) ‘= Xacc (-fa EI) \4 \/ Xinstr (Ey —fl)
instr € instr(M)

where
Xace(T, fl) = (21 =84 AT = )

(which in case T is a configuration expresses that Z is accepting and T = )
and where for every instruction '

instr = shobic; — s'cyhohiha

Xinstr (T, Z') is a formula which, in case T is a (d - log)-bounded configuration,
expresses that T has base sbgb; ¢y, the successor configuration of T according
to instr is (d - log)-bounded and is T'. As an example, we explicitly give
Xinstr (Ta fI) for

instr = slal — s'0(—1)11,

namely as the conjunction of

z=35
“s is the state”
Uy = min Au, = min
“the head of the 0-th input tape faces an interior cell”
Vo = max Av, = min Avg = min Av; = min
“the head of the first input tape faces o”
we = min A Onegyo . . . yaw
“the head of the work tape faces a 17
2=+
“s' is the new state”
u, =min A((u > 0A Su'u Aul), =min) V(u=0Au =0Au, =max))

“new head position of the 0-th input tape”
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v!, = min A v§ = min Av{ = min A v/, = min
“new head position of the first input tape is cell 0”

wl, = min ASww' A w' <d-logn,
ie. w), = min ASww' A 3z(Prog(universe)(T) A w' < d-x)

“new head position of the work tape is within the bounds”
Zerog yp - - - yyw

“new content of cell scanned on the work tape”

Equalyyo ... yqwyg - .. vy

“work tape content unchanged on cells not scanned”. g

7.4 The Complexity of the Satisfaction Relation

Suppose, for example, that the class K of ordered structures is axiomatiz-
able by the FO(IFP)-sentence p, K = {4 € O[] | A I ¢}. We aim at
showing that K € PTIME, that is, for fixed ¢ we want to prove that the
satisfaction relation A = ¢ can be decided in time polynomially bounded
in ||A]|. One also says that  has a polynomial time model-checker. To sim-
plify the corresponding algorithms we start with some general remarks. Note
that manipulations in algorithms of the kind we now describe do not destroy
polynomial time and logarithmic space bounds.

(1) Using an additional work tape W' it is possible at any time of a compu-
tation to move the head of a given work tape W to the rightmost square
which the head of the tape has scanned so far. (In fact, change the given
program so that the head on W' moves in the same way as the head on
W, but always prints the symbol 1.)

(2) By (1) it is possible at any time of a computation to erase the content
of a work tape (note that the additional work tape used in (1) can be
cleared in a trivial way); in particular, one can change a program — with-
out changing the accepted class — such that all work tapes are empty
whenever the program stops.

(3) The content of a worktape W can be copied to an empty tape Wi (us-
ing (1), bring the corresponding heads H and H; to the rightmost cell
scanned by H and copy the content cell by cell).

(4) In our applications the 0-th input tape has the inscription 1...1, where

n—times
n is the cardinality of the structure we consider. One can write the binary
representation of n (of length < logn) on a work tape. We say “a counter
is set to n”. Similarly, a counter can be set to n® for any fixed d > 1.

Let L. be one of the logics considered in the preceding section and C the
corresponding complexity class. We want to show that for any sentence of
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L the class K of its ordered models is in C. We even show that there is a
machine M strongly witnessing K € C, that is,

— M accepts K

— for any A € O[r] every run of M, started with 4, stops at s. or s_; in
particular, if M is deterministic then M decides K;

— for any A € Of[r] every run of M satisfies the time or space bounds char-
acteristic for C.

The proof that the ctass of ordered models of a sentence ¢ of £ is in C proceeds
by induction on . So we have to deal with formulas, too. We therefore

introduce the following notation: For a formula p(z,...,2;,Y7,...,Y,) we
let

ordMod(y) = {(A,a1,...,a;,P1,...,P.) | A€ O[], A[E ¢[a, P|},
that is, we consider the ordered models of p(cq,..., ¢, P1, ..., P), a sentence

in an enlarged vocabulary.

Theorem 7.4.1 Let K C O[7] be a class of ordered structures.

(a) If K € DTC then K € LOGSPACE.
(b) If K € posTC then K € NLOGSPACE.

Proof. By induction on the corresponding formulas ¢ we show that the class
of ordered models of ¢ is in LOGSPACE and NLOGSPACE, respectively,
and that there exists a machine strongly witnessing this fact. We handle both
cases simultaneously. By passing to an equivalent formula we can assume that
in formulas of FO(posTC) the TC operation does not occur in the scope of
any negation symbol (the new formula may also contain A, V).

Suppose that ¢ is atomic, say for simplicity, ¢ = Rxy. We show that there
is a machine M strongly witnessing that

{(A,i,) | A € Olr], R*j} € LOGSPACE.

Let (A,4,7) € O[r U{c,d}] with A ={0,1,...,n—1} be given. Note that the
information, whether R%ij holds, is to be found in the (i-n 4 j)-th square of
the input tape corresponding to R, and (the binary representations of) i and
j are available on the input tapes corresponding to ¢ and d. Now it should be
clear how a machine strongly witnessing that ordMod(Rzy) € LOGSPACE
can be designed.

p = ) By the remarks above, ¢ does not contain TC and hence, is in
FO(DTC). By induction hypothesis, there is a machine M strongly witnessing
that ordMod(vy) € LOGSPACE. For ¢ just interchange the roles of sy and
s_ in M. ‘

el(xy,...,z;) = (1 Vx): By induction hypothesis, there are corresponding
machines My, for ¢(z1,...,2;) and M, for x(z1,...,2;). Let M be a machine
that first carries out the computation of My and then that ofM, accepting
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the input in case at least one, My or M,, accepts, and rejecting otherwise.
(After the computation of M, the work tapes are erased as explained in
remark (2) above.)

@ = (¥ A x): similarly.

@(x1,...,x;) = Jz¢: By induction hypothesis, there is a corresponding
machine My for ¢(zy,...,z;,2). A machine M for ¢ operates as follows:
Suppose M is started with an ordered structure (A4,ay,...,a;) where A =
{0,...,n—1}. Then, for i = 0,...,n—1, M writes the binary representation
of i on a work tape and checks, using My, whether A |= ¢la1,...,a,1].
(Note that the binary representation of i on the work tape does not carry an
endmark w as required on the corresponding input tape of M. To remind
the end of the representation of 7, proceed as explained in remark (1) above.)
If the answer is positive at least once, M stops in state s, otherwise in s_.

o = Vai): similarly.

¢ = [DTCz 3 ] st, where ¢ is a formula of FO(DTC): For simplicity, we
assume that the free variables of ¢ are among 7,7 and that T = ¢, § = y, 5 =
s, and ¢ = t. Choose a machine My strongly witnessing that ordMod(v)) €
LOGSPACE. Given A with A = {0,...,n— 1}, if there is a «-path from
s to t, there is one of length < n. Therefore, the machine M, we aim at,
can be organized as follows: It writes ¢ := s on a work tape and sets a
counter to n, which is used to invoke a subroutine at most n times. M rejects
in case the counter becomes negative. Using My, the subroutine checks for
J=0,...,n—1whether A |= 1[i, j] holds for exactly one j; if not, M rejects.
Otherwise, M checks whether j equals t; in the affirmative case M accepts.
In the negative case, M sets i := j and reduces the counter by one.

¢ = [TCz 5] 3t : Once more, for simplicity, we assume that the free var-
iables of v are among T,y and that T = 2, ¥ = y, 5 = s, and £ = ¢. Choose
a machine My strongly witnessing ordMod(¢) € NLOGSPACE. We give the
basic idea underlying the construction of a machine M for ¢: A counter is
set to n (again, we assume that A = {0,1,...,n—1}), which is used to
carry out a subroutine at most n times. M will stop in the rejecting state
in case the counter becomes negative. M writes i := s on a work tape. The
subroutine starts choosing an element j € {0,...,n — 1} nondeterministically
(by using a counter to randomly write a {0,1} word of length log n on a
tape). Then it checks, using My, whether (i, j) holds. If not, M stops in
state s_. Otherwise, if j = ¢, M stops in s4, and if j # ¢, it sets ¢ :=j5. O

Theorem 7.4.2 Let K C O[r] be a class of ordered structures.

(a) If K € IFP then K € PTIME.
(b) If K € PFP then K € PSPACE.

Proof. Again, we give the proof by induction on the formula ¢ axiomatizing
the class K. The cases where ¢ is atomic, =, (¥ V x), or 3z are handled as
in the preceding proof. The corresponding machines are polynomially time-
bounded or space-bounded if the machines used in the induction hypotheses
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are. Now, for part (a), suppose that ¢ = [IFPz x ¢¥(Z, X )] where X is r-ary,
and that My is a machine strongly witnessing that

{(4,3,R) | A€ O[r], A ¥[a,R]} € PTIME

(for simplicity, we assume that the free variables of ¢ are among %, X ). The
machine M, we look for, contains a subroutine that uses work tapes W and
W', If started with a word of length n” on W — the code of an r-ary relation
R — and empty W', the subroutine writes, invoking the machine My, the code
of

R = {a| AE (XTV¢)[a R}

on the tape W' without changing the content of W.

The machine M for ¢ operates as follows: It sets R := ) and uses the
subroutine to calculate R’. If R = R’ it checks whether R? or not Rf and
accepts or rejects, respectively. Otherwise, it sets R := R', erases the content
of W', and again starts the subroutine. Note that B = R' will be achieved
after at most n¢ calls to the subroutine (by 7.1.1(c)).

For part (b) assume that ¢ = [PFPz x (%, X)]¢ with r-ary X and that
My is a machine strongly witnessing {(4,a,R) | A € Olr], A |E ¢[a, R]} €
PSPACE. Given a structure A, the operation F¥ associated with 1/ satisfies
FY. | =F). (and this set is the fixed-point F¥) or F¥ = @ (cf. 7.1.1(b)).
The machine M for ¢ starts its computation on A by setting a counter to
27" 1 (that is, it writes the word 1...1 of length n” on a work tape). Then
it proceeds as in the IFP-case, but now using the counter to ensure that the
subroutine which here evaluates

R = {a| Ak R},

is invoked at most 2" —1 times. When the counter gets negative, it checks
whether R = R’ and whether Rt. If both questions are answered positively
it accepts, otherwise it rejects. O

Theorem 7.4.3 Let K C Or] be a class of ordered structures.
(a) If K € %] then K € NPTIME.
(b) If K € SO then K € PSPACE.

Proof. (a) Let K = Mod(yp) where ¢ = 3X; ...3X%, ¢ is first-order, and
the arity of X; is r;. By 7.4.1(a), there is a machine M, strongly witnessing
that Mod(¢(X71,...,X))) is in PTIME (even in LOGSPACE). The machine
M for ¢, started with A € O[r], nondeterministically writes words over
{0,1} of length n",...,n™ on different work tapes, which are intended as
codes of interpretations Py,..., P, of X1,...,X;. Then, using My, it checks
whether A = ¢|P1,..., P] or not, and stops in an accepting or rejecting
state, respectively.
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(b) Let K = Mod(yp) for the formula ¢ of SO. To gain a machine M
witnessing K € PSPACE we proceed by induction on ¢. For ¢ atomic or of
the form =, (¢ V x), or Jwyy we argue as in the proof of 7.4.1. For p = X ¢
with r-ary X the machine M writes the word 1...1 of length n” on a work
tape W; then it systematically decreases this word, checking in each case
with a polynomially space-bounded machine for +, whether v holds, if the
interpretation of X is given by the tape W. O

7.5 The Main Theorem and Some Consequences

To summarize the results of the preceding sections we introduce the following
notion:

Definition 7.5.1 A logic £ captures a complexity class C if for all 7 with
< €71 and K C O[r] we have

KeC iff K is axiomatizable in L. 0

Theorem 7.5.2 (Main Theorem) (a) FO(DTC) captures LOGSPACE.
(b) FO(TC) captures NLOGSPACE.

(¢) FO(IFP) captures PTIME.

(d) %} captures NPTIME.

(e) FO(PFP) captures PSPACE.

Note that we have proved the theorem up to part (b). We only have shown
that
FO(posTC) captures NLOGSPACE.

At the end of this section we will prove that
FO(posTC) = FO(TC) on ordered structures.
Then the proof will be finished.

The main theorem gives descriptive characterizations of some important com-
plexity classes by certain extensions of first-order logic. Is there a well-known
complexity class that, in this sense, corresponds to first-order logic itself? We
have mentioned already several times that first-order logic has rather limited
posssibilities to speak about inductive or recursive procedures. In fact, it
has been proved that first-order logic captures a very low complexity class,
namely ACP, a class which is defined in terms of circuits; cf. [95].

The study of the complexity of evaluating a formula ¢ of a logic £ in a
structure A arises in various contexts. For example, .4 may be a database
instance and ¢ a corresponding query, or 4 may represent the state space
of a program and ¢ a desired property. When considering such evaluations
the following kinds of complexities have been treated (the first one being the
subject of this chapter):
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— data complexzity of L: For a fixed sentence, we measure the complexity as
a function of the size of the structure;

— expression complexity of L: For a fixed structure, we measure the complex-
ity as a function of the length of the formula;

— combined complexity of L: It is measured as a function of both the size of
the structure and the length of the formula.

In this book we mainly concentrate on data complexity. The following exercise
contains two results on combined complexity. Part (a) illustrates a general
phenomenon, namely a considerable increase against data complexity (cf.
[52]); part (b) shows that it may pay to look for axiomatizations with few
variables. For a proof the reader should carefully analyze the proof of 7.4.1.

Exercise 7.5.3 (a) The combined complexity of FO is in PSPACE. (In fact,
it is PSPACE-complete; see [142].)

(b) For s > 1, the combined complexity of FO® is in PTIME. (In fact, it is
PTIME-complete for s > 2; see [143].) O

The descriptive characterizations of complexity classes given by the main
theorem are of importance in various respects:

— They may help to recognize that a concrete problem is in a given complexity
class (by expressing it in the corresponding logic).

— They allow to view the logics involved as higher programming languages for
problems of the corresponding complexity class. (Note that the proofs of
the preceding section show how to convert a sentence ¢ into an algorithm
accepting the class of models of ¢ and satisfying the required resource
restrictions.)

— Characteristic features of the logic may be seen as characteristic features of
the complexity class described by it and may add to a better understand-
ing. (For instance, the result about FO(IFP) and PTIME shows us that
inflationary inductions are an essential ingredient of PTIME algorithms.)

— The descriptive characterizations allow to convert problems, methods, and
results of complexity theory into logic and vice versa, thus widening the
methodological possibilities for both sides.

In the remainder of this section we give some illustrating examples for the
last point. We first stay with ordered structures and subsequently discuss the
role of order.

Sentences ¢ and 9 in a vocabulary T with < € 7 are said to be equivalent
on ordered structures if for all ordered 7r-structures A,

Ay it A=

Corollary 7.5.4 On ordered structures, every FO(IFP)-sentence is equiva-
lent to an FO(IFP)-sentence in which IFP occurs at most once. The same
applies to FO(PFP) and PFP.
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Proof. Suppose ¢ € FO(IFP)[r] with <€ 7. Then ordMod(p) € PTIME.
Now the claim follows from 7.3.5. For FO(PFP) cf. 7.3.3. O

The next corollary also has a simple direct proof.

Corollary 7.5.5 Let C be one of the complexity classes mentioned in the
Main Theorem. If K is a class of ordered structures in C then there is a
Turing machine M strongly witnessing K € C, that is,

— M accepts K
— every Tun stops in the accepting or in the rejecting state
— every run fulfills the time or space bounds characteristic for C.

Proof. Let L be the logic capturing C. Then there is a sentence of £ ax-
iomatizing K. By the results of section 7.4 we know that for every class K
axiomatizable in £ there is a machine strongly witnessing K € C. O

An immediate consequence of the Main Theorem is the equivalence of (i)
and (ii):
(i) PTIME = PSPACE
(i) FOIFP) = FO(PFP) on ordered structures.

Note, however, that here PTIME and PSPACE are understood as classes of
ordered structures and not as languages over alphabets. Does (i) mean the
same as PTIME = PSPACE in complexity theory? We want to show this by
making clear that here and in complexity theory we deal only with different
presentations of a complexity class.

If C is a complexity class of complexity theory, we denote by C' the cor-
responding complexity class of structures. For example, for PTIME we have

C consists of all languages L, L C A" for some alphabet A, such that
there exists a deterministic Turing machine accepting L in polyno-
mial time

and

C' consists of all classes K, K C O[r] for some 7 with < € 7, such that
there is a deterministic Turing machine M accepting K in polynomial
time.

In the following let C,(;,Cy range over the complexity classes LOGSPACE,
NLOGSPACE, PTIME, NPTIME, and PSPACE of complexity theory.

Our first consideration will show that C C C’ up to a natural transition
from words to ordered structures, thereby using word models (already intro-
duced in section 6.2).

Fix an alphabet A and let 7(A) be the vocabulary {<} U {P, | a € A}
with unary P,. If u € A", denote by K, the class of structures of the form

(Ba < (Pa)QEA)a
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where the cardinality of B equals the length of u, < is an ordering of B,
and P, corresponds to the positions in u carrying an a. For L C A" set
K(L) := U, Ku. Clearly, K(L) C O[r(A)] and, since

K(AT) = ordMod(Vz( \/ (Pyx A /\ -FPyx))),
a€A bea

brta
we have

(1) K(A%) € LOGSPACE.

One can easily show that

(2) for LCAY, LeC iff K(L)e(,

thus obtaining “C C C' up to transitions”.

Now we turn to a statement showing C' C C up to a transition from
ordered structures to words. Let 7 with < € 7 be given. Set ¢ := {0, 1, &, w}.
For A € O[r] let us be the word in AJ obtained by concatenating the
inscriptions on all input tapes of a Turing machine started with input A
(where we include the “virtual letters” a and w). For a class K C Ofr] set

LK) = {us|A€K).

Clearly, given 7, there is a polynomial p € N[z} such that for all 4 € O[r]
we have ||A|] < Jua| < p(J|4]]). In particular, for p(x) := 2% we have that
log ||A]l <loglua| < d-log|{A||- Invoking these relations one shows

(3) L(O[r]) € LOGSPACE

(4) for KCO[r], Ke(C iff L(K)eC

((3) is immediate, and (4) is left as an exercise to the reader). Thus, “C' C C
up to transitions”.
From (2) and (4) we infer

Proposition 7.5.6 C; CCs iff C} CC.

Proof. First, suppose C; C Cz and let K € Cf where K C O[r]. Then by (4),

L(K) € €, and by hypothesis, L(K) € Ca. Therefore, K € C} (again by (4)).

Now assume C; € C) and let L € C;. Then, K(L) € C{ by (2), and hence,

K (L) € C}. Therefore, L € C3 (again by (2)). O
Together with the Main Theorem we have

Corollary 7.5.7 (a) FO(IFP) = FO(PFP) on ordered structures
iff PTIME = PSPACE (in complexity theory).
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(b) FO(IFP) = X1 on ordered structures
iff PTIME = NPTIME (in complexity theory). ]

Moreover, the preceding argument shows that in order to get FO(IFP) =
FO(PFP) on ordered structures (or, equivalently, PTIME = PSPACE) it
suffices to prove that FO(IFP) = FO(PFP) holds for ordered 7-structures
where, besides <, only unary relation symbols are in 7. Since one need only
consider languages over {0, 1}, even a single unary relation symbol suffices.

Corollary 7.5.8 The following are equivalent:
(i) PTIME = NPTIME
(ii) FO(IFP) = SO on ordered structures.

Proof. If (ii) holds then ¥ < FO(IFP) on ordered structures, thus NPTIME
< PTIME. Conversely, if NPTIME = PTIME then, on ordered structures,
Y1 = FO(IFP). As %1 is closed under existential quantifications and FO(IFP)
under boolean operations, an easy induction yields SO = FO(IFP). O

Whereas the preceding corollaries contain the translation of problems from
complexity theory to logics we now turn to the translation of a result. In
complexity theory one shows

LOGSPACE C NLOGSPACE C PTIME C NPTIME C PSPACE

and
LOGSPACE # PSPACE.

Hence, by the Main Theorem,

Corollary 7.5.9 On ordered structures,

(a) FO(DTC) < FO(TC) <FO(FP) < X! <FO(PFP).

(b) FO(DTC) # FO(PFP). O
Note that most of the <-relations in (a) are immediate; the remaining ones

and part (b) will be obtained in chapters 8 and 9 by purely modeltheoretic
means.

For any of the complexity classes C introduced so far, in complexity theory
one defines the class co-C to be the class of complements of languages in C,
that is, for any alphabet A and L C AT,

LecoC iff (At\L)eC.

Clearly, any deterministic class C is closed under complements, that is, C =
co-C. Similarly, we define the class co-C’ as the class of complements of classes
of structures in C'; more precisely, for 7 with < € 7 and K C O[7], we set

Kecol iff (Of]\K)e('
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Exercise 7.5.10 Show that Proposition 7.5.6 remains true if one allows C;
and Cs to range over the complexity classes mentioned in the Main Theorem
and their complements. (Use (1)-(4) before 7.5.6.) O

We now are going to discuss the role of order and to get information
whether and to what extent orderings can be avoided. Let A be a not neces-
sarily ordered structure. We already mentioned that in order to consider A
as an input for a Turing machine, we have to represent it as a string (or a
sequence of strings), for example, by labeling the elements of A in some way.
Taking, say, the lexicographic ordering of the labels, we get an ordering on
A and hence, an ordered structure. Now, if A is a graph we can state ques-
tions such as “Is there a path from the 5-th to the 28-th element?” whose
answer depends on this ordering and is senseless for A itself. The following
framework enables us to concentrate on questions intrinsic to A.

Definition 7.5.11 Let K be a class of (unordered) 7-structures. Set 7. :=
7U{<}. The class K. of ordered representations of structures in K is given
by

K. = {(A,<)| A€ K, < an ordering of A}. O

If £ is a logic capturing the complexity class C we have
K.eC iff thereis ¢ € L[r<] such that K. = Mod(yp).

The sentence ¢ on the right side of the equivalence is order-invariant in the
finite, since for every A and any orderings <; and <s of A we have

(A,<1) e Ko iff (A4,<2) € Ko
and thus,

A <) EFe il (A <) Fo

Now, if £ would be closed under order-invariant sentences in the finite (by
3.5.2, FO does not have this property), we would have

K. €C iff thereis € L[r] such that K = Mod” ().

In general, this does not hold. To give a counterexample for FO(DTC), let
K = EVEN][r] with 7 = @ be the class of sets of even cardinality. Since
K. € LOGSPACE, there is a sentence ¢ of FO(DTC)[7] such that

K = Mod(y);

for example, as ¢ we can take the sentence =[DTC, , ¥ = = + 2] min max,
where we use self-explanatory abbreviations. This sentence is order-invariant

& We use Mod™(...) with upper index 7 to rule out any ambiguity on the vocabu-
lary considered.
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in the finite: the evaluation of ¢ in a structure (A, <*) makes use of the
ordering <*, but the outcome of this evaluation does not depend on the
specific ordering < we have chosen. We shall see in 8.4.4 that for no sentence

¥ of FO(DTC)[7], even of FO(PFP)[7],
K = Mod(»).

These observations lead to a stronger notion of what it means to capture a
complexity class.

Definition 7.5.12 Let £ be a logic and € a complexity class. L strongly
captures C if for all vocabularies 7 and all classes K of r-structures,

K. €C iff K is axiomatizable in L. |

The following proposition holds for all complexity classes C considered so
far; essentially one needs that C contains LOGSPACE. The proof is left to
the reader as an exercise.

Proposition 7.5.13 If L strongly captures C then L captures C. |

The converse is false: The counterexample given before the definition shows
that FO(PFP) does not capture PSPACE strongly. For the class EVEN|[7] we
used as a counterexample, we have EVEN([7]« € LOGSPACE, and EVEN(7]
is not axiomatizable in FO(PFP). Since FO(DTC) < FO(TC) < FO(IFP)
< FO(PFP) holds for arbitrary structures, we see that none of these logics
strongly captures the complexity class corresponding to it by the Main The-
orem. The result cannot be extended to X1 and NPTIME, since we know
%1 < FO(PFP) only on ordered structures. In fact, we have

Theorem 7.5.14 X} strongly captures NPTIME.

Proof. Let 7 be arbitrary and K be a class of 7-structures. Assume K =
Mod" (¢) for some Yi[r]-sentence ¢, say, » = 3IX;...3X,,1 with first-
order 1. Set x := 3X;...3X,,(¥ A “< is an ordering”). Then, x € Z}[r<],
Mod(x) = K<, and hence, K. € NPTIME by the Main Theorem. Con-
versely, if K. € NPTIME then, again by the Main Theorem, there is a
sentence ¢ € Yi[r<] such that K. = Mod <(¢). Set ¥ := 3 < ¢. Then
¥ € B1[7], and for any 7-structure 4 we have

Akl iff  there is <4 with (4,<) E ¢
iff there is <4 with (A4, <4) € K
if Ac€cK,
that is, K = Mod" (¢). O

Theorem 7.5.15 II1 strongly captures co-NPTIME.
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Proof. Let T be arbitrary and K be a class of 7-structures. If Str[r] denotes
the class of all 7-structures then

(+) (Str[r] \ K)< = Ofr<] \ K<.
Therefore,

K ell iff thereis ¢(Xy,...,X,) € FO[7] such that
K = Mod(¥X ... VX))

iff  thereis x(X1,...,Xm) € FO[r] such that
Str[r] \ K = Mod(3X; ...3X,x)

i (Strfr]\ K)< € NPTIME  (by 7.5.14)
if Kc.e co-NPTIME.

Corollary 7.5.16 NPTIME = co-NPTIME iff X} =1}

Proof. As an example we show the implication from left to right. Let K be
a class of structures. Then
Kex if K. e NPTIME
iff K. € co-NPTIME (by hypothesis)
if K ell.

Corollary 7.5.17 NPTIME = co-NPTIME iff SO = %}.
Proof. By the preceding corollary it suffices to prove
I =% if SO=%.

For a logic £ we write ¢ € L to express that the sentence ¢ is equivalent to
an L-sentence. Clearly,

e implies —ye IIj,
p €I} implies —p € ¥i.

Now suppose that SO = X1 and therefore, II} < 1. Let ¢ € Xi. Then,
— € Tl and hence, ~¢ € %i. Therefore, p € IIj. Conversely, assume that
I} = %1. One easily shows that the class .1 is closed — up to equivalence — un-
der V and existential first-order and second-order quantifications. For closure
under — argue as follows: Suppose ¢ = < and ¢ € Xj. Then —p € T} = 3.

0
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Exercise 7.5.18 Show for k¥ > 1 that ¥} = X}, implies X} = SO. The
question, whether £} = ¥ 4, for some k, is open. However, it is conjectured
that

Yi<Ei<....

For k > 1, the class of ordered structures axiomatizable in E,lc forms the k-th
stage PHy, of the polynomial hierarchy PH. Its initial stage PHy is defined to
be PTIME. In 12.4.8 we shall give a definition of PH in terms of complexity.

s

Exercise 7.5.19 Define the logic SO(PFP). Show that it captures PSPACE
strongly. In 8.5.1 we shall implicitly show by a purely modeltheoretic proof
that SO(PFP) = FO(PFP) on ordered structures. [

The question whether LOGSPACE, NLOGSPACE, and PTIME can be
strongly captured by a logic is a major issue of descriptive complexity theory.
Of course, one has to give a precise definition of what is meant by a “logic” in
this context. Moreover, to rule out trivial positive answers, one has to require
some conditions of effectiveness. Note that in the capturing results obtained
in the preceding sections, we effectively assigned to every sentence a Turing
machine accepting its models. And to every Turing machine accepting a class
of models we effectively assigned a sentence axiomatizing this class. Up to
now all attempts to find a logic that strongly captures PTIME in such an
effective way have failed. In Chapter 11 we shall come back to such attempts.

We close this section by a result which completes the proof of the Main
Theorem {(compare 8.6.15 for a modeltheoretic proof).

Theorem 7.5.20 On ordered structures, FO(posTC) = FO(TC).

Proof. We make use of the fact (shown in 8.6.14) that, on ordered structures,
every formula of FO(posTC) is equivalent to a formula of the form

* [TCzy ] minmax

with first-order ).

The proof of the theorem proceeds by induction on FO(TC)-formulas, the
only nontrivial case being the negation step. By the induction hypothesis and
the fact just mentioned we may assume that

Y= [TCEJ 1/1] EZ

with first-order . For simplicity, we assume that ¢ = ¢(Z,7). By the Main
Theorem (more precisely, by 7.4.1) there is a Turing machine Mg strongly
witnessing that ordMod(y) € LOGSPACE.

Suppose T = 71 ...x,. Given a structure A and @,b € A", let dy(a,b) be
the length of the shortest 1-path connecting @ and b,
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dy(@,b) := min{k > 0 | there exist @ = @,ay,...,d, = b such that

A ': w[ai,ai_H] for ¢ < k’},

where dy(@,b) := oo in case the set on the right side is empty. Note that
— if dy(@,b) < oo then 0 < dy(a,b) < ||A]]"
- dT/)(a?E) < dw(aa 5) + dfﬁ(a c).

Moreover, - [TCz 5 ¥(T, 7)] 5t is equivalent to
‘{7 | dy(5,7) < ool = {7 | diyz,p) n~g=1) (5:7) < co}||”.

We first show that there is a nondeterministic log space-bounded® machine
M such that for any ordered structure (A, @, !, w,w'),

if ||{e | d,,(@,e) <I}|| = @ then
M accepts (A,a,l,w, @) iff ||{e|dy(ae) <Il+1}|| =,

where the corresponding natural numbers < || A||" are given by their || A||-adic
representations [ = ly...l., W = wy ... Wy, @ = wh...w.

We present the machine M. When during its computation M checks
whether A |= [¢, d] holds or not, this is done by invoking Mg. Started with
(A,a,l,w,w), M first sets a counter to @w’. Then, for every b € A", it carries

out either (1) or (2), the choice being done nondeterministically:
(1) M nondeterministically guesses a path witnessing dy(@,b) < [ + 1 and
decreases the counter by one; in case the counter is zero it rejects.

(2) Using an additional counter with the initial value W, M nondeterminis-
tically guesses w many distinct tuples ¢ € A" together with a proof that
dy(@,¢) < 1; for each such € it shows that  # b and =[¢, b] (thus, in case
e | dy(@,e) < 1}|| = w, proving that dy (@, b) > 1+ 1). In case [ = 0 it

shows —[a, b]. »
Finally, if all b € A” have been dealt with and the counter is 0, M accepts.

Since M is log space-bounded there is, by the Main Theorem, a formula
Xx¢ (%, 7, W, W) € FO(posTC) axiomatizing the class accepted by M. Then,
noting that 10...0 is (the representation of) [|Al|", we get a formula

pu(T, W) € FO(rptci)rsn'%sC) with the meaning
‘{7 | dy (@, ) < oo}l =w”
or, equivalently, with the meaning
“{o | dy (@, 7) < A"} = w”

9 log space-bounded means ¢ log space-bounded for some ¢ > 0.
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by setting
po(@m) = [TCymga (X7, T, W) AT =7+ 1) minmin1 0. ..0w.
r times
Since we saw above that ¢ = = [TCz 5 4(Z,7)] 5t is equivalent to
‘{1 dy(3,7) < ool = I{V | diyz gya-g=1) (5, 7) < o0}|I”,
we obtain that ¢ is equivalent to the formula
32 (py(3,%) A pyn-g-1) (5, %)),
a formula of FO(posTC). O

As a consequence of part (b) of the Main Theorem whose proof we just
have completed we get, since FO(TC) is closed under negation:

Corollary 7.5.21 NLOGSPACE = co-NLOGSPACE. |

In the preceding considerations, when treating questions of effectiveness,
we have restricted ourselves to ordered structures A, as they offer a natural
way of encoding by passing to the unique isomorphic copy whose universe is
{0,...,||A|l = 1} and whose order is the natural order on {0,...,||A|| — 1}.
There is an alternative way, namely the direct restriction to structures whose
universe forms an initial segment of the natural numbers. Of course, both
frameworks are equivalent:

Exercise 7.5.22 Let 7 be an arbitrary vocabulary. A numerical T-structure
is a 7-structure whose universe is an initial segment of the natural numbers,
that is, the universe is the set {0,...,n} for some n. For a class K of 7-
structures let

Koum = {A€ K| Aisnumerical}
be the set of numerical structures in K, and for a sentence ¢ let
Modpum(p) = {A]| A ¢, A numerical}

be the set of its numerical models.
Let C and £ be any of the complexity classes and logics, respectively,
considered so far. Show

(a) For any class K, we have K. € C iff K,y € C (that is, there is a Turing
machine according to C that, started with any numerical A accepts A iff
A € Knum)-

(b) £ strongly captures C iff for any 7 and any class K of 7-structures,
Koum € C iff there is a sentence ¢ of L[] such that Kyym = Modpum(p)-

(¢) L captures C iff for any 7 and any class K of r-structures, Kyym € C
iff there is an L-sentence ¢ of L[r<] with Kpum = {A | (4,<4) & o,
A =1{0,...,n} for some n, and <4 is the natural ordering on A}. 0
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7.5.1 Appendix!®

In the preceding sections Turing machines have only been used as acceptors,
that is, given a machine M and an input structure A, the question was
whether M would accept A. However, Turing machines can also be used to
calculate functions. For later purposes we are interested in machines that
map structures to structures, so-called transducers.

Let 7 and ¢ be vocabularies containing <. We consider (7, o)- Turing ma-
chines, that is, deterministic Turing machines M that have input tapes for
encoding 7-structures, work tapes, and in addition so-called output tapes,
namely as many as we need for our way of encoding o-structures as inputs.
The output tapes are write-only tapes: In the beginning of a calculation they
are empty, and their heads scan the first cell. In a step of M the heads on the
output tapes either are not active or write a letter on the scanned cell and
then move to the right neighbour. (So the final positions of the heads on the
output tapes take over the role of the endmark w since they determine the
portion of the tape visited by the heads during the computation.) Moreover,
the behaviour of M does not depend on the actual inscriptions and head
positions of the output tapes. Altogether it is made precise by the form of
the instructions that look like (cf. (x) in subsection 7.2.2):

(+) sbo ... bpriCr...cm > Sl . Cpho s Pegiemdo - .. dp
(in case M has p + 1 output tapes OPy,...,0P,), where d; € {00,10,11}.
The meaning of (+) is fixed as for (*) in subsection 7.2.2 adding that

d; =00 means “Do nothing on OP;”,

d; =10 means “Write 0 on the scanned cell of OP; and move
the head to the cell on the right”,

d; =11 means “Write 1 on the scanned cell of OP; and move
the head to the cell on the right”.

A (7,0)-Turing machine M is a {7, 0)-transducer if M, started with an or-
dered T-structure A, finally stops and the output tapes then carry the en-
coding of an ordered o-structure B (where, up to the missing endmark w,
the same encoding as for input structures is used). To be definite, we let
{0,1,...,||B||—1} be the universe of 5.

When considering space-bounded transducers, the space used on the out-
put tapes (similar to that used on the input tapes) does not count. Hence, a
log space-bounded transducer may fill a number of cells on the output tapes
that is not log space-bounded in the size of the input.

Without changing the space needed and, up to a constant factor, the time
needed, we may assume that transducers are normalized in the sense that in
the instructions (+) either (i} or (ii), where

*0 The notions and results of this appendix are only needed in Chapters 11 and 12.
They may be skipped in a first reading.
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(i) all d; are =00
(i) exactly oned;is #00,¢1...¢p =€) ... ¢}, and hg = ... = hgppym = 0.

So in a step of a normalized transducer either no output tape is involved
or only one output tape, but no other tape. In case (ii), we speak of an
(2, 0)-instruction if d; = 10, and of an (¢, 1)-instruction if d; = 11.

Fix 7,0 as above and let M be a normalized (7, o)-transducer. If we forget
the output tapes and the d;, we get a usual deterministic Turing machine M'.
Thus, if

1) 8bg .. bprrcr...om =8 ho . Pkgiemdo - dp

is an instruction of M then
(2) Sobo - bk—HCl i Gy — S’Cl A Clmho PN hk+l+m

is an instruction of M’; we call it an (¢,7)-instruction of M’ if (1) is an
(i, j)-instruction of M. When carrying out an (4, j)-instruction, M’ at most
changes its state.

Now, start M’ with an ordered 7-structure 4. Then, for every point of
the run of M started with A, the inscription of the output tapes of M (and
hence, the output structure of M) can be reconstructed from the run of M’
as follows:

OP; has 0 in cell [ if the corresponding sequence of configurations of
M' contains at least [ many (¢,0)- or (i, 1)-configurations, the I-th
one being an (4, 0)-configuration.!! And similarly, OP; has 1 in cell [
if the I-th (4,0)- or (i, 1)-configuration is an (i, 1)-configuration.

This observation enables us to describe the behaviour of M and, in particular,
the output structure via the behaviour of M’, using formulas of a suitable
logic as we have done it for acceptors in section 7.3. As an example that
we shall need later we consider the case that M is log space-bounded and
the logic is FO(DTC), recalling that the behaviour of log space-bounded
acceptors can be described by formulas of FO(DTC) (cf. 7.3.8).

Theorem 7.5.23 Let M be a log space-bounded (7,0)-transducer. There are
an e > 1, an FO(DTC)-formula @uni(x1,...,x:), and for every, say r-
ary, R € o an FO(DTC)-formula ¢r(T,...,T,) where length(Z;) = ... =
length(%,) = e such that for every ordered T-structure A the machine M,
started with A, leads to an output structure isomorphic to

Oimi (=), (@R (=, -+ = ) Reo)-

We leave the details of a proof to the reader. One uses an FO(DTC)-
description of the run of M. The following exercise contains the key parts

' An (i, j)-configuration is a configuration calling an (i, j)-instruction.
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needed to obtain the formulas mentioned in the theorem. Note that, when
started with an ordered structure A, both M and M’ stop after the same
number of steps. As the number of different, say, d-log || A}|-bounded configu-
rations of M’ is polynomial in || A||, both M and M’ are (n®-—1) time-bounded
for a suitable e. We may assume that e = d.

For notational simplicity let o = {E, <} with binary E.

Exercise 7.5.24 Referring to M’ and using the formulas ysars(ZT) and
Xsuce(E, T') from Lemma 7.3.7, show for sufficiently large 7-structures A:

(a) For 7 < p there is an FO(DTC)-formula X ;-tree(T, T ) such that for @, @ in
A:

A E Xi-tree[@, @] T @ and @ are (d-log]||A||)-bounded configurations
of M’, and M', with A written on its input tapes,
runs from @ to @ without passing an
(¢,0)-configuration or an (%, 1)-configuration.

(b) For i < p there is an FO(DTC)-formula X;-couns(T,y) with length(y) = e
such that for @, b in A:

A E Xi-count[@,b] iff @ is the b-th (i,0)-configuration or
(7, 1)-configuration of M’ started with A
(we refer to the lexicographical ordering of A¢).

(c) Let B = (B, E®,<?) be the output structure that M gives on A. There
are FO(DTC)-formulas xuni(7), x£(7,2), and x<(¥,Z) with length(y) =
length(Z) = e such that

B = {l| AE xuni[b], bis the [-th element in the lexicographical
~ ~ ordering of A°};
EB = {(I,m)| Al xg[b,d, bis the -th and ¢ the m-th element in

the lexicographical ordering of A%},
{(,m) | A= x<[b,¢, bis the I-th, ¢ the m-th element} is the
natural ordering on B.

O

<B

Exercise 7.5.25 Formulate and prove the analogue of Theorem 7.5.23 for
polynomially time-bounded (7, ¢)-transducers and FO(IFP). O

Notes 7.5.26 As a reference for computation and complexity theory we
mention the books [87, 128, 46]. Theorem 6.2.1 goes back to [139]. The charac-
terizations of complexity classes given by 7.5.2 are due to Immerman [93, 94]
(LOGSPACE, NLOGSPACE), Immerman [91], Livchak [119], and Vardi [142]
(PTIME), Fagin [36] (NPTIME), Abiteboul and Vianu [2] (PSPACE). Corol-
lary 7.5.21 was independently proved in [94] and [137]. An important topic
we have not treated here is circuit complexity. We refer the reader to [95] for
information and further references.



8. Logics with Fixed-Point Operators

In Chapter 7 we have introduced logics with fixed-point operators in the
context of computational complexity and shown that they capture important
complexity classes. In the present chapter we study the (finite) model theory
of fixed-point logics. Though we sometimes refer to Chapter 7, we repeat the
relevant definitions and results to provide an independent approach.

In the rest of the book all structures will be finite, unless stated otherwise
explicitly. Equivalence of formulas means equivalence with respect to all finite
structures.

8.1 Inflationary and Least Fixed-Points

We prove some basic facts about fixed-points and, besides inflationary fixed-
point logic, present an important sublogic, namely least fixed-point logic.
We state two major results, the proofs being postponed to the next section:
Inflationary and least fixed-point logic have the same expressive power, and
every formula is equivalent to a formula containing at most one fixed-point
application — a fact that extends Corollary 7.5.4 from ordered structures to
arbitrary ones.

We observed in Chapter 2 that many important notions and global relations
cannot be expressed by first-order formulas. An example is given by the
reflexive and transitive closure of the edge relation in a graph (cf. 2.3.8). In
the vocabulary 7 := {E} for graphs consider the formula

x(z,y,X) = (z=yV3Iz(XzzA Ezy)).
It gives rise to a sequence of sets defined by
(*) Xo = wa Xn+1 = {(:U/y) | X(w7y7Xn)}

In other terms: Let G = (G, E®) be a graph. Look at the function FX on the
power set of G x G, FX : Pow(G?) - Pow(G?), given by

FX(U) = {(av b) € G? |G ': X[a:va]}

for U C G x G. Then, (*) corresponds to the sequence of sets
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FY =0, FY . = FX(F)).

n

Note that

FY ={(a,;b) € G* | d(a,b) < n},
where d(a,b) denotes the distance between a and b in G (see 1.A1). For
FX = J,>0 FX we have F(FX) = FX, that is, FX is a fixed-point of FX
and B

FX = {(a,b) € G* | d(a,b) < co}.

In particular, for a # b,
a, b are connected by a path in G iff (a,b) € FX,

and
G is connected iff FX =G xG.

The relations FX that lead to the fixed-point FX are first-order definable, but
in general, % is not. In the fixed-point logics we are going to introduce the
relation FX will be definable, too; in particular, the connectivity of graphs
will be expressible.

Let us first study some aspects of the process above on a more abstract
level. Fix a finite set M. A function F' : Pow(M) — Pow(M) gives rise to a
sequence of sets

0, F(0), F(F®)),....

Denote its members by Fy, F1, ..., i.e, Fy = @ and F,, 11 = F(F,). F, is called
the n-th stage of F. Suppose that there is an ng € N such that F,; 41 = Fy,,
that is, F'(Fp,) = Fy,. Then, Fy,, = Fy, for all m > ng. We denote F,, by
P, and say that the fized-point F, of F' exists. In case the fixed-point F
does not exist, we agree to set Fo, := .

F is inductive if Fy C Fy C ...

Lemma 8.1.1 (a) If Fy exists then Foo = Foiny_;.
(b) If F: Pow(M) — Pow(M) is inductive then Fy, exists and Foo = Fjjpy).

Proof. Part (a) coincides with (b) of 7.1.1.

(b) By assumption, Fy C F; C ... C M. Since M has ||M|| elements, this
sequence must get constant not later than with Fj . O

F is inflationary if for all X C M
X C F(X),
and monotone if for all XY C M

X C Y implies F(X) C F(Y).
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Lemma 8.1.2 (a) If F is inflationary or monotone then F' is inductive.
(b) IfF is monotone then Fy, is the least fixed-point of F, i.e., F(Fo) = Foo
and F(X) = X implies Foo C X; even F(X) C X implies Fo, C X.

(¢) If F : Pow(M) — Pow(M) is arbitrary and F' : Pow(M) — Pow(M)
is given by F'(X) := X U F(X), then F' is inflationary. In case F is
inductive we have F! = F,, for all n > 0 end hence, F), = Fu.

Proof. (a) I F is inflationary then F,, C F(F,,) = F,y1; thus F is inductive.
Suppose that F' is monotone. We have Fy = ) C F(}) = F) and therefore,
by monotonicity, F; = F(Fy) C F(F)) = Fz. Going on this way we obtain
F,, C F4y for all n.

{b) By part (a) and 8.1.1(b) the fixed-point Fi, exists. Suppose F(X) C X.
We have Fy = ¢ C X. Suppose F,, C X. Then, by monotonicity, Fj,11 =
F(F,) C F(X) C X. Therefore, F,, C X.

(¢) Clearly, F' is inflationary. Let F' be inductive. We show by induction
on n that F), = F,. Obviously, F§ = Fy. Suppose F, = F,. Then F) , =
FlUF(F.) = F, UF(F,) = F U Fpyp1 = Foy1. O
Exercise 8.1.3 Let M := {0,1,2} and F : Pow(M) — Pow(M). Show:
(a) If F(X)=0for all X C M, then F is monotone but not inflationary.
(b) If

X for X =M
FX) = { X U{||X||]} otherwise

then F is inflationary but not monotone.

(c) If
X fOI' X = w
FX) = { X \{J|X]|} otherwise
then F is inductive but neither inflationary nor monotone. |

Exercise 8.1.4 Let F : Pow(M) — Pow(M) be monotone. Show that F
has a greatest fized-point, i.e., there is , C M such that

- F(Fy) = F
- F(Y)=Y implies Y C F,.

Define G : Pow(M) — Pow(M) by G(X) := M \ F(M \ X). Prove that

— (@ is monotone
— F, = M\ Gy, ie., the greatest fixed-point of F is the complement of the
least fixed-point of G. O

Exercise 8.1.5 (a) Assume F' : Pow(M) — Pow(M) is antitone, that is,
X CY implies F(Y) C F(X). Show that

RCFhRCFC...CFCICH.
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Define H : Pow(M) — Pow(M) by H(X) := F(F(X)). Show that H is
monotone, that (J,,~, F2.n is the least fixed-point Ho, of H and (,,5q Font1
is the greatest fixed-point Hy of H. Conclude: -

— Fy exists iff Ho, = Hy;
— if F exists then Fi, = Hy and Fi, is the unique fixed-point of H (and
hence of F).

(b) For a concrete example of an antitone operation consider a digraph G =
(G, E%). The game associated with G is played between two players I and
II. The game starts in an arbitrary point of G. It is played in rounds. Each
round consists of two moves, a move of 1 followed by a move of 1I. A player
can move from point a to point b if ESab. A player looses if he cannot move.
A point a € G is won for a player, if he has a winning strategy for games
started at a. The point a is drown, if for no player it is a won point. Define
F : Pow(G) — Pow(G) by

F(X) = {a€G|3IbeG\X:E%b}.

Show that F' is antitone and that for n > 0

—a € Fy.,, iff ais won for Iin < n rounds;
—a¢ Fopyr iff ais won for ITin < n + 1 rounds.

Conclude:

— U,»0 Foon is the set of points won for I;

— (Ny>o Fang1)¢ is the set of points won for IT;

— F., exists iff there are no drawn points;

— If F., exists then F,, is the set of points won for L. O

A formula (z1,...,2,%, X,Y) in the vocabulary 7, where the relation vari-
able X has arity k, together with a 7-structure 4 and interpretations b and S
of @ and Y, respectively, gives rise to an operation F¥ : Pow(A*) — Pow(A*)
defined by

FP(R) = {(ar,...,ax) | AElar,... ax bR, S}

(The notation F'¥ does not make explicit all relevant data.) At the beginning
of this section we have already given a concrete example using this notation.
A further example: For the function F introduced in part (b) of the preceding
exercise for the game associated with a digraph G we have F' = F'¥ where

plz,X) = Fy(-XyA Ezxy).

And for the function (F?)’ associated with F'¥ as in part (¢} of the preceding
lemma we have

(+) (F¢) = F(XaVve),
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We now introduce inflationary fized-point logic FO(IFP). It contains first-
order logic and is closed under fixed-points of definable inflationary operations
and hence, by 8.1.2(c), under fixed-points of definable inductive operations.
Therefore, inflationary fixed-point logic is sometimes called inductive fized-
point logic.

The syntax of FO(IFP): For a vocabulary r the class of formulas of FO(IFP)
of vocabulary 7 is given by the calculus

.  an atomic second-order formula over 7

¥

P ey e
o T (eve) T Jzp

« — 7 _ Where the lengths of T and ¢ are the same and
[IFPz x @]t

coincide with the arity of X.

Sentences are formulas without free first-order and second-order variables,
where the free occurrence of variables is defined in the standard way, adding
the clause

free([IFPz x¢]) = free(f) U (free(yp) \ {Z, X}).

The semantics is defined inductively w.r.t. the calculus above, the meaning of
[IFPz x ]t being t € FE7V9) | More precisely: If X is k-ary and the variables
free in [IFPz x¢]f are among @ and Y, and b and S are interpretations in A
of @ and Y, respectively, then

A [ [IFPz x 9] [, 5] iff (t1[B], ..., tr[B]) € FO(OXEVW).

We sometimes denote Fio'* ¥?) by [IFPz x4

As an example, using the formula x(z,y, X) = (z = yVIz(XzzAEzy)) of the
beginning of this section, we see that the FO(IFP)-formula in the language
of graphs

Polz,y) = [FPyyx (x=yVIz(Xzz A Ezy))|xy

expresses “cz = y or x,y are connected by a path”. Hence, the class of con-
nected graphs is axiomatized by (the graph axioms and) VaVy o (z,y).

A formula ¢ of FO(IFP) is said to be first-order, if it does not contain the
IFP operator, even though it may contain second-order variables. Call an
FO(IFP)-formula o positive (negative) in the second-order variable X, if each
free occurrence of X in ¢ is in the scope of an even (odd) number of nega-
tion symbols. And call ¢ normal, if for every subformula of ¢ of the form
[IFPy vy ]t the formula ¢ is positive in Y. A simple induction shows (see
the next exercise) that for any normal formula (T, X, . ..) positive in X the
operation F'¥ is monotone.



170 8. Logics with Fixed-Point Operators

Exercise 8.1.6 (a) Let (%, X1,..., X1, Y1,...,Y]) be a normal formula of
FO(IFP) that is positive in X1,..., X} and negative in ¥7,...,Y¥;. Then A |
vla,R,S), B C R;,...,Rxy C R, and S{ C S1,...,S] C S, imply A
ola, El,gl]. (Hint: Induction on ¢.)

(b) The formula ¢(z, X) = [IFP, y (Xz V (yYy A =Y ¢))]z is positive in
X, but F'¥ is not monotone. Note that ¢ is not normal. O

Of course, it is decidable whether a formula ¢ is normal and positive in X,
while — even for first-order ¢ — it is not decidable whether F'¥ is monotone.
This can be seen from Trahtenbrot’s Theorem 7.2.1 and the equivalence

FY2(Xz=9) js monotone (in the finite) iff 4 is valid in the finite

which holds for every first-order sentence .

We saw in 8.1.2(b) that monotone operations have least fixed-points. This
motivates the introduction of a corresponding fixed-point logic, namely Least
Fized-Point Logic FO(LFP) that we get by closing first-order logic under
least fixed-points of operations definable by positive formulas. From a se-
mantic point of view it would be more natural to consider the closure under
arbitrary definable monotone operations. But then, by the preceding remark,
we would get a logic with an undecidable syntax. Moreover, the restriction to
normal formulas does not lead to a loss of expressive power, as even FO(IFP)
is not stronger than FO(LFP) (cf. 8.1.13).

The class of formulas of FO(LFP) of vocabulary 7 is the fragment of
FO(IFP)[r] given by the same calculus as that for FO(IFP), the IFP-rule
being restricted to positive formulas:

¢ '-I'F—ﬁip—“_g— where ¢ is positive in X and the lengths of Z and 7
[1FPz,x ] are the same and coincide with the arity of X.

Thus the FO(LFP)-formulas are the normal FO(IFP)-formulas. Since for nor-
mal formulas ¢ that are positive in X, the operation F'¥ is monotone, we
have, by 8.1.2, that F\X° Y% = F¢ and that F¥, is the least fixed-point of
F¥% . Hence, in this case, [IFPz x|t expresses that £ is in the least fixed-point

of F¥. We therefore write [LFPz x¢]? instead of [IFPz x¢]¢.

Example 8.1.7 Consider trees as { E}-structures (cf. 1A.1). The formula of
FO(LFP)

p<(z,y) = [LFP,y x(Ezy V 3z(Xzz A Ezy))|zy

defines a partial ordering (an irreflexive and transitive binary relation), the
induced partial ordering. The FO(LFP)-formula ¢p(z,y) =

[LFP,y, x (Vz2(~Ezz A =Ezy) V Judv(Xuww A Euz A Evy))]zy

expresses that « and y have the same depth and therefore, the FO(LFP)-
sentence
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VaVy(Vz(—Exz A ~Eyz) — op(z,y))
says that all leaves have the same depth. O

Example 8.1.8 Fix a vocabulary 7 and s > 1. We consider the pebble games
introduced in subsection 3.3.1. A simple induction on n shows that for any
T-structure 4 we have

F* = {(a1,...,as,b1,...,b) | the spoiler wins G} (A,a, A,b)},
where
0@7,2) =\ @@ o @)V \/ GzVyZzyV WiV, Z77).
YEFO® 1<i<s
7 atomic

Thus, for every @, b € A® we have that A |= [LFPz7,z |z y[a, b] iff the spoiler
wins G5, (A,a,B,b). O

Exercise 8.1.9 Given a graph G and & > 1, consider the following cops-and-
robbers game CRk(g) with infinitely many moves: There are k cops and one
robber, each of whom after any move stands on a vertex of G. In the first move
every cop chooses a position on the graph and afterwards the robber chooses
his position. In any subsequent move one of the cops flies in a helicopter to
a new vertex. Before the helicopter actually lands the robber will run to a
new vertex along a path of the graph; however, he is not permitted to run
through a cop. More formally, a position of the game CR*(G) is a (k + 1)-
tuple of vertices of G. In the first move the “cops” choose ay,...,a; € G and
the “robber” b € G. Then, (a1,...,a,b) is the position after the first move.
Suppose (e1, ..., ek, f) is the position after ¢ moves. In the (¢ + 1)th move,
first the “cops” choose I with 1 < I < k and ¢’ € @, and then the robber
chooses a point f' in the connected component of f in the graph induced on
G\{ey,...,e;-1,€41,...,ep}. Then (e1,...,ei_1,€,e141,...,ex, f') is the
new position. The “cops” win if eventually a position (ai,...,ar,b) with
b e {ai,...,a;} is reached. We say that a graph G has tree-width < k if the
“cops” have a winning strategy in CR***(G) (usually, this concept is defined
in terms of trees).

Show that the class of graphs of tree-width < k is axiomatizable in
FO(LFP). Hint: Consider a formula expressing in any graph G that the “cops”
have a winning strategy in CR¥*1(G), e.g.,

k+1 k-+1

3zy ... Az Vy[LFPzy 2 ( \/ zi=yV \/ a2 (Yi(T,y, 2) — ZT2))|TY
=1 =1

where

0i(Z,y,2) = [LFP,u(z =y V Iu(UuA Buz A /\ z # 1))z O
il
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For convenience we adopt the following convention:

If not explicitly stated otherwise, the notation ©(Z,Y) only means
that the variables in @ that are relevant in the given situation are
among T and Y ; there may be other variables free in .

Exercise 8.1.10 (a) Let (%, X) be an FO(LFP)-formula that is positive
in X. Show that the greatest fixed-point of F¥ is defined by the FO(LFP)-
formula —[LFPz x —¢(Z, ~X)] T (here (&, =X) is obtained {rom % by replac-
ing subformulas X% by —=X¥%; hence, -9 (%, -X) is positive in X), a formula

which sometimes is abbreviated by [GFPz x ¥(Z, X )] 7. Hint: Use 8.1.4.

{b) We know that with p(z, X) := Jy(—-Xy A Exy) we have F = F? for the
antitone function F' introduced for the game associated with digraphs (cf.
8.1.5(b)). Hence, for H := F o I we have H = 'Y, where

Yz, X) = Jy(Ezy AVz(Eyz = Xz))

(note that ¢(z, X) is equivalent to the formula ¢(z, o(_, X)) obtained from ¢
by replacing subformulas Xy by o(y, X)). By Exercise 8.1.5(b) the statement
“there are no drawn points” is expressed by

Vo ([LFP, x Y]z <+ [GFP, x¢]z)
and the statement “z is won by I” by [LFP, x 9] z. O

Example 8.1.11 Consider orderings as {<,S, min, max}-structures.! Fix

k > 1. Identify an ordering 4 with its isomorphic copy ({0,...,n — 1}, <,

S,0,n — 1) where n = ||A]||. Then every k-tuple (my,...,mg) in A* can be

considered as the n-adic representation of a natural number, namely of
[my...mg]:=my Tl my o nl

Let S* be the “k-adic successor relation”,

Sk.’L'l....Z'kyl...yk it [yl...yk]z[.’ﬂl...l’k]—f-]..

S* is first-order-definable by

V (zi41 = ... =1, = max A -x; = max
1<i<k
ASziy; A N\ y;=min A A y; =z;).
i<j<k 1<j<i

Define the relations ADD* (“addition”) and MULT* (“multiplication”) by

ADD*zy oy ok iff [Z] = [Z] + [7]

! Note that <, being the transitive closure of S, is definable in FO(LFP)[{S}].
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and
MULT* 2, ...z g1 - Yk 21+ 25 iff [z] = [Z] - (9]

ADD* and MULT* are definable in FO(LFP): For ADD* we imitate the
inductive definition

r+0 = =z
z+y+1) = (z+y)+1

by an application of the LFP operator and obtain:
[LFP;yzx (T =min AZ =7)V I03w(XZ0w A S¥07 A S*w2)) |25 7,

v
a formula we denote by ¢, (Z,7,%). For MULT* we use the inductive defini-
tion
z-0 = 0
py+l) = zoyta

and obtain

a formula with “nested” LFP operators.

Now one easily sees that the graph of any polynomial is definable in
FO(LFP) in the following sense: Given p(z) € Nz], there is a k and a formula
ep(x,y1,...,yx) of FO(LFP) such that for all orderings A containing the
coefficients of p we have A |= Vz3gp,(z,7), and for all a,b € A,

AE o8] it pla) = 3. O

The following lemma is immediate. We often use it without mentioning
it explicitly. Part (b) shows how parameters can be incorporated into fixed-
points.

Lemma 8.1.12 (a) If X does not occur free in ¢ then [IFPz xo(T)|t and
o(l) are equivalent.
(b) The formulas

[[FPz x ¢(ZT,y, X)|]t and [IFPz.y @(T,u, Y_u)|ty

are equivalent.’ |

By definition, FO(LFP) < FO(IFP). As already remarked in the introduction
of this chapter we are going to show the converse:

Theorem 8.1.13 Every FO(IFP)-formula is equivalent to an FO(LFP)-
formula.

Moreover we shall prove

2 Here, x(Y_u) is obtained from x(X) by replacing each subformula X3 by Ysu.



174 8. Logics with Fixed-Point Operators

Theorem 8.1.14 Every FO(LFP)-formula is equivalent to an FO(LFP)-
formula with ot most one occurrence of LEP.

The proofs will be given only in the next section. With the following
considerations we point at an essential step.

Let Xgo,X1,. .. be the sequence of sets obtained when evaluating the outermost
LFP operation in a formula of the form

[LFPz.x ...[LFPyyo(m, X,Y)]..]....

In the transition from X,, to X,41 one needs the value [LFPy y¢(y, X»,Y)].
We show how this kind of nested fixed-points can be expressed by “simulta-
neous fixed-points” and how simultaneous fixed-points can be expressed by a
single fixed-point. We give the results in a general, more abstract form that
will also be useful in later sections.

First, we introduce the notion of simultaneous fixed-point. Let m > 0 and
suppose that My, ..., M,, are finite sets and that

FO : Pow(My) x ... x Pow(M,,) — Pow(My)
) F : Pow(My) x ... x Pow(M,,) — Pow(M)

F™ : Pow(Mo) X ... x Pow(My) — Pow(My,).
We define the sequence (F(On), ooy B )nzo by
Floy =0, Flppyy = FUEFy, - Fl)-

If we have for some n that (F(On), ) = (F(()n+1), o F ), we set

(F(OOO)7"’F(7(;LO)) = (F(On)’,F(m))

and say that the simultaneous fized-point (F(OOO), . ,F(ZLO)) of (FO ..., F™)
exists. Note that for ¢ =0,...,m,

FYFys - Floy) = Flogy-
If the simultaneous fixed-point does not exist, we set F(ioo) = for ¢ < m.
Example 8.1.15 (a) Let F,G : Pow(M) x Pow(M) — Pow(M) be given by
F(X)Y) = M, GX,)Y) = (M\Y)NnX.

Then (Fipn))n>0 is the sequence §, M, M, ... and (G (n))n>0 is the sequence
0,0, M,D, M,9,.... Therefore, the simultaneous fixed-point of (¥, G) does not
exist and hence, Fio) = G(o0) = 0, even though Fyy = F(y) and G(o) = G(y)-

(b) Suppose that the fixed-points Fi, and G of F : Pow(M) — Pow(M)
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and G : Pow(N) — Pow(N) exist and define the functions F' : Pow(M)
Pow(N) — Pow(M) and G : Pow(M) x Pow(N) — Pow(N) by F(X,Y)
F(X) and G(X,Y) = G(Y). Then the simultaneous fixed-point (F(OO), G’(OO)
exists and (ﬁ'(oo),é(oo)) = (Foo, Goo)-

I X

D\/

Definition 8.1.16 Let F° ... F™ be as in (x).

(a) (F°,...,F™) is inductive if for i <m
Fly CFyy € F(iz) C....
(b) (FY,...,F™) is inflationary if for arbitrary Xg,...,X,, and all i < m,
X; CFY{Xq,...,Xm).
(c) (F9,...,F™) is monotone if
Xo CYy,..., X C Yy imply FY(Xo,..., Xpm) C F'(Yo,..., V)
for arbitrary Xo, ..., Xm, Y0,.-.,Ym and all 1 < m. O

The proof of the following lemma is a straightforward generalization of
the proof of the corresponding parts in 8.1.1 and 8.1.2.

Lemma 8.1.17 Let FO,... F™ be as in (x).

(a) If (F°,...,F™) is inductive then the simultaneous fized-point exists.
(b) If (FO,..., F™) is inflationary or monotone then (F°,..., F™) is induc-
tive.

(c) If (FO,...,F™) is monotone then (F(,,,...,F(,) is the simultaneous
least fixed-point of (F©,..., F™). Even F*(Xg,...,Xm) C X; fori<m

implies F(OOO) C Xo,.., Iy C X

(d) If for i <m, G* : Pow(Mp) x ... x Pow(M,,) — Pow(M;) is given by
G'(Xq,..., Xm) = X;UF(Xo,...,Xm)

then (G°,...,G™) is inflationary. In case (FY,...,F™) is inductive

we have (G?n),...,G?;)) = (F(On),.‘.,F(’Z)) for all n > 0 and hence,
0 m — 0 m

(G0yse s GI) = (B, BT ). O

We introduce extensions of FO(IFP) and FO(LFP) which allow to speak
about simultaneous fixed-points. On the one hand these extensions are quite
useful when formalizing statements which involve fixed-point operations. On
the other hand we shall show that they do not increase the expressive power.

The formulas of Simultaneous Inflationary Fized-Point Logic FO(S-IFP) are

obtained by replacing the clause corresponding to IFP in the definition of
FO(IFP) by
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$0s -« ¥Pm
_1._.
( ) [S_IFPEO,Xo,...,Em,Xm (72 PR @m] t

where m > 0, where for i = 0,...,m the arity of X; equals the length of
T;, and where  has the same length as Tg. As usual, the variables in each
sequence T; are distinct, but the same variable may occur in distinct T;’s.
A variable z is free in [S-IFPz, x,,. 7. . X, 0, ---,¥m]t, if 2 is in ¢ or if for
at least one i, x is free in ; and not in T;. We define the corresponding
inflationary system (F°,..., F'™) by

F' (X0, 0y Xm) = XiU{T | @i(Ts, X0y, Xm)}

and let (F(OOO), ce, F(’go)) be their simultaneous fixed-point. Then, by defini-
tion, [S-IFPz,, xo,....5m,Xon #0, - - -, ] T means & € I .

Simultaneous Least Fized-Point Logic FO(S-LFP) is defined analogously,
clause (+) being restricted to formulas o, .. ., @m which are positive in all
the variables Xj, ..., X;,. The system (FY,..., F'™) of corresponding func-
tions is now defined by

F'(Xo,...., Xm) = {Z| i@ Xo,---, Xm)}-

By positivity, the system (F°,..., F™) is monotone; hence, by 8.1.17(b),(d),

[S-TFPz, x0,...%m, Xom cpo,...,gom]f/ expresses £ € F(OOO)‘ Since, by 8.1.17(c),
FO F™ ) is the least fixed-point of (F, ..., F™), we denote the for-
(00)

ASTEERE

mula in (+) by [S-LFPz, Xo.... 5. X0 £0s -+ »Pm) 1.2

Example 8.1.18 We consider digraphs. Let F' and G be the functions cor-
responding to the FO(S-LFP)-formulas g and ¢; that are positive in X
(unary) and Y (binary),

wolz, X,Y) = Yuzz
o1(z,y, X,Y) = EzyV Fz(Yzz A Ezy).

Then G, is the transitive closurc of the edge relation and Fi, the set of
vertices z such that there is a cycle through z. Hence,

[S'LFPz,X,zy,Y £o, ‘Pl]z

expresses that there is a cycle through z. Clearly, [LFP ., x (ExyV3z(YzzA
Ezy))]|zz is equivalent to this formula. Note that there is no first-order
formula 9 (z, X) positive in X with {ree variables among z, X such that
[LFP, x ¢]z expresses that there is a cycle through z. Otherwise, the for-
mula 3z[LFP, x 1]z expresses that there is a cycle. Now, 32[LFP, x 9]z is

% Even though the system (F°, ..., F™) corresponding to an S-IFP operator and to
an S-LFP operator have different definitions, they coincide on the parts relevant
for our discussion, namely on the stages and on the fixed-points.
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equivalent to F¥ # § and hence, to the first-order formula 3z¢(z, ). But
we know that there is no first-order formula expressing that there is a cycle
(cf. 2.3.9). O

Notes 8.1.19 Inflationary fixed-point logic goes back to Gurevich [70]. For
least fixed-point logic cf. the notes to the next section. Theorem 8.1.13 is
due to Gurevich and Shelah [76] and Theorem 8.1.14 to Immerman [91]. A
further reference is [18].

8.2 Simultaneous Induction and Transitivity

In the following, A will always denote a finite set with at least two elements.
For b€ A and i > 0 let _
b = b...b

i times
and let b be b for some i. The length of b will be irrelevant or clear from the
context. If Z is an (k + [)-ary relation on A and @ € A’, then the @-section
Z_a of Z is given by
Z.a = {be A*| Zba}.
Let m > 0 and
FO : Pow(A*k) x ... x Pow(A*") — Pow(Ak?)

O F1: Pow(AR) x ... x Pow(4*m) — Pow(A4*1)
1 .

F™ : Pow(AR) x ... x Pow(A*™) — Pow(A*™).

We are going to code these operations as sections of a single operation J of
higher arity. Setting

(2) k := max{ko,..., by} + (m+1)

we define
J : Pow(A*) - Pow(4%)

in such a way that if Jy, Ji,. .. are the stages of J then for any a,b € A with
a # b, the abi-section of J,, codes F(in), that is,
Fly = Jy —ab'?

* The formula t(x, #) is obtained from #(x, X) by replacing each occurrence of an
atomic formula Xt by —t = ¢.
® Hence, a has length k — i — k;.



178 8. Logics with Fixed-Point Operators

Lemma 8.2.1 (Simultaneous Induction) Let FO ... F™ and k be as in
(1) and (2) above. Define the function J : Pow(AF) — Pow(A¥), the simul-
taneous join of (F°,... , F™), by

JZ) = U  (FOZ_ao,...,Z_ab™) x {@})u...u
a,bEA,a#b
(F™(Z_al®, ..., Z_ab™) x {ab™})).

(a) For alln >0,
o= ((Fh x{at’Hu...uFg x {@™})).
a,beEA,a#b

Therefore, the fixed-point Jo, of J exists iff the simultaneous fixed-point

(F(OOO), ces F(’Ono)) exists. Moreover,

Jo = |J ((Floy x{ab’}u.. U (FL, x {ab™})).
a,bEAa#b

Thus, fori=20,...,m and for all a,b € A with a # b,
Fly=Jn-ab' and Fl ) = Jo ab%

hence, for ¢ € AFi, ' '

in particular, for ¢ € A%,

(%) .

(b) If (F°,...,F™) is inductive then J is inductive.

Proof. We prove by induction on n that
o= |J ((FQy x{ab"})u...u(Fp x {ab™})
a,beEA,a#b

(all the other claims in (a) and (b) are then immediate). The case n = 0 is
clear. In the induction step we have J, 11

= T = TUa(FD x {GBOD U .U (B x {abm})
= Ua¢b((FO(F(()n), e F(TL)) x {ab"})
U...u (Fm(F(On),...,F(%) x {ab™}))

Uais (FS 0y X {@°H U U (B2, ) x {ab™}).
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We come back to formulas and use the preceding lemma to prove that
the extensions of FO(IFP) and FO(LFP) to the corresponding simultaneous
fixed-point logics do not increase the expressive power.

To simplify the presentation we consider only structures with at least two
elements; in particular, we say that ¢ and 1 are equivalent and write

lzﬁn(PHw

if  and v are equivalent in all structures with at least two elements. After
8.2.11 we illustrate how this restriction can be removed.

First some notations that will be used frequently in the next chapters. We
write

Fin ¢ < 3(V)ay(z),

if ¢ is equivalent to both Jzy(x) and Vzy(z). Then, for any term ¢, ¢ is
equivalent to 1 (t), a fact we often shall use tacitly.

To speak about distinct sections of a simultaneous fixed-point process, we
use, for { > 1 and i = 0,...,l, the formulas &}(z1, ..., 7;,v,w) given by

5é(x1,...,ml,v,w) = wWw=wAL=...=x;=9v
and fori =1,...,1 by

Sizr,. . xv,w) = w=w A
L1 =...=2—; =VANZj—j1=... =2 =W.
We often omit the superscript I and write §;(Z, u, v), [ then being determined
by the length of Z. Note that for distinct a, b in a structure 4, we have
Al §fablab] iff Q=3

Furthermore, we use some more or less self-explanatory notations. For in-
stance, given a formula ¢(X), we write ¢(Y_%) for the formula obtained
from ¢ by replacing each subformula Xt by Y17; of course, this presupposes
that the arities of X and Y and the length of % match in the right way.

Theorem 8.2.2 FO(S-LFP) = FO(LFP) and FO(S-IFP) = FO(IFP).

Clearly, it suffices to show that FO(S-LFP) < FO(LFP) and FO(S-IFP)
< FO(IFP). The proof is by induction on formulas, the only nontrivial case
being handled by the next lemma.

Lemma 8.2.3 (Simultaneous Induction for LFP and IFP) Let

(po(f(],Xg, e 7Xm): - ﬂom(jm:XO: e ,Xm)

be formulas of FO(LFP), where X; is k;-ary and the length of T; is k;.
Furthermore, assume that @q,...,om are all positive in Xg,..., Xp,. Set
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k = max{ko,...,km} + (m+1) and, using new variables v end w, define
the FO(LFP)-formula x5(z1,-..,2k, Z) by

xi(z1,.. .28, Z) = FvIw(-v=wA
(0o (215 s 2k, Z—TWC, ..., Z_TW™) A So(Zkot1s - - - » 2h> Uy W))
V(p1(21, v 2y, Z-0w0, oo, Z_0w™) A 01(2ky 215 - - - 2k, U, W)
V(@m (215 vy 2k, Zo0w o) Z_0W™) A O (Zhy, 41y - 2y U, W)

Then, for any new variable u,

[

#ﬁn [S‘LFPTO,XO,..,,Em,Xm [Vl TN L,Om] t _:J(V)U[LFPZZ XJ] ti.

If wo,...,0m are first-order (existential) formulas then xj is first-order
(ezistential), too. Moreover,

free(xs) C {2} U (free(wn) \ {Zo}) U ... U (free(pm) \ {Zm})-

Without the assumption that g, ..., wm are all positive in X, ..., X, the
claims are true if LFP is replaced by IFP everywhere.

Proof. First, we turn to the LFP-case. For i = 0, ..., m define

Fi(Xo,...,Xm) = {Ez |‘70i(§i7X07---,4Ym)}-
Then, xs (which is positive in Z) defines the simultaneous join of (F°,... F™)
as introduced in Lemma 8.2.1. Since [S-LFPz; x,.... 7, X ©0s- - -, Pm]t €x-

presses F (Ooo)f and [LFPz z xs]ta expresses Joott, the claim follows immedi-

ately from (*) in part (a) of 8.2.1.
In the the IFP-case, for i = 0,...,m we define F? by

Fi(Xo,. . ,Xm) = Xi U {—.’L—'i l Lpi(fi,Xo,.. .,Xm)}.

Let J be the simultaneous join of (F°,...,F™) (cf. 8.2.1(a)). One easily
verifies that F(ZZVxs) defines J' where J'(Z) := Z U J(Z). Recall that
[IFP; 7z xs]t& means J/ ta. Since (FO,...,F™) is inflationary and hence,
inductive, J is inductive (cf. 8.2.1(b)). Therefore, J., = Joo (cf. 8.1.2(c)).
Thus [IFPz 7z x ] & expresses Jot@ which, by () in 8.2.1(a), is equivalent to
F<Ooo)f, that is, to

[S-TFPzy, Xo,... 2, Xom ©05 - - - Pm] T O

As a first application we present a lemma which will frequently be used
in the following.



8.2 Simultaneous Induction and Transitivity 181

Lemma 8.2.4 Every FO(LFP)-formula [LFPgy @]t with first-order ¢ is
equivalent to a formula of the form

3(V)u[LFPs. £ ¢]d

with first-order 1. If @ is existential then i can be chosen existential, too.
The claim and the following proof remain true if LFP is replaced by IFP
everywhere.

As the proof will show, we may require in addition — and will often do
so tacitly — that u does not occur free in 7/ and that the free variables of
A(V)u[LFPz, z ¢]a are among the free variables in [LFPy y ¢] 1.

Proof. Set @o(z, X,Y) := Y1 with dummy variables z and X. We show, for
a new variable v,

(+) Ean [LEPgy 9] ¢ [S-LFP, x 5.y 9o, ] v-

This yields the claim: By the Lemma on Simultaneous Induction for LFP the
formula on the right side is equivalent to one of the form 3(V)u[LFPz z ¥]vii
with first-order ¢ and v ¢ free(¢’) (moreover, ¢ is existential if ¢ is existen-
tial). Hence,

Ean [LFPyy ]t ¢ 3(V)u[LFPz z v

and therefore, as v ¢ free([LFPy vy ¢ ¢),
Ean [LFPgy ]t < 3(V)u[LFPz z ¢]u.

To prove (+), consider the functions F' and G corresponding to ¢ and ¢,
respectively,

FX,Y) = {z | po(z, X,Y)} and G(X,Y) = {7]|¢@ Y)}
For the simultaneous fixed-point (Fly), G()) we immediately get

“universe” if Groot
Gy =F% and Fio) = { 0 othe(xv)ise.
Hence for any v,
te FZ iff v E F(Oo),

which is a reformulation of (+). a

One of our aims is to prove that any formula of FO(LFP) is equivalent to
a formula containing only one LFP operation. As an essential step we have to
express nested fixed-points by single ones. To do so we need a further result,
the so-called Transitivity Lemma. It shows how the fixed-point of nested
monotone operations can be expressed by a simultaneous fixed-point.
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Lemma 8.2.5 (Transitivity) Let (F,G) be monotone, where

F : Pow(AF) x Pow(A4!) — Pow(AF)
G : Pow(AF) x Pow(A!) — Pow(A!)

and let E : Pow(A*) — Pow(AF) be given by
EX) = FX,G(X,-)x),

where G(X,- ) : Pow(A!) — Pow(A!) denotes the monotone operation Y +
G(X,)Y) and G(X,- )s denotes its least fized-point. Then E is monotone
and Eoo = F(OO) .

Proof. The monotonicity of E is clear. To prove Ey, = F() we show

(1) E(F(Oo)) - F(oo) (hence, By C F(oo) by part (b) of 8.1.2).

(2)  Forall n, iy C Eo and Gy C G(Foo,— )oo (hence, Fioy € Euo).

For (1) we note

E(Flo)) = F(Floo) G(Floo)s— )oo) € F(Floo), Gloo))
(since G(F(Oo),G(OO)) = G(oo) we have G(F(OO),_ )oo g G(oo))
= Floo-

(2) is proved by induction: Clearly, the inclusions hold for n = 0. In the
induction step we have

Fioyry = F(Fn),Gmy) € F(Ex,G(Ex,- )o) (by induction hypothesis)
= E(Ey)=Fx
and
G(n+1) = G(F(n)a G(n)) - G(Eoo: G(Eooa— )oo) = G(Eoo;—— )oo O

Using the Lemma on Simultaneous Induction for LFP, the preceding
lemma gives

Lemma 8.2.6 (Transitivity for LFP) Let ¢(Z, X,Y) and (7, X.,Y) be
first-order formulas that are positive in X and Y. Moreover, assume that
no individual variable free in [LFPy vy (y, X,Y)], that is, free in 1) and dis-
tinct from 7y, gets into the scope of a corresponding quantifier or LFP operator
in (x). Then

(*) [LFPE,XSO(Ea XJ [LFPg,y’l’[)(y, X7 Y)] )] z
is equivalent to a formula of the form
IV)u[LFP3, 2 x(Z, Z)] &

with first-order x.
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Proof. Define F' and G by
FX,Y) = {Z]eE X,Y)} and G(X,Y) := {y|4(@@ X, ")}
Then the corresponding E in the Transitivity Lemma is given by
pe(,X) = ¢(T, X, [LFPyy¥(y, X, Y))).
Since Eo, = F{o), we have
Eon [LFPz xo(Z, X, [LFP3 yv¢(7, X,Y)])]t < [S-LFPz x5,y . ¢¥]t.

By 8.2.3, the formula on the right side is equivalent to [LFPz z xo] {0 for
suitable first-order yg and hence, by 8.2.4, to one of the desired form. d

In a first step towards a proof of 8.1.14 we use the Transitivity Lemma
to settle the case of FO(LFP)-formulas with only positive occurrences of the
LFP operator.

Lemma 8.2.7 Every FO(LFP)-formula ¢ containing only positive occur-
rences of the LFP operator (i.e., each LFP operator in o is in the scope
of an even number of negation symbols) is equivalent to a formula of the
form

A(V)u[LFPz,z ¥

where 1 is first-order.
Proof. By 8.2.4 it suffices to give a representation of ¢ in the form
[LFP; 7z ]t

with first-order . We use the connectives —, A,V and the quantifiers V and
3. Then, by hypothesis, we can assume that all negation symbols in ¢ are in
front of atomic formulas. We proceed by induction on (.

If ¢ is atomic or the negation of an atomic formula then

’:ﬁn Q [LFP:E,X (’O] T
for any dummy variables x and X.
Suppose ¢ = (1 A ¢2). By induction hypothesis we can assume that
¢1 = [LFPz x 41 (%, X)]5  and p2 = [LEFPyy ¢2(7, V)]

with first-order 91 and 1)o. Moreover, we can assume that no variable in Z
occurs in 13. Then one easily verifies that

Fan (01 A p2) < [LFPz x (41 (F, X) A [LFPy vy (7, Y)]E)] 5
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which, by the Transitivity Lemma 8.2.6 (for (Z, X,Y) := 1 (T, X) AY? and
for (@, X,Y) 1= ¢a(g,Y)), is equivalent to a formula of the desired form.

The proof for ¢ = (1 V @2} is completely analogous.

Suppose that ¢ = Vo, By induction hypothesis we can assume that ¢ =
Vu[LFPyy ¢1]¢ with a first-order formula ¢, and, by 8.1.12(b), that the
variables free in 1, are among 7. By 8.1.12(a), for dummy x and X,

|:ﬁn Q [LFPLX VU[LFP@Y 'g/)llf] V.

By the Transitivity Lemma (for p(z, X,Y) := VoY7 and ¢(7, X,Y) := 1),
this formula is equivalent to a formula of the form claimed.

The proof for ¢ = Jvpy is completely analogous.

Finally suppose that
¢ = [LFPg,x 1]t
where, by induction hypothesis, we may assume that ¢ = [LFPy,y 91] 5 with
first-order ¥, and, by 8.1.12(b), that no variable in T is free in (LEPy y 1]
Hence,
¢ = [LFPz x [LFPgy ¢1]3] 1.

Once more, the Transitivity Lemma, (for the formulas (%, X,Y) := Y5 and
(g, X,Y) := 1) yields the desired form. O

We now want to extend the preceding lemma to arbitrary formulas of
FO(LFP). This will easily be obtained by the methods we are going to develop
in order to show that every FO(IFP)-formula is equivalent to an FO(LFP)-
formula. So we turn to this problem next.

Let ¢(%, X) be an FO(LFP)-formula. Recall that [IFPz x ¢(Z, X )] expresses

that ¥ € FLVP@X) Note that X may occur positively and negatively in
(XZ V ). Replace all (free) negative occurrences of X by =Y (where Y is a
new variable), thus getting an FO(LFP)-formula (%, X,Y"), which is positive
in X and Y, such that

(%) (XTV (@, X)) is (equivalent to) (7, X,-X)

(for example, if p(z,y, X) = -Fu(-XzuV Xuy), then Y(z,y, X, V) = (XzyVv
—Ju(=Xzu VvV ~Yuy))). Since ¢ is positive in X and Y, the function

LX)Y) = {z|y(EX,Y)}

is monotone (cf. 8.1.6). We set H(X) := L(X, X¢).5 Then H = F¥&X.~X) —
FEXPVe@X)) and therefore, H is inflationary. We are going to show how
the fixed-point of H can be expressed in terms of two relations, the “stage

® For X C M, X° denotes the complement M \ X.
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comparison relations”. These relations can be obtained as simultaneous fixed-
points of positive formulas and thus, by Simultaneous Induction for FO(LFP),
as a fixed-point of a positive formula, i.e., by an FO(LFP)-formula. Ouce more
we study parts of the problem on a more abstract level.

First we introduce the rank function | |y and the stage comparison relations
<p and <g associated with an arbitrary inductive H : Pow(M) — Pow (M)
(with finite M). We define | |7 : M = NU {0} by

laly = n if aeHp\Hy,
H=Y 00 if a¢Hx

and the binary relations <g and <z on M by

a<pgh iff a,b € Hy and |alg < |blg

a~<ugb iff a € Hy, and |a|g < |blm,
where, by definition, n < oo for n € N.
Parts (a) — (e) of the next lemma are immediate from the definitions.
Lemma 8.2.8 (a) a€ Hy iff a <y a.
(b) Fora € He,

{ulu<pgal={u|a<yu}
() a<wpb iff a,be Hi V3e(e<abAabe H{u|u<ye}))
(in words: a <y b iff both a, b are contained in the first stage H; or

there is a stage not containing b such that a and b are members of the
next stage).

(d) a=<gbd iff (a€c HHAbEHy)V Je(e <y eA
aeH{u|u<yeD) Abg H({u|u <y e}).
(e) Ifno>1 and Hoo = Hyy # Hpy—1 then

a ¢ Hy iff b (b€ Hoy \ Hng—1 A b <p a).
(f) Ifno>1 and Hy, = Hy, # Hyy—1 then
be Hyy\Hpo—1  iff Vele<gbVved H{u|u <y b})).

Proof. (f) First assume that b satisfies the right side. Then, b € H,, as
otherwise, for alle,e € H({u | v <g b}) = H(B) = Hy, hence, H; = ) = Hy,
a contradiction. If b € H,, \ H,_; for some n < ng, then no e € Hy11 \ Hy,
would satisfy (e <gp bVe g H{u | u <g b})), a contradiction. Conversely,
suppose b € Hy \ Hy,—1 and let e be arbitrary: if e € H,, then e <p b; if
e Hoo then e € H{{u | u <g b}). O
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Now suppose that for the inductive function H there is a monotone func-
tion L : Pow(M) x Pow(M) — Pow(M) such that

forall X C M, H(X)=L(X,X°.
Then the operation L : Pow(M) x Pow(M) — Pow(M) which is given by
forall X,Y C M, L(X,Y):= (L(X, V)"
is monotone, too: If X; C X, and Y7 C Y2 we obtain stepwise
X5 C X{, V¥ Q VY, L(XS, V) C L(XS, YY), L(X1,¥1) € L(Xs, Ya).
Using part (b) of the preceding lemma we can rewrite parts (c) and (d) as
() a<gb il abeH VIele<pgbA
a,be L{u|u <y e}, ful e < u})
(d) a<pb iff (a€H Ab¢gH) V3e(e<geA
a€L{ulu<me},{ule<gu})A
be L({u|e<mu},{ulu<pye}).

We now define operations F, G : Pow(M?) x Pow(M?) — Pow(M?) in such
a way that

F(<u,<m)=<w  and  G(Su,<u)=<u -

d (d') show that this is achieved by setting (we use notations such as
aF({U,V)b for (a,b) € F(U,V))
Yoo iff a,be€ Hi V 3e(eVb A a,be L(_Ue, eV_))
)b iff (a€ Hi ANbg Hy) V Je(eUeA
a€ L(_Ue, eV.) A be L{eV_, _Ue)).

By monotonicity of L and E, the functions F' and G are monotone, too. Once
more, we define F,,) and G(,) by

Flo):=0, Gy =0, Finr) = F(Fn), Gmy)y Ginpry 1= GEw), Gin))-
Then we have
(3) aFpyb iff a,be HoANa<ghb
(4) aGyb iff a€ Hy Na <gb.

The proof is by simultaneous induction, the induction step for (3) being:



8.2 Simultaneous Induction and Transitivity 187

O,F(n_H) b iff aF(F(n),G(n)) b
iff a,be Hy V 3e(eGnyb A abe L(_Fye, eGy)-))

il a,be Hy Vdeleec Hy ANe<gbA
a,be L{u|u<mge},{u]|e<gu})) (by ind. hyp.)

iff a,beHy V3e(leec Hy, Ne<gbA
a,b€ H{u|u <ge}) (by choice of L)

iff a,be Hpyq and a <y b (by definition of H,y1).
From (3) and (4) we get
(5) (Flooy, Goo)) = (S, <m)-

Thus {<pg,<pg) is the simultaneous fixed-point of the monotone system
(F,G).

We come back to our original aim of expressing the result of an IFP operation
by an application of the LFP operator.

Suppose that ¢(T, X) is an FO(LFP)-formula. Choose an FO(LFP)-formula
(T, X,Y) positive in X and ¥ such that

(XTV (T, X)) and Y(T, X, -X)

are equivalent. As (the inductive) H and (the monotone) L of the preceding
discussion take the operations given by

H(X) = {z| XaV (@, X)} and L(X,Y) = {z| ¢(@ X, )},
respectively. Then H(X) = L(X,X¢), L(X,Y) = {Z| (E,-X,-Y)}, and
(T, ~X,-Y) is positive in X and Y. The first stage Ay of H is defined
by ¢(ZE,0), where (T, 1) is obtained from (Z, X) by replacing each occur-
rence of an atomic part of the form X% by —#; = #;. By (1) and (2), the
corresponding operations F' and G can be defined by the FO(LFP)-formulas

€@, 7,0, V) = (o0 ANpH,0) Vv IZEVY A
Y(ZF,- UZ,ZV_) ANY(7,- UZ,ZV.))
3z, 5, U,V)

(0(Z,0) A —p(7,0)) vV 32 (ZUZ A
Y(T,- Uz,Z2V_) A(y,—2zV_, - _Uz)),

respectively. Both are positive in U, V. As (<y, <n) = (F(s0), G(o0)) by (5),
the relations <y and <g are definable by

8
<2

v<u(@Y) = [SLFPsyuzyyedlTy,
9<u(T79) = [SLFPzyvayud €Ty,

)
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respectively. By 8.2.3 there are FO(LFP)-formulas ¢<,, and %, such that

':ﬁn P<g (fa g) Ans H(V)U[LFPE,Z "ZJSH] ﬁ7
':ﬁn @<H(fa ?_j) Ans H(V)U[LFPE,Z ¢<H] .

Finally, using part (a) of 8.2.8, we get that
Fn [IFPz x @]t > <, (£,0).

Altogether, we can replace an IFP operation by an equivalent LFP operation.
This immediately allows us to handle the only nontrivial step of an inductive
proof of Theorem 8.1.13.

With the following considerations we turn to the proof of Theorem 8.1.14.
First, we show that every formula —[LFPz x ©(Z, X )]t with first-order ¢ is
equivalent to an FO(LFP)-formula containing only positive occurrences of
the LFP operator. So let ¢(Z, X) be first-order. Then, the formulas e and
d are first-order and, by 8.2.3, ¥<, and 1., can be chosen first-order. If

no > 1 and Hy, = Hy,, # Hy,_1 then, by 8.2.8(f) and by the definition of L,
we have

b€ Huyy \ Hny_1 iff Ve(e<gbVeecL({u|b=<mu},{u|u<yb})).
Thus, Z € Hy, \ Hpy—1 can be expressed by

Pmax(Z) = V(p<y (T,2) V (0, 79,4 (Z,- ), ~0<u (=, 2))-
Together with 8.2.8(e) we get the equivalence of ~[L¥FPz x ¢(Z, X)]t and
(%) VZ-o(Z,0) v (3 (Z, 0) A F2(Pmax (2) A 0«4 (Z,1)))-

Since @<, and ., only contain positive occurrences of the LEFP operator,

the same applies to the formula in ().

Thus, every FO(LFP)-formula is equivalent to one with only positive occur-
rences of LFP. In view of Lemma 8.2.7 this finishes the proof of 8.1.14 and,
in fact, gives the following strengthening of it:

Theorem 8.2.9 For every FO(LFP)-formula o there is o first-order formula
1 such that
Ean ¢ ¢ 3(V)u[LFPy z ¢] @. |

Corollary 8.2.10 For every FO(LFP)-formula @ with free variables among
T =x1...25 withn > 1 there are first-order formulas 1o, with free indi-
vidual variables among T and §, respectively, such that

Ean ¢(Z) ¢ [S-L¥Pz x5,y to, 1] T.



8.2 Simultaneous Induction and Transitivity 189

Proof. With the preceding theorem choose a first-order formula %(Z,z, Z)
such that ¢ and 3(V)u[LFPz z ¢] @ are equivalent. We can assume that {Z} N
{Z} = 0 and that the free individual variables of 1) are among Tz. Let ¥ be
of arity length(Z)+length(z). Then

vo(Z,X,Y) = YZi
(7,2, X,Y) = ¢(E,2,Yz)
satisfy the claim, where § = Z Z. O

We saw in 8.1.18 that in the preceding corollary we cannot replace the for-
mula [S-LFPz x 3,v ¥o,%1] T by a formula of the form [LFPz x 9] Z: a coun-
terexample is given by a formula (z) expressing in digraphs that there is a
cycle through x.

Exercise 8.2.11 Consider a formula x = 3(V)u[lFPz xpjt where ¢ is
first-order and %, (cf. page 7). Show that x is equivalent to a formula
A(V)u[LFP3 zp] @ where p is first-order and Ay (that is, equivalent to a Xa-
formula and to a Hy-formula). Hint: Assume that ¢ is a ¥;-formula and let
¥,€,0 be as in the exposition following 8.2.8. Then ¢ is equivalent to a ;-
formula and § to a Xp-formula; hence, the corresponding 1<, is equivalent
to a ¥a-formula. To obtain a IIy representation, note that 8.2.8(d) can be
replaced by

a<gb ff (a<mpanbgH)A
Ve(a<meVa<geVbe¢ H{u|u<ge})).

Therefore, as §(Z,7, U, V) we can use the II;-formula
TUT A (T, 0) AVZ@EUZV EVEV (g, -2V_, ~_UZ)).

Then the corresponding X is equivalent to a IIs-formula (note that y; has
the form Jvaw(-v = w A 8), but is equivalent to VoVw(—v = w — §). An
inspection of the proof of 8.2.4 shows that we get a As-formula if we start
from a As-formula. O

As promised, we now show how one can remove the (tacitly assumed)
restriction to structures with at least two elements. As an example we take
the preceding theorem (Theorem 8.2.9). First of all we note that in structures
with only one element the formulas

[LFPzv x(T,V)]T and x(%,0)

are equivalent. Hence, for every FO(LFP)-formula p there is a first-order
formula p* equivalent to it in these structures. Now, given ¢ € FO(LFP),
we use the preceding theorem to choose a first-order ¢ such that ¢ and
AV)u[LFPz z 9] 4 are equivalent in structures with at least two elements.



190 8. Logics with Fixed-Point Operators

Then, for new z and y, the formulas ¢ and I(V)u[LFP3 z (VaVyz = yAp*) V
(3zxTy—z = y A )] @ are equivalent in any finite structure.

We close this section by giving a further result demonstrating the value of si-
multaneous fixed-point logic: We show that, on ordered structures, it captures
the class of polynomial time computable functions in terms of the stages of
simultaneous fixed-points. First we introduce the corresponding terminology.
Let

(PO(TO;XO) e ,Xm), . e ,(pm(—.'fm,Xo, e ;X'm)
be first-order formulas that are positive in Xy, ..., X,,, where arity(X;) =

length(z;) for i < m. Given a structure A, let FO,... F™ be the functions
corresponding to g, - - - , Om,

Fi(Xo,.., Xm) = {3 | 0i(@i, Xoy -, X))
For i < m, let |¢;]|(A) be the number of different stages of F*, more precisely,

loil(A) = |l{n | Fiyy # Flopn I

Clearly, the function A4 — |y;|(A) is a function computable in polynomial
time. A converse is also true:

Theorem 8.2.12 Let < € 7 and let K be a class of ordered T-structures in
PTIME. Then for every function f : K — N computable in polynomial time’
there are first-order formulas ©o(To, Xo, -3 Xm)s- s Pm(Fm, Xoy-«or Xm)
that are positive in Xy,..., X such that for all A € K with at least two

elements,
F(A) = |eol(A).

Proof. Since f is computable in polynomial time, there is an r such that
F(A) < ||A||" for all A € K with at least two elements. For § < ||A||" let |4,
be the j-th r-tuple in the lexicographic ordering of A”. By assumption, the
class

{(Aaala-'-vaf‘) | Ae K, lf(A)|7’ = (a17"'7a7”)}

is in PTIME. Hence, by 7.3.4 and 8.1.13, there is a formula ¢(zy,...,z,) of
FO(LFP) such that for any ordered structure B and b € B”,

B = o[b] iff B € K and b= |f(B)|,.

By 8.2.10, we obtain first-order formulas 10 (Z, X,Y), 9 (7, X,Y) that are
positive in X,Y such that ¢(Z) and [S-LFPz x 3,v %o, ¥1] T are equivalent.
To get the desired representation of f(A), we construct a simultaneous fixed-
point process, where the stages of the first component Z (of arity r) suc-
cessively take up the r-tuples in lexicographic order that are smaller than

|f(A)|» as soon as |f(A)|, gets into X.
7 We assume that 4 = B implies f(A) = f(B).
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We set

WEZ,X,)Y) = WXTAZ<TEA
(Z=min VvV Ju(Zu A z=1u+1))).

For the system ¢(z, Z, X, Y), ¥o(Z, Z, X,Y), ¥1(¥, Z, X, Y) one easily verifies
that F(A) = [](A). o

In the preceding theorem we cannot replace g, ..., @, by a single for-
mula. To give a counterexample, we consider the function f defined on the
class of ordered graphs by

1 if G is connected
0 otherwise.

19)={

Suppose that, for some first-order formula (%, X) positive in X, we have
F(G) = |¢l(G). Then, G is connected iff F2 # 0. But F2 # () is equivalent
to FYY # 0. Hence, G is connected iff G is a model of 3Ty (T, #). But we saw
in 2.3.7 that the class of finite connected ordered graphs is not first-order
axiomatizable.

Notes 8.2.13 The book {122] contains the first systematic study of least
fixed-point operators (in the context of infinite structures); in particular,
in this book the Lemma on Simultaneous Induction and the Transitivity
Lemma are proven and the stage comparison relations are introduced. The
result of Exercise 8.2.11 is due to Dahlhaus [23], Theorem 8.2.12 to Kolaitis
and Thakur [103].

8.3 Partial Fixed-Point Logic

In Chapter 7 a further fixed-point logic turned out to be relevant, namely
partial fixed-point logic, its importance being documented by the fact that,
in ordered structures, exactly the queries computable in polynomial space are
expressible in partial fixed-point logic. In this section we recall the definition
of partial fixed-point logic, discuss the scope of totally defined fixed-points,
and show that every formula of partial fixed-point logic is equivalent to a
formula containing exactly one occurrence of the PFP operator.

Partial Fized-Point Logic FO(PFP) contains first-order logic and “Fy, for
any definable F”: For a vocabulary 7 the class of formulas of FO(PFP) of
vocabulary 7 is given by the calculus

where ¢ is an atomic second-order formula over 7

7 @,y ®
7 (pVY) T Tz
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o TP(’O—_— where the lengths of T and  are the same and
[PEPz.x¢lt . jincide with the arity of X.

The semantics is defined inductively w.r.t. this calculus, the meaning of
[PEPz x|t being ¢ € F¥. In particular, [PFPz x]? is false if the fixed-
point of F¥ does not exist. All other definitions and conventions are as for
FO(LFP).

Clearly, we have
Proposition 8.3.1 FO(LFP) < FO(PFP). O

Consider, for example, orderings as { <, S, min, max }-structures. Then the
sentence 3z [PFP, x v (z, X))« where

Yz, X) = (Vy-~XyAz = min) V(X max Az = max)VIy (X yATu(SyurSuz))

just holds in orderings of odd length.

As a further example consider the formula,
[PFP, x Jy(-Xy A Ezy)] .

By 8.1.5(b), in digraphs it expresses, at the same time, that z is won for
player T and that there are no drawn points. By 8.1.10(b) we see that this
formula is equivalent to an FO(LFP)-formula. This result is generalized in
the following (cf. 8.1.5(a))

Exercise 8.3.2 Assume that ¢(7, X) is an FO(LFP)-formula negative in X

and that X does not occur in the scope of any LFP operator. Then

- (7, X) = (@, (-, X)) is an FO(LFP)-formula positive in X.

— F¥ is antitone and F'¥ = F¥ o F¥.

— The “FO(LFP,PFP)”-formula [PFPz x ¢(Z, X)]? is equivalent to the for-
mula of FO(LFP)

VZ([LFPz x ¢]T ¢ [GFPz x ¢ %) A [LFPz x ¥] L. 0

We aim at showing

Theorem 8.3.3 Fvery FO(PFP)-formula is equivalent to an FO(PFP)-
formula with at most one occurrence of PFP.

We shall point out similarities and differences to the proof of the corre-
sponding result for FO(LFP). As there, we start by introducing Simultaneous
Partial Fized-Point Logic FO(S-PFP) and by showing that it has not more
expressive power than FO(PFP), even though it will turn out to be a valuable
tool in many considerations.

The formulas of FO(S-PFP) are obtained by replacing the PFP rule above
by
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P05 -+ Pm
[S‘PFPEO,XO,...,Em,Xm ©Yas - - -, (}Qm] t
where m > 0, where for i = 0,...,m the arity of X; equals the length of
T;, and where t has the same length as Zy. As usual, the variables in each
sequence T; are distinct, but the same variable may occur in distinct T;’s. A

variable z is free in [S-PFPz, x,. . 7,..X,, ©0,---,¢m]t, if 2 occurs in % or if
for at least one i,  is free in ¢; and not in T;. Introducing F°,...,F™ by
Fi(XO,...,Xm) = {fz lcpi(fi,Xg,...,Xm)},

,,,,,

Once more, for simplicity, we restrict ourselves to structures with at least two
elements.

Theorem 8.3.4 FO(PFP) = FO(S-PFD).

The proof of FO(S-PFP) < FO(PFP) is by induction on formulas, the
main step being taken care of by the following lemma.

Lemma 8.3.5 (Simultaneous Induction for PFP) Let
(po(fo,Xo, e ,Xm), e ,gOm(—l‘_m,Xo, s ,Xm)

be formulas of FO(PYFP), where X; is k;-ary and the length of T; is k;.
Set k = max{ko,....kn} + (m+1) and define the FO(PFP)-formula
XJ(21,---s 28, Z) by B

xr(z1, .. 2k, Z) = FIw(-v =wA

((@o(21y -y Zke, 200, ..., Z_TW™) A So(Zkot1s-- -y 2k, Uy W))
V(o1(215- oy 2y, Z_5w°, .o, Z_0w™) A 61(Zky 41y - - 28, U, W))
VA (@m(21y e ey 2k s Z-0WC, o Z_BW™) A (Bl 15 - - - 20, Uy W)

Then, for any new variable u,

|:ﬁn [S‘PFPTQ,Xo,...,Em,Xm (po, PP ,gDm]—t_ 4 H(V)U[PFPE,Z XJ] Z’[IJ

If g, ..., m are first-order formulas then x; is first-order. Moreover, given
a structure and an assignment to variables, the simultaneous fized-point of
the PFP operation of the formula on the right side in the equivalence above
ezists iff the fived-point of the PFP operation on the left side exists.

The lemma is a literal translation of the Lemma on Simultaneous Induc-
tion for LFP (cf. 8.2.3), and also the proof can be translated; of course, here
we do not have the assumption that the formulas are positive in the second-
order variables and hence, the same applies to x;. The additional claim on
the existence of the fixed-point immediately follows from 8.2.1(a). O

Also the proof of 8.2.4 can be literally translated and gives
® For the definition of §; see page 179.
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Lemma 8.3.6 Every FO(PFP)-formula [PFPyy |t with first-order ¢ is
equivalent to a formula of the form

I(V)u[PFPzz y] i

with first-order 1. If v is existential then 1 can be chosen existential, too. For
a given structure and assignment, if F$ exists then so does F¥ . Furthermore,
we may require that u does not occur free in ¢ and that the free variables of
A(V)u[PFPz,z ] & are among the free variables of [PFPyy ¢]t. O

In the proof of the Transitivity Lemma for LFP we have made essential
use of the monotonicity of the operations in question, so it does not translate
to the present case. However, it is easy to derive a version of the Transitivity
Lemma for PFP (see 8.3.10 below), if we restrict ourselves to formulas whose
fixed-points always exist. For this purpose call a formula of FO(PFP) totally
defined, if for all its subformulas of the form [PFP; x 1] the fixed-point F¥,
exists in every structure and for all assignments.

Exercise 8.3.7 Show, using Trahtenbrot’s theorem, that it is not decidable
whether an FO(PFP)-formula is totally defined. O

Nevertheless we can show:

Proposition 8.3.8 For every FO(PFP)-formula ¢ there is an equivalent to-
tally defined FO(PFP)-formula v. If ¢ has the form [PFPz x ']t with first-
order @' then v can be chosen of the form [PFPz x ¥'1S with first-order ¢'.

For the proof we need the following

Lemma 8.3.9 Assume M is finite. Let F : Pow(M) — Pow(M). Then there
is an | > 1 such that F; = F5.,.

Proof. By finiteness of M, the sequence Fp, Fy, ... must become periodic (cf.
7.1.1(a)). So there are ng and lp > 1 such that F,, = Fy, 4, holds for all m >
ng. Choose s such that | := s-ly > ng. Then ¥} = Foyy = Faygysi, = Fou-

0

Proof (of 8.5.8). The proof proceeds by induction on FO(PFP)-formulas, the
main step being the PFP operator. So let [PFPz x x] be given and suppose,
by induction hypothesis, that ¥ is totally defined. Consider the function FX
for a given structure A and an assignment of values to the parameters. Set
X, = FYX and X, := FX. Choose the smallest [ > 1 such that X»; = X;.
We consider the sequences (Yn)n>0, (Zn)n>0, and (Wy)n>0, whose values are
shown by the following table:

X|Xo X1 X2 ... o Xi X Xigo
Y| X X1 Xo ... o Xi Xe  Xeo
Z | Xo Xo X4 ... o Xy X Xeo
w9 A A .. .. A A A
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In the first I steps (Yy,) proceeds as (X,,) and (Z,) as (Xa.p,), i.e., with twice
the velocity of (X,,). When n > 0 (which is signaled by W,, # @) and Y,, = Z,
then Y,,, = Z,, = X, for m > n. So, all these new sequences have fixed-
points (this guarantees that the formula obtained below is totally defined).
The fixed-points are the simultaneous fixed-point of the operations given by
the formulas ¢y, ¢z, and pw, where

oy(@,Y,2,W) = (W=0VY #Z)Ax@Y) V(Y =x(-,Y)AYD)®
(pZ(27Y7Z7W) = ((WZQVY;AZ)/\X(E,X(_,Z)))
V(Z =x(_,Z)NZ7Z)
ow(w, Y, Z, W) = w=uw.

By the first two lines of the table we know that

=fn [PFPz x X1 < [S-PFPy vz 20w v, 9z, pw]t

and therefore, by the Lemma on Simultaneous Induction for PFP, we have
for the corresponding x s that

':ﬁn [PFPgX X]Z g [PFPEV XJ] ta
and that the formula on the right side is totally defined. a

Next we show an FO(PFP)-version of the Transitivity Lemma. It will be
used in the proof of 8.3.3.

Lemma 8.3.10 (Transitivity for PFP) Let o(Z, X,Y) and ¥(7, X,Y) be
first-order and let [PFPyy (7, X,Y)]7 be totally defined. (Moreover, assume
that no individual variable free in [PFPy vy ¢(7, X,Y)] gets into the scope of
a corresponding quantifier or PFP operator in (x).) Then the formula

(*) [PFPz x o(Z, X, [PFPgy ¢ (y, X, Y)])] ¢
is equivalent to a totally defined formula

A(YV)u[PFPz z x(Z, Z)] 1
with first-order x. ‘

Proof. Set p := [PFPz x (T, X, [PFPgy ¢(7, X,Y)])]t. We want to write
the nested fixed-point as a simultaneous fixed-point. For this purpose let

(T, X,Y) = YV #P, X VAXT) VY =9, X, Y) Ap(T, X, Y))

(“if Y is not a fixed-point then X does not change, otherwise X goes one
step further”),

° Y =yx(_,Y) is an abbreviation for VE(YE < x(Z,Y)).
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V(T XY) = (Y #£9(,XY)AY(F, X, Y))V
(Y :WﬂXaY) /\(X = ¢(~7‘Y7Y)/\Yy))

(*if YV is not a fixed-point then Y goes one step further; otherwise Y is set
back to ( except X happens to be a fixed-point; then ¥ does not change”).

Since [PFPyy (7, X,Y )]t is totally defined, we immediately have
Fén p < [S-PFPz x3v ¢, '] L.
For the corresponding x.s, which is first-order (cf. 8.3.5), we therefore get
Ean p < [PFPz 7z xJ] ta.

To get a totally defined formula of the desired form, we first apply 8.3.8 to
[PFPz 7 xs]ta and then 8.3.6. O

Exercise 8.3.11 Let ¢(z, X,Y) := (z = ¢V Y2) and ¥(y,X,Y) := =Yy.
Show that [PFP, x ¢(z, X, [PFP, vy ¢(y, X,Y)])]  is equivalent to the for-
mula z = ¢, while the simultaneous fixed-point of ¢’ and ¢' defined according
to the previous proof does not exist. Note that [PFP, vy ¢(y, X, Y )]y is not
totally defined. O

We now get Theorem 8.3.3 in the following sharper form.

Theorem 8.3.12 For every FO(PFP)-formula ¢ there is a first-order for-
mula ) such that
Fan ¢ < 3(V)u[PFPz z ¢]a

and I(V)u[PFPz z |0 is totally defined.

Proof. We proceed by induction on (. The atomic case and the cases for V,
3, and PFP are handled as in 8.2.7, now using the preceding lemma instead
of 8.2.6. Concerning the negation step, suppose @ = —¢; and, by induction
hypothesis, assume that

o1 = [PFP3 v 1 (T, V)]t

is totally defined and 1+, is first-order. Set p(z, X, %) := —Zt for dummy
variables T and X. Then ¢ (= —~[PFPz v ¢1(T,V)]?) is equivalent to

[PFP; x p(Z, X, [PFPy v 41 (7, V)])] T

which, by the preceding lemma, is equivalent to a formula of the desired form.
O

We close this section by showing that in the normal form given in the
preceding theorem the formula 2 on the right hand side can be chosen ex-
istential, a result we shall also obtain by different methods in Chapter 9.
The following exercise gives the idea underlying the procedure to eliminate
universal quantifiers.
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Exercise 8.3.13 Show that in models of —¢ = d the formulas VzRz and
[PFP, x (x =cV (z =dA3z-Rz2)) A ((XcA Xd) - —z =1z)]c
are equivalent. 3

Theorem 8.3.14 For every FO(PFP)-formula @ there is an existential first-
order formula p such that 3(V)u[PFPy y p|a is totally defined and

Fan @ ¢ 3(V)u[PFPyy pl .

Proof. By the preceding theorem we can assume that ¢ = [PFPyy ¢]a,'°
where [PFPyg y ¥] 4 is totally defined and where 4 is first-order and in prenex
normal form. It suffices to show that if ¢ is a ¥jy;-formula (compare 1.B
for the definition of %,,-formulas) with & > 0 then ¢ can be replaced by a
Yr-formula (and hence, by induction, by a ¥;-formula; the result then fol-
lows from 8.3.6). So assume that ¢(7,Y) = FzVay' with ¢’ = ¢'(¥,7,4,Y) €
Y1, and let Y, := F¥. Define the sequences (Ugy)), (Vin)), (W(n) simulta-
neously, using the formulas xv, xv, xw, respectively, where

xv(@ U V,W) = W#£0AIFZ=Vyz
XV (g zZ, U7 Va W) = ﬂVﬂw,(y) Z,, U)
xwlz, U, VW) = z=uz.

Note that Wy = @ and W,y = universe for n > 0. Hence, we get Uy = 1]
and forn > 2:

Un = {¥|FZVu-1)77}
= {y | E]ZVE@[}'(?) Z, U, U(n—z))}

Since Y, = {7 | IZVw)'(¥,%Z,T, Yn-1)}, & simple induction shows that
Uigny = Yn and Uppyry = Yp; in particular, (Ug,)) eventually becomes
constant. As Vi) = {¥Z | ~V@'(7,%,%, Urn—1)) }, the sequence (V(,)) be-
comes constant, too. Thus, the simultaneous fixed-point (Uieo), Vico)s Wioo))
exists and Uiy = Yoo. Hence o, that is, [PFPyy 4] 4, is equivalent to
[S-PFPyu 52 v.e,w XU, XV, Xw]@. Since v, xv,xw are equivalent to a Xy,
¥, ¥p-formula, respectively, a closer look at the corresponding formula x s in
8.3.5 shows that it is equivalent to a Xj-formula and that, for a new variable
v, we have
Ean ¢ < AV)0[PFP3 7z x 7] 40,

and hence, =4, ¢ < IV)u[PFPs 7 x /] Gt ]

Exercise 8.3.15 (A version of the game of life) Let G = (G, E,CY) where
(G, EY) is a graph and C% C G. Interpret C¢ as the set of vertices hosting
a live cell. Set Cp = 6,C; = C%, and for n > 1, define C,, the “n-th
generation”, by the following “reproduction rule”: For a € G, a € C,, iff (i)
or (ii) holds, where

% Recall that a formula 3(V)zx(x) is equivalent to x(t) for any term t.
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(i) a € Ch_1 and, in C\,_1, a has exactly two neighbours hosting a live cell
(that is, there are exactly two b € C,,_1 such that E¢ab);

(ii) in C,_1, a has exactly three neighbours hosting a live cell.

Show that there is a sentence ¢ of FO(PFP) such that ¢ holds in a structure

G as above iff for some n > 1, (', = 0 (the species dies out). Give an example
of a structure G such that (Cy)n>0 has no fixed-point. O

Exercise 8.3.16 (a) Assume that M is finite and F' : Pow(M) — Pow(M).
Define

Fiauwe = {a€ M |3noYm >ng:a€ Fy},
Fre == {a€M|3ngVm >ng:a ¢ Fnl,
and Fypd := M \ (Firye U Fraise), the set of undefined points. Introduce the

class of formulas of the logic FO(3-PFP) as that of FO(PFP) at the beginning
of this section replacing, however, the last rule of that calculus by

4 ® @
[t-PFPz x|t [f-PFPz xp|t’  [u-PFPz x|t

the meaning of these formulas being

uf c Fcp »” uf c Ffilseni and ch c F(p ”

true und °*

respectively. Show that FO(3-PFP) = FO(PFP). Hint: Argue as in the proof
of 8.3.8, using, e.g., for the truth set, an additional sequence (V},)n>0 given
by VO = Xo, Vl = Xl, e ,‘/l = Xl, ‘/l+]_ = ‘/l le_H, W+2 = W+1 ﬂXl+2, [

(b) For the game associated with digraphs and ¢(z, X) := Jy(—Xy A Ezy)
the formulas [¢-PFP, x|z, [f-PFP, x¢lz, and [u-PFP, x ]z express “z is
won for I”, “z is won for II”, and “z is drawn”, respectively.

Notes 8.3.17 Partial fixed-point logic goes back to [2]. The presentation of
this section owes much to Grohe [61].

8.4 Fixed-Point Logics and L |

In the first part of this section we show that the fixed-point logics intro-
duced so far are contained in LY, . Therefore, when exploring the expressive
power of fixed-point logics, we can prove nonaxiomatizability results by using
nonaxiomatizability results for LY, . The second part is concerned with the
question whether FO(LFP) = FO(PFP). We shall see that, when studying
this problem, we can restrict ourselves to ordered structures. Thus, by the
results of Chapter 7, the problem FO(LFP) = FO(PFP) is equivalent to the
question whether the complexity classes PTIME and PSPACE coincide.
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Throughout this section, for simplicity, we only consider relational vocabular-
ies. The following lemma shows a way how to define the stages of a fixed-point
construction in first-order logic.

Proposition 8.4.1 Let ¢(T, X) be a first-order formula where oll variables
are among vi,...,vr and X. Suppose X is s-ary and T = x1...zs (with
Z1,...,Ls QMONG V1,...,0;). Then, for every n, there is a formula ©™(Z) in
FO*** defining the stage F¥.

Proof. Let y1 = vgy1,--.,Ys = Ugts. Then ©"(T) can be defined inductively

c,oO(E) = -y =1,

e S T(F = ATEE =g A 0™(E))
@) = e(@X) e

(i.e., we replace in ¢(T, X) each occurrence of an atomic subformula of the
form Xt by Ig(y = t AJZ(T = YA " (T))); note that some variables of T may
occur in 7). O

As a corollary we get:

Theorem 8.4.2 FO(PFP) < L¥ .

Proof. By 8.3.12, it suffices to show for first-order ¢ that [PFPz x ¢ is
equivalent to a formula of LY ..

So suppose that ¢, k, s, X, Z, 7 are as in the preceding proposition and
that the variables in ¢ are among v1,...,vs. Then [PFPz x ¢]t is equivalent
to the LET¢-formula

\ (VZ(e" (@) & " @) A ™ (D)
n>0

where, to stay within L¥**, we take 3g(y = t A IZ(T = A ¢™(7))) for o™ (D).
U

Exercise 8.4.3 Show that VaVy[LFP, v(y = = V 3z(Yz A Ezy))ly is not
equivalent to a formula of L2_ . (Hint: Use part (b) of 3.3.6). O

The preceding theorem allows us to translate some results from LY to
FO(PFP). We give two examples. By 3.3.25(b) we get

Proposition 8.4.4 For a relational vocabulary containing only unary rela-
tion symbols the expressive power of FO(PFP) and FO coincide; in particular,
the class EVEN of sets of even cardinalily is not aziomatizable in FO(PFP).

|

The last statement of the proposition shows that neither FO(LFP)
strongly captures PTIME nor FO(PFP) strongly captures PSPACE (cf. page
157). From the 0-1 laws for LY,  obtained in Chapter 4 we get for example:
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Theorem 8.4.5 FO(PFP) satisfies the labeled and the unlabeled 0-1 law. O

Now we turn to the question whether FO(LFP) = FO(PFP). We first
recall some definitions: In subsection 3.3.2, to every 7-structure A and to
every s > 1 we have assigned a 7/s-structure 4/s which captures the L5_ -
theory of A. Recall that A/s consists of the classes of the equivalence relation
~ on A* given by

a~b iff @ and b satisfy the same L -formulas in A

and recall that the vocabulary 7/s and the structures A/s are given as follows:

— for every k-ary R € r U {=} and any i1,...,4; with 1 <iy,...,ip < s the
vocabulary 7/s contains a unary relation symbol R;, ;, with interpretation

Als —1 | = s
Ril./..z'k = {lal|lae4 7RA(11‘1 @y 1
—for i = 1,...,s the vocabulary 7/s contains a binary relation symbol S;
with
SiA/S = {([@,[a']) | a,a’ € A® thereis a € A such that [a'] = [a%]}.

Since FO(PFP) < LY, for any ¢ € FO(PFP)[r] we can choose an s such

oW ?
that ¢ = @(v1,...,vs) is equivalent to an L?_ -formula, thus

AkEylal and a~b imply AR o[b]

Therefore, any FO(PFP) definable relation on A is the union of some equiv-
alence classes. This will enable us to show that the FO(LFP) (and the
FO(PFP)) definable relations on A and on the A/s correspond to each other.
Since A/s has an FO(LFP) definable ordering, we thus shall be able to trans-
late the question whether FO(LFP) = FO(PFP) from arbitrary structures to
ordered ones.

Fix s. We start by showing that ~ is definable in FO(LFP) (cf. 8.1.8). Let @
and b range over A®. For j > 0 define ~; on A® by induction:

a~ob iff @and b satisfy the same atomic formulas in A

@~ji1 b iff @a~pbandforalli=1,...,sandallac 4 (be A4)
there is b € A (a € A) such that a% ~; b%

(in the terminology of subsection 3.3.1 we have @ ~; b iff the duplicator
has a winning strategy in the pebble game G$(A, 7, A, b) with s pebbles and
j moves). Clearly, ~¢g D ~1 D ..., so that ~; =~ for some [.!' For such
an | we have ~; =~. For the complements o; of ~; we have #£oC#1C ...

1 In subsection 3.3.3 the least such [ was called the s-rank r(A) .
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They are the stages FY'*, FY”, ..., where @ (%1,...,%5,91,---,Ys, Z) is the
following formula positive in Z:

V @@ e 9@V \/ CevyZzyViyveZzy).
YEFO? 1<i<s
i atomic

Altogether we get
Lemma 8.4.6 There is a 7-formula ¢ (Z,7) in FO(LFP) with variables

among T1,...,Ts,Yi,...,ys such that for all T-structures A and @, b € A®,
a~b iff Ak o fa,b].
Proof. Take as ¢~.(Z,y) the formula —[L¥Pzy 7 v (Z,7, Z)]TT. O

By this lemma there is an FO(LFP) definition of A/s in A and hence,
any FO(LFP) statement on .A/s can be translated to an FO(LFP) statement
on A.

Proposition 8.4.7 For any ¢(z1,...,2zx) in FO(LFP)[7/s] whose free vari-
ables are among xy, . ..,z there is a formula G(x11,. .., L1g, -, L1y« -, Ths)
in FO(LFP)[7] such that for all T-structures A and @y,...,a; in A%,

AlskEellal,. . @l o AR g, .. al
The same is true if FO(LFP) is replaced by FO(PFP) everywhere.

Proof. For a variable y let ¥ be y1 ... ys. The definition of ¢ is by induction
on ¢. We give the main steps:

@ ¢
y=z P (ya E)
Riy.ay Ryi, .. .y,
Siyz Yyio~ (7, %)
Xy1...yr XY -7,
Jyyp Jyi.. Ty
[LFPyl___me 1/)] Z1 ... %p [LFP§1---?T,X' 'l/)] El .. .ET
where X' has s-times the arity of X. O

We come to a translation in the opposite direction:

Proposition 8.4.8 For any FO(LFP)[r]-formula ¢ without free second-
order variables there is an s > 1 and an FO(LFP)[r/s]-formula ¢*(v) with
at most the free variable v such that the individual variables in © are among
U1,...,VUs and such that for all T-structures A and @ € A®,

AEola,....a] i Als e [[a]].
If v is a sentence then ¢* can be chosen to be a sentence.

The same is true for FO(PFP) instead of FO(LFP).



202 8. Logics with Fixed-Point Operators

Proof. By Theorem 8.1.14, we may assume that the LFP operator occurs
only once in ¢, wlo.g. in the form [LFP,, .. x¥]t. Moreover, we may
assume that the occurrences of X have the form Xwp...v, (if Xz1...2,
occurs, replace it by (7 = Z A J0(v = y A Xv)) where § are new vari-

ables and ¥ = w;...v,). Treating { similarly, we may assume that the
LFP operator in ¢ has the form [LFP,, .. x ¥]vi...v,.. Let the variables
in ¢ be among vy,...,v,. Finally, we may assume that r = s; otherwise,

we replace X by an s-ary variable Y and [LFP,, ., x¥(X)]vi...v. by

[LFPy,. v, v (Y vppr ... 05)]v1 ... 0s.
The definition of ¢* is by induction on ¢, the main steps being (we use a
unary relation variable V):

*

14 ¥
Vi = VU5 =i v
Ru;, ... v, Ry, . .30
Xvy ... v Vu
BB Jw(S;vw A Y*(w))

[LFPy,. v, x¥Jv1...vs [LFP, v¢*]u.
For a sentence ¢ pass to the sentence Jvp™. g

The next proposition shows that from the point of view of FO(LFP) the
structures A/s can be regarded as ordered structures.

Proposition 8.4.9 There is an FO(LFP)[r/s]-formula v (u,v) such that
for all T-structures A,

20 = (@) | A/s = vl [Bl]}
is an ordering on A/s.

Proof. Let A be a 7-structure and let ~; be the equivalence relations intro-
duced before 8.4.6. Assume ~;=~. For j > 0 we define partial orderings
(that means, irreflexive and transitive relations) <; on A/s such that

(1) <pC<1C«y...

) (@<, Blor[b]<;[a) if  atb

(thus, <; induces an ordering on the equivalence classes of ~;}. Then <; will
be the intended ordering.

Let x1,...,Xm be an enumeration — say in lexicographic order — of the
atomic 7-formulas in the variables vq,...,v, and let x7 be the 7/s-formula
associated to yx; in Proposition 8.4.8. As < we take <g:= 54/5(_,_) where

do(z,y) = \ (@A-x@A N\ G e xw)-

1<i<m 1<j<i
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Clearly, <¢ is a partial ordering that satisfies (2) for j = 0.

Now suppose that <; has already been defined. To extend <; to <;yi,
assume that @ ~; band @ ;41 b. For 1 < i < sset M(a,i) := {[a%]; | a € A}
and M(b,i) := {[b%]; | b € A}, where [¢]; denotes the equivalence class
of & modulo ~;. Since @ ;1 b, there is a smallest number 4 such that
M(@,i) # M(b,i). Set [@] <j1 [b] if the <;-minimal element of (M (@, 1) \
M (b,4)) U (M (b,) \ M(@,1)) belongs to M (a,i); otherwise, set [b] <j41 [a].
One easily verifies that <,y is a partial ordering (extending <;) and that
(2) holds for j + 1.

Clearly, <:=<; is a total ordering on A/s. It is the fixed-point of the
increasing relations <; and is thus definable in A/s by [IFP, x x] uv where,
with z = y for ~Xzy A ~Xyz,

x(u,v,X) = tholu,v)V \/ (Fu' (Siuu’ AV (Sivr —
1<i<s
(Xu'v' v (Xv'u' A " (Siun” A W =0')))))
A /\ (Vo' (Spunu’ — F'(Spov’ A o' =)
1<k<i
AV (Spov' = Fu' (Spun’ A v =0')))).

We are now able to show the main result of this section.

Theorem 8.4.10 The following are equivalent:
(i) FO(PFP)=FO(LFP).
(ii) FO(PFP) = FO(LFP) on ordered structures.

Proof. The direction from (i) to (ii) is clear. Assume FO(PFP) = FO(LFP)
on ordered structures. Let 7 be a vocabulary and suppose ¢ is an FO(PFP)[r]-
sentence. We must show that there is an FO(LFP)[r]-sentence with the same
finite models. Choose s > 1 and ¢* € FO(PFP)[r/s] according to 8.4.8. By
(ii) there is an FO(LFP)[r/sU{<}]-sentence 1 such that

“ < is an ordering” E ¢* < .

Let x := wLQ‘), i.e., x is obtained from % by replacing any atomic part
of the form z < y by ¥ (z,y), where ¢ (u, v) is the formula of the preceding
proposition. Hence, x € FO(LFP)[r/s]. Choose ¥ € FO(LFP)[r] according
to 8.4.7. Then, for any 7-structure 4 we have

AEo iff Als E "
iff (A/s,92%) =
iff Als = x
iff AEx.
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With 7.5.7 we now get
Corollary 8.4.11 FO(LFP) = FO(PFP) iff PTIME =PSPACE. 0O

The ordered structure (A/s, <) is isomorphic to exactly one structure of
the form ({0,...,n},..., <), the numerical s-invariant of A. By the results
above, a query on the class of T-structures is definable in FO(LFP) iff for all
sufficiently large s, the corresponding query on the numerical s-invariants is
definable in FO(LFP). Therefore, by 7.5.2, a query on the class of 7-structures
is definable in FO(LFP) iff the corresponding query on the numerical invari-
ants is in PTIME. That is, on arbitrary finite structures exactly those queries
are definable in FO(LFP) which correspond to PTIME queries on the numer-
ical invariants. The same applies to FO(PFP) and PSPACE.

Exercise 8.4.12 A r-structure A is s-rigid if @ 4 b for all a, be A, a # b
(where ~ is the equivalence relation leading to A/s and @, b are the constant
sequences of length s). A class K of structures is s-rigid, if every structure
in K is s-rigid. Show:
(a) A is rigid iff A is s-rigid for some s.
(b) The following are equivalent:
(i) K is s-rigid for some s.
(ii) There is a formula in FO(LFP) defining an ordering on K (i.e., on
every structure in K).
(iii) There is a formula in LY, defining an ordering on K.

Hint: (i) = (ii): If the 7-structure A is s-rigid, then x*(_,_ ) with x(z,y) =
Yo(z,...,x,y,...,y) is an ordering, where ¢ (T, ) is the formula associated
with the 7/s-formula . (u,v) of 8.4.9 according to 8.4.7. — (iii) = (i): If
p(z,y) € LY , defines an ordering, use formulas as defined in part (a) of
3.3.1, here built up from ¢(z,y) instead of z < y, to show that K is s-rigid
for some s.

Conclude: If K is an s-rigid class of structures, then the PTIME-computable
queries on K are exactly the FO(LFP) definable ones.

In contrast to (a) there is a first-order axiomatizable class of rigid struc-
tures that is not s-rigid for any s (see [77]). 0

Exercise 8.4.13 Let K be a class of structures. We say that K is fized-
point bounded, if for any first-order formula (%, X') positive in X with free
variables among z, X, there is an mg such that

K [ Va(e™ (@) = 9™ (@),

where ¢©"™(Z) is a first-order formula defining F¥, (see 8.4.1). Show the equiv-
alence of (i) — (iii):

(i) K is fixed-point bounded.

(ii) K is bounded (in the sense of Theorem 3.3.24).

(iii) On K, every LY -formula is equivalent to an FO-formula.
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Hint: For (i) = (ii) apply the hypothesis to the formula ¢ (Z,7, X) intro-
duced before 8.4.6. The equivalence of (ii) and (iii) was shown in 3.3.24. For
the direction from (iii) to (i) suppose that ¢(%, X) is as above and witnesses
that there is no myq as claimed. For M C N set o := V,,ep (0™ (@) A
—™(Z)). Then, ¢ and @y, are not equivalent on K for L # M.

In (iii), one cannot replace LY., by FO(LFP) (see [74]). O

8.4.1 The Logic FO(PFPpriME)

While least fixed-point operations reach their fixed-point in polynomially
many steps, partial fixed-point operations may need exponentially many
steps. The intermediate logic FO(PFPpriyE) is the fragment of FO(PFP)
consisting of those formulas for which every occurrence of the PFP operator
reaches a fixed-point in polynomially many steps in all structures. Clearly,

FO (LFP) < FO (PFPPTIME) .

Exercise 8.4.16 shows that FO(LFP) = FO(PFPprivg) for arbitrary struc-
tures is quite unlikely. On the other hand we have

Theorem 8.4.14 On ordered structures, FO(LFP) = FO(PFPpriME).

Proof. The claim is clear by the results of Chapter 7: By definition, every
query definable in FO(PFPprivE) can be evaluated in polynomial time and
is thus definable in FO(LFP). Nevertheless, for later purposes we sketch a
direct proof. Let [PFPz x ¢ (%, X)]t be given and suppose that, for some poly-
nomial p, the sequence (X;);>o (with X; := F}”) gets constant after at most
p(cardinality of the universe) many steps. The idea of how to express this
fixed-point in FO(LFP) is simple: We code the stages (Xi);<p(..) by a rela-
tion variable Y with fixed-point Y, where

Yooz  iff m < p(..) AN XpT.
The stages of Yy, Y7, Y5, ... will form the increasing sequence

{(0,7) |7 € Xo} (=0),
{(0,7) |7 € Xo} U{(1,7) |
{(0,7) |z € Xoj U{(L,7) |
The arithmetics needed for this encoding is definable in FO(LFP). In fact,
by 8.1.11 there are k¥ > 1 and formulas S*uv and ¥ = p(z + 1) in FO(LFP)
expressing (in the corresponding number representation) that 7 is the suc-
cessor of @ and that T equals p(z + 1), respectively. Therefore, as a formula
equivalent to [PFPz x (T, X )|t we can take

€Xi},
eX1}u{(2,2) |z € Xa},....

T
x

Tw(w = p(max +1) A [[FPgzy ((S*min A o(z, 0))
VI Yoy A <w A S¥Ta A p(z,Yu_))) | wi).
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Exercise 8.4.15 (FO(LFP) < L, N PTIME ) Let 7 = {E,U} and let
7' = {<,U} with unary U and binary <, E. Denote by STG the class of
(binary) “strings”, i.e., the class of ordered 7'-structures. A finite 7-structure
T =(T,E*,U7) is a labeled complete binary tree if

— (T, ET) is a tree, where every element has out-degree 0 or 2 and all leaves
have the same depth (cf. 8.1.7).
— For any a,b € T of the same depth we have U4q iff U4b.

Denote by LCT the class of labeled complete binary trees. Show:

— LCT is axiomatizable in FO(LFP) (use 8.1.7).
—If71,72€ LCT and 7 ELiow Ty then T1 2= 7T,.
— Any class K with K C LCT is axiomatizable in LY.

There is a natural correspondence between strings and labeled complete bi-
nary trees obtained by encoding the same U-information with the i-th bit of
the string as with the i-th level of the tree. More formally, if ¢;(z) € FO[r']
expresses that x is the i-th element of < and ¢;{x) € FO[r] expresses that x
has depth %, then for 4 € STG and 7 € LCT set 4 ~ 7 iff for all 7 > 0,

- AEJzpi(z) if T Jzyi(z)
- AEVr(p(z) - Uz) it T E=VYz(hi(z) = Ux).

Show

—If HC LCT is axiomatizable in FO(LFP) then STG(H) := {A| AT
for some 7 € H} is axiomatizable in FO(LFP). Hint: Show for 7 € LCT
and @,b € T* that

(T,a) =(T, 5) iff (d(a; A aj))lsq;ngS = (d(b; A bj))lgigjgs;

where d(c) is the depth of ¢ and where a A b denotes the element ¢ of least
depth with ¢ < a and ¢ < b in the induced partial ordering (cf. 8.1.7).
Thus s-tuples of elements of the tree can be encoded by @—tuples in
the corresponding string. The set of the latter tuples being definable in
FO, this can be used to translate the FO(LFP)-axiomatization of H into
an FO(LFP)-axiomatization of STG(H).

- If K C STG isin TIME(2") (that is, K is accepted by a 2" time-bounded
machine), then LCT(K)« is in PTIME, where LCT(K) = {7 | A =
T for some A € K}.

It is a well-known result of complexity theory that there are classes K C STG
that are in TIME(2") but not in PTIME. Conclude for such a K that LCT(K)
is in PTIME and is LY -axiomatizable, but not FO(LFP)-axiomatizable. [

Exercise 8.4.16 (FO(PFPprive) = FO(LFP) = PSPACE = PTIME)
Let m = {E,U} and 7o = {E,U,V}, where U and V are unary and F is
binary. Fix k£ > 1. Recall the definition of strings (= structures in STG) and
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of labeled complete binary trees of the preceding exercise. For the present
purpose we encode strings of length n in a suitable complete binary tree of
depth n*. The class TREE; consists of m-structures 7 = (T, EL UL, VT)
that satisfy

(T,ET,UT) and (T, ET,VT) are labeled complete binary trees;
VaVy((Ezy A Vy) = V)

Ve(Uz — V)

“The depth of T is m*, where m is the number of levels labeled by V.

TREE,, is axiomatizable in FO(LFP); in particular, the last condition can
be expressed in FO(LFP) by developing the arithmetic of Example 8.1.11 for
complete binary trees instead of orderings, the j-th level taking over the role
of the j-th element of the ordering.

Consider the relation x between strings and structures in TREE; defined
by using & of the preceding exercise as follows:

AT ff A=V ETn T xvTh),UuT).

Show:

(a) If K € STG is axiomatizable in FO(PFP), then for some k, {7 €
TREE; | A < T for some A € K} is axiomatizable in FO(PFPprivE).

(b) If H C TREEy, is axiomatizable in FO(LFP), then {A € STG | A x<
7 for some T € H} is axiomatizable in FO(LFP).

Let K C STG be in PSPACE and therefore, axiomatizable in FO(PFP).
Using (a), choose k such that {7 € TREE; | A =< T for some A € K}
is axiomatizable in FO(PFPprive) and hence, in FO(LFP), if we assume
FO(PFPprivg) = FO(LFP). Then, by (b), K is axiomatizable in FO(LFP)
and therefore, K is in PTIME. Hence, PSPACE = PTIME by the remark
following 7.5.7. O

8.4.2 Fixed-Point Logic with Counting

We have seen that FO(LEFP) does not strongly capture PTIME and remarked
that it is still open whether there exists a logic strongly capturing PTIME (cf.
the remarks after 7.5.19). While pursuing this problem, various extensions of
FO(LFP) have been studied as candidates for strongly capturing PTIME. As
an example we present fixed-point logic with counting.

Recall that, when proving Theorem 8.4.14, we used the fact that, on
ordered structures, FO(LFP) can describe the arithmetics needed to code
polynomially many stages of a fixed-point operation in one relation. But
arithmetics is not all orderings allows to do: Using orderings we can enu-
merate the elements of a structure and thus successively look at each single
element. For instance, by enumeration we can calculate in FO(LFP) the sizes
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of definable subsets. In fact, let ¢(x) be an FO(LFP)-formula. Then for any
ordered structure A (with A £ Vap(z)),

a is the ||o(_)||-th element of <4 iff A | [LFP,, x x| max u[a],

where
x(z,u, X) = (z =min A—p(z) Au =min) V (z = min Ap(z) A S min u)
vaz'u (Xx'u' A Sz'z A ((me(z) Au =u') V (p(z) A Su'n))).

Fixed-point logic with counting, FO(IFP, #), is an extension of fixed-point
logic that contains arithmetic (in the size of the structure) and allows to
calculate cardinalities. If we only consider ordered structures, every query
definable in fixed-point logic with counting is in PTIME; so in this case the
logic FO(IFP, #) coincides with least fixed-point logic and hence, captures
PTIME. On the other hand, FO(IFP, #) does not strongly capture PTIME.
In fact, we shall see that FO(IFP, #) is (equivalent to) a fragment of C¥__,
infinitary logic with counting quantifiers and finitely many variables, and
that there is a graph property in PTIME which is not even expressible in
this logic (cf. section 12.2). Nevertheless, FO(IFP, #) has turned out to be
quite an important logic, since it “captures PTIME on many concrete classes”
(cf. Chapter 11). Since FO(IFP, #) contains arithmetics (in the size of the
structure), those results for FO(LFP) and ordered structures where we used
the ordering only for arithmetical operations or size calculations translate
to fixed-point logic with counting and arbitrary finite structures (compare
8.4.19 below and 9.2.3 in the next chapter).

In Fized-Point Logic with Counting, FO(IFP, #), any r-structure A is
thought of to be accompanied by its number part consisting of a disjoint
virtual universe {0,1,...,||4]|} together with the natural ordering, the suc-
cessor relation, and constants for the first and the last element, respectively.
We assume that 7N {<, S, min, max} = . A is viewed as a two-sorted struc-
ture, the elements of A itself being of the first sort, the point sort, those
of the virtual universe being of the second sort, the number sort. On the
syntactic side we have variables z,y, 2, . .. for the first sort (point variables)
and variables y, v, . .. for the second sort (number variables). The formulas of
FO(IFP, #) are obtained from atomic formulas by closing under the connec-
tives, first-order quantification of both sorts, and inflationary fixed-points of
mixed sorted relations; moreover, for any formula ¢ and variable z there is a
term #,¢ of the second sort denoting the cardinality of the set of elements
x satisfying . More precisely, terms of both sorts and formulas are given
simultaneously by the following clauses:

e All first-order 7-terms (with variables z,vy,...) are terms of the first sort;
all first-order terms of vocabulary {<, S, min, max} (with variables p, v, ...)
are terms of the second sort.

¢ All atomic 7-formulas and all atomic {<,S,min, max}-formulas (with
terms of the corresponding sort) are formulas.
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e If X is a second-order variable of mixed arity ni,ns then X#p is a formula,
where £ and p are sequences of terms of the first and second sort of lengths
ny and ng, respectively.

o If © and ¢ are formulas then so are —¢ and (p V ).

o If ¢ is a formula then Jzp and Jvp are formulas.

e If ¢ is a formula then [IFPzz x]p is a formula (the lengths of 7,1, t,p
are according to the mixed arity of X).

o If p is a formula then #,¢ is a term of the second sort.

The variable z does not occur free in #,p. The semantics should be clear:
If ¢ = p(x,7) and @ € A, the value #,¢(x,a)* is given by the number
I{a € A A= pla,al}].

Examples 8.4.17 (a) Let 7 = {P} with unary P. Then #, Pz = #,- Pz is
a sentence of FO(IFP, #) not equivalent to any LY, -sentence (cf. 3.3.25(b)
and 2.3.12).

(b) The class EVEN of structures of even cardinality is axiomatizable in
FO(IFP, #) by

S[IFP, x (4 = min VIv (Xv A “p =r +2")) ] max.

(c) For equivalence relations Ey and Fs the following sentence of FO(IFP, #)
expresses that, for all cardinalitics I, E; and Fs have the same number of
equivalence classes of cardinality [:

V'U’(#Z(#yElxy = /J‘) - #z(#yEme = H))

(d) For graphs the following formula of FO(IFP, #) says that the distance
between x and y is A:

MFP.,v(z=2Ap=0)V (-3v Uzv A32'3p/ (U2't' ANE2'z A Sp' )] y .

(e) Note that the negation symbol is superfluous in FO(IFP, #). In fact, if z
is a variable not occurring in ¢ then

Ffin ™ > #,0 = min. O

It should be clear how FO(PFP, #), Partial Fized-Point Logic with
Counting, is defined.

Proposition 8.4.18 FO(PFP, #) < C«_ .

Proof. Given a sentence ¢ of FO(PFP, #) we show that it is equivalent to a
sentence of the form

\/ (F"zz =z A,
n>1

where ¢, is a sentence of first-order logic with counting quantifiers that
captures the meaning of ¢ in models of cardinality n. The translation from
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© to @y, though easy in principle, is involved if one wants to give a clean
definition (the reader is encouraged to translate the formulas in the preceding
examples to C¥, ). We give a translation in two steps: First, we pass from
© to a sentence , eliminating # and PFP, but using atomic formulas and
first-order quantifications of the second sort (they will be eliminated in the
second step). Let ¢!, result from ¢ by replacing any subformula #,¢ = p by

\/ (=2 A “u is the i-th element of <”)

and by treating PFP operations as in the proof of 8.4.2, taking into account
that we can replace the infinite disjunctions used there by finite ones, since
we only consider structures of cardinality n. In the second step we pass to an
FO(C)-sentence ¢,,. More generally, for every formula (%, 11, . . ., 1), where
atomic subformulas and quantifications of the second sort are still allowed,
and for every ™ = my ... my with mq,...,m; < n we define an FO(C)-
formula ¢7(%) such that, in structures of cardinality n, ¥(T) says the same
as (T, my,...,my). We then set ¢, := (¢}, ) with ™ = §) (note that ¢}, is
a sentence). The main steps in an inductive definition of ¢ (%) are

_ _ T ifm; <m;
U@ ) = s <y then ()= { [ TS

Since in the proof of 8.4.14 we only used arithmetical properties of the
ordering, in essentially the same way we get:

Proposition 8.4.19 FO(IFP, #) = FO(PFPp . #)- O

Here, FO(PFPprivE, #) denotes the fragment of FO(PFP, #) consisting
of those formulas for which each PFP operation closes in polynomially many
steps.

Notes 8.4.20 Theorem 8.4.5 goes back to [12]. The main result 8.4.10 is
due to Abiteboul and Vianu [4]. The proof presented here is based on [30].
Fixed-point logic with counting originates in ideas of Immerman [92]; in the
form described here it has been shaped by Gradel and Otto [57, 124]. Otto
has extended Theorem 8.4.10 to fixed-point logic with counting; cf. [125].

8.5 Fixed-Point Logics and Second-Order Logic

The results of Chapter 7 give us some information about the relationship
between fixed-point logics and second-order logic SO: Let K = Mod(y) for
some sentence ¢ of FO(LFP). Then, K. € PTIME C NPTIME and hence,
K = Mod() for some X.}-sentence ¢ (by 7.5.14). Therefore, we have
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(1) FO(LFP) < ¥1.

As the class EVEN of finite sets of even cardinality is not axiomatizable in
FO(LFP) (see 8.4.4) but in X! (see the beginning of section 3.1), we have
¥l £ FO(LFP). On ordered structures the statement X1 £ FO(LFP) is
equivalent to NPTIME # PTIME (cf. 7.5.7) and hence, is still open.

Since every class of ordered structures axiomatizable in SO is in PSPACE
(cf. 7.4.3(b)), the Main Theorem (cf. 7.5.2) yields

(2) S0 < FO(PFP) on ordered structures.

In this section we aim at purely modeltheoretic proofs of (1) and (2). The
proof of (1) leads to an Ehrenfeucht-Fraissé method for FO(LFP) that can
also be used to get nonaxiomatizability results for FO(LFP). (However, in
most cases it is easier to prove nonaxiomatizability even for LY, as we did
in the last section for EVEN.)

Theorem 8.5.1 On ordered structures, SO < FO(PFP) and SO(PFP) =
FO(PFP).12

Proof. Let 7 be a vocabulary with {<, 5, min, max} C 7. We restrict our at-
tention to finite structures whose universe is {0, ...,n} for some n and whose
{<, S, min, max}-reduct is the natural ordering on {0,...,n}. For every for-
mula ¢ of SO (or, of SO(PFP)) we inductively define an equivalent FO(PFP)-
formula, the only nontrivial case being second-order quantification. So let
@ = YZ¢(Z) and, for simplicity, assume that Z is unary. Below we show
the existence of a first-order formula y(z,y, X) with binary X such that in
any ordered structure 4 the fixed-point FX exists and is nonempty, and the
sequence of sets ({z | Jy F¥zy})r>o runs through all subsets of A. Then
VZ(Z) is equivalent to

Jz3y [PFP.y x (x(z,y,X) Ap(FyX_y))] zy.

To define x, we code a sequence (ag,...,a,) of elements of A by the set

X = {(a;,7) | i <n}. It is easy to write down a formula x(z,y, X) such that

the stages F[\, Fy, ..., F(} || a4 are codes of the sequences
0,...,0), (0,...,0,1),...,(n,...,n),

respectively, and FX = FYX O

(n1)ntis

We now show that FO(LFP) < Xl. For the least fixed-point F, of a
monotone operation F : Pow(A¥) — Pow(AF) we have (see part (b) of 8.1.2)

Fo =X C4*F(X)C X}

12 ¢f. 7.5.19
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ae Fy iff for all X C A% if F(X) C X thena € X
iff for all X C A%, if @ ¢ X then there is some
bwithb ¢ X and b € F(X).

Hence, for an arbitrary formula ¢ of FO(LFP), we have
(%) Ean [LFPz x 0]t < YX(-XT - IZ(-XT A ¢)).

Since, by 8.2.9, every formula of FO(LFP) is equivalent to a formula of the
form Vu[LFPz x ] @ with first-order ¢, (x) shows that FO(LFP) < II3. Since
FO(LFP) is closed under negation, we get

Theorem 8.5.2 FO(LFP) < Al. O

The equivalence (*) can be used to obtain a characterization in the Ehren-
feucht-Fraissé style of classes axiomatizable in FO(LFP). Essentially, the cor-
responding Ehrenfeucht-Fraissé game is obtained by taking into account re-
lation moves that correspond to the right side of (*). Suppose that in a play
the spoiler aims at showing

A [LFPg x ¢z, X)]y[a] and B [LEP, x o(z, X)]y [b]
{a and b being the interpretations of y), that is, by (*),

(+4) A E VX(—Xy— Jz(-Xz Ap))ld
and B £ VX(=Xy— Iz(=Xz A ) [b].

For this purpose he starts by choosing a subset By of B such that b ¢ By

and B} 3z(—-Xxz A p(z, X)) [Bo]- The duplicator then selects a subset Ag of

A with a ¢ Ap claiming that it behaves like By. However, by (+),

A 3a(~Xz A plz, X)) [Ao].

Thus the spoiler can choose an element @' ¢ Ag such that A | pfd’, Aol,
while for any &' ¢ B, chosen by the duplicator we have B [~ [b', By]. Now
the spoiler has a “simpler” task, namely to show that A | ¢[d’, Ag] and

B £ o[t Bol.

The order and type of choices of the spoiler and the duplicator in this example
will be the defining clauses of a so-called LFP move in the game we are
going to introduce. To simplify the notation and the presentation we consider
only relational vocabularies and monadic least fized-point logic FO(M-LFP),
which is obtained by restricting FO(LFP) to formulas in which only unary
relation variables (set variables) are allowed. By (*), we have FO(M-LFP) <
MSO. Furthermore, we remark that FO(M-LFP) like monadic second-order
logic MSO has turned out to be an interesting logic in the realm of infinite
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structures (cf. [14, 41]).

We write A =M Biff A and B satisfy the same sentences of FO(M-LFP) of
quantifier rank < m, where the quantifier rank is defined inductively as for
first-order logic, adding the clause

ar([L¥P, x ¢ly) = 1+ ar(e).

In order to determine the winner of a play we need the notion of a general-
ized partial isomorphism. It takes into consideration that in [LFP, x ¢]y the
formula ¢ is positive in X.

Definition 8.5.3 Let A and B be 7-structures {where 7 is relational). Sup-
pose that @ = a1...ar € A, b = by...by € B, that U = U;...U; and
V = V,...V, are sequences of subsets of A4, and that S =5,...5 and
T =T, ...T, are sequences of subsets of B. Then (@ b,U — S,V « T) is
a generalized partial isomorphism from A to B iff @ — b is a partial isomor-
phism from A to Band fori=1,...,kand j =1,...,] we have:

— a; € U; implies b; € S,
— b; € T implics a; € V. O

As the Ehrenfeucht-Fraissé game Gy, (A, B) for first-order logic, the game
MLFP-G,,(A, B) is played by two players, the spoiler and the duplicator,
and consists of m moves. In the i-th move (1 < 1 < m) an element a; of A
and an element b; of B are chosen, and in some moves subsets will be chosen,
too. More precisely: There are two types of moves, point moves and LFP
moves. In each move of a play the spoiler first decides what type of move
he wants. Point moves are as in the first-order case. Now suppose that the
spoiler decides that the i-th move should be an LFP move. Then he selects a
j < i and a structure, A or B. We speak of a positive LFP move if he selects
A, and of a negative LFP move if he selects B.

In the positive case the spoiler chooses a subset S of B with b; ¢ S, and
the duplicator answers by a subset U of A with a; ¢ U. Then the spoiler
chooses an element a; € A\ U, and the move is finished by the selection of
an element b; € B\ S by the duplicator.

In the negative case the roles of A and B are interchanged, that is: The
spoiler chooses a V' C A with a; ¢ V, and the duplicator answers by aT C B
with b; ¢ T'; then the spoiler chooses an element b; € B\ T, and finally the
duplicator selects an element a; € A\ V.

In the course of a play, besides the elements a; ... a,, and by ... b, subsets

Ul...UlOfA and Sl...SlOfB
have been chosen in positive LFP moves, and subsets

Vi...V,of A and Ty...T, of B
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in negative ones. By definition, the duplicator wins the play if (@ b,U =
S,V «<+ T) is a generalized partial isomorphism.

The main theorem now reads as follows:

Theorem 8.5.4 Let A and B be structures and m € N. Then the following
are equivalent:

(i) A =M B, ie, A and B satisfy the same sentences of FO(M-LFP) of
quantifier rank < m.

(ii) The duplicator has a winning strategy in the game MLFP-G,, (A4, B).
Before presenting the proof we give an example.

Example 8.5.5 Let §; and G;UG, be graphs consisting of one and two cycles
of length [ + 1, respectively. To be definite, set

Gr:=1{0,...,1}, E% :={(i,i+1)|i<1}u{(+1,q)}i<1}u{(0,0),(,0)}

and GJUG, = {0,...,1} x {0,1}. - The spoiler has a winning strategy in
the game MLFP-G4(G;, G;UG,), which is exemplified by the following table
where we have underlined his selections. He plays according to the fact that

G | FaVy[LFP, z2z =aV Ju(Zu A Euz)ly
GG, W FaVy[LFP, z 2 = 2V Ju(Zu A Euz)]y.

move G GG, J <1
1 0 (b, k)
2 a (b,1—k)
3 U (witha ¢ U) {(c,k) | e <1} 2
¢ :=min{u | u ¢ U} (d,1-k)
4 a -1 ?

No fourth move of the duplicator will lead to a generalized partial isomor-
phism, because o' — 1 is connected with ¢’ by an edge and o' — 1 € U, but
there is no element in G;UG, related to (d,1 — k) and {(c, k) | ¢ < I} in this
way. (If @’ = 0 then already in the third move there is no answer for the
duplicator leading to a generalized partial isomorphism.) O

Proof (of 8.5.4). First suppose that the duplicator has a winning strategy
for MLFP-G, (A, B). We have to show that (4 = ¢ iff B |= ) holds for all
FO(M-LFP)-sentences of quantifier rank < m. Essentially, the proof runs in
the standard way: As usual, point moves take care of first-order quantifiers
and LFP moves of LFP operators as outlined before introducing the game.
More precisely: Suppose that in a play, where the duplicator has followed his
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winning strategy, @ — b, U — S and V <+ T have been the choices in the
first ¢ moves; then show that

A=Y@ X,Y)[aU,V] implies BE$(Z,X,Y)[b,S,T]

for any FO(M- LFP) formula ¢ of quantifier rank < m—i which is positive in
X and negative in Y (a corresponding inductive proof runs on m — 7).

For the other direction we introduce an analogue of j-isomorphism types
(cf. 2.2.5). Fix a structure A. For @ = ay...a; € A, “positive” subsets
U="U,...U of Aand “negative” subsets V =V, ...V, of A let

X%,U,V = WA /\( /\ Xjv A /\ ~Yjvs),

1<i<k 1<5<t; a;€U; 1<j<n;a; ¢V;

rmula denoting the) 0-isomorphism type of @ in A. Then,

where 9 is the (for de
B,b,S, and T, we have

e (f
for arbitrary b,

BEX, 5T i (@=bUnSVeT)isa
generalized partial isomorphism.

, i i BT T
For 7 > 0 we define the formula oo v such that B |= o v [b,S,T] when-

ever in a play of the FO(M-LFP) game, in which @+ b, U + S, and V <+ T
have been selected so far, there is a strategy for the duplicator which allows
him to answer j further moves correctly. Thus we set (writing v, X, and V
for vg+1, Xiv1, and Y, 41, respectively):

J —1
Xor = N zervw\V x5y A
a€EA a€A

/\ (VX (‘!X’Ui — \/ /\ Fv(—Xv A Xaa U, v))

1<i<k UCA;a:¢U agU

A /\ A (-Yv; AVo(-Yv — \/ P
VCA;ai ¢V agV

2 7))

If @, U,V are empty, we write X ’, for the sentence We show that, up

J [E——
a,U, V'
to equivalence,

(1) X; &y is an FO(M-LFP)-formula of quantifier rank < j.
This proves the claim: In fact, since 4 | X7, we get B = x% from A =M B
and hence, the duplicator has a winning strategy in MLFP-G,,, (A4, B).

To obtain (1) we first note that a simple induction on j shows that, given the
lengths of the sequences which appear as subscripts, there are only finitely
many formulas of the form X; AT Thus the disjunctions and conjunctions

in the definition of Xy p v are finite.
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The proof of (1) also proceeds by induction on j. In ]a the conjunct

OV
Y (=Yv; AVu(=Yv — \/ ij )
agV

is equivalent to

VY (=Yv; - Jw(=YvA- \/ x-
agV

aa, U VV>)

which, by (%) before Theorem 8.5.2, is equivalent to
“[LFPyy \/ XEa U, vyl vi
agV

and hence, by induction hypothesis, to an FO(M-LFP)-formula of quantifier
rank < j. Finally, we show how to rewrite

VX (-Xv; — v /\ TFu( ﬁXUAX;alUUV))
UCA;a;¢U ag¢gU

as an FO(M-LFP)-formula of quantifier rank < j. This formula has the form

VX (~Xv; — \/ /\ Fo(—~Xv A pys))
yeI €Ay

for suitable finite sets I" and A.,. Let 1l be the set of functions h with domain
I' such that h(y) € A, for v € I'. Then, as usual, we can interchange the
order of \/ and A, thus obtaining the equivalent formula

VX (nXv; — /\ \/ Fo(~Xv A Qi)
heM yel

which in turn is equivalent to

A\ VX (= Xv; = 3o(-Xv A\ @)
hell yel’

But, using () again, this formula can be rewritten as

/\ [LFPU,X \/ (pfyh(w)]vz

hell yer
Note that the ¢,y have quantifier rank < j — 1. [

The following corollaries are now proven as in the case of first-order logic.

Corollary 8.5.6 For every FO(M-LFP)-sentence ¢ of quantifier rank m,

=an @ & \/{XZ{ | A is a finite model of ©}. O
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Corollary 8.5.7 For a class K of finite structures the following are equiva-
lent:

(i) K is not axiomatizable in FO(M-LFP).

(ii) For each m > 1 there are finite structures A and B such that

AeK, B¢K, and A=MB

(where A =M B
MLFP-G (A, B))

means that the duplicator has a winning strategy in
. O

8.5.1 Digression: Implicit Definability

Let £ be a logic. An n-ary query Q on the class of 7-structures is implicitly
L-definable if — with R a new n-ary relation symbol — there is an L[r U {R}]-
sentence ¢ (R) such that

(1) Faa I7 X(X);

(2) for any r-structure A, (A, Q(A4)) E ¥(R).

We then say that y(R) (or, ¥(X)) implicitly £-defines Q. In section 3.5 we
used the notion of implicit definability in a slightly different way; essentially,
(1) was replaced by g, 35T X9 (X). In order to distinguish both notions,
one sometimes speaks of weak (in the present case) and strong implicit de-
finability.

Clearly, any £[r U { R}]-sentence 1(R) such that

Fan 37 X9(X)

implicitly £-defines a query. Note that for first-order #(X) the formula
F=1X4)(X) is a second-order formula.

We show that any formula of FO(LFP) is equivalent to a first-order for-
mula that contains relations implicitly definable in FO:

Theorem 8.5.8 Given an FO(LFP)-formula ¢(T), there are a first-order
Jormula ¥o(X) and a first-order formula 1, (T, X) (where the free variables
always are among the displayed ones) such that

(8) Fan 371 X4ho(X)

(b) Ffin VX (¢0(X) = (p(T) ¢ 1 (Z, X))).

Proof. For notational simplicity let ¢ be a sentence. By 8.2.9, we can assume
that ¢ = Fu[LFPz z x(Z, Z)] & with first-order x. Let Z be k-ary. Recall the
definition of the stage comparison relation <, associated with x (denoted by
<px in section 8.2):

7<yz iff for somen>1, g€ FXandz € FX\ FX

(¥ and Z range over k-tuples).
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We show that <, is implicitly FO-definable by a formula 4 (<). Then we
are done, since ¢ € FX is equivalent to t <, ¢ and hence, we have

Fan V < (o(<) = (¢ © Fui < @)).
When defining (<) we use the abbreviations:
g<z for §<zA-Z<y
pred(z) for {7|7<7Z}
field(<) for {Z[PF<zVZ Y}
As (<) we take the conjunction of (1)-(4) where

(1) “ < is a reflexive and transitive relation on field(<)” A
Vg € field(<)Vz € field() <z V Z < 7)

(2) V2(z < 7 & X(7, field(<)))

(3) Val(z < 7 ~397 < 2) ¢ x(,0)

(4) Vyvz € field(<) (7 < Z ¢ x(¥, pred(2))).

We prove that 1o (<) implicitly defines <,.: In a model of 9y(<) let < be the

ordering induced by < on the classes of the equivalence relation ~ given by
g~z i g<zandz <7

Then, an induction on n > 1 using (3) and (4), shows that for 7 € field(<)
the class of 7 is the n-th element of < iff gy € F,, \ Fl,—1.
Together with (2) this yields that (<) implicitly defines <,,. O

Given a logic £, let IMP(L) be the logic that allows to define exactly
those queries that are expressible in £ using implicitly £-definable queries.
More precisely: An IMP(L)[r}-formula ©(%) with free variables among T is a
tuple

(¢1(Rl), see 7¢m(Rm)7¢(fa Ry,..., RM))

where m > 0, each ¢;(R;) is an L[TU{R;}]-sentence, and (T, Ry, ..., Rp) €
L[TU{Ry,..., Ry}] has free variables among Z and

Ean I X091 (K1) Ao A I X (X o).
The meaning of ¢(Z) is that of
VX1 VX (0 (X)) A A (X)) = VE((T) © Y(EF, X1,..., X)),
i.e., for any 7-structure A and @ € A,
AEpla] iff AEYE, Ry,..., Ry

where R; is uniquely determined by A = ;[R;]. The preceding theorem
shows
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Corollary 8.5.9 FO(LFP) < IMP(FO). O

It has been shown (cf. [29]) that IMP(FO) £ FO(LPF), even IMP(FO)
£LY .

Since the formula

(wl(Rl)a s 7¢m(Rm),¢(T7 Ry,... 7Rm))
in the definition of IMP (L) is equivalent to

and to

X A X (WX A AU (X)) AY(E, X, X))
we get
Proposition 8.5.10 IMP(FO) < Al O
Exercise 8.5.11 Show: IMP(IMP(FO)) = IMP(FO). O
Exercise 8.5.12 Show that IMP(FO(PFP)) = FO(PFP) on ordered struc-
tures (use Theorem 8.5.1). a

Exercise 8.5.13 Let A be a 7-structure. For an ordered representation
(A, <) let wiu <) be the {0,1}-word obtained by concatenating the inscrip-
tions of all input tapes of a Turing machine started with (A4, <). For fixed A,
all orderings < lead to words of the same lengths, say [.

(a) Show: wia <) = W4,<,) iff (A, <1) = (A, <)

An ordering < on A is minimal, if for all orderings <’ on A the word w4 <1
is not smaller than w4 <) in the lexicographic ordering of {0,1}". Hence, by
(a), there is a unique minimal ordering iff 4 is rigid. Let @ be the query
that assigns the minimal ordering to a rigid structure and the empty binary
relation to a nonrigid one.

(b) Show that Q is expressible in IMP(FO(PFP)) (and thus, IMP(FO(PFP))
£ LY ., by 8.4.12). Hint: A formula ¢(X) implicitly defines Q if it expresses
in any A that “X is an ordering, and for all orderings Y different from X we
have: If 7 is the map with 7 : (4, X) = (A4,Y), then not 7 : (4, X) = (4,Y),
and if R is the first relation and @ the first X-tuple such that

R*@ < R*7(a@) does not hold,
then
not R*@ and R*7(a),

or there is no such ordering and X = (7. To get v/(X) as an FO(PFP)-formula
note that in the presence of X and Y, the map = is definable in FO(LFP)
and that, in the presence of the ordering X, the second-order quantification
“for all Y” can be expressed in FO(PFP) (cf. the proof of 8.5.1). O
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Notes 8.5.14 The game-theoretic characterization of FO(LFP)-equivalence
is due to Bosse [14]. Theorem 8.5.8 is due to Kolaitis [101], Exercise 8.5.13 is
taken from [81].

8.6 Transitive Closure Logic

One of the most prominent examples of a global relation expressible in least
fixed-point logic but not in first-order logic is the transitive closure of a
given relation. Transitive Closure Logic FO(TC) is obtained by adding to
first-order logic the operation of taking the transitive closure of definable
relations. We have introduced FO(TC) already in Chapter 7, where we showed
that FO(TC) captures NLOGSPACE. This section contains a more detailed
analysis of the expressive power of FO(TC); it can be read independently of
Chapter 7.

First we recall some definitions. Let k¥ > 1 and X be a 2k-ary relation on a
set A. The transitive closure TC(X) of X is defined by

TC(X) := {(a,b)e A®* | there exist n > 0 and &,...,&, € A* such
that @ = €y,b =€,, and for all i < n, (&;,8;11) € X},

and the deterministic transitive closure DTC(X) by

DTC(X) := {(a,b) € A% | there exist n > 0 and €,...,&, € A* such
that @ = €y,b = €,, and for all i < n, €1 is the
unique € for which (€;,€) € X}.

For a vocabulary 7 the class of formulas of FO(TC) of vocabulary 7 is given
by the calculus with the following rules:

(i) —— where @ is an atomic first-order formula over 7
t4

i) —2 ©, Y ©
T (pVve) T Fwe

(iii) _TGLT where the variables in Z, 7 are pairwise distinct and
(TCz.5 ¢] where the tuples Z, 7,5, and % are all of the same

length, 5 and # being tuples of terms.

¥

For FO(DTC), rule (iii) is replaced by m
5P

with the same side

conditions.
Sentences are formulas without free variables, where the free occurrence
of a variable is defined in the standard way with the additional clause

free([TCz5¢]5t) = free(s) Ufree(t) U (free(p) \ {Z,7}),
and similarly for DTC.
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The semantics is defined inductively w.r.t. the calculus above, the meaning of
[TCz5¢(Z,7)] 5t being (5,) € TC({(Z,7) | ¢(Z,7)}); and [DTCz 5 ¢ (T, 7)] 5t
expresses that (3,%) € DTC{(z,9) | ¢, 7)}).*3

Examples and Remarks 8.6.1 (a) FO(DTC) < FO(TC) since
Fn [DTCzy (. 1)) 5t © [TCay (0(F,7) AVE((T,2) - Z=7))] 5t.
(b} FO £ FO(TC) since
VaVy(-~z = y - [TC, yExy] zy)
expresses “connectivity” in the class of graphs (cf. 2.3.8).
(c) FO £ FO(DTCQ) since
VaVy[DTCy yExy] xy

is an FO(DTC)-sentence which, for every I > 1, holds in the digraph D;
consisting of a cycle of length [ + 1, but not in the union D;UD;. Moreover,

VuvvIw3z[DTCypy pry (Exy A Ez'y' Az’ =y A~y = 2)] uwoz

separates the “undirected” cycles G; from G,UG, for I > 2.
(d) FO(TC) < FO(LFP) since

an [TCo5 0(Z,7)] 5T  [LEPy.x (p(F,7) vV Fa(XFTA o(@,7))] 5. O

Exercise 8.6.2 Show that the class of bipartite graphs is axiomatizable in
FO(TC). Hint: Use 6.3.6. O

Exercise 8.6.3 For r > 1 let FO(TC") be the fragment of FO(TC) con-
sisting of those formulas, where for each subformula of the form [TCz 3 ¢] 5t
we have length(z) = r. Clearly, FO(TC!) < FO(TC?) < ... Show that
FO(TC') = MSO on the class of word models (cf. section 6.2). (Hint:
FO(TC!) < MSO is true in general; for MSO < FO(TC?) give a proof by
induction on regular expressions (cf. section 6.1).)

Define FO(DTC™) similarly and show that FO(DTC?) £ MSO on the
class of word models. (Hint: Use the fact that the set {a™b™ | n > 1} is not
regular.) 0

8.6.1 FO(DTC) < FO(TC)

By the results of Chapter 7 we know that

13 Recall that the notation ¢(Z,7) exhibits only the variables relevant in this situ-
ation. So ¢ may contain free variables that are not among =, y.
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e FO(DTC) £ FO(TC) on ordered structures iff
LOGSPACE # NLOGSPACE
e FO(TC) # FO(LFP) on ordered structures iff NLOGSPACE # PTIME.

The inequalities on the right hand side are prominent open problems of com-
plexity theory. The following remarks will lead to a proof of FO(DTC) #
FO(TC) for arbitrary finite structures; the corresponding inequality FO(TC)
# FO(LFP) will be shown in subsection 8.6.3.

Definition 8.6.4 A subset C of a structure A is said to be closed if for all
a € A\ C there is an automorphism 7 of A4 pointwise fixing C' with 7(a) # a.
O

Every DTC-path starting in a closed set must stay in it:

Lemma 8.6.5 Let C be a closed subset of a structure A. For every formula
o(T,7,Z) with free variables among T,7,7 and for every ¢ € C,

AE [DTCz5¢(Z,7,0)|Ty[ab] and ac C imply be C.

Proof. Since (@,b) € DTC(¢*(_,_ %)), there is a sequence &, ...,&, such
that

(*) @==e, b==8n, andfori <m, AEVy(¢(&:,7,c) 7 =et1).

If b ¢ C then there is a § < m such that g; € C and €41 ¢ C, say,
€41 = e1...e; and e; ¢ C. Choose an automorphism 7 of A pointwise fixing
C with 7(e;) # e;. Then

A ': (p[éjaéj+1,6]7 A '= (p[éja’n'(éj-i-l)vz], and éj‘i'l ;é Tr(éj+1)5
contradicting (*). 0

By the lemma there is a bound for the length of DTC-paths without
repetitions that start in a closed set of a given cardinality. This is the reason
why in clagses of structures with many closed sets of controllable cardinality,
so-called indiscernible classes, every DTC operation is first-order definable.
We thus are led to a proof of FO(DTC) # FO(TC) by showing

— FO(DTC) = FO on every indiscernible class.
— FO(TC) # FO on some indiscernible class.

Definition 8.6.6 Let f : N —» N be monotone (that is, m < n implies
flm) < f(n)). A structure A is said to be f-indiscernible, if for every subset
X of A there is a closed set Y such that X CY C A and ||V < f(IIXI)- A
class K of structures is indiscernible if, for some monotone function f, every
structure in K is f-indiscernible. a

Proposition 8.6.7 Let K be an indiscernible class. Then, on K, every for-
mula of FO(DTC) is equivalent to a first-order formula.
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Proof. Let K be indiscernible via f and ¢o(Z,7,Z) with T = z1...2¢, T =
Y1 ... Yg, and Z = 21 ...z be an FO-formula. Suppose that A € K, ¢ € A, and
(@,b) € DTC(p(_,—,%)). Choose a closed set C C A such that {@,g} C C
and ||C|| € m := f(k+!). By the preceding lemma, every deterministic path
connecting @ and b stays within C; hence, the shortest such path has length
< m¥. Therefore, [DTCz 5 ©(T,7,%)] 5 is equivalent to a first-order formula
expressing “there exists a deterministic ¢-path of length < m* from 5to £ 7.

O

For any structure 4 in a relational vocabulary 7 we denote, as in section
5.2, by A x 2 the structure we get by duplicating each element. To be precise,
let A x 2 be the 7-structure with universe A x {0,1} such that for any n-ary
Re T,

RA? .= {((a1,41), ..., (Gn,in)) | R%a1 ...ay and 4y,... 4, € {0,1}}.
Lemma 8.6.8 A x 2 is fy-indiscernible, where fo(m) = 2-m.

Proof. Clearly, for X C A x 2 the set

C(X) = XU{(a,i)]|(a,1-i)€ X}
is closed: for any (b,i) € (A x 2) \ C(X), the function m : A x 2 = 4 x 2
given by
| (a,5) ifa#b
mie)={ 1 fel)
is the desired automorphism. ]

Theorem 8.6.9 FO(DTC) # FO(TC).
Proof. First of all note that
(%) A=, B implies A x 22, Bx2.

Let K := {G; | 1 > 2} be the set of cycles and let H := {G,UG; | | > 2}. By
the preceding lemma the sets K x 2 (= {4 x 2| A€ K}) and H x 2 are
indiscernible. Since G; =2, G;UG, for [ > 2™ (cf. 2.3.8), (x) shows that there
is no first-order sentence separating K x 2 and H x 2, and hence by 8.6.7
and 8.6.8, no FO(DTC)-sentence. But the structures in K x 2 are connected
graphs and those in H x 2 are not; thus there is a separating FO(TC)-sentence
(cf. 8.6.1(b)). O

Exercise 8.6.10 Show that the class of bipartite graphs is not axiomatizable
in FO(DTC). O
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8.6.2 FO(posTC) and Normal Forms

Let FO(posDTC) and FO(posTC) be the logics consisting of the formulas
of FO(DTC) and FO(TC) in which DTC and TC, respectively, only occur
positively, i.e., within the scope of an even number of negation signs (we

assume that the formulas of FO(DTC) are built up from atomic formulas
using -, A, V,V, 3, and DTC; similarly for FO(TC)).

Proposition 8.6.11 FO(posDTC) = FO(DTC).

Proof. The proof of the nontrivial part proceeds by induction on the num-
ber of occurrences of logical operations (—,A,V,V,3,DTC) in a formula
of FO(DTC). In the main step of the induction we have to show that an
FO(DTC)-formula of the form

(*) —[DTCz5¢(Z,7)] 5t

is equivalent to an FO(posDTC)-formula where, by induction hypothesis,
we may assume that ¢ and - are equivalent to FO(posDTC)-formulas.
Obviously, (*) just says that the deterministic p-path starting at § reaches,
without passing through #, a point z, where it ends or where a p-cycle starts
that does not contain . Noting that the deterministic ¢-path ends at z if Z has
no or more than one p-neighbour, we thus can express =[DTCz 50(Z,7)] 5t
by

F((5=2z Vv [DTCzz (¢(7, ) Y =1)]52) A (VE-p(Z,7)

VIZFY (p(Z,E) Ap(ZY) AT =7) V [DTCz5(0(Z,7) A -7 =1)]22)).
Applying the induction hypothesis to ¢ and - we see that this formula is
equivalent to an FO(posDTC)-formula. O

Note that the maximal number of nested occurrences of the DTC operator
in an FO(DTC)-formula and in the FO(posDTC)-formula assigned to it in
the preceding proof are the same. We use this fact when showing

Proposition 8.6.12 FO(DTC) < FO(posTC).

Proof. By the preceding proposition it suffices to show that FO(posDTC)

< FO(posTC). The proof is by induction on the number of nested DTC

operators, the only nontrivial step being the case of an FO(DTC)-formula of

the form

[DTCzy ¢(z, )]5t.

By the remark preceding the proposition, - is equivalent to an FO{posDTC)-

formula with the same maximal number of nested occurrences of the DTC

operator as . Thus, by induction hypothesis, both ¢ and —p are equivalent

to formulas of FO(posTC); therefore the same holds for [DTCz 5 (%, 9)]3t,

since this formula is equivalent to [TCz 3 (¢(Z,7) AVZ(—¢(Z,Z) VZ = 7))] 5t.
O
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We have already shown in Chapter 7 that FO(posTC) = FO(TC) on
ordered structures. Below, we give a purely modeltheoretic proof of this fact.
On arbitrary structures, FO(posTC) has less expressive power than FO(TC).
The next proposition contains a normal form for a fragment of FO(posTC)
that will be useful for our purposes.

Proposition 8.6.13 Suppose that T contains two constants ¢ and d. Let ¢
be an existential FO(posTC)-formula, that is a formula built up from atomic
and negated atomic formulas with the help of A, V, TC, and 3. Then, in
models of ¢ = d, ¢ is equivalent to a formula of the form

[TCzz (T, 7)) &d
where ¢ is quantifier-free.

Proof. The proof proceeds by induction on . Of course, any first-order for-
mula ¢ is equivalent to [TCz 7 ¢] &Z, where T, T’ are variables not occurring in
©. Let ¢ = (g1 V ) and suppose that y; is equivalent to [TCy 7t (ZF, T')]éd
with quantifier-free 1); (add dummy variables to obtain sequences T, T of
the same length for ¢; and ps). Then ¢ will be equivalent to a formula
[TCze 7o ¥ (T, ' x')]éedd, where the additional arguments & and z' in ¢ are
used as a switch as indicated by the figure

cc ﬂ> de
4 {
e ... dd

In the formula ¢ below, the first line corresponds to the upper path in the
figure leading from éc to dd, and the second line to the lower path:

Y(Fr,Tr) = @@=z =cAP)VEF=F =dAz=chz' =d)
V@=7 =¢Ahz=cAz' =d)V{z =12 =dAy,).
Similarly, for the conjunction (p; A ps2) we take as ¢(Fz,T'z') a formula

expressing the existence of a path as indicated by

ic... U de—ad... By dd

Now suppose that ¢ = [TCgz7¥'] 5l where, by induction hypothesis, we can
assume that ¢' has the form [TCz» ¥/ (Z,7,u, 7)) éd with quantifier-free 9.
Let 3 = &,...,6x = t be a path witnessing that (5,£) € TC(¢'(-,-)).
Then, for ¢ = 0,...,k — 1 there is a 1'-path witnessing that (¢,d) €
TC()'(—,— , €, €:x1)). Therefore, ¢ is equivalent to

[TCEFE T TE w(ﬂa v, T, Hl? 51’ fl)] éé&ddj

where in the formula ¢ given below the first line sets the correspond-
ing starting values, the second line takes care of witnessing that (é,d) €
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TC(¢¥'(~,— ,&;,€:+1)), the next line allows to pass from the tuple €;,€;11 to
€;11,€i10, and the last line realizes that ey = 1:

Y@, v,Z,u,v,T) = ([W=CAT=GAT=CAU =5AT =&
V(T =dA" =uA? =0AY (Z,T,%,7))
VE=dA-T=1AT =TAT =0
VE=dAT=IAT =dAT =dAT = d)

For the existential quantifier note that

Fin 320(2) & [TCoy((z = cA(y)) V (p(z) Ay = d))] cd.

So we can apply what we already know to obtain the desired normal form
also for this case. a

Corollary 8.6.14 Let 7 D {<, S, min,max}. On ordered 7-structures with
at least two elements, every FO(posTC)-formula is equivalent to a formula
of the form -

[TCz 3z (T, T')] minmax

with quantifier-free .
Proof. In ordered models, Vzp(z) is equivalent to
[TCa,y (p(x) A Szy A (y))] minmax.

Hence, the universal quantifier can be eliminated in FO(posTC)-formulas.
Thus the claim follows from the preceding proposition. d

We use this normal form for FO(posTC)-formulas when proving now that
FO(posTC) = FO(TC) on ordered structures.

Fix a vocabulary 1 for ordered structures, for simplicity, 7 O {<, S, min, max}.
We saw in 8.1.11 that for £ > 1 the successor relation S* of the lexicographic
ordering of k-tuples is first-order definable. For any ordered r-structure A
with A = {0,...,n — 1} and for any m4,...,m; € A we set

[ml,...,mk] = ml-nkfl—l—...—i—mk-l-n—i-mk.

In the following we use self-explanatory notations such as [ = m + 1 for S¥ml

or, equivalently, for [I] = [@] + 1. Often we write 0 for min.

Theorem 8.6.15 On ordered structures, FO(posTC) = FO(TC).

Proof. The proof — a purely modeltheoretic version of the proof given in 7.5.20
— proceeds by induction on FO(TC)-formulas. The only nontrivial case is the
negation step. By induction hypothesis and the corollary above it suffices to
show for first-order ¢/ that



8.6 Tramnsitive Closure Logic 227

_‘[Tc‘z‘,ﬂ ¢(§7 g)] §—

is equivalent to an FO(posTC)-formula.* ~ ~
Suppose ¥ = z1 ... Z,. Given a structure A and @,b € A", let dy(@,b) be
the length of the shortest v-path connecting @ and b,

dy (@, b) := min{k > 0| there exist @y = @,ax,...,a = b such that
A IZ w[ai,ﬁi_H] fori < k},
where dy (@, b) := oo in case the set on the right side is empty. Obviously:
(1) If dy(@,b) < oo then 0 < dy(a,b) < ||A|"

Moreover, = [TCz 3 ¥(Z,7)] 5t is equivalent to

{1 dy (5,9) < oo}l = |[{T | dy(z,9) A —g=1) (5 V) < oo}].

We show stepwise that the ingredients of this equality are definable in
FO(posTC). Note that the number ||A]|" has the string 10 of length r+1
as its || A||-adic representation.

(2) For p(z1,...,%r,y1,-.-,Yr) € FO(posTC) there is an FO(posTC)-for-
mula x(Z,7, z1,- . -, 2r41) expressing d,,(Z,¥) < Z; more precisely: for any
ordered A and a,b,m € A,

AEx@bm i dy(@b) < [ml.

To obtain such a formula y, we use the TC operator to go through all the
tuples of a path leading from T to ¥:

N

X@.7.7) = [TCuzwz(p(@,W)AZ<Z)T007
(3) For first-order (%, 7) there is an FO(posTC)-formula p,(Z,Z) expressing
{7 | dy(z,7) < oo} =7Z.
For a proof we first note that by (1),
{7 | do (T, 7) < oo}l = {7 | do(@.7) < |AN"}H]-

To obtain a formula p,(Z,Z) we use-an inductive definition of the function
9@ (=9(@m) = |{7l|d,(Z,5) <u},

g(10) (= |{7 | dy(Z,7) < ||Al"}]) being the value we are interested in.

By (1), g(00) = 00. Suppose g(u) = {7 | dy(Z,y) < u}|| = Z where
T = up...ur+1. Fix 7. If 7 = 00 then dy(Z,7) £ @+ 1 is equivalent to
—(Z, 7). If @ # 00 then d,(Z,7) £ w+ 1 iff there are Z many W such that

14 The restriction to structures with at least two elements is removed as for
FO(LFP) after 8.2.11.
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W # Y, dp(Z, W) < W, and —p(w,7). In the following formula x,(Z,%,z,z")
the inner TC operator serves to count these W (§ = ¢1...¢r+1 being the
counting variables) and thus to check whether there are Z many. If g(@w) = Z
then x,(Z,%,z,z') expresses that g(@ + 1) =Z'. Set with T =v1 ... 0,11

Xo (@0, 2,7) = [TCqoyw (F =T+1AT =0+1 A d,(T,7) <T+1)
V' =7+1 A0 =5 AT=0A ~9(Z,7))
V@ =y+1AT =TA-1a=0
ANICogm g (@ =w+1AT =q) V@ =W+1AT =7+1
AW =7 A dy(T,w) <u A ~(w,7)))]0001%))]00017
By (2), we can view x, as an FO(posTC)-formula. Now
pp(®,Z) = [TChzwz (W =u+1 A x,(Z,74,%,7))]0000107

expresses that ¢(10) = 7 and hence, that [|{7 | d,(Z,7) < co}|| = Z. We can
regard p,, as an FO(posTC)-formula. This finishes the proof of (3).

As remarked above, =[TCz 3 %(Z, y)] 5t is equivalent to
{7 | dy(5,7") < oo}l = IHF' | dpyz pyn—g=1) (5, 7') < oo}l
and thus, by (3), to the FO(posTC)-formula

Fz(py (3, %) A pryz,5)n-3=1) (5, 2))- ]
In view of 8.6.14 we now have

Corollary 8.6.16 Let 7 O {<, S, min, max}. On ordered structures with at
least two elements, every FO(TC)-formula is equivalent to a formula of the
form L

[TCz # ¥(Z,Z')|minmax
where 1 is quantifier-free. O

Exercise 8.6.17 Let 7 be arbitrary. Show that for any existential formula
o of FO(posTC) there is a quantifier-free 1) such that in structures with at
least two elements, ¢ and 3(V)u[TCzz ¢ (F,T')] ¢ are equivalent. Conclude
that, on ordered structures, the same results hold for FO{TC). Hint: Note
that in structures with at least two elements any ¢ of the form

(%) [TCzz x(Z,T')] 5t

is equivalent to I(V)u[TCzypw 7 v w ¥ (Fow, Fv'w')] 44, where

w(fyw’f'v’w’) = (ZE =0=w AT =5 A = w’)
vV ("IU =w A X(f, TI) A v = w/)
V @=tAT =0=1)
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To show that any existential FO(posTC)-formula ¢ is equivalent to a formula
of the form (%) with quantifier-free y, get rid of the constants ¢ and d in the
proof of 8.6.13: the role of ¢ is taken over by any (all) pais vw with v = w,
that of d by any (all) vw with v # w (similarly as in ). O

The next example shows that the class of formulas having the normal
form of Proposition 8.6.13 does not contain all FO(posTC)-formulas.

Example 8.6.18 Let 7 = {F, ¢,d} where E is binary. There is no sentence
of the form

(%) [TCr w0 (Z, )] &d,

where % is first-order, that is equivalent to VaVy[TC, ,Ezy|zy. By con-
tradiction, suppose that () is such a sentence. Let T = z7 ..., and set
k := qr(+)). Choose I big enough compared with & and m. Since (G;,0,1) |
VaVy[TC, , Exy] zy (for G; cf. 2.3.8), we have (G;,0,1) = [TCzz9(F,7')] &d.
Hence, there are 0 = €y,€;,...,€, = 1 with

(gl7 07 1) ’: w[éi;—éiﬁ—l]

for i < n. In view of 2.3.8 and the choice of [, we have
(G1,0, ) UG |= e, 8l
where €;,€;41 denote the corresponding elements in the first copy. But then
(G1,0,1) UG = [TCs (7, 7)) &d,
even though (G;,0,1) UG, £ VaVy[TC, , Ezy] zy. O

8.6.3 FO(TC) < FO(LFP)

The preceding example motivates how to handle the TC operation in a ga-
metheoretic characterization of the FO(T C)-equivalence of structures. Given
m,r > 1 and structures A and B, the game TC-G7 (A, B) consists of m
moves and is played, as usual, by two players, the spoiler and the duplicator
(we shall see below that the number 7 is related to the arity of the TC op-
erators). In every move there are chosen some elements (possibly more than
one) both in A and B. Let ay,...,as € A and by,...,bs € B be the ele-
ments chosen in the first ¢ moves of a play and denote by p; the assignment
ai...as — by...bs. The duplicator wins the play if p; is a partial isomor-
phism for all ¢ < m (or, equivalently, if p,, is a partial isomorphism). In the
i-th move the spoiler first decides whether the move should be a point move
or a TC move; moreover, he chooses one of the structures, say A. The point
moves are as in the first-order case. In a TC move the spoiler selects a j with
1 < j < r and, for some k > 1, a sequence dy, . .., ax of j-tuples in A4 with
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@o and @ in the domain of p;—; (i.e., @y and Gy consists of elements already
chosen or of constants). The duplicator answers by selecting, for some I > 1,
a sequence by, ..., b of j-tuples in B with by = p;_1(@o) and b = p;—1 (@)
Then the spoiler selects some I’ < I and the duplicator answers with a k' < k.
This finishes the i-th move, the elements chosen in this move being @/, @11
and Bll s Bl/+1 .

TC moves in which the spoiler chooses the structure A are called positive,
those in which he chooses B, negative.

Define the quantifier rank as in the case of FO with the additional clause
ar([TCz5¢]38) = ar(p) +1.

Then one can show:

Theorem 8.6.19 The following are equivalent:

(i) The duplicator has a winning strategy for TC-GI (A, B).
(ii) A and B satisfy the same FO(TC)-sentences of quantifier rank < m con-
taining the TC operator only in the form [TCz 3 @] 5t with length(z) < r.

Proof. The proof proceeds along the usual lines; for the implication (i) =
(i) we give a direct proof of the only nontrivial step.

We assume (ii) and explain a winning strategy for the duplicator in TC-
Gr.(A,B). Suppose that in the first s moves of a play elements @ in .4 and b
in B have been chosen and that

(*) AEglal it Bl bl

holds for all FO(TC)-formulas ¢(Z) of quantifier rank < m—s (s = 0 cor-
responds to the assumption (ii)). Let p := @ > b. Assume that the spoiler
decides that the (s+1)-th move should be a TC-move, and let j with 1 < j <r
and the sequence @y, ..., a; of j-tuples be his selections. For i < k set

¥, = {¥E,92) | a@) <m-s-1, A yY[a,8;, 1]}

and let x(Z,%,2) = Vo, A. (Of course, A¥; is equivalent to a finite
conjunction.) Clearly,

A [TCyz x(@,7,2)] 7% [Go, Gr)-
By (%),
(+) B k= [TCyz x(b,7,2)] 7 Z [p(d0), p(@x )]

The duplicator selects a x-path p(dp) = bo,by1,...,b; = p(@) witnessing
(+). Suppose the spoiler now chooses by, by 1.1. Then, for some k' < k, B |=
Wb, by, by +1], and the duplicator answers by @y, @g 1. By definition of @y,

AE9Ya,ar,ap41] i B = (b, by, by 1]
holds for all FO(TC)-formulas of quantifier rank < m—s—1. O
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We now aim at a proof of FO{TC) < FO(LFP). The following classes of
FO(TC)-formulas will be useful. For m > 0 and r > 1 define P, by induction
on m as [ollows:

— PJ is the set of quantifier-free formulas.

— P, ., is the closure under conjunctions and disjunctions of the set Fj, U
{[TCz 5|5t | ¢ € P, length(Z) < r}.

— P ., is the closure under conjunctions and disjunctions of the set P U
{=[TCzz~wlst | v € P51, length(z) <r}.

Since Jzp(z) and [TC,y{((x = cAp(y)) V (w(z) Ay = c))] cc are equivalent,

one gets by a simple induction on formulas:

Lemma 8.6.20 If the vocabulary v contains at least one constant then every

formula of FO(TC) is equivalent to a formula in |J FPp,. 0
m>0,r>1

We show FO(TC) < FO(LFP) by exhibiting a class of structures ax-
iomatizable in FO(LFP) but not in FO(TC). The underlying idea is already
present in the following example.

Example 8.6.21 Let r > 1 and 7 = {E, F, ¢} with E binary and F (“full”)
unary. Let A and B be the structures

A c

2r+1

a

Points for which F' holds are represented by full dots, | means that Ea b. We
b

show for quantifier-free ¢ and Z with length(Z) < r that

In fact, suppose that é = do,...,a = & witnesses (&,¢&) € TC(pA(_,-)).
Successively choose by = &,by,...,b = & in B such that @; @41 — b; Eiﬂ is a
partial isomorphism (such elements exist, since B contains 2r full elements).
As ¢ is quantifier-free, B = ¢[b;, bi11] and hence, (¢,&) € TC(¢P(_,~)). O

Using suitable refinements of 4, B one can handle nested TC operators
and show:

Theorem 8.6.22 FO(TC) < FO(LFP).
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Proof. Fix an r > 1 and let 79 := {E,F}, where E and F are as in the
preceding example. For m > 0 define 7y-structures A, ,, and B, ,, and their
roots by induction on m as follows:

-/41",0 : O BT,O M [ )

and the respective element is the root. Suppose that A, ,,, and B, 5, and their
roots have already been defined. Set

Ar’mJ,-l Br,m+1

r+1 . T

that is, Ay ;41 is the disjoint union of r + 1 copies of B, ,, together with a
new element, the root of A, 41, that is connected by the relation E to the
roots of the distinct copies of B, . The structure B, 1 is defined in the
same way, but one copy of B, is replaced by A, .. Note that only leaves
can be full. The structure By 5 looks like

!

Let 7 = 79 U {c} and let A}, and B, be the r-structures (A, “root of
Ap”) and By, “root of B, "), respectively.

We recall or introduce some terminology. Let D be one of the structures
Ay or By . For d,d' € D we say that d' is a successor of d if EPdd' . and
that d' is a descendant of d if for some [ > 0 there are dy = d, dy,...,d; = d'
such that EPd;d;y, for i <. The height h(d) of d is the length of the largest
E-path starting at d, i.e.,

h(d) := max{l > 0| there are dy = d,d,...,d; with EPd;d;, for i <I}.

The substructure 7 (d) of D whose universe T'(d) is the set of descendants of
d is called the tree generated by d.
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Define the function colour: D — {black, white} by

black if T(d) = Br,h(d)
white = otherwise.

(+) colour(d) = {

The inductive definition of A, ,, and B, ,, leads to the following definition of
colour by induction on the height: The point d is of black colour if it is full
(i.e., if FPd holds) or if it has a white successor. More precisely, colour(d) =
black iff

D [IFP, x(Fz Vv yFz(Exy A Exzz A Xy A —-Xz2))]z [d].

Using @ for a black point and O for a white point, the structure Bs 2 looks
as follows:

Let ¢p be a sentence of FO(LFP)[r] saying that the root is black, that is,
an FO(LFP)-sentence equivalent to [IFP, x(F'z V JyJz(Exy A Exz A Xy A
-Xz))] c. Then, in view of (x), we have

(1) Forallm > 0,7 >1: A, |-y and B, = wo.
Therefore, by Lemma 8.6.20, we are done if we show:

(2) Let k > 0 and let ¢ be an FO(TC)-sentence in P]. Then for m > 2-k,

I2r,m ': ¥ iff Ber,m l: ©.

We prove (2) by induction on k, showing a corresponding statement for for-
mulas and assignments to their variables. As in the example preceding this
theorem one carefully has to choose the elements in the right copies. To make
precise the notion of “right copy” we have in mind, we introduce the concept
of an amenable function. A function 7 : A, p, — B, is amenable if

— 7 Arm{E} 2 Brml|{E}

— For every I < m there exists exactly one a € A, ,,, such that h{a) = [ and
colour(m(a)) # colour{a). The element a is called the w-critical point of
height 1.

Note that if 7 is amenable, a its critical point of height I, a’ its critical point
of height I, and " < I, then o' € T'(a). There is an amenable function from
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Ar.m 10 By m; this is obtained by induction on m : If g : A, — Brm
is amenable, then 7 : A, 1 — Brm+1 is amenable, where (compare the
figures defining A m41 and By mq1) © maps the root of A, 11 to the root
of Brm+1, 7 equals wy ! on the leftmost copy of B;.m that is attached to the
root of A, 41, and is the identity on the remaining copies.

In the example preceding this theorem, when choosing the elements b;, we
avoided the element of B, which is not full and distinct from the root. Here we
have to avoid elements below critical points of suitable height. More precisely,
one can show by induction on &:

(3) Suppose that s,k > 0 and m > 2-k. Let @y,a},...,as,a, be r-tuples
in Asp m. Furthermore, let 7 : Ay, ,, — Ba,m be amenable and let a be its
critical point of height 2k. Finally, assume that

{alaallv"'aas?afq} ﬂT(CL) = @

Then, for every o(Z1,%},...,Ts, T,) € P with free variables among the dis-
played ones,

Adrm 01, T, T, G ] By = (@), 7(@Y), -, m(@), 7 (@)

Once this is shown, we get (2) by taking s:=0 and as 7 any amenable function
from Agpm t0 Bar .

In the inductive proof of (3) the case k = 0 is obvious. To prove (3) for
k£ > 1 under the assumption that it is already proved for k—1, it suffices to
show for m > 2-k (writing @ for @@} ... asa,)

(++) arm = [TCsy ¢l 5tlal i By, | [TCs54] 5t [7(a)]
where length(T) = r and ¢ € P]_,.
First we assume that the left side of (+) holds, &, . . ., ¢ being a witnessing

sequence. Our aim is to construct a witnessing sequence for the right side.
As T contains less than 2r+1 elements, not all of the 2r+1 copies of Bay 251
attached to a contain one of these elements. Hence, we can find dy in Barm,
but outside the copy of As,2r_1 attached to n(a), and an amenable «’ :

br.m — By that coincides with m outside of T'(a) \ {a} such that

W'(El) = El

and such that @,¢,¢; and 7’ satisty (3) for k—1. Hence, by induction hy-
pothesis,

2rm Y[ (@), ' (@), ' (1))
Treating now the pair €1, in the same way (€1, C2 contains less than 2r+1
elements!), where the counterpart d; of ¢ is already defined, and continuing
in this way up to the pair ¢,_1,¢;, we get a witnessing sequence dg,dy,...,d;
for the right side of (+).
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For the other direction we argue similarly. Concerning elements of the
witnessing sequence in the copy of Az, 251 attached to m(a), we proceed
with this copy as with T'(a) above, thus, altogether, decreasing the height of
the critical point of the induction hypothesis by two. O

Notes 8.6.23 Theorem 8.6.9 is due to Gridel and McColm [56]. Subsection
8.6.2 is based on [93, 94]. The trees in subsection 8.6.3 go back to [18].

8.7 Bounded Fixed-Point Logic

In the preceding section we already mentioned that an application of the TC
operator can be replaced by an application of the LFP operator. In fact,

Fon [TCay90(Z,9)]58 ¢ [LEPyy (p(5,7) V IZ(YT A 0(Z,7)))] 1.
Conversely, every FO(LFP)-formula of the form
[LEPyy (¥ (@) vV IZYZ A (T,7)))]
where Y does not occur in ¢ and ¢, is equivalent to
P(t) v IZ(Y(@) A [TCrz 9(T, 7)) TH).

In this sense, transitive closures correspond to those least fixed-points, where
each tuple in a new stage is already witnessed by a single tuple of the pre-
ceding stage. We generalize transitive closure logic to Bounded Fized-Point
Logic FO(BFP), which allows the LFP operator only if there is a bound r > 1
such that each tuple in a new stage is already witnessed by a set of at most
r many tuples of the preceding stage. More precisely: For a vocabulary 7 the
class FO(BFP)[7] of formulas of FO(BFP) of vocabulary 7 is given by

e the rules of first-order logic starting from first-order atomic formulas (i.e.,
no relation variables are allowed)

e the “BFP-rule”

900(?7)7 Qol(yafla .. ')fr)
[LFPyy(po@) VIT:...3T, YT A ... AYZ A1 (3, F1,...,r)))] 1

where Y is an s-ary relation variable for some s > 1, and where r > 0 and
T1,..., T, are s-tuples of variables, all variables in 7y, . .., %, being pairwise
distinct. (Note that Y does not occur free in ¢ or ¢;.)

We abbreviate the formula above by

[LFPyy (po@) VIT, €Y ... 3%, € Yo (T, F1, ..., T))] E.

Sometimes, bounded fixed-point logic is called stratified fived-point logic. This
name will become clear in the next chapter.
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Denote by FO(BFP,,) the logic obtained by restricting the BFP-rule to r with
r < rg. The introductory remarks show part (¢) of the following proposition,
parts (a) and (b) being trivial.

Proposition 8.7.1 (a) FO(BFP) < FO(LFP)
(b) FO(BFPq) = FO

(c) FO(BFP;) = FO(TC)

(d) FO(BFP;) = FO(BFP).

Proof. (d) The proof proceeds by induction on FO(BFP)-formulas. In the
main step we show that

(%) [LEPyy (po(¥) V3IZ1 €Y ... 3%, € Y1 (U, T1, ..., Tp))] E

is equivalent to a formula of FO(BFP;3) under the assumption that ¢ and
@1 are already in FO(BFP,). For simplicity we assume that Y is unary and
hence, ¥ = y, 71 = z1,...,Z, = z,. Denote by Yy, Y1,... the stages corre-
sponding to the LFP operation in (). Let Z be a new r-ary relation symbol.
The fixed-point operation of the following formula v stepwise incorporates

the elements of a new stage Y, into the different components of the tuples in
Z.

P, -, yr) = [LFPzz{(wo(z1) A ... Awolzr))V IT € ZT5 € ZTy
DA\ G=yANz=y)7
i=1,...,r i

If Zy, Z1,. .. are the stages of the LFP operation in 1, then one easily shows
by induction on n:

(1) for all n, Zn CY)

(2) for all n there is an m such that Y, C Z,,.
Hence, Y = Z.,, and therefore,
':ﬁn [LFPy’y (Lp() Vizg, €Y...dz, € Ygol)]t ~ w(t, ce ,t). O

We come back to the trees A, and B;,, introduced in the proof of
8.6.22. A point of one of these structures got the colour “black”, if it was
(a leaf and) full or if at least (= exactly) one successor was white. Thus the
colour of a point was determined by the colour of its r 4+ 1 successors. It is
therefore not surprising that we can find a sentence in FO(BFP, ;) which
separates the classes { A’y | m > 0} and {B',,, | m > 0}. In fact, we have
(recall that ¢ denotes the root of the structures in question)

F¥% ={(c,y) | colour(y) = black} U {(z,y) | = # ¢, colour(y) = white}
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for the formula ¥, (z,y,Y) :=

((z=cAFy)V(~z=cAVzmEyz A=Fy)) V 3zgyo € Y ... dz,y, €Y
C AN vi#y; AN Eyyl
0<i<g<r i<r
((z=cA V2=V (x=cA A zi=0c))
i<r i<r
Hence for all m > 0,
A'rm = D[LEPy vl cc and By = [LFP 4y vipr] cc.

It can be shown that (2) in the proof of 8.6.22 can be strengthened to

for any FO(TC)-sentence ¢ there is an mg such that for all m > my,

om o i By oo

Therefore, the FO(BFP)-sentence [LFP,, y ¥2]cc is not equivalent to an
FO(TC)-sentence. This gives the first inequality in the next proposition. To
obtain the second inequality one shows that the FO(LFP)-sentence ¢ of
(1) in the proof of 8.6.22 is not equivalent to an FO(BFP)-sentence; that is,
there is no FO(BFP)-sentence scparating the sets {A} ., | » > 1,/m > 0} and
{B,,.|r>1,m>0}

Theorem 8.7.2 FO(TC) < FO(BFP) < FO(LFP). O

We shall see in Theorem 9.1.6 that FO(BFP) = FO(LFP) on ordered
structures. In the BFP-rule the fixed-point operation is applied to formulas
(po VIE, € Y...3F, € Y 1) which do not contain free relation variables
besides Y, and where Y only occurs positively. In fact, this is the only essential
restriction, as is shown by the following result that we need in the next
chapter.

Proposition 8.7.3 Let Y be a second-order variable and let ¢ be a formula
built up from FO(BFP,)-formulas and atomic formulas of the form Y's with
-, A, V, and 3. Furthermore, suppose thatY is not in the scope of any negation
sign. If Y occurs at most r times in 1, then [LFPy y )t is equivalent to a
formula of FO(BFP,.).

Proof. To each such ¢ with exactly s occurrences of Y we associate a formula
Y* of the form 3z, € V... 3z, € Y 1, where ¥, is an FO(BFP,)-formula
that does not contain Y and is equivalent to ¥ whenever a nonempty relation
is assigned to Y. Then, [LFPyy¢(y,Y)]¢ is equivalent to

[LFPyy (¥ (y,0) v Iz, € Y ... 3%, € Vi),
a formula of FO(BFP,). We define ¥* by induction on #: If ¢y = Y5 then

$* :=3dT € YT = 3. Set ¢* := ¢ for any formula not containing Y’; in partic-

ular, for ¢ = = we have ¥* = = since, by hypothesis, ¢ does not contain
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Y. The definition of * for the other cases is straightforward; it uses that
(pviIF €Y... I, € Y¥)and 37, € Y ... 3T, € Y (¢ V1)) are equivalent
in case no variable in T1,...,T, is free in ¢ and provided a nonempty relation
is assigned to Y (and a similar equivalence for the conjunction). O

Notes 8.7.4 Stratified logic was introduced and studied first by Chandra
and Harel [19]. References for the results given are [23, 102, 61].



9. Logic Programs

In the present chapter we introduce a group of languages that originate in
database theory. Our aim is to exhibit a close relationship to fixed-point
logics, thus demonstrating that the two groups of logical systems are two
sides of one and the same coin. We therefore may use methods and results
from one group when investigating the other. Examples will illustrate the
methodological means we thus have gained.

9.1 DATALOG

Fix a vocabulary 7. A general logic program is a finite set II of clauses of the
form

YE YN

where [ > 0 and where v,7;,...,v are atomic or negated atomic first-order
formulas. The formula v must be an atomic formula of the form R¥. It is
called the head of the clause. The sequence =1, ..., constitutes the body of
the clause. Every relation symbol occurring in the head of some clause of I
is intentional, all the other symbols in 7 are eztensional. Denote by (7, ID)ins
and (r,II)ext the set of intentional and extensional symbols, respectively.
Hence, (1, M)ext = 7\ (7, Ming. We often write 7iny and 7exs if no confusion is
possible.

A DATALOG program is a general logic program, in which no intentional
symbol occurs negated in the body of any clause. Examples of DATALOG
programs are

My: Tzy+ Ezy II, : Pmin + IIy: Pre-—zxz=c
Txz + Tzy, Byz Qy ¢« Px,Szy Pz <+ -Rx
Py + Quz,Szy
The intended meaning of a DATALOG program II is obtained by interpreting
its clauses in a dynamic way as rules, the clause v <— 1, ..., as the rule
(%) whenever 71, ...,y then .

The values of the extensional symbols are given by a Tey-structure. All the
rules of II will be applied simultaneously to generate consecutive stages of
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the intentional symbols. For Iy for example, the final value of T in a graph
G = (G,E%) will be the transitive closure of E¢. We come to the exact
definition. To simplify the presentation of the semantics we suppose that for
any intentional symbol P of II, say, of arity 7, there are distinct variables
Tp = Zpj...2p, such that any clause in II with head symbol P has the
form

Pip ¢+ v,...,%

(otherwise, carry out suitable changes having in mind the intended interpre-
tation; for example, replace the clause Pmin < in II; by Pz < z = min
(where Tp = z), and a clause Rryz + Py, Szmin by Rzyz + Py, Sz min,
x = z (where Tp = zyz)). With every intentional P we associate the formula

wp(Tp) = \/{ay(%/\.../\w)|pr<—71,..., y in T}

where 7 contains the variables in v, . .., 7 that are distinct from the variables
in Zp. Assume that P!, ..., P* are the intentional symbols of II. By definition
of a DATALOG program they do not occur negated in the body of any
clause. Therefore pp1,...,@pr are positive in P,..., P* and hence, their
. . k . : R ; .
simultaneous fixed-point (P(loo), cey P(Oo)) given by Pp_, = nL>)0 P,y exists,

where

P(’LO) = m, P(inJrl) = {sz Ypi (fpi,P(ln), ceay P(IiI:’L))}

For a 7e-structure A we can rewrite the definition of Pin) in such a way
that the procedural character of the DATALOG program 1l is emphasized:

Ploy =10
P(in+1) = {@|there are PTp: < 71,...,vyinlland b€ A
(+) such that (A, PlL,....PE) En AL Ay a b}

(where @ interprets the variables in Zp: and b the remaining ones).
Thus, a DATALOG program IT and a Tex-structure A give rise to the
T-structure

AM] = (A, Pl Pl

And every intentional symbol P of II defines a query on the class of Texi-
structures given by 4 LNy

For the DATALOG program II; at the beginning of this section and
any ordering B as {<, S, min, max}-structure, we have B[Il;] = (B, PB,QF),
where PP and QF consist of the elements at odd and even positions, respec-
tively.

A DATALOG formulo has the form (IT, P)t where P is an intentional symbol
of II, say of arity 7, and £ = ¢; ...¢, are terms. It is a formula of vocabulary
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Text, its free variables being those occurring in some t;. For a Tex¢-structure
Aandac A,

AE (ILP)i[a  iff (ti[al,. .., t.[a@) € PATL

In order to get sentences and thus to be able to compare the expressive power
of DATALOG programs with other logics, it is desirable to allow zero-ary
relation symbols. If P € 7 is 0-ary then, in a structure A, P* is the boolean
value TRUE or FALSE. Denoting the empty sequence by @, for zero-ary P
the inductive step (+) above reads as follows:

Pi

ety = {0 | there are a clause P* + 7;,...,m inlTand b€ A

such that (A,P(ln), .. .,P(’jl)) Ey A Ay [0,0]}

So, “PA = ()" means “P# = FALSE”, “P* = {}}” means “P* = TRUE".

To give an example, consider the program

I : Tzy <+ FEzy
Trz + Txy,Tyz
P « Ted

with a O-ary relation symbol P. Then, for any graph G := (G, EY, %, d%)
with distinguished points ¢ and d%, P94 is true just in case ¢% and d“ are
connected by a path; in other words, G = (I, P) iff ¢ and d“ are connected
by a path.

We now come to a generalization of DATALOG programs. Let II be a
DATALOG program and A a (7, II)exg-structure. Then A[II] is a 7-structure.
To A[IT] one can apply a further DATALOG program. In such a program
all symbols in 7 are extensional and thus may occur negated in the bod-
ies of clauses. An iteration of this process leads to the notion of a strat-
ified DATALOG program. A stratified DATALOG program (by short:
S-DATALOG program) ¥ consists of a sequence I, ...,II, of DATALOG

programs of vocabularies 7y, ..., 7y, where (741, 11 )ext = T for m < n.
Given a (719, Ig)ext-structure A, we set
AS] = (o (AT (L.

As with DATALOG, (X, P)t is an S-DATALOG formula if P is an intentional
symbol of one of the constituents II;. For example, ¥ := [Ip, II; with

Ily: Pzx+ Ezxy II,: Lz + —Pz.

is an S-DATALOG program. In any tree, the SDATALOG formula (X, L)z
defines the set of leaves.

The following result explains why bounded fixed-point logic is sometimes
called stratified fixed-point logic.
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Theorem 9.1.1 S-DATALOG = FO(BFP).

We give the proof in such a way that it yields a stronger result: The
breadth of a DATALOG program is the number of occurrences of intentional
symbols in the bodies. Thus the program

Txy + Exy
Tzz + Tzy,Tyz
P + Tcd

has breadth 3. The breadth of an S-DATALOG program Ily, Iy, ..., T is,
by definition, given by max;<; breadth(Il;). Denote by S- DATALOG the
class of S-DATALOG formulas (X, Q) where ¥ is of breadth < 7. Then the
preceding theorem can be strengthened to:

Lemma 9.1.2 For all r > 0, S-DATALOG, = FO(BFP,.).

Proof. We show FO(BFP,) < S-DATALOG, by assigning to every formula
w of FO(BFP,) with free variables among 7 an equivalent S-DATALOG,
formula (£,,Q,)7. We do this by induction on ¢, tacitly assuming that the
intentional symbols of the programs IIy, I, ... we refer to are distinct.

— If »(7) is atomic, set X, := {Q,7 + ¥}

— I (@) = ¢, set By, := Xy, {QpF ¢ ~QuT}-

= Ifo@) = (W Vx),set Ty := Xy, By, {Qo¥ + QuY, Qul < QxF}-

— If (@) = Fxp(F,2), set Ty, 1= By, {Qp¥ ¢ Quyz}-

— For ¢(y ) [LFPz x (v(y, %) V 3T, € X ...3%, € X x(U.Z,%1,...,Ts))| ¢

with s < r let
II: QYT + QYT
Qﬂf — Qyila"'vnysﬁQnyf fs
and set Z(P = Ew, EX7H7 {wa A Qy—t-}

For the direction S-DATALOG, < FO(BFP,) we first study the case of a
(plain) DATALOG formula (I1, P)# where II is of breadth < r. Let P!, ..., Pk
with P = P! be its intentional symbols. By previous remarks we may assume
that the clauses have the form

QEQ Al 4 P /|
where Zg is a sequence of distinct variables. Let
0o@q) = \{WmA...A%)|QTg ...,y inII}

where ¥ contains all the variables in the clause that are not in Zg. By defin-
ition of the semantics of DATALOG, the formula (T1, P)? is equivalent to
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[S'Lprpl P E ke PR PPy - ppr]t.

Since @p1,...,pps are existential and altogether, P',..., P* occur at most
r times, the corresponding formula x;(Z,Z) in 8.2.3 is existential, too, and
contains Z at most r times, and (IT, P*){ is equivalent to

(*) HU[LFPE’Z XJ] Eﬂ,.l

By 8.7.3 this formula is equivalent to a formula in FO(BFP,.).

Now in any S-DATALOG, program of breadth < r of the form ¥ :=
IILII; we can deal with II; as with II, where for the intentional symbols
of I occurring in II; (as extensional symbols!) we use the defining for-
mulas in FO(BFP,) just gotten. For an arbitrary S-DATALOG program
3 :=1y,...,II, of breadth < r the result follows by induction on n. O

Using 8.7.1 we get:

Corollary 9.1.3 S-DATALOG, = FO, S-DATALOG,; = FO(TC), and
S-DATALOG: = S-DATALOG. O

What is the logic corresponding to plain DATALOG? We get a hint from
the observation that in the formula in (%) of the preceding proof the least
fixed-point operator is applied to an existential formula. In fact, we have:

Theorem 9.1.4 DATALOG and Existential Fixed-Point Logic E(LFP) have
the same expressive power.

Here the class of formulas of E(LFP) is given by

e —— where p is an atomic second-order formula
®

where ¢ is an atomic first-order formula

-
. @, P @, ¥
(@A) 7 (pVvy) 7 Fzp

L ] ———-—(e—:—
[LFPy y o]t

Proof (of 9.1.4). DATALOG < E(LFP): We saw in the proof of the preceding
theorem that any DATALOG formula (II, P?)f is equivalent to the formula
in (). But this formula is a formula of E(LFP).

E(LFP) < DATALOG: The proof parallels that of FO(BFP) < S-DATALOG,
but now in every step of the induction the S-DATALOG program given there
has to be joined to a single DATALOG program. Proceed as follows:

! This formula is only equivalent to the DATALOG program in models with at
least two elements. To remove this restriction one can proceed as follows: On
structures of cardinality 1, the k-th stage is already the final one. But the k-th
stage of P! can be expressed by an existential first-order formula 3 (compare
9.3.1). Then, for arbitrary structures, we have to replace the formula x; in (x)

by (¥ V x7)-
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— For ¢(7) atomic set Il, := {Q,7 < ¢}

— For ¢(y) = —¢ with atomic ¢ set I, := {Q,7 + —¢}.

— For ¢(y) = (¥ A x) set T, := Ty UTL U{QuY  QuT, @y}

— For ‘P(y) = ("p \ X) set I1, := 11y U Hx U {Qcpy ~ waa Qtpy — Qxy}

— For ¢(y) = Jz(y, z) set I, := 11, U {Q,7  Quuz}.

- Suppose ¢(y) = [LFPz x1]t. Assume w.l.0.g. that the individual variables
free in ¢ are among Z. Consider X in 1 as a relation symbol (and not as a
relation variable) and let IL, be the DATALOG program corresponding to
1 by induction hypothesis and having X as an extensional symbol; X does
not occur negated in the body of a clause, since 9 is positive in X . Then as

II, we can take the following program (that contains X as an intentional
symbol): TI, := Hy U {XT < QuZ, Q.7 + Xt} a

Since in graphs the E(LFP) formula
[LFPyy x (Exy V 32(Xzz A Ezy))] cd

expresses that there is a path from c to d, we see that E(LFP) £ FO. On the
other hand, we also have FO £ E(LFP). An example of an FO-formula not
equivalent to a formula of E(LFP) is given by Yz Pz, since a simple proof by
induction shows that E(LFP) has the following monotonicity property:

Proposition 9.1.5 If p(z1,...,x,) is a formula of E(LFP) and aq,...,a, €
A, then
AEplar,...,a,) and ACB imply BE plal,. .., an). d

Let 7 O {<, S, min, max}. In presence of 5, min, max we have for ordered
structures:

ACB implies A=B.
Thus, on ordered structures, the monotonicity property of the preceding
proposition holds for all logics.

Theorem 9.1.6 Let 7 O {<, S, min, max}. On ordered structures, we have
E(LFP) = FO(LFP), that is, the expressive power of DATALOG, S-DATA-
LOG, E(LFP), FO(BFP), and FO(LFP) coincide.

Proof. To show that FO(LFP) < E(LFP) recall (cf. 8.2.9) that every formula
of FO(LFP) is equivalent to a formula of the form

3z [LFPg.y 1)) T

where 1 is first-order. Thus it suffices to show that on ordered structures
universal quantification can be replaced by an LFP operation (according to
E(LFP)). For this note that Yzp(z) is equivalent to

[LFP, x (¢(min) Az = min) V Jy(Xy A Syz A ¢(z))] max. O
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Exercise 9.1.7 A DATALOG formula (II, P)¢ is positive if no negated
atomic formula at all occurs in the body of any clause. Introduce positive
existential fixed-point logic and show that it has the same expressive power

as positive DATALOG. ]

Exercise 9.1.8 Let ¥ :=H,...,II; and &' :=1Ij, ..., II; be S-DATALOG
programs with o U. ..U, = II{ U.. . UII;. Show that A[X] = A[X'] for any
structure 4. Hint: Consider a finest subdivision of Ilp U ... U I} leading to
an S-DATALOG program and show that ¥ and ¥/ are equivalent to it. O

Exercise 9.1.9 Show that on ordered structures the successor relation S is
not definable in E(LFP) in terms of <, min, max. (Hint: Use 9.1.5.) Show
that < is definable in E(LFP) using S. O

Exercise 9.1.10 Extend the semantics of E(LFP) and DATALOG to infinite
structures and show the equivalence of E(LFP) and DATALOG for arbitrary
structures. Conclude

— If p(T) is a formula of E(LFP), A is an arbitrary structure, @ € A, and
A = p[a], then there is a finite Ag C A such that @ € Ap, and for all B
with Ay C B, if Ag generates the same substructure in B as in A then
B |= o[a].

— If an E(LFP)-formula has a model then it has a finite model. O

9.2 I-DATALOG and P-DATALOG

Until now we have introduced some natural classes of general logic programs,
and we have seen that they correspond to certain fixed-point logics. We now
ask the other way round: What classes of programs correspond to, say, infla-
tionary (= least) fixed-point logic and to partial fixed-point logic?

First we show that inflationary fixed-point logic FO(IFP) can be captured
by general logic programs, if we equip them with an “inflationary” semantics.
We speak of -DATALOG, the “I” standing for the inflationary aspect of its
semantics.

Being a general logic program, an I-DATALOG program I may have
clauses whose body also contains negated intentional symbols. The semantics
is fixed in a way that consistently extends the conventions for DATALOG.
Similarly as with DATALOG, we may suppose that for any intentional symbol
P of 1T there are distinct variables Tp such that any clause in II with head
symbol P has the form

PTp + v1,-.-,7.

We set

or = \[{BTMA...AW) | PTpm,...,yin 0}
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where § contains the variables of the corresponding clause that are distinct

from the variables in Zp. Assume that P!,..., P* are the intentional sym-
bols of II. Then the simultaneous inflationary operations corresponding to
@pi,...,ppr give rise to the sequences

P(ZO) = w, P(ln+1) = P(Zn) U{‘.’fpz [ gOpi(EPi,P(ln),...7P(’?n))}
with the simultaneous fixed-point given by P(ioo) = U P("n).
n>0

Let A be a 7exi-structure. Then 1I leads to the r-structure

If P is an intentional symbol of I, (TI, P)t is an I-DATALOG formula, its
meaning in a Teyxs-structure A being T € pAT],

Exercise 9.2.1 Let I = {Pz « Rz, Qz < —Pzx} be an I.DATALOG
program and ¥ be the S-DATALOG program {Pz « Rz}, {Qz + —Pzx}.
Show for A4 = (4, R*) that QA = A and Q¥) = A\ R“. In this sense the
semantics of L-DATALOG and S-DATALOG programs are not compatible.

O

Theorem 9.2.2 I-DATALOG = FO(IFP).

Proof. By the definitions just given, an -DATALOG formula (II, P)7 with
intentional symbols (P =)P*', P?,..., P* is equivalent to

[S-]:FPEP1 ,Pl,...,EPk,Pk Ppiy.. .,@pk]z

and hence, is definable in FO(IFP). Thus, - DATALOG < FO(IFP).

To show FO(IFP) < I-DATALOG, to every formula ¢ of FO(IFP) with
free first-order variables among § we assign an equivalent I-DATALOG-
formula (I1,, @, )7. Free relation variables in ¢ are treated as relation sym-
bols, hence, they are extensional symbols of 1I,. Il, contains an intentional
0-ary symbol DONE,. DONE,, becomes true at the last step of the evalu-
ation of IL, (more precisely, when DONE,, is true, all intentional symbols
have reached their final value). We proceed by induction on ¢:

©(y) atomic: SetII, ::{ DOI\?Eg : v }

(@) := —p: Let II, consist of the clauses of I, and

Qq,y — DONEw,—'Q@gy
DONE, « DONE,

o(@) := (¢ V x) : Let I, consist of the clauses of ITy, UIL, and the clauses
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ang — ng
QoY — Q¥
DONE, ¢+ DONE,, DONE,

¢(y) = Azy(F, z) : Let II, consist of the clauses of II; and the clauses

wa — Qw'y':c
DONE, <+ DONE,

(@) := [IFPz x¢]1: Assume w.lo.g. that all first-order variables free in ¢
are among T = i ...Z;. By induction hypothesis there is a program Il
corresponding to ¢ (with X as an extensional symbol). Thus, for a given
interpretation of X, the program IL, returns as @}, the set {Z | (%, X)}. For
() the program I, must be repeated several times until the fixed-point of
the inflationary operation is reached. But note that in order to get the stages
of the IFP operation, after each iteration step the intentional symbols of IL
have to get empty again before the next iteration step starts. However, such
a set back is excluded by the “inflationary” semantics of -DATALOG. To
overcome this difficulty we increase the arity of the intentional symbols, using
the additional components for timestamps, the timestamps for the (n + 1)-th
iteration step being given by the new elements of X obtained in the n-th
iteration step.

The program II, given below contains as intentional symbols the inten-
tional symbols of 11, and X, ¢),,, DONE,, the 0-ary symbols NOTEMPTY,
DELAY, DONE, the k-ary symbols OLD, I, and for every intentional symbol
R of I, a new symbol R* with arity(R*) = arity(R) + k. We use the follow-
ing notation: For new variables Z = 21 ... 2, the program II’ [2] is obtained
by replacing in every clause of Il each (possibly negated) atomic formula
of the form R3 with an intentional R by R*sZz. And if II is any program
then IT|| y1, ..., Ym is obtained by appending 71, ..., v¥m to the bodies of all
clauses in II.

The following remarks should help to read IL,: The clauses in (1) take care
of the first iteration of ¥, (2) - (4) stop the program in case the first iteration
returns an empty result, and (5) updates the value of X. The subsequent
iterations of ¢ are simulated by the clauses in (6) timestamped with the
tuples added at the previous stage. By (7) the value of X is updated and the
old value is stored in OLD by use of (8). (9) checks whether no new value
has been added to X. In this case (10) and (12) stop the program. By (11)
the goal symbol @, gets its right value.

(1) Iy || -DONE,

(2) NOTEMPTY « DONEy, Q4T

(3) DELAY « DONE,,

(4) DONE, + DELAY,-NOTEMPTY
(5) X7 + DELAY,QuT
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(6) 1IIy[z]]| X7, ~OLDz

(7) X7+ DONE}Z, Q;7%,

(8) OLDZ « DONE;z

(9) Iz + DONE;Z, Q7% ~X7

(10) DONE « OLDz, ~Iz

(11) Q,J + DONE, X7

(12) DONE,, +- DONE O

Remark 9.2.3 Recall the definition of FO(IFP, #), fixed-point logi¢ with
counting, given in subsection 8.4.1. DATALOG(#), Datalog with Counting,
extends DATALOG by allowing two sorts (the point sort and the number
sort) and admitting two-sorted intentional relation symbols and certain terms
of the number sort in its clauses. More precisely: Call a term ¢ of the number
sort basic if it is either a variable p or min, max or of the form #,Ry @ for
an intentional R. Now, a DATALOG(#) program is a finite set of clauses

Y= Ve N

where v is atomic and relational and i, ..., are atomic or negated atomic
formulas, all of whose terms of the second sort are basic; moreover, intentional
symbols do not occur in negated atomic formulas. This last condition is not
a real restriction, since we already remarked in part (e) of 8.4.17 that ~Ryn
is equivalent to #, Ry = min. So negated intentional relation symbols are
available via unnegated atomic formulas containing counting terms. We equip
DATALOG(#) with the inflationary semantics. Now it is not difficult to
adapt the proof of the preceding theorem in order to show

DATALOG(#) = FO(IFP, #). O

We turn to partial fixed-point logic and introduce P-DATALOG that will
correspond to FO(PFP). The syntax of P-DATALOG is the same as that of
I-DATALOG, that is, every general logic program is a P-DATALOG program.
The semantics is given by the following conventions: Let I be a P-DATALOG
program. As in the preceding cases we assume that every clause with the
intentional symbol P in its head has the form

PEP<_’71>"'771'
Again, set
pp(Tp) = \/{Elﬂ(’yl/\.../\'yl)]pr(——'yl,..., y in II}.

Assume that P!, ..., P*¥ are the intentional symbols of II. Set

P(lo) = @, P(Zn_’_l) = {fpt Y pi (Epi, P(ln), e 7P(’j’l))}
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and let (P(loo), e, P(’Zo)) be the simultaneous fixed-point. Thus, in case there
is an ng such that P(ino+1) = P(ino)' for 4 = 1,...,k, we have P(loo) =
P(lno),...,P(’go) = P(’jlo); otherwise, P}, = 0 for i = 1,...,k. Let A be a
Text-Structure. Then II leads to the 7-structure

A[H] = (A7P(1OO)7"'7P(ICOO))'

For any intentional symbol @ of Il and terms ¢, (IT, @)t is a P-DATALOG
formula, its meaning in a Teyx-structure A being € QA[H}. 2

Theorem 9.2.4 P-DATALOG = FO(PFP).

Proof. By the definitions just given, a P-DATALOG formula (II, Q)t, where
II has the intentional symbols (Q =)P!, P?,..., P¥ is equivalent to

[S—PFPipl,Pl,...,EPk,Pk Ypl,... ,(,Opk]f

and hence, to a formula of FO(PFP).

For the direction FO(PFP) < P-DATALOG we proceed as in the case of
FO(IFP) < I-DATALOG, assigning to every formula ¢ of FO(PFP) with free
first-order variables among 7 an equivalent P-DATALOG formula (IL,, ¢,)7,
where II, contains a 0-ary symbol DONE,, taking the value TRUE in the last
stage of the evaluation. Again, free second-order variables of ¢ are treated as
extensional symbols in I1,,. The atomic case and the cases ¢ = —t, ¢ = (YVy)
and ¢ = Jz¢) are handled as in 9.2.2. For p(y) := [PFPz x| 1, where w.o.l.g.
the first-order variables free in ¥ are among %, the program II, given below is
simpler than the corresponding one for I-DATALOG, since in the semantics
of P-DATALOG an intentional symbol Z gets () in an evaluation step in case
no positive Z-information is obtained. II, contains as intentional symbols the
intentional symbols of II;,, X, DONE,, Q,, and the 0-ary symbols UPDATE,
NOTFIXPOINT. -

The clauses in (1) take care of an application of IL,;. Clauses (3) and (4)
check whether a fixed-point has been reached. In the positive case, clauses
(7)-(10) stop the program. Clauses (5) and (6) serve to update the values of
the intentional symbols for the next application of IIy.

(1) Ly || -DONE,, ~UPDATE
X7+ XT ¥

(2) UPDATE < DONE,

(3) NOTFIXPOINT « DONEy, QuF, ~XT
(4) NOTFIXPOINT « DONE,, XZ, QT
(5) QyT + DONE¢, Qd,f

(6) X7+ UPDATE, NOTFIXPOINT, Q4%

2 One easily verifies that the semantics extends the conventions for DATALOG.
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(7) DONE, « UPDATE, -NOTFIXPOINT
(8) Q¥ < UPDATE, -NOTFIXPOINT, Q7
(9) UPDATE « UPDATE, -NOTFIXPOINT
(10) Q% « UPDATE, -NOTFIXPOINT, Q% O

9.3 A Preservation Theorem

A DATALOG program is positive if no negated atomic formula at all occurs
in the body of any clause. Recall that, given a DATALOG program II, an
intentional symbol P, and n > 0, we denote by F,) the n-th stage of P in
the evaluation of TI.

Proposition 9.3.1 Let I be a DATALOG program. Then, for any inten-
tional symbol P and n > 0, the relation P, is expressible by an existential
first-order formula ¢%. If 11 is positive then ¢} can be chosen ezistential
positive (cf. 2.5.3).

Proof. The proof proceeds by induction on n. If n = 0 then ¢% := F. For
n > 0, let

ep@p) = \{3T(n A... A) | PEp ¢ 71,...,7 in 1T},

where § contains the variables in vi,...,7 that are not in Tp. To obtain
©%(Tp), replace in ¢ p(Tp) any subformula Qf with intentional @ by @%’1 (fl):.]

A DATALOG formula (IT, Q)7 is bounded if there is an n > 0 such that
Q(n) = Q(c0) holds in all structures. Thus a bounded (positive) DATALOG
formula is equivalent to an existential (positive) first-order formula. On the
other hand, an existential (positive) first-order formula is equivalent to a
bounded (positive) DATALOG formula. In fact, let ¢(Z) be existential (pos-
itive), w.l.o.g. of the form

\/ Hylﬂymz(apu/\/\cplkl),

where the ;; are atomic or negated atomic (atomic) formulas. Then ¢(Z) is
equivalent to the DATALOG formula (IT, )T, where II has the clauses

QT — Yi1, .-, Vit

fori=1,...,s and where @ is a symbol not in . As Q1) = Q(0), (I, Q)T
is bounded.

Thus, by the proposition, the bounded positive DATALQOG formulas cor-
respond to the existential positive first-order formulas. The following preser-
vation theorem shows that they are the only positive DATALOG formulas
equivalent to first-order formulas, thus documenting once more that first-
order logic lacks the ability to express recursion.
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Theorem 9.3.2 For a positive DATALOG formula (11, Q)t the following are
equivalent:

(i) (T, Q) is equivalent to a first-order formaula.
(ii) (I, Q)t is bounded.

At the end of this section we sketch a proof of this result. First we draw
some consequences.

Corollary 9.3.3 Suppose that the positive DATALOG formulas (ITy, Q)3
and (I3, Q2)t are equivalent. If (I1;,Q1)5 4s bounded, then (I, Q3)T is
bounded, too. O

Proposition 9.3.4 For a positive DATALOG formula (11, Q)T the following
are equivalent:

i) (I, Q)T is bounded.

(i) (I, Q)F is equivalent to an existential posilive first-order formula.

(ii)) (I, Q)T is equivalent to a first-order formula.

(iv) There is an n > 1 such that for all A and @ € QAW there is a substruc-
ture B of A with ||B|| < n and @ € QB

Proof. The equivalence of (i) and (ii) has already been shown, and that of
(i) and (iii) is given by the theorem. Next we show that (ii) implies (iv):
Assume (ii) and let (II, Q)Z be equivalent to the existential formula (%),
say o(T) = Ty (T, ) with quantifier-free . Given A and @ € QA that
is, A | ¢la], choose b such that A k= 1[a,b]. Then, for the substructure B
generated by {@,b}, we have B = ¢[a] and hence, @ € QM. Thus, as n
we can take the sum of length(Z), length(7), and of the number of constant
symbols.

Finally we show that (iv) implies (i). Clearly, given any n and any
DATALOG formula (IT, @)%, there is an s such that Q) = Qo in all
structures of cardinality < n. Suppose that the positive DATALOG formula
(T, Q)T satisfies (iv). Choose n according to (iv) and choose s corresponding
to (I, Q)Z and n. We show that (I, Q)% is bounded by s. If 4 and @ € Q4"
are given, (iv) yields a substructure B of A with || B|| < n such that @ € QBM;

therefore, @ € Qi[)n I and hence, @ € Qé[)n]. O

We give a further application of 9.3.2. A wuniversal Horn sentence is a
conjunction of sentences of the form
(1) vz .
(2) VZE((ho A+ A pm) — 1)
(3) VE(_"/JO V...V _‘wm)a
where the 1’s and the 1);’s are atomic. A class K of 7-structures is projective

Horn if there is a relational vocabulary ¢ disjoint from 7 and a universal
Horn sentence ¢ of vocabulary 7 U o such that the following holds:
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— in all subformulas of ¢ of type (1) or (2) the formula ¢ is relational, its
relation symbol being from o

— K is the class of T-reducts of models of ¢ (that is, K is the class of models
of the second-order sentence 3P* ... 3P%p where 0 = {P!,... P*}).

Since the first-order formulas involved are universal, a projective Horn class
is closed under substructures. We have the following “compactness type”
converse:

Theorem 9.3.5 Let K be a projective Horn class. If K is ariomatizable in
first-order logic then there is ann > 1 such that an arbitrary structure belongs
to K if all substructures of cardinality at most n belong to K.

Proof. Suppose o, 1, and ¢ are as above and K is the class of 7-reducts of the
models of . Choose a new 0-ary relation symbol @ and let I1 be the positive
existential DATALOG program obtained from ¢ by replacing each conjunct
of the form (1) by the clause

(1%) R

each conjunct of the form (2) by the clause

(2*) ¢<_¢07*--7¢m

and each conjunct of the form (3) by the clause

(3*) QF’LXJO,...,Q/)m

together with
Rz «+ Rz
for R € 0. Hence, o U {@} is the set of intentional symbols of 1I. We show

that the class of models of (I, @) is the complement K¢ of K, that is, for
every T-structure A,

(+) Ae Ke iff A= (1L Q).

Then, K¢ is axiomatizable by the positive DATALOG formula (IT, }) and,
as K, is first-order axiomatizable. Hence, K¢ satisfies (iv) in 9.3.4, that is,
there is an n > 1 such that all 7-structures A € K¢ contain a substructure
of cardinality < n belonging to K. Rephrasing this for K we get our claim.

To prove (+), assume first that A € K° Then, in particular, B :=
(A, (PAM pe,) B~ . By its definition, B satisfies the subformulas of type (1)
and (2) in . Hence, there is a subformula of type (3), say VZ(—po V.. .V-tby,),
such that B | —VE (- V ... V —),,). Choose @ € A such that B £
(o A .. Am)lal. By (3%), A = (IL Q).

Conversely, suppose A € K, say (A, (P*)pes) E . A simple induction
on n shows that P;y C P4 for P € o; hence, P! C PA. Now, if we had
A E (I,Q), then for some clause of the form (3*%) and some @ € A, we
would have (A, (PATM)pe,) = 1o A ... Ahy[a) and hence, (A, (P*)pes) =
Yo A ... AP [d) contrary to (A, (P4)pes) = . O



9.4 Normal Forms for Fixed-Point Logics 253

Theorem 9.3.5 can be used to prove nonaxiomatizability results. For ex-
ample, the class K of acyclic digraphs is projective Horn as can be seen via
the axiom

IP(VaVy(Ezy — Pzy) A VaVy((Pzy A Pyz) — Pxz) A Ve-Pzz)

(take as P the transitive closure of E). Since K does not satisfy the conclu-
sion in Theorem 9.3.5, acyclicity is not expressible in first-order logic.

We close by sketching the main idea of a proof of Theorem 9.3.2 using con-
cepts and results from section 2.5 and refer to [7] for the full proof. Let (II, @)
be a positive DATALOG formula where, for simplicity, we assume that @ is
0-ary. Suppose that (II,Q) is equivalent to the first-order sentence p. We
have to show that (IL, (}) is bounded. Otherwise, (I, Q) and, hence, ¢ have
arbitrarily large minimal models. On the other hand, by positivity, (II, Q@)
and, hence,  are preserved under strict homomorphisms. By 2.5.5, for some
{ and m, no minimal model of ¢ has an [-scattered subset of cardinality > m.
Finally, one obtains a contradiction by showing that in large minimal models
there are such subsets.

9.4 Normal Forms for Fixed-Point Logics

The equivalence of I-DATALOG with FO(IFP) and of P-DATALOG with
FO(PFP) (together with 8.2.3, the Lemma on Simultaneous Induction) pro-
vides an alternative way to derive normal forms for FO(IFP) and FO(PFP).
We shall exemplify this first and then further improve these results, thus
obtaining normal forms that, in particular, yield some kind of measure to
compare FO(IFP) and FO(PFP) with transitive closure logic and bounded
fixed-point logic. Moreover, they will enable us in Chapter 12 to get repre-
sentations of FO(IFP) and FO(PFP) as logics with generalized quantifiers.

Once more, for simplicity, we consider only structures with ot least two ele-
ments. In particular, we say that ¢ and ¢ are equivalent if they are equivalent
in all finite structures with at least two elements.?> And we say that ¢ and
3(V)zy are equivalent if ¢ is equivalent (in this sense) to both 3z and Vze.

Theorem 9.4.1 Let ¢ be an FO(IFP)-formula. Then there is an existential
first-order formula v such that ¢ is equivalent to

AV)u[IF Pz, ¢] a.

Proof. Let ¢ = (7)) with free first-order variables among 7. Choose an I-
DATALOG formula (II, Q)¥ equivalent to ¢ and let P',..., P*¥ with Q = P!
be the intentional symbols of II.

3 In most cases the restriction to structures with at least two elements can be
removed as in similar situations before, or the corresponding statements are
trivially false.
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We may assume that the clauses of II have the form

PTp—m,...,m

where Tp is a sequence of distinct variables. Let

pp(Zp) == \/{Ely('yl Ao Ay)| PZp <+ m,...,v inll}

where 7 contains all the variables of the corresponding clause not in Zp. Then
(IL, Q)7 is equivalent to

[S—IFprl’Pl ’’’’’ F e P (,Opl,.,.,gopk]'ﬁ.

Since wp1,...,@pr are existential, the corresponding y s in 8.2.3 is existential,
too, and

lzﬁn [S‘IFPipl Pl E kPR PP QOPk] U H(V)U[IFPZZ xJ] 7.

By 8.2.4, the formula on the right side is equivalent to a formula of the form
(V) u[IFPz z ¥] 4 with existential ). O

The corresponding result for FO(PFP) can be obtained along the same
lines, using FO(PFP) = P-DATALOG. Moreover, we already proved it in
8.3.14 by different methods.

For FO(LFP) the kernel of the fixed-point operator in a normal form
cannot be chosen existential (cf. the example before 9.1.5); however, we have

Theorem 9.4.2 Suppose that ¢ is an FO(LFP)-formula. Then there is a
As-formule 1, that is, a first-order formula 1 equivalent to both a ¥o-formula
and a Iy-formula, such that ¢ is equivalent to

3(V)u[LFPz z ¢} .
Proof. By the previous theorem there is an existential formula y such that
Ean ¢ ¢ IV)ul[lFPz z x] @.
By 8.2.11, for every existential y there is a Aqo-formula ¢ such that
F=an I(V)u[IFPz 7z x] 4 < 3(V)u[LFPyy 9] a.
Thus, ¢ is equivalent to 3(V)u[LFPy vy ¢] 4. ]

Our next goal is to further simplify the normal forms we have obtained so
far with respect to the structure of the kernel, in particular with respect to the
form in which quantifiers appear in it. We first treat the case of FO(PFP) and
FO(IFP). To state the result we need the notion of a nontrivial formula. An r-
ary relation R on a set A is nontrivial if § # R # A”. Furthermore, a formula
of FO(PFP) is said to be nontrivial if for any subformula v = [PFPz x x|t
the stages F, FX, ... are nontrivial (for any assignment). The definitions for
FO(IFP) and FO(LFP) are similar.
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Theorem 9.4.3 Let ¢ be an FO(PFP)-formula. Then ¢ is equivalent to a
nontrivial, totally defined formula of the form

AV)u[PFPs,z (1ho vV 3T € ZTy ¢ Zy)] @

where Yy and ¥, are quantifier-free and do not contain Z. The same result
is true if PFP 15 replaced by IFP everywhere.

We have seen in 8.7.1(c) that T'C operations correspond to LFP operations
in which every element of a new stage is already witnessed by a single element
of the preceding stage. Similarly, the fixed-point operations of bounded fixed-
point logic FO(BFP) correspond to LFP operations where every element of a
new stage is witnessed by two elements (cf. 8.7.1(d)). The preceding theorem
tells us that IFP operations and PFP operations can be rewritten in such a
way that an element of a new stage is witnessed by two elements, but now one
belonging to the preceding stage, the other one belonging to its complement.

The proof of 9.4.3 is given in three steps; each step essentially corresponds
to one of the next lemmas. We state the lemmas and the proofs for FO(PFP).
They remain literally true for FO(IFP) with a single exception which we point
out at the corresponding place.

Lemma 9.4.4 Let ¢ be an existential (or quantifier-free) first-order formula
containing a second-order variable X. Then, provided X is interpreted by a
nontrivial relation, ¢ is equivalent to a formula of the form

dJr, e X.. . dz, e Xy, ¢ X ... Ty, ¢ Xop

where v is existential (or quantifier-free) and does not contain X. If ¢ s
positive in X then | can be chosen to be 0.

Lemma 9.4.5 Suppose that
=3IV uPFPz x (poVIT1 € X ... 3T, € XTy; ¢ X ... Ty, &€ X1)] @

s a nontrivial, totally defined formula, where o is quantifier-free, v, is ex-
istential, and X does not occur in wo and . Then p is equivalent to a
nontrivial, totally defined formula of the form

IV)u[PFPyy (o VIT € YIW ¢ Y)]@
where g is quantifier-free, 1 is existentiol, and Y does not occur in g, ;.

Lemma 9.4.6 If ¢ is as in the conclusion of the preceding lemma then ¢ is
equivalent to a formula of the same form with the additional property that
s quantifier-free.

Postponing the proof of these lemmas, we give the
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Proof (of 9.4.3). Let ¢ be an FO(PFP)-formula. By 8.3.14 we can assume
that

¢ = I(V)u[PFPgu x|,
that ¢ is totally defined, and that y is existential. Suppose U is s-ary. First,
we pass to a nontrivial formula. For this purpose we introduce an (s 4 2)-
ary relation symbol Y where we use the additional components to ensure
nontriviality by setting

P Ust1,Ust2) = po(W Ust1,Uss2) V P1 (U Ust, Usta, V)
with
Po(Ty U g1, Usr2) = Us = Uspi A TUgp1 = Ust2
1T Ust1, Usy2,Y) = Usp1 = Uspa A T0Us110s12Y TUs41Vg 42

A X(Y——us+lus+2)-

The stages FY, FY, ... are nontrivial, since they contain all tuples of the form
...uuv with v # v and no tuple of the form ...uvu with v # v. Moreover,
Ff = {(u1,...,usq2) | us = ust1 and usq1 # usi2}. An evaluation of the
stages shows

FY=F/  _uu forn>0, and FX = Ff _uu.

By 9.4.4, provided a nontrivial relation is assigned to Y, p; is equivalent to
a formula 1); of the form

W = AT €Y ... dE, eV, ¢Y.. . Ty, ¢V

where 1 is existential and does not contain Y. Using dummy variables if
necessary, we may assume that k¥ > 1. Then, if ¥ is interpreted by the empty
relation, both p; and 4; are false. Hence, we have FfoVP1 = [PoV¥1 for all
n. Thus, ¢ is equivalent to the nontrivial, totally defined formula

AV)u[PFPyy (po(¥) VIT1 €Y ... 3T, € YTy, ¢ V... 3y, ¢ Yl 4.

As claimed, pg is quantifier-free, ¢ is existential, and Y does not occur in
po and 1. The theorem now follows by first applying Lemma 9.4.5 and then
Lemma 9.4.6. |

Proof (of 9.4.4). Let ¢ be an existential (or, quantifier-free) formula contain-
ing the variable X. We may assume that all negation symbols in ¢ are in front
of atomic formulas. For such ¢ we inductively define ¢* of the form claimed.
fp=Xtseto* =97 e Xi=T.lfp=—-Xisetp* =Ty ¢ X =7y Let p*
be @ for any other atomic or negated atomic formula ¢. The definition for the
remaining cases is straightforward, using the induction hypothesis and equiv-
alences such as that of (p1 vV 37 € X ... 3%, € X35, ¢ X...37, € Xp2)
and 37; € X ... 37, € X3y, ¢ X ... 37, ¢ X(p1 V 2), provided a nontrivial
relation is assigned to X and the variables in Zy,...,%; do not occur in ¢;.

O
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Proof (of 9.4.5). Suppose X is r-ary. The lemma claims that the number of
quantifiers 37 € X, 37 € X in the kernel of the fixed-point operator can be
reduced to a single positive and a single negative one. We achieve this by
increasing the arity of the second-order variable to (k + 1)-r, whose first k
r-blocks will consist of r-tuples in X and the last [ r-blocks of r-tuples in
the complement X¢ of X. The corresponding r-tuples are incorporated in
(k + 1) steps into the distinct components, thus making necessary additional
components for a counter: One iteration step of X will correspond to (k +1)
steps for the new variable.

To simplify the presentation, assume that & = = 2 and that X is unary,
hence

¢ = AV)u[PFP, x (po V Iz € X3zo € Xy ¢ XTyo ¢ X 1)@

where ) (z, 21,22, y1,y2) is existential and ¢o(z) and ;3 do not contain X.
Let X, be the n-th stage of the operation corresponding to the PFP operator
in . Choose a (4 + 4)-ary new variable Y, where the first 4 components are
used as a counter for the 4 steps corresponding to one step of X, the next
two ones for elements of X, and the last two ones for elements of X¢. For the

counters we introduce formulas €;(z1,...,24) for i =1,...,4 by
61(21, -,2’4) = Bl =22 =23 = 24
62(Z1,...,Z4) = 2 =2 N2 =23 =24
€3(21,...,24) = Tz =23Az1 =29 = 24
es(z1,y...,%4) -z =24 Az = 29 = 23.

If Y, denotes the n-th stage of the operation corresponding to the PFP
operator in the formula v below, set

Yni—- = {Z| there are Z such that ¢;(Z) and Y,z %}

(T = 1 ...24 will correspond to z122y1y2 in p; above). For all m > 0 and
any structure A we will have (1) and (2).

Yv4m+1]., = Xm+1 x AxAx A

(1) Y;;m_;_QQA = Xm+1 X A x X'rcn+l x A
Yime33- = Xppa X Xppp1 X X[ p x4
Y4m+44_. = Xm+1 X Xm+1 X X'rcn+1 X X,cn_{_l.

Here the IFP case differs from the PFP case; the values for IFP are:

Y4m+11_ = Ulgm-}—l Xl XxAxAx A
(1,) Y4m+22_ = Ulgm-i—l Xl x A x ch x A
Y4m+337 = Ul§m+1 Xl X Xl X ch x A

Y4m+44_ = Ulgm—i-l X x Xy % ch X ch
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(2) Y4m+z‘+j7:— = Y4m+ii_ for 1 S 1 S 4 and 1 S ] S 3.

This is achieved if we use the formula ¢ :=

4
I(V)ulPFPgzy (1(B) Apo(21)) V FAT € YIF ¢ Y \/ (c:(@) A )]

i=1

where the v; together with their meaning (formulated in a way suitable for
an inductive proof of (1) and (2)) are given as follows:

1 = eq(W) A p1(21,21,282,T3,T4)
“21 € X1 is witnessed by T € Yapm 4o via @1 (21,21, 22,23, 24)”

Yo = (W Aa(@AT2 =y AC3 =YsATa =yYsNz1 =21 A2z =1
“23 € X5, is witnessed by T € Yy 11_ and z3z22324 € Yamm11-"

3 = @@ ANQOAT = Ass =y ATy =ysN21 =1 Nog = Y3
Az3 = X3
“z9 € X1 1s witnessed by T € Y102 and z1222024 ¢ Yame02_"

Yy = a)AGSOATy =y AT3 =Ys ATy =Ya A2y =21 AN 29 = T
Nzg =3 N\ 24 =
“z4 € X5, 1, is witnessed by T € Yymi33_ and 24222324 ¢ Yimy33_".

Since X exists, Yoo exists, too, and Yoo 1- = Xoo X AxAXA. As €1 (u,u, u,u),
but not €;(u,u,u,u) for i = 2,3,4, we thus see that ¢ and v are equivalent.
O

Proof (of 9.4.6). When proving this lemma, we again use additional compo-
nents to simulate the unbounded existential quantifiers. Let

@ = 3IMV)u[PFPz x (po VIT € XIW ¢ Xp1)]d

with quantifier-free g and existential ¢, both not containing X. Assume
that X is r-ary and

Y1 = E‘yl s Hle(T7 ﬁa ma y)

with quantifier-free x. Let Z be (r+1)-ary. Given a structure A, let Xg, X1, . ..
denote the stages of the PFP operator in ¢ and Zg, Z;, . .. the stages of the
PFP operator in

Y = A(V)u[PFPzy 7z (w0 VIUY, € 2307, ¢ Zx(ZT,7,W,7,))] @

Then a simple induction shows that Zp = X, x Al Thus ¢ and ¢ are
equivalent. O

Turning to FO(LFP), the improved normal form reads as follows:
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Theorem 9.4.7 Let ¢ be an FO(LFP)-formula. Then ¢ is equivalent to a
nontrivial formula of the form

(1) AV)u[LFPz 2z (o V VZIY € Z )]0t

with quantifier-free ¥g and ¥ not containing 7, and ¢ is also equivalent to
a formula of the form

(2) IV)u[LFPz,z 32y ¢ Z 1] 0

with quantifier-free 1 not containing Z (note that ¥y ¢ Zi1 abbreviates
Yy(Zy V 1) and hence, is positive in Z).

Moreover, in (1) we can choose 1 of the form 11 — 12, where no
variable of § is free in 111 and no variable of Z is free in 5.

Proof. We sketch a proof along the lines of the proof for the corresponding
result 9.4.3 for FO(PFP). To obtain (1), we start from the fact (cf. 9.4.2)
that ¢ is equivalent to a formula of the form

A(V)u[LFPy y VoTwy] i

where x is quantifier-free (and positive in U). Let s be the arity of U. Using
an (s+2)-ary Y, we ensure nontriviality as in 9.4.3 by passing to

P Ust1,Ust2) = Po(TsUst1,Ust2) V p1(T, Ustr, Ust2,Y)
with
Po(T, Ua1, Usk2) 1= Us = Ugq1 A Uyl = Ust2
pL(U, Ugy1,Us2,Y) 1= ey = Ugpo A TU UL ul SY T Ul qul

AVTITX (Y sy 1Us+2)-
The formula p; is equivalent to
VOoTW(tey1 = Usro A FWul qul YT Uy Uy g A X(YoUsiiUsta))-
As x(Y_ugsi1ugy2) is positive in Y, by 9.4.4 it is equivalent to
I, €Y... 35, €Y

with quantifier-free x; not containing Y, provided Y is interpreted by a non-
trivial relation. Using dummy variables if necessary, we can assume that
k > 1. Altogether, ¢ is equivalent to

w1 = AMV)u[LFPgy(po VVo3Iwdy, € Y ... 37y, € Yx2)|u

where po(¥) and x2(¥,7, W, ¥y, .. .,¥,) are quantifier-free and do not contain
Y. Let Z be k-r-ary where r is the arity of Y. Then for n > 0, if V,, denotes
the n-th stage of the LFP operation in (1,
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Zn = Yo x...xXY,
k times

are the stages of the LFP operations in
AV)u[LFPz,. 7,z ((po(Z1) A .. A po(Zk))V

Now, as we have already done in previous proofs, we can eliminate the ex-
istential quantifiers 3w by replacing Z, thereby using a relation variable of
higher arity. We thus obtain a formula equivalent to ¢ of the form claimed
in (1).

To obtain (2), we may assume (again by 9.4.2) that ¢ has the form
¢ = I(V)u[LFPy y FoVwy] a

with quantifier-free 1. Suppose that Y is r-ary. A simple induction, using the
equivalence of Y7 and Vz ¢ Y-z = 7, shows that ¢ is equivalent to a formula

VzZ1 €Y ... V%, ¢ Yp(¥,7,0,%1,. .., Zk)

with quantifier-free p not containing Y, provided Y is interpreted by a relation
different from the set of all r-tuples.
So we may assume that ¢ is equivalent to the formula

@1 = AV)u[LFPyy JOVOVE, ¢V ... V%, ¢ Y p(F,5,1,%1, ..., %)) i

(note that the proviso “Y different from the set of all r-tuples” is irrelevant
here, as the fixed-point operations in ¢ and ¢; become stationary in case
they arrive at the set of all r-tuples). Now, let Z be k-r-ary and let ys be
the formula

k
AV)u[LFPy, 5, 7z IIVDVE ... 2 ¢ Z \/ @ =T Ap(3, 0,0, 21, . ., Zp))] b
=1

Then, for the complements Y,¢ and Z¢ of the stages of the LFP operations
in 7 and s, we have
ZE =Yix. .. xY’:.
%/_/
k times

Hence, ¢; and gy are equivalent. To eliminate the universal quantifiers Vo
in 9, we use a variable X with arity(X) = length(w)+arity(Z) and pass to
the equivalent formula

AV)[LFPyy, 5..x IV ... 2 ¢ X Vi, T =7,

Ap(?_?E)E,:zla"'azk)

S
=
~3)

)

a formula of the desired form (note that X2 = universe!®®8*™(®) x 7¢ for all
n). 0O



9.4 Normal Forms for Fixed-Point Logics 261

As an application of the preceding theorem we treat a variant of the
TC operator, the so-called alternating transitive closure operator ATC which
turns out to be equivalent to the LFP operator.

We consider structures of the form A = (A, E4,U4) with binary E and
unary U. In this context the elements of U4 are called universal, the elements
of A\ U4 ezistential. The alternating transitive closure ATC(EA, UA) of
(EA,UA) consists of those pairs (a,b) € A x A for which there is an E“4-path
from a to b with the property that whenever a universal point ¢ is passed
there must also be an £4-path with this property from d to b for each d # b
with E4cd. More precisely, using the LFP operator, we define:

(a,b) € ATC(EA, UM iff (A, BA UM E
[LEP.y x (-Uz A (BExy V 3z(FExz A Xzy)))
V{Uz AJzEzz AVz(Bzz — (z =y V Xzy)))]|zyla, b].
The logic FO(ATC) is defined as FO(TC), replacing the TC-clause by

o(z,7), ()
[ATCT@ W(E’ y)a w(T)] 5t

where T, 7,5, all have the same length. The meaning of the new formula is
given by

(3,1) € ATC(p(—,- ), ().
We now have:

Theorem 9.4.8 FO(ATC) = FO(LFP).
Corollary 9.4.9 FO(ATC) captures PTIME. O

Proof (of 9.4.8). As FO(ATC) < FO(LFP) is clear from the definition of
ATC given above, we need only prove the other direction.

So let ¢ be an FO(LFP)-sentence. By 9.4.7(1) we may assume that ¢ is
equivalent to the nontrivial sentence

Ju[L¥Pz x (o(T) V VYIZ € X (V1 (T, 7) — ¥2(7,2)))] 4,

where X does not appear in the quantifier-free formulas g, 11,12 and where
the free variables are among the displayed ones. In view of nontriviality, this
formula is equivalent to

Fu[LFPz x (v0(Z) V VG (41 (Z,7) — 32 € X92(,2)))] 4.

Let F be the fixed-point of the fixed-point process in the last formula. The
alternating transitive closure capturing it will make use of a binary and a
unary relation on the set of all tuples Tyv; ... v4. For i = 1,...,4 we write
Zyi for any such tuple Zgv with ¢;(v), where the ¢; are as in the proof of
9.4.5. Then the relations will be defined by FO-formulas ¢g and g in such
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a way that T € F, iff there is an ATC-path from ZZ 1 to a point of the form
7T 4; more precisely:

(+) T € by iff some (or equivalently, all) pairs of tuples of the form
(1,574) are in ATC(pp (- .- ), ou().

As universal points we take all tuples Z¥ 1, that is, we set
(pU(fa v, 5) = a (E)

The binary relation consists of edges that take care of the disjuncts 1o (F) and

Vg(1(Z,7) — 3z € Xbo(7, %)) of the fixed-point formula above. Concerning
¥o(T), it contains the edges indicated by

%o (T)

TT1 TT2 y

4,

<3

and concerning the second disjunct, the edges indicated by

—1(T,Y) ~T 74
ﬂ/)o (T) /

zzl zy3
1(Z,7) zzZ1
¢2(ya 2)
So as g we take
ee(EYT,TYTT) = (@ AW@IAT=F=T =7 Ae (7))
V (2@ AT=FAT =7 Aes(D))
V (e1@)A Y (Z)AT=FAT =T Ae3(¥'))
V(@) Ai(T,9) AT =7 Aea(v'))
V(@ AT AT E)AT =7 Aa(T))

Then (+) is obvious and yields that ¢ is equivalent to
FuTzFwTIw' (1 (W) A ea(W') A
[ATCzyv,3 3 v $E(TYV,T
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9.5 An Application of Negative Fixed-Point Logic

The normal form obtained in Theorem 9.4.3 tells us — as already pointed
out in the remarks following this theorem — that in FO(PFP) we can restrict
ourselves to PFP operations where every element of a new stage is witnessed
by two elements, one belonging to the previous stage (a positive witness), the
other one belonging to its complement (a negative witness). In this section
we analyze the expressive power of the fragment of FO(PFP) containing
PFP operators with only negative witnesses and give an application of this
fragment to so-called well-founded DATALOG.

For k,I € N let PFP(k,!) be the class of FO(PFP)-formulas containing
only fixed-point, operations where every element of a new stage (besides the
first one) is witnessed by k& positive and [ negative elements, i.e., ¢ € FO(PFP)
is in PFP(k,1) if all its subformulas starting with a PFP operator have the
form

[PFPz x (poVIy, € X...Fy, € X3z ¢ X ... 3z, ¢ Xt

where @o and 1 do not contain X.
We have a complete picture of the expressive power of the different
PFP(k,1):

Theorem 9.5.1 (a) For k,l > 1, PFP(k,1) = PFP(1,1) = FO(PFP).

(b) For k > 2, PFP(k,0) = PFP(2,0) = FO(BFP).

(¢) PFP(1,0) = FO(TQC).

(d) Forl > 1, PFP(0,1) = PFP(0,1) = FO(LFP). Moreover, every ¢ €
FO(LFP) is equivalent to a totally defined formula of the form

3(V)u[PFPz,x 39 ¢ X9(T,7)] 4
where 1 is quantifier-free and does not contain X .

Proof. Part (a) holds by Theorem 9.4.3, parts (b) and (c¢) hold by Proposition
8.7.1. We turn to (d) and first prove PFP(0,1) < FO(LFP) by induction on
PFP(0,)-formulas. So, consider a formula ¢ = [PFPz x ¥] with ¢ = (po V
Jy, ¢ X...37, ¢ X ¢1) where g and ¢ do not contain X. By induction
hypothesis, we may assume that ¢y and ¢; are FO(LFP)-formulas. Then ¢
is equivalent to the FO(LFP)-formula

(00 V 31 .- TG XTy A .. A=XT, A 1))
negative in X. Therefore, by 8.3.2, [PFPz x 9] is equivalent to an FO(LFP)-

formula.

We sketch a proof of FO(LFP) < PFP(0,1) and of the normal form claimed
in (d) and refer the reader to [112] for details. Let ¢ be a formula of FO(LFP).
We may assume that
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¢ = IV)u[LFPz 7 ¢o] @

with first-order . For simplicity, let ¢ be a sentence.

One can simulate the semantics of FO(LFP)-formulas by a game for a de-
finable digraph, thereby obtaining a quantifier-free first-order formula ¢(Z, 7)
with T = 21 ... 2, and ¥ = y; ...y for suitable k such that (1),(2), and (3)
hold for all A:

(1) (A*,pA(_, ) is a digraph, i.e., A | VZ9(Z, F).

(2) A= [LFPz z o] @ iff 4 is won in the game associated with (A%, A (_,_))
(cf. 8.1.5(b)).

(3) (A*,1p*(_,_)) has no drawn points.

Therefore (cf. the example previous to 8.3.2), 3(V)u[PFPz x 37 ¢ X¢(Z,7)]a
is a totally defined formula equivalent to . O

We apply the normal form just proven to well-founded DATALOG, WF-
DATALOG. (The exercise at the end of this section shows how one can obtain
some results for FO(LFP) as immediate consequences of this normal form.)
Consider the program

Qr + Qz
Qr +« -Qx

In the semantics of both I-DATALOG and P-DATALOG, for a structure A
we have ()oo = A, the elements of A getting into () using the “wrong” infor-
mation “—=) = A” in the first step. In WF-DATALOG, intuitively speaking,
one requires that the values obtained for the intentional symbols are “re-
confirmed by their positive occurrences”. More precisely: The semantics of
WEF-DATALOG, the so-called well-founded semantics, treats positive and
negative occurrences of intentional symbols in the bodies of clauses in an
asymmetric way: Let II be a WF-DATALOG program, i.e., a general logic
program. For every intentional symbol P replace all occurrences of P in the
heads of clauses and all positive occurrences of P in the bodies by a new
relation symbol P’. Now, the original P does not further occur in the head
of any clause of the resulting program II'; hence, P is an extensional symbol
of II' and thus, TI' is a DATALOG program. In order to simplify the presen-
tation, we assume that Il only contains a single intentional relation symbol
P.

In every Tex-structure A, the program II gives rise to a sequence (P, )n>0
of relations on A defined by

PO = @,
P11 is the result for P’ of the evaluation of the DATALOG program

II' in (A, P,), i.e., taking P, as interpretation of the extensional
symbol P of IT'.
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For example, for the WF-DATALOG program

Iy : Pzy < Rzxyz,~Pux
Pxy <+ -—Szy, Rxyz, Prz,—~Pyy

we have
I P'zy <« Rzyz,—~Pux
P'zy <« —Szy,Rryz, P'zz,~Pyy

and the stages P,, of the evaluation of TIy as described above are just the
stages Y of F'¥, where

e(zy, P) := [LFPuy, p (323u(Rayz A ~Puz)
vV 3z(~Szy A Rzyz A P'zz A —Pyy))] zy.

We come back to the general case above, i.e., to I, the Te¢-structure A4, and
the sequence (P,)n>0. Let Firye be the truth set of this sequence, ie.,

Pirwe = {GJEA‘HTLOVTLZTm:GEPn}

(cf. 8.3.16). Then, by definition, in the WF-semantics, IT leads to the 7-
structure A(I1) := (A, Pirye). For terms £, the formula (II, P){ is a WE-
DATALOG formula of vocabulary Texs, its meaning being “¢ € Pirye”.

Note that Pgue = P if the fixed-point Po, of the sequence (Pp)n>0
exists. Call Il a totally defined WF-DATALOG program and (11, P)i a totally
defined WF-DATALOG formula, if the fixed-point exists in all structures.

In case II is a DATALOG program, the WF-DATALOG formula (II, P)#
is equivalent to the DATALOG formula (II, P)Z; in case II is a totally WT-
DATALOG program and the bodies of the clauses in II contain only negative
occurrences of P, the WF-DATALOG formula (II, P)f is equivalent to the
P-DATALOG formula (II, P)f. The same applies to the program in part (b)
of the following theorem; so, in a certain sense, we can do without the well-
founded semantics.

Theorem 9.5.2 (a) WF-DATALOG = FO(LFP).
(b) Every WE-DATALOG formula is equivalent to a totally defined WF-
DATALOG formula (I1, P)Z with 11 of the form

ZE@_ S Vit o v Vikp -~Z7Z
Do
ZTY — Vsl ---Vsk,, "LTE
PT + ZTu

where the v;; contain neither Z nor P.
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Proof. (a) WF-DATALOG < FO(LFP): Let (II, P)t be a formula of WF-
DATALOG and again, for simplicity (otherwise, argue with FO(S-LFP)),
assume that P is the unique intentional symbol, i.e., IT has the form

Pz + v, %k

(_
PT < 7s1,.-.,Ysk,-

Then the stages P, of II evaluated in a 7eyx-structure are just the stages F?
of F¥, where

8
¢, P) = [LFPzp \/ (v Ao Avi)]T.

=1
where g; are the variables in (i1 A ... A7, ) distinct from 7 and where 7;j; is

obtained from -y;; by replacing positive occurrences of P by P'. Then, ¢(Z, P)
is negative in P. Hence, F'¥ is antitone, i.e.,

X CY implies F(Y)C F?(X)
(see Exercise 8.1.6). Therefore,
Ff CFf CF{ C...Ff CFf CFY

(cf. 8.1.5(a)). Clearly, G := F¥ o F¥ is monotone, and G = F'¥ holds for
the formula ¥(Z, P) := ¢(T, (-, P)) positive in P (cf. 8.3.2). Since FY =
Ff,, we have F% = U, 50 F5;, = Pirue- Hence, (II, P) is equivalent to the

FO(LFP)-formula
[LEPz p (T, P)]t.

FO(LFP) < WEF-DATALOG: Let ¢(Z) be an FO(LFP)-formula. By Theorem
9.5.1(d), it is equivalent to a totally defined FO(PFP)-formula of the form

Ju[PFPy x 32 ¢ X¢(Z,7,7)] 0

where 9 is quantifier-free and does not contain X. Then, ¢(%) is equivalent
to

Ju[PFPzy3,z TZ(—ZTZ A Y(T, 7Y, 7)) Th.
We can assume that 1) is in disjunctive normal form, e.g., ¥ = \/le(%'l A
... AN ik;) with atomic or negated atomic ~y;;. Then, ¢(Z) is equivalent to

k
Ju[PFPzy,2 \/ FZ(~ZTZ Ay A ... Avar,)| Tl
i=1
and hence, equivalent to the totally defined WF-DATALOG formula (I, P)Z,
where 11 consists of the clauses
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ny &~ Y11y - - Vikes VA
N
ZTY = Ysiy - Vskyy TLTZ
Pz « Zzu

This completes the proof of part (a). At the same time, we have proved part
(b), too. O

The following exercise contains two further applications of part (d) of
Theorem 9.5.1: In part (a) we give a short proof for the normal form for
FO(LFP) contained in Theorem 9.4.7 (thereby restricting ourselves to (2));
in part (b) we show that every FO(LFP) formula is equivalent to a first-order
formula containing relations implicitly definable in FO (cf. 8.5.8).

Exercise 9.5.3 Let p(@W) be an FO(LFP)-formula. According to 9.5.1(d)
choose a totally defined formula equivalent to p(w) of the form

(%) AV)u[PFPz x3y ¢ Xx]u

where y is quantifier-free, does not contain X, and free(x) C {Z,7,w}.

(a) Set (7, X) := 3y ¢ Xx(7,7) and (7, X) := p(7, p(_, X). Then, F¥ =
F? o F¥. Since the formula in (x) is totally defined, we have F¥, = F¥% (cf.
8.1.5 and 8.3.2). Show that #(Z, X) is equivalent to

X (@, 9) AVE(X(T,2) - X7)).
Conclude that
= 35-X7 - (9(E, X) © 39V2 ¢ X(x(3,9) A X7 7))
and hence, that p(w) is equivalent
3(¥)ulLFP; x 39¥7 ¢ X(x(7,7) A (3 2)] .
(b) Clearly, p(@) is equivalent to to the formula
I(V)a[PFPs oy FH(-YTT A X)| 4w,
that is totally defined, too. Introduce p(Zw,Y") as above. By 8.1.5, F¥ is the

unique fixed-point of F¥. Let 4o(Y) :=VZw(YZW < Jg(-Y7w A x)) and
conclude that

Faa 37 Ye0(Y) and  |=an VY (0 (Y) = (p(@) & YU, @),

i.e., that p(w) is equivalent to a section of a relation implicitly definable in
FO. a
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9.6 Hierarchies of Fixed-Point Logics

We first discuss the problem to what extent the expressive power of fixed-
point operators depends on their arities. This problem comes up very natu-
rally with the proofs of the normal form theorems, where the simplifications
we have obtained with respect to the number of fixed-point operators, quan-
tifiers, and occurrences of second-order variables had to be paid by enlarging
the arity of the fixed-point operators involved.

Denote by FO(LFP"), FO(IFP"), and FO(PFP") the set of formulas of
the corresponding fixed-point logic that contain second-order variables only
of arity = r.* And let FO(DTC") be the fragment of FO(DTC) consisting of
those formulas, where for any subformula of the form [DTCz 5] 5t we have
length(Z) = r. Define FO(TC") similarly. Clearly,

(x) FO(DTCT) < FO(TC") < FO(LFP") < FO(IFPT) < FO(PFP™).

Theorem 9.6.1 Let £ be one of the logics FO(DTC), FO(TC), FO(LFP),
FO(IFP), FO(PFP). For r > 1, let L” be the corresponding fragment satis-
fying the arity restriction above. Then

Lot <<,
More precisely: If T contains an at least binary relation symbol then
Lo < LMr]<....

Using dummy variables, it is clear that £° < £! < £2 < .... In view of
(*), the strict inequalities are an immediate consequence of

Theorem 9.6.2 For any r > 0 we have
FO(TC™t') £ FO(PFP") and FO(DTC™™') £ FO(TC)

on the class of graphs.

For a proof we refer to {64]. We only sketch the main idea. To ob-
tain FO(TC™') £ FO(PFP"), one considers graphs definable on the set
of (r-+1)-tuples of the universe of certain structures. These structures are
sufficiently homogeneous with respect to r-tuples to cause a collapse of the
expressive power of FO(PFP") to FO. As a consequence, the query ex-
pressing that two (r + 1)-tuples are connected by a path is not definable
in FO(PFP™) but, of course, it is expressible in FO(TC"*!). The construc-
tion is quite intricate. It still has to be refined to obtain structures showing
FO(DTC™!) £ FO(TC"). Note that the first claim cannot be strengthened
to FO(DTC™ 1) £ FO(PFP"), as FO(DTC) < FO(PFP?) by the next propo-
sition. O

* Thus FO(LFP') is monadic fixed-point logic FO(M-LFP) as introduced in sec-
tion 8.5.
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Throughout this section, given a formula ¢(Z,¥), we abbreviate by p4et(Z,y)
the formula
Paet(T,7) = @(T,Y) AVZ(p(T,2) 27 =
(where Z are new variables). Then
Fin [DTCz5 ¢, 9)]T7 ¢ [TCry 0aes (T, 9)]TT.
Proposition 9.6.3 FO(DTC) < FO(PFP?).

Proof. For r-tuples @, € let

Xz@ = {(ar,e1),...,(ar,e)}.

As the main step of an inductive proof we show how to express a DTC oper-
ator by a PFP? operator: Given an FO(PFP?)-formula (%, %), we shall find
an FO(PFP?)-formula v (z,y, X, 7,7, z) with binary X and with parameters
T, 7,z such that for distinct elements z1,..., 2,

(1) if there is a deterministic ¢-path from % to g, say T = Ty, ...,Z; = ¥, then
FY FY,... is the sequence 0, Xz(%1), Xz(%2), . - . , X=(T, ), =(T1), .
(2) if there is no deterministic y-path from Z to ¥ then FY =0.

Then, in structures with at least r elements (the others can be treated sepa-
rately), [DTCz 5 ¢] 7 and
Jz1 ... 3z ( /\ —z; = z; A uIv[PFP,y x ¥(x,y, X, 7,7, Z)] uv)

1<i<j<r

are equivalent, and we are done.
As ¥(z,y, X,T,7,Z) we can take the formula (note that the case of a
w-path
T =T0,L1y+-,Tmy Ly -+

not containing ¥ needs special care)
(X =0 A F0(paet(T, W) A (-0 =T VW =7)
VITO(A, <<, Xvizi A @aet(T,T) A
V1§igr($ =w; Ay = 2)

V(Aicicr X¥izi A Vi (@ =1y Ay = 2i)).
O

We now turn to the hierarchy problem for ordered structures. We present
two propositions which will help us to discuss the general problem.
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Proposition 9.6.4 On ordered structures, FO(DTC) < FO(LFP?).5

Proof. Consider a formula o(Z,7), where T =z, ...z, andg =5, ...9,. In a
structure A4 of cardinality n, the (shortest) deterministic ¢-path between two
tuples must have length < n”. Assume A = {1,...,n}. First suppose that
there is a deterministic @-path

(1) T =T0,Z1,---,Zk =Y

from 7 to ¥ with k < n (where T; = z;1 ... z;,). To rewrite  as an FO(LFP?)-
formula, we shall code the existence of such a @-path by an LFP operator
with stages

Xl = {($117171))($127172)3"'7(£Clr)lar)}
Xy = XiU{(z21,2,1),(222,2,2),...,(x2,2,7)}
Xk = Xk_lU{(kal,k,l),(.’L’kz,k,Z),-.-,(wkr,k,T)}
and Xy = Xgy1 = .... Using s nested LFP operators appropriately, we can

express the existence of a deterministic p-path of length < n®. For s = r, we
get the desired formula.

To give the details of the elimination of a DTC operator by LFP? oper-
ators (as the main step of an inductive proof), let (%, %) be any FO(LFP?)
formula.

Consider the formula

¢(~f7 y) = [DTCE,ﬂ 90(57 y)]f?
Then, in structures with at least max{3,r} elements, the statement

“there is a deterministic p-path of length < (cardinality of the uni-
verse) from T to i

can be expressed by the FO(LFP?)-formula *(Z,%) below, which uses the
above coding of the path (1) prolongated to the path T = %o, %1,....Tk =
¥,7, ...,y of length n: ©

¢* = zF[LFPguy x
I (0aet(@, ) Au=min+1 AV, ;. (z=y; A v=1))
V3T (paete (T, F) A T =T AN e X' Au=u'+1
/\V1§i§r(m =yl Av=i) A{lu=max > F =7))
VI (A cio, Xyt Au=u' + 1 AV, ;o (T =y A v=1))]zmaxv.

5 The next exercise shows that LFP? can be replaced by LFP2.
5 As usual, for ¢ > 1 we abbreviate by z = ¢ that z is the 4-th element in the
ordering.
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We now iterate the transition from ¢ to ¢*, defining
(Pl — 59* and Son—}—l — (90")*-
Then ¢*(Z,7) expresses

“there is a deterministic ¢-path of length < (cardinality of the
universe)® from T to 7.”

Hence, ¢" is an FO(LFP?)-formula equivalent to [DTCz 3 »(Z,¥)| Z7. O
Exercise 9.6.5 Show that FO(DTC) < FO(LFP?) on ordered structures.

Hint: Using arithmetics definable in FO(LFP?), code the last two components
of X in the preceding proof by a single one. (]

We know that FO(DTC) £ FO(LFP') on ordered structures, since even
FO(DTC) £ MSO on ordered structures (cf. 8.6.3). But we have:

Proposition 9.6.6 On ordered structures, FO(DTC) < FO(PFP!).
Proof. Consider the formula
[DTCz5 (T, 7)] 3¢

withT=21...2, and ¥ = 91 ...y,. We show how the DTC operator can be
expressed by PFP!. For this purpose we consider a deterministic ¢-path

(*) ngo,fl,fz,...

starting from §. The idea is to code r-tuples T by subsets Py of the universe
and to find a formula of FO(PFP!) whose PFP! operator has the stages
0, Pz, Pgy,-- -, P, Pr, P, ... In case T, = ¢ in (x), but does not reach a
fixed-point in case the deterministic ¢-path started in 5 does not pass £.

We present the codification of Z in a set Pz: Let (the interpretations of) T be
given in an ordered structure. For 1 < i < r, let m; be the position of z; in
the ordering induced on the z; (for example, if r =4 and z3 < 1 = 24 < z2
then my = 2,m2 = 3,m3 = 1,m4 = 2). Note that 1 < m; <r. Order the set

{(n1,...,n) | 1 <n1,...,n. <7}, aset independent of the given structure,
lexicographically. If (m1,...,m,) is the I-th element in this ordering set

where I is the leftmost interval in the given structure having length » + 141
and containing no z; (such an interval exists in structures of cardinality
> (r+1)-(r+2+r")). Note that P uniquely codes {Z} and ! and hence, Z.
Since the coding and decoding of T in Py is first-order definable, it is easy to
write down an FO(PFP!)-formula equivalent to [DTCz 3 (%, 7)] 5t. O

The hierarchy result for FO(PFP) remains true also on ordered structures.
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Theorem 9.6.7 For allr > 0, FO(PFP") < FO(PFP"™*!) on ordered struc-

tures.

Proof. For e € R,e > 1, consider the function n — n¢ We say that a
class K is in SPACE(n®) if for some ¢ > 0 there is an ¢-n® space-bounded
deterministic Turing machine accepting K. From complexity theory we know

that for r € N,

(%) SPACE(n") # SPACE(n"*12).

We show that

(1) each class axiomatizable in FO(PFP") is in SPACE(n")
and for e € R, 0 < e < 1 that

(2) each class in SPACE(n"*¢) is axiomatizable in FO(PFP™+1).

Then we are finished: If K is a class in SPACE(n""2)\SPACE(n") then K
is axiomatizable in FO(PFP™™1) (by (2)), but not in FO(PFP") (by (1)).
Claim (1) is already inherent in the proof of 7.4.2. Claim (2) is obtained
by an analysis of the proof showing that classes of ordered structures in
PSPACE are axiomatizable in FO(PFP) (cf. 7.3.2). We sketch a proof. To
code the configurations of an n” space-bounded machine, in section 7.3 we
used a (24r)-ary relation, where the first two components served to distinguish
the distinct ingredients of configurations, their number k& being independent
of the input structure. Clearly, k distinct numbers of a single component are
sufficient for this purpose. The remaining n — &k numbers of this component
can be used (in sufficiently large structures) to encode the n¢ part of an n”*¢
space-bounded machine (because of the preceding proposition and 7.3.11 the
arithmetics needed for the encoding is available in FO(PFP™*1)). O

Corollary 9.6.8 On ordered structures, FO(DTC) < FO(PFP).

Proof. On ordered structures, we have FO(DTC) < FO(PFP?) (cf. 9.6.6) and
FO(PFP!) < FO(PFP) by the preceding theorem. O

In the following remarks we restrict ourselves to ordered structures. It
is open whether the arity hierarchy is strict for FO(DTC), FO(TC), or
FO(LFP), that is, whether the analogues of 9.6.7 are true for these logics.
The problem for FO(LFP) is related to prominent questions in complexity
theory: If FO(LFP) = FO(LFP") for some r > 1, then by 9.6.7, FO(LFP)
#Z FO(PFP) and hence, PTIME # PSPACE (cf. 7.5.2). On the other hand,
in view of FO(DTC) < FO(LFP?) (cf. 9.6.4), if FO(LFP) # FO(LFP?) (by
9.6.5, even if FO(LFP) # FO(LFP?)) then FO(DTC) # FO(LFP) and hence,
LOGSPACE # PTIME (cf. 7.5.2).
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Exercise 9.6.9 Let £ € {FO(DTC),FO(TC), FO(LFP)}. Show £! < £2 on
ordered structures (cf. 8.6.3). Show that FO(LFP!) < FO(IFP!). Hint: Use
6.3.3 (and 6.2.3) to show that FOIFP') £ MSO on word models. O

Exercise 9.6.10 Show FO(DTC) < FO(IFP?). Hint: By 9.6.5, FO(DTC)
< FO(LFP?) on ordered structures. Use deterministic paths to define suffi-
ciently large orderings that allow to carry out the corresponding argument.

O

We know that every FO(LFP)-formula is equivalent to an FO(LFP)-
formula containing just one fixed-point operation. But, given r, does this
result hold for FO(LFP") instead of FO(LFP)? In other words: Do we really
have to increase the arity when replacing nested fixed-point operations by
single ones? In general, we have. We close by stating a theorem which con-
tains the corresponding result for all fixed-point logics. For a proof we refer
to [113].

For an FO(DTC!)-formula ¢ let n(¢) be the maximal number of nested
DTC operations in . Define p : FO(PFP) — N by

ple) = 0, if pis atomic;
p(=p) = plp);
ple V) = max{p(p), p(¥)};
p(Fzp) = plp);
p([PFPz x¢]t) := p(p)+ arity of X.

Theorem 9.6.11 For k > 0 there is an FO(DTC")-sentence ¢ with n(yp) =
k + 1, which is not equivalent to any FO(PFP)-sentence 1) with p(y) < k. O

Corollary 9.6.12 For everyk > 1 there is an FO(LFPl)—Sentence not equiv-
alent to any FO(LFPk)—sentence with a single LFP operation. a

Notes 9.6.13 A reference for databases and logic programs is [1]. The main
reference for sections 9.1 and 9.2 is [3]. Theorem 9.3.2 goes back to [7]. Most
of the results of section 9.4 are due to Grohe and contained in his thesis [62];
cf. also [63]. References for section 9.5 are [112] (for Theorem 9.5.1(d)) and
[42] (for Theorem 9.5.2). The main result of section 9.6, Theorem 9.6.2, is
due to Grohe [62, 64]. Further references are [67, 88].



10. Optimization Problems

Many of the oldest and more prominent, examples of NPTIME-complete deci-
sion problems arose from the study of combinatorial optimization problems,
the NPTIME-completeness reflecting their apparent intractability. More pre-
cisely, the NPTIME-completeness of the decision problem rules out the ex-
istence of a polynomial time algorithm for the optimization problem (unless
PTIME = NPTIME). Of course, the intractability of an optimization problem
does not exclude the existence of efficient algorithms that provide approxi-
mative solutions. And in fact, such algorithms may be necessary for practical
purposes.

It has turned out that intractable optimization problems may behave
quite differently with respect to the existence of approximative algorithms (a
phenomenon that led to various notions of approximability).

In this chapter we first show that the class of polynomially bounded optimiza-
tion problems coincides with the class of optimization problems definable by
first-order formulas. This characterization leads to a logical or descriptive
classification of those problems. Section 10.2 presents some first results doc-
umenting a relationship between this classification and approximability. For
further study we refer the reader to the literature.

10.1 Polynomially Bounded Optimization Problems

To prepare our definition of an optimization problem, let us consider two
examples, a maximization and a minimization problem.

A cut C in an graph G = (G, E%) is a subset of G.

MAXCUT: Given a graph G, MAXCUT asks for the maximal number of
edges between the two parts of a cut, that is, for the maximum of

1{(a,b) | Eab, a € C, b ¢ C},

where C ranges over all cuts in §.

A wertezx cover C in a graph G = (G, EY) is a subset of G such that
G = VaVy(Ezy — (Cz Vv Cy)).
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MINVERTEX: Given a graph G, MINVERTEX asks for the minimum of ||C|]
where C ranges over all vertex covers in G.

In this chapter we use some sloppy formulations. For example, we say that a
class K of (unordered) structures is acceptable in polynomial time, actually
meaning that the class K. of its ordered representations (cf. 7.5.11) is in
PTIME. And if we say that a function f : K — Nis computable in polynomial
time, we mean that the function f. : K. — N with

f<((A,<) = f(A)
is computable in polynomial time.

Definition 10.1.1 An NPTIME optimization problem Q is given by the data
K, F, cost, @1, by short: Q@ = (K, F, cost, y), where

— K is a class of structures (of a fixed vocabulary) acceptable in polynomial
time, the class of input structures or input instances.

— F is a function defined on K; for every instance A, F(A) is the set of
feasible solutions for A. There is an s > 1 such that for every 4 € K and
S e F(A),

S C A%

Moreover, the class
{(A4,8) | Ae K, SeF(A)}

is acceptable in polynomial time.

— cost is a polynomial time computable function defined on the class {(A, S) |
A€ K,S € F(A)}. The values of cost are natural numbers.

— p € {max, min}.

If 4 = max (p = min) we speak of a mazimization (minimization) problem.
0

For Q we define the function optg on the class K of input instances by
optg(A) = pfcost(A,S)|S € F(A)}.

An NPTIME optimization problem @ induces the following decision problem:
Given an input instance A and a k > 0, is there a feasible solution S for A
such that cost(A4,S) > k if u = max, and cost(A4,S) < k if 4 = min? The
name “NPTIME optimization problem” is justified by the observation that
this decision problem is in NPTIME.

Let us see how the above examples, MAXCUT and MINVERTEX, fit into
these definitions. In both examples the class of instances is the class of graphs.
For MAXCUT the set of feasible solutions F'(G) is the power set Pow(G),
and the cost function is given by
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cost(G,C) = ||{(a,b) € EY |a € C and b ¢ C}|]
and p = max. For MINVERTEX, F(G) is the set of vertex covers in G,
cost(G, C) = |ICl|
and p = min. In both cases the problem asks for opt(G).

An NPTIME optimization problem @ is said to be polynomially bounded if
there is a polynomial p € N[z] such that optg(A) < p(||A]]) for all input
structures A.

For polynomially bounded optimization problems the bridge to logic is
given by the following concept.

Definition 10.1.2 An NPTIME optimization problem Q is first-order de-
finable if there is a first-order formula »(Z,Y) with free variables among
T=ux...2;, and Y = Y; ...Y,, such that for any input structure A,

opto(A) = p [{ae A Al ¢[a, Rl n
R

Clearly, MAXCUT is first-order definable by the formula
plz,y,Y) = EzxyAYzA-Yy
and similarly, MINVERTEX by
o(z,Y) = VaVy(Fzy - (YzVYy)) - V.

Theorem 10.1.3 An NPTIME optimization problem is polynomially bounded
iff it is first-order definable.

Proof. Clearly, if an optimization problem @ is first-order definable, say by
@(z1,...,7k,Y), then opto(A) < ||A||* for all instances 4; hence, Q is poly-
nomially bounded.

Now suppose that @Q is a polynomially bounded optimization problem,
say, opto(A) <||A]|* for all instances A. Denote by T the vocabulary of the
input structures of @ and let P be a new k-ary relation symbol. Set

K, = {(A,P4) | A€ K,PA C A*, there is a feasible solution
S € F(A) such that cost(A4,S) > ||[P4]|}

if p = max, and

K, = {(A,PA) | Ac K,PA C A*, there is a feasible solution
S € F(A) such that cost(A4,S) < ||[P4||}

if 4 = min. By the remarks following Definition 10.1.1 we know that the class
K, is in NPTIME. Therefore, by 7.5.14, there is a X1-formula 3X (X, P) of
vocabulary 7 U { P} with first-order 1 such that for any structure (A, P4),
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(A, P4 € K, iff (A, P4) E3IXy(X,P).
Thus,
opto(A) = uf||P|| | R, P relations over A such that A = (R, P)}.
Therefore, in case opt = max we have

1) optg(A) = max |{a€ A| AR Pary(R, P},
R, P

and in cage opt = min,

(2) opto(A) = min [{z e A| Ak v(R, P) — Pa}ll.
R, P
Hence, @ is first-order definable. O

Denote by MAX PB the class of polynomially bounded maximization
problems and by MAX %, the class of first-order definable maximization
problems, where the defining formula (cf. 10.1.2) can be chosen %,,. Classes
such as MAX II,,, MIN PB, ... are defined similarly (for the definition of ¥,
and II,, compare 1.B).

Using so-called Skolem relations, one easily shows that every ¥i-formula
is logically equivalent to a formula of the form 3X4 with ¢ € II,. E.g., for
¢ = Vi3zVuIvp with quantifier-free o, we show how the formula 3Xv can
be transformed into the desired form, thereby exemplifying the main step
of an inductive proof. For a new relation variable Z, the formula IX4 is
equivalent to IXIZVy(GwZyw A Vz(Zyz — VuTvy)) and hence, equivalent
to AXAZVYVVaIwIv(Zyw A (Zhz — ¢)).

Thus the formula ¢ used in the proof of the preceding theorem can be
assumed to be II;. Hence, the formula in (1) is equivalent to a Ils-formula
and that in (2) to a Xo-formula. Therefore, we have

Corollary 10.1.4 (a) MAX PB = MAX FO = MAX TI,.
(b) MIN PB = MIN FO = MIN 3. 0

For minimization problems we can do better: We shall see in 10.1.6 that MIN
PB = MIN II;. In the proof, given a problem in MIN ¥,, we shall replace
the leading existential quantifiers by relations similarly as above. The same
idea underlies the following proof.

Proposition 10.1.5 MAX ¥; = MAX II; and hence, MAX %; C MAX
I1;.

Proof. Let Q be in MAX Xy and let ¥(Z,7,Y) be a IT;-formula such that for
any instance 4 we have

opto(A) = max [|Sat(B)],
R
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where
Sat(R) := {ac A| Al (a7, R)}
We show
(+) max [|Sat(R)|| = max [|Sat(R, P)ll,
R R, P

where Sat(R, P) is
{abe A| A v(a,b,R) A Pab A VyVZ((Pay A Paz) -y =7%)}.

This gives the claim, since then optg(A) = maxg p ||Sat(R, P)||, and the
formula in the definition of Sat(R, P) is equivalent to a IT;-formula.

To prove (), note that @by, ab, € Sat(R, P) implies b, = by and @ €
Sat(R). Thus

ey [Sat(R)|| > [|Sat(R, P)lI-

at(R) choose a witness b(a). such that A |=

On the other hand, for @ € S a s
= {ab(a) | @ € Sat(R)}. Then Sat(R,Fy) = P, and

Y(a,b(a), R) and set Py :

hence,
(2) ISat(R)I| = [ISat(R, Fy)ll-
From (1) and (2) we conclude (*). O

Proposition 10.1.6 MINII; = MIN X, (= MINPB) and MIN £, = MIN %;.

Proof. For the first assertion, let Q be a problem in MIN ¥, and let ¥/(Z,7,%,Y)
be a quantifier-free formula such that

opto(A) = min ||Sat(R)]|
R

where
Sat(R) = {a€ A|AE Fyvzy(a,y,z. R)}-

We can assume that T = z,...2, and ¥ = ¥ ... ym are of the same length
(if m < k we extend 7 by dummy variables and if k¥ < m we replace % by
WAL = Tpe1 = ... = Ty). We show

() min [[Sat(B)|| = min [Sas(F, P)ll
R R, P

where
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Sat(R,P) = {abe A| Ak (Y29(a,b,zZ, R) A—Pa) V (@ =bA Pa)}.

This finishes the proof, since the formula in the definition of Sat(R, P) is
equivalent to a II;-formula. .
To show (%), we verify for every R that

(+) ISat(B))l = min [|Sat(E, ).
P

Fix R and let P be arbitrary. For @ € Sat(R) choose b such that A |=
vz (@, b, Z, R). If not Pa then @b € Sat(R, P) and if Pa then aa € Sat(R, P).
Thus, ||Sat(R)|| < ||Sat(R, P)||. On the other hand, for P = Sat(R), we have
ISat(R)|| = ||Sat(R, P)||. Altogether, we see that (+), and thus (x), holds.

To prove MIN Y. = MIN Xy, just omit the variables Z and the quantifiers ¥z
in the preceding proof. O

By 10.1.4-10.1.6 we have
MAX ¥y C MAX ¥, € MAXI; = MAX Y, C MAX T, = MAXPB
MIN X = MIN ¥; € MINTII; = MIN X5 (= MINII,) = MIN PB.

All the inclusions are proper (compare [105]). The situation changes for struc-
tures with a built-in successor relation (compare [34]).

10.2 Approximable Optimization Problems

For many NPTIME optimization problems Q = (K, F, cost, u) the corre-
sponding decision problem, in case p = max the set

{(A,k) | there is a feasible solution S € F(A) such that cost(A4,S) > k},

is NPTIME-complete. An example is given by MAXCUT. Unless PTIME
= NPTIME, this rules out the existence of a polynomial time algorithm II
giving optimal solutions in the sense that for any instance A,

(A) € F(A) and optg(A) = cost(A,1I(A)).
For practical purposes one is interested in approximation algorithms:

Definition 10.2.1 Let 0 < ¢ < 1 and @ be an NPTIME optimization prob-
lem. Q is e-approzimable if there is a polynomial time algorithm II, which for
every instance 4 returns a feasible solution I1(.4) such that

loptg(A) — cost(A,II(A))| < e -optg(A).

That is, cost(A,II(A)) > (1 —¢) -optg(A) if p = max, and cost(A4,II(A)) <
(I+¢€)-optg(A) if p = min.

Denote by APX the class of NPTIME optimization problems that are
g-approximable for some ¢ with 0 < e < 1. O
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To relate the class MAX ¥, to APX, we have to incorporate some effec-
tivity requirements; they are fulfilled in all familiar examples.

Definition 10.2.2 A formula ¢(%,Y) effectively represents the NPTIME op-
timization problem @ if, in addition to the conditions stated in Definition
10.1.2, there is a polynomial time algorithm that, given any instance .4 and
any relations R on A, computes a feasible solution S € F(A) with

cost(A, S) = [{a e 4] A o@ R} O

In the following let MAX, ¥, be the class of maximization problems which
can be effectively represented by a ¥;-formula.

Theorem 10.2.3 MAX, ¥; C APX.

Proof. Consider a problem Q in MAX, ¥;. Then, for a suitable quantifier-

free formula 9(Z,7,Y), the formula 35y (7, 7,Y) effectively represents Q; in
particular, for any instance 4 we have

optg(A) = mﬁaXII{ﬁ € Al AE3(a, 7, R)}H.

Set

Ay = {acA|AEIVIW@ETY)}
Then
(*) (| 4ol > optgo(A).

Assume § = y; ...Yn. Since Ao = {@ € A | A= WY Y(@,7,Y)}, there is a
function f: Ag — A" such that

AEYy(@, f(@),Y)

holds for all @ € Ag. Consider the probability space (2 of all tuples of rela-
tions R on A (of arities corresponding to Y') with the uniform probability
distribution and let x 4 be the random variable with

xAR) = |{ae A | AEY(@ f@, R}

Let k be the number of atomic formulas in ¢ with a relation variable in Y.
Then for the mean value E(x.4) of x4 we show:

(1) E(xa) > 55l 4ol
(2) There is a polynomial time algorithm that, given an instance A, yields
relations R on A such that

XA(R) > E(xa).
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This proves the claim: Given 4, in polynomial time we first pass to relations
R as in (2) and then, by effective representability, to a feasible solution, say
II(A), with

cost(A, TI(A)) {a e A| Ak TFgy(a,y, R}
I{a € Ao | A =4(a, f(a), R)}|
= xa(R) > #[4ol] (by (1) and (2))

> groptg(A) (by (¥)).

To show (1), we define the indicator function I by

IR e { 1 if AEY(a, f(a),R)

0 otherwise.

v

Then x4(R) = Y zc 4, [(R,@) and hence,

E(xa) = ZRE XA(R) = ”17” ZEGQ Zaer I(ﬁ, a)
Zaer W Y Fen I(R,a).

Fix @ € Ay. Let ay,...,qa; be the distinct atomic subformulas of 1 with a
relation variable in Y. Then A determines the truth values of all atomic sub-
formulas of ¢ different from ay,...,a. By definition of Ag and f, there
are relations P such that A k& w(a f(@), P). Thus, for the correspond-
ing assignment of truth values to aq,...,az, the formula 1) gets the truth
value TRUE. Hence, for all relations R leading to the same truth values of
@1,...,ax, and these are at least 5x||{2|| many, we have A = 4(a, f(a), R).
Thus, Y zen (R, @) > 12|l So the equalities above give E(x.4) > 2| 4ol)-

The last considerations show {and the same applies to similar mean values
below) that E(x4) can be evaluated in time polynomial in |[A]|: First, we
list Ag and a function f of the kind in question by testing for all @ € A
whether for some b we have 1/(d, b, R) for some R, putting @ in Ay, and set-
ting f(a@) = b if b is the first tuple with this property (note that we need
R only on the sets {@,b} of limited cardinality). Now, to calculate E(x.4),
for > mco I(R,a) we again need consider the behaviour of the relations R
only on the set {@, f(@)}, the total number of the relations with the same
behaviour being easily calculable.

We come to a proof of part (2). Suppose A = {1,...,n}. In polynomial
time we construct relations R with x4 (R) > E(xa)- For this purpose we
shall stepwise fix the truth value of Re for R € R and € € A.

Let 81, ..., Bm be an enumeration (in a standard way) without repetitions
of the elements of the set

{a;@ f@) |1<j <k ace Ao}
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(if, for example, f(a) = b, f(b) =@, a; = RTY, a; = RYT, and i # j, then
a;(@, f(@)) = a;(b, f(b)), and this instance occurs only once in f1,. .., Bm).

By induction on s we {ix the truth value t; € {TRUE, FALSE} of 3; such
that the following inequality holds for the conditional expectations:

(*)  E(xalff =t1,..., 88 = ts) > E(xal8' =t1,..., 8L, =t,1).
Since E(xalf{' =t1,..., 8L, =ts1) =
SE(alB?t = t1, ..., 8, = ts1, 5 = TRUE)
FLE(xAlBr =11, ..., B, = ts—1, 8 = FALSE),
in order to fix t;, we only have to check whether
E(xalff' =ti,..., 8%, = ts—1, 5 = TRUE)
> E(xalfft =t1,..., Bty =tsy, B = FALSE),

and by the remarks above this can be done in polynomial time. For s = m
we have by (%)

E(alB =t Bt = tm) 2 BlxalBft = t1,. .., By = tm-1)
> ... > E(xalBt =t) > E(xa).

Since for relations R and R’ that coincide on all atomic subformulas of

¥(a, f(a),Y) with @ € Ag, we have
xa(R) = xa(R"),

we see that for any R with truth values ¢1,...,t, on Bi,..., 3m, respectively,
we have

XA(R) = BE(xalB = t1,..., Bit =tm) (= E(xa))-

Thus we obtain the relations R as claimed in (2) by fixing the values on
Bi,..., Bm according to t1,...,t, and arbitrarily (say, as FALSE) on all
other tuples. 0

In the first part of the preceding proof we have shown

Corollary 10.2.4 Assume Q is in MAX, X, say, for every instance A we
have

opio(A) = maxf{zed|Alk (@, 7, R

with quantifier-free (Z,7,Y ). Then there is a polynomial time algorithm
that, given an instance A, yields relations TI(A) on A such that

1
cost(A,TI(A)) = [l oll,

where k is the number of atomic formulas in v with a relation variable in Y
and where Ag:={a € A| AE IV Igw(a,7,Y)}. O
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As an application we obtain
Proposition 10.2.5 MAXCUT is %—appromimable.
Proof. If Q denotes MAXCUT, we have for any graph A,

(+) optg(A) = mgx”{(a,b) | A= Eab A Ra A —Rb}||.

Thus, the preceding corollary with ¢ = Exy A Yz A Yy, ¥ the empty se-
quence, k = 2, and Ag = {(a,b) | A IY(EabAYaA-Yb)} = EA yields a
polynomial time algorithm IT such that

1
cost(A, II(A4)) > ZHEAH-
Since E4ab implies E4ba, we have by (+),
1
optg(A4) < §||EA||‘

Altogether,
cost( A, TI(A)) > %Oth(A). 0

The following two observations show that possible extensions of Theorem
10.2.3 fail.

Denote by PTAS the class of NPTIME optimization problems Q with
a polynomial time approximation scheme, i.e., with the property that there
is an effective procedure IT that returns, for every rational € with 0 < € <
1, a polynomial time algorithm II, witnessing that Q is e-approximable. It
has been shown that, unless PTIME = NPTIME, MAXCUT ¢ PTAS; in
particular, as MAXCUT € MAX,_.X;, we have MAX, %; € PTAS.

We come two the second observation. Let @ be the problem MAX-
CLIQUE: Given a graph G it asks for the maximal size of a clique in G.
Hence, MAXCLIQUE € MAX, I, since

opto(G) = mgx]]{a €G |G E RanV2Vy((Rz ARy Az #£y) — Exy)}|.

It is known that, unless PTIME = NPTIME, MAXCLIQUE ¢ APX, showing
that Theorem 10.2.3 cannot be extended to MAX, IT;.

We close this section with two “positive” remarks on Theorem 10.2.3. The
first one gives a generalization, the second one shows how to enlarge its scope
of applicability.

We can change the definition of a first-order definable optimization prob-
lem by considering in 10.1.2 formulas ¢(Z,%,Y ) and requiring that

opig(A) = u [{aeA| Al olab R}
b R
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(“optimization over elements and relations”). Replacing elements by rela-
tions, we see that this does not change the notion of a first-order definable
optimization problem; however, the classes MAX ¥, and MAX, ¥ strictly
increase, if we allow optimization over elements and relations (note that the
replacement of constants by relation symbols uses universal quantifiers). Nev-
ertheless, Theorem 10.2.3 remains true for the larger class MAX, ¥; (indeed
with essentially the same proof).

The following example shows how one can enlarge the scope of applicability of
the preceding theorem. Consider the optimization problem known as MAXI-
MUM CONNECTED COMPONENT (MCC). Given a graph, it asks for the
maximum of the cardinalities of connected components. Since the connected
components are computable in polynomial time, there is a polynomial time
algorithm solving the optimization problem. By 10.1.4(a) we know that MCC
€ MAX II;. On the other hand, MCC ¢ MAX II; (see Exercise 10.2.6 below)
and hence, MCC ¢ MAX ¥, by 10.1.5. Therefore, our logical approach does
not yield MCC € APX, even though there is a polynomial time algorithm
giving an optimal solution.

However, since the transitive closure is computable in polynomial time,
the approximability of MCC is equivalent to the approximability of MCC’,
where MCC' is the problem

Given G = (G, E%, R®) with R = TC(E%), a “graph with tran-
sitive closure”, compute the maximal cardinality of its connected
components.

Clearly, MCC' is in MAX, ¥; (with maximazation over elements) since

optyccr (A) = max ||{a| G |= Rab}]|.
b

Now, 10.2.3 (with maximization over elements) yields MCC' € APX.

Of course, the same idea can be applied to any other optimization problem:
The values of polynomial time global relations can be added to the instances
by free without changing the behaviour of the optimization problem with
respect to the notion of approximability we have considered. In [11] this
extra relations have been “added” on the logical side, allowing formulas of
FO(LFP) instead of FO.

Exercise 10.2.6 (a) Give a direct proof that MCC € MAX II,. (b) Show
that MCC ¢ MAX II; (even not with maximization over elements). O

Notes 10.2.7 The main references for this chapter are [104, 105, 129]; they
also contain corresponding historical remarks.
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There are logics (for instance FO(IFP); cf. Chapter 7) that capture PTIME
on ordered structures. Instantly, this result evokes the question whether it
can be strengthened to the case of not necessarily ordered structures:

Is there a logic strongly capturing PTIME?

There are examples of such logics (cf. 11.1.2); however, they are quite ar-
tificial, at the same time showing that we should incorporate some obvious
requirements of effectivity in our notion of strongly capturing. We thus are
led to an effective notion of a logic strongly capturing PTIME and, therefore,
may reformulate the question above as follows:

(%) Is there a logic effectively strongly capturing PTIME?

The question is considered to be the most prominent open problem in finite
model theory and, at the same time, a difficult one. For instance, a proof that
such a logic does not exist, would yield that PTIME # NPTIME (cf. section
11.1) and hence, solve the most prominent open problem in complexity theory.
Moreover, in section 11.1 we show that the question (x) is strongly related
to the isomorphism problem for finite structures.

The statement “FO(IFP) captures PTIME” can be reformulated as
“FO(IFP) effectively strongly captures PTIME on the class of ordered struc-
tures”. In section 11.2 we are led to investigate specific classes of (not neces-
sarily ordered) structures whether they allow for a similar result, i.e., we are
led to search for partial solutions of (x). We present some positive results.

The discussion of specific logics that may be candidates for a positive
solution of (x) itself, is transferred to the next chapter. There we shall also
see that if there is any logic at all that effectively strongly captures PTIME,
then there is such a logic with a familiar syntax.

In the following not only structures, but also formulas and Turing ma-
chines will be considered as objects of computations. When doing so, we
shall tacitly assume that vocabularies, formulas, and machines are coded by
{0, 1}-words in some reasonable way.
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11.1 Logics and Invariants

First, we recall the definition of a logic £ capturing a complexity class C and
of L strongly capturing C.

For a class K of structures we introduced the class K. of its ordered
representations,

K. = {(A,<)| A€ K, < an ordering of A}.
In particular, if <; and <2 are orderings of A then
(*) (A,<1)EK< iff (.A,<2)EK<.

The logic £ captures the complexity class C iff for every class K of ordered
structures,
K e(C iff K is axiomatizable in L.

And £ strongly captures C iff for every class K of (not necessarily ordered)
structures,

K. e(C iff K is axiomatizable in £.}

Already several times we mentioned the following open question: Is there a
logic strongly capturing PTIME? Below we present two examples of such
logics which will turn out to be “unsatisfactory”, thus leading to a sharper
version of the question.

Recall that a sentence ¢ of vocabulary 7. = 7U{<} (i.e., <& 7) is order-
invariant in the finite if

A<)Eye iff (A <) Ee

holds for all (finite) 7-structures 4 and orderings <1, <3 of A.
By (*) above, if K. = Mod () then ¢ is order-invariant in the finite.

Exercise 11.1.1 For sufficiently rich 7 the set
{¢ € FO[r<] | ¢ a sentence order-invariant in the finite}

is not decidable and hence, not recursively enumerable. Hint: Let o be a
vocabulary such that

{1y € FO|o] | ¢ a sentence unsatisfiable in the finite}

! Note that on the left side of the last two equivalences, K and K. are classes of
ordered structures. This is an accordance with the conventions we agreed upon
in Chapter 7, that only classes of ordered structures are considered as members
of complexity classes.
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is not decidable (cf. Trahtenbrot’s Theorem 7.2.1). Let 7 := o U { P}, where
P is a unary relation symbol, P & o. For a sentence ¥ € FO[o] let ¢, be the
FO[r.]-sentence

py = (Y = Jz(“c is the <-minimal element” A Pgz)).

Then, ¢y is order-invariant in the finite iff ¢ A 3z3y x # y is unsatisfiable in
the finite. d

We present the promised examples.

Example 11.1.2 Let £y be the logic whose sentences of vocabulary 7 are
the FO(IFP)[r.]-sentences, where the satisfaction relation A %1 ¢ for a
7-structure A and an £;[r]-sentence ¢ is defined by

A ¢ iff ¢ is order-invariant in the finite and there is an
ordering <* on A such that (A4, <) EFF

(on the right side, (A, <4) E"F ¢ means that (A, <4) is a model of ¢ in
the semantics of FO(IFP)).

Let £, be the logic whose sentences of vocabulary 7 are the FO(IFP)[r.]-
sentences order-invariant in the finite where now the satisfaction relation is
defined by

AEF? o iff there is an ordering <4 on A such that (A4, <4) =TFP .

As FO(IFP) captures PTIME, one easily verifies that both £; and L5 strongly
capture PTIME. However, both logics have unsatisfactory features: Concern-
ing £, in view of 11.1.1 there is no effective procedure assigning to every
Ly-sentence w an algorithm that, given an ordered version of A, evaluates
A |= ¢ in time polynomial in ||4||. On the other hand, given an Ls-sentence
, there is such an effective procedure. But now, using 11.1.1 again, we see
that for sufficiently rich 7 the set of L3[r]-sentences is not decidable. O

None of the logics just considered satisfies at the same time that

— the set of sentences is decidable
— there is an effective procedure assigning to every ¢ a polynomially time-
bounded algorithm testing A = .

We incorporate both requirements in our notion of capturing given by the
following definition.? When speaking of complexity classes, we have in mind
one of the concrete complexity classes considered so far, and we think of a
logic £ as given — for any vocabulary 7 — by a set L[]y, the set of £-sentences
of vocabulary 7, and by a relation =7 between 7-structures and £-sentences
of vocabulary 7, the L-satisfaction relation for 7.

% The reader may wonder why, say, in the second requirement we do not ask for a
polynomial time procedure instead of an effective procedure. In fact, there is no
real difference: By standard techniques one can pass from a logic satisfying the
weaker conditions to a logic satisfying the stronger ones.
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Definition 11.1.3 Let £ be a logic and C a complexity class. £ effectively
strongly captures C, L =5 C, if
— L strongly captures C;
— for every vocabulary 7
(i) L[r]o is a decidable set;
(ii) there is an effective procedure that to every sentence ¢ € L[7]y assigns
a pair (M, f), where M is a Turing machine that accepts Mod(y) - and
f is (the code of) a function witnessing that M is resource-bounded
according to C.2 0O

In all concrete cases considered in Chapter 7 we have implicitly proved
that the logics and the corresponding complexity classes satisfy the effectivity
conditions (i) and (ii). For example, the proof of 7.4.2(a) yields a procedure
that to every ¢ € FO(IFP)[r] assigns a pair (M,d) where M is an 2% time-
bounded deterministic Turing machine accepting the class of ordered models
of ¢.

In the definition above we do not impose limitations on the syntax of
a logic (besides (i)). For example, NPTIME is not only effectively strongly
captured by the logic of 3i-sentences, but also by the logic £ with
~ Lfrlo = {(M,d)|d>1and M is a nondeterministic Turing

machine for ordered representations of T-structures}
— for every p = (M, d) € L[r]o and every 7-structure A4,

A | ¢ iff M accepts some ordered representation of A in < ||A||¢ steps.

This logic is very artificial and lacks the logical flavour we are accustomed
to. Moreover, it is tied up so closely with the definition of NPTIME that
the characterization of NPTIME in terms of this logic does not give us any
additional insight. We shall show in 12.3.17 that in case PTIME is effectively
strongly captured by any logic at all, it can already be captured by a logic
with a familiar syntax.

Altogether, we reformulate our main question as
(%) Is there a logic effectively strongly capturing PTIME?

In the remainder of this section we study the relationship of () with other
problems, thereby presenting methods and results that may be of help in
getting an answer.

Proposition 11.1.4 If the answer to () is “no” then PTIME # NPTIME.

3 To be definite, in case ¢ € {LOGSPACE, NLOGSPACE, PSPACE} we code f
by a natural number d meaning that M is d-log space-bounded or (for PSPACE)
x% space-bounded; in case C € {PTIME, NPTIME} we also code f by a number
d meaning that M is z¢ time-bounded.
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Proof. There seems to be a very short proof: Assume PTIME = NPTIME.
Since X1 =¢ NPTIME, we have ¥} =,; PTIME. However, this argument
has a gap: By %] =¢s NPTIME we know that, given 7, there is an effective
procedure assigning to every Xi[r]-sentence ¢ a number d > 1 and a non-
deterministic ¢ time-bounded Turing machine M accepting Mod(i).. But
how do we get a deterministic machine effectively?

To close this gap one shows, using an NPTIME-complete problem, that
PTIME = NPTIME implies an effective version of PTIME = NPTIME.
More precisely: Let SAT be the set of satisfiable propositional formulas in
conjunctive normal form. SAT is NPTIME-complete (cf. [87]). Even more:
There is a polynomial time algorithm Ag that assigns to every d > 1, every
nondeterministic 2? time-bounded Turing machine M, and every input string
u for M a propositional formula a(u, (M, d)) in conjunctive normal form such
that

(+) M accepts u  iff  a(u, (M,d)) € SAT.

Assume PTIME = NPTIME and let A; be a deterministic polynomially
time-bounded algorithm for SAT. By (+), using the algorithms Ay and A4;
and time bounds for them, one can eflectively assign to every d > 1 and
nondeterministic 2 time-bounded M a number d' > 1 and a deterministic
2% time-bounded algorithm accepting the same language as M. a

When defining the logics in Example 11.1.2, we essentially restricted our-
selves to sentences order-invariant in the finite to ensure that the model
classes Mod*' () and Mod*“2(¢) belong to PTIME. We could have dis-
pensed with this restriction if there would exist a PTIME-algorithm defining
a “canonical” ordered version of every structure. Proposition 11.1.6 contains
the precise statement and the following Definition 11.1.5 gives the precise
notion.

Denote by Str and Str[7] the class of all finite structures and of all finite
T-structures, respectively.

Definition 11.1.5 A PTIME-canonization C consists of functions
C; : Str[r] — Str[r<]

for every vocabulary 7 such that:

(1) For all A € Str[r], (A= Cr(A)|r and <4 is an ordering).*

(2) For all A,B € Str|r], A= B implies C,(A) = C,(B).

(3) C; is PTIME—computable, more precisely: there is a PTIME-algorithm
that, applied to (.A <4) € Str[r], gives (the encoding of) the ordered
structure C, (A). ® O

* Recall that C-(A)|r denotes the T-reduct of C, (A).
5 In Chapter 7 we agreed upon how to regard ordered structures as inputs to a
Turing machine M. By those conventions it is clear that for isomorphic (A, <*)
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Clearly, in view of (1), condition (2) is equivalent, to
(2) For all A,B e Str[r], A=B iff C.(A)=C(B).

Proposition 11.1.6 If there exists a PTIME-canonization then there is a
logic effectively strongly capturing PTIME.

Proof. Let C be a PTIME-canonization. Consider the logic £ whose sentences
of vocabulary 7 are the FO(IFP)[r.]-sentences. The satisfaction relation is
defined by

(%) AEST o iff C(A) ETT o

L effectively strongly captures PTIME: Clearly, the set of L[r]-sentences
is decidable. From Chapter 7 we know that there is an effective procedure
assigning to every FO(IFP)[r.]-sentence ¢ a pair (Mg, dy), where M, is an
z% time-bounded Turing machine accepting the class of ordered models of .
Therefore, using a PTIME algorithm for C., the equivalence (%) shows that
one effectively can assign to every L[r]-sentence ¢ a pair (M, d), where M
is an z? time-bounded Turing machine accepting Modﬁ(cp)<. In particular,

Mod* (p)< is in PTIME.
Conversely, if K is a class of 7-structures with K. € PTIME, then K. =
Mod"OUFF) (1) for some FO(IFP)[r]-sentence ¢. But then, K = Mod® ().
(]

For an ordered 7.-structure A, let AT be its numerical representation, i.e.,
AT is the unique 7.-structure isomorphic to A with At = {0,...,||A]| — 1}
and with <A the natural ordering on A¥. Assume that C is a PTIME-
canonization. By passing to (C-(A))T, one sees that (2) (compare (2'), too)
in the definition of PTIME-canonization can be replaced by

For all A,B € Str[r], A=B iff C.(A)=C.(B).

The structures (C-(A))T can be coded in a canonical way, say, by words over
the alphabet {0,1}. Thus, a canonization leads to an “invariantization”, i.e.,
to a map associating with every structure A a word only depending on the
isomorphism type of 4. Again, we give a precise definition and statement.

Definition 11.1.7 A PTIME-invariantization I consists of functions
I : Str(r) — {0,1}*

such that for every vocabulary 7 we have:
and (B, <) the result of M applied to (A, <*) is the same as that of M applied
to (B, <®). Therefore, if C, is computable then
A>=B implies C;(A)=C,(B).

Thus, in the above definition, property (2) is redundant. Nevertheless, here and
in the following, we stay with such redundancies in order to emphasize both the
structural and the computational aspects of such functions.
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(1) For all A,B e Str[r], A=B iff I,(A)=1I1.(B).
(2) I, is PTIME-computable (more precisely: there is a PTIME-algorithm
that, applied to (A4, <?) € Str[7]<, gives the word I,(A)).

Proposition 11.1.8 If there is a PTIME-canonization, then there is a
PTIME-invariantization.

Proof. If C is a PTIME-canonization, then let I.(A) be the {0,1}-code of
(C-(A))T. By the remarks above, I is a PTIME-invariantization. O

It may be surprising that the converse of the preceding proposition is also
true, that is, an “arbitrary” invariant already leads to a canonical ordering.

Theorem 11.1.9 If there is a PTIME-invariantization, then there is a
PTIME-canonization.

Proof. Assume that I is a PTIME-invariantization. Let 7 be an arbitrary
vocabulary and let < be a new binary relation symbol. Set ¢ = 7. First,
using I, : Str(o) — {0,1}*, for every 7-structure A and every ordering <4
on A, we stepwise define an ordering <4 on A.

Fix A (with at least two elements) and an ordering <AonAIfaq,...,q
are distinct elements of A4, let

a1, ... a] = {(a,a;)|1<i<j<l}

if { > 2 and [a1] := {(a1.a1)}. We start the step by step construction of <*:
Let wy be the first element in the lexicographic ordering of {0,1}* of the set

{I-((A,[a])) | a € A}.

Among the a’s with w; = I,((4, [a])), let a; be the <"-first one.
In the second step let ws be the first element in

{I-((A,[o1,a])) |a € A,a # ar }.

Among the a’s with wy = I,((A4, [a1,4a])) and a # a1, let ay be the <A-first
one.

Afier n steps, where n := ||4]|, we have obtained ai,...,a, with A =
{a1,...,an}. We set

<t = ag,. .. an]
and define C by setting
C,(A) := the numerical representation of (A, <*).

To see that C is a PTIME-canonization, we first observe that the transition
from (A, <*) to (A4, <?) can effectively be performed in polynomial time.
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Trivially, A = (A, <4)|7 and hence, A = C,(A)|r. Finally, suppose that
B = A and <P is an ordering of B. Let <B= [, ..., b,] be the ordering given
by the stepwise procedure above applied to (B, <F). Then, for I = 1,...,n,

(’Jr’) (A,[Gl,...,al])%’(B,[bl,...,bl]).

For | = n this yields (A4, <4) = (B, <) and hence, C,(A) = C.(B).
The proof of (+) proceeds by induction on I. We show the case { = 1:
Suppose 7 : A = B. Then, for all a € A,

7+ (A, [a]) = (B, [r(a))).
Thus, by property (1) of the invariantization I,
{I-((A[a])) |[a€ A} = {L((B,[b])) | b€ B},

and hence, I;((A, [a1])) = I, ((B, [b1])). Again by property (1), we therefore
have (A4, ]a1]) = (B, [b1]). O

Together with 11.1.6 the theorem yields:

Corollary 11.1.10 If there is o PTIME-invariantization, then there is a
logic effectively strongly capturing PTIME. O

Of course, the notion of canonization can be defined for any deterministic
complexity class C: A C-canonization C consists of functions C, : Str[r] —
Str[r<] satisfying (1), (2) of Definition 11.1.5 and

(3) C, is C-computable (more precisely: there is an algorithm according to
C that, applied to (A4, <4) € Str[r]<, gives (the encoding of) the ordered
structure C;(A)). 8

Exercise 11.1.11 Generalizing the proof of 11.1.6 show: If there are a C-
canonization and a logic effectively strongly capturing C on ordered structures
then there is a logic £ with £ = C. O

Exercise 11.1.12 Show the existence of a PSPACE-canonization. Hint:
Given a t-structure A, let C(A) be the numerical representation of (A, <),
where < is a minimal order on A (compare 8.5.13). O

We conclude with some remarks that shed still further light on the main
question.

Suppose there is a logic £ effectively strongly capturing the complexity
class C. Then, given 7, we can effectively enumerate the L[r]-sentences. Using
the effective transition from sentences ¢ to pairs (M, f), where M is a Turing
machine accepting Mod(p)< and f a resource bound of M according to C,
we get that C is effectively enumerable in the sense of the following

5 For C = LOGSPACE this means that C, is computable by a log space-bounded
transducer, cf. section 7.5.1.
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Definition 11.1.13 Let C be a complexity class. An effective enumeration

F of C consists of computable functions F;, 7 a vocabulary, that are defined

on the set N of natural numbers, with the properties

(1) For any i € N, F;(i) is a pair (M, f) where M is a Turing machine ac-
cepting a class K. with K C Str[r], and f witnesses that M is according
to C.

(2) For any class K C Str[7] such that K is in C, there is an ¢ with £, (i) =
(M, f) such that the machine M accepts K. o

By the remark preceding the definition we have the direction from (i) to
(it) of
Proposition 11.1.14 For a complexity class C, the following are equivalent:

(i) There is a logic effectively strongly capturing C.
(ii) There is an effective enumeration of C.

Proof. We have to show that (ii) implies (i). Let F be an effective enumeration
of C. First assume that, for all 7, the set {F,(7) | 1 € N} is decidable. Define
the logic £ as follows. The set of L[r]-sentences is {F,(¢) | ¢ € N}. And if
F. (i) = (M, f) where M accepts the class K., then

AELF.(i) if A€K.

Hence, £ = C.

Otherwise, we replace F by an enumeration F* such that, for all 7, the set
{F}(i) | i € N} is decidable. We define F> (%) as follows. Let F; (1) = (M, f).
Set F*(i) = (M*, f), where M* behaves the same way as M, however, the
length of (the coding of) M* is greater than ; this is achieved, say, by adding
to M i-many new instructions that never will be used. To decide whether a
pair (M', f') belongs to {F* (i) | i € N}, we check whether (M', f') coincides
with some F}(i) for 1 < i < length of M. O

By the proposition, the complexity classes above PTIME such as NPTIME
or PSPACE are effectively enumerable. If we view an effective enumeration
as providing a tool for a systematic exploration of the complexity class con-
cerned, NPTIME and PSPACE are explorable in this sense, whereas it is
open whether PTIME or its subclasses LOGSPACE and NLOGSPACE are
explorable.

11.2 PTIME on Classes of Structures

We have already remarked that the question (“main question”) whether there
is a logic effectively strongly capturing PTIME, has a positive answer if we
restrict ourselves to ordered structures, FO(IFP) being such a logic. We may
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consider this result as a partial answer to the main question and, thus, are
led to a more systematic study of such restrictions. In the following we show,
for example, that the main question is equivalent to the question whether
there is a logic effectively strongly capturing the PTIME properties on the
class GRAPH of graphs. Moreover, we shall see that for certain subclasses of
GRAPH such as the class of trees the corresponding question has a positive
answer.

If S is a class of structures, S C Str, and 7 a vocabulary, let S[r] := {4 €
S| A a r-structure}.

Definition 11.2.1 Let £ be a logic, C a complexity class, and S a class of

structures, S C Str. £ effectively strongly captures C on S, L =¢ C on S, if

for all 7

(1) L[r]o is decidable;

(2) {KNS[r] | K C Sta[r], K< € C} = {Mod“(p) N S[r] | ¢ € Ll7lo};"

(3) there is an effective procedure that to every ¢ € L[r]|o assigns a pair
(M, f), where f is a function witnessing that M is resource-bounded

according to C and where for every (A, <) € S[7]< the machine M accepts
(A, <) iff AE . O

Clearly, if S and S’ are classes of structures with S C S’ C Str and if £ =5 C
on S’, then £ =, C on S.

In many concrete situations we have S[r]« € C. Then, condition (2) of the
previous definition can be simplified:

Proposition 11.2.2 Let L be a logic, C a complezity class and S a class of
structures with S[t)< € C for all 7.

(a) If L is a logic that for all T satisfies (1),(3) of Definition 11.2.1 and
(2%) for all K C S[7],
K. eC iff thereis o€ L[r]o such that K = Mod* (),

then L= C on S.
(b) Let £ be a logic such that L =¢5 C on S. Define the logic L' by
Lo =L[rle and (AE" ¢ iff (AEF ¢ and A € S[7])).
Then L' =es C on S, too; moreover, L' satisfies (27).
The proof is left as an exercise. d
To get a first example we restate a result of Chapter 7:

Proposition 11.2.3 (a) FO(DTC) =.,; LOGSPACE on the class of ordered
structures.

" Readers familiar with set theory will apologize our use of classes of classes.
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(b) FO(IFP) = PTIME on the class of ordered structures.

Proof. (a) Let <€ 7 and let O[r] be the class of ordered 7-structures (<
being the ordering). Since O[r]« € LOGSPACE and FO(DTC) satisfies the
effectivity conditions (1), (3) of Definition 11.2.1, it suffices to show that
FO(DTCQ) satisfies (2*) of part (a) of the preceding proposition. Clearly, for
K C O[r] we have (arguing as for Proposition 7.5.13),

K € LOGSPACE iff K. € LOGSPACE
and therefore,

K. € LOGSPACE iff there is an FO(DTC)[7]-sentence ¢
such that K = Mod(¢).

The proof of (b) is similar. O

We now turn to the class GRAPH of finite graphs and prove that the
main question is equivalent to its restriction to GRAPH. The reason is that
any structure can feasibly be coded (interpreted) into a graph. We give the
exact notion of interpretation.

Fix vocabularies ¢ and 7 where ¢ = {Ry,...,Rs;} with r;-ary R;.® An
(s+1)-tuple

I = (ﬂ'uni(f),ﬂ'Rl(fl,...,Trl),...,’/rRs(fl,...,frs))

of L[r]-formulas (with free variables among the displayed ones), where for
some k > 1 all tuples T, Ty, ... have length k, is called an L-interpretation of
o in T of width k.

Given a 7-structure .4, an L-interpretation IT of ¢ in 7 induces a o-
structure A" over k-tuples of A, provided mA.(_) is nonempty; the case

uni

7. (L) = @ plays a marginal role for our considerations and will be neglected.
The structure A" has universe 774,(_), the interpretation of R; is given by
A ¢
T, (== ) N (T (<))

For better reading we often suppress the intersection with the corresponding
power of the universe and succinctly write

AT = AT e Do T (i)

Exercise 11.2.4 Let £ be one of the logics FO, FO(DTC), FO(TC), FO(IFP),
FO(PFP), L¥ ., or SO and let II be an L-interpretation of ¢ in 7. Show that
for every L[o]-sentence v there is an L[r]-sentence ¢~ such that for all

T-structures A (with w2, () # ),
Ay iff  AY .
Check whether your proof works for MSO, too. If “yes”, it is incorrect. [

8 For simplicity, we restrict ourselves to relational o. It should be clear how the
notion of interpretation can be extended to vocabularies o containing constants.
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With the following proposition we show that “up to FO-interpretations,
structures can be viewed as graphs”.

Proposition 11.2.5 Let 7 be a vocabulary. There are FO-interpretations I1
of {E} in 7 and A of 7 in {E} with the following properties:
(i) For all T-structures A with at least two elements, A € GRAPH and

(A = 4
(ii) For all K C Str[r],
K. € PTIME iff (K'Y, e PTIME,
where KM := {B | B = A" for some A € K}.

Proof. We treat the case 7 = {T, R} with unary T and binary R. From the

exposition it will be clear how to handle relation symbols of higher arity.
To get an idea of how to define II, we first code a given 7-structure A as

a graph G as follows:

— Each a € A is a vertex in G;

— each a € A has two new vertices ap, as linked to it;

— each a € T4 is linked to each element of a clique of two new elements;
— for each (a,b) € R4, a is linked to one element and b to the remaining two
elements of a clique of three new elements.

The following picture shows G in case A = {a,b}, T4 = {a}, and R4 =
{(a,0)}.

a1 az by by

Obviously, G contains all the data of A. As G has more elements than A,
any interpretation IT such that A™ 22 G has to have a width & > 2. Then
(a,...,a) € A* can be the vertex of G corresponding to a € A. But, what
elements of A¥ may serve as “legs” a; and ay attached to a? In general, for
arbitrary A there is no way to uniquely define two such elements for every
a € A. Thus, we replace each leg of a as well as every other auxiliary point
attached to @ via T or R by all elements of the set A, := {b€ A | b # a}
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(as A has at least two elements, A, is nonempty). Altogether, we are led to
the following modification H of G. We set k = 9 and let H contain, for every
a,b € A, the [ollowing points:

(1) the point a® (:=(a,...,a));

(2) the points of a?A,a® (:= {(a,a,c,a,...,a) | c € A,c # a}) and of a® A a®;
(3) if T4a, then the points of a*A,a* and of a®A,a>,

(4) if R4ab, then the points of aba’A,a?, of aba®A,a, and of aba® A, .

Define the edge relation E¥ as follows:

— for a € A, connect the points in (2) with a°

— for a € A with T4a and for ¢ € A, link a*ca* and a®ca® to a® and to each
other

— for a,b € A with R4ab and for ¢ € A,, form a clique out of aba*ca®, aba®ca,
and aba®c, and link aba*ca® to a® and aba®ca and ababc to b°.

Let TI = (muni{Z), 7p(Z, 7)) with Z,7 of length 9 be the interpretation of {F}
in 7 that describes this encoding. For instance, set

Tuni(T) = T =T =...= 29
Vizr=zo=xT4=... =29 A3 £ Z1)
V(i =2s =23 =25 =... =29 AZs # 1)
VT A2y =... =24 =T =...=Tg A5 £ T1)
VTzy Az =...=25 =27 = T3 = T9g N Tg 7 T1)
V....

Then we have A" € GRAPH.

We now define an FO-interpretation A of 7 in {E} of width 1 that allows to
regain the structure 4 in A™, more precisely: (A™)2 = A for all T-structures
A with at least two elements.

In view of the definition of I this is achieved by setting

duni(z) = “z has (at least) two legs” (y is a leg of z,
if y is only linked to z)
ér(xz) = “there are two elements which are linked to z and
to each other and to no other point”

“there are three points u, v, w such that « is linked to z
and v, w are linked to y, to «, and to each other,
and w, v, w are not linked to other points”.

S
=
Al
<

I

We now come to part (ii). In the argumentation we tacitly assume that the
T-structures in question have at least two elements. (The remaining finitely
many cases have to be treated separately.) First, we show that (Str[r]T)< is
in PTIME. Namely, given an {E}-structure B, in polynomial time we can
check whether
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— B is a graph

— all points with legs (“domain points”) have the same number of legs, this
number being equal to twice the number of domain points minus two

— all other points are linked to exactly one domain point and the set of these
points correctly codes relations 7" and R.

Now, let K C Str{r]. Assume that K. € PTIME. Given an ordered {E}-
structure (B, <), check whether (B, <) € (Str[r]") . If not, (B, <) ¢ (K')<.
Otherwise, let B = A" for some r-structure 4. Using A, construct the 7-
structure B2 in time polynomial in ||B||. By part (i) of our proposition,
BA = (A2 = A. Let <® be the ordering induced on B® by <. Then,

(B,<)e (KM, if (B2 <®) eK..

In fact, if (B%,<?) € K. then A € K and hence, (A" =)B ¢ K and
(B,<) € (KM).. Conversely, if (B,<) € (KT). then B = A for some
A1 € K and hence, B® = A; and (B®,<?) € K.

By assumption, the right hand side can be checked in time polynomial in
||BA]] and hence, in time polynomial in [|B||. Altogether, the left hand side
can be checked in time polynomial in || B|.

For the other direction assume that (K1), € PTIME and let (4, <)
be an ordered T.-structure. We can construct A" and, restricting the <-
lexicographic ordering of tuples to A", an ordering <™ on A™ in time poly-
nomial in ||A]|. Since, by (i),

(A<)e Ko it (A", <) e (KM

and (K'). € PTIME by assumption, we altogether can decide the left hand
side in time polynomial in || A]|. O

Now we are able to reduce the problem whether there is a logic £ with
L =¢5 PTIME to the class of graphs.

Theorem 11.2.6 If there is a logic that effectively strongly captures PTIME
on GRAPH then there is a logic effectively strongly capturing PTIME.

Proof. Choose a logic L with Lg =¢s PTIME on GRAPH. Define the logic
L as follows. For every vocabulary 7 let L|r] = L[] be the set of sentences
of L&[{E}]. For a r-structure A and ¢ € L[] define

(%) AE e i AT o

(here II is the interpretation of {E} in 7 as given by Proposition 11.2.5). We
claim that £ =, PTIME.

Firstly, £ strongly captures PTIME: Assume K C Str|r]. We have to
show that

K. € PTIME iff for some ¢ € £[r], K = Mod* ()
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or, by Proposition 11.2.5(ii), that
(K. € PTIME iff for some ¢ € L[r], K = Mod*(y).

If (K. € PTIME, then K™ = Mod“¢(¢) for some ¢ € Lg[{E}], since
L =es PTIME. Therefore, by (), K = Mod® (). Conversely, assume K =
Mod* () for some @ € £[7]. Then, K™ = Mod*® (¢) NStr[7]™ and therefore,
(K™ = Mod*¢ (¢)« N(Str[r]™) .. Both classes on the right hand side are in
PTIME (the first one, as Lg =os PTIME, the second one again by 11.2.5(ii)).
Thus, (K1) € PTIME.

Let 7 be given. Of course, L[r] is recursive. Moreover, since Lg =es
PTIME, we effectively can assign to ¢ € L[7] a pair (M,,d), where M,
is a deterministic ¢ time-bounded machine accepting Mod*¢ (¢)<. To check
whether a structure (A, <) € Str(r)< is in Mod*(g)<, by a polynomial time
algorithm we pass to (A", <!} (where <! is the lexicographic ordering on A
induced by <) and then use M, to decide whether (A", <) € Mod*¢ ().,
and hence, by (), whether (A, <) € Mod®(p). Clearly, we can effectively
calculate a time bound.

Altogether, we have £ =, PTIME. |

Further notions and results of the preceding section can be restricted to
classes of structures, too. E.g., let 7 be a vocabulary and S a class of 7-
structures and C a deterministic complexity class. A map C. : Str[r] —
Str[r<] is a C-canonization on S, if

(1) Forall A € S, A= C.(A)|r and <4 is an ordering.

(2) For all A,B € Str[r], if A= B then C.(A) = C.(B).

(3) C; is C-computable, more precisely: there is a PTIME-algorithm that,

applied to (A, <4) € Str[r]., gives (the encoding of an ordered version
of) C, (A).

Analogously, one defines the notion of C-invariantization. The proof of 11.1.8
showing that PTIME-invariantizations yield PTIME-canonizations, in gen-
eral, does not work in the restricted case as it uses PTIME-invariantizations
for structures with a larger vocabulary. However, in the case of GRAPH one
can settle this difficulty by interpreting the expanded structures in graphs:

Exercise 11.2.7 (a) If there is a PTIME-canonization on GRAPH, then
there is a PTIME-canonization.

(b) If there is a PTIME-invariantization on GRAPH, then there is a PTIME-
invariantization. d

Exercise 11.2.8 Let 7 be a vocabulary and S a class of r-structures. Show:
If there is a PTIME-canonization on S then there is a logic £ such that
L =. PTIME on S. O
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We now come to some positive results and start with a simple observation.
We saw that the capturing result for PTIME proven in Chapter 7 can be
reformulated as

FO(IFP) effectively strongly captures PTIME on the class of ordered
structures.

This can easily be generalized to

Proposition 11.2.9 Let S C Str{r]. Assume that there is an FO(IFP)[r]-
formula ¢(z,y,Z) with free variables among z,y,Z such that for all A € S
there are b € A such that ¢*(_,_ ,b) is an ordering of A. Then, FO(IFP) =,
PTIME on S.

Proof. We first treat the case without parameters. The idea is to use the
result just quoted, letting w(z,y) play the role of z < y. More explicitly: If
K. € PTIME then K. = Mod(y) for some sentence v» € FO(IFP)[r.].
But then, for the FO(IFP)[r]-sentence zb‘p_(%;) we have that K NS =
Mod(zb‘P_(:i;’;’_')) N S. Conversely, if ¢ is an FO(IFP)[r]-sentence and K :=
Mod(y), then we have K. € PTIME and trivially, K N.S = Mod(g) N S.
For the general case one replaces the formula zﬁ“’_(%;) by the formula

F5(e( -, ,7) is an ordering A zpi—“ _‘_‘_‘;::’? ). O

The following two exercises contain some applications and generalizations
of the preceding proposition.

Exercise 11.2.10 (a) Show that FO(IFP) =.; PTIME on the class of cycles.
Remember that a cycle is a graph that is isomorphic to some G; (cf. 2.3.8).
Hint: Note that there is a formula ¢(z,y,u,v) in FOIFP)[{E}] such that
for any cycle G and all a,b € G with E%ab, the relation ¢¥(_,_,a,b) is an
ordering of G.

(b) A finite grid is a graph isomorphic to
({0,....n}x{0,...,m}, {((0, 5), (K, 1) | ik < n, 4,1 <m, [i—k[+|j—1] =1})
for some n,m. Show that FO(IFP) =, PTIME on the class of grids. m

Note that in the situation given by the hypotheses of Proposition 11.2.9
we have, using the notations of its proof, that C; : Str[r] — Str[r<] with

Cr(A) = (Ap*(2)

is a PTIME-canonization on S. Moreover, Cr(A) = A for the FO(IFP)-
interpretation I of 7. in 7 given by muni(z) = x = z, 7<{(x,y) := o(z,y),
and m5(Z) := RZT for R € 7. The proof of 11.2.9 contains the main argument
needed to show the following exercise:
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Exercise 11.2.11 Let £ be one of the logics mentioned in 11.2.4 and C a
deterministic complexity class with £ = C on ordered structures. Assume
that S is a class of T-structures and C; a C-canonization on S given by an
L-interpretation of 7. in 7 (in the form C, : A +— AM). Then £ =, C on S.

O

Example 11.2.12 Let K be the class of 7 := { E}-structures isomorphic to
some H; with [ > 3, where H, is a digraph as pictured by

S

There is no formula that defines an ordering on all the structures in Ky, even if
parameters are allowed. In fact, consider a formula ¢(z,y, 21, ..., 2,) and the
digraph #; for [ > n+1. Then, for any choice of parameters dy, .. .,d,, there
are corresponding elements b, ¢ of in-degree 1 (cf. the figure) not occurring
among dy,...,d,. There is an automorphism of H; that fixes dy,...,d, and
interchanges b and ¢. Hence,

(o) € ™ (_,—,d) iff (c,b) € o™ (_,—,d);

so ™ (_,_ ,d) is not an ordering on H,.

Thus, we cannot apply 11.2.9 to conclude FO(IFP) =, PTIME on K. We
obtain this result from the preceding exercise showing that there is a “defin-
able” LOGSPACE-canonization. In fact, there is an FO(DTC)-interpretation
= (myni, 7, 7<) of 0 :={F, <} in 7 (= {E}) assigning to the digraph H,
the ordered digraph HP consisting of the isomorphic copy of H,

a1,02 a2,a2 (13,(12)
'Y \
<1 @ (a5,01) - - / (ar,a1)
L]
(a1, as) (02, as) (as,as3)

together with the ordering indicated by
(a1,01) < (a1,a2) < (a1,a3) < (az,a1) < (ag,a2) < ... < (a;a1).

To define II, for i = 1,2,3 let p;(z) be a formula defining the i-th “cross-
point” of H,,
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ei(z) = Vy-Eyz
polz) = Fz(p1(2) Ady(Ezy A Eyx))
ws(z) = Fz(pa(z) AJy(Ezy A Eyz)).

Then, for example, set

Tuni(2,4) = (3722 Bzz A(e1(y) V o2(y) V 0s(y) V (YzmEzz A i (y)).

Using the preceding exercise we conclude that FO(IFP) =, PTIME on Kj
and that FO(DTC) =¢ LOGSPACE on K. O

We turn to the class of trees. For this purpose we first state and prove a varia-
tion of the preceding exercise for fixed-point logic with counting, FO(IFP, #)
(cf. subsection 8.4.1).

Proposition 11.2.13 Let 7 = {Ry,...,Rn} with ri-ary R; and lei S
be a class of T-structures. Assume that there are FO(IFP, #)[7]-formulas

©01(y)s - -y om () (where I, is a sequence of number variables of length r;)
such that for every A € S,

(*) A= ({0, Al =1Lt () o)) ®

Then,

FO(IFP, #) =es PTIME on S.

Proof. First, we observe that the map C; : Str[r] — Str[r<] given by

Cr(A) = ({0, Al =1}, 0f (s, <)

(with < the natural ordering on {0,...,||A|| — 1}) is a PTIME-canonization
on S.

Let ¢ be an FO(IFP)[r<]-sentence. For every point variable z we choose
a number variable p, (with p, # py for £ # y), and we let * be the
FO(IFP, #){r]-sentence that arises from ¢ by replacing every subformula
Rizy...zr; by @i(fisy, -, fe,, ), Dy replacing every variable z by p, in all
other atomic formulas, and by changing every subformula Vz . . . to Vi, (g, <
max — ...) and every subformula 3z ... to Jpu, (1, < max A...). Then we
have for every 7-structure .A:

ARy Cr(A) E .
It remains to show that
{KNS|K CStr[r], Ko € PTIME} = {Mod(p)N S| € FOIFP, #)}.

° Note that {0,...,||A||} is the universe of the number part of A; thus, instead of
(=) we should write p*(~) N {0,...,]JA|| — 1}"%.
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If ¢ is an FO(TFP, #)[r]-sentence and K = Mod(y), then K. € PTIME
and clearly, K NS = Mod(y) N S. Conversely, assume K C Str[r] and K. €
PTIME. Then K. = Mod(¥) for some FO(IFP)[7.]-sentence 1. We claim
that K NS = Mod{(*) N S. In fact, for 4 € S,

AeK it Cr(A)eK. (as A=C, (A7)
iff C-(A) vy
ifft AlEy*  (see above).
O

We apply the preceding result to the class TREE of finite trees (cf. Chapter
1.A1).

Theorem 11.2.14 FO(IFP, #) =.s PTIME on TREE.
In view of the preceding proposition it suffices to show:

Lemma 11.2.15 There is a formula ¢(p,v) in FOIFP)[{E}] such that for
all A € TREE,

A= ({07 ] HAH - 1}7(pA(—7— ))

Proof. Let A € TREE. By induction going from the leafs to the root, for
each u € A we define a copy of the subtree A, of 4 with root u on (an initial
segment of) the number part, of A; the tree relation of the copy of A, will be
given by Xu_ _ (X is a ternary mixed relation variable with first component
for point variables, the last two components for number variables). The case

of leaves u € A being trivial, let u € A have the E“4-successors vy, ..., ;. By
induction hypothesis, the trees A4,,, ..., .A,, have isomorphic copies on initial
segments of the number part of A given by Xv; — _,..., Xy, _ _. Using the

ordering < of the number part, these copies can be ordered lexicographically
in an FO-definable way by

Xv; - - < Xvj_ _ (for short : v; < v;) iff “Xv;_ _ # Xv;_ _,
and the minimal pair (u, ), minimal in the lexicographic ordering
induced by <, where they differ belongs to Xv; _ _”.

We abbreviate (—v; < v; A —w; < v;} by v; = v;. If, for example, | = 4 and
v < V2 = v3 < ¥4, we define the copy of A, on the number part of A4 by
agsigning 0 to v and let it be followed by a copy of Xwv; _ _, two copies of
Xwvy . _, and one copy of Xwvy _ _. More precisely, in the general case we
define

Xupv

by the disjunction of the following formulas @1, (@1 describes that the
number O assigned to u is linked to the numbers assigned to the wv;; o de-
scribes the copies associated with the subtrees A,,).

Using 6(u,v) for the number term #{w | ' (Euv' Av' < v Aw € Ay)}
which counts the number of all elements in trees 4, of E-successors v’ of u
that are < v, we set
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o1(u, oy, X) = p=min A (Euv A3C(0 < ¢ < #{w | Buw Aw = v}
Av=14+06(u,v)+ (- -#{w|we A,}));

wa(u, g, v, X) = Fw(Buv A0 << #{w| FuwAw=v} A
J¢TIn(Xvén
Ap=E+1+6(u,v)+ ¢ -#{w|weAd,}
Av=n+1+68u,v)+ (- -#{w|we Ad,}))).

Note that, with ug the root of A,

Xug — _ defines a copy of A.

According to Lemma 7.3.11, addition and multiplication on the num-
ber part of 4 are FO(IFP)-definable as is “w € A4,”. Thus, the desired
FO(IFP, #)[{ E}}-formula x(u,v), defining an isomorphic copy of A on its
number part, can be given as

x(i,v) = Fup(up is the root A [IFP,,, x (¢1 V @2)]uopv). [

Exercise 11.2.16 (a) Show that FO(IFP, #) =, PTIME on the class of
acyclic connected graphs. Hint: Each point of an acyclic connected graph can
be viewed as the root of a corresponding tree.

(b) Show that FO(IFP, #) =¢ PTIME on the class of acyclic graphs. O

In 11.2.6 we have seen that, in order to obtain a logic £ with £ =,; PTIME,
it is enough to find a logic £’ such that £’ =.s PTIME on GRAPH. We then
have seen that there are subclasses of GRAPH such as the class of acyclic
graphs or the class of trees that can effectively strongly be captured by a
logic. Further positive results are contained in [65, 68] where it is shown, for
example, that FO(IFP, #) =.s PTIME on the class of planar graphs. These
positive results may be interpreted as an approximation to a positive solution
of the main question, if there should be a positive solution. If not, they might
serve to discover the borderline where the possibility for an effective strong
capturing gets lost.

Notes 11.2.17 The main question whether there is a logic strongly captur-
ing PTIME was first asked in [19]. The notion of a logic effectively strongly
capturing a complexity class originates with Gurevich [71]; Theorem 11.1.9
is from [73]. The capturing result 11.2.14 goes back to [97, 117]. For further
capturing results see [82] and the survey paper [66].
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In Chapter 7 we have seen that the fixed-point logic FO(IFP) captures
PTIME. In the last chapter we have remarked that the question

() Is there a logic that effectively strongly captures PTIME?

is still open. We have discussed strategies for a solution and thereby given
some positive results in case we restrict ourselves to certain classes of struc-
tures.

The notion of logic underlying the main question is very general. For
instance, we have admitted that the sentences of a logic are Turing machines
(and the models of a Turing machine are the structures it accepts). Thus,
its syntax lacks the characteristic flavour of logics we are accustomed to.
A corresponding positive answer to (x) could hardly be considered to be a
logical characterization of PTIME. However, in the present chapter we shall
show that if there is a logic that effectively strongly captures PTIME, then
there is a logic with a familiar syntax.

At a first glance the following idea could lead to such a logic: Consider,
for example, FO(IFP). We know that there is some class K of structures such
that K. belongs to PTIME, but K is not axiomatizable in FO(IFP). In a
first step one could add a “logical construct” to FO(IFP) that allows for an
axiomatization of K, and in this way one could continue trying to enlarge the
expressive power just up to PTIME. In traditional model theory there is a
well-established method to enrich logics by new concepts, namely by adjoining
so-called Lindstréom quantifiers. We have already met such quantifiers, for
example, the counting quantifiers (cf. section 3.4).

In the first section we shall introduce the concept of Lindstrém quantifier
and demonstrate its scope by various examples showing that some important
logics encountered so far can be obtained as extensions of first-order logic
by such quantifiers. In section 2 we prove some limiting results saying us, for
example, that no extension of FO(IFP) by a finite set of Lindstrém quantifiers
will strongly capture PTIME. Nevertheless, we shall see there that, if any
reasonable logic strongly captures PTIME, then there is already such a logic
that can be obtained from first-order logic by adding a simple infinite set of
quantifiers. When pursuing this line also for other complexity classes such as
NPTIME, a logical analogue of complexity-theoretical reductions turns out
to be useful. Section 3 presents results of the corresponding kind.
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If we extend a logic £ by the binary Lindstrém quantifier ) where
Qzyp(z,y) says that p(z,y) defines a connected graph on the universe, then
in the extended logic £(()) we can speak about the connectivity of defin-
able graphs by simply using the quantifier ). There is a similarity to Turing
machines with oracles that have the ability to supply, in one step, correct
answers to the question whether a binary relation (encoded on some tape) is
a connected graph. We shall see in the last section that this similarity is by
no means superficial.

Throughout the chapter all vocabularies are relational and structure means
finite structure.

12.1 Lindstrom Quantifiers

For a binary relation symbol E we know that FO(TC), but not FO, allows
to express

(%) “(x,y) is in the transitive closure of E”.

What do we expect from any “natural” logic £ allowing to formalize (x)?
Clearly, for every formula ¢(u,v) of £ we want to have a formula in £ ex-
pressing

»

“(z,y) is in the transitive closure of p(_,_)

Similarly, in a natural logic £ which allows to express that a graph has a
Hamiltonian path, we expect to be able to say that an £-definable graph has
a Hamiltonian path. If in the following definitions we take as K the class of
graphs with a Hamiltonian path, we get a quantifier ) such that FO(Q) will
be the smallest natural extension of FO having this ability.

Fix a vocabulary
g = {Rl,...,Rs}

where R; is r;-ary, and a class K of o-structures. Furthermore, let £ be some
logic such as FO, FO(IFP), or L. For a new “quantifier symbol” Qx we
enlarge, for any vocabulary 7, the formation rules for £[r]-formulas by the
following clause:

(+) If for 1 <i < s, ¢;(T;)* is a formula and the length of Z; is r; then

QK—Q,_‘l, . ,Es[z/)l(fﬁl), . ,1/)5(5—11'-5)]

is a formula, too.

! We only display the variables relevant in the given context. The variables in each
E; are pairwise distinct, but the same variable may occur in distinct T;’s.
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In case s = 1 we write QZY(T) instead of QZ[(F)]. A variable y is free in
QKT ... Es{01(F1), ..., ¥s(Ts)] if, for some 4, we have y € free(e);) and y
not in ;.

For any 7-structure A the meaning of QgZ1, ..., Ts[t1(F1), ..., ¥s(Ts)] is
given by (we suppress the assignment to variables)

-A':QKfl,---afs[wl(fl)s-”yd)s(fs)] iff (Aawfl(—)vaw:‘(—)) €K

where 17 (_) stands for {b € A™ | A |= ¢4[b]}.

QK is the Lindstrom quantifier (by short: quantifier) given by K. Its arity
is defined to be max{r; | 1 < i < s}. In case s = 1 one speaks of a simple
quantifier.

The extension of £ by Qg is denoted by L(Qg). If Q is a class of Lind-
strém quantifiers, the extension £(Q) of £ is defined by adding clause (+)
for all Q € Q. £(Q) is called a Lindstrém extension of L.

Obviously, we have for all o-structures A:
A|:QKfl,...,fs[Rl—l’—l,...,Rsfs] if AcK.

Hence, K is axiomatizable in £(Q k). Indeed, £{Qx) is the least extension
of £ that allows to axiomatize K. A proof requires some closure conditions
of the logics involved. They are satisfied in the cases covered by the next
exercise. As a rule, such closure conditions (cf. 12.1.11) will also be necessary
in the following when dealing with statements on arbitrary logics and will be
tacitly assumed.

Exercise 12.1.1 Let £; be a Lindstrom extension of FO and L5 one of the
logics FO(TC), FO(DTC), FO(IFP), FO(PFP), or Lu,. Show: If £; < £,
and the class K of structures is axiomatizable in L2 then £1(Qk) < L2. O

One can show that any logic £ above FO that obeys the closure conditions
referred to above, can be represented as a Lindstrém extension FO(Q) of FO,
where the quantifiers in Q correspond to the classes axiomatizable in £, i.e.,
L =FO({Qk | K axiomatizable in £}). Of course, one is interested in small
sets Q such that FO(Q) and L are equivalent.

We give some examples of Lindstrém quantifiers.

Examples 12.1.2 (a) Let ¢ := {P} with unary P. For K := {(4,B) |
) # B C A}, the simple unary quantifier Qx corresponds to the existential
quantifier, as Q gz (z) is equivalent to Iz (x).

(b) Similarly, for K := {(4, A) | A a nonempty set} we obtain the universal
quantifier.

(¢) Forn > 1 and K, := {(A,B) | BC A and ||B|| > n} the quantifier Qk,
corresponds to the quantifier 32" (cf. section 3.4).

(d) For the class CONN of connected graphs we get a simple binary quantifier
Qconn. So
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Qconnzy ¥(z, y)
is valid in a structure A iff (4,%"(_,_)) is a connected graph.

(e) Let o := {E, R} with binary relation symbols F and R. If K is the class
of o-structures
A={(A,E",RY) | R* C TC(EYY},

then QQk can replace the unary transitive closure operator, as

is equivalent to
Qrzy, wef(z,y),u =sAv=t],

and
Qnya UU['wl (il?, y) ’ ¢2 (U, U)]

is equivalent to
VuVo (o (u,v) = [TCy b1 (2, y)]uv).

Thus, FO(TC') = FO(Qk).

(f) Let K be a class of o-structures, < a new binary relation symbol, and £
a logic. Then,

L(Qk.) = L(QK) on ordered structures.

Infact,ifc = {Ry,...,Rs} and ¢1,. .., ps, ¥ are formulas in some vocabulary
7 that contains a binary relation symbol <, then on ordered T-structures (that
is, structures in which < is an ordering) the formulas

QKfly e 753[901(51)7 s 7308(58)]

and
QK<517 s 7fsvmy[(pl(§1)7 .- '7¢S(ES)J$ < y]

are equivalent, and the formulas

QK<Ela S 7537373/[901(51)7 s 7@8(Es)aw(may)]

and

“p(x,y) defines an ordering” A QgTi,...,ZTs[v1(E1),-- ., 0s(Ts)]

are equivalent. Conclude: If £(Q) captures, say PTIME, then K. € PTIME
for all K such that Qx € Q. O

Exercise 12.1.3 Let K be a class such that K. € PTIME. Show that
Mod(¢)« € PTIME for any sentence ¢ € FO(IFP)(Q k). The same is true
for sets of such quantifiers. Give the corresponding statements for PSPACE
and FO(PFP) and for LOGSPACE and FO(DTC). Hint: For LOGSPACE cf.
Appendix 7.5.1. O
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Finitely many Lindstrém quantifiers can be replaced by a single one. We
give a precise statement in the next theorem. The following two technical re-
marks (1) and (2) will be useful for the proof. As above, let ¢ = {R1,...,Rs}
with r;-ary R; and let K be a class of o-structures.

(1) For anew r-ary relation symbol R let K3 be the class of cU{R}-structures
Ki = {(A4R")|A€Kand R4 =4"}.
Then L(Qx) = L(Qk, ), since
':ﬁn QKT Te[W1,- 5] < QK T1y - -, Ty T [P1y- -0, 5, T =T

and

Eon QK T1, -y Ts, T[01, - -, s, W] ¢ (QKTr, ..., Ts[th1, . - ., ¥s] A VTY(T)).

(2) Let r > max{r; | 1 < ¢ < s} and let ¢’ arise from o by replacing
each R; by an r-ary relation symbol R;. Finally, let K’ be the class of ¢'-
structures A’ that we get from structures .4 in K by replacing each Ry by
RA" .= RA x A7, Using dummy variables, one easily shows that £(Q) =
L(Qk)-

Theorem 12.1.4 Let L be a logic. Furthermore, let Q be a finite set of
Lindstrém quantifiers. Then there is a Lindstrém quantifier Qr such that
L(Q) = L(Qk). In particular, if the arities of the quantifiers in Q are <,
then Qx can be chosen of arity | + 1.

Proof. Let Q be {Qk; | 1 £ j < k} where Kj is a class of oj-structures.
According to the preceding remarks we may assume that the o; have the
same cardinality and that the (). are of the same arity ! as are all relation
symbols in the vocabularies o;. For simplicity of notation we treat the case
of two simple binary quantifiers @, and @x,. Let R be a ternary relation
symbol. If no structure of the form (4, @) belongs to K; or K», we define the
class K of { R}-structures by

K = {(A,Bx{a})|(A,B) ek, ac A
U{(4,B x {a,b}) | (4,B) € K3, a,b€ A,a # b}.

Then the following formulas are equivalent on structures with at least two
elements (structures of cardinality 1 can be taken into consideration explic-

itly):
(1) Qk,zye(z,y) and FJwQrzyz(p(z,y) Az =)
(2) Qryrye(r,y) and Fvw(v # w A Qrryz(p(z,y) Az =vV 2z = w)))
(3) QK'Tyzw('Ta Y, Z) and (3:1233732!1/)(33, Y, Z) A QK1$yE|Zw($7 Y, Z))
V(3 2233y (z, y, 2) AVey(Fey(z,y, z) = T722¢(2,y, 2))

A Qr,wy3z(z,y, 2)).
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If K7 U K contains structures of the form (A, ), we add to K the structure
(A, A x A x {a,b,c}) with distinct a,b,c if (4,0) € K7, and the structure
(A, Ax Ax{a,b,c,d}) with distinct a, b, ¢, d if (A,0) € K. Arguing similarly
as above one shows that L({Qx,, @k, }) = L(Qk). O

Exercise 12.1.5 Generalize the preceding theorem to a countable set Q of
simple binary quantifiers, thereby weakening the assertion £(Q) = L{Qx) to
£(Q) < L(Qk)- O

A E [TC, yo(x,y)]st means that (s,t) is in the transitive closure of
the binary relation on A given by ¢*(_,_). Similarly, for £ > 2 and
(@1 ...z, y1 ... yk) we can read A = [TCz 39 (Z,7)] st as “(3,1) is in the
transitive closure of the binary relation on A* given by ¥4 (_,_)”. Guided
by this example we define the k-vectorization of a Lindstrém quantifier.

Let ¢ = {Ra,...,Rs} with r;-ary R; and let k£ > 1. Let o(k) arise from
o by replacing each relation symbol R in ¢, say of arity r, by an r-k-ary
relation symbol R(k). An r-ary relation on A* can also be viewed as an 7 - k-
ary relation on A just by identifying the r-tuple consisting of the elements
@i,...,4, of A* with the 7 k-tuple @ ...@, of elements of A. Using this
identification on the level of tuples and relations, we define:

Definition 12.1.6 Let K be a class of o-structures.
(a) K*, the k-vectorization of K, is the class of o(k)-structures

Kf = {(4,81,...,8:) | (4%, 81,...,8,) € K};
here, in (A, Si,...,5s), the relation S; is viewed as an r; - k-ary relation
over A, and in (4%, 8),...,8,) it is viewed as an r-ary relation over A*;

in (4,81,...,8;) it is the interpretation of R;(k), in (4% S;,...,Ss) the
interpretation of R;.

(b) We set Q% := {Qx= | k > 1}. O
Thus, for the class K of Example 12.1.2(a) we have
A Qrezyp(z,y) iff (42,04 2)) €K
iff A Jzdye(z,y),
and for the clags CONN (cf. 12.1.2(d))
A E Qeonneza'yy'olaa’  yy') iff (4%, ¢*(_,_)) is a connected graph.

Exercise 12.1.7 Let K be as in Example 12.1.2(e) and let & > 1. Gener-
alize the equivalence FO(Qk) = FO(TC!) to FO(Qg+) = FO(TCF). Hence,
FO(Q4%) = FO(TC). O

In view of 9.6.1 we have for the class K of the preceding exercise:
K but not K? is axiomatizable in FO(TC*).

The following exercise shows that our standard logics are closed under vec-
torizations.
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Exercise 12.1.8 Let £ be one of the logics FO(TC), FO(DTC), FO(IFP),
FO(PFP), or Le,. Show: If K is axiomatizable in £ and k > 1, then K* is
axiomatizable in £. Conclude: If £; with £; < £ is a Lindstrdm extension of
FO and K is axiomatizable in £, then £,(Q%) < L. O

Two further logics which we have extensively studied can be obtained
from FO by adding the vectorizations of a simple quantifier:

Theorem 12.1.9 There are classes 1 and P of structures such that
FO(IFP) = FO(Qf) and FO(PFP)=F0O(QY).

Proof. We first consider FO(IFP) and recall (cf. 9.4.3) that any FO(IFP)-
formula is equivalent to a formula of the form

Vu[lFPz x (¢ V37 € XJz ¢ Xx)| i

where ¢ and x are quantifier-free and X does not occur in v, x. This normal
form motivates the following definition of I.

Let o = {U, R, V} with ternary R and unary U,V and let I consist of the
o-structures A such that there is a sequence Ag, A1, As, ... of subsets of A
with the following properties:

(1) AO = @ and A1 = U'A.
(2) Fori>1, A;y1 = A;U{a€ A| R abc for some b € A; and ¢ € A;}.
(3) There is an 4 > 1 such that V4 C A,.

To prove FO(QY) < FO(IFP), by 12.1.8, it suffices to show that I is axiom-
atizable in FO(IFP). In fact, I is the class of models of yy where

wo = Yu(Vu— [IFP, x(UzV 3y € X3z € XRzyz)]u).

For the other direction we consider an FO(IFP)-sentence ¢ in the normal
form mentioned above, say

¢ =Vu[lFPz x (¢(Z) vV Iy € X3z ¢ Xx(7,7,7))]4,

where X is k-ary. Given a structure A, let X4, X;, Xo,... be the stages of
the fixed-point operation in ¢. Then X; = *(_), and A is a model of ¢ iff
{&la€ A} C X. Hence, p is equivalent to

Qlkf;fygaﬁ[¢(T)7X(_fay72)aul =...= Uk]-

The proof for FO(PFP) is similar; one uses the class P that is defined as I
with (2), (3) modified to

(2)" Fori>1, Ajr1 ={a € A| R*“abc for some b € A; and ¢ & A;}.

(3)" VA =0 or there is an i > 1 such that VA C 4; and 4; = A;.1. d
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We finish by representing FO(ATC) as a Lindstrém extension of FO.
Sctting ¢ := {E,U, R} with binary E, R and unary U, we define A to be
the class of o-structures (A, E4,U4, R4) such that R4 is contained in the
alternating transitive closure of (E4,U4). Then one easily gets:

Theorem 12.1.10 FO(ATC) = FO(QY). O

Notes 12.1.11 At many places of this chapter we tacitly assume that £ is a
logic extending FO and satisfying certain closure conditions such as closure
under negations or conjunctions (cf. (3) in the proof of Theorem 12.1.4). For
instance, closure of £ under conjunctions means:

If ¢ and ¢ are L-formulas then (¢ A+)) is an L-formula (or, at least,
L contains a formula equivalent to (¢ A 9)).

Compare [31] for the precise statement and an analysis of such closure con-
ditions.

12.2 PTIME and Quantifiers

In this section we shall see that no extension of FO(IFP) by means of finitely
many Lindstrém quantifiers strongly captures PTIME. The same is true for
all fragments of the extension of LY. by all counting guantifiers.

For a set Q of Lindstrom quantifiers, LY (Q) consists of those formulas of
Loow(Q) that contain only finitely many variables. As a first result we have

Theorem 12.2.1 Let Q be a finite set of Lindstréom quantifiers Qp with
L. in PTIME. Then for any relational vocabulary T there is a class K of
T-structures such that K. belongs to PTIME, but K is not axiomatizable in

L%0(Q)-

The proof will be given below. As FO(IFP)(Q) < L% (Q) (mimic the
proof of FO(PFP) < LY . cf. 8.4.2) we have

AW ?
Corollary 12.2.2 No extension of FO(IFP) by means of finitely many Lind-
strom quantifiers strongly captures PTIME. |

To give an application of 12.2.1, let I be binary and Q be the set of all
simple binary quantifiers corresponding to classes K of {FE}-structures with
K. in PTIME. According to 12.1.5, Q may be replaced by one (ternary)
quantifier Q7 such that FO(Q) < FO(Q). Therefore, FO(Q1) and hence
Lv (@), is able to axiomatize all the classes K of {F}-structures with K«
in PTIME. By the theorem, L. cannot be in PTIME, that is, FO(QL) is
strictly stronger than FO(Q) (cf. 12.1.3).

The theorem has a generalization to certain infinite sets of quantifiers. With-
out proof we mention the following generalization to arity-bounded sets of
quantifiers:
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Theorem 12.2.3 Letn > 1 and let Q consist of Lindstrém quantifiers of ar-
ity < n. Then there is a relational vocabulary 7 and a class K of T-structures
such that K< is in PTIME, but K is not aziomatizable in LY, (Q).

Corollary 12.2.4 No extension of FO(IFP) by means of Lindstrom quanti-
fiers of bounded arity strongly captures PTIME. d

Since the first examples of PTIME classes not axiomatizable in FO(IFP)
were related to the class EVEN of structures of even cardinality, the logic
FO(IFP, #), fixed-point logic with counting, appeared as a natural candidate
for a logic strongly capturing PTIME. However: Let C be the set of counting
quantifiers, i.e.,, C := {Qg, | n > 1}, where K, is as in 12.1.2(c). Then we
have

Theorem 12.2.5 There is a class K of graphs such that K. is in PTIME,
but K is not aziomatizable in LY (C).

Note that LY, (C) = C¥ . By 8.4.18, FO(IFP, #) < C¥ . Therefore:
Corollary 12.2.6 FO(IFP, #) does not strongly capture PTIME. O

In the following we prove Theorem 12.2.1 and Theorem 12.2.5.

Proof (of 12.2.1). First we show that for 7 = §} there is a class K of structures
such that K. is in PTIME, but K is not axiomatizable in L%, (Q).

So let 7 = § and fix s > 1. Thus 7-structures are sets and will be de-
noted by their universes. We start by proving that every L% (Q)-sentence
(of vocabulary 7 = (§ and) with variables among vy, . .., v, is equivalent to an
FO(Q)-sentence of a certain simple form.

First we note that there are, up to logical equivalence, only finitely
many quantifier-free formulas with variables among wvq,...,vs and hence,
only finitely many formulas ¥7,...,%; that are strings of the form Qa with
Q@ € QU{V, 3}, where a does not contain quantifiers and has variables among
Viye.o,VUs-

Given an s-tupel @ = a; ...a, of elements of a structure A, the equality
type of @ is, by definition, the formula

/\{vi:vjlai:aj,1§i<j§s}/\/\{—|vizvj|a¢7éaj,1§i<j§s}.

For any s-tuples @, b € A of the same equality type there is a permutation (i.e.,
an automorphism) of A that maps @ onto b. Hence, for n > 0, every L, _(Q)-
formula with variables among vy, ...,vs is equivalent in 4,, := {0,1,...,n}
to a disjunction of equality types (the disjunction is finite as there are only
finitely many equality types of s-tuples). In particular, there are disjunctions

XE"’S) of equality types of s-tuples such that

(1) An B Aicicy, Vo1 V0,058 0 x{™),

that is, we have a “local quantifier elimination”. Now, a simple induction on
formulas shows:
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(2) For all p € 1%, (Q) with variables among vy, ..., v, there is a quantifier-
free first-order formula x(v1,...,vs) (and hence, a boolean combination
of equality types of s-tuples) such that

/\ Vor .. Vo188 & X)) = Yoy . V(e & X).

1<i<,
We set
59 { “there are exactly n elements”, ifn <s
“there are at least s elements”, ifn > s
and
) = g A N Vo (42 o X,
1<i<l,

Clearly, A, = ¢™* and {p(™*) | n > 1} is finite. Now we can show:
(3) If B |= (™ then for all sentences ¢ of L% (Q) with variables among

Uiy.oosUsy
BEy iff AnEe.

In fact, if || B|| < s then, by B |= 6(™*) we have n = || B|| and hence, B = A,;
so (3) is trivially true. If || B|]| > s then n > s. For a sentence @ as in (3) choose
a boolean combination x(vy,...,vs) of equality types of s-tuples according
t0 (2). By (1), An | Argier, Vo1 - Vos(97 & x{™) and by B [ o0,
also B A\, <o, Vo1 ... Vo, (3 43 x{™*)). Choose @ € A3 and b € B® of the
same equality type (recall ||A,]|,||Bl} > s). Then

By iff BE X
iff A x[a]
ift A, Eo.

Since A, |= ¢(™*) and every B is isomorphic to some 4, we see, using (3),

that
Fn @ ¢ \{o™ [n 21, A, | 0}

holds for any sentence ¢ of L% (Q) with variables among vy, ..., vs. As the
disjunction on the right side is finite, @ is equivalent to an FO(Q)-sentence.

Altogether, every L¥ (Q)-sentence is equivalent to an FO(Q)-sentence
1) of the form

(4) Y = V(A A Yor... Yo (i © xi)),

jeJ i€l

where s > 1, the x; are quantifier-free, and the §; and the #; are of the form
5(m3) and 1, respectively. Let ¥ be the set of these formulas.
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Using a diagonalization procedure, we show that there is a class K of sets
such that K. is in PTIME, but K is not axiomatizable by a sentence in .
For a sentence ¢ as in (4) we set

oIl = length of , s, = s.

1t is not difficult to define a uniform procedure that, given n and v, checks
Ay E ¢ in time polynomial in n, [|¢|], and 2%¢. The main point here is that
in order to check the validity of A, = Vv, ...Vu,, (1; ¢ xi), it suffices to test
the validity of 4, | (¢ ¢ x;)[@] for exactly one sy-tuple @ of each equality
type in A,. This gives a corresponding procedure, because the number of
equality types is O(2%¢) and the (finitely many) quantifiers in Q U{V, 3}
belong to classes K with K. in PTIME.

We now consider a function f : N — ¥ computable in time polynomial in
n that enumerates ¥ in such a way that

If )|l = O(n) and  sy() = O(log n)
(it is not hard to see that such an enumeration exists). We then define K by
(5) BeK iff forsomen, ||B||=nand A, £ f(n).

By the preceding remarks, K. is in PTIME; however, by (5), K is not ax-
iomatized by an f(n), that is, K is not axiomatizable by any sentence in ¥
and hence, not by an LY, (Q)-sentence.

Now, let 7 be an arbitrary vocabulary and let C; be the class of structures
A such that R“@ for all R € 7 and @ € A. As in structures of C; any atomic
formula Rf is equivalent to t; = ¢, the proof above for 7 = () works for this
case too, yielding a class K C C; such that K. is in PTIME, but K is not
axiomatizable in LY (Q). O

We now prove Theorem 12.2.5. For this purpose we show that for all s > 3
there are graphs G, and G, such that the following holds:

(]-) gs ELgom(C) g~s-
(2) There is a class K of graphs such that K« € PTIME and K contains all
G, but no G,.

This yields the theorem, because, by (1), no L%, (C)-sentence ¢ can axiom-
atize a class K as in (2).

In section 3.4 we have denoted L (C) by C_, and shown that (1) is
equivalent to

(1) the duplicator wins C-G2_(Gs, g})

where C-G¢_(—,- ) is the Ehrenfeucht game corresponding to C2_,.

We define the graphs G, and G,. Let k := s + 2. Then k > 5. Take sets



318 12. Quantifiers and Logical Reductions

A= {a1,...,ar}, B :={b,....,bt}, C :={c1,...,ct}
of distinct elements, let
D = {SC{Ll,...,k}||IS] iseven},
and define the graph H := (H,E) by

H = AuBUCUD
E = {(ai, ), (e, i), (biy¢i), (e3,0:) | 1 < i < k}
U{(a;, S),(S,a;) | S€ D,ie S}
U{(b;,5),(S,b;) | Se D,i ¢ S}
U{(es,ip1), (Cit1,6) | 1 < i < kYU {(cg, 1), (c1,cx) }-

In H, the a; and b; have degree 2¥=2 + 1, being connected with ¢; and exactly
2k=2 points in D; similarly, the S € D have degree k and the ¢; degree 4.
(As k > 5, these degrees are different.) Therefore, any automorphism = of H
maps the sets AU B, C, and D onto themselves, and if 7 is the identity on
C then W(ai), W(bz) S {Cli, bz}

Lemma 12.2.7 Let © be a permutation of AU B U C which is the identity
on C. Then w can be extended to an automorphism of H iff = interchanges a;
and b; for an even number of i’s, leaving the other elements in AU B fized.

Proof. If & interchanges a; and b; for i € Sy, then for any automorphism 7«
of H that extends =, and for any S € D we have

3) (S) = (S\ So) U (S0 \ 5)

which is in D just in case Sy is even. If Sj is even, (3) gives an extension of
m which is an automorphism of H. O

Let V be a set of s+3 (= k+1) elements. We define H(V) = (H(V), E¥(V))
as follows: We replace each v € V' by a copy H(v) of H, where a;(v),b;(v), ...

correspond to a;, by, . ... Moreover, if v,w € V and v # w, we add edges
) (a(v, w), a(w,v)), (a(w,v),a(v,w)),
*
(b(v,w), b(w,v)), (b(w,v),b(v,w))
where

for some 1, a(v,w) = a;(v) and b(v,w) = b;(v),
for some j, a(w,v) = a;(w) and b(w,v) = bj(w).
We do this in such a way that for every v and i there are uniquely determined
w and j such that a;(v) is linked to a;(w) (and hence, b;(v) is linked to b;(w)).
For vg,wp € V, vp # wg, we define the “twisted” version H(V)¥*° just
as H(V), but replacing (x) — only for the points vg, wo — by
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(a(vo,wo), b(wo,vo)), (b(wo, o), a(vo,wo)),

(b(’UOaU}O)aa(wOavO))’ (a(w0av0)7b(v0>w0))'
Fix vy, wg € V, Vo 7é Wo. Set
Gy = HV), G = HV)o™.

We show that (1') and (2) are satisfied. First we prove that the duplicator
wins the game C-G5,(Gs,J,). Obviously, it is enough to show that he can
play in such a way that, after his moves, the following holds:

There is a v € V such that H(v) (in Gs) is not pebbled and there
(+) is an isomorphism 7 : G2*° = G, which respects the pebbles and
maps elements of H{u) to elements of H(u) for all u € V.

In the beginning we take v := vy and 7 the identity on H(V). Now assume
that, before a move of the spoiler, we have v and 7 according to (+). Let
v’ be a further point of V different from wq such that H(v') (in G,) is not
pebbled. Using 12.2.7, choose an automorphism p of H(v) that interchanges
a(v,v") and b(v,v') and interchanges a{v, wp) and b(v,wq); similarly, choose
an automorphism p' of H(v') interchanging a(v', v) and b(v', v), and a(v’, wg)
and b(v',wp). Let o be the permutation of H(V) that extends p U p’ and is
the identity outside H(v) U H{v'). Then it is easy to check that

s
o g;) »Wo o gg,wo,

i.e., o shifts the twist from {v',we} to {v,wo}.

Now, if the spoiler chooses a subset X, say, of Gs, then the duplicator
answers by the subset ¥ of G, consisting of the m-images of the elements in
X \ H(v) and of the 7 o o-images of the elements in X N H(v). If then the
spoiler pebbles an element of Y, the duplicator answers with the correspond-
ing preimage. If H(v) remains unpebbled, (+) is again satisfied by v and =
otherwise, it is satisfied by v’ and 7o o : Q;’I’“") = Gs.

Before we prove (2), we provide some more information about the graphs
G, and Q~S. Q~S arises from G, by a twist corresponding to the pair {vg, wp}.
Similarly, we can define twisted versions of G, that have twists corresponding
to several pairs. We call G an m-twisted version of G, if there are exactly m

twists of this kind. So G, is a 0-twisted version of G, and G, a 1-twisted one.

Claim. Let G and G' be m-twisted and m/-twisted versions of G, respectively.
Then
G=¢G iff m—m' is even.

Proof (of Claim). Let 7 : G = G'. Then, given v € V, # maps H(v) isomor-
phically onto some copy H(w). By (a simple generalization of) 12.2.7, the
number of #’s such that w(a;(v)) € {b1(w),...,bx(w)} is even. This yields
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that m —m' is even. Now, let m —m' be even. In the proof of (+) we saw how
one can shift twists by suitable isomorphisms, say, a twist corresponding to a
pair {v',w} to a twist corresponding to a pair {v,w}. Hence, we may assume
that the twists of G and G’ correspond to pairs that have wg as one point.
(Note that it may be necessary to shift a twist upon a twist, thus replacing
m by m — 2 (or, m’ by m’ — 2).) Then by 12.2.7, as m — m’' is even, we can
find an automorphism of H(wg) that can be extended to an isomorphism of

G onto G'.

We now come to a proof of (2). For this purpose we describe a determin-
istic polynomially time-bounded Turing machine M that accepts all G, for
s > 3, but no G,.

Started with (the ordered version of) a graph G, M first checks whether
there is a number s > 3 such that G contains exactly s+3 cycles C1,...,Csi3
of length s + 2, consisting of points of degree 4 (so-called c-points), and
whether G contains no other points of degree 4. If so, M checks

(i) whether each c-point has exactly two neighbours that are no c-points (so-
called ab-points; different ab-points with the same c-neighbour are called
related);

(ii) for each pair {a,b} of related ab-points, whether a and b are neighbours
of exactly one ab-point a’ and b', respectively, a' and b’ being related via
a c-point that belongs to a circle different from that of the c-point that
relates a to b;

(iii) for each circle C;, whether there are exactly 257! points (so-called d-
points) that have exactly s + 2 neighbours, these neighbours being ab-
points that are related to a ¢-point in C; (we let H; be the set of these
d-points, the neighbouring ab-points, and the elements of C;);

(iv) whether there are no other points or edges.

Finally, M checks for each H; whether the subgraph H; of G with domain
H, is isomorphic to H, in the positive case also producing a partition of the
ab-points into a-points and b-points. (This can be done in a time polynomial
in 2% and hence, polynomial in ||G]|). If all checks have a positive outcome, M
counts the number of twists of G. If this number is even, M accepts, otherwise
it rejects. By the claim above, M accepts the G, for s > 3, but rejects the
Gs- O

12.3 Logical Reductions

In complexity theory there are well-established notions of reducibility, among
them the notion of many-one reducibility: Given alphabets AZF, languages
L; C A;r (i = 1,2), and a deterministic complexity class C, the language L, is
C-reducible (or, C-many-one reducible) to Ly if there is a function f : A} — A}
in C such that
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we Ll iff f(w)e L

for all w € Af. Given a further complexity class C’, a language L is C'-hard
with respect to C-reductions if any language in C' is C-reducible to L, and L
is C'-complete with respect to C-reductions if it is C'-hard and belongs to C’.

We aim at a logical analogue. For this purpose we need the notion of an in-
terpretation as introduced in section 11.2. For convenience, we shortly repeat
the definitions and notations.

Fix a logic £ and vocabularies o and 7 where ¢ = {R;,...,R;} with
ri-ary R;. An L-interpretation of o in 7 of width k is given by an (s+1)-tuple
of L|r]-formulas

I = (Wuni(f)77TR1(fl,---afn)a'-~J7TRs(Ela"'af7“s))a

where all tuples Z, Ty, ... are of length k.
For any 7-structure A, II induces a o-structure A" over k-tuples of A
given by

A = (ﬂlﬁni(—%wél(-a“'a—))"'77Tﬁs(—a“'a— s

A

<.(2) is nonempty.? So any L-interpretation II of ¢ in 7 induces

provided 7
a map

I Str[r] — Str[o].

Exercise 12.3.1 Let II; be an L-interpretation of ¢ in 7 and Ils be an £-
interpretation of 7 in p. Show that there is an L-interpretation Il of ¢ in p
such that for all p-structures A,

A = (AT O

Taking the maps I as candidates for the maps linked to logical reducibility,
we are led to the following analogue of the notion of reducibility in complexity
theory.

Definition 12.3.2 Let K C Str[r] and L C Str[o]. K is L-reducible to L,
for short: K < L, if there is an L-interpretation IT of ¢ in 7 such that for
all T-structures A,

Aek iff A'elL

We write K g’z L to indicate that K <, L can be witnessed by an interpre-

tation of width k. a
Exercise 12.3.3 Show that </ is transitive. |
2 As in section 11.2, we tacitly ignore the case n7l;(_) = 0 as it will not be

of importance; moreover, note that Trﬁi(_,..‘,,) stands for wﬁi(_,...,4) N

(mii ()"
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Exercise 12.3.4 Let K C Str[r] be a class of ordered structures and L C
Str{o]. Show that K <, L implies K <, L. O

An important example of first-order reductions is given in the following
consequence of 11.2.5. In fact, taking as L the class K (IT as in 11.2.5) we
have

Proposition 12.3.5 Let T be an arbitrary vocabulary. Then, for all K C
Stri{r] there is a class L C GRAPH such that K <po L. Moreover, L can be
chosen such that K. € PTIME iff L. € PTIME. O

We study the relationship between reductions and Lindstréom quantifiers.
First, there is a difference: Interpretations II contain a formula m,; (%) giving
the new universe, whereas Lindstrém quantifiers do not allow to “relativize”,
they always refer to the whole universe of the structure in question. To over-
come this difference, we proceed as follows:

Let ¢ = {Ry,..., Rs} with r;-ary R; and let U be a new unary relation
symbol. For L C Str[o] we introduce the class rel-L C Strje U {U}] by

rel-I = {(A4, U4 R:,...,RY | (UARA,...,RY e L};
more precisely, rel-L is the class
{(A,UARY, ... ,RY | (UM R 0 (UYH™,... R 0 (UA)) € L}

For k > 1set o(k) := {R1(k), ..., Rs(k)} with r;-k-ary R;(k) and let U(k) be
an k-ary relation symbol. Identifying r-k-tuples over 4 with r-tuples over A*
as in section 12.1, we “relativize” the definition of vectorization (cf. 12.1.6)
as follows:

Definition 12.3.6 Let L C Str{o].

(a) rel-k-L, the relativized k-vectorization of L, is the following class of
{U{k)} U o(k)-structures:

rel-k-L = {(A4,W,S51,...,Ss) | (A%, W, S51,...,S,) € rel-L}
(= {(A,W,S),...,Ss) | W C A* and (W, Sy,...,8S,) € L}).
Note that rel-L is rel-1-L.

(b) The Lindstrom quantifier Qei-g-r is called the relativized k-vectorization
of the quantifier Qr. We set rel-w-Qr := {Qrel-1-L | k£ > 1}. ]

Example 12.3.7 For the class CONN of connected graphs we have
A Qret--conT, TTp(2), ¥(T,7)] iff (p"(-), %7 (-,-)) € CONN. LI
As a simple observation we have (compare 12.1.6 for the definition of L*):

Proposition 12.3.8 Let L be a class of structures and L a logic. Then for
all k > 1,

L(Qrr) < L{Qrel-k-L)-
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Proof. If, for instance, k = 2 and L is a class of {R}-structures with r-ary R,
the formulas
Qrezizy .. zpxi(zay, ..., 2,2),

Qrero-Lxx’ 11T . cxpzlzr =z Az’ =2 (e, ... xex))
are equivalent. O

The direction “ > ” may be wrong:

Exercise 12.3.9 Let P be unary and L := {(4, P4) | |[P4|| < L||A]l}.
Show that

A l: Qrel-Lway [cp(m),@b(y)] iff QOA(—) # 0 and
(<) N (I < 3l )l

and that FO(Q1) < FO(Qre-1.)- 0

Exercise 12.3.10 Let I and P be the classes introduced in 12.1.9. Show
that FO(rel-w-Qr) = FO(QY) = FO(IFP) and FO(rel-w-Qp) = FO(Qp) =
FO(PFP).

Exercise 12.3.11 Prove L(relw-Qp) = L(rel-w-Qr_) on ordered struc-
tures (compare 12.1.2(f)). d

Exercise 12.3.12 Let K be a class such that K. € PTIME. Show that
Mod(9))« € PTIME for any sentence ¢ € FO(IFP)(relw-Qg). Moreover
show: If FO(IFP)(rel-w-Qg) or FO(relw-Qg) strongly captures PTIME,
then it effectively strongly captures PTIME. O

For £ a logic and Q a set of Lindstrom quantifiers, we denote by £[Q]
the set of formulas of £(Q) that are of the form

QF1, ..., Ts[Y1(T1), - -, Vs (Ts)]

where @ € Q and %1, ...,¥; are L-formulas (thus the ¥; do not contain the
new quantifiers). Then a simple, but crucial link between reducibility and
quantifiers can be stated as follows:

Proposition 12.3.13 Let £ be a logic, K C Str[r] and L C Str[ . Then for

k > 1 the following are equivalent:

(i) K<k L.

(if) There is a sentence ¢ in L[Qra-k-1] of vocabulary 7 such that K =
Mod(yp).

Proof. Assume o = {Ry,..., Ry} with r;-ary R;. To prove (i) = (ii), suppose
that K <k L via

I = (ﬂum( ) WRl(‘Th 'ale)a‘"77TR3(517"'7E7“3)>'
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Then for any 7-structure A4 we have:

ACK i A= (A (O (oo )y (o)) €L
iff (A,Trfni(_),wﬁl(_,...,_ I ,Wﬁs(_,...,_ )) € rel-k-L
iff A i: Qrel—k—Lfy 517 e 757‘5 [Truniy TRys---> 7TRS].

Concerning the direction from (ii) to (i), assume that K is axiomatized by
the sentence

Qrel—k—Lfy E17 R a—x—T‘s [Wunia ﬂ-R1 3ty ﬂ-Rs]
with £-formulas myni, 7Ry, - - ., 7R, . Then a rearrangement of the equivalences
above shows that K <& L via Tl = (Tuni, TRy, .-, 7R, )- O

We now transfer the notions of hardness and completeness from complex-
ity theory to logic.?

Definition 12.3.14 Let C be a complexity class, L C Str[o], and £ a logic.

(a) L is C-hard with respect to L-reductions if K <, L for all K € C.

(b) L is C-complete with respect to L-reductions if L is C-hard with respect
to L-reductions and L. € C. a

Corollary 12.3.15 Let C, L, and £ be as in the preceding definition.

(a) The following are equivalent:

(i) L is C-hard with respect to L-reductions.
(ii) € € {Mod(yp) | ¢ € Llrelw-QL]}.

(b) If C is closed under L-reducibility (i.e., for classes K1,Ka of ordered
structures, K1 <p Ky and Ky € C imply K, € C), then the following are
equivalent:

(i) L is C-complete with respect to L-reductions.
(il) Llrel-w-Qy] captures C.

Proof. (a) is immediate from the preceding proposition. For the implication
(i1) = (i) in (b) note that L. (as L) is FO[Qye-1]-axiomatizable and therefore
L|rel-w-Q ]-axiomatizable, hence L. € C by (ii). The rest is clear by (a). For
(i} = (ii) assume that the class K of ordered structures is axiomatizable in
Llrel-w-Qr]. Then K <y L by 12.3.13 and hence, K <, L. (cf. 12.3.4).
Since L. € C (by (i)) and C is closed under L-reducibility, we get K € C.
The rest is clear by (a). O

Corollary 12.3.16 Let 1 and P be the classes introduced in the proof of
12.1.9. Then 1 is PTIME-complete with respect to FO-reductions and P is
PSPACE-complete with respect to FO-reductions.

3 Recall our convention that only classes of ordered structures are considered as
members of complexity classes.
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Proof. By the proof of 12.1.9, FO(IFP) < FO[QY¥]. Therefore, FO(IFP) <
FO[Q¢] < FO[relw-Qi] < FO(rel-w-Qp) < FO(IFP) (by 12.3.10). Since
FO(IFP) captures PTIME, so does FO[rel-w-Qq]. Thus, Iis PTIME-complete
with respect to FO-reductions by part (b) of the preceding corollary. The
proof for P is similar. O

‘We are now in a position to show the result announced in section 11.1 that in
case PTIME is effectively strongly captured by any logic at all, it can already
be captured by a very familiar one, namely by an extension of first-order logic
by means of a single vectorized Lindstrém quantifier.

A class L is strongly PTIME-complete with respect to FO-reductions if L
is in PTIME and K <go L for any class K of structures with K. in PTIME
(in Definition 12.3.14 we only considered classes K of ordered structures).
The main result is:

Theorem 12.3.17 The following are equivalent:

(i) There is a logic that effectively strongly captures PTIME.

(ii) There is a class L of structures such that FO(rel-w-Qp) effectively
strongly captures PTIME.

(iil) There is a class L of structures which is strongly PTIME-complete with
respect to FO-reductions.

Moreover, a class L satisfies (ii) just in case it satisfies (iii).

The theorem gets false if “strongly PTIME-complete” is replaced by
“PTIME-complete”: With respect to FO-reductions the class T is PTIME-
complete (cf. 12.3.16) but not strongly PTIME-complete (otherwise, by the
last statement of the theorem, FO(rel-w-Qi) = FO(IFP) (cf. the proof of
12.3.16) would effectively strongly capture PTIME).

Proof (of 12.8.17). We show (iii) = (ii) and (i) = (iii), the implication (ii)
= (i) being trivial.

(iii) = (if): Let the class L be given by (iii) and let K be any class of struc-
tures such that K. € PTIME. By (iil), K <go L and hence, by 12.3.13, K is
axiomatizable in FO[rel-w-Qr] C FO(rel-w-Qr). Moreover, by induction one
can effectively assign to every ¢ € FO(rel-w-Qpr) a pair (M, d), where M is a
deterministic % time-bounded machine accepting Mod(y).. Hence, FO(rel-
w-Qy,) effectively strongly captures PTIME (note that Mod(y). € PTIME
for ¥ € FO(rel-w-Qp), cf. 12.3.12).

(i) = (ii): It suffices to define a class L of structures such that L. is in
PTIME and such that for every class K of {E}-structures (where E is bi-
nary) with K. in PTIME we have K <po L. Then 12.3.5 together with the
transitivity of <pg (cf. 12.3.3) yields the strong PTIME-completeness of L.

Let £ be a logic that effectively strongly captures PTIME. We may assume
that the set L[{E}]o of sentences of £ of vocabulary {E} is N. Furthermore,



326 12. Quantifiers and Logical Reductions

let g be a computable function assigning to i = p € L{{E}]p a pair (M,d)
such that M is deterministic and z? time-bounded and accepts Mod(y)<.
Let M, be a deterministic machine that calculates g.
We set
o :={V,E,P,@¢}

with unary V, @ and binary E, P and define L as the class of o-structures A
such that:

(1) EACVAXVA,
(2) P4 is a preordering of A (i.e., it is reflexive and transitive) such that the
equivalence classes of the equivalence relation given by

a and b are equivalent, iff P%ab and P*4ba

are linearly ordered with respect to the ordering <“ induced by P4,
(3) Q4 is an equivalence class, say, @ is the i-th class with respect to <4.
(4) The length of the run that M, performs on the input 1...1 of length ¢
to calculate g(i) =: (M, d) is < ||A|l.
(5) [l > VA
(6) M accepts all ordered representations of (V4, E4).

L. isin PTIME. Namely, in order to check in time polynomial in |[A|| whether
an ordered o.-structure (A, <) with A = {1,...,n} belongs to L., we

— check (1)

— check whether P4 satisfies (2) and whether Q4 is an equivalence class and
determine ¢

— calculate ¢(¢) = (M, d), thereby checking (4)

— check (5)

— check whether M accepts (VA, E4, <A N(VA x V4)) (which is equivalent
to a check of (6), as M is z? time-bounded and accepts Mod (i) ).

Now, let K be a class of {E}-structures such that K. is in PTIME. We
show that K <po L. For this purpose let i = ¢ € L[{E}]o be such that
Mod(p) = K. Let g(i) = (M, d). Then the deterministic machine M is z¢
time-bounded and accepts K. Choose [ such that there are at least max{i, d}
many equality types of I elements (cf. section 12.2) and such that I > the
length of the run that M, performs on the input 1...1 of length ¢ to calculate
g{1). We only take care of {E}-structures of cardinality > [.

We show K <L, L by defining the following FO-interpretation II of ¢ in
{E} of width I (Z and ¥ are of length [):
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ﬂuni(f) = 1 =T

7y (T) = T =Ty = ...= I

7p(T,T) = “the equality type of T is smaller than that of §”
(in a fixed, first-order definable ordering of the finitely
many equality types of | elements)

7o(Z) := “T satisfies the i-th equality type”

m5(T,) = 1 =...=x Ay =...=yNExy.

Then for all { E}-structures B of cardinality > [,
BeK it BelL. O

To conclude this section, we give some further applications of Corollary
12.3.15 for ¢ = NPTIME.

Let < € ¢ and let L C OJo] be a class of ordered structures that is NPTIME-
complete with respect to logspace reductions, i.e., L € NPTIME and every
NPTIME class K of ordered structures, say of vocabulary 7, is reducible to
L in the following sense: There is a log space-bounded? (7, ¢)-transducer M
(cf. Appendix 7.5.1) such that for all m-structures A,

AeK if  MUA)eL

where M (A) is the output of M started with A. From complexity theory we
know that an example of such an L is given by HAM . where

HAM := {G |G is a directed graph that has a Hamiltonian circuit}.

Proposition 12.3.18 For classes K and L of ordered structures the follow-
mg are equivalent:

(i) K is logspace reducible to L.
(ii) K <pomrc) L.

Proof. For the implication (ii) = (i) let II be an FO(DTC)-interpretation
witnessing K <po(rcy L. Since satisfiability for FO(DTC)-formulas can be
checked by log space-bounded machines, there is a (1,0)-transducer that,
given A, writes an encoding of A™ on the output tapes.

For (i) = (ii) suppose that L. C O[o] where ¢ = {Ry,..., Rs} with r;-ary
R;. Let K C O[r] and let M be a log space-bounded (7, o)-transducer such
that for all A € O[r],

(1) AeK if  M(A)elL.

By 7.5.23 there are k > 1 and formulas xuni(Z) and xg,(%1,...,%r,) of
FO(DTC) with Z,1,...,Z,, of length k such that for all A € O[],

s

* Recall that log space-bounded means c-log space-bounded for a suitable ¢ > 0.
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(2) M(A) g (XuAni(—)’Xél(—7"'7_ )7"'7X.}’%5(——7"'7_ ))'
Let II be the FO(DTC)-interpretation (Xunis X&;s---s X&.)- By(1) and (2),
we have A € K iff A € L; hence, K §1’§O(DTC) L. O

Since NPTIME is closed under logspace reductions, we get by 12.3.15(b)
and the preceding proposition:

Corollary 12.3.19 For a class L of ordered structures the following are
equivalent:

(i) L is NPTIME-complete with respect to logspace reductions.
(ii) L is NPTIME-complete with respect to FO(DTC)-reductions.

(iii) FO(DTC)[rel-w-Qy] captures NPTIME. O
Corollary 12.3.20 HAM. is NPTIME-complete with respect to FO(DTC)-
reductions. d
Corollary 12.3.21 FO(DTC)[rel-w-Qnam.] captures NPTIME. O

In some cases one can do better. For example, NPTIME is captured al-
ready by FO[rel-w-Qmam_] (in the presence of min and max even quantifier-
free formulas suffice); moreover, according to the following exercise we can
replace HAM. by HAM.

Exercise 12.3.22 Show that L[rel-w-Qp] = L[rel-w-Qy, ] on ordered struc-
tures (compare 12.1.2(f)). O

In a typical first-order prefix, for example a prefix as in
(1) VaIyVudve(z, y,u,v),

the existentially quantified variables depend on all the preceding universally
quantified variables. So (1) means (using function symbols f (unary) and g
(binary))

(2) Af IgVaVup(z, f(x), u, g(z, ).

Due to the linear character of our notation of formulas it is not possible to
arrange the quantifiers in the prefix in (1) in such a way that y only depends
on z and v only depends on w. Henkin introduced quantifiers which allow
such dependencies. Here we only consider the simplest one, the one we just

. . . Va3y Vady
have described. It is written as < Vudo ), and ( Vude ) w(z,y,u,v) means

VrIy
IfgVevue(z, f(z),u, g(u)). We turn ( Vo
by introducing, for o = {R} with a 4-ary relation symbol R, the class

) into a Lindstréom quantifier

HENK := {(4,R%)|(4,R*) = 3f3gVaVuRzf(z)ug(u)}.
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FO(Quenk) is strictly stronger than FO. For example, with 7 = {U,V},
where U,V are unary, and

w = “(:Zgg)((uzy—H;zm)/\(Ux(—)Vy))”
= “IfFg¥avu((u = f(z) = g(u) = 2) A (Uz & V f(2)))”
= Quenkzyuww((u=y > v=2) AUz < Vy))

we have Mod(¢) = {(A4, U4, VA | ||UA]| < [[VA]|}, a class that is not axiom-
atizable in FO.

Proposition 12.3.23 For Q = relw-Quenk and for Q = rel-w-Quenk .
the logic FO(DTC)[Q] captures NPTIME.

Proof. By 12.3.22 we may restrict ourselves to HENK .. Let 3COL be the
class of 3-colourable graphs. (A graph is 3-colourable, if its vertices can be
coloured with three colours such that no two adjacent vertices have the same
colour.) 3COL. is NPTIME-complete with respect to logspace reductions
and hence, with respect to FO(DTC)-reductions (cf. 12.3.19). We show

(*) 3COL« <romrc) HENK..

Since HENK . is in NPTIME, (%) yields that HENK. is NPTIME-complete
with respect to FO(DTC)-reductions. By 12.3.19, FO(DTC) [rel-w-Quenk ]
captures NPTIME.

We show (%), even 3COL<po HENK: We use a unary function f to rep-
resent three colours: a vertex a has the first colour if

f(a) = a,
the second colour if
f(a) # a and Eaf(a),
and the third colour if

f(a) # a and not Eaf(a).

Then an easy argumentation shows that a graph G = (G, E¥) is 3-colourable
iff it is of cardinality < 3 or there is a function f : G — G such that for all
a,b with E%ab it is not the case that (i), (ii), or (iii) where

(i) f(a) =aand f(b) = b;

(ii) f(a) # a, Eaf(a) and f(b) # b, Ebf(b);

(i) f(a) # a, not Eaf(a) and f(b) # b, not Ebf(b).

Therefore, there is a formula pscoL(z,y,u,v) € FO[{E}] such that

Mod(@uenkzyuvpscor(z,y,u,v)) = 3COL;
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for instance, we can take

pacoL(@y,u,v) = pesV (@ =u—y=v)A(Ezu—

3
“((y=zAv=u)V (y#£z A Ezy Av#u A Euv)
V({y#£x A ~Ezy A v#u A -Euv)))).

Hence, 3COL<gp HENK via the interpretation given by

i) = z==z

7TR(:L', ?Jﬂﬁav) = <PBCOL($7Z/7U7U)-

12.4 Quantifiers and Oracles

In the preceding section we have encountered complexity classes captured by
logics of the form L(rel-w-Qk). In the following we deal with a question in
the opposite direction: Let £ be a logic, K a class of structures, and C a
complexity class. Then:

(+) If £ captures C, what complexity class is captured by L£(rel-w-Qxk)?

Interprete a formula ¢, say, of L(Q k) as a program to evaluate the meaning
of ¢, addressing a device which can evaluate instructions of the form

QKE[(/)I, .. 'a(ps]

in one step, once ¢4, ..., s have been evaluated. There is a concept of such
a device in complexity theory that fits into this frame, Turing machines with
oracles. We let CX denote the complexity class defined by Turing machines
with resource-bound according to C that can use an oracle for K to decide
membership for K. Then the natural answer to (+) would be

L(rel-w-Qg) captures C¥.

As it has turned out, this answer is true in various cases. However, one has
to choose the right oracle machine model in each particular case. We only
will present one important group of results to give an impression of what is
going on. First, we introduce an oracle model (essentially Turing machines
with one oracle tape) that meets our purposes.

Let o and T be vocabularies with < € o and <€ 7. A Turing machine M
for T-structures with oracle tapes for o-structures, for short, a (r,0)-oracle
machine, is a (7, )-Turing machine (cf. Appendix 7.5.1), that is, a determin-
istic Turing machine with input tapes for 7-structures, with work tapes, and
with output tapes for o-structures (now called oracle tapes). In addition to
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the instructions of a (7, o)-Turing machine it has so-called oracle instructions,
that is, instructions of the form

(1) sby ... bgprc1...om — 8.

Given an “oracle class” O of o-structures, (1) has the meaning

“If you are in a configuration corresponding to sbg...bg+iC1 - .. Cm,
do the following: if the inscription on the oracle tapes encodes a
structure in O, go into state s'; otherwise, go into state s”. Delete
the inscription on the oracle tapes and move the heads to the initial
position.”

Configurations which ask for an oracle instruction are called oracle configu-
rations. Note that in an oracle configuration the inscriptions on the oracle
tapes need not encode a o-structure.

We write (M, O) to indicate that M works with O as the class fixing the
meaning of the oracle instructions.

An oracle instruction is carried out in one step. By definition, space
bounds refer only to work tapes; in particular, space used on the oracle tapes
does not count. If (M, O) is s(n) space-bounded then — in case (M, O) stops
— the number of cells on the oracle tapes that are scanned during the run is
< d*(" for a certain constant d > 0.

Occasionally we shall also use transducers with oracle tapes, so-called or-
acle transducers; they possess both output tapes and oracle tapes, the latter
ones serving the same purpose and working in the same way as with oracle
machines. It should not be difficult for the reader to provide an exact defini-
tion.

Let C be a complexity class and K a class of classes of ordered structures. C*,
the relativization of C to K, consists of those classes of ordered structures that
are accepted by some oracle machine (M,0) with O € K that is resource-
bounded according to C. In particular, LOGSPACEX consists of those classes
of ordered structures that are accepted by some log space-bounded oracle ma-
chine{ (.;VI ,0) with O € K. If L is a class of ordered structures, we write C*
for C144,

The following proposition which is stated for the case we are interested in
exhibits the relationship between oracles and quantifiers.

Proposition 12.4.1 Suppose that O is a class of ordered o-structures and
¢ an FO(DTC)[rel-w-Qp]-sentence. Then there is a log space-bounded oracle
machine (M, O) that decides Mod(yp).5

Proof. Let

Y= Qrel—k-of7il> s afn[‘ﬂuni(f)y‘ﬂm (Ela “e. 757‘1)’ .- YR, (fla s afrs)]

5 In particular, the logarithmic space bound applies to rejecting runs, too.
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with Yuni,...,¢r, € FO(DTC). By 7.4.1 there are log space-bounded Tur-

ing machines that evaluate ¢uni, ..., ¢r,. The intended machine writes the
“structure” induced by pyyi,- .-, @R, on the oracle tapes and invokes its or-
acle to decide whether it belongs to O. a

We prove the following well-known result from complexity theory.

Proposition 12.4.2 Assume that L is a class of ordered structures that is
NPTIME-complete with respect to logspace reductions. Then

LOGSPACE” = LOGSPACENFTIME
In particular, we hove
LOGSPACE"AM<  — T1,0GSPACEM"NK< — LOGSPACENPTIME

Proof. Obviously, we have LOGSPACEL C LOGSPACENPTIME T4 prove
the converse inclusion, let K C O[r] and O C O[o] with O € NPTIME, and
let (Mg,O) be a log space-bounded (7, c)-oracle machine that accepts K.
We have to show that K € LOGSPACE”.

By 12.3.19 there is a sentence ¢ in FO(DTC)[rel-w-Qp][o] such that
O = Mod(ypp) and hence, by 12.4.1, there is a log space-bounded oracle
machine (Mo, L) that decides O.

We construct a log space-bounded oracle machine (M, L) that accepts
K. Roughly, (M, L) runs as follows: Started with an ordered 7-structure A,
it imitates (M, O). Suppose it reaches an oracle configuration of (Mg, O).
(M, L) does not have an oracle to decide whether the inscription J on the
oracle tapes of (Mg, Q) encodes a structure in O. However, using its oracle
for L, it now can imitate a run of (Mo, L) to answer the question whether
J encodes a structure in O. For this purpose, (M, L) must use work tapes
that carry the inscription J to simulate the input tapes of (Mg, L). But
J, in general, is not log space-bounded in ||A|]. To overcome this difficulty,
one applies the same trick as for 7.5.23, going always back to obtain the
information on J needed in a given situation.

To be more precise, consider a configuration ¢ which is the starting con-
figuration of (Mg, O) or the immediate successor of an oracle configuration
of (Mg,0O). Assume that there is a next oracle configuration ¢’ and that
the transition from ¢ to ¢’ leads to the inscription J on the oracle tapes of
(Mg, 0). Assume that ¢ is stored on an additional tape. In order to decide
whether J encodes a structure in O, the information about J that (M, L)
really needs, is of the kind

“What letter stands in a certain cell of a certain oracle tape of
(Mg,0)?

To provide such an information, (M, L) imitates (Mg, O) starting from c,
neglecting the oracle tapes, but using counters to mark the positions of the
heads on the oracle tapes. Finally, (M, L) replaces the stored ¢ by ¢'. O
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We come back to the question (+) of the introduction. For FO(IFP) and
PTIME and for FO(DTC) and LOGSPACE we give positive answers, thereby
proceeding in two steps (Proposition 12.4.3 and Proposition 12.4.4).

Proposition 12.4.3 Let <€ o and let O be a class of ordered o-structures.
Then we have:

(a) Every class in PTIMEC is FO(IFP)(rel-w-Qo)-aziomatizable.
(b) Euvery class in LOGSPACE? is FO(DTC)(rel-w-Qo)-aziomatizable.

In both (a) and (b) the aziomatizing sentence can be chosen without nested
quantifiers from rel-w-Qo.

Proof. We first prove (b). Let <€ 7 and K C OJr] be accepted by some log
space-bounded oracle machine (M, O). We have to show that K is axiomati-
zable in FO(DTC)(rel-w-Qo).

To give such an axiomatization, we proceed as in 7.3.7, using log space-
bounded configurations of (M, Q) that only refer to the input tapes and to the
work tapes; but now we describe the transition from one oracle configuration
to the next one. For this purpose we assume that the oracle answer states
s',s" in oracle instructions are distinct from each other and do not occur as
successor states of other instructions. The main point here is to show that the
predicates Oraclet (i1, %) and Oracle™(w,7) as given below can be expressed
in FO(DTC)(rel-w-Qp). Oraclet/~ (7, T) says:

— 7 is the starting configuration of (3, 0) or a configuration with an oracle
answer state;

— ¥ is an oracle configuration of (M, O);

— T is reached from @ without passing an oracle configuration in between;

if (M, Q) is started in u with empty oracle tapes then, when reaching ,

the oracle tapes contain/do not contain the encoding of a structure in O.

|

The first three points do not cause difficulties; so we restrict ourselves to the
last one. We consider the run of (M, O) that leads from @ to ¥ (@ and @
obeying the first three points above) as a run of a log space-bounded (7, o)-
transducer. Then we can apply Theorem 7.5.23 (more precisely: the obvious
generalization involving the parameters w,7) to get, with a fixed e > 1,
formulas

(+) Yuni(Z,w,7) and Yr(F1,..., T, u,0) for R € o, R r-ary,

in FO(DTC)[r] where T and the Z; have length e, and, with similar methods,
a formula st (7, 7) in FO(DTC)[r] such that ¢s, (T, T) says that

after the run from w to T the inscription on the oracle tapes encodes
a o-structure, namely (Yuni(—,%,7), (Yr(=,...,— , %, 7)) Reo)-

Then we see that

¢(Ua 5) = Qrel—e—OT; s (¢uni (Ea u, 5)7 (Q/JR(ERa i, E))RGO’)
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expresses that (Yuni(_,%,7), (Wr(_,...,— ,%,0))res) € O. Therefore, we can
describe the fourth point of Oracle™ (u,v) by

PStr (ﬂa E) A w(ﬂa 6)

and the fourth point of Oracle™(w,7) by —~ps(w,7) V ~(u, D).

The proof of (a) is similar, referring to a PTIME analogue of Theorem 7.5.23
(see Exercise 7.5.25).

The additional remark of this proposition is obvious. O

The preceding proof cannot be extended to PSPACE and FO(PFP). The rea-
son is that the oracle tapes of a polynomially space-bounded oracle machine
may get inscriptions of length exponential in the length of the input structure
and hence, may not be definable by means of an interpretation. One way to
preserve the validity consists in changing the oracle model, say, by suitably
restricting the use of the oracle tapes.

We now turn to model checking:

Proposition 12.4.4 Let <& o and let O be a class of ordered o-structures.
Then we have:

(a) Ewvery FO(IFP)(rel-w-Qo)-aziomatizable class of ordered structures is in
PTIME® (and hence, is decidable by a machine according to PTIME®).

{b) Ewvery class of ordered structures aziomatizable by an FO(DTC)(rel-w-
Qo)-sentence without nested quantifiers of rel-w-Qo is in LOGSPACE?
(and hence, is decidable by a machine according to LOGSPACEO).

(¢) The assertion in (b) is true for all FO(DTC)(rel-w-Qo)-aziomatizable
classes of ordered structures if O is NPTIME-complete with respect to
logspace reductions.

Summing up:
Corollary 12.4.5 (a) For any class O of ordered o -structures, FO(IFP)(rel-
w-Qo) captures PTIMEC.

(b) If O is NPTIME-complete with respect to logspace reductions, then
FO(DTC)(rel-w-Qo) captures LOGSPACEC. O

Note that in (b), by 12.4.2, LOGSPACE? = LOGSPACENFTIME ¢,
FO(DTC)(rel-w-Qo) captures LOGSPACENPTIME Tor example, we have

FO(DTC)(rel-w-Quam. ) captures LOGSPACENTTME,

The preceding results yield normal form theorems for both the IFP and
the DTC case: Over ordered structures, any FO(IFP)(rel-w-Qp)-sentence
is equivalent to a sentence without nested quantifiers from rel-w-Qgp. The
same is true for FO(DTC)(rel-w-Qo) provided O is NPTIME-complete with
respect to logspace reductions.
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Proof (of 12.4.4). (a) We proceed by induction on FO(IFP)(rel-w-Qo)-
formulas and confine ourselves to the rel-w-Qo-step. So let

w = Qrel—k—ny El: .. 758 [(puni (f)v ¥1 (fl)v - Ps (fs)]

where 0 = {Ry,...,Rs} and @umi,p1,...,9s are FO(IFP)(rel-w-Qo)[7}-
formulas. By induction hypothesis there are polynomially time-bounded or-
acle machines (Myy;, O), (M1, 0), ..., (M, O) that decide

{(A,2) | A€ OIr], A= punildl}, ... {(A,@) | (A € O7], A |= ws[al},

respectively. Using these machines, we can build a polynomially time-bounded
oracle machine (M, O) deciding the class of ordered models of ¢: Given an
ordered T-structure A as input,

(i) (M, O) checks whether oz (_) is nonempty and whether (in case R; =
<) @*(_) is an ordering on ¢ .(_); if not, it rejects, otherwise (viewing
(Punis @1, ---,@s) as an interpretation IT)

(ii) using the ordering p1'(_), it writes the (encoding of the) structure

Al = (@fm(—),@f(—), cees 90;4(—))

on some work tapes;
(iii) it copies .A! on the oracle tapes;
(iv) it envokes its oracle O to decide whether A belongs to O.

Note that in (i) we cannot write A" directly on the oracle tapes, because
these tapes may be used by the machines (Muyni, O), (M1,0),...,(Ms,O)
when constructing A,

(b) The proof follows the same pattern as that of (a). But now we write A"
directly on the oracle tapes; we can do so as the formulas @uni,1,--.,9s
do not contain quantifiers from rel-w-Qg. One only has to check that the
arguments remain valid if the polynomial time bounds are replaced by loga-
rithmic space bounds.

(¢) The proof is more involved. The reason is that, when following the pat-
tern of the proof of (a), we cannot realize (ii) by a log space-bounded oracle
machine as the encoding of A" may be of polynomial length, thus violating
the logspace bound. We therefore proceed as follows: In the rel-w-Qo-step of
an inductive proof, let

Y = Qrel-k-0T, T1, - - -, Ts[Puni (T), 01 (F1), - . ., Ps(Ts)]

where Yuni, 1, .- -, s are FO(DTC)(rel-w-Qo)[r]-formulas. By hypothesis,
there are log space-bounded oracle machines (Mypn;, O), . .. deciding {(A,a) |
A € O[r], A= vunild]}, ..., respectively. Using these machines, we now build
a log space-bounded oracle transducer (M, O) that works as follows: Given an
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ordered 7-structure .4 as input, (M, O) checks whether 2 (_) is nonempty
and whether @7'(_) is an ordering on @72 .(_); if not, it gives as output a
fixed ordered o-structure not in O (note that we may assume the existence
of such a structure, the other case being trivial), otherwise it produces the
output structure A" (cf. (ii) in the proof of (a)).

By construction of (M, O) we have:
AlEy¢ it (M,0), started with A, gives an output in O,

i.e., the class of ordered models of ¢ is reducible to O via a log space-bounded
oracle transducer. The next lemma tells us that we are done. O

Lemma 12.4.6 Let O be a class of ordered o-structures that is NPTIME-
complete with respect to logspace reductions and let K be a class of ordered
T-structures. Then we have:

If K s reducible to O via a log space-bounded oracle transducer with oracle
class O, then K belongs to LOGSPACE®,

For the proof we need a kind of join of classes: Let o and 7 be disjoint and
P a unary relation symbol that does not belong to o Ur. For A € Str[o] and
B € Str[r] let AB be the (¢ U7 U {P})-structure £ with (we assume that A
and B are disjoint)

- E = AUB

- P¢* .= B

e .. [ BY ifReo
: RB ifRer

We extend the join to the case that one argument is the “empty structure”
by setting

Al = the expansion of A to a (¢ U7 U {P})-structure &
with P€ =@ and R® =0 for all R € ;
0B := the expansion of B to a (¢ Ut U {P})-structure &£

with P¢ = Band RE =0 for all R € .

Note that AB = A'B’ implies 4 = A’ and B = B'. For L C Str[e] and
K C Strfr] let LK be the closure under isomorphisms of

(40| A€ LYU{0B|Be K}

LK is a class of (¢ Ut U {P})-structures. Up to trivial expansions it consists
of the structures in L and K.
The proof of the following fact is routine.

Lemma 12.4.7 If L and K are in NPTIME then (LK), is in NPTIME.
O
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Proof (of 12.4.6). Let O and K be given accordingly, and let K be reducible

to O via the log space-bounded oracle transducer (M, 0). By 12.4.2 it suf-

fices to show that K € LOGSPACENFTIME i e  that there is a class O* in

NPTIME and a log space-bounded oracle machine (M*, 0*) that accepts K.
Let (M,0O) be started with an input structure of cardinality n. Thus, if

n is sufficiently large, the part of the configurations of M comprising

— the current state

— the current inscriptions of the work tapes
— the current position of the heads on both the input and the work tapes

can be encoded by d numbers between 0 and n — 1 and hence, by d counters
of length logarithmic in n. Here, d is a suitable positive number independent
of n.

Let C), be the set of these partial configurations. The cardinality of C,, is
< n¢ and hence, polynomial in n. Given an input structure A of cardinality
n, set

Or(A) = {(¢,B)|ceC, and (M,O), started with A and with
empty oracle tapes in configuration ¢,
reaches a next oracle configuration, the oracle tapes then
having an inscription that encodes B, and B € O}.

Now, considering sets {1,...,r} as structures (of empty vocabulary), we let

L consist of the structures A{1,...,r} with r € N such that

— A is an ordered 7-structure;

— there is a set {(c1,B1),..., (¢, Br)} € Or(A) with distinct ¢y, ..., ¢, such
that (M,{B1,...,B,}), started with A, gives an output in O.

Then we have:

(1) For A € O[] and r = ||Or(A)]],
A{l,...,r}eL iff AcK.

(2) L. is in NPTIME.

For (1) we note that (M, {B | (¢, B) € Or(A) for some ¢ € C,,}) started with
A behaves exactly like (M, O) started with A.
To prove (2), one can define a (nondeterministic) machine that is polyno-
mially time-bounded and, started with an input structure D,
— checks whether D has the form (A4{1,...,r}, <?)
— nondeterministically guesses distinct configurations c1,...,cr € C) 4
— checks whether for alli € {1,...,r} there are B, such that (¢;, B;) € Or(A)
(note that O is in NPTIME)

—runs (M, {B1,...,B,})on A
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— accepts if the resulting output codes a structure in O (recall that O is in
NPTIME).

Now we set
O* = (OL) <

which, by 12.4.7, belongs to NPTIME. Let ¢* be its vocabulary.

We are finished if we succeed in defining a log space-bounded (7,c*)-
oracle machine (M*, 0*) that accepts K. We construct (M*,0*) in such a
way that, started with an ordered 7-structure A, it

— counts the number rq of configurations ¢ € Cj 4| such that (c, B) € Or(A)
for some B (to test this condition, (M*, O*) imitates (M, O), starting with
an ordered 7- structure A in c¢; if it reaches a next oracle configuration of
(M, O), the oracle tapes of (M™*,0*), that correspond to symbols of ¢* \ o,
are empty (and hence, code the empty relations); therefore, the inscription
on the oracle tapes of (M, Q) encodes a structure in O iff the inscription
on the oracle tapes of (M*,0*) encodes a structure in O*, and (M*,0*)
can check this by use of its oracle);

— writes §(A{1,...,70}) on its oracle tapes (more exactly, an ordered version,
using the ordering of A)

— asks the oracle whether B(A{1,...,70}) € O* (or, equivalently, whether
(A{1,...,70}) € L)

— accepts just in case the answer is positive.

By (1) we see that (M*,0%) accepts K. O

In 7.5.18 we have introduced the polynomial hierarchy PH. The following
exercise contains an alternative definition. The complexity classes NPTIME®
appearing there are defined in a similar way as the classes LOGSPACES.

Exercise 12.4.8 Set PH), := PTIME and PH), := NPTIME -1 for k > 1.
Show that PH), = PH, for all £ > 0.

Notes 12.4.9 The notion of Lindstrém quantifier goes back to Lindstrom
[118]; for further information see [31]. Various notions and results that we
have treated in the book can be extended to logics with Lindstréom quantifiers;
see, for example, [106, 27]. [89] discusses problems concerning the interplay
between quantifiers and logical operators. The results of section 11.2 go back
to [28] (Theorem 11.2.1), [80] (Theorem 11.2.3), and [16] (Theorem 11.2.5).
For section 11.3, in particular Theorem 11.3.17, we refer to Dawar [24, 25].
Early references for reductions by interpretations are [120] and [22]. The
results in section 11.4 are based on [51]; see also [53, 26]. Corollary 11.4.5(b)
for HAM. goes back to Stewart [134].
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