BCNF revisited:
 40 Years Normal Forms

J.A. Makowsky
Faculty of Computer Science
Technion - IIT, Haifa
janos@cs.technion.ac.il
www.cs.technion.ac.il/~janos

Acknowledgements

Based on work by M.W. Vincent and joint work with E.V. Ravve
See also:
[LL99] Mark Levene and George Loizou
A Guided Tour of Relational Databases and Beyond Springer 1999

Overview

Part I

- Normal forms and functional dependencies
- BCNF and redundancy
- BCNF and update anomalies

Part II

- BCNF and storage saving
- Achieving BCNF
- Other normal forms

Part II

Unpredictable insertions, I

Let $R[U], F$ be a relation scheme.
An insertion of a tuple t into $r \vDash F$ is said to be F-valid, if $r \cup\{t\} \vDash F$.
A set of attributes $X \subseteq U$ is said to be
unaffected by a valid insertion $r^{\prime}=r \cup\{t\}$
iff $\pi_{X}(r)=\pi_{X}\left(r^{\prime}\right)$.
A valid insertion is F-unpredictable
(F^{+}-unpredictable)
if there exists a non-trivial $X \rightarrow Y \in F$ $\left(X \rightarrow Y \in F^{+}\right)$
such that $X Y$ is unaffected by it.

Unpredictable insertions, Example

$R[A B C]$ with $F=\{A \rightarrow B, B C \rightarrow A\}$
We look at $A \rightarrow B$:

	A	B	C
	a_{1}	b_{1}	c_{1}

We now insert t

	A	B	C
$\mathrm{t}=$	a_{1}	b_{1}	c_{1}
a_{1}	b_{1}	c_{2}	

This is a valid insertion which does not affect $A B$. Hence it is F-unpredictable.

Clearly, F-unpredictable implies F^{+}-unpredictable.

Unpredictable insertions, II

Observation:

If R, F has an F^{+}-unpredictable insertion, then it is not in BCNF.
Proof:
There is r and t such that $r \cup\{t\} \vDash F$
and hence $r \cup\{t\} \vDash F_{\text {Key }}$.
There is some non-trivial $X \rightarrow Y \in F^{+}$, and $t^{\prime} \in r$ with $t \neq t^{\prime}$ but $t[X Y]=$ $t^{\prime}[X Y]$.

Assume for contradiction, R, F is in BCNF.
So X is a superkey for F.
But $r \cup\{t\} \models F_{\text {Key }}$. So $t=t^{\prime}$, a contradiction.
Exercise: Show that R, F has a F^{+}-unpredictable insertion iff R, F is F^{+} redundant.

Unpredictable insertions, III

Theorem: (Bernstein, Goodman, 1980)
The following are equivalent:
(i) R, F is in BCNF ;
(ii) R, F has no F-unpredictable insertions.
(iii) R, F has no F^{+}-unpredictable insertions.

Minimizing storage, I

Let $R[U], F$ be a relation scheme, and $\pi_{U_{i}} R=R_{i}\left[U_{i}\right]$ be an
information preserving decomposition, i.e. $F \vDash \bowtie_{i} R_{i}\left[U_{i}\right]=R$.
We say that the decomposition is storage saving
if there are instances $r=\bowtie_{i} r_{i}$ such that $\sum_{i}\left|r_{i}\right| \leq|r|$.

Example:

Consider $R[A B C D]$ with
$F_{1}=\{A \rightarrow B C D, C \rightarrow D\}$ (not in BCNF) and
$F_{2}=\{A \rightarrow B C D, C \rightarrow A\}$ (in BCNF) and
We decompose R into $R_{1}[A B C]$ and $R_{2}[C D]$ for F_{1} and $S_{1}[A C]$ and $S_{2}[A B D]$ for F_{2}.

With F_{1} there may be fewer values for C than for A, but with F_{2} this is not possible.

Minimizing storage, II

Observation:

If R, F is in BCNF then it has no storage saving decomposition.
Proposition: R, F has a storage saving decomposition iff R, F is F^{+}-redundant.
Proof: Assume R, F is F^{+}-redundant on $X Y$ with $X \rightarrow Y \in F^{+}$. Then there is $r=F$ such that the decomposition $\pi_{X Y} r \pi_{X(U-Y)} r$ is storage saving.

Conversely, if R, F has a storage saving information preserving decomposition with $F \models \bowtie_{i} R_{i}\left[U_{i}\right]=R$. So there are $X, Y \subseteq U$ and there is an i such that $X Y=U_{i}$ and $X \rightarrow Y \in F^{+}$.
(Here we use the characterization of information preserving decompositions!)
Now it is easy to see that R, F is F^{+}-redundant on $X Y$.
Q.E.D.

Minimizing storage, III

Theorem:(Biskup; Vincent and Srinivasan)
If R, F is in BCNF iff it has no storage saving decomposition.
Remark: This holds also for wider dependency classes and their respective normal forms.

Relationship between anomalies (revisited)

Additionnaly to Theorem 4.1. in [LL99] we now have shown:

Proposition:

Let F be a set of functional dependencies over a relation scheme (R, F). The following are equivalent:
(i) (R, F) has an insertion anomaly with respect to F;
(ii) (R, F) is redundant with respect to F;
(iii) (R, F) has a modification anomaly with respect to F.
(iv) (R, F) has F-unpredictable insertions.
(v) (R, F) has a storage saving information preserving decomposition.

Additionally, if (R, F) is in BCNF, then none of the above may occur.

Completing the picture

We still need to prove the following:
Proposition: The following are equivalent:
(i) (R, F) is not in BCNF;
(ii) (R, F) is redundant with respect to F;

Proof: (i) implies (ii): Suppose (R, F) is not in BCNF and for some $X \rightarrow$ $A \in F^{+} X$ is not a superkey.
We take r to consist of two tuples t_{1}, t_{2} such that $t_{1}\left[X^{+}\right]=t_{2}\left[X^{+}\right]$and for all $B \in U-X^{+}$we have that $t_{1}[B] \neq t_{2}[B]$. Clearly $r \neq F$ and (R, F) is redundant on X^{+}.
(ii) implies (i): Suppose (R, F) is redundant and for some $r \vDash F$ and for some $X \rightarrow A \in F^{+}$. But then X is not a superkey.
Q.E.D.

Characterizations of BCNF

Theorem:[BCNF-characterization Theorem]
Let F be a set of functional dependencies over a relation scheme (R, F). The following are equivalent:
(i) (R, F) is not in BCNF;
(ii) (R, F) has an insertion anomaly with respect to F;
(iii) (R, F) is redundant with respect to F;
(iv) (R, F) has a modification anomaly with respect to F.
(v) (R, F) has F-unpredictable insertions.
(vi) (R, F) has a storage saving information preserving decomposition.

Attribute splitting

Splitting zip-codes, I

The examply $R[C S Z]$ with
C: City, S: Street, Z: Zipcode and $C S \rightarrow Z, Z \rightarrow C$
is in 3NF but not in BCNF.
The only BCNF-violation is $Z \rightarrow C$.
We can bring it into BCNF in two ways:

- Drop $Z \rightarrow C$

The character of postal distribution has changed

- Split Z into $Z_{\text {city }}$ and $Z_{\text {local }}$ with $C S \rightarrow Z_{\text {local }}, Z_{\text {city }} \rightarrow C, C \rightarrow Z_{\text {city }}$ and new relations
$S_{1}\left[C S Z_{\text {local }}\right]$ and $S_{2}\left[C, Z_{\text {city }}\right]$.
Many countries do this

Splitting zip-codes, II

We split the zip-code Z into $Z_{\text {City }}$ and $Z_{\text {local }}$ and store it more efficiently:
ZipCode $\left[S Z_{\text {City }} Z_{\text {local }}\right]$ with $Z_{\text {City }} S \rightarrow Z_{\text {local }}$ the zip-code table and
CityCode[C $\left.Z_{\text {City }}\right]$ with $C \leftrightarrow Z_{C i t y}$ the city-zip-code table.
We have two tables instead of one.
But we can gain storage space provided

- $Z_{\text {City }}$ is a short code for city names, and
- $Z_{\text {local }}$ is a short code for sets of street names.

Note that saving storage must be measured in bits not in the number of tuples.

Splitting zip-codes, III

If we drop the BCNF-violation from our requirements, we save even more storage:

We can use the unused zip-codes resulting from inbalances of city-size:

- New York has many zip-codes, say 001-0001 up to 001-9999
- Montauk has very few, say 002-0001 up to 002-0009
- With $Z \rightarrow C$ the values 002-0010 up to 002-9999 are waisted.
- We can also gain by grouping small cities into bigger areas with same first three digits.

Hidden Bijections

Let $R[V X Y], F$ be a relation scheme with V, X, Y disjoint sets of attributes and F a set of FD's.

We say that F has a hidden bijection if

$$
V X \leftrightarrow V Y \in F^{+}
$$

and

$$
Y \rightarrow X \in F^{+} \text {or } X \rightarrow Y \in F^{+}
$$

The rôles of X and Y are not symmetric.
Proposition:(M.-Ravve)
$(R[U], F)$ is in BCNF iff it has no hidden bijections.

Attribute splitting, I

Let $R[V X Y], F$ be a relation scheme with
V, X, Y disjoint sets of attributes and F a set of FD's, and $V X \rightarrow V Y$ and $Y \rightarrow X$ in F^{+}a hidden bijection.

For $A \in Y$ an $V X$-splitting of A into A_{V}, A_{X} is given by

- $R_{1}\left[V A_{X} A_{V}(Y-A)\right]$ with $V A_{X} \rightarrow A_{V}$ and $V A_{X} \rightarrow(Y-A)$,
- $R_{2}\left[X A_{X}(Y-A)\right]$ with $A_{X}(Y-A) \leftrightarrow X$,
- $R_{3}\left[A_{X} A_{V} A\right]$ with $A_{V} A_{X} \leftrightarrow A$.

Attribute splitting, II

Conversely, given
$R_{1}\left[V A_{X} A_{V}(Y-A)\right], R_{2}\left[X A_{X}(Y-A)\right], R_{3}\left[A_{X} A_{V} A\right]$
with $V A_{X} \rightarrow A_{V}(Y-A), A_{X}(Y-A) \leftrightarrow X$, and $A_{V} A_{X} \leftrightarrow A$,
we form first $S_{1}=R_{1} \bowtie R_{2}$ and then S_{2}
by fusing in $S_{1} A_{1} A_{2}$ into A (using R_{3}).
If S_{2} has the same instances as R, we say the attribute splitting is information preserving.

It follows that in $S_{2}[V X Y]$ we have $V X \rightarrow Y$ and also, either $Y \rightarrow X$ or $Y \rightarrow V$.

Proposition:(M.-Ravve, 2002)
If attribute splitting in ($R[V X Y], F)$ is information preserving, then F has a hidden bijection.

Attribute splitting and storage saving

R			
X	V	A	$\mathrm{Y}-\mathrm{A}$

becomes

R_{1}			
V	A_{X}	A_{V}	$\mathrm{Y}-\mathrm{A}$

R_{2}		
X	A_{X}	$\mathrm{Y}-\mathrm{A}$

R_{3}		
A_{X}	A_{V}	A

Observation: For every $A \in Y$ there are
instances of R for which the $V X$-splitting of A is storage saving (in bits).

BCNF and splittings

Proposition:(M.-Ravve 2002)
A relation scheme (R, F) is in BCNF iff it allows no storage saving via information preserving attribute splitting.

Proof:

If (R, F) allows information preserving attribute splitting it must have a hidden bijection (by the previous proposition).

But we have seen that (R, F) is in BCNF iff it has no hidden bijections.

Can we achieve BCNF ?

It is well known that there are relation schemes $R[U], F$

- which are not in BCNF and
- do not allow
information preserving and dependency preserving decomposition via projections.

Achieving Normal Forms

- Using projection-decompositions only we can get BCNF but cannot guarantee the dependencies.
- Using synthesis algorithms we can get 3NF but cannot always avoid hidden bijections.
- We shall combine
- projection-decompositions
- synthesis, and
- attribute splitting.

Another example

We now look at the examply $R[A B C S Z]$ with $F=\{C S \rightarrow Z, Z \rightarrow C, B \rightarrow C, Z A \rightarrow B\}$.

The keys are $C S A, B S A, Z S A$.
$R[A B C S Z]$ is in 3NF but not in BCNF.
All FD's in F are BCNF violations.
F is a minimal cover.

Synthesis gives
$R_{1}[C S Z], R_{2}[B C], R_{3}[A B Z]$ and $R_{K e y}[C S A]$ with
$F_{1}=\{C S \rightarrow Z, Z \rightarrow C\}$,
$F_{2}=\{B \rightarrow C\}$,
$F_{3}=\{Z A \rightarrow B\}$ and $F_{K e y}=\emptyset$.

Another example (continued)

$R_{1}[C S Z], R_{2}[B C], R_{3}[A B Z]$ anda $R_{K}[C S A]$ with $F=\{C S \rightarrow Z, Z \rightarrow C, B \rightarrow C, Z A \rightarrow B\}$.

We split Z into Z_{S}, Z_{C} for R_{1} and $Z \rightarrow C$.
We replace R_{1} by $S_{1}\left[C S Z_{S}\right]$ with key $C S$.
We add $S_{2}\left[C Z_{C}\right]$ with $C \leftrightarrow Z_{C}$.
What do we do in $R_{3}[A B Z]$?
(Bad) We replace it by $S_{3}\left[A B Z_{S} Z_{C}\right]$ with key $Z_{S} Z_{C} A$. But this has a new BCNF-violation $B \rightarrow Z_{C}$.
(Good) We leave $R_{3}[A B Z]$ but add a new relation $S_{4}\left[Z Z_{S} Z_{C}\right]$ with $Z \leftrightarrow Z_{S} Z_{C}$.

Splitting in minimal covers, I

Let F be a minimal cover for $R[U]$ and $X \rightarrow A \in F$.
Assume: Synthesis gives an $S[X A]$ with F_{1} a minimal cover (derived from F).

Assume: X is the only key of $S[X A]$ (via F_{1}).
A BCNF-violation for $S[X A]$ for the key X is of the form $A Y_{1} \rightarrow B_{1}$ with $Y_{1} \subset X$, possibly empty, and $B_{1} \in X-Y_{1}$.

As $A Y_{1}$ is not a superkey for $S[A X]$, $Y_{1} B_{1} \subset X$ is a proper subset.

Splitting in minimal covers, II

Assume X is the only key of $S[X A]$ (via F_{1}).
Let the BCNF-violations for X be $A Y_{i} \rightarrow B_{i}, i \geq 1$.
We split A and get $S_{1}\left[X A_{Y_{1}}\right], T_{1}\left[A_{B_{1}} B_{1}\right]$ and $T_{1}^{*}\left[A A_{B_{1}} A_{Y_{1}}\right]$.
Put $\hat{F}_{1}=\left(F_{1}-\left\{X \rightarrow A, A_{1} Y_{1} \rightarrow B_{1}\right\}\right)$
$\bar{F}_{1}=\left\{X \rightarrow A_{Y_{1}}, A_{B_{1}} \leftrightarrow B_{1}, A \leftrightarrow A_{B_{1}} A_{Y_{1}}\right\}$
$F_{\text {split }(A)}=\widehat{F}_{1} \cup \bar{F}_{1}$

Claim:

(i) $F_{\text {split (A) }}$ is a minimal cover for $F_{\text {split }(A)}$ and the relations S_{1}, T_{1}, T_{1}^{*}.
(ii) \bar{F}_{1} has no BCNF-violations.
(iii) \widehat{F}_{1} has fewer BCNF-violations than F_{1}

Splitting in minimal covers, III

(i) $F_{\operatorname{split(A)}}$ is a minimal cover for $F_{\operatorname{split}(A)}$ and the relations S_{1}, T_{1}, T_{1}^{*}.

Proof: Use that ($F_{1}-\left\{X \rightarrow A, Y_{1} \rightarrow B_{1}\right\}$) is a minimal cover, because it is a subset of a minimal cover and does not contain the split attributes.
The new FD's do not create any new redundancies.
(ii) \bar{F}_{1} has no BCNF-violations.

Proof: Inspect $\bar{F}_{1}=\left\{X \rightarrow A_{Y_{1}}, A_{B_{1}} \leftrightarrow B_{1}, A \leftrightarrow A_{B_{1}} A_{Y_{1}}\right\}$ and the relations S_{1}, T_{1}, T_{1}^{*}.
(iii) \hat{F}_{1} has fewer BCNF-violations than F_{1}

Proof: Use $\hat{F}_{1} \subset F_{1}$.

Splitting in minimal covers, IV

We have not yet reached the general situation:
(i) A was assumed to be a single attribute, but it could be a set $\left\{A_{1}, \ldots, A_{m}\right\}$. Split all the A_{i} 's simulatenously into $A_{B_{1}}^{i}$ and $A_{Y_{1}}^{i}$.
(ii) There could be some other key K for $S\left[X A_{1}, \ldots, A_{m}\right]$ and a BCNF-violation for K of the form
$A_{1}, \ldots A_{k} Y_{1} \rightarrow B_{1}$ with $k \leq m$ and $B_{1} \in K$.
Put $U=X A_{1}, \ldots A_{m}$.
Find a new minimal cover for F_{1} which contains $K \rightarrow U_{K}$ and $A_{1}, \ldots A_{k} Y_{1} \rightarrow B_{1}$.
Write $A_{1}, \ldots A_{k} Y_{1}=V_{1} Y_{1}{ }^{\prime}$ with $V_{1} \subset U-K$ and $Y_{1}{ }^{\prime} \subset K$.

BCNF via splitting attributes, II

Theorem: (Makowsky, Ravve 1998, 2002)

Every relation scheme R, F can be modified, while preserving information and dependencies, via decomposition and splitting attributes.

Furthermore, this modification can be computed using a combination of the synthesis algorithm for 3NF and splitting attributes.

Caveat: The proof contained a gap!
One still has to prove that the procedure terminates.

Weak Instance Semantics, I

Normal form decompositions are based on the
Weak Instance Semantics (WI)
This is meant to resolve the problem on how to interpret consistently FD's when attributes occur in several relation schemes.

Let $(D, F)=\left(R_{1}\left[X_{1}\right], \ldots, R_{m}\left[X_{m}\right], F\right)$ be a database scheme over $X=\bigcup_{i} X_{i}$ with F a set of FD's over X.
Let $r=\left(r_{i}\right)_{i \leq m}$ be instances for the R_{i} 's.
An instance s for $R[X]$ with $s \models F$ is a weak instance for r if each $r_{i} \subseteq \pi_{X_{i}} s$.
$W I(r)$ denotes the set of weak instances for r.
Two instances of $D r_{1}$ and r_{2} are equivalent
if $W I\left(r_{1}\right)=W I\left(r_{2}\right)$.

Weak Instance Semantics, II

Let (D, F) be a database scheme over $X=X_{0} \cup\left\{A_{1}, A_{2}\right\}$ and $X^{\prime}=\left(X_{0} \cup\{A\}\right.$. An instance r for X^{\prime} with $\operatorname{dom}(A)=\operatorname{dom}\left(A_{1}\right) \times \operatorname{dom}\left(A_{2}\right)$ can naturally be interpreted as in instance r_{X} for X.

Let s be an instance for (D, F). We call r a splitting weak instance for (D, F) if r_{X} is a weak instance for $s . S W I_{X^{\prime}}(s)$ is the set of splitting weak instances of s.

Proposition:(M.-Ravve, 2002)
Attribute splitting is WI-compatible.

Adding Inclusion Dependencies

Inclusion Dependencies

Inclusion dependencies (IND's) are of the form

$$
\pi_{X} R \subseteq \pi_{Y} S
$$

where $X=\left(X_{1}, \ldots, X_{m}\right) Y=\left(Y_{1}, \ldots, Y_{m}\right)$ and X_{i} and Y_{i} have the same domains.

An inclusion dependency $\pi_{X} R \subseteq \pi_{Y} S$ is

- unary iff $m=1$;
- key based if Y is a key of S
- superkey based if Y is a superkey of S

Circularity of IND's

A set I of IND's for relationschemes R_{i} is circular if

- I contains a nontrivial $\pi_{X} R \subseteq \pi_{Y} R$, or
- there exists relation schemes $R_{j_{1}}, \ldots, R_{j_{m}}$ such that I contains

$$
\pi_{X_{j_{1}}} R_{j_{1}} \subseteq \pi_{X_{j_{2}}} R_{j_{2}} \subseteq \ldots \subseteq \pi_{X_{j_{m}}} R_{j_{m}} \subseteq \pi_{X_{j_{1}}} R_{j_{1}}
$$

We note that circularity is a syntactic property, hence decidable.

Consequence problem for IND's

(i) (Casanova, Fagin, Papadimitriou, 1984)

The consequence problem for IND's alone is decidable (in fact PSpacecomplete).
(ii) (Mitchell 1983, Chandra and Vardi 1985)

The consequence problem for IND's with FD's undecidable.
(iii) (Cosmodakis, Kannelakis, 1986)

The consequence problem for non-circular IND's with FD's is decidable (in fact ExpTime-complete).
(iv) (Cosmodakis, Kannelakis and Vardi, 1990)

The consequence problem for unary IND's with FD's is decidable in polynomial time.

Anomalies in the presence of IND's, I [LL99, Example 4.4]

Let $\operatorname{HEAD}[H, D]$ and $\operatorname{LECT}[L, D]$ be two relation schemes with $H=$ Head, $D=$ Department and $L=$ lecturer.

Let $F=\{H \rightarrow D, L \rightarrow D\}$, Let $F^{\prime}=\{L \rightarrow D\}$, and $I=\{H E A D[H D] \subseteq L E C T[L D]\}$.

It is easy to verify that $F^{\prime} \cup I==H \rightarrow D$.
So F is redundant (in the usual sense) and F^{\prime} suffices.
But specifying only $F^{\prime} \cup I$ would lead to possibly unexpected FD's.

Anomalies in the presence of IND's, II [LL99, Example 4.5]

Let $E M P[E, P]$ and $P R O[P, L]$ be two relation schemes with $E=$ Employer, $P=$ Project and $L=$ Location.
$F=\{E \rightarrow P\}$ and $I=\{E M P[P] \subseteq P R O[P]\}$.
$P L$ is the only (primary) ket for $P R O$.
Here a project may have several locations. So it may be preferable to add an attribute L^{\prime} which gives the location of the employee. This would give:

Let $E M P^{\prime}\left[E, P, L^{\prime}\right]$ and $P R O[P, L]$ and we require $I^{\prime}=\left\{E M P^{\prime}\left[P L^{\prime}\right] \subseteq P R O[P L]\right\}$.

Anomalies in the presence of IND's, III [LL99, Example 4.6]

Circularity

Let $\operatorname{BOSS}[E, M]$ with $E=$ Employer, $M=$ Manager.
Now we require $B O S S[M]$ subseteq $B O S S[E]$.
If we insert a tuple (e, m) we also have to insert a tuple (m, x) where x is an employee who is the manager of m.

This may lead to infinite regress, anless we have also inserted (m, m).

Inclusion Dependency Normal Form

after M. Levene and M.W. Vincent

Let $F \cup I$ be a set of FD's and IND's over a set of relationschemes $\mathbf{R}=\left(R_{i}\right)_{i \leq \ell}$.
($R, F \cup I$) is in Inclusion dependency normal form IDNF if

- \mathbf{R}, F is in BCNF
- I is non-circular and key-based.

By the non-circularity assumption this is decidable.

Update anomalies for FD's and IND's
 after M. Levene and M.W. Vincent, cf. [LL99, Section 4.4.4.]

Insertion and modification anomalies can be defined similarly as for FD's alone.
However, there are some subtle points: The anomalies may occur only after I^{+}or $(F \cup I)^{+}$ have been computed.

Theorem:(Levene and Vincent, 2000)
The following are equivalent:

- ($\mathbf{R}, F \cup I)$ is in IDNF
- ($\mathbf{R}, F \cup I$) is free of insertion anomalies and superkey based.
- ($\mathbf{R}, F \cup I)$ is free of modifcation anomalies and superkey based.

Entity Integrity

after M. Levene and M.W. Vincent

Insertions and modifcations may propagated through several relations due to the IND's.

Levene and Vincent define a notion of
(Generalized) Entity Integrity (GEI)
which formalizes how this propagation should be kept under control.
Theorem:(Levene and Vincent, 2000)
A database scheme $(\mathbf{R}, F \cup I)$ satisfies GEI iff I is superkey based.

Previous work

Normalforms for FD's and IND's were first considered in the context of Entity-Relationship design
M.A. Casanova and J.E. Amaral de Sa (1984)
J.A. Makowsky, V. Markowitz and U. Rotics (1986)
H. Mannila and K.-J. Räihä (1986)
V.A. Markowitz and J.A. Makowsky $(1987,1988)$
H. Mannila and K.-J. Räihä, The design of relational databases, Addison Wesley, 1992

Further work:
T.-W. Ling and C.H. Goh (1992) and J. Biskup and P. Dublish (1993)
M. Levene and VM.W. Vincent (2000) are the first to characterize update anomalies for FD's and IND's.

Future work

Here are some further challenges:

- What is the relationship between ER-normalform (ERNF)and IDNF? (ERNF was defined by Mannila and Räihä, 1993)
- Can we formulate information and dependency preserving decomposition and attribute splitting in the presence of IND's.
Dependency preserving refinements of Makowsky and Ravve, 1998, may be useful here.
- Can we always achieve IDNF via decomposition and attribute splitting?

References, I

- H. Mannila and K.-J. Räihä, The design of relational databases, Addison Wesley, 1992
- J. Biskup, Achievements of relational database schema design theory revisited, Semantics in Databases, volume LCNS 1358, 1995
- M.W. Vincent, The semantic justification for normal forms in relational database design, PhD Thesis, Monash Uiversity, Melbourne, Australia, 1994
- J.A. Makowsky and E.V. Ravve, Dependency preserving refinements and the fundamental problem of database design,
Data and Knowledge Engineering 24.3 (1998), pp. 277-312

References, II

- M. Levene and M.W. Vincent, Justification for inclusion dependency normal form, IEEE Transactions on Knowledge and Data Engineering, 12.2 (2000), pp. 281-291
- J.A. Makowsky and E.V. Ravve, BCNF revisited: 30 years normal forms, in preparation

