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Overview

Part I

• Normal forms and functional dependencies

• BCNF and redundancy

• BCNF and update anomalies

Part II

• BCNF and storage saving

• Achieving BCNF

• Other normal forms
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Part II

4



Full set of slides J.A. Makowsky

Unpredictable insertions, I

Let R[U ], F be a relation scheme.
An insertion of a tuple t into r |= F is said to be F -valid, if r ∪ {t} |= F .

A set of attributes X ⊆ U is said to be
unaffected by a valid insertion r′ = r ∪ {t}
iff πX(r) = πX(r′).

A valid insertion is F -unpredictable
(F+-unpredictable)
if there exists a non-trivial X → Y ∈ F
(X → Y ∈ F+)
such that XY is unaffected by it.
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Unpredictable insertions, Example

R[ABC] with F = {A → B,BC → A}
We look at A → B:

A B C
a1 b1 c1

We now insert t

A B C
a1 b1 c1

t= a1 b1 c2

This is a valid insertion which does not affect AB. Hence it is F -unpredictable.

Clearly, F -unpredictable implies F+-unpredictable.
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Unpredictable insertions, II

Observation:
If R,F has an F+-unpredictable insertion, then it is not in BCNF.

Proof:
There is r and t such that r ∪ {t} |= F
and hence r ∪ {t} |= FKey.

There is some non-trivial X → Y ∈ F+, and t′ ∈ r with t 6= t′ but t[XY ] =
t′[XY ].

Assume for contradiction, R,F is in BCNF.
So X is a superkey for F .
But r ∪ {t} |= FKey. So t = t′, a contradiction.

Exercise: Show that R,F has a F+-unpredictable insertion iff R, F is F+-
redundant.
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Unpredictable insertions, III

Theorem: (Bernstein, Goodman, 1980)

The following are equivalent:

(i) R,F is in BCNF;

(ii) R,F has no F -unpredictable insertions.

(iii) R,F has no F+-unpredictable insertions.
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Minimizing storage, I

Let R[U ], F be a relation scheme, and πUi
R = Ri[Ui] be an

information preserving decomposition, i.e. F |=⊲⊳i Ri[Ui] = R.

We say that the decomposition is storage saving
if there are instances r =⊲⊳i ri such that

∑
i |ri| ≤ |r|.

Example:
Consider R[ABCD] with
F1 = {A → BCD,C → D} (not in BCNF) and
F2 = {A → BCD,C → A} (in BCNF) and

We decompose R into R1[ABC] and R2[CD] for F1

and S1[AC] and S2[ABD] for F2.

With F1 there may be fewer values for C than for A,

but with F2 this is not possible.
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Minimizing storage, II

Observation:
If R,F is in BCNF then it has no storage saving decomposition.

Proposition: R,F has a storage saving decomposition iff R,F is F+-redundant.

Proof: Assume R,F is F+-redundant on XY with X → Y ∈ F+. Then there
is r |= F such that the decomposition πXY r πX(U−Y )r is storage saving.

Conversely, if R,F has a storage saving information preserving decomposition
with F |=⊲⊳i Ri[Ui] = R. So there are X,Y ⊆ U and there is an i such that
XY = Ui and X → Y ∈ F+.
(Here we use the characterization of information preserving decompositions!)

Now it is easy to see that R,F is F+-redundant on XY . Q.E.D.
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Minimizing storage, III

Theorem:(Biskup; Vincent and Srinivasan)

If R,F is in BCNF iff it has no storage saving decomposition.

Remark: This holds also for wider dependency classes and their respective
normal forms.
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Relationship between anomalies (revisited)

Additionnaly to Theorem 4.1. in [LL99] we now have shown:

Proposition:

Let F be a set of functional dependencies over a relation scheme (R,F ).
The following are equivalent:

(i) (R,F ) has an insertion anomaly with respect to F ;

(ii) (R,F ) is redundant with respect to F ;

(iii) (R,F ) has a modification anomaly with respect to F .

(iv) (R,F ) has F -unpredictable insertions.

(v) (R,F ) has a storage saving information preserving decomposition.

Additionally, if (R,F ) is in BCNF, then none of the above may occur.
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Completing the picture

We still need to prove the following:

Proposition: The following are equivalent:

(i) (R,F ) is not in BCNF;

(ii) (R,F ) is redundant with respect to F ;

Proof: (i) implies (ii): Suppose (R,F ) is not in BCNF and for some X →
A ∈ F+ X is not a superkey.
We take r to consist of two tuples t1, t2 such that t1[X

+] = t2[X
+] and for all

B ∈ U −X+ we have that t1[B] 6= t2[B].
Clearly r |= F and (R,F ) is redundant on X+.

(ii) implies (i): Suppose (R,F ) is redundant and for some r |= F and for some
X → A ∈ F+. But then X is not a superkey. Q.E.D.
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Characterizations of BCNF

Theorem:[BCNF-characterization Theorem]

Let F be a set of functional dependencies over a relation scheme (R,F ).
The following are equivalent:

(i) (R,F ) is not in BCNF;

(ii) (R,F ) has an insertion anomaly with respect to F ;

(iii) (R,F ) is redundant with respect to F ;

(iv) (R,F ) has a modification anomaly with respect to F .

(v) (R,F ) has F -unpredictable insertions.

(vi) (R,F ) has a storage saving information preserving decomposition.
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Attribute splitting
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Splitting zip-codes, I

The examply R[CSZ] with
C: City, S: Street, Z: Zipcode and CS → Z, Z → C
is in 3NF but not in BCNF.
The only BCNF-violation is Z → C.

We can bring it into BCNF in two ways:

• Drop Z → C

The character of postal distribution has changed

• Split Z into Zcity and Zlocal with
CS → Zlocal, Zcity → C, C → Zcity

and new relations
S1[CSZlocal] and S2[C,Zcity].

Many countries do this

16



Proofs of the Characterization Theorems J.A. Makowsky

Splitting zip-codes, II

We split the zip-code Z into ZCity and Zlocal and store it more efficiently:

ZipCode[SZCityZlocal] with ZCityS → Zlocal the zip-code table and

CityCode[CZCity] with C ↔ ZCity the city-zip-code table.

We have two tables instead of one.
But we can gain storage space provided

• ZCity is a short code for city names, and

• Zlocal is a short code for sets of street names.

Note that saving storage must be measured in bits not in the number of

tuples.
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Splitting zip-codes, III

If we drop the BCNF-violation from our
requirements, we save even more storage:

We can use the unused zip-codes resulting from inbalances of city-size:

• New York has many zip-codes,
say 001-0001 up to 001-9999

• Montauk has very few,
say 002-0001 up to 002-0009

• With Z → C the values
002-0010 up to 002-9999 are waisted.

• We can also gain by grouping small cities into bigger areas with same
first three digits.
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Hidden Bijections

Let R[V XY ], F be a relation scheme with V,X, Y disjoint sets of attributes
and F a set of FD’s.

We say that F has a hidden bijection if

V X ↔ V Y ∈ F+

and

Y → X ∈ F+ or X → Y ∈ F+

The rôles of X and Y are not symmetric.

Proposition:(M.-Ravve)
(R[U ], F ) is in BCNF iff it has no hidden bijections.
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Attribute splitting, I

Let R[V XY ], F be a relation scheme with
V,X, Y disjoint sets of attributes and F a set of FD’s,
and V X → V Y and Y → X in F+ a hidden bijection.

For A ∈ Y an V X-splitting of A into AV , AX is given by

• R1[V AXAV (Y −A)] with V AX → AV and V AX → (Y −A),

• R2[XAX(Y −A)] with AX(Y −A) ↔ X,

• R3[AXAVA] with AVAX ↔ A.
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Attribute splitting, II

Conversely, given

R1[V AXAV (Y −A)], R2[XAX(Y − A)], R3[AXAVA]
with V AX → AV (Y − A), AX(Y −A) ↔ X, and AVAX ↔ A,

we form first S1 = R1 ⊲⊳ R2 and then S2

by fusing in S1 A1A2 into A (using R3).

If S2 has the same instances as R, we say the
attribute splitting is information preserving.

It follows that in S2[V XY ] we have V X → Y
and also, either Y → X or Y → V .

Proposition:(M.-Ravve, 2002)

If attribute splitting in (R[V XY ], F ) is information preserving,

then F has a hidden bijection.
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Attribute splitting and storage saving

R
X V A Y-A

becomes

R1

V AX AV Y-A

R2

X AX Y-A

R3

AX AV A

Observation: For every A ∈ Y there are

instances of R for which the V X-splitting of A is storage saving (in bits).
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BCNF and splittings

Proposition:(M.-Ravve 2002)
A relation scheme (R,F ) is in BCNF iff it allows no storage saving via infor-
mation preserving attribute splitting.

Proof:

If (R,F ) allows information preserving attribute splitting it must have a hidden
bijection (by the previous proposition).

But we have seen that (R,F ) is in BCNF iff it has no hidden bijections.
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Can we achieve BCNF ?

It is well known that there are relation schemes R[U ], F

• which are not in BCNF and

• do not allow
information preserving and
dependency preserving
decomposition via projections.
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Achieving Normal Forms

• Using projection-decompositions only we can get BCNF
but cannot guarantee the dependencies.

• Using synthesis algorithms we can get 3NF
but cannot always avoid hidden bijections.

• We shall combine

– projection-decompositions

– synthesis, and

– attribute splitting.
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Another example

We now look at the examply R[ABCSZ] with
F = {CS → Z,Z → C,B → C,ZA → B}.

The keys are CSA, BSA, ZSA.
R[ABCSZ] is in 3NF but not in BCNF.
All FD’s in F are BCNF violations.
F is a minimal cover.

Synthesis gives

R1[CSZ], R2[BC], R3[ABZ] and RKey[CSA] with

F1 = {CS → Z,Z → C},

F2 = {B → C},

F3 = {ZA → B} and FKey = ∅.
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Another example (continued)

R1[CSZ], R2[BC], R3[ABZ] andaRK[CSA]
with F = {CS → Z,Z → C,B → C,ZA → B}.

We split Z into ZS, ZC for R1 and Z → C.
We replace R1 by S1[CSZS] with key CS.
We add S2[CZC] with C ↔ ZC.

What do we do in R3[ABZ]?

(Bad) We replace it by S3[ABZSZC] with key ZSZCA.
But this has a new BCNF-violation B → ZC.

(Good) We leave R3[ABZ] but add a new relation
S4[ZZSZC] with Z ↔ ZSZC.
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Splitting in minimal covers, I

Let F be a minimal cover for R[U ] and X → A ∈ F .

Assume: Synthesis gives an S[XA] with
F1 a minimal cover (derived from F ).

Assume: X is the only key of S[XA] (via F1).

A BCNF-violation for S[XA] for the key X is of the form
AY1 → B1 with Y1 ⊂ X, possibly empty, and B1 ∈ X − Y1.

As AY1 is not a superkey for S[AX],
Y1B1 ⊂ X is a proper subset.
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Splitting in minimal covers, II

Assume X is the only key of S[XA] (via F1).

Let the BCNF-violations for X be AYi → Bi, i ≥ 1.

We split A and get S1[XAY1
], T1[AB1

B1] and T ∗
1 [AAB1

AY1
].

Put F̂1 = (F1 − {X → A,A1Y1 → B1})
F̄1 = {X → AY1

, AB1
↔ B1, A ↔ AB1

AY1
}

Fsplit(A) = F̂1 ∪ F̄1

Claim:

(i) Fsplit(A) is a minimal cover for Fsplit(A) and the relations S1, T1, T ∗
1 .

(ii) F̄1 has no BCNF-violations.

(iii) F̂1 has fewer BCNF-violations than F1
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Splitting in minimal covers, III

(i) Fsplit(A) is a minimal cover for Fsplit(A) and the relations S1, T1, T ∗
1 .

Proof: Use that (F1 − {X → A,Y1 → B1}) is a minimal cover, because it is a
subset of a minimal cover and does not contain the split attributes.
The new FD’s do not create any
new redundancies.

(ii) F̄1 has no BCNF-violations.

Proof: Inspect F̄1 = {X → AY1
, AB1

↔ B1, A ↔ AB1
AY1

}
and the relations S1, T1, T ∗

1 .

(iii) F̂1 has fewer BCNF-violations than F1

Proof: Use F̂1 ⊂ F1.
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Splitting in minimal covers, IV

We have not yet reached the general situation:

(i) A was assumed to be a single attribute, but it could be a set {A1, . . . , Am}.

Split all the Ai’s simulatenously into Ai
B1

and Ai
Y1
.

(ii) There could be some other key K for S[XA1, . . . , Am]
and a BCNF-violation for K of the form
A1, . . . AkY1 → B1 with k ≤ m and B1 ∈ K.

Put U = XA1, . . . Am.

Find a new minimal cover for F1 which contains
K → UK and A1, . . . AkY1 → B1.

Write A1, . . . AkY1 = V1Y1
′ with V1 ⊂ U −K and Y1

′ ⊂ K.
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BCNF via splitting attributes, II

Theorem: (Makowsky, Ravve 1998, 2002)

Every relation scheme R,F can be modified,

while preserving information and dependencies,

via decomposition and splitting attributes.

Furthermore, this modification can be computed

using a combination of the synthesis algorithm for 3NF

and splitting attributes.

Caveat: The proof contained a gap!

One still has to prove that the procedure terminates.
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Weak Instance Semantics, I

Normal form decompositions are based on the

Weak Instance Semantics (WI)

This is meant to resolve the problem on how to interpret consistently FD’s
when attributes occur in several relation schemes.

Let (D,F ) = (R1[X1], . . . , Rm[Xm], F ) be
a database scheme over X =

⋃
iXi

with F a set of FD’s over X.
Let r = (ri)i≤m be instances for the Ri’s.

An instance s for R[X] with s |= F is a
weak instance for r if each ri ⊆ πXi

s.

WI(r) denotes the set of weak instances for r.
Two instances of D r1 and r2 are equivalent
if WI(r1) = WI(r2).
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Weak Instance Semantics, II

Let (D,F ) be a database scheme over X = X0∪{A1, A2} and X ′ = (X0∪{A}.
An instance r for X ′ with dom(A) = dom(A1) × dom(A2) can naturally be
interpreted as in instance rX for X.

Let s be an instance for (D,F ). We call r a splitting weak instance for (D,F )
if rX is a weak instance for s. SWIX ′(s) is the set of splitting weak instances
of s.

Proposition:(M.-Ravve, 2002)

Attribute splitting is WI-compatible.
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Adding Inclusion Dependencies
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Inclusion Dependencies

Inclusion dependencies (IND’s) are of the form

πXR ⊆ πY S

where X = (X1, . . . , Xm) Y = (Y1, . . . , Ym) and Xi and Yi have the same do-
mains.

An inclusion dependency πXR ⊆ πY S is

• unary iff m = 1;

• key based if Y is a key of S

• superkey based if Y is a superkey of S
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Circularity of IND’s

A set I of IND’s for relationschemes Ri is circular if

• I contains a nontrivial πXR ⊆ πYR, or

• there exists relation schemes Rj1, . . . , Rjm such that I contains

πXj1
Rj1 ⊆ πXj2

Rj2 ⊆ . . . ⊆ πXjm
Rjm ⊆ πXj1

Rj1

We note that circularity is a syntactic property, hence decidable.
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Consequence problem for IND’s

(i) (Casanova, Fagin, Papadimitriou, 1984)
The consequence problem for IND’s alone is decidable (in fact PSpace-
complete).

(ii) (Mitchell 1983, Chandra and Vardi 1985)
The consequence problem for IND’s with FD’s undecidable.

(iii) (Cosmodakis, Kannelakis, 1986)
The consequence problem for non-circular IND’s with FD’s is decidable
(in fact ExpTime-complete).

(iv) (Cosmodakis, Kannelakis and Vardi, 1990)
The consequence problem for unary IND’s with FD’s is decidable in poly-
nomial time.

38



IDNF J.A. Makowsky

Anomalies in the presence of IND’s, I [LL99, Example 4.4]

Let HEAD[H,D] and LECT [L,D] be two relation schemes with H=Head,
D=Department and L=lecturer.

Let F = {H → D,L → D}, Let F ′ = {L → D}, and
I = {HEAD[HD] ⊆ LECT [LD]}.

It is easy to verify that F ′ ∪ I |== H → D.

So F is redundant (in the usual sense) and F ′ suffices.

But specifying only F ′ ∪ I would lead to possibly unexpected FD’s.
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Anomalies in the presence of IND’s, II [LL99, Example 4.5]

Let EMP [E,P ] and PRO[P,L] be two relation schemes with E=Employer,
P=Project and L=Location.

F = {E → P} and I = {EMP [P ] ⊆ PRO[P ]}.

PL is the only (primary) ket for PRO.

Here a project may have several locations. So it may be preferable to add an
attribute L′ which gives the location of the employee. This would give:

Let EMP ′[E,P, L′] and PRO[P,L] and we require I ′ = {EMP ′[PL′] ⊆ PRO[PL]}.
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Anomalies in the presence of IND’s, III [LL99, Example 4.6]

Circularity

Let BOSS[E,M ] with E=Employer, M=Manager.

Now we require BOSS[M ] subseteqBOSS[E].

If we insert a tuple (e,m) we also have to insert a tuple (m, x) where x is an
employee who is the manager of m.

This may lead to infinite regress, anless we have also inserted (m,m).
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Inclusion Dependency Normal Form

after M. Levene and M.W. Vincent

Let F ∪I be a set of FD’s and IND’s over a set of relationschemes R = (Ri)i≤ℓ.

(R,F ∪ I) is in Inclusion dependency normal form IDNF if

• R, F is in BCNF

• I is non-circular and key-based.

By the non-circularity assumption this is decidable.

42



IDNF J.A. Makowsky

Update anomalies for FD’s and IND’s

after M. Levene and M.W. Vincent, cf. [LL99, Section 4.4.4.]

Insertion and modification anomalies can be defined similarly as for FD’s
alone.
However, there are some subtle points: The anomalies may occur only after I+ or (F ∪ I)+

have been computed.

Theorem:(Levene and Vincent, 2000)
The following are equivalent:

• (R, F ∪ I) is in IDNF

• (R, F ∪ I) is free of insertion anomalies
and superkey based.

• (R, F ∪ I) is free of modifcation anomalies
and superkey based.
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Entity Integrity

after M. Levene and M.W. Vincent

Insertions and modifcations may propagated through several relations due to
the IND’s.

Levene and Vincent define a notion of

(Generalized) Entity Integrity (GEI)

which formalizes how this propagation should be kept under control.

Theorem:(Levene and Vincent, 2000)
A database scheme (R, F ∪ I) satisfies GEI iff I is superkey based.
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Previous work

Normalforms for FD’s and IND’s were first considered in the context of
Entity-Relationship design

M.A. Casanova and J.E. Amaral de Sa (1984)
J.A. Makowsky, V. Markowitz and U. Rotics (1986)
H. Mannila and K.-J. Räihä (1986)
V.A. Markowitz and J.A. Makowsky (1987, 1988)

H. Mannila and K.-J. Räihä, The design of relational databases, Addison
Wesley, 1992

Further work:
T.-W. Ling and C.H. Goh (1992) and J. Biskup and P. Dublish (1993)

M. Levene and VM.W. Vincent (2000) are the first to characterize update
anomalies for FD’s and IND’s.
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Future work

Here are some further challenges:

• What is the relationship between ER-normalform (ERNF)and IDNF?
(ERNF was defined by Mannila and Räihä, 1993)

• Can we formulate information and dependency preserving decomposition
and attribute splitting in the presence of IND’s.
Dependency preserving refinements of Makowsky and Ravve, 1998, may
be useful here.

• Can we always achieve IDNF via
decomposition and attribute splitting?
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