
Full set of slides J.A. Makowsky

BCNF revisited:

40 Years Normal Forms

J.A. Makowsky

Faculty of Computer Science

Technion - IIT, Haifa

janos@cs.technion.ac.il

www.cs.technion.ac.il/∼janos

1



Full set of slides J.A. Makowsky

Acknowledgements

Based on work by M.W. Vincent and joint work with E.V. Ravve

See also:

[LL99 ] Mark Levene and George Loizou
A Guided Tour of Relational Databases and Beyond
Springer 1999

2



Full set of slides J.A. Makowsky

Overview

• Normal forms and functional dependencies

• BCNF and redundancy

• BCNF and update anomalies

• BCNF and storage saving

• Achieving BCNF

• Other normal forms
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Functional Dependencies

U = {A1, A2, . . . , Am} a set of attributes
F a set of functional dependencies for R[U ]
of the form X → Y with X, Y ⊆ U .

A functional dependency X → Y is trivial if Y ⊆ X.

F+ the deductive closure of F (with respect to the Armstrong axioms).

K ⊆ U is a superkey for F if K → U ∈ F+. K ⊆ U is a key for F if K is a
superkey, but no K ′ ⊂ K is a superkey.

The set of key dependencies of F is defined by
Fkey = {K → U ∈ F+ : K is a key }.

Let F be a set of functional dependencies for R[Ā, B̄] and let S[Ā] . We
denote by F [S] the set {X → Y : XY ⊆ Ā and X →∈ F+}, and call it the
projection of F on Ā.
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Example 4.1 (from [LL99]): EMP1 = [ENAME,DNAME, MNAME]

F1 = {ENAME → DNAME, DNAME → MNAME}, ENAME is the only key.

An instance r1 for EMP1 which satisfies F1

EMP − 1
ENAME DNAME MNAME

t1 Mark Computing Peter
t2 Angela Computing Peter
t3 Graham Computing Peter
t4 Paul Maths Donald
t5 George Maths Donald

We have some problems:

• We cannot add a new value for DNAME without a value for ENAME
Insertion Anomaly

• We cannot delete all the values for ENAME withoyt deleting all the values for DNAME.
Deletion Anomaly

• It is not enough to check keys: Changing in t1 Peter to Philip, or Computing to Maths
does not violate the key. Modification Anomaly

• Values for MNAME are repeated for every value of ENAME
Redundancy Problem
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Example 4.2 (from [LL99]): EMP2 = [ENAME, CNAME,SAL]

F2 = {ENAME → SAL}, ENAME, CNAME is the only key.

An instance r2 for EMP2 which satisfies F2

EMP − 2
ENAME CNAME SAL

t1 Jack Jill 25
t2 Jack Jake 25
t3 Jack John 25
t4 Donald Dan 30
t5 Donald David 30

We have the same problems:

• Insertion Anomaly: How to insert emplyees without children?

• Deletion Anomaly: How to delete children, once they are grown up?

• Modification Anomaly: We do not violate the key if we raise
the salary from 25 to 27 only in t1.

• Redundancy Problem: Salaries are repeated when employee has many children.
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Example 4.3 (from [LL99]):

ADDRESS = [CITY, STREET, ZIPCODE]

F3 = {CITY, STREET → ZIPCODE, ZIPCODE → CITY },
Both CITY, STREET and ZIPCODE, STREET are keys.

An instance s for ADDRESS which satisfies F3

ADDRESS
STREET CITY ZIPCODE

t1 Hampstead Way London NW11
t2 Falloden Way London NW11
t3 Oakley Gardens London N8
t4 Gower Street London WC1E
t5 Amhurst Rd London E8

Identify the problems:

• Insertion Anomaly: New street built...

• Deletion Anomaly: Zipcode deleted ... (say area is enlarged)

• Modification Anomaly: Change City in t1 from London to Bristol. Keys are not
violated but ZIPCODE → CITY is.

• Redundancy Problem: City is repeated.
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Normal Forms

(R[U ], F) is in Boyce-Codd Normal Form or

(R[U ], F) is in BCNF

if (FKey)
+ = F+.

(R[U ], F) is in Third Normal Form or (R[U ], F) is in 3NF

if for every non-trivial X → Y ∈ F+ either

• X is a superkey or

• Y ⊂ K for some key K for F , i.e., K → U ∈ F+.
This is called a BCNF-violation for the key K.
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Examples for Normal Forms

The relation scheme R[CSZ] with

C City

S Street

Z Zipcode

and CS → Z, Z → C is in 3NF but not in BCNF.

CS is the only key

Z → C is a BCNF-violation.
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Examples for Normal Forms, II

The relation scheme R[NSCAP ] with

N (Name), S (Street), C (City)

A (Areacode), P (Phone number)

and NSC → AP , SC → A, is not in 3NF.

NSC is the only key

R1[NSCP ] with NSC → P , and

R2[SCA] with SC → A,

are both in BCNF.
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What we (should) know from the
introductory course

Given a set of attributes R[A1, . . . , Am] and a set F of functional dependencies,
we want to decompose R into a set of relations R1, . . . , Rk which are in Normal
Form such that

• information is preserved, i.e., for all instances r, r1, . . . rk which satisfy
F we have that r = r1 ⊲⊳ . . . ⊲⊳ rk.

• F is preserved, i.e., (F [R1] ∪ . . . ∪ F [Rk])
+ = F+.

• This can be achieved for 3NF using minimal covers.

• It cannot always be achieved for BCNF.
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Why Boyce Codd Normal Form ?

• BCNF minimizes storage

• BCNF avoids redundancy

• BCNF avoids update anomalies

We have to make this precise.
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How to adapt BCNF to other data models?

• Disregard the syntactic definition!

• Adapt one of the equivalent semantic definitions!

• See what you get!

• You may get different concepts for each of them!
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A historic remark

1973-1980 Concepts of normal forms are developed
Consequence problem for dependencies is
recognized as central.

1980-1985 Consequence problem for dependencies is found to be undecid-
able, but for very restricted cases.
Normalforms are considered untractable......

1990- Renewed interest in normal forms emerges

2000- Normal Forms are proposed for XML.
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Rferences for Normal Forms and XML

• Marcelo Arenas and Leonid Libkin
A Normal Form for XML Documents
ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004, Pages 195-232

• Marcelo Arenas and Leonid Libkin
An Information-Theoretic Approach to Normal Forms for Relational and XML Data
Journal of the ACM, Vol. 52, No. 2, March 2005, pp. 246-283.

• Millist W. Vincent, Jixue Liu, and Chengfei Liu
Strong Functional Dependencies and Their Application to Normal Forms in XML
ACM Transactions on Database Systems, Vol. 29, No. 3, September 2004, Pages
445-462.

• Klaus-Dieter Schewe
Redundancy, Dependencies and Normal Forms for XML Databases
Sixteenth Australasian Database Conference (ADC2005), vol. 39 of CRPIT, ACS, pp.
7-16.

• Diem-Thu Trinh
XML Functional Dependencies based on Tree Homomorphisms
PhD Thesis, June 2009, Faculty of Mathematics/Informatics and Mechanical Engineer-
ing, Clausthal University of Technology, Clausthal, Germany
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Redundancy, I

Let R, F be a relation scheme.

R is F -redundant (F+-redundant) on XY if there exists a relation r |= F
and a non-trivial FD X → Y ∈ F ( ∈ F+), and at least two distinct tuples
t1, t2 ∈ r with t1[XY ] = t2[XY ].

R is F -redundant (F+-redundant) if there is XY ⊂ U such that R is F -
redundant (F+-redundant) on XY .

Example: R with F = {A → B, BC → A} is F -redundant, and hence F+-
redundant.

R
A B C
a1 b1 c1
a1 b1 c2
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Redundancy, II

The set of attributes of the form XY

• with X → Y ∈ F and not trivial, are called facts.

• with X → Y ∈ F and not trivial, are called explicit facts.

• with X → Y ∈ F+ − F and not trivial, are called implicit facts.

Observation: R[U ] is F -redundant (F+-redundant) on XY ⊂ U iff XY is a
fact and XY is not a superkey.

The rationale behind redundancy is, that if R is redundant on an explicit or
implicit fact XY , the fact should be stored in a different table.

R is not F -redundant (F+-redundant) if every fact is a superkey.
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Redundancy, III

Theorem:
(Bernstein, Goodman, 1980; M.W. Vincent 1994)

The following are equivalent:

(i) R, F is in BCNF;

(ii) R, F is not F -redundant;

(iii) R, F is not F+-redundant;

Proof: (ii) and (iii) are equivalent by the definition of F+.

(i) implies (ii) will be discussed on the blackboard.

(ii) implies (i) will be proven later in the lecture.
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Insertion anomalies, I

We are given a relation scheme R[U ] and a set of FD’s F with a set of

candidate keys given by FKey.

Let r be a relation for R with r |= F .

Let t[U ] be a tuple we want to insert.

We check whether r ∪ {t[U ]} |= FKey.

If r ∪ {t[U ]} |= FKey we accept,
else we reject the insertion of t[U ].

If we accept, but r ∪ {t[U ]} 6|= F , we say that t[U ] is an insertion violation,
IV.

R, F has an insertion anomaly if there is an r and t[U ], which is an insertion

violation.
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Insertion anomalies, Example

We look at R[A, B, C] with F = {A → B, B → C}.

R
A B C
a1 b1 c1
a2 b2 c2

We want to insert (a3, b1, c3).

This is compatible with FKey = {A → BC}.

R
A B C
a1 b1 c1
a2 b2 c2
a3 b1 c3

But this violates B → C.
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Insertion anomalies, Theorem

Recall R, F is in BCNF iff FKey |= F .

Theorem: (R. Fagin, 1979)
R, F is in BCNF iff
it has no insertion anomalies.

Proof:
Assume FKey |= F , r |= F and r ∪ {t} |= FKey.
Then r ∪ {t} |= F .

The other direction needs some work and is proven later in the course.
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Deletion anomalies, I

We are given a relation scheme R[U ] and a set of FD’s F with a set of
candidate keys given by FKey.

Let r be a relation for R with r |= F .

Let t[U ] ∈ r be a tuple we want to delete.

We check whether r − {t[U ]} |= FKey.

If r − {t[U ]} |= FKey we accept, else we reject the deletion of t[U ].

If we accept, but r − {t[U ]} 6|= F , we say that t[U ] is an deletion violation,
DV.

R, F has an deletion anomaly if there is an r and t[U ], which is an deletion

violation.
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Deletion anomalies, II

Observation:
Let r be a relation for R and F a set of FD’s.
Let s ⊆ r another relation for R.

If r |= F so also s |= F .

Conclusion:
There are no deletion anomalies for FD’s.

Note: In the presence of Multivalued Dependencies (MVD’s) there may occur
deletion anomalies.
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Modification anomalies, I

Let r be a relation for R[U ], F , t ∈ r, r |= F , K0 be a fixed candidate key for
F .

Let t′ be a tuple such that (r − {t}) ∪ {t′} |= FKey and one of the following:

(i) t[K] = t′[K] for some candidate key for F ;

(ii) t[K0] = t′[K0];

(iii) t[K] = t′[K] for every candidate key for F ;

but (r − {t}) ∪ {t′} 6|= F

Then r and t′ show a modification anomaly Mi, Mii, Miii respectively.

Remark: Deletion anomalies can be viewed as special cases of modification
anomalies.
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Modification anomalies, Example

R[ABC] with F = {A → B, BC → A}
Candidate keys AC, BC. Choose K0 = BC.

A B C
a1 b1 c1

t= a1 b1 c2

s= a2 b2 c2

We modify once t and once s:

A B C
a1 b1 c1

t’= a1 b2 c2

t[AC] = t′[AC] and FKey is satisfied,
but A → B is violated.

A B C
a1 b1 c1

s’= a1 b2 c2

s[BC] = s′[BC] and FKey is satisfied,
but A → B is violated.

In this example we cannot take care of both candidate keys simultaneously.
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Modification anomalies, II

Clearly, every Miii anomaly is also an Mii anomaly, and every Mii anomaly is
also an Mi anomaly.

Observation:

If R, F is in BCNF then it has no modification anomaly Mi

(and hence neither Mii and Miii).

Proof: Use that Fkey |= F .
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Modification anomalies, III

Theorem:(M.W. Vincent, 1994)

The following are equivalent:

(i) R, F is in BCNF

(ii) R, F has no modification anomaly Mi

(iii) R, F has no modification anomaly Mii

Henceforth, we speak simply of modification anomalies, meaning Mi-anomalies.

Remark: Vincent also introduces a normal form weaker than BCNF
but stronger than 3NF,
which is characterized by the absence of Miii modification anomalies.
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Relationship between anomalies

Theorem: (Theorem 4.1. in [LL99])

Let F be a set of functional dependencies over a relation scheme R.
The following are equivalent:

(i) R has an insertion anomaly with respect to F ;

(ii) R is redundant with respect to F ;

(iii) R has a modification anomaly with respect to F .
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Proof of Theorem 4.1: (i) implies (ii)

R has an insertion anomaly given by r |= F and t such that

r ∪ {t} |= FKey but r ∪ {t} 6|= F.

So for some X → A ∈ F+, where X is not a superkey, there is t′ ∈ r

{t} ∪ {t′} 6|= X → A.

Let u be a tuple with u[X+
F ] = t′[X+

F ] and such that for all B ∈ R − X+
F the

value u[B] does not appear in r.

Now u 6∈ r.
Since X is not a superkey, we see that R is redundant for F . Take r′ = r∪{u}
and note that r′ |= F .
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Proof of Theorem 4.1: (ii) implies (iii)

Suppose R is redundant with respect to F .

So there exist a relation over R such that r |= F and for some X → A ∈ F
there are two distinct tuples t1, t2 ∈ r such that t1[XA] = t2[XA].

Therefore X → A 6∈ FKey, and each key for R contains some attribute not in
X.

Let t be a tuple over R with

t[X+
F − A] = t1[X

+
F − A]

and such that for all attributes B ∈ R − (X+
F − A)

t[B] is a value not appearing in r.

To get the modification anomaly, we observe that

(r − {t1}) ∪ {t} |= FKey

but

(r − {t1}) ∪ {t} 6|= F
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Proof of Theorem 4.1: (iii) implies (i)

Suppose R has a modification anomaly.

So there is a relation r over R with r |= F
and tuples t, u such that

(r − {u}) ∪ {t} |= FKey but (r − {u}) ∪ {t} 6|= F .

Taking now r′ = r − {u} we get an insertion anomaly for r′.

Q.E.D.
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End of Part I
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