BCNF revisited:
 40 Years Normal Forms

J.A. Makowsky
Faculty of Computer Science
Technion - IIT, Haifa
janos@cs.technion.ac.il
www.cs.technion.ac.il/~janos

Acknowledgements

Based on work by M.W. Vincent and joint work with E.V. Ravve See also:
[LL99] Mark Levene and George Loizou
A Guided Tour of Relational Databases and Beyond Springer 1999

Overview

- Normal forms and functional dependencies
- BCNF and redundancy
- BCNF and update anomalies
- BCNF and storage saving
- Achieving BCNF
- Other normal forms

Functional Dependencies

$U=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ a set of attributes
F a set of functional dependencies for $R[U]$
of the form $X \rightarrow Y$ with $X, Y \subseteq U$.
A functional dependency $X \rightarrow Y$ is trivial if $Y \subseteq X$.
F^{+}the deductive closure of F (with respect to the Armstrong axioms).
$K \subseteq U$ is a superkey for F if $K \rightarrow U \in F^{+} . K \subseteq U$ is a key for F if K is a superkey, but no $K^{\prime} \subset K$ is a superkey.

The set of key dependencies of F is defined by
$F_{\text {key }}=\left\{K \rightarrow U \in F^{+}: K\right.$ is a key $\}$.
Let F be a set of functional dependencies for $R[\bar{A}, \bar{B}]$ and let $S[\bar{A}]$. We denote by $F[S]$ the set $\left\{X \rightarrow Y: X Y \subseteq \bar{A}\right.$ and $\left.X \rightarrow \in F^{+}\right\}$, and call it the projection of F on \bar{A}.

Example 4.1 (from [LL99]): $E M P_{1}=[E N A M E, D N A M E, M N A M E]$
$F_{1}=\{E N A M E \rightarrow D N A M E, D N A M E \rightarrow M N A M E\}, E N A M E$ is the only key.
An instance r_{1} for $E M P_{1}$ which satisfies F_{1}

		$E M P-1$	
	$E N A M E$	$D N A M E$	MNAME
t_{1}	Mark	Computing	Peter
t_{2}	Angela	Computing	Peter
t_{3}	Graham	Computing	Peter
t_{4}	Paul	Maths	Donald
t_{5}	George	Maths	Donald

We have some problems:

- We cannot add a new value for DNAME without a value for ENAME Insertion Anomaly
- We cannot delete all the values for ENAME withoyt deleting all the values for DNAME. Deletion Anomaly
- It is not enough to check keys: Changing in t_{1} Peter to Philip, or Computing to Maths does not violate the key. Modification Anomaly
- Values for MNAME are repeated for every value of ENAME Redundancy Problem

Example 4.2 (from [LL99]): $E M P_{2}=[E N A M E, C N A M E, S A L]$

$F_{2}=\{E N A M E \rightarrow S A L\}, E N A M E, C N A M E$ is the only key.
An instance r_{2} for $E M P_{2}$ which satisfies F_{2}

		$E M P-2$	
	$E N A M E$	$C N A M E$	$S A L$
t_{1}	Jack	Jill	25
t_{2}	Jack	Jake	25
t_{3}	Jack	John	25
t_{4}	Donald	Dan	30
t_{5}	Donald	David	30

We have the same problems:

- Insertion Anomaly: How to insert emplyees without children?
- Deletion Anomaly: How to delete children, once they are grown up?
- Modification Anomaly: We do not violate the key if we raise the salary from 25 to 27 only in t_{1}.
- Redundancy Problem: Salaries are repeated when employee has many children.

Example 4.3 (from [LL99]): $A D D R E S S=[C I T Y, S T R E E T, Z I P C O D E]$

$F_{3}=\{C I T Y, S T R E E T \rightarrow Z I P C O D E, Z I P C O D E \rightarrow C I T Y\}$,
Both CITY, STREET and ZIPCODE, STREET are keys.
An instance s for $A D D R E S S$ which satisfies F_{3}

		ADDRESS	
	STREET	CITY	ZIPCODE
t_{1}	Hampstead Way	London	NW11
t_{2}	Falloden Way	London	NW11
t_{3}	Oakley Gardens	London	N8
t_{4}	Gower Street	London	WC1E
t_{5}	Amhurst Rd	London	E8

Identify the problems:

- Insertion Anomaly: New street built...
- Deletion Anomaly: Zipcode deleted ... (say area is enlarged)
- Modification Anomaly: Change City in t_{1} from London to Bristol. Keys are not violated but ZIPCODE \rightarrow CITY is.
- Redundancy Problem: City is repeated.
($R[U], F$) is in Boyce-Codd Normal Form or ($R[U], F$) is in BCNF if $\left(F_{\text {Key }}\right)^{+}=F^{+}$.
($R[U], F$) is in Third Normal Form or $(R[U], F)$ is in 3NF if for every non-trivial $X \rightarrow Y \in F^{+}$either
- X is a superkey or
- $Y \subset K$ for some key K for F, i.e., $K \rightarrow U \in F^{+}$.

This is called a BCNF-violation for the key K.

Examples for Normal Forms

The relation scheme $R[C S Z]$ with
C City
S Street
Z Zipcode
and $C S \rightarrow Z, Z \rightarrow C$ is in 3NF but not in BCNF.

CS is the only key
$Z \rightarrow C$ is a BCNF-violation.

Examples for Normal Forms, II

The relation scheme $R[$ NSCAP] with

> N (Name), S (Street), C (City)
> A (Areacode), P (Phone number)
and $N S C \rightarrow A P, S C \rightarrow A$, is not in $3 N F$.

NSC is the only key
$R_{1}[N S C P]$ with $N S C \rightarrow P$, and $R_{2}[S C A]$ with $S C \rightarrow A$, are both in BCNF.

What we (should) know from the introductory course

Given a set of attributes $R\left[A_{1}, \ldots, A_{m}\right]$ and a set F of functional dependencies, we want to decompose R into a set of relations R_{1}, \ldots, R_{k} which are in Normal Form such that

- information is preserved, i.e., for all instances $r, r_{1}, \ldots r_{k}$ which satisfy F we have that $r=r_{1} \bowtie \ldots \bowtie r_{k}$.
- F is preserved, i.e., $\left(F\left[R_{1}\right] \cup \ldots \cup F\left[R_{k}\right]\right)^{+}=F+$.
- This can be achieved for 3NF using minimal covers.
- It cannot always be achieved for BCNF.

Why Boyce Codd Normal Form ?

- BCNF minimizes storage
- BCNF avoids redundancy
- BCNF avoids update anomalies

We have to make this precise.

How to adapt BCNF to other data models?

- Disregard the syntactic definition!
- Adapt one of the equivalent semantic definitions!
- See what you get!
- You may get different concepts for each of them!

A historic remark

1973-1980 Concepts of normal forms are developed Consequence problem for dependencies is recognized as central.

1980-1985 Consequence problem for dependencies is found to be undecidable, but for very restricted cases.
Normalforms are considered untractable......
1990- Renewed interest in normal forms emerges
2000- Normal Forms are proposed for XML.

Rerences for Normal Forms and XML

- Marcelo Arenas and Leonid Libkin A Normal Form for XML Documents
ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004, Pages 195-232
- Marcelo Arenas and Leonid Libkin

An Information-Theoretic Approach to Normal Forms for Relational and XML Data Journal of the ACM, Vol. 52, No. 2, March 2005, pp. 246-283.

- Millist W. Vincent, Jixue Liu, and Chengfei Liu Strong Functional Dependencies and Their Application to Normal Forms in XML ACM Transactions on Database Systems, Vol. 29, No. 3, September 2004, Pages 445-462.
- Klaus-Dieter Schewe

Redundancy, Dependencies and Normal Forms for XML Databases Sixteenth Australasian Database Conference (ADC2005), vol. 39 of CRPIT, ACS, pp. 7-16.

- Diem-Thu Trinh

XML Functional Dependencies based on Tree Homomorphisms
PhD Thesis, June 2009, Faculty of Mathematics/Informatics and Mechanical Engineering, Clausthal University of Technology, Clausthal, Germany

Redundancy, I

Let R, F be a relation scheme.
R is F-redundant (F^{+}-redundant) on $X Y$ if there exists a relation $r \models F$ and a non-trivial FD $X \rightarrow Y \in F\left(\in F^{+}\right)$, and at least two distinct tuples $t_{1}, t_{2} \in r$ with $t_{1}[X Y]=t_{2}[X Y]$.
R is F-redundant (F^{+}-redundant) if there is $X Y \subset U$ such that R is F redundant (F^{+}-redundant) on $X Y$.

Example: R with $F=\{A \rightarrow B, B C \rightarrow A\}$ is F-redundant, and hence $F^{+}{ }_{-}$ redundant.

	R	
A	B	C
a_{1}	b_{1}	c_{1}
a_{1}	b_{1}	c_{2}

Redundancy, II

The set of attributes of the form $X Y$

- with $X \rightarrow Y \in F$ and not trivial, are called facts.
- with $X \rightarrow Y \in F$ and not trivial, are called explicit facts.
- with $X \rightarrow Y \in F^{+}-F$ and not trivial, are called implicit facts.

Observation: $R[U]$ is F-redundant (F^{+}-redundant) on $X Y \subset U$ iff $X Y$ is a fact and $X Y$ is not a superkey.

The rationale behind redundancy is, that if R is redundant on an explicit or implicit fact $X Y$, the fact should be stored in a different table.
R is not F-redundant (F^{+}-redundant) if every fact is a superkey.

Redundancy, III

Theorem:

(Bernstein, Goodman, 1980; M.W. Vincent 1994)
The following are equivalent:
(i) R, F is in BCNF;
(ii) R, F is not F-redundant;
(iii) R, F is not F^{+}-redundant;

Proof: (ii) and (iii) are equivalent by the definition of F^{+}.
(i) implies (ii) will be discussed on the blackboard.
(ii) implies (i) will be proven later in the lecture.

Insertion anomalies, I

We are given a relation scheme $R[U]$ and a set of FD's F with a set of candidate keys given by $F_{\text {Key }}$.

Let r be a relation for R with $r \| F$.
Let $t[U]$ be a tuple we want to insert.

We check whether $r \cup\{t[U]\} \models F_{\text {Key }}$.
If $r \cup\{t[U]\} \vDash F_{\text {Key }}$ we accept, else we reject the insertion of $t[U]$.

If we accept, but $r \cup\{t[U]\} \not \equiv F$, we say that $t[U]$ is an insertion violation, IV.
R, F has an insertion anomaly if there is an r and $t[U]$, which is an insertion violation.

Insertion anomalies, Example

We look at $R[A, B, C]$ with $F=\{A \rightarrow B, B \rightarrow C\}$.

	R	
A	B	C
a_{1}	b_{1}	c_{1}
a_{2}	b_{2}	c_{2}

We want to insert (a_{3}, b_{1}, c_{3}).
This is compatible with $F_{\text {Key }}=\{A \rightarrow B C\}$.

	R	
A	B	C
a_{1}	b_{1}	c_{1}
a_{2}	b_{2}	c_{2}
a_{3}	b_{1}	c_{3}

But this violates $B \rightarrow C$.

Insertion anomalies, Theorem

Recall R, F is in BCNF iff $F_{\text {Key }}=F$.
Theorem: (R. Fagin, 1979)
R, F is in BCNF iff
it has no insertion anomalies.
Proof:
Assume $F_{\text {Key }} \models F, r \vDash F$ and $r \cup\{t\} \vDash F_{\text {Key }}$.
Then $r \cup\{t\} \vDash F$.
The other direction needs some work and is proven later in the course.

Deletion anomalies, I

We are given a relation scheme $R[U]$ and a set of FD's F with a set of candidate keys given by $F_{\text {Key }}$.

Let r be a relation for R with $r \vDash F$.
Let $t[U] \in r$ be a tuple we want to delete.
We check whether $r-\{t[U]\} \models F_{\text {Key }}$.
If $r-\{t[U]\} \vDash F_{\text {Key }}$ we accept, else we reject the deletion of $t[U]$.
If we accept, but $r-\{t[U]\} \not \vDash F$, we say that $t[U]$ is an deletion violation, DV.
R, F has an deletion anomaly if there is an r and $t[U]$, which is an deletion violation.

Deletion anomalies, II

Observation:

Let r be a relation for R and F a set of FD's.
Let $s \subseteq r$ another relation for R.
If $r \vDash F$ so also $s \models F$.

Conclusion:

There are no deletion anomalies for FD's.
Note: In the presence of Multivalued Dependencies (MVD's) there may occur deletion anomalies.

Modification anomalies, I

Let r be a relation for $R[U], F, t \in r, r \vDash F, K_{0}$ be a fixed candidate key for F.

Let t^{\prime} be a tuple such that $(r-\{t\}) \cup\left\{t^{\prime}\right\} \models F_{\text {Key }}$ and one of the following:
(i) $t[K]=t^{\prime}[K]$ for some candidate key for F;
(ii) $t\left[K_{0}\right]=t^{\prime}\left[K_{0}\right]$;
(iii) $t[K]=t^{\prime}[K]$ for every candidate key for F;
but $(r-\{t\}) \cup\left\{t^{\prime}\right\} \not \vDash F$
Then r and t^{\prime} show a modification anomaly $M_{i}, M_{i i}, M_{i i i}$ respectively.
Remark: Deletion anomalies can be viewed as special cases of modification anomalies.

Modification anomalies, Example

$R[A B C]$ with $F=\{A \rightarrow B, B C \rightarrow A\}$
Candidate keys $A C, B C$. Choose $K_{0}=B C$.

	A	B	C
$\mathrm{t}=$	a_{1}	b_{1}	c_{1}
a_{1}	b_{1}	c_{2}	
$\mathrm{~s}=$	a_{2}	b_{2}	c_{2}

We modify once t and once s :

	A	B	C
$=$	a_{1}	b_{1}	c_{1}
	b_{2}	c_{2}	

$t[A C]=t^{\prime}[A C]$ and $F_{\text {Key }}$ is satisfied, but $A \rightarrow B$ is violated.

	A	B	C
$\mathrm{s}^{\prime}=$	a_{1}	b_{1}	c_{1}
a_{1}	b_{2}	c_{2}	

$s[B C]=s^{\prime}[B C]$ and $F_{\text {Key }}$ is satisfied, but $A \rightarrow B$ is violated.

In this example we cannot take care of both candidate keys simultaneously.

Modification anomalies, II

Clearly, every $M_{i i i}$ anomaly is also an $M_{i i}$ anomaly, and every $M_{i i}$ anomaly is also an M_{i} anomaly.

Observation:

If R, F is in BCNF then it has no modification anomaly M_{i} (and hence neither $M_{i i}$ and $M_{i i i}$).

Proof: Use that $F_{k e y} \models F$.

Modification anomalies, III

Theorem:(M.W. Vincent, 1994)
The following are equivalent:
(i) R, F is in BCNF
(ii) R, F has no modification anomaly M_{i}
(iii) R, F has no modification anomaly $M_{i i}$

Henceforth, we speak simply of modification anomalies, meaning M_{i}-anomalies.
Remark: Vincent also introduces a normal form weaker than BCNF but stronger than 3NF, which is characterized by the absence of $M_{i i i}$ modification anomalies.

Relationship between anomalies

Theorem: (Theorem 4.1. in [LL99])
Let F be a set of functional dependencies over a relation scheme R. The following are equivalent:
(i) R has an insertion anomaly with respect to F;
(ii) R is redundant with respect to F;
(iii) R has a modification anomaly with respect to F.

Proof of Theorem 4.1: (i) implies (ii)

R has an insertion anomaly given by $r \models F$ and t such that

$$
r \cup\{t\} \vDash F_{\text {Key }} \text { but } r \cup\{t\} \not \models F .
$$

So for some $X \rightarrow A \in F^{+}$, where X is not a superkey, there is $t^{\prime} \in r$

$$
\{t\} \cup\left\{t^{\prime}\right\} \not \equiv X \rightarrow A .
$$

Let u be a tuple with $u\left[X_{F}^{+}\right]=t^{\prime}\left[X_{F}^{+}\right]$and such that for all $B \in R-X_{F}^{+}$the value $u[B]$ does not appear in r.

Now $u \notin r$.
Since X is not a superkey, we see that R is redundant for F. Take $r^{\prime}=r \cup\{u\}$ and note that $r^{\prime} \models F$.

Proof of Theorem 4.1: (ii) implies (iii)

Suppose R is redundant with respect to F.
So there exist a relation over R such that $r \models F$ and for some $X \rightarrow A \in F$ there are two distinct tuples $t_{1}, t_{2} \in r$ such that $t_{1}[X A]=t_{2}[X A]$.

Therefore $X \rightarrow A \notin F_{\text {Key }}$, and each key for R contains some attribute not in X.

Let t be a tuple over R with

$$
t\left[X_{F}^{+}-A\right]=t_{1}\left[X_{F}^{+}-A\right]
$$

and such that for all attributes $B \in R-\left(X_{F}^{+}-A\right)$
$t[B]$ is a value not appearing in r.
To get the modification anomaly, we observe that

$$
\left(r-\left\{t_{1}\right\}\right) \cup\{t\} \models F_{\text {Key }}
$$

but

$$
\left(r-\left\{t_{1}\right\}\right) \cup\{t\} \not \equiv F
$$

Proof of Theorem 4.1: (iii) implies (i)

Suppose R has a modification anomaly.
So there is a relation r over R with $r \models F$ and tuples t, u such that

$$
(r-\{u\}) \cup\{t\} \models F_{\text {Key }} \text { but }(r-\{u\}) \cup\{t\} \not \models F .
$$

Taking now $r^{\prime}=r-\{u\}$ we get an insertion anomaly for r^{\prime}.
Q.E.D.

Update anomalies
J.A. Makowsky

End of Part I

