
The Boyce-Codd-Heath Normal Form for SQL

Flavio Ferrarotti1, Sven Hartmann2, Henning Köhler3, Sebastian Link1, and
Millist Vincent4

1 School of Information Management, Victoria University of Wellington, New Zealand
2 Institut für Informatik, Technische Universität Clausthal, Germany

3 School of Information Technology & Electrical Engineering, University of
Queensland, Australia

4 School of Computer and Information Science, University of South Australia,
Australia

Abstract. In the relational model of data the Boyce-Codd-Heath nor-
mal form condition guarantees the elimination of data redundancy in
terms of functional dependencies. For efficient means of data process-
ing the industry standard SQL permits partial data and duplicate rows
of data to occur in database systems. Consequently, the combined class
of uniqueness constraints and functional dependencies is more expres-
sive than the class of functional dependencies itself. Hence, the Boyce-
Codd-Heath normal form condition is not suitable for SQL databases.
We characterize the associated implication problem of the combined class
in the presence of NOT NULL constraints axiomatically, algorithmically
and logically. Based on these results we are able to establish a suitable
normal form condition for SQL.

1 Introduction

In the relational model of data [7] a relation schema R denotes a finite set of
attributes A that have a countably infinite domain dom(A). A relation over R
is a finite set of tuples, i.e. elements of the cartesian product over the domains.
In addition, constraints restrict relations to those considered meaningful for the
application. A functional dependency (FD) over R is an expression X → Y with
X,Y ⊆ R. It restricts relations to those where every pair of tuples with the same
values on all the attributes in X also has the same values on all the attributes
in Y . FDs are essential for database design and data processing: if there is an
FD X → Y over R with Y 6⊆ X, then either all the attributes of R − XY
are also functionally dependent on X or there are relations with redundant data
value occurrences. Redundancy can lead to inefficiencies with updates. A relation
schema R is in Boyce-Codd-Heath normal form (BCHNF) [8, 14, 19] with respect
to a given set Σ of FDs if for every FD X → Y in Σ, Y ⊆ X or the FD X → R
is implied by Σ. Hence, if R is in BCHNF, then no set of tuples over R contains
two elements with the same values on all the attributes in X.

Example 1. Consider the relation schema Schedule with attributes Location,
Time, and Speaker, and FD set Σ consisting of Location, Time→ Speaker, and

2 F. Ferrarotti, S. Hartmman, H. Köhler, S. Link, M. Vincent

Speaker, Time → Location. Then Schedule is in BCHNF with respect to Σ.
The following relation r on the left is an Armstrong relation for Σ. That is, r
satisfies all the FDs in Σ and violates all the FDs not implied by Σ.

relation r
Location Time Speaker

Green Room 10am Hilbert
Blue Room 10am Gauss
Red Room 11am Gauss
Red Room 01pm Grothendieck
Red Room 02pm Grothendieck

table t
Location Time Speaker

Green Room 10am ni

Blue Room 10am Gauss
Red Room 11am Gauss
Red Room 01pm Grothendieck
Red Room 02pm Grothendieck
Red Room 02pm Grothendieck

No data value occurrence in r is redundant : if we conceal any single value, then
the remaining values and the FDs do not determine the concealed value. ut

Commercial database systems deviate from the relational model of data. In
the data definition and query standard SQL [9] database instances are tables
where the column headers of the table correspond to attributes. The rows of
the table correspond to tuples, but a table can contain different rows that have
the same value in every column. Hence, an SQL table is a bag of rows. This
feature lowers the cost of data processing as duplicate elimination is considered
expensive. Furthermore, a so-called null value, marked ni, can occur in any
column of any row in an SQL table. The null value indicates either non-existing,
or existing but unknown, information. This feature of SQL makes it easy to enter
new information into the database, since information is not always complete in
practice. Null value occurrences can be forbidden for entire columns by declaring
the corresponding column header NOT NULL. With these new features in mind
we now revisit Example 1.

Example 2. Consider the SQL table Schedule from Example 1 with the same
set Σ of constraints and where the column headers Time and Location are NOT

NULL. The SQL table t from Example 1 on the right is an Armstrong table for
Σ and the NOT NULL constraints. The BCHNF condition does not guarantee the
absence of redundant data value occurrences over SQL tables. For example, the
value of Grothendieck in the last row of table t is redundant: it is determined by
the remaining values in the table t and the FD Location, Time→ Speaker. ut

Another important class of constraints are uniqueness constraints (UCs). The
UC unique(X) restricts tables to those that do not have two distinct rows that are
non-null and equal on every attribute in X. In the relational model UCs are not
studied separately because any set of tuples over R satisfies the UC unique(X) if
and only if it satisfies the FD X → R. However, this equivalence no longer holds
over SQL tables, as illustrated in Example 2. Indeed, if X = {Location,Time},
then table t satisfies X → Schedule, but not unique(X). This means that,
in the context of SQL tables, the combined class of UCs and FDs should be
studied, preferably in the context of NOT NULL constraints. Moreover, Example

The Boyce-Codd-Heath Normal Form for SQL 3

2 motivates our pursuit of a normal form condition for SQL table definitions
that eliminates redundant data value occurrences.

Contributions and Organization. We summarize previous work in Sec-
tion 2 and give preliminary definitions in Section 3. In Section 4 we establish a
finite axiomatization for the combined class of UCs and FDs in the presence of
NOT NULL constraints. In Section 5 we show that the implication problem of this
class is equivalent to that of goal and definite clauses in Cadoli and Schaerf’s
para-consistent family of S-3 logics. In Section 6 we propose a new syntactic
normal form condition for SQL table definitions. Finally, in Section 7 we jus-
tify our condition semantically by showing that it is necessary and sufficient for
the absence of redundant data value occurrences in any SQL tables. We also
show that our condition can be checked in time quadratic in the input, and is
independent of the representation of the constraints. We conclude in Section 8.

2 Related Work

Data dependencies and normalization are essential to the design of the target
database, the maintenance of the database during its lifetime, and all major data
processing tasks, cf. [1].

In the relational model, a UC unique(X) over relation schema R is satisfied
by a relation if and only if the relation satisfies the FD X → R. Hence, in this
context it suffices to study the class of FDs alone. Armstrong [4] established the
first axiomatization for FDs. The implication problem of FDs can be decided in
time linear in the input [10]. Boyce and Codd [8] and Heath [14] introduced what
is now known as the Boyce-Codd-Heath normal form for relation schemata. Vin-
cent showed that BCHNF is a sufficient and necessary condition to eliminate all
possible redundant data value occurrences as well as data processing difficulties
in terms of FDs [22]. Arenas and Libkin also justified the BCHNF condition in
terms of information-theoretic measures [3].

One of the most important extensions of Codd’s basic relational model [7]
is incomplete information [15]. This is mainly due to the high demand for the
correct handling of such information in real-world applications. While there are
several possible interpretations of a null value, most of the previous work on data
dependencies is based on Zaniolo’s no information interpretation [24]. Atzeni
and Morfuni established an axiomatization of FDs in the presence of NOT NULL

constraints under the no information interpretation [5]. They did not consider
bags, which commonly appear in SQL, nor normalization. Köhler and Link in-
vestigated UCs and FDs over bags, but did not allow null values [17]. Finally,
Hartmann and Link established the equivalence of the implication problem for
the combined class of FDs and multivalued dependencies in the presence of NOT
NULL constraints to that of a propositional fragment of Cadoli and Schaerf’s
family of S-3 logics [13]. However, they only looked at relations where UCs are
subsumed by FDs and did not consider bags. The equivalences cover those by
Sagiv et al. [20] established for the special case where S covers all variables.

4 F. Ferrarotti, S. Hartmman, H. Köhler, S. Link, M. Vincent

3 SQL table definitions

We summarize the basic notions. Let A = {H1, H2, . . .} be a (countably) infi-
nite set of distinct symbols, called (column) headers. An SQL table definition
is a finite non-empty subset T of A. Each header H of a table definition T is
associated with a countably infinite domain dom(H) which represents the pos-
sible values that can occur in the column H denotes. To encompass incomplete
information every column may have a null value, denoted by ni ∈ dom(H). The
intention of ni is to mean “no information”. This interpretation can therefore
model non-existing as well as existing but unknown information [5, 24].

For header sets X and Y we may write XY for X∪Y . If X = {H1, . . . ,Hm},
then we may write H1 · · ·Hm for X. In particular, we may write simply H
to represent the singleton {H}. A row over T (T -row or simply row, if T is
understood) is a function r : T →

⋃
H∈T

dom(H) with r(H) ∈ dom(H) for all

H ∈ R. The null value occurrence r(H) = ni associated with a header H in a
row r means that no information is available about the header H for the row r.
For X ⊆ T let r[H] denote the restriction of the row r over T to X. An SQL
table t over T is a finite multi-set of rows over R. For a row r over T and a set
X ⊆ T , r is said to be X-total if for all H ∈ X, r(H) 6= ni. Similar, a table t
over T is said to be X-total, if every row r of t is X-total. A table t over T is
said to be a total table if it is T -total.

Following the SQL standard a uniqueness constraint (UC) over an SQL table
definition T is an expression unique(X) where X ⊆ T . An SQL table t over T
is said to satisfy the uniqueness constraint unique(X) over T (|=t unqiue(X)) if
and only if for all distinct rows r1, r2 ∈ t the following holds: if r1 and r2 are
X-total, then there is some H ∈ X such that r1(H) 6= r2(H).

Functional dependencies are important for the relational [7] and other data
models [2, 11, 12, 23]. Following Lien [18], a functional dependency (FD) over T
is a statement X → Y where X,Y ⊆ T . The FD X → Y over T is satisfied
by a table t over T (|=t X → Y) if and only if for all r1, r2 ∈ t the following
holds: if r1 and r2 are X-total and r1[X] = r2[X], then r1[Y] = r2[Y]. We call
X → Y trivial whenever Y ⊆ X, and non-trivial otherwise. For total tables the
FD definition reduces to the standard definition of a functional dependency [1],
and so is a sound generalization. It is also consistent with the no-information
interpretation [5, 18].

Following Atzeni and Morfuni [5], a null-free sub-definition (NFS) over the
table definition T is a an expression Ts where Ts ⊆ T . The NFS Ts over T is
satisfied by a table t over T (|=t Ts) if and only if t is Ts-total. SQL allows the
specification of column headers as NOT NULL. Hence, the set of headers declared
NOT NULL forms the single NFS over the underlying SQL table definition.

For a set Σ of constraints over some table definition T , we say that a table t
over T satisfies Σ (|=t Σ) if t satisfies every σ ∈ Σ. If for some σ ∈ Σ the table
t does not satisfy σ we say that t violates σ (and violates Σ) and write 6|=t σ
(6|=t Σ). We are interested in the combined class C of uniqueness constraints and
FDs in the presence of an NFS.

The Boyce-Codd-Heath Normal Form for SQL 5

Constraints interact with one another. Let T be an SQL table definition,
let Ts ⊆ T denote an NFS over T , and let Σ ∪ {ϕ} be a set of uniqueness
constraints and FDs over T . We say that Σ implies ϕ in the presence of Ts
(Σ |=Ts

ϕ) if every table t over T that satisfies Σ and Ts also satisfies ϕ. If Σ
does not imply ϕ in the presence of Ts we may also write Σ 6|=Ts

ϕ. For Σ we let
Σ∗Ts

= {ϕ | Σ |=Ts
ϕ} be the semantic closure of Σ, i.e., the set of all uniqueness

constraints and FDs implied by Σ in the presence of Ts. In order to determine
the logical consequences we use a syntactic approach by applying inference rules,
e.g. those in Table 1. These inference rules have the form

premise

conclusion
condition,

and inference rules without any premises are called axioms. An inference rule is
called sound, if whenever the set of constraints in the premise of the rule and the
NFS are satisfied by some table over T and the constraints and NFS satisfy the
conditions of the rule, then the table also satisfies the constraint in the conclusion
of the rule. We let Σ `R ϕ denote the inference of ϕ from Σ by R. That is, there
is some sequence γ = [σ1, . . . , σn] of constraints such that σn = ϕ and every σi is
an element of Σ or results from an application of an inference rule in R to some
elements in {σ1, . . . , σi−1}. For a finite set Σ, let Σ+

R = {ϕ | Σ `R ϕ} be its
syntactic closure under inferences by R. A set R of inference rules is said to be
sound (complete) for the implication of uniqueness constraints and FDs in the
presence of an NFS if for every table definition T , for every NFS Ts over T and
for every set Σ of uniqueness constraints and FDs over T we have Σ+

R ⊆ Σ∗Ts

(Σ∗Ts
⊆ Σ+

R). The (finite) set R is said to be a (finite) axiomatization for the
implication of uniqueness constraints and FDs in the presence of an NFS if R is
both sound and complete.

Example 3. The SQL table in Example 2 satisfies the FD Location, Time →
Speaker, but violates the UC unique(Location, Time). The table

Location Time Speaker
Red Room ni Gauss
Red Room ni Grothendieck

satisfies the NFS {Location, Speaker}, the UC unique(Location, Time) and the
FDs Location→ Time and Time→ Speaker. The table violates the NFS {Time},
the UC unique(Location) and the FD Location→ Speaker. ut

4 Axiomatic and algorithmic characterization

Let S denote the set of inference rules in Table 1. The soundness of the rules
in S is not difficult to show. For the completeness of S we use the result that
the set M consisting of the reflexivity axiom, the union, decomposition and
null transitivity rule is sound and complete for FDs in the presence of an NFS
[5]. In fact, the completeness of S follows from that of M and the following

6 F. Ferrarotti, S. Hartmman, H. Köhler, S. Link, M. Vincent

unique(X)

X → Y XY → X

X → Y Z

X → Y
(demotion) (reflexivity) (decomposition)

X → Y unique(Y)

unique(X)
Y ⊆ XTs

X → Y Y → Z

X → Z
Y ⊆ XTs

X → Y X → Z

X → Y Z
(null pullback) (null transitivity) (union)

Table 1. Axiomatization of UCs and FDs in the presence of an NFS.

lemma. For a set Σ = ΣUC ∪ ΣFD of UCs and FDs over table definition T let
ΣFD

UC = {X → T | unique(X) ∈ ΣUC} be the set of FDs associated with ΣUC

and let Σ[FD] := ΣFD
UC ∪ΣFD be the set of FDs associated with Σ.

Lemma 1. Let T be an SQL table definition, Ts an NFS, and Σ a set of UCs
and FDs over T . Then the following hold:

1. Σ |=Ts X → Y if and only if Σ[FD] |=Ts X → Y ,
2. Σ |=Ts

unique(X) if and only if Σ[FD] |=Ts
X → T and there is some

unique(Z) ∈ Σ such that Z ⊆ XTs. ut

Theorem 1. The set S is a finite axiomatization for the implication of UCs
and FDs in the presence of an NFS. ut

Lemma 1 establishes an algorithmic characterization of the associated impli-
cation problem. In fact, it suffices to compute the header set closure X∗Σ[FD],Ts

:=

{H ∈ T | Σ[FD] |=Ts
X → H} of X with respect to Σ[FD] and Ts [5]. The size

|ϕ| of ϕ is the total number of attributes occurring in ϕ, and the size ||Σ|| of Σ
is the sum of |σ| over all elements σ ∈ Σ.

Theorem 2. The problem whether a UC or FD ϕ is implied by a set Σ of UCs
and FDs can be decided in O(||Σ ∪ {ϕ}||) time. ut

5 Equivalence to goal and definite clauses in S-3 logics

Here we refine the correspondence between the implication of FDs in the presence
of NFSs and the implication of Horn clauses in Cadoli and Schaerf’s family of
S-3 logics, established for tables that are sets of rows [13].
S-3 semantics. Schaerf and Cadoli [21] introduced S-3 logics as “a seman-

tically well-founded logical framework for sound approximate reasoning, which
is justifiable from the intuitive point of view, and to provide fast algorithms for
dealing with it even when using expressive languages”.

For a finite set L of propositional variables let L` denote the set of all literals
over L, i.e., L` = L ∪ {¬H ′ | H ′ ∈ L} ⊆ L∗ where L∗ denotes the propositional
language over L. Let S ⊆ L. An S-3 interpretation of L is a total function

The Boyce-Codd-Heath Normal Form for SQL 7

ω̂ : L` → {F,T} that maps every variable H ′ ∈ S and its negation ¬H ′ into
opposite values (ω̂(H ′) = T if and only if ω̂(¬H ′) = F), and that does not
map both a variable H ′ ∈ L−S and its negation ¬H ′ into F (we must not have
ω̂(H ′) = F = ω̂(¬H ′) for any H ′ ∈ L−S). An S-3 interpretation ω̂ : L` → {F,T}
of L can be lifted to a total function Ω̂ : L∗ → {F,T} by means of simple rules
[21]. Since we are only interested in Horn clauses here we require the following two
rules for assigning truth values to a Horn clause: (1) Ω̂(ϕ′) = ω̂(ϕ′), if ϕ′ ∈ L`,
and (2) Ω̂(ϕ′ ∨ ψ′) = T, if Ω̂(ϕ′) = T or Ω̂(ψ′) = T. An S-3 interpretation ω̂
is a model of a set Σ′ of L-formulae, if Ω̂(σ′) = T holds for every σ′ ∈ Σ′. We
say that Σ′ S-3 implies an L-formula ϕ′, denoted by Σ′ |=3

S ϕ′, if every S-3
interpretation that is a model of Σ′ is also a model of ϕ′.

Mappings between constraints and formulae. In the first step, we define
the fragment of L-formulae that corresponds to UCs and FDs in the presence of
an NFS Ts over a table definition T . Let φ : T → L denote a bijection between
T and the set L = {H ′ | H ∈ T} of propositional variables that corresponds
to T . For an NFS Ts over T let S = φ(Ts) be the set of propositional variables
in L that corresponds to Ts. Hence, the variables in S are the images of those
column headers of T declared NOT NULL. We now extend φ to a mapping Φ
from the set of UCs and FDs over T . For a UC unique(H1, . . . ,Hn) over T ,
let Φ(unique(H1, . . . ,Hn)) denote the goal clause ¬H ′1 ∨ · · · ∨ ¬H ′n. For an FD
H1, . . . ,Hn → H over T , let Φ(H1, . . . ,Hn → H) denote the definite clause
¬H ′1∨· · ·∨¬H ′n∨H ′. For the sake of presentation, but without loss of generality,
we assume that FDs have only a single column header on their right-hand side.
As usual, disjunctions over zero disjuncts are interpreted as F. In what follows,
we may simply denote Φ(ϕ) = ϕ′ and Φ(Σ) = {σ′ | σ ∈ Σ} = Σ′.

The equivalence. Our aim is to show that for every SQL table definition T ,
for every set Σ∪{ϕ} of UCs and FDs and for every NFS Ts over T , there is some
Ts-total table t that satisfies Σ and violates ϕ if and only if there is an S-3 model
ω̂t of Σ′ that is not an S-3 model of ϕ′. For an arbitrary table t it is not obvious
how to define the S-3 interpretation ω̂t. However, for deciding the implication
problem Σ |=Ts ϕ it suffices to examine two-row tables, instead of arbitrary
tables. For two-row tables {r1, r2} we define the special-3-interpretation of L by

– ω̂{r1,r2}(H
′) = T and ω̂{r1,r2}(¬H ′) = F, if ni 6= r1(H) = r2(H) 6= ni,

– ω̂{r1,r2}(H
′) = T and ω̂{r1,r2}(¬H ′) = T, if r1(H) = ni = r2(H),

– ω̂′{r1,r2}(H
′) = F and ω̂′{r1,r2}(¬H

′) = T, if r1(H) 6= r2(H)

for all H ′ ∈ L. If {r1, r2} is Ts-total, then ω̂{r1,r2} is an S-3 interpretation.

Theorem 3. Let Σ∪{ϕ} be a set of UCs and FDs over the SQL table definition
T , and let Ts denote an NFS over T . Let L denote the set of propositional
variables that corresponds to T , S the set of variables that corresponds to Ts,
and Σ′ ∪ {ϕ′} the set of goal and definite clauses over L that corresponds to
Σ ∪ {ϕ}. Then Σ |=Ts

ϕ if and only if Σ′ |=3
S ϕ
′. ut

An example of the equivalence. Consider the table definition Sched-
ule with Schedules = {Location} and Σ = {Speaker → Location,Location →

8 F. Ferrarotti, S. Hartmman, H. Köhler, S. Link, M. Vincent

Time}. Suppose we wonder if the FD ϕ1 = Speaker→ Time is implied by Σ in
the presence of Schedules. According to Theorem 3 the problem Σ |=Schedules

ϕ1 is equivalent to Σ′ |=3
S ϕ
′
1 where S = {Location′}. Suppose an S-3 interpre-

tation ω̂ is not a model of ϕ′1. Then ω̂(¬Speaker′) = F = ω̂(Time′). For ω̂ to be
an S-3 model of Σ′ we must thus have ω̂(Location′) = T = ω̂(¬Location′),
but Location′ ∈ S. We conclude that Σ′ |=3

S ϕ′1 and by Theorem 3 also
Σ |=Schedules ϕ1. Let now be ϕ2 = unique(Speaker). Then Σ 6|=Ts

ϕ1 as the
following SQL table t demonstrates:

Speaker Location Time
Grothendieck Red Room ni

Grothendieck Red Room ni

.

Indeed, the special S-3 interpretation ω̂t where for all L ∈ L`, ω̂t(L) = F iff
L ∈ {¬Speaker′,¬Location′} is a model of Σ′ but not a model of ϕ′2.

6 The Boyce-Codd-Heath normal form for SQL

Boyce and Codd [8] and Heath [14] introduced a normal form condition on re-
lation schemata that characterizes the absence of certain processing difficulties
with any relation over the schema [22]. For SQL table definitions, no normal
forms have been proposed to the best of our knowledge. We now propose an ex-
tension of the classical Boyce-Codd-Heath normal form to SQL table definitions.

Definition 1. Let T denote an SQL table definition, Ts a null-free subdefinition,
and Σ a set of UCs and FDs over T . Then T is said to be in Boyce-Codd-Heath
normal form with respect to Σ and Ts if and only if for all non-trivial functional
dependencies X → Y ∈ Σ+

S we have unique(X) ∈ Σ+
S. ut

Schema Schedule of Example 2 is not in BCHNF with respect to Σ and Ts.
However, if we replace the two FDs in Σ by the two UCs unique(Location,Time)
and unique(Speaker,Time), then Schedule is indeed in BCHNF with respect to
Σ and Ts. It is very important to note here that the UCs are much stronger than
the FDs. If the FD X → H is meaningful over T , then the table definition with
projected column header set T ′ = XH still carries the FD X → H, but the UC
unique(X) may not be meaningful over T ′. That is, decomposition and synthesis
approaches [6, 16, 19] deserve new attention in the context of SQL. In general,
duplicates should only be tolerated when they are meaningful, or updates are
less expensive than duplicate elimination.

7 Semantic justification

We will now justify our syntactic definition of BCHNF semantically by showing
that the condition is sufficient and necessary for the absence of redundant data
value occurrences in any future tables. Following Vincent [22] we will make the
notion of data redundancy explicit. Let T be an SQL table definition, H a column

The Boyce-Codd-Heath Normal Form for SQL 9

header of T , and r a row over T . A replacement of r(H) is a row r′ over T that
satisfies the following conditions: i) for all H ′ ∈ T −{H} we have r′(H ′) = r(H),
and ii) r′(H) 6= r(H). Intuitively, a data value occurrence in some Σ-satisfying
table is redundant if the occurrence cannot be replaced by any other data value
without violating some constraint in Σ.

Definition 2. Let T be an SQL table definition, H ∈ T a column header, Ts an
NFS and Σ a set of UCs and FDs over T , t a table over T that satisfies Σ and
Ts, and r a row in t. We say that the data value occurrence r(H) is redundant
if and only if every replacement r′ of r(H) results in a table t′ := (t−{r})∪{r′}
that violates Σ. We say that T is in Redundancy-Free Normal Form (RFNF)
with respect to Σ and Ts if and only if there is no table t over T such that i) t
satisfies Σ and Ts, and ii) t contains a row r such that for some column header
H of T the data value occurrence r(H) is redundant. ut

We show that the syntactic BCHNF condition of Definition 1 captures the
semantic RFNF condition of Definition 2.

Theorem 4. Let T be an SQL table definition, Ts an NFS and Σ a set of UCs
and FDs over T . Then T is in RFNF with respect to Σ and Ts if and only if T
is in BCHNF with respect to Σ and Ts. ut

Definition 1 refers to the syntactic closureΣ+
S ofΣ and Ts under S, which can

be exponential in the size of Σ. Therefore, the question remains if the problem
whether an SQL table definition is in BCHNF with respect to Σ and Ts can be
decided efficiently.

Theorem 5. Let T be an SQL table definition, Ts an NFS and Σ a set of UCs
and FDs over T . Then the following conditions are equivalent:

1. T is in BCHNF with respect to Σ and Ts,
2. for all non-trivial FDs X → Y ∈ Σ we have: unique(X) ∈ Σ+

S,
3. for all non-trivial FDs X → Y ∈ Σ we have: X → T ∈ Σ+

S and there is
some unique(Z) ∈ Σ such that Z ⊆ XTs. ut

The following result follows directly from Theorem 5 and Theorem 2.

Theorem 6. The problem whether an SQL table definition T is in Boyce-Codd-
Heath Normal Form with respect to an NFS Ts and a set Σ of UCs and FDs
over T can be decided in O(||Σ|| × |Σ|) time. ut

If we define a primary key for an SQL table definition, i.e., there is some
X ⊆ T such that X ⊆ Ts and unique(X) ∈ Σ, then the BCHNF condition for
SQL table definitions reduces to the BCHNF condition for relation schemata:
T is in BCHNF with respect to Σ and Ts if and only if for all non-trivial FDs
X → Y ∈ Σ we have X → T ∈ Σ+

S. However, the presence of primary keys does
not mean that the decomposition or synthesis approach [6, 16, 19] can eliminate
any data redundancy.

10 F. Ferrarotti, S. Hartmman, H. Köhler, S. Link, M. Vincent

Example 4. Consider the SQL table definition T = {Address,City,ZIP} with
Ts = {Address,ZIP} and

Σ = {unique(Address,City), unique(Address, ZIP),ZIP→ City}.

Hence, we have a primary key {Address, ZIP}. A synthesis into the following
table definitions:

– {City, ZIP} with ZIP→ City and NFS {ZIP},
– {Address,City} with unique(Address,City) and NFS {Address}, and
– {Address, ZIP} with unique(Address, ZIP) and NFS {Address, ZIP}

is dependency-preserving, but neither lossless nor is the first resulting table def-
inition in BCHNF. The tables

Address City ZIP
03 Hudson St ni 10001

70 King St ni 10001

City ZIP
ni 10001
ni 10001

Address ZIP
03 Hudson St 10001

70 King St 10001

Address City
03 Hudson St ni

70 King St ni

show the synthesis on the semantic level. For this example, it appears to be
sensible to replace the FD ZIP→ City on {City, ZIP} by the UC unique(ZIP).
The resulting synthesis would then be lossless, all schemata would be in BCHNF
and the second table from the left would only contain one row. ut

The example illustrates that the approaches of synthesis and decomposition
to database normalization require new attention when we consider the features
of SQL that allow duplicate and partial information. The presence of dupli-
cates requires uniqueness constraints in addition to functional dependencies, but
uniqueness constraints are not preserved when performing joins. Hence, it is not
clear what dependency-preservation means. The presence of null values requires
join attributes to be NOT NULL when lossless decompositions are to be achieved.
Furthermore, projection becomes more difficult to define when duplicates are to
be eliminated only sometimes.

8 Conclusion

The class of uniqueness constraints is not subsumed by the class of functional
dependencies over SQL tables, in contrast to relations. For this purpose, we have
characterized the implication problem for the combined class of UCs and FDs in
the presence of NOT NULL constraints axiomatically, algorithmically and logically.
We have further proposed a syntactic Boyce-Codd-Heath normal form condition
for SQL table definitions, and justified this condition semantically. That is, the
condition characterizes the absence of redundant data value occurrences in all
possible SQL tables. On one hand, the semantics of SQL really calls for a com-
prehensive support to specify and maintain FDs to guarantee consistency and
locate data redundancy. On the other hand, the SQL features motivate a thor-
ough study of the decomposition and synthesis approaches towards achieving
normalization.

The Boyce-Codd-Heath Normal Form for SQL 11

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. M. Arenas and L. Libkin. A normal form for XML documents. ACM Trans.
Database Syst., 29(1):195–232, 2004.

3. M. Arenas and L. Libkin. An information-theoretic approach to normal forms for
relational and XML data. J. ACM, 52(2):246–283, 2005.

4. W. W. Armstrong. Dependency structures of database relationships. Information
Processing, 74:580–583, 1974.

5. P. Atzeni and N. Morfuni. Functional dependencies and constraints on null values
in database relations. Information and Control, 70(1):1–31, 1986.

6. J. Biskup, U. Dayal, and P. Bernstein. Synthesizing independent database schemas.
In SIGMOD Conference, pages 143–151, 1979.

7. E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, 1970.

8. E. F. Codd. Recent investigations in relational data base systems. In IFIP
Congress, pages 1017–1021, 1974.

9. C. Date and H. Darwen. A guide to the SQL standard. Addison-Wesley Profes-
sional, Reading, MA, USA, 1997.

10. J. Diederich and J. Milton. New methods and fast algorithms for database nor-
malization. ACM Trans. Database Syst., 13(3):339–365, 1988.

11. S. Hartmann and S. Link. Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst., 34(2), 2009.

12. S. Hartmann and S. Link. Numerical constraints on XML data. Inf. Comput.,
208(5):521–544, 2010.

13. S. Hartmann and S. Link. When data dependencies over SQL tables meet the
Logics of Paradox and S-3. In PODS Conference, 2010.

14. I. J. Heath. Unacceptable file operations in a relational data base. In SIGFIDET
Workshop, pages 19–33, 1971.

15. T. Imielinski and W. Lipski Jr. Incomplete information in relational databases. J.
ACM, 31(4):761–791, 1984.

16. H. Köhler. Finding faithful Boyce-Codd normal form decompositions. In AAIM
Conference, volume 4041 of Lecture Notes in Computer Science, pages 102–113.
Springer, 2006.

17. H. Köhler and S. Link. Armstrong axioms and Boyce-Codd-Heath normal form
under bag semantics. Inf. Process. Lett., 110(16):717–724, 2010.

18. E. Lien. On the equivalence of database models. J. ACM, 29(2):333–362, 1982.
19. J. A. Makowsky and E. V. Ravve. Dependency preserving refinements and the

fundamental problem of database design. Data Knowl. Eng., 24(3):277–312, 1998.
20. Y. Sagiv, C. Delobel, D. S. Parker Jr., and R. Fagin. An equivalence between

relational database dependencies and a fragment of propositional logic. J. ACM,
28(3):435–453, 1981.

21. M. Schaerf and M. Cadoli. Tractable reasoning via approximation. Artif. Intell.,
74:249–310, 1995.

22. M. Vincent. Semantic foundation of 4NF in relational database design. Acta Inf.,
36:1–41, 1999.

23. M. Vincent, J. Liu, and C. Liu. Strong functional dependencies and their ap-
plication to normal forms in XML. ACM Trans. Database Syst., 29(3):445–462,
2004.

24. C. Zaniolo. Database relations with null values. J. Comput. Syst. Sci., 28(1):142–
166, 1984.

12 F. Ferrarotti, S. Hartmman, H. Köhler, S. Link, M. Vincent

9 Appendix - Proofs

9.1 Axiomatic and algorithmic characterization

Lemma 2. The inference rules in S are sound for the implication of uniqueness
constraints and functional dependencies in the presence of a null-free subdefini-
tion.

Proof. The soundness of the rules in M can be proven for SQL tables in the
same way it was shown for sets of tuples [5]. It remains to show the soundness
of the demotion and null pullback rules.

For the soundness of the demotion rule let T be an SQL table definition and
X → Y an FD over T . Suppose that there is a table t that violates X → Y .
That is, there are two rows r, r′ ∈ t such that r, r′ are X-total and r[X] = r′[X]
and there is some H ∈ Y such that r(H) 6= r′(H). In particular, r, r′ are distinct
rows of the table t. We conclude that t also violates the uniqueness constraint
unique(X).

For the soundness of the null pullback rule let T be an SQL table definition,
unique(X), unique(Y) uniqueness constraints over T , X → Y an FD over T and
Ts an NFS over T such that Y ⊆ XTs. Suppose that there is a table t that
violates unique(X). That is, there are two distinct rows r, r′ ∈ t such that r, r′

are X-total and r[X] = r′[X]. If t satisfies the FD X → Y , then r[Y] = r′[Y].
However, Y ⊆ XTs implies that r, r′ are also both Y -total. That is, t violates
the uniqueness constraint unique(Y). ut

Lemma 3. Let T be an SQL table definition, Ts an NFS, ΣUC a set of unique-
ness constraints and ΣFD a set of FDs over T . If ΣUC ∪ΣFD |=Ts

X → Y , then
ΣFD

UC ∪ΣFD |=Ts
X → Y .

Proof. Let t be a Ts-total SQL table over T such that |=t Σ
FD
UC ∪ ΣFD and

6|=t X → Y . Then there are two rows r, r′ ∈ t such that r[X] = r′[X] and r, r′

are both X-total and there is some H ∈ Y such that r(H) 6= r′(H). Suppose
there is some unique(Z) ∈ ΣUC such that 6|={r,r′} unique(Z). Then r, r′ are
Z-total and r[Z] = r′[Z]. However, |={r,r′} Z → T and thus r[T] = r′[T], a
contradiction. Consequently, ΣUC ∪ΣFD 6|=Ts

unique(X). ut

Lemma 4. Let T be an SQL table definition, Ts an NFS, ΣUC a set of unique-
ness constraints, and ΣFD a set of FDs over T . Then ΣUC∪ΣFD |=Ts

unique(X)
if and only if ΣFD

UC ∪ΣFD |=Ts
X → T and there is some unique(Z) ∈ ΣUC such

that Z ⊆ XTs.

Proof. Sufficiency. Let Σ = ΣUC ∪ ΣFD. From X → T ∈
(
ΣFD

UC ∪ΣFD

)∗
Ts

we

conclude X → T ∈ Σ∗Ts
since

(
ΣFD

UC ∪ΣFD

)∗
Ts
⊆ Σ∗Ts

. From X → T ∈ Σ∗Ts
we

conclude X → Z ∈ Σ∗Ts
by soundness of the decomposition rule. From X → Z ∈

Σ∗Ts
and unique(Z) ∈ ΣUC such that Z ⊆ XTs we conclude unique(Z) ∈ Σ∗Ts

by
soundness of the null pullback rule.

Necessity. From ΣUC ∪ ΣFD |=Ts unique(X) we conclude ΣUC ∪ ΣFD |=Ts

X → T by soundness of the demotion rule. From ΣUC ∪ ΣFD |=Ts X → T we

The Boyce-Codd-Heath Normal Form for SQL 13

conclude ΣFD
UC ∪ ΣFD |=Ts X → T by Lemma 3. It remains to show that there

is some unique(Z) ∈ ΣUC such that Z 6⊆ XTs. Assume to the contrary that for
all unique(Z) ∈ ΣUC we have Z 6⊆ XTs. Under this assumption we will derive
the contradiction that ΣUC ∪ ΣFD 6|=Ts

unique(X) by constructing a Ts-total
two-row table t that satisfies ΣUC ∪ΣFD and violates unique(X).

For Σ = ΣUC ∪ ΣFD and X∗Σ,Ts
= {H ∈ T | Σ |=Ts

X → H} let t = {r, r′}
such that

– ni 6= r(H) = r′(H) 6= ni for all H ∈ X(X∗Σ,Ts
∩ Ts),

– r(H) = ni = r′(H) for all H ∈ (X∗Σ,Ts
−XTs) ∪ (T −X∗Σ,Ts

Ts),
– ni 6= r(H) 6= r′(H) 6= ni for all H ∈ Ts −X∗Σ,Ts

.

For example, the table t may look as follows:

X(X∗Σ,Ts
∩ Ts) (X∗Σ,Ts

−XTs) ∪ (T −X∗Σ,Ts
Ts) Ts −X∗Σ,Ts

r 0 · · · 0 ni · · · ni 0 · · · 0
r′ 0 · · · 0 ni · · · ni 1 · · · 1

.

Since r, r′ are both X-total and r[X] = r′[X] we conclude that 6|=t unique(X).
We also conclude that t is Ts-total. We show now that |=t Σ.

Let unique(Z) ∈ Σ. According to our assumption there is some H ∈ Z∩(T −
XTs). Consequently, r(H) = ni = r′(H) and, thus, |=t unique(Z).

Let U → V ∈ Σ. Suppose that r[U] = r′[U] and r, r′ are U -total. Then
U ⊆ X(X∗Σ,Ts

∩ Ts). From Σ |=Ts
X → X∗Σ,Ts

and U ⊆ X∗Σ,Ts
we conclude that

Σ |=Ts
X → U by soundness of the decomposition rule. From Σ |=Ts

X → U ,
Σ |=Ts

U → V and U ⊆ XTs we conclude Σ |=Ts
X → V by soundness of the

null transitivity rule. Hence, V ⊆ X∗Σ,Ts
and r[V] = r′[V].

We have just derived the contradiction that ΣUC ∪ ΣFD 6|=Ts unique(X).
Hence, our assumption must have been wrong. Consequently, there is some
unique(Z) ∈ ΣUC such that Z ⊆ XTs. ut

Theorem 7 (Theorem 1 restated). The set S is a finite axiomatization for
the implication of uniqueness constraints and functional dependencies in the
presence of null-free subdefinitions.

Proof. The soundness of S was shown in Lemma 2. We establish the complete-
ness of S by showing for an arbitrary table definition T , an arbitrary NFS Ts and
an arbitrary set ΣUC∪ΣFD∪{ϕ} of uniqueness constraints and functional depen-
dencies over T the following holds: if ΣUC ∪ΣFD |=Ts

ϕ, then ΣUC ∪ΣFD `S ϕ.
We consider two cases. In case (1) ϕ denotes the FD X → Y . Then we know by
Lemma 3 that ΣFD

UC∪ΣFD |=Ts ϕ holds. From the completeness of M for the im-
plication of functional dependencies in the presence of an NFS we conclude that
ΣFD

UC∪ΣFD `M ϕ. Since M ⊆ S holds we know that ΣFD
UC∪ΣFD `S ϕ holds, too.

The demotion rule shows for all σ ∈ ΣFD
UC that ΣUC `S σ holds. Consequently,

we have ΣUC ∪ ΣFD `S ϕ. This concludes case (1). In case (2) ϕ denotes the
UC unique(X). From ΣUC ∪ΣFD |=Ts unique(X) we conclude by Lemma 4 that
there is some unique(Z) ∈ ΣUC such that Z ⊆ XTs holds. We also conclude from
ΣUC ∪ΣFD |=Ts

unique(X) that ΣUC ∪ΣFD |=Ts
X → Z holds by soundness of

14 F. Ferrarotti, S. Hartmman, H. Köhler, S. Link, M. Vincent

the demotion rule. From case (1) it follows that ΣUC∪ΣFD `S X → Z holds. A
final application of the null pullback rule shows that ΣUC∪ΣFD `S ϕ holds. ut

Algorithm 8 (NFSClosure(X,Σ[FD],Ts,T))

Input: header set X, FD set Σ[FD], NFS Ts over SQL table definition T
Output: header set closure X∗Σ[FD],Ts

of X with respect to Σ[FD] and Ts
Method:
(A0) CLOSURE := X;
(A1) repeat

OLDCLOSURE := CLOSURE;
for all V →W ∈ Σ[FD] do
if V ⊆ CLOSURE ∩XTs then

CLOSURE := CLOSURE ∪W ;
endif;

enddo;
until OLDCLOSURE = CLOSURE;

(A2) return CLOSURE; ut

9.2 Logical characterization

Lemma 5. Let T be some SQL table, t a two-row table over T and Ts an NFS
over T . Let L be the set of propositional variables that corresponds to T , and S
the set of propositional variables that corresponds to Ts. If t satisfies Ts, then ω̂t
is an S-3 interpretation of L.

Proof. If t satisfies Ts, then the two rows of t are Ts-total. According to the
definition of the special-3-interpretation ω̂t it cannot be the case that ω̂t(H

′) = T
and ω̂t(¬H ′) = T for any H ′ ∈ S. ut

The converse of Lemma 5 is not valid. In fact, let T = AB and Ts = A,
and let t = {(a, b), (ni, b′)}. We have ω̂t(A

′) = F = ω̂t(B
′) and ω̂t(¬A′) = T =

ω̂t(¬B′), but t violates Ts = A. However, note that we can replace the null value
occurrence ni in t by a non-null value different from a. The resulting table t′

satisfies Ts = A and ω̂t′ = ω̂t. This strategy is always applicable.

Lemma 6. Let T be some SQL table definition, and Ts an NFS over T . Let
L be the set of propositional variables that corresponds to T , and S the set of
propositional variables that corresponds to Ts. Let ω̂ be an S-3 interpretation of
L. Then there is a two-row table t over T such that t satisfies Ts and ω̂t = ω̂.

Proof. Define a row r over T as follows: for H ∈ T let r1(H) := a ∈ dom(H)−
{ni}, if ω̂(H ′) = F or ω̂(¬H ′) = F, and r1(H) := ni otherwise. Define another
row r2 over T as follows: i) let r2(H) := r1(H), if ω̂(H ′) = T, and ii) let r2(H) :=
a′ ∈ dom(H) − {ni, r1(H)} otherwise. Let t := {r1, r2}. From this definition it
follows that t is Ts-total. Moreover, for all H ′ ∈ L we have ω̂t(H

′) = ω̂(H ′). ut

The following lemma justifies the definitions of the corresponding fragment
of L-formulae and the special-3-interpretation of L.

The Boyce-Codd-Heath Normal Form for SQL 15

Lemma 7. Let t be a two-row table over the SQL table definition T , and let ϕ
be a UC or an FD over T . Then t satisfies ϕ if and only if ω̂t is a model of ϕ′.

Proof. Let t = {r1, r2}. If ϕ = unique(∅), then a table satisfies ϕ if and only if
the table contains less than two rows. Note that, in particular, t violates ϕ and
ϕ′ = false.

Sufficiency. Assume that ω̂t is a model of ϕ′. We show that t satisfies ϕ.
First, let ϕ denote the UC unique(X) where X = {H1, . . . ,Hn}. If t violated

ϕ, then r1[X] = r2[X] and r1, r2 are X-total. Hence, ω̂t(¬H ′i) = F for all i =
1, . . . , n. This, however, is a contradiction since ω̂t is a model of ϕ′. Consequently,
t satisfies ϕ. Now, let ϕ denote the FD X → H where X = {H1, . . . ,Hn}. If
r1[X] = r2[X] and r1, r2 are X-total, then ω̂t(¬H ′i) = F for all i = 1, . . . , n. Since
ω̂t is a model of ϕ′ it follows that ω̂t(H) = T. Consequently, r1(H) = r2(H).
Thus, t satisfies ϕ.

Necessity. Assume that t satisfies ϕ. We show that ω̂t is a model of ϕ′.
First, let ϕ′ denote the formula ¬H ′1 ∨ · · · ∨¬H ′n. Suppose that ω̂t(¬H ′i) = F

for all i = 1, . . . , n. It would follow that r1[X] = r2[X] and r1, r2 are X-total.
This would contradict that t satisfies ϕ. Consequently, ω̂t(¬H ′i) = T for some
i ∈ {1, . . . , n}. Therefore, ω̂t is a model of ϕ′. Now, let ϕ′ denote the formula
¬H ′1 ∨ · · · ∨ ¬H ′n ∨H. Suppose that ω̂t(¬H ′i) = F for all i = 1, . . . , n (otherwise
ω̂t is a model of ϕ′). It follows that r1[X] = r2[X] and r1, r2 are X-total. Since r
satisfies ϕ it follows that r1(H) = r2(H). Consequently, ω̂t(H

′) = T. Therefore,
ω̂t is a model of ϕ′. ut

In fact, Lemmata 5, 6 and 7 allow us to establish the anticipated equivalence
between the implication of UCs and FDs in the presence of an NFS Ts and the
S-3 implication of their corresponding goal and definite clauses in L.

Theorem 9 (Theorem 3 restated). Let Σ ∪ {ϕ} be a set of UCs and FDs
over the SQL table definition T , and let Ts denote an NFS over T . Let L denote
the set of propositional variables that corresponds to T , S the set of variables
that corresponds to Ts, and Σ′ ∪ {ϕ′} the set of goal and definite clauses over L
that corresponds to Σ ∪ {ϕ}. Then Σ |=Ts

ϕ if and only if Σ′ |=3
S ϕ
′.

Proof. It follows immediately from the definition of satisfaction for UCs and FDs
in the presence of an NFS that Σ |=Ts

ϕ if and only if Σ |=2−Ts
ϕ (the latter

problem is to decide if every two-row table over T that satisfies Σ and Ts also
satisfies ϕ). Hence, it suffices to show that Σ |=2−Ts

ϕ if and only if Σ′ |=3
S ϕ
′.

We show first that if Σ′ |=3
S ϕ
′ holds, then Σ |=2−Ts ϕ holds, too. For this

purpose, suppose that Σ |=2−Ts ϕ does not hold. Consequently, there is some
two-row table t over T that satisfies Σ and Ts but violates ϕ. Following Lemma
5, ω̂t is an S-3 interpretation. According to Lemma 7, ω̂t is an S-3 model of Σ′

but not an S-3 model of ϕ′. Consequently, Σ′ |=3
S ϕ
′ does also not hold.

It now remains to show that if Σ |=2−Ts
ϕ holds, then Σ′ |=3

S ϕ
′ holds, too.

For this purpose, suppose that Σ′ |=3
S ϕ′ does not hold. Consequently, there

is some S-3 interpretation ω̂ of L that is a model of Σ′ but not a model of ϕ′.
According to Lemma 6 there is some two-row table t that satisfies Ts and ω̂t = ω̂.

16 F. Ferrarotti, S. Hartmman, H. Köhler, S. Link, M. Vincent

Hence, Lemma 7 guarantees that t satisfies Σ but violates ϕ. We conclude that
Σ |=2−Ts ϕ does also not hold. ut

9.3 Semantic justification of BCHNF

Theorem 10 (Theorem 4 restated). Let T be an SQL table definition, Ts
an NFS and Σ a set of UCs and FDs over T . Then T is in RFNF with respect
to Σ and Ts if and only if T is in BCHNF with respect to Σ and Ts.

Proof. Let T not be in RFNF with respect to Σ and Ts. Then there is some
Ts-total table t over T that satisfies Σ, some row r ∈ t and some header H ∈ T
such that r(H) is redundant. We need to show that there is some non-trivial FD
X → Y ∈ Σ+

S such that unique(X) /∈ Σ+
S. Let t[H] := {r̄(H)|r̄ ∈ t}. Define a

replacement r′ of r(H) such that r′(H) ∈ dom(H)− (t[H]∪{ni}). Furthermore,
let t′ := (t − {r}) ∪ {r′}. Since r(H) is redundant it follows that t′ violates Σ.
Since |=t Σ and t′ agrees with t except on r′(H) /∈ t[H] ∪ {ni} it follows that
t′ cannot violate any UC in Σ. Let t′ violate the FD X → Y ∈ Σ. From the
definition of r′ and the properties of t and t′ it follows that H ∈ Y −X. Hence,
X → Y is non-trivial. Since t′ violates X → Y ∈ Σ there is some r′′ ∈ t′ − {r′}
such that r′′[X] = r′[X], and r′′, r′ are X-total. Moreover, r′′ ∈ t, r′′[X] = r[X]
and r′′, r are X-total since H /∈ X. Therefore, t satisfies Σ but t violates the
UC unique(X). Hence, unique(X) /∈ Σ∗Ts

and by the soundness of S we conclude

unqiue(X) /∈ Σ+
S. It follows that T is not in BCHNF with respect to Σ and Ts.

Vice versa, let T not be in BCHNF with respect to Σ and Ts. Then there
is some non-trivial FD X → Y ∈ Σ+

S such that unique(X) /∈ Σ+
S. We need to

show that there is some table t over T that satisfies Σ and Ts, some row r ∈ t
and some header H ∈ T such that r(H) is redundant. Let t := {r, r′} consist of
two rows r and r′ over T such that for all H ′ ∈ T , i) ni 6= r(H ′) = r′(H ′) 6= ni

holds if and only if H ′ ∈ X(X+
Σ,Ts

∩ Ts), ii) r(H ′) = ni = r′(H ′) if and only

if H ′ ∈ X+
Σ,Ts

− XTs, and iii) ni 6= r(H ′) 6= r′(H ′) 6= ni if and only if H ′ ∈
T −X+

Σ,Ts
. Here,

X+
Σ,Ts

:= {H ′ ∈ T |X → H ′ ∈ Σ+
S}.

It follows immediately that t is Ts-total. We show that t satisfies Σ.
Let U → V ∈ Σ and let r[U] = r′[U] such that r, r′ are U -total. It follows

that U ⊆ X(X+
Σ,Ts

∩ Ts). From X → X+
Σ,Ts

∈ Σ+
S and U ⊆ X+

Σ,Ts
follows

X → U ∈ Σ+
S by the decomposition rule. From X → U ∈ Σ+

S, U → V ∈ Σ
and U ⊆ XTs we conclude X → V ∈ Σ+

S by means of the null transitivity
rule. Consequently, V ⊆ X+

Σ,Ts
and therefore r[V] = r′[V]. We conclude that t

satisfies U → V .
Let unique(U) ∈ Σ, and assume that r[U] = r′[U] holds for the distinct U -

total rows r and r′. We conclude that U ⊆ X(X+
Σ,Ts

∩ Ts) holds. From X →
X+
Σ ∈ Σ+

S we infer X → U ∈ Σ+
S by means of the decomposition rule. From

unique(U) ∈ Σ, X → U ∈ Σ+
S and U ⊆ XTs we infer that unique(X) ∈ Σ+

S by
an application of the null pullback rule. This, however, is a contradiction since
unique(X) /∈ Σ+

S. Consequently, t satisfies unique(U). Hence, t satisfies Σ.

The Boyce-Codd-Heath Normal Form for SQL 17

Now let H ∈ Y − X. Since Y ⊆ X+
Σ,Ts

it follows that r(H) is redundant.
Therefore, T is not in RFNF with respect to Σ and Ts. ut

Theorem 11 (Theorem 5 restated). Let T be an SQL table definition, Ts
an NFS and Σ a set of UCs and FDs over T . Then the following conditions are
equivalent:

1. T is in BCHNF with respect to Σ and Ts,
2. for all non-trivial FDs X → Y ∈ Σ we have: unique(X) ∈ Σ+

S,
3. for all non-trivial FDs X → Y ∈ Σ we have: X → T ∈ Σ+

S and there is
some unique(Z) ∈ Σ such that Z ⊆ XTs.

Proof. We show first the equivalence between 1. and 2. Condition 1. implies
condition 2. since Σ ⊆ Σ+

S. We show next that condition 2. implies condition
1. Assume that T is not in BCHNF with respect to Σ and Ts. That is, there is
some non-trivial FD X → Y ∈ Σ+

S such that unique(X) /∈ Σ+
S. We need to show

that there is some non-trivial FD X ′ → Y ′ ∈ Σ such that unique(X ′) /∈ Σ+
S. Let

Σ = Σ0 ⊂ Σ1 ⊂ · · · ⊂ Σk = Σ+
S

be a proper chain where for all j = 1, . . . , k the set Σj results from Σj−1 by
a single application of an inference rule in S. We show that if there is some
non-trivial FD X → Y ∈ Σj such that unique(X) /∈ Σ+

S, then there is some
non-trivial FD X ′ → Y ′ ∈ Σj−1 such that unique(X ′) /∈ Σ+

S. For j > 0 let X →
Y ∈ Σj−Σj−1 be non-trivial such that unique(X) /∈ Σ+

S. Then X → Y has been
inferred either by means of the decomposition, union or null transitivity rule. In
case of the decomposition rule we have X → Y Z ∈ Σj−1 with unique(X) /∈ Σ+

S.
In case of the union rule we have X → U ∈ Σj−1 and X → W ∈ Σj−1 with
Y = UW and unique(X) /∈ Σ+

S. In case of the null transitivity rule we know that
there are X → Z and Z → Y in Σj−1 with Z ⊆ XTs. If X → Z is non-trivial,
then we are done. If X → Z is trivial, then Z → Y is non-trivial since otherwise
X → Y would be trivial, too. If unique(Z) ∈ Σ+

S, then an application of the
null pullback rule to unique(Z) ∈ Σ+

S, X → Z ∈ Σ+
S and Z ⊆ XTs shows that

unique(X) ∈ Σ+
S holds as well. This is a contradiction, i.e., unique(Z) /∈ Σ+

S.
We have just shown that there is some non-trivial FD X ′ → Y ′ ∈ Σ such that
unique(X ′) /∈ Σ+

S.
The equivalence between conditions 2. and 3 follows immediately from

Lemma 4. ut

