Interpolation Search - A Log Log N Search

Yehoshua Perl
Bar-Ilan University and The Weizmann Institute of Science

Alon Itai
Technion-Israel Institute of Technology
Haim Avni
The Weizmann Institute of Science

Abstract

Interpolation search is a method of retrieving a desired record by key in an ordered file by using the value of the key and the statistical distribution of the keys. It is shown that on the average $\log \log N$ file accesses are required to retrieve a key, assuming that the \mathbf{N} keys are uniformly distributed. The number of extra accesses is also estimated and shown to be very low. The same holds if the cumulative distribution function of the keys is known. Computational experiments confirm these results.

Key Words and Phrases: average number of accesses, binary search, database, interpolation search, retrieval, searching, uniform distribution

CR Categories: 4.4, 4.6, 5.25

1. Introduction

Searching an ordered file is a very common operation in data processing. Given a file of N records ordered by numeric keys ($X_{1}<\cdots!<X_{N}$), we have to retrieve the record whose key is Y. In other words, we should find

General permission to make fair use in teaching or research of all or part of this material is granted to individual readers and to nonprofit libraries acting for them provided that ACM's copyright notice is given and that reference is made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery. To otherwise reprint a figure, table, other substantial excerpt, or the entire work requires specific permission as does republication, or systematic or multiple reproduction.

Authors' addresses: Y. Perl, Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel, and Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel; A. Itai, Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel; H. Auni, Department of Pure Mathematics, The Weizmann Institute of Science, Rehovot, Israel.
© 1978 ACM 0001-0782/78/0700-0550 $\$ 00.75$
the index I such that $X_{I}=Y$. Search methods for ordered files choose a cut index $1 \leq C \leq N$ and compare the key Y to the cut value X_{C}. If $Y=X_{C}$, the search terminates successfully. If $Y<X_{C}$, the required record does not reside in the subfile $\left(X_{C}, \ldots, X_{N}\right)$; so we continue searching the remaining file. Similarly for the case $Y>X_{C}$. If the search file becomes empty, then the original file contains no record with key Y. The various methods differ in the choice of the cut index.

The first such method is binary search, according to which the cut index is the middle of the file $C=\lceil N / 2\rceil$. The average number of accesses is $\log N$ and the maximum is $\lfloor\log N\rfloor+1$ (throughout the paper all logarithms are to the base 2) [5]. Other methods of choosing the cut index yield the Fibonaccian search [5] and even sequential search [5]. These methods choose the key without using any knowledge of the value of the required key and the statistical distribution of the keys in the file.

Peterson's [7] interpolation search uses this information to choose the cut index as the expected location of the required key. In the case of uniform distribution, he claimed that $\frac{1}{2} \log N$ is a lower bound on the average number of file accesses. A closer look into the special characteristics of interpolation search reveals that the average behavior is about $\log \log N$ (solving exercise 6.2.1.22 in [1]). The number of extra accesses is shown to be extremely low on the average. The analysis is based on bounding the expected error in the j th access and then applying advanced probability theory.

We count the number of file accesses since this is a good indicator for the search time. This is especially true if the file resides in secondary memory.

The next section describes interpolation search in detail. Section 3 analyzes the average behavior of the search. Computer experiments which confirm the theoretical results are given in Section 4.

Yao and Yao [8] have also obtained the $\log \log N$ average behavior of the interpolation search using a very complex combinatorial argument. Furthermore, they show that $\log \log N$ is a lower bound on the average number of accesses of any search algorithm, and thus interpolation search is, in a sense, optimal.

A very intuitive explanation of the behavior of interpolation search is given by Perl and Reingold [6]. It is shown that a quadratic application of binary search yields a (less efficient) variant of interpolation search, which is easily shown to have an $O(\log \log N)$ average behavior.

2. Interpolation Search

It is best to illustrate interpolation search with an example.

Given a file of 1000 records with keys $X_{1}<\cdots<X_{1000}$ uniformly distributed between 0 and 1 , our task is to find an index I such that $X_{I}=0.7$. It is reasonable to expect that about $0.7 \cdot 1000=700$ keys are less than or equal to
0.7 , and the required record should be near the 700th record.

However, looking into the file may reveal that X_{700} $=0.68<0.7$. Although we have not retrieved the record, we can deduce that the desired index lies between 700 and 1000 . The corresponding keys are uniformly distributed between 0.68 and 1 . The new file contains 300 records. $P_{2}=(0.7-0.68) /(1-0.68)=0.0675$ is the probability that these records have smaller or equal keys; therefore we should now look at the $300 \cdot 0.675 \simeq 20$ th record of the new file.

This process is continued by using the same method; at each iteration either the record is found or the length of the files is decreased.

In two typical interpolation searches performed on a uniformly distributed file of 400,000 keys, the following sequences of accesses occured:
(i) $212656,213028,213015,213017$.
(ii) $213594,213986,214010,214015,214017$.

Formally, let ($X_{1}<\cdots<X_{N}$) be a file of uniformly distributed keys between a and b. For technical reasons, we add the keys $X_{o}=a$ and $X_{N+1}=b$ as the first and last records of the file. Let P be the probability that a random key in the file is less than or equal to $Y ; P=$ $\left(Y-X_{o}\right) /\left(X_{N+1}-X_{o}\right)$.

In the next section we show that the expected location of the record is $N \cdot P$. Therefore we choose the cut index $C=\lceil N \cdot P\rceil$ and continue the general search scheme of the previous section.

Since the cut index is always the expected location of the desired record, most file accesses of this method are in the vicinity of this record. In a paging environment, in which a number of successive records are contained in a single page, this property greatly reduces the number of page faults. On the other hand, binary search accesses records widely apart before narrowing down at the vicinity of the goal. Because of this property, interpolation search in a paging environment may compete with threelevel indexed sequential searched, as is suggested in [3].

In the worst case, interpolation search might require N accesses. However, as is shown in Section 3, in the sample space of the uniformly distributed files, the average search requires $\log \log N$ accesses, and the probability that a search requires more accesses is negligible.

We have presented interpolation search only for uniformly distributed files. A similar approach is possible whenever the cumulative distribution function F can be calculated. By applying F to the keys, the files become uniformly distributed [2, vol. 2, p. 37].

3. Average Number of Accesses for Interpolation Search

Let F_{j} denote the search file of the j th step; L_{j} and U_{j} are the lower and upper indices of F_{j}, i.e. $F_{j}=$ ($X_{L_{j}}, \ldots, X_{U_{j}}$). The keys $X_{L_{j}}$ and $X_{U_{j}}$ have already been
checked. F_{j} consists of $N_{j}=U_{j}-L_{j}-1$ unchecked keys, which are uniformly distributed between $X_{L_{j}}$ and $X_{U_{j}}$. The state of the search process in the j th step is given by the 4-tuple
$S_{j}=\left(L_{j}, U_{j}, X_{L_{j}}, X_{U_{j}}\right)$.

At the first step

$S_{1}=(0, N+1, a, b) ; N_{1}=N$.
The value of Y relative to $X_{L_{j}}$ and $X_{U_{j}}$ is $P_{j}=$ ($\left.Y-X_{L_{j}}\right) /\left(X_{U_{j}}-X_{L_{j}}\right)$, which is also the probability of a random key in F_{j} 's being less than or equal to Y.

Let I_{j} denote the number of keys in F_{j} which are less than or equal to Y. Calling the event that a key is less than or equal to Y a success, I_{j} is the result of N_{j} Bernoulli trials with success probability P_{j}. Thus I_{j} is a binomially distributed random variable $B\left(N_{j}, P_{j}\right)$ with expectation $N_{j} P_{j}$ and variance $N_{j} P_{j}\left(1-P_{j}\right)$ [2].

Define K^{*}, the index of the searched key, as the number of keys in a given file which are less than or equal to Y. Thus, given $S_{j}, K^{*}=L_{j}+I_{j}$ is a (shifted) binomially distributed random variable. Let K_{j} denote the index of the key accessed in the j th step. In the interpolation search, we choose
$K_{j}=E\left(K^{*} \mid S_{1}, S_{2}, \ldots, S_{j}\right)$.
(We shall ignore the fact that we choose $\left\lceil K_{j}\right\rceil$.)
Define the distance between two consecutive accesses, $D_{j}=\left|K_{j+1}-K_{j}\right|$. But $K_{j+1}=L_{j+1}+N_{j+1} \cdot P_{j+1}$ and K_{j} is either L_{j+1} or U_{j+1}; hence
$D_{j}=\left\{\begin{array}{l}N_{j+1} P_{j+1} \quad X_{K_{j}}<Y, \\ N_{j+1}\left(1-P_{j+1}\right) \quad X_{K_{j}}>Y .\end{array}\right.$

Substituting (1) for K_{j+1} yields
$D_{j}=\left|E\left(K^{*}-K_{j} \mid S_{1}, \ldots, S_{j+1}\right)\right|$.

Thus D_{j} measures also the average error in the j th step.
In the sequel we use the following properties of the conditional expectation [1]:

$$
\begin{align*}
& E\left(E\left(X \mid Y_{1}, \ldots, Y_{j}\right) \mid Y_{1}, \ldots, Y_{j-1}\right) \\
&=E\left(X \mid Y_{1}, \ldots, Y_{j-1}\right) . \tag{4}
\end{align*}
$$

Let f be a concave function; then
$E\left(f(X) \mid Y_{1}, \ldots, Y_{j}\right) \leq f\left(E\left(X \mid Y_{1}, \ldots, Y_{j}\right)\right)$.
The reverse inequality holds for convex functions.
Lemma 1.
$E\left(D_{j}^{2} \mid S_{1}, \ldots, S_{j}\right) \leq D_{j-1} \quad$ for $\quad j>1$.
Proof. Substituting (3) yields

$$
\begin{aligned}
& E\left(D_{j}^{2} \mid S_{1}, \ldots, S_{j}\right) \\
& =E\left(\left(E\left(K^{*}-K_{j} \mid S_{1}, \ldots, S_{j+1}\right)\right)^{2} \mid S_{1}, \ldots, S_{j}\right) \\
& \left.\leq E\left(E\left(K^{*}-K_{j}\right)^{2} \mid S_{1}, \ldots, S_{j+1}\right) \mid S_{1}, \ldots, S_{j}\right)
\end{aligned}
$$

by (5) and the convexity of the square function

Communications	July 1978
of	Volume 21
the ACM	Number 7

$$
\begin{aligned}
& =E\left(\left(K^{*}-K_{j}\right)^{2} \mid S_{1}, \ldots, S_{j}\right) \quad \text { by }(4) \\
& =N_{j} P_{j}\left(1-P_{j}\right) \leq D_{j-1}
\end{aligned}
$$

since, given $\left(S_{1}, \ldots, S_{j}\right), K^{*}$ is a (shifted) binomially distributed random $B\left(N_{j}, P_{j}\right)$ with mean K_{j}.

This proof is applicable also for $j=1$, yielding
$E\left(D_{1}^{2} \mid S_{1}\right) \leq N_{1} P_{1}\left(1-P_{1}\right)<N / 4$.
Corollary. The average error in step 1 is less than $\frac{1}{2} \sqrt{ } N$.

Proof. $\left(E\left(D_{1} \mid S_{1}\right)\right)^{2} \leq E\left(D_{1}^{2} \mid S_{1}\right)<N / 4$. By (5) and (7) thus $E\left(D_{1} \mid S_{1}\right)<\frac{1}{2} \sqrt{ } N$.

THEOREM 1. The average error in step j is less than $N^{2^{-j}}$.

Proof. Applying (4), (5), and (6) yields

$$
\begin{aligned}
&\left(E\left(D_{j} \mid S_{1}\right)\right)^{2} \leq E\left(D_{j}^{2} \mid S_{1}\right) \\
&=E\left(E\left(D_{j}^{2} \mid S_{1}, \ldots, S_{j}\right) \mid S_{1}\right) \leq E\left(D_{j-1} \mid S_{1}\right)
\end{aligned}
$$

Thus, by simple induction,
$\left(E\left(D_{j} \mid S_{1}\right)\right)^{2 j-1} \leq E\left(D_{1} \mid S_{1}\right)<\sqrt{ } N$.
or
$E\left(D_{j} \mid S_{1}\right)<N^{2^{-J}}$.

The right-hand side of (8) converges to 1 . The slow convergence near 1 is irrelevant to the number of accesses. Thus we shall find the first j for which $E\left(D_{j} \mid S_{1}\right)$ ≤ 2. This approach is justified in practice, since this inequality means that using sequential search at this point requires, at most, two additional accesses on the average.

Solving (8) for j, we obtain
$j \geq \log \log N$ implies $E\left(D_{j}\right) \leq 2$.
Thus after $\log \log N$ accesses the average error is less than or equal to two. However, the above estimate does not mean that the average number of accesses is bounded by $\log \log N$. This is the content of the following theorem.

THEOREM 2. The average number of accesses required is less than $\log \log N$.

Proof. Further results from probability theory are required.

Let $\left\{Y_{k}\right\}$ be a sequence of vector-valued random variables. (The sequence $\left\{Y_{h}\right\}$ may be interpreted as the whole history of a random process.) Let $\left\{X_{k}\right\}$ be a sequence of real-valued random variables such that $\left\{X_{j}\right\}$ is a function of $\left\{Y_{1}, Y_{2}, \ldots, Y_{j}\right\}$. The sequence $\left\{X_{k}\right\}$ is a supermartingale with respect to the "history" sequence $\left\{Y_{k}\right\}$ if
$E\left(X_{j+1} \mid Y_{1}, Y_{2}, \ldots, Y_{j}\right) \leq X_{j}$.
A random variable T whose range is $1,2, \ldots, n$ is called a stopping time if, when we define M_{j} by $M_{j}=1$ when $j=T$ and 0 otherwise for all $j=1,2, \ldots, n$, then M_{j} is a function of Y_{1}, \ldots, Y_{j}. (T is determined only by the past.)

The Optional Sampling Theorem for supermartingales asserts, under conditions automatically satisfied in
our restricted case, that, if X_{1}, \ldots, X_{n} is a supermartingale and T is a stopping time, then $E\left(X_{T}\right) \leq E\left(X_{1}\right)$. See [4] for further details.

Taking logarithms on both sides of (6), the concavity of the \log function and (5) yield
$E\left(2 \log D_{j} \mid S_{1}, \ldots, S_{j}\right) \leq \log D_{j-1}$.
Denoting $Z_{j}=\log D_{j}$, we obtain
$E\left(2^{j} Z_{j} \mid S_{1}, \ldots, S_{j}\right) \leq 2^{j-1} Z_{j-1}$.
Thus the sequence $\left\{2^{j} Z_{j}\right\}$ is a supermartingale with respect to the sequence $\left\{S_{j}\right\}$.

Let T be the first j for which $Z_{j} \leq 1$. In the meantime, we shall assume $Z_{T}=1$ (i.e. $D_{T}=2$). T is a stopping time, and by the Optional Sampling Theorem
$E\left(2^{T} Z_{T}\right) \leq E\left(2^{1} Z_{1}\right)=E\left(2 \log D_{1}\right)$
But $Z_{T}=1$, and by (5) and (7)
$E\left(2 \log D_{1}\right)=E\left(\log D_{1}^{2}\right) \leq \log \left(E\left(D_{1}^{2}\right)\right)<\log N$.
Thus
$E\left(2^{T}\right)<\log N$
or
$\log E\left(2^{T}\right)<\log \log N$.
The concavity of the \log function and (5) yield
$E(T)<\log \log N$.
However, there remains a difficulty since there may be no T for which $Z_{T}=1\left(\left\{Z_{j}\right\}\right.$ is a discrete sequence and may become strictly less than I without being equal to 1). We may circumvent this difficulty by extending the sequence $\left\{Z_{j}\right\}$ to a continuous function, e.g. by linear interpolation:
$Z(t)=(t-\lfloor t\rfloor) Z_{j+1}+(\lfloor t\rfloor+1-t) Z_{j}$ for $j=\lfloor t\rfloor$.
From (9) it can be shown that
$E\left(2^{l t} Z(t) \mid S_{1}, \ldots, S_{j}\right) \leq 2^{j} Z_{j}$.
Since $Z(t)$ is continuous in t, we can properly define T as the minimal t for which $Z(t)=1$. The same proof as that of the Optional Sampling Theorem shows that (10) is valid.

Applying Chebyshev's inequality to (10) yields
$P\left\{2^{T} \geq(\log N)^{1+\alpha}\right\} \leq(\log N) /(\log N)^{1+\alpha}=1 /(\log N)^{\prime \prime}$.
This may be rewritten as
$P\{T \geq(1+\alpha) \log \log N\} \leq(\log N)^{-\alpha}$,
which shows that it is very unlikely to pass very far from the average.

We also strictly bound the average number of extra accesses (over $\log \log N$).
Given a random variable T, define a random variable

Volume 21
Number 7

Table 1.

Accesses	1	2	3	4	5	6	7	8	9
Searches	6	170	800	1401	1119	384	92	24	4

Table II.

J	$N=2^{\prime}$	$\log \log N$	Average	Maximum
6	64	2.585	2.451	4
8	256	3.0	2.677	5
10	1024	3.322	3.343	7
12	4096	3.585	3.394	7
14	16384	3.807	3.992	8
16	65536	4.0	4.019	9
18	262144	4.17	4.097	9

$(T-a)_{+}=\operatorname{Max}(T-a, 0)$.
Theorem 3. Let T be a discrete random variable with a finite number of values; then

$$
E\left(\left(T-\log E\left(2^{T}\right)\right)_{+}\right) \leq(\log e) / e
$$

where $e=2.71828$.
Applying Theorem 3 in our case and using (11) yields
$E\left((T-\log \log N)_{+}\right) \leq(\log e) / e \approx 0.53$.
Proof. Let the values of T be a_{i} with probability P_{i}, $i=1, \ldots, m$.
$R=\left\{i \mid a_{i}>\log E\left(2^{T}\right)\right\}$ and $P=\sum_{i \in R} P_{i}$

$$
\begin{aligned}
E\left(\left(T-\log E\left(2^{T}\right)\right)_{+}\right)= & \sum_{i \in R} P_{i}\left(a_{i}-\log \left(\sum_{j=1}^{m} P_{j} 2^{a_{j}}\right)\right) \\
& \leq \sum_{i \in R} P_{i}\left(a_{i}-\log \left(\sum_{j \in R} P_{j} 2^{a_{j}}\right)\right)
\end{aligned}
$$

The definition $\sum_{j \in R}\left(P_{j} / P\right)=1$, the convexity of $f(x)=$ 2^{x}, and (4) yield
$\sum_{j \in R} P_{j} 2^{a_{j}}=P \sum_{j \in R} \frac{P_{j}}{P} 2^{a_{j}} \geq P \cdot 2^{\Sigma_{c<k} P a_{, ~}, / P}$.
Thus, since \log is an increasing function, we obtain

$$
\begin{aligned}
& E\left(\left(T-\log E\left(2^{T}\right)\right)_{+}\right) \leq \sum_{i \in R} P_{i}\left(a_{i}-\log \left(P \cdot 2^{\Sigma_{\kappa \kappa} P_{i, i} / P}\right)\right) \\
& \quad=\sum_{i \in R} P_{i}\left(a_{i}-\log P-\sum_{j \in R} P_{j} a_{j} / P\right)=-P \log P
\end{aligned}
$$

For $0 \leq P \leq 1$, the maximum of $-P \log P$ is $(\log e) / e$, where $P=1 / e$. Thus
$E\left(\left(T-\log E\left(2^{T}\right)\right)_{+}\right) \leq(\log e) / e$.

4. Experimental Results

To examine the theoretical results in practice a sorted file of 400,000 uniformly distributed random numbers was generated. In an experiment of 4000 interpolation searches, the average number of accesses per search was
4.28 , while $\log \log 400,000=4.21$. The distribution is given in Table I. The average number of extra accesses is 0.481 .

Other experiments gave similar results. In order to show the relation between the average number of accesses and $\log \log N$, we performed searches in a sequence of subfiles of different sizes. The results are contained in Table II, which also contains the maximum number of accesses in the searches.

For external search (the file resides on an external device), interpolation search is superior to binary search since the search time is determined by the number of accesses. However, in internal search the computation time of each iteration should also be considered. Computer experiments conducted on the IBM 370/165 showed that interpolation search and binary search take approximately the same time. Interpolation search is slightly faster only for files larger than 5000 records. However, using shift operations instead of division in binary search or the use of Fibonaccian search results in faster internal search methods.

After a few iterations of interpolation search, we are quite close to the required record. When the difference between the indices of two successive iterations is small, it may be advantageous to switch to sequential search and save computation time.

Received November 1975; revised June 1977

References

1. Doob, J.L. Stochastic Processes, Wiley, New York, 1967.
2. Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 1. Wiley, New York, third ed., 1968.
3. Ghosh, S.P., and Senko, M.E. File organization: On the selection of random access index points for sequential files. JACM I6 (1969), 569-579.
4. Karlin, S., and Taylor, H.M. A First Course in Stochastic

Processes. Academic Press, New York, second ed., 1975.
5. Knuth, D.E. The Art of Computer Programming, Vol. 3: Sorting and Searching. Addison-Wesley, Reading, Mass., 1973, pp. 406-422. 6. Perl, Y., and Reingold, E.M. Understanding and complexity of interpolation Search. Infrm. Proc. Letters, 6 (1977), 219-222.
7. Peterson, W.W. Addressing for random-access storage. IBM J. Res. and Develop. I (1957), 131-132.
8. Yao, A.C., and Yao, F.F. The complexity of searching an ordered random table. Proc. Seventeenth Annual Symp. Foundations of Comptr. Sci., 1976, pp. 173-177.

Volume 21
Volume 21
Number 7

