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Interpolation search is a method of retrieving a 
desired record by key in an ordered file by using the 
value of the key and the statistical distribution of the 
keys. l't is shown that on the average log IogN file 
accesses  are required to retrieve a key, assuming that 
the N keys are uniformly distributed. The number of 
extra accesses  is also estimated and shown to be very 
low. The same holds if the cumulative distribution 
function of  the keys is known. Computational 
experiments confirm these results. 
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1. Introduction 

Searching an ordered file is a very common operation 
in data processing. Given a tile of  N records ordered by 
numeric keys (X1 < " : <  XN), we have to retrieve the 
record whose key is Y. In other words, we should find 
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the index I such that X1 = Y. Search methods for ordered 
files choose a cut index 1 _< C _< N and compare the key 
Y to the cut value Xc. I f  Y = Xc, the search terminates 
successfully. I f  Y < Xc, the required record does not 
reside in the subtile (Xc  . . . . .  XN); so we continue 
searching the remaining file. Similarly for the case 
Y > Xc. I f  the search file becomes empty, then the 
original file contains no record with key Y. The various 
methods differ in the choice of  the cut index. 

The first such method is binary search, according to 
which the cut index is the middle of  the file C = [N/2]. 
The average number  of  accesses is log N and the maxi- 
mum is [logNJ + 1 (throughout the paper  all logarithms 
are to the base 2) [5]. Other methods of  choosing the cut 
index yield the Fibonaccian search [5] and even sequen- 
tial search [5]. These methods choose the key without 
using any knowledge of  the value of  the required key 
and the statistical distribution of  the keys in the file. 

Peterson's [7] interpolation search uses this informa- 
tion to choose the cut index as the expected location of  
the required key. In the case of  uniform distribution, he 
claimed that ½1ogN is a lower bound on the average 
number  of  tile accesses. A closer look into the special 
characteristics of  interpolation search reveals that the 
average behavior is about log logN (solving exercise 
6.2.1.22 in [1]). The number  of  extra accesses is shown to 
be extremely low on the average. The analysis is based 
on bounding the expected error in the j th  access and 
then applying advanced probability theory. 

We count the number  of  file accesses since this is a 
good indicator for the search time. This is especially true 
if the file resides in secondary memory.  

The next section describes interpolation search in 
detail. Section 3 analyzes the average behavior of  the 
search. Computer  experiments which confirm the theo- 
retical results are given in Section 4. 

Yao and Yao [8] have also obtained the log logN 
average behavior of  the interpolation search using a very 
complex combinatorial  argument. Furthermore,  they 
show that log logN is a lower bound on the average 
number  of  accesses of  any search algorithm, and thus 
interpolation search is, in a sense, optimal. 

A very intuitive explanation of  the behavior of  inter- 
polation search is given by Perl and Reingold [6]. It is 
shown that a quadraiic application of  binary search 
yields a (less efficient) variant of  interpolation search, 
which is easily shown to have an O(log logN) average 
behavior. 

2. Interpolation Search 

It is best to illustrate interpolation search with an 
example. 

Given a file of  1000 records with keys )(1 <.-" < )(100o 
uniformly distributed between 0 and I, our task is to find 
an index I such that XI = 0.7. It is reasonable to expect 
that about 0.7- 1000 = 700 keys are less than or equal to 
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0.7, and the required record should be near the 700th 
record. 

However, looking into the file may reveal that X70o 
= 0.68 < 0.7. Although we have not retrieved the record, 
we can deduce that the desired index lies between 700 
and 1000. The corresponding keys are uniformly distrib- 
uted between 0.68 and 1. The new file contains 300 
records. /'2 = (0.7-0.68)/(1-0.68) = 0.0675 is the proba- 
bility that these records have smaller or equal keys; 
therefore we should now look at the 300.0.675 = 20th 
record of the new file. 

This process is continued by using the same method; 
at each iteration either the record is found or the length 
of the files is decreased. 

In two typical interpolation searches performed on a 
uniformly distributed file of  400,000 keys, the following 
sequences of  accesses occured: 

(i) 212656, 213028, 213015, 213017. 
(ii) 213594, 213986, 214010, 214015, 214017. 

Formally, let (X~ < - . . <  XN) be a file of  uniformly 
distributed keys between a and b. For technical reasons, 
we add the keys Xo = a and XN+~ = b as the first and last 
records of the file. Let P be the probability that a random 
key in the file is less than or equal to Y; P = 
( Y -  Xo) / (XN+I - -  Xo). 

In the next section we show that the expected location 
of  the record is N-P.  Therefore we choose the cut index 
C = IN.P]  and continue the general search scheme of  
the previous section. 

Since the cut index is always the expected location of 
the desired record, most file accesses of  this method are 
in the vicinity of  this record. In a paging environment, 
in which a number of successive records are contained 
in a single page, this property greatly reduces the number 
of page faults. On the other hand, binary search accesses 
records widely apart before narrowing down at the vicin- 
ity of the goal. Because of this property, interpolation 
search in a paging environment may compete with three- 
level indexed sequential searched, as is suggested in [3]. 

In the worst case, interpolation search might require 
N accesses. However, as is shown in Section 3, in the 
sample space of  the uniformly distributed files, the av- 
erage search requires log logN accesses, and the proba- 
bility that a search requires more accesses is negligible. 

We have presented interpolation search only for uni- 
formly distributed files. A similar approach is possible 
whenever the cumulative distribution function F can be 
calculated. By applying F to the keys, the files become 
uniformly distributed [2, vol. 2, p. 37]. 

3. Average Number of Accesses for Interpolation 
Search 

Let ~ denote the search file o f t h e f l h  step; L 2 and U2 
are the lower and upper indices of  ~ ,  i.e. ~ = 
(Xrj . . . . .  X~). The keys XLj and X% have already been 
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checked. F 2 consists of  N./= U / -  L2 - 1 unchecked keys, 
which are uniformly distributed between XLj and X%. 
The state of  the search process in thej th  step is given by 
the 4-tuple 

S~ = ( L2, Uj, XLj, X%).  

At the first step 

S l = ( 0 ,  N +  l , a , b ) ; N l  = N .  

The value of  Y relative to X G and Xl# is Pi = 
( Y - X L , ) / ( X u j  -- XLj), which is also the probability of  
a random key in F2's being less than or equal to Y. 

Let I 2 denote the number of  keys in Fj which are less 
than or equal to Y. Calling the event that a key is less 
than or equal to Y a success, Ij is the result of  Nj 
Bernoulli trials with success probability Pj. Thus Ig is a 
binomially distributed random variable B(N2, Pj)  with 
expectation NiP  2 and variance N2Pj( 1 - P2) [2]. 

Define K*, the index of  the searched key, as the 
number of  keys in a given file which are less than or 
equal to Y. Thus, given S2, K* = L 2 + I 2 is a (shifted) 
binomially distributed random variable. Let K 2 denote 
the index of the key accessed in the j th  step. In the 
interpolation search, we choose 

K 2 =  E ( K * ] S I ,  $2 . . . . .  $2). (1) 

(We shall ignore the fact that we choose [K2]. ) 
Define the distance between two consecutive ac- 

cesses, D2 = ]K2+1 - Kj]. But K2+~ = L2+1 + N2+1 "P2+1 and 
K2 is either L2+1 or U2+I; hence 

~ N2+,P./+1 X K < Y ,  
D2 = [N2+,( 1 - Py+,) XKj > Y. (2) 

Substituting (1) for K2+~ yields 

D2 = IE(K* - KA8,  . . . . .  82+1)1. (3)  

Thus D2 measures also the average error in the j th  step. 
In the sequel we use the following properties of the 

conditional expectation [1]: 

E ( E ( X I  Yl . . . . .  YJ)I r l  . . . . .  Y2-1) 
= E(X[ II1 . . . . .  Yj ,). (4) 

L e t f b e  a concave function; then 

E(j~ X)[  Y1 . . . . .  Y2) <- f (  E( Xl YI . . . . .  Y2) ). 

The reverse inequality holds for convex functions. 
L E M M A  I. 

E(D][S1 . . . . .  $2) <- Dj_I for j >  1. 

PROOF. Substituting (3) yields 

E(D]I S,  . . . . .  $2) 
= E ( ( E ( K *  - K2[S~ . . . . .  82+1))"]S~ . . . . .  82) 
<_ E ( E ( K *  -- K f i ' IS l  . . . . .  S2+,)IS~ . . . . .  82) 

by (5) and the convexity of  the square function 
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= E ( ( K *  - Kg)elS, . . . . .  Sj) by (4) 
= N~P/ ( I  - e j )  <_ D r - ,  

since, given (S~ . . . . .  S/), K* is a (shifted) binomially 
distributed random B( Nj, Pj) with mean K/. [] 

This proof is applicable also f o r j  = 1, yielding 

E(D'~IS~) <-- N~PI( I :- P~) < N /4 .  (7) 

COROLLARY.  The average error in step 1 is less than 
x/N. 

PROOF. (E(D~IS~))  '~ <_ E(D'~[S~) < N /4 .  By (5) and 
(7) thus E( O1 [ Sl ) < "21- v 'N.  [] 

THEOREM 1. The average error in step j is less than 
N 2-j. 

PROOF. Applying (4), (5), and (6) yields 

(E(Dy[S , ) )  ~ < E(D~) IS,) 
2 = E(E(Dj[S~ . . . . .  &)[S,)  < E(Dj_I[S,). 

Thus, by simple induction, 

( E ( D j I S , ) )  "2j-' <- E( D, IS,)  < x / N .  

o r  

E(DAS, )  < N 2-+. [] (8) 

The right-hand side of  (8) converges to 1. The slow 
convergence near 1 is irrelevant to the number of  ac- 
cesses. Thus we shall find the f i rs t j  for which E(I)i l  S~) 
_< 2. This approach is justified in practice, since this 
inequality means that using sequential search at this 
point requires, at most, two additional accesses on the 
average. 

Solving (8) for j ,  we obtain 

j _> log logN implies E(D/)  <_ 2. 

Thus after log logN accesses the average error is less 
than or equal to two. However, the above estimate does 
not mean that the average number of  accesses is bounded 
by log 10gN. This is the content of  the following theorem. 

THEOREM 2. The average number of  accesses re- 
quired is less than log logN. 

PROOF. Further results from probability theory are 
required. 

Let {Yh} be a sequence of  vector-valued random 
variables. (The sequence { }'/,} may be interpreted as the 
whole history of  a random process.) Let {Xh) be a 
sequence of real-valued random variables such that {~} 
is a function of { Y~, Y2 . . . . .  ~ ) .  The sequence {Xj,} is a 
supermartingale with respect to the "history" sequence 
{Yk) if 

E(Xj+,I Y,, Y2 . . . . .  Yj) --< ~ .  

A random variable T whose range is l, 2 . . . . .  n is 
called a stopping time if, when we define Mj by M / =  1 
when j = T and 0 otherwise for a l l j  = 1, 2 . . . . .  n, then 
Mj is a function of Y, . . . . .  Yj. ( T is determined only by 
the past.) 

The Optional Sampling Theorem for supermartin- 
gales asserts, under conditions automatically satisfied in 
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our restricted case, that, if X~ . . . . .  X, is a supermartingale 
and T is a stopping time, then E ( X r )  <-- E(X~). See [4] 
for further details. 

Taking logarithms on both sides of (6), the concavity 
of  the log function and (5) yield 

E(2 logD/I S1 . . . . .  S/) < logD/_~. (9) 

Denoting Z / =  logDj, we obtain 

E(zazjl s ,  . . . . .  s+) _< 2J-'zj_,. 

Thus the sequence {2iZj) is a supermartingale with 
respect to the sequence {Sj).  

Let Tbe  the firstj  for which Zj _< 1. In the meantime, 
we shall assume ZT ---- 1 (i.e. DT =" 2). T is a stopping 
time, and by the Optional Sampling Theorem 

E(2TZT) _< E(2 'Z , )  = E(2 logD,) 

But ZT = 1, and by (5) and (7) 

E(2 logD~ ) = E(logD~) _< log( E(D~) ) < logN. 

Thus 

E(2 r) < logN (10) 

o r  

logE( 2 T) < log logN. 

The concavity of  the log function and (5) yield 

( l i )  

E ( T )  < log log N. (12) 

However, there remains a difficulty since there may be 
no T for which ZT = I({Z/} is a discrete sequence and 
may become strictly less than 1 without being equal to 
1 ). We may circumvent this difficulty by extending the 
sequence (Z/) to a continuous function, e.g. by linear 
interpolation: 

Z( t )  = (t  - [tJ)Zj+, + ([tJ + 1 - t ) z j  for j = [tJ. 

From (9) it can be shown that 

E(2ttJZ(t)[SI  . . . . .  Sj) ~ 2Jzj. 

Since Z ( t )  is continuous in t, we can properly define T 
as the minimal t for which Z(t)  = 1. The same proof  as 
that of  the Optional Sampling Theorem shows that (10) 
is valid. [] 

Applying Chebyshev's inequality to (10) yields 

p(2T>~ (logN) '+") _< ( l o g N ) / ( l o g N )  '+"= l /( logN)". 

This may be rewritten as 

p (  T>__ ( 1 + a) log logN) _< (logN)-", (13) 

which shows that it is very unlikely to pass very far from 
the average. 

We also strictly bound the average number of  extra 
accesses (over log logN). 
Given a random variable T, define a random variable 
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Table 1. 

Accesses 1 2 3 4 5 6 7 8 9 
Searches 6 170 800 1401 1119 384 92 24 4 

Table 1I. 

J N=2 J log logN Average Maximum 

6 64 2.585 2.451 4 
8 256 3.0 2.677 5 

10 1024 3.322 3.343 7 
12 4096 3.585 3.394 7 
14 16384 3.807 3.992 8 
16 65536 4.0 4.019 9 
18 262144 4.17 4.097 9 

( T -  a)+ = M a x ( T -  a, 0). 

THEOREM 3. Let T be a discrete random variable 
with a finite number of values; then 

E(( T -  IogE(2r))+) _< (Ioge)/e, 

where e = 2.71828. 
Applying Theorem 3 in our case and using (11) yields 

E(( T -  log logN)+) _< ( loge)/e  = 0.53. (14) 

PROOF. Let the values of  T be ai with probability Pi, 
i =  1, ..., m. 

R = {ilai > 1ogE(2T)} and P = ~ Pi 
i E R  

E((T- l °gE(2T) )+)=i~cRPi (a i - log ( i~=lPJ2" ) )  

<--- Y'iER P i (a i - - l og ( j~R  PJ2"i))" 

The definition Zj~n (P//P) = 1, the convexity o f f ( x )  = 
2 x, and (4) yield 

P/2"J = P ~ P/2"/>_ e.  2 x'~e'''/e. 
/on )ER P 

Thus, since log is an increasing function, we obtain 

E( ( T - logE( 2 r) )+ ) <_ ~, Pi( ai - log( P. 2 ~'~ p,,,,/e) ) 
iER 

= 2i~1~ Pi (ai - logP - ~j~n Pjaj/P) = - P logP. 

For 0 _< P _< 1, the maximum of - P  logP is (loge)/e, 
where P = 1/e. Thus 

E(( T -  logE(2T))+) _< (loge)/e. [] 

4.28, while log log400,000 = 4.21. The distribution is 
given in Table I. The average number  of  extra accesses 
is 0.481. 

Other experiments gave similar results. In order to 
show the relation between the average number  of  ac- 
cesses and log logN, we performed searches in a sequence 
of  subfiles of  different sizes. The results are contained in 
Table II, which also contains the maximum number  of  
accesses in the searches. 

For external search (the file resides on an external 
device), interpolation search is superior to binary search 
since the search time is determined by the number  of  
accesses. However, in internal search the computation 
time of  each iteration should also be considered. Com- 
puter experiments conducted on the IBM 370/165 
showed that interpolation search and binary search take 
approximately the same time. Interpolation search is 
slightly faster only for files larger than 5000 records. 
However, using shift operations instead of  division in 
binary search or the use of  Fibonaccian search results in 
faster internal search methods. 

After a few iterations of  interpolation search, we are 
quite close to the required record. When the difference 
between the indices of  two successive iterations is small, 
it may be advantageous to switch to sequential search 
and save computation time. 
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4. Experimental Results 

To examine the theoretical results in practice a sorted 
file of  400,000 uniformly distributed random numbers 
was generated. In an experiment of  4000 interpolation 
searches, the average number  of  accesses per search was 
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