
Programming
Techniques

S. L. Graham, R. L. Rivest
Editors

Interpolation Search
A Log LogN Search

Y e h o s h u a P e r l
B a r - I l a n U n i v e r s i t y a n d T h e W e i z m a n n
I n s t i t u t e o f S c i e n c e

A l o n I t a i
T e c h n i o n - - I s r a e l I n s t i t u t e o f T e c h n o l o g y

H a i m A v n i
T h e W e i z m a n n I n s t i t u t e o f S c i e n c e

Interpolation search is a method of retrieving a
desired record by key in an ordered file by using the
value of the key and the statistical distribution of the
keys. l't is shown that on the average log IogN file
accesses are required to retrieve a key, assuming that
the N keys are uniformly distributed. The number of
extra accesses is also estimated and shown to be very
low. The same holds if the cumulative distribution
function of the keys is known. Computational
experiments confirm these results.

Key Words and Phrases: average number of
accesses , binary search, database, interpolation search,
retrieval, searching, uniform distribution

CR Categories: 4.4, 4.6, 5.25

1. Introduction

Searching an ordered file is a very common operation
in data processing. Given a tile of N records ordered by
numeric keys (X1 < " : < XN), we have to retrieve the
record whose key is Y. In other words, we should find

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

Authors' addresses: Y. Perl, Department of Mathematics, Bar-Ilan
University, Ramat Gan, Israel, and Department of Applied Mathe-
matics, The Weizmann Institute of Science, Rehovot, Israel; A. Itai,
Department of Computer Science, Technion--Israel Institute of Tech-
nology, Haifa, Israel; H. Auni, Department of Pure Mathematics, The
Weizmann Institute of Science, Rehovot, Israel.
© 1978 ACM 0001-0782/78/0700-0550 $00.75

550

the index I such that X1 = Y. Search methods for ordered
files choose a cut index 1 _< C _< N and compare the key
Y to the cut value Xc. I f Y = Xc, the search terminates
successfully. I f Y < Xc, the required record does not
reside in the subtile (Xc XN); so we continue
searching the remaining file. Similarly for the case
Y > Xc. I f the search file becomes empty, then the
original file contains no record with key Y. The various
methods differ in the choice of the cut index.

The first such method is binary search, according to
which the cut index is the middle of the file C = [N/2].
The average number of accesses is log N and the maxi-
mum is [logNJ + 1 (throughout the paper all logarithms
are to the base 2) [5]. Other methods of choosing the cut
index yield the Fibonaccian search [5] and even sequen-
tial search [5]. These methods choose the key without
using any knowledge of the value of the required key
and the statistical distribution of the keys in the file.

Peterson's [7] interpolation search uses this informa-
tion to choose the cut index as the expected location of
the required key. In the case of uniform distribution, he
claimed that ½1ogN is a lower bound on the average
number of tile accesses. A closer look into the special
characteristics of interpolation search reveals that the
average behavior is about log logN (solving exercise
6.2.1.22 in [1]). The number of extra accesses is shown to
be extremely low on the average. The analysis is based
on bounding the expected error in the j th access and
then applying advanced probability theory.

We count the number of file accesses since this is a
good indicator for the search time. This is especially true
if the file resides in secondary memory.

The next section describes interpolation search in
detail. Section 3 analyzes the average behavior of the
search. Computer experiments which confirm the theo-
retical results are given in Section 4.

Yao and Yao [8] have also obtained the log logN
average behavior of the interpolation search using a very
complex combinatorial argument. Furthermore, they
show that log logN is a lower bound on the average
number of accesses of any search algorithm, and thus
interpolation search is, in a sense, optimal.

A very intuitive explanation of the behavior of inter-
polation search is given by Perl and Reingold [6]. It is
shown that a quadraiic application of binary search
yields a (less efficient) variant of interpolation search,
which is easily shown to have an O(log logN) average
behavior.

2. Interpolation Search

It is best to illustrate interpolation search with an
example.

Given a file of 1000 records with keys)(1 <.-" <)(100o
uniformly distributed between 0 and I, our task is to find
an index I such that XI = 0.7. It is reasonable to expect
that about 0.7- 1000 = 700 keys are less than or equal to

Communications July 1978
of Volume 21
the ACM Number 7

0.7, and the required record should be near the 700th
record.

However, looking into the file may reveal that X70o
= 0.68 < 0.7. Although we have not retrieved the record,
we can deduce that the desired index lies between 700
and 1000. The corresponding keys are uniformly distrib-
uted between 0.68 and 1. The new file contains 300
records. /'2 = (0.7-0.68)/(1-0.68) = 0.0675 is the proba-
bility that these records have smaller or equal keys;
therefore we should now look at the 300.0.675 = 20th
record of the new file.

This process is continued by using the same method;
at each iteration either the record is found or the length
of the files is decreased.

In two typical interpolation searches performed on a
uniformly distributed file of 400,000 keys, the following
sequences of accesses occured:

(i) 212656, 213028, 213015, 213017.
(ii) 213594, 213986, 214010, 214015, 214017.

Formally, let (X~ < - . . < XN) be a file of uniformly
distributed keys between a and b. For technical reasons,
we add the keys Xo = a and XN+~ = b as the first and last
records of the file. Let P be the probability that a random
key in the file is less than or equal to Y; P =
(Y - Xo) / (XN+I - - Xo).

In the next section we show that the expected location
of the record is N-P. Therefore we choose the cut index
C = IN.P] and continue the general search scheme of
the previous section.

Since the cut index is always the expected location of
the desired record, most file accesses of this method are
in the vicinity of this record. In a paging environment,
in which a number of successive records are contained
in a single page, this property greatly reduces the number
of page faults. On the other hand, binary search accesses
records widely apart before narrowing down at the vicin-
ity of the goal. Because of this property, interpolation
search in a paging environment may compete with three-
level indexed sequential searched, as is suggested in [3].

In the worst case, interpolation search might require
N accesses. However, as is shown in Section 3, in the
sample space of the uniformly distributed files, the av-
erage search requires log logN accesses, and the proba-
bility that a search requires more accesses is negligible.

We have presented interpolation search only for uni-
formly distributed files. A similar approach is possible
whenever the cumulative distribution function F can be
calculated. By applying F to the keys, the files become
uniformly distributed [2, vol. 2, p. 37].

3. Average Number of Accesses for Interpolation
Search

Let ~ denote the search file o f t h e f l h step; L 2 and U2
are the lower and upper indices of ~ , i.e. ~ =
(Xrj X~). The keys XLj and X% have already been

551

checked. F 2 consists of N./= U / - L2 - 1 unchecked keys,
which are uniformly distributed between XLj and X%.
The state of the search process in thej th step is given by
the 4-tuple

S~ = (L2, Uj, XLj, X%).

At the first step

S l = (0 , N + l , a , b) ; N l = N .

The value of Y relative to X G and Xl# is Pi =
(Y - X L ,) / (X u j -- XLj), which is also the probability of
a random key in F2's being less than or equal to Y.

Let I 2 denote the number of keys in Fj which are less
than or equal to Y. Calling the event that a key is less
than or equal to Y a success, Ij is the result of Nj
Bernoulli trials with success probability Pj. Thus Ig is a
binomially distributed random variable B(N2, Pj) with
expectation NiP 2 and variance N2Pj(1 - P2) [2].

Define K*, the index of the searched key, as the
number of keys in a given file which are less than or
equal to Y. Thus, given S2, K* = L 2 + I 2 is a (shifted)
binomially distributed random variable. Let K 2 denote
the index of the key accessed in the j th step. In the
interpolation search, we choose

K 2 = E (K *] S I , $2 $2). (1)

(We shall ignore the fact that we choose [K2].)
Define the distance between two consecutive ac-

cesses, D2 =]K2+1 - Kj]. But K2+~ = L2+1 + N2+1 "P2+1 and
K2 is either L2+1 or U2+I; hence

~ N2+,P./+1 X K < Y ,
D2 = [N2+,(1 - Py+,) XKj > Y. (2)

Substituting (1) for K2+~ yields

D2 = IE(K* - KA8, 82+1)1. (3)

Thus D2 measures also the average error in the j th step.
In the sequel we use the following properties of the

conditional expectation [1]:

E (E (X I Yl YJ)I r l Y2-1)
= E(X[II1 Yj ,). (4)

L e t f b e a concave function; then

E(j~ X)[Y1 Y2) <- f (E(Xl YI Y2)).

The reverse inequality holds for convex functions.
L E M M A I.

E(D][S1 $2) <- Dj_I for j > 1.

PROOF. Substituting (3) yields

E(D]I S, $2)
= E ((E (K * - K2[S~ 82+1))"]S~ 82)
<_ E (E (K * -- K f i ' IS l S2+,)IS~ 82)

by (5) and the convexity of the square function

Communications July 1978
of Volume 21
the ACM Number 7

(5)

(6)

= E ((K * - Kg)elS, Sj) by (4)
= N~P/ (I - e j) <_ D r - ,

since, given (S~ S/), K* is a (shifted) binomially
distributed random B(Nj, Pj) with mean K/. []

This proof is applicable also f o r j = 1, yielding

E(D'~IS~) <-- N~PI(I :- P~) < N /4 . (7)

COROLLARY. The average error in step 1 is less than
x/N.

PROOF. (E(D~IS~)) '~ <_ E(D'~[S~) < N /4 . By (5) and
(7) thus E(O1 [Sl) < "21- v 'N. []

THEOREM 1. The average error in step j is less than
N 2-j.

PROOF. Applying (4), (5), and (6) yields

(E(Dy[S ,)) ~ < E(D~) IS,)
2 = E(E(Dj[S~ &)[S,) < E(Dj_I[S,).

Thus, by simple induction,

(E (D j I S ,)) "2j-' <- E(D, IS,) < x / N .

o r

E(DAS,) < N 2-+. [] (8)

The right-hand side of (8) converges to 1. The slow
convergence near 1 is irrelevant to the number of ac-
cesses. Thus we shall find the f i rs t j for which E(I)i l S~)
_< 2. This approach is justified in practice, since this
inequality means that using sequential search at this
point requires, at most, two additional accesses on the
average.

Solving (8) for j , we obtain

j _> log logN implies E(D/) <_ 2.

Thus after log logN accesses the average error is less
than or equal to two. However, the above estimate does
not mean that the average number of accesses is bounded
by log 10gN. This is the content of the following theorem.

THEOREM 2. The average number of accesses re-
quired is less than log logN.

PROOF. Further results from probability theory are
required.

Let {Yh} be a sequence of vector-valued random
variables. (The sequence { }'/,} may be interpreted as the
whole history of a random process.) Let {Xh) be a
sequence of real-valued random variables such that {~}
is a function of { Y~, Y2 ~) . The sequence {Xj,} is a
supermartingale with respect to the "history" sequence
{Yk) if

E(Xj+,I Y,, Y2 Yj) --< ~ .

A random variable T whose range is l, 2 n is
called a stopping time if, when we define Mj by M / = 1
when j = T and 0 otherwise for a l l j = 1, 2 n, then
Mj is a function of Y, Yj. (T is determined only by
the past.)

The Optional Sampling Theorem for supermartin-
gales asserts, under conditions automatically satisfied in

552

our restricted case, that, if X~ X, is a supermartingale
and T is a stopping time, then E (X r) <-- E(X~). See [4]
for further details.

Taking logarithms on both sides of (6), the concavity
of the log function and (5) yield

E(2 logD/I S1 S/) < logD/_~. (9)

Denoting Z / = logDj, we obtain

E(zazjl s , s+) _< 2J-'zj_,.

Thus the sequence {2iZj) is a supermartingale with
respect to the sequence {Sj).

Let Tbe the firstj for which Zj _< 1. In the meantime,
we shall assume ZT ---- 1 (i.e. DT =" 2). T is a stopping
time, and by the Optional Sampling Theorem

E(2TZT) _< E(2 'Z ,) = E(2 logD,)

But ZT = 1, and by (5) and (7)

E(2 logD~) = E(logD~) _< log(E(D~)) < logN.

Thus

E(2 r) < logN (10)

o r

logE(2 T) < log logN.

The concavity of the log function and (5) yield

(l i)

E (T) < log log N. (12)

However, there remains a difficulty since there may be
no T for which ZT = I({Z/} is a discrete sequence and
may become strictly less than 1 without being equal to
1). We may circumvent this difficulty by extending the
sequence (Z/) to a continuous function, e.g. by linear
interpolation:

Z(t) = (t - [tJ)Zj+, + ([tJ + 1 - t) z j for j = [tJ.

From (9) it can be shown that

E(2ttJZ(t)[SI Sj) ~ 2Jzj.

Since Z (t) is continuous in t, we can properly define T
as the minimal t for which Z(t) = 1. The same proof as
that of the Optional Sampling Theorem shows that (10)
is valid. []

Applying Chebyshev's inequality to (10) yields

p(2T>~ (logN) '+") _< (l o g N) / (l o g N) '+"= l /(logN)".

This may be rewritten as

p (T>__ (1 + a) log logN) _< (logN)-", (13)

which shows that it is very unlikely to pass very far from
the average.

We also strictly bound the average number of extra
accesses (over log logN).
Given a random variable T, define a random variable

Communications July 1978
of Volume 21
the ACM Number 7

Table 1.

Accesses 1 2 3 4 5 6 7 8 9
Searches 6 170 800 1401 1119 384 92 24 4

Table 1I.

J N=2 J log logN Average Maximum

6 64 2.585 2.451 4
8 256 3.0 2.677 5

10 1024 3.322 3.343 7
12 4096 3.585 3.394 7
14 16384 3.807 3.992 8
16 65536 4.0 4.019 9
18 262144 4.17 4.097 9

(T - a)+ = M a x (T - a, 0).

THEOREM 3. Let T be a discrete random variable
with a finite number of values; then

E((T - IogE(2r))+) _< (Ioge)/e,

where e = 2.71828.
Applying Theorem 3 in our case and using (11) yields

E((T - log logN)+) _< (loge)/e = 0.53. (14)

PROOF. Let the values of T be ai with probability Pi,
i = 1, ..., m.

R = {ilai > 1ogE(2T)} and P = ~ Pi
i E R

E((T- l °gE(2T))+)=i~cRPi (a i - log (i~=lPJ2"))

<--- Y'iER P i (a i - - l og (j~R PJ2"i))"

The definition Zj~n (P//P) = 1, the convexity o f f (x) =
2 x, and (4) yield

P/2"J = P ~ P/2"/>_ e. 2 x'~e'''/e.
/on)ER P

Thus, since log is an increasing function, we obtain

E((T - logE(2 r))+) <_ ~, Pi(ai - log(P. 2 ~'~ p,,,,/e))
iER

= 2i~1~ Pi (ai - logP - ~j~n Pjaj/P) = - P logP.

For 0 _< P _< 1, the maximum of - P logP is (loge)/e,
where P = 1/e. Thus

E((T - logE(2T))+) _< (loge)/e. []

4.28, while log log400,000 = 4.21. The distribution is
given in Table I. The average number of extra accesses
is 0.481.

Other experiments gave similar results. In order to
show the relation between the average number of ac-
cesses and log logN, we performed searches in a sequence
of subfiles of different sizes. The results are contained in
Table II, which also contains the maximum number of
accesses in the searches.

For external search (the file resides on an external
device), interpolation search is superior to binary search
since the search time is determined by the number of
accesses. However, in internal search the computation
time of each iteration should also be considered. Com-
puter experiments conducted on the IBM 370/165
showed that interpolation search and binary search take
approximately the same time. Interpolation search is
slightly faster only for files larger than 5000 records.
However, using shift operations instead of division in
binary search or the use of Fibonaccian search results in
faster internal search methods.

After a few iterations of interpolation search, we are
quite close to the required record. When the difference
between the indices of two successive iterations is small,
it may be advantageous to switch to sequential search
and save computation time.

Received November 1975; revised June 1977

References
1. Doob, J.L. Stochastic Processes, Wiley, New York, 1967.
2. Feller, W. An Introduction to Probability Theory and Its
Applications, Vol. 1. Wiley, New York, third ed., 1968.
3. Ghosh, S.P., and Senko, M.E. File organization: On the selection
of random access index points for sequential files. JA CM 16 (1969),
569-579.
4. Karlin, S., and Taylor, H.M. A First Course in Stochastic
Processes. Academic Press, New York, second ed., 1975.
5. Knuth, D.E. The Art of Computer Programming, Vol. 3: Sorting
and Searching. Addison-Wesley, Reading, Mass., 1973, pp. 406422.
6. Perl, Y., and Reingold, E.M. Understanding and complexity of
interpolation Search. Infrm. Proc. Letters, 6 (1977), 219-222.
7. Peterson, W.W. Addressing for random-access storage. I B M J.
Res. and Develop. 1 (1957), 131-132.
8. Yao, A.C., and Yao, F.F. The complexity of searching an
ordered random table. Proc. Seventeenth Annual Symp. Foundations
ofComptr . Sci., 1976, pp. 173-177.

4. Experimental Results

To examine the theoretical results in practice a sorted
file of 400,000 uniformly distributed random numbers
was generated. In an experiment of 4000 interpolation
searches, the average number of accesses per search was

553 Communications July 1978
of Volume 21
the ACM Number 7

