Linear Time Restricted Union/Find

Alon Itai

July 2, 2006

We consider the following restricted Union/find problem:

The universe is [0..n—1] and the unions are restricted to sets of consecutive
integers. Initially all the sets are singletons. To maintain the above condition,
a union between sets A and B, Union(A, B), is permitted only if

max{A} = min{B} — 1.

Gabow and Tarjan [1] considered a similar problem. However, they as-
sumed that the Union-tree is known in advance. Here, the order of the unions
is not known—only that the resultant sets are consecutive. We show that if
the tree is known in advance, the nodes can be renumbered so as to fit into
our framework. Since the preprocessing requires linear time, our procedure
may be used to get an alternative, and we believe simpler, proof of their
results.

Without loss of generality we identify each set with its maximal element.
Let b = loglogn. We partition [0..n — 1] into n/b micro-universes, such that
the kth micro-universe consists of [(k — 1)b.. kb — 1].

The data structure consists of two tiers. The upper one is a regular
Union/find data structure whose universe consists of the first and last el-
ement of each micro-universe (a total of 2n/b elements). The operations on
this set are macro-find and macro-union they are carried out by any efficient
Union/find algorithm that requires ma(m, N)-time for m operations on a
universe of size N. During the course of the unions, we keep track of the
largest member of each set.

The lower data structure consists of operations within a micro-universe.
Since there are n/b micro-universes we number them 0..n/b—1. The micro-
universe of an integer p is thus determined by its log n —log b most significant
bits, and its id within its micro-universe by the log b least significant bits.

Initially each micro-universe consists of b singletons. As a result of a
series of unions each micro-universe is partitioned into subsets. There may
be f = 2071 = 2leleen=1 — (Jogn)/2 such partitions. We maintain each
micro-universe as a bit vector v of length b: v[i] = 1 iff ¢ is the largest
member of its set.

We also consider v as an integer in the range 0..2° — 1, and construct
an array T of length 2°, such that T[][i] = min{j > i | v[j] = 1}, if
vfi] =v[i+ 1] =... =v[b—1] = 0 we set T[][i] = ... = T[v][b] = b. All
the [tables T[v] are prepared in advance at a preprocessing stage.(Time
Bloglogn = O(lognloglogn)).

To perform find(j) let j be the ith member of micro-universe s, i.e.,
J = bs 4+ 1. Let micro-universe s be represented by bit vector v. We first
look-up f = Tw|[i]. If f < b— 1 then return f + s *b. otherwise (f = b)
let x = macro-find(sb). Return xb + T'[w][0], where w is the bit vector of
micro-universe x.

To execute B = Union(A, B), assume that A =[l..j]and B =[j+1..r].
Let j = kb + i (for some 0 < ¢ < b), and v the bit-vector representing
micro-universe k. As result of the union ¢ is no longer the maximum member
of its set. Therefore, set the ith bit of v to 0. Call the new bit vector v’.
We now perform a find f = micro-find(v',7). If f = b then we perform
B = macro-union(A, B). Otherwise B is a subset of micro-universe k, so the
result of the union is A.

Each union requires a micro-union O(1)-time, and possibly a macro-
union, also O(1)-time.

Each find requires a micro-find O(1)-time and possibly a macro-find. In
a sequence of m finds there may be at most m macro-finds. Thus we need
O(ma(m,n/loglogn)) = O(m+n)-time (the last equality is proved in [2, p.
221]).

1 Known trees

If the tree of unions is known in advance, we may do a (depth-first) search on
the tree. In the depth first search, observe the order of the unions, i.e., scan
the children of a node v, by the order by which they were unioned with a set
containing v. Renumber the vertices according to the depth-first number.

Lemma 1.1 All unions are between sets whose depth-first number consists
of consecutive integers.

Proof: Let S be the smallest non consecutive set obtained by the Union/find
algorithm. Let v be the root of this set, i.e., S was created by Union(S7, Ss),
where v was the root of S7 and u the root of Sy, and the Union was imple-
mented by linking u to v. Because of the minimality of S, both S; and S, are
consecutive. Also, since v belonged to S; before S, was added, the children
of v which belong to S; were linked to v before w was. Thus, all vertices of
S1 have depth-first search number which is smaller than that of w.

If S were not consecutive, then there must be a vertex w ¢ S; whose
depth-first search number, dfs(w), satisfies

max dfs(v') < dfs(w) < dfs(u). (1)
O

By the order by which the depth-first search algorithm scanned the chil-
dren of v, w was linked to v before u. By the definition of S, w € 5,
contradicting (1).

So if we renumber the elements of the universe by the depth-first numbers,
the resultant Union/find problem fits into our framework. Therefore, we
can apply our algorithm. The depth-first search requires linear time. The
use of depth-first search numbers also adds O(1) time to each operation.
Thus, the resultant algorithm also requires O(n) time, just like Gabow and
Tarjan’s.

References

[1] Gabow, H., and R. E. Tarjan, A linear time algorithm for a spe-
cial case of disjoint set union, J. Computer and System Science,
30,(1985), 209-221.

[2] Tarjan, R. E., Efficiency of a good but not linear set union algo-
rithm, J. Assoc, Comput. Mach., 22 (1975), 215-225.

