
39

Cache Oblivious Search Trees via Binary Trees of Small Height

G e r t h St01t ing Broda l* R o l f Fage rbe rg* R i k o J a c o b *

A b s t r a c t

We propose a version of cache oblivious search trees
which is simpler than the previous proposal of Bender,
Demaine and Farach-Colton and has the same complex-
ity bounds, in particular, our data structure avoids the
use of weight balanced B-trees, and can be implemented
as just a single array of data elements, without the use of
pointers. The structure also improves space utilization.

For storing n elements, our proposal uses (1 + e)n
times the element size of memory, and performs searches
in worst case O(log B n) memory transfers, updates
in amortized O((log 2 n)/(eB)) memory transfers, and
range queries in worst case O(log B n + k/B) memory
transfers, where k is the size of the output.

The basic idea of our data structure is to maintain a
dynamic binary tree of height log n-l-O(1) using existing
methods, embed this tree in a static binary tree, which
in turn is embedded in an array in a cache oblivious
fashion, using the van Emde Boas layout of Prokop.

We also investigate the practicality of cache oblivi-
ousness in the area of search trees, by providing an em-
pirical comparison of different methods for laying out a
search tree in memory.

1 I n t r o d u c t i o n

Modern computers contain a hierarchy of memory lev-
els, with each level acting as a cache for the next. Typi-
cal components of the memory hierarchy are: registers,
level 1 cache, level 2 cache, main memory, and disk.
The time for accessing a level in the memory hierarchy
increases from one cycle for registers and level 1 cache
to figures around 10, 100, and 100,000 cycles for level
2 cache, main memory, and disk, respectively [13, p.
471], making the cost of a memory access depend highly
on what is the current lowest memory level containing
the element accessed. The evolution in CPU speed and
memory access time indicates that these differences are

---"-¢m~CS (Basic Research in Computer Science, www.briv~.dk,
funded by the Danish National Research Foundation), De-
partment of Computer Science, University of Aarhus,
Ny Munkegade, DK-8000 ~rhus C, Denmark. E-mail:
{gerth,rolf,rjaeob}@bries.dk. Partially supported by the
FET part of the IST Programme of the EU under contract
number IST-1999-14186 (ALCOM-FT).

likely to increase in the future [13, pp. 7 and 429].
As a consequence, the memory access pattern of an

algorithm has become a key component in determining
its running time in practice. Since classic asymptotical
analysis of algorithms in the RAM model is unable to
capture this, a number of more elaborate models for
analysis have been proposed. The most widely used of
these is the I /O model of Aggarwal and Vitter [1], which
assumes a memory hierarchy containing two levels, the
lower level having size M and the transfer between the
two levels taking place in blocks of B elements. The
cost of the computation in the I /O model is the number
of blocks transferred. This model is adequate when
the memory transfer between two levels of the memory
hierarchy dominates the running time, which is often the
case when the size of the data significantly exceeds the
size of main memory, as the access time is very large for
disks compared to the remaining levels of the memory
hierarchy.

Recently, the concept of cache oblivious algorithms
has been introduced by Frigo et al. [12]. In essence,
this designates algorithms optimized in the I /O model,
except that one optimizes to a block si~e B and a
memory size M which are unknown. This seemingly
simple change has significant consequences: since the
analysis holds for any block and memory size, it holds
for all levels of the memory hierarchy. In other words,
by optimizing an algorithm to one unknown level of
the memory hierarchy, it is optimized to each level
automatically. Furthermore, the characteristics of the
memory hierarchy do not need to be known, and do
not need to be hardwired into the algorithm for the
analysis to hold. This increases the portability of
implementations of the algorithm, which is important
in many situations, including production of software
libraries and code delivered over the web. For further
details on the concept of cache obliviousness, see [12].

Frigo et al. [12] present optimal cache oblivious al-
gorithms for matrix transposition, FFT, and sorting.
Bender et al. [5], give a proposal for cache oblivious
search trees with search cost matching that of standard
(cache aware) B-trees [4]. While most of the results
in [5, 12] are of theoretical nature, [12] contains some
preliminary empirical investigations indicating the com-
petitiveness of cache oblivious algorithms. The authors

40

declare the determination of the range of practicality
of cache oblivious algorithms an important avenue for
future research.

In this paper, we study further the subject of cache
oblivious search trees. In the first part, we propose a
simplified version of the cache oblivious search trees
from [5], achieving the same complexity bounds. In
particular, our data structure avoids the use of weight
balanced B-trees of Arge and Vitter [3], and it can be
implemented in a single array of data elements without
the use of pointers. Our structure also improves space
utilization, implying that for given n, a larger fraction
of the structure can reside in lower levels of the mem-
ory hierarchy. The lack of pointers also makes more
elements fit in a block, thereby increasing the parame-
ter B. These effects tend to decrease running time in
practice. For storing n elements, our data structure uses
(1 T ~)n times the element size of memory. Searches are
performed in worst case O(log B n) memory transfers,
updates in amortized O((log 2 n)/(eB)) memory trans-
fers, and range queries in worst case O(log B n + k /B)
memory transfers, where k is the size of the output.
This matches the asymptotic complexities of [5]. We
note that as in [5], the amortized complexity of updates
can be lowered by the technique of substituting leaves
with pointers to buckets each containing O(logn) ele-
ments and maintaining the size bound of the buckets by
splitting (merging) overflowing (underflowing) buckets.
The price to pay is that ranges cannot be reported in
the optimal number O(k/B) of memory transfers, since
the buckets can reside in arbitrary positions in memory.

The basic idea of our data structure is to maintain
a dynamic binary tree of height logn + O(1) using
existing methods [2, 14], embed this tree in a static
binary tree, which in turn is embedded in an array
in a cache oblivious fashion, using the van Emde Boas
layout [5, 19, 22]. The static structures are maintained
by global rebuilding, i.e. they are rebuilt each time the
dynamic tree has doub]ed or halved in size.

In the last part of this paper, we try to assess
more systematically the impact of the memory layout
of search trees by comparing experimentally the effi-
ciency of the cache-oblivious van Emde Boas layout with
a cache-aware layout based on multiway trees, and with
classical layouts such as Breath First Search (BFS),
Depth First Search (DFS), and inorder. Our results
indicate that the nice theoretical properties of cache
oblivious search trees actually do carry over into prac-
tice. We also implement our proposal, and confirm its
practicality.

1.1 R e l a t e d work . One technique used by our data
structure is a cache oblivious layout of static binary

search trees permitting searches in the asymptotically
optimal number of memory transfers. This layout, the
van Erode Boas layout, was proposed by Prokop [19,
Section 10.2], and is related to a data structure of
van Emde Boas [21, 22].

Another technique used is the maintenance of bi-
nary search trees of height logn + O(1) using local re-
buildings of subtrees. The small height of the tree allows
it to be embedded in a perfect binary tree (a tree with
2 k 1 internal nodes and optimal height) which has only
a constant factor more nodes. Techniques for maintain-
ing small height in binary trees were proposed by Ander-
sson and Lai [2], who gave an algorithm for maintaining
height [log(n + 1)] + 1 using amortized O(log 2 n) work
per update. By viewing the tree as a linear list, this
problem can be seen to be equivalent to the problem of
maintaining n elements in sorted order in an array of
length O(n), using even redistribution of the elements
in a section of the array as the reorganization primitive
during insertions and deletions of elements. In this for-
mulation, a similar solution had previously been given
by Itai et al. [14], also using amortized O(log 2 n) work
per update. [11 [9], a matching fl(log 2 n) lower bound
for algorithms using this primitive was given.

Both the van Emde Boas layout and the technique
of Itai et al. were used in the previous proposal for
cache oblivious search trees [5]. The difficulty of this
proposal originates mainly from the need to change
the van Emde Boas layout during updates, which in
turn necessitates the use of the weight balanced B-trees
of Arge and Vitter [3]. By managing to use a static
van Emde Boas layout (except for occasional global
rebuildings of the entire structure), we avoid the use
of weight balanced B-trees, and arrive at a significantly
simpler structure.

Another improvement in our da ta structure is to
avoid the use of pointers. The term implicit is often used
for pointer-free implementations of trees and other data
structures which are normally pointer based. One early
example is the heap of Williams [23]. There is a large
body of work dealing with implicit da ta structures, see
e.g. [7, 11, 18] and the references therein. In tha t work,
the term implicit is often defined as using only space for
the n elements stored, plus O(1) additional space. In
the present paper, we will abuse the terminology a little,
taking implicit to mean a structure stored entirely in an
array of elements of length O(n).

We note that independently, a data structure very
similar to ours has been proposed by Bender et al. [6].
Essentially, their proposal is leaf-oriented, where ours is
node-oriented. The leaf-oriented version allows an easy
implementation of optimal scanning from any given lo-
cation (the node-oriented version needs successor point-

41

ers for this), whereas the node-oriented version allows
an implicit implementation, with the associated increase
in B and decrease in memory usage.

The impact of different memory layouts for data
structures has been studied before in different contexts.
In connection with matrices, significant speedups can
be achieved by using layouts optimized for the memory
hieraxchy--see e.g. the paper by Chatterjee et al. [8] and
the references it contains. LaMarca and Ladner consider
the question in connection with heaps [16]. Among
other things, they repeat an experiment performed by
Jones [15] ten years earlier, and demonstrate that due
to the increased gaps in access time between levels in
the memory hierarchy, the d-axy heap has increased
competitiveness relative to the pointer-based priority
queues. For search trees, B-trees are the standard way
to implement trees optimized for the memory hierarchy.
In the I/O-model, they use the worst case optimal
number of memory transfers for searches. For external
memory, they axe the structure of choice, and are
widely used for storing data base indexes. Also at the
cache level, their memory optimality makes them very
competitive to other search trees [17, p. 127].

Recently, Rahman and Raman [20] made an em-
pirical study of the performance of various search tree
implementations, with focus on showing the significance
of also minimizing translation look-aside buffer (TLB)
misses. Based on exponential search trees, they im-
plemented a dynamization of the van Emde Boas lay-
out supporting searches and updates in O(logB(n) +
log l a t h) memory transfers. They compared it ex-
perimentally to standard B-trees and three-level cache
aware trees, and reported that the cache oblivious trees
were better than standard B-trees but worse than the
cache aware structures.

1.2 P r e l i m i n a r i e s . As usual when discussing search
trees, a tree is rooted and ordered. The depth d(v) of a
node v in a tree T is the number of nodes on the simple
path from the node to the root. The height h(T) of T
is the maximum depth of a node in T, and the size ITt
of T is the number of nodes in T. For a node v in a
tree, we let Tv denote the subtree rooted at v, i.e. the
subtree consisting of v and all its descendants, and we
let the height h(v) of v be the height of T~. A complete
tree T is a tree with 2 h(T) 1 nodes.

A search tree will denote a tree where all nodes store
an element from some totally ordered universe, and
where all elements stored in the left and right subtrees
of a node v are respectively smaller than and larger than
the element at v. We say that a tree TI can be embedded
in another tree T2, if T1 can be obtained from T2 by
pruning subtrees. In Figure 1 is shown the embedding

Figure 1: The embedding of a search tree with height 4 and
size 10 in a complete tree with height 5

of a search tree of size 10 in a complete tree of height 5.

2 M e m o r y L a y o u t s o f S t a t i c T r e e s

In this section we discuss four memory layouts for static
trees: DFS, inorder, BFS, and van Erode Boas layouts.
We assume that each node is represented by a node
record and that all node records for a tree are stored
in one array. We distinguish between pointer based and
implicit layouts. In pointer based layouts the navigation
between a node and its children is done via pointers
stored in the node records. In implicit layouts no
pointers are stored; the navigation is based solely on
address arithmetic. Whereas all layouts have pointer
based versions, implicit versions are only possible for
layouts where the address computation is feasible. In
this paper we will only consider implicit layouts of
complete trees. A complete tree of size n is stored in an
array of n node records.

D F S l ayou t The nodes of T axe stored in the order
they are visited by a left-to-right depth first traver-
sal of T (i.e. a preorder traversal).

I n o r d e r l ayou t The nodes of T are stored in the
order that they are visited by a left-to-right inorder
traversal of T.

B F S l a y o u t The nodes of T axe stored in the order
they are visited by a left-to-right breath first traver-
sal of T.

van E r o d e Boas l a y o u t The layout is defined recur-
sively: A tree with only one node is a single node
record. If a tree T has two or more nodes, let
Ha -- [h(T)/2], let To be the tree consisting of
all nodes in T with depth at most H0, and let
T1 , . . . ,Tk be the subtrees of T rooted at nodes
with depth H0 -t- 1, numbered from left to right.
We will denote To the top tree and T 1 , . . . , Tk the
bottom trees of the recursion. The van Emde Boas
layout of T consists of the van Emde Boas layout
of To followed by the van Erode Boas layouts of
T1, . . . , Tk.

Figure 2 gives the implicit DFS, inorder, BFS, and van
Emde Boas layouts for a complete tree with height four.

We now discuss how to calculate the position of the
children of a node v at position i in the implicit layouts.

42

1 8

J ~ f \ 7 \ f \
3 6 10 13 2 6 10 14

1 \ I \ I \ / \ I \ I \ 1 \ I \
4 5 'r s 11 1~' 14 15 1 :3 ~ T 9 H 13 is

DFS inorder

1 1

f \ 7 \ f \ / ~
'~ 5 6 7 4 7 10 13

/ \ / \ / \ / \ / \ / \ / \ / \
8 9 10 11 12 13 14 15 5 6 S 9 11 12 14 15

BFS van Emde Boas

Figure 2: The DFS, inorder, BFS, and van Erode Boas
layouts for a complete tree with height 4. Numbers designate
positions in the array of node records

For the BFS layout, the children are at position 2i and
2i+ 1--a fact exploited already in the 1960s in the design
of the implicit binary heap [23]. For the DFS layout, the
two children are at positions i + 1 and i + 2 h(~) 1, and
in the inorder layout the two children are at positions
i 2h(~) 2 a n d i + 2 h0'} 2

For the implicit van Emde Boas layout the compu-
tations are more involved. Our solution is based on the
fact tha t if we for a node in the tree unfold the recursion
in the van Emde Boas layout until this node is the root
of a bottom tree, then the unfolding will be the same
for all nodes of the same depth. In a precomputed table
of size O(log n), we for each depth d store the size Bid]
of this bot tom tree, the size T[d] of the corresponding
top tree, and the depth D[d] of the root of the corre-
sponding top tree. When laying out a static tree, we
build this table in O(logn) time by a straightforward
recursive algorithm.

During a search from the root, we keep track of
the position i in a BFS layout of the current node v
of depth d. We also store the position Pos[j] in the
van Erode Boas layout of the node passed at depth j
for j < d during the current search. As the bits of the
BFS number i represents the left and right turns made
during ihe search, the log(T[d] + 1) least significant bits
of i gives the index of the bottom tree with v as root
among all the bottom trees of the corresponding top
tree. Since T[d] is of the form 2 k 1, these bits can be
found as i AND T[~. It follows that for d > 1, we can
calculate the position Pos M of v by the expression

Pos[~ = Pos[D[a~] + T[d] + (i AND T[d]). Bid] .

At the root, we have i = 1, d ---- 1, and Pos[1] = 1.
Navigating from a node to a child is done by first
calculating the new BFS position from the old, and then
finding the value of the expression above.

The worst case number of memory transfers during
a top down traversal of a path using the above layout

schemes is as follows, assuming each block stores B
nodes. With the BFS layout, the topmost llog(B + 1)j
levels of the tree will be contained in at most two blocks,
whereas each of the following blocks read only contains
one node from the path. The total number of memory
transfers is therefore O(log(n/B)). For the DFS and
inorder layouts, we get the same worst case bound when
following the path to the rightmost leaf, since the first
[log(n + 1)] ~log B] nodes have distance at least B in
memory, whereas the las t / log(B + 1)J nodes are stored
in at most two blocks. As Prokop [19, Section 10.2]
observed, in the van Emde Boas layout there are at
most O(log B n) memory transfers. Note that only the
van Erode Boas layout has the asymptotically optimal
bound achieved by B-trees [4].

We note that DFS, inorder, BFS, and van Emde
Boas layouts all support efficient range queries (i.e. the
reporting of all elements with keys within a given query
interval), by the usual recursive inorder traversal of the
relevant part of the tree, starting at the root.

We argue below that the number of memory trans-
fers for a range query in each of the four layouts equals
the number of memory transfers for two searches plus
O(k/B), where k is the number of elements reported.
If a range reporting query visits a node that is not con-
talned in one of the search paths to the endpoints of the
query interval, then all elements in the subtree rooted
at the node will be reported. As a subtree of height
[log(B + 1)] stores between B and 2B 1 elements, at
most k / B nodes with height larger than [log(B + 1)]
are visited which are not on the search paths to the
two endpoints. Since subtrees are stored contiguously
for both the inorder and DFS layouts, a subtree of
height [log(B + 1)] is stored in at most three blocks.
The claimed bound follows for these layouts. For the
van Emde Boas layout, consider a subtree T of height
I'log(B + 1)]. There exists a level in the recursive lay-
out where the topmost levels of T will be stored in a
recursive top tree and the remaining levels of T will be
stored in a contiguous sequence of bot tom trees. Since
the top tree and each bottom tree has size less than
2B 1 and the bottom trees are stored contiguously
in memory, the bound for range reportings in the van
Emde Boas layout follows.

For the BFS layout, we prove the bound under
the assumption that the memory size is ~ (B l o g B) .
Observe tha t the inorder traversal of the relevant nodes
consists of a left-to-right scan of each level of the
tree. Since each level is stored contiguously in memory,
the bound follows under the assumption above, as the
memory can hold one block for each of the lowest
[log(B + 1)] levels simultaneously.

43

3 S e a r c h T r e e s o f S m a l l H e i g h t

In the previous section, we considered how to lay out
a s tat ic complete tree in memory. In this section, we
describe how the static layouts can be used to store
dynamic balanced trees. We first describe an insertions
only scheme and later show how this scheme can be
extended to handle deletions and to achieve space usage
a rb i t ra ry close to optimal.

Our approach is to embed a dynamic t ree in a
stat ic complete tree by maintaining a height bound
of l ogn + O(1) for the dynamic tree, where n is its
current size. It follows tha t the dynamic tree can be
embedded in a complete tree of height log n + O(1) and
size O(n). Whenever n has doubled, we create a new
stat ic tree. The following subsections are devoted to
t ree rebalancing schemes achieving height log n + O(1).

Our scheme is very similar to the t ree balancing
scheme of Andersson [2] and to the scheme of Itai
et al. [14] for support ing insertions into the middle
of a file. Bender et al. [5] used a similar scheme in
their cache oblivious search trees, bu t used it to solve
the "packed-memory problem", ra the r t han direct ly to
main ta in balance in a tree. Note tha t the embedding
of a dynamic tree in a complete t ree implies tha t we
cannot use rebalancing schemes which axe based on
rotat ions, or, more generally, schemes allowing subtrees
to be moved by just changing the poin ter to the root of
the subtree, as e.g. is the case in the rebalancing scheme
of Fagerberg [10] achieving height [log n + o(1)].

3 .1 I n s e r t i o n s . Let T denote the dynamic binary
search tree, and let H be the upper bound on h(T) we
want to guarantee, i.e. the height we will use for the
complete tree in which T is embedded. For a node v in
T , we let s(v) = 2 H d(v)+l 1 deno te the size of the
subtree rooted at v in the complete tree. We define the
density of v to be the ratio p(v) = ITvl/s(v), and define
a sequence of evenly dis t r ibuted density thresholds 0 <
V l < r 2 < ' ' ' < T H = l b y r i = r l + (i 1)A for
1 < i < H and A = (1 ~-I)/(H 1). We mainta in the
invariant a t the root r of T tha t p(r) g r l . This implies
the cons t ra in t n/(2 H 1) < r l , i.e. H >_ log(n/~-i + 1).
If for some N the current complete t ree should be valid
for all n < N , we let H = [l o g (N / ~ - l + l)] . In the
following we assume ~1 > 1/2 and N = O(n), such tha t
H = l o g n + O(1).

T h e insertion of a new element into a t ree T of
n < N 1 elements proceeds as follows:

1. We locate the position in T of the new node v via
a top down search, and create v.

2. I fd (v) = H + I , we rebalance T as follows. First, we
in a bo t tom-up fashion find the nearest ancestor w
of v with p(w) < rd(~). This happens at the root

at the latest. We need not s tore the sizes of nodes
explicitly, as we can compute ITwl by a t raversal of
Tw. Since the ancestors of v are examined bo t tom-
up one by one, we have already computed the size
of one child when examining a node, and it suffices
to traverse the subtree rooted at the other child
in order to compute the total size. After having
located w, we rebalance T~, by evenly dis t r ibut ing
the elements in T,~ as follows. We first create a
sorted ar ray of all elements in T,o by an inorder
traversal of T~. T h e [tT, o l /2] th element becomes
the element s tored at w, the smallest [(1%ol 1)/2J
elements are recursively dis t r ibuted in the left sub-
t ree of w and the largest [(ITwl 1) /2] elements
are recursively dis t r ibuted in the right subtree of w.

In the redis t r ibut ion step, the use of an addi t ional
ar ray can be avoided by compact ing the elements into
the r ightmost end of the complete subtree roo ted at v
by a right-to-left inorder traversal, and then insert ing
the elements at the positions described above in a left-
to-right inorder traversal.

LEMMA 3.1. A redistribution at v implies
[p(v).s(w)J 1 < IT~I < [p(v).s(w)] for all
descendants w of v.

Proof. We prove the bounds by induct ion on the dep th
of w. T h e bounds hold for w = v, since by deft-
nit ion IT~I = p(v) . s(v). Let u be a descendant of
v, let w and w' be the children of u, and assume
the bounds hold for u. Since p(v) _< 1, we have
IT.I _< [p(v)-s(u)] -- [p(v). (I + s(w) + s(w'))] _<
1 + rp(v), sCw)] + [o(v). s(w,)]. From sCw) = s(w')
we get [(IT~I 1)/2] < [p (v) - s (w)] . T h e d is t r ibut ion
algori thm guarantees t h a t [T~[< [(IT,,[1) /2] , imply-
ing [Tw[<_ [p(v)- s(w)] .

For the lower bound we have tT~I _> /p(v) • s(u)J
1 _> [p(v). + 1 _> 1) +
(kp(v). s(w')J I) + I. Because s(w) = s(w'), w e get
[(IT~I 1)/2J > ip (v) , s(~o)J 1. Th e dis t r ibut ion al-
gor i thmguarA.ntees that ITs[> [([T~ I 1)/2J, implying
IT,,,I _> tp(v)- s(w)J 1. 13

THEOREM 3.1. Insertions require amortized
O((log 2 n) / (1 T1)) time and amortized O(log B n +
(log2 n)/(B(1

Proof. Consider a redis t r ibut ion at a node v, caused by
an insertion I~elow v. By the rebalancing algori thm,
we for a child w of v have [T~I > z a (~) ' s (w) , as
the redistr ibut ion otherwise would have taken place
at w. Immedia te ly after the last t ime there was a
redistr ibution a t v or at an ancestor of v, we by
Lem m a 3.1 had IT,~l < zd(~), s(w) + 1. I t follows

44

that the number of insertions below w since the last
redis t r ibut ion at v or an ancestor of v is at least Td(w) •
s(w) (Td(~).s(w)÷I) = A. s (w) 1. T h e redis t r ibut ion
at v takes tinm O(s(v)), which can be covered by
charging O (s (v) / m a x (l , A.s(w) 1}) = O (1 / A) to each
of the ment ioned insert ions below w. Since each crea ted
node has at most H ancestors and hence is charged at
most H times, the amor t ized redis t r ibut ion t ime for an
insertion is O (H / A) ---- O(H2/(1 TI)).

Since a top-down search requires O(log 8 N) mem-
ory transfers and the redis t r ibut ion is done solely by in-
order traversals requir ing O(max(1 , s (v) /B)) m em o ry
transfers, the bound on memory t ransfers follows. []

Example. Assume tha t T1 = 0.9. This implies tha t
we increase H by one whenever an insert ion causes n >
v1(2 H 1). Since increasing H by one doubles the size
of the comple te tree, this implies tha t we always have
density a t least 0.45, i.e. the a r ray used for the layout
has size a t mos t 1/0.45n ---- 2.2n. Note t ha t the space
usage in the worst case is a t least 2n, independen t ly
of the choice of vl. Since the size of the comple te t ree
doubles each t ime H is increased, the global rebuilding
only increases the amor t ized upda te cost by a cons tan t
addit ive term. By L e m m a 3.1, all nodes v wi th dep th
H 2 in the complete tree, i.e. wi th s(v) = 7, are present
in T, since [0.45- 7J 1 > 0. T h e number of m em o ry
transfers for range searches is therefore guaran teed to
be asymptot ica l ly optimal.

3 .2 D e l e t i o n s . One s t andard approach to add dele-
t ions is to s imply mark elements as deleted, removing
marked nodes by a global rebuilding when, say, half of
the elements have been deleted. T h e disadvantage of
this scheme is t ha t locally, elements can end up being
sparsely d is t r ibu ted in memory, such t h a t no bo u n d on
the number of m e m o r y transfers for a range search can
be guaranteed.

To suppor t range queries with a worst-case guaran-
tee on the number of memory transfers, the t ree T must
be rebalanced af ter deletions. The idea is similar to the
scheme used for insertions, except t ha t we now also have
lower bound dens i ty thresholds 0 _< ~,~ < . . . < "Y2 <
")'1 < rz, where "Yi : 71 (i 1)A ~ for 1 < i < H and
A' = ('yl "tH)/(H 1). For the root r o f T we require
the invariant "/1 _< p(r) <_ TI.

Delet ion is done as described below. Insert ions are
handled as descr ibed in Section 3.1, except t ha t S tep 2
is replaced by S tep 2 below.

1. First , we locate the node v in T conta in ing the
element e to be deleted, via a top down search
in T . If v is not a leaf and v has a r ight subtree, we
then locate the node v ~ containing the immedia te

successor to e (the node reached by following
left children in the right subt ree of v), swap the
elements at v and v' , and let v = v'. We rep.eat
this until v is a leaf. I f v is not a l e a f b u t v has
no right subtree, we symmetr ica l ly swap v with the
node containing the predecessor of e. Finally, we
delete the leaf v f rom T.

2. We rebalance the t ree by rebuilding the subt ree
rooted at the lowest ancestor w of v satisfying
"~d¢~) -- p(w) <_ rdC~).

THEOREM 3.2. Insertions and deletions require amor-
tized O((log2n)/a) time and amortized O (l o g B n +
(log 2 memo t sfers, = min{ l
"YH, 1 T1}.

Proof. Consider a redis t r ibut ion at a node v. If t he
redistr ibut ion is caused by an u p d a t e below a child w
o f v leading to]Tw] > vd(~)- s(w), t hen t h e a rgumen t is
exact ly as in T h e o r e m 3.1. Otherwise the red is t r ibu t ion
is caused by an u p d a t e below a child w of v leading to
[T~[< 7d(w)-s(w). Immedia te ly af ter the last t ime there
was a redis t r ibut ion at v or a t an ances tor of v, we by
Lem m a 3.1 had tT~[> 7d(~) " s(w) 2. I t follows t h a t
the number of delet ions since the last rebui ld a t v or an
ancestor of v is at least (Td(~)" s(w) 2) 7d(~)" S(w) =
A ' . s(w) 2. By averaging the redis t r ibut ion t ime over
the deletions, the amor t ized redis t r ibut ion t ime of a
deletion is O (H / A ') = 0(H2/(~/1 7H)) . [:2

Example. Assume ~-1 -- 0.9, 71 -- 0.35, and ~'H = 0.3.
We increase H by one whenever an inser t ion causes
n > "rl(2 g 1) and decrease H by one whenever a
deletion causes n < -)'1(2 H 1). W i t h the pa rame te r s
above, we have t h a t when H is changed, a t least (7"1/2
"yl)n = 0.1n upda tes must be per fo rmed before H is
changed again, so the global rebui lding only increases
the amort ized u p d a t e cost by a cons tan t addi t ive te rm.
T h e ar ray used for the layout has size a t mos t n/'yl =
2.9n. By L e m m a 3.1, all nodes with d e p t h H 2 (and
hence size 7) in the comple te t ree are present in T , as
L'YH" 7J 1 > 0. T h e number of m e m o r y t ransfers for
range searches is therefore asymptot ica l ly opt imal .

3 .3 I m p r o v e d d e n s i t i e s . T h e rebalancing schemes
considered in the previous section require in the worst
case space at least 2n, due to the occasional doubl ing
of the array. In this section, we describe how to achieve
space (1 + e)n, for any e > 0. As a consequence, we
achieve space usage close to opt imal and reduce the
number of m e m o r y t ransfers for range searches.

Our solut ion is the following. Let N be the space we
are willing to use (not necessarily a power of two), and
T1 and V1 densi ty thresholds such tha t ")'1 _< n / N <_ rl.

45

Whenever the densi ty threshold becomes violated, a
new N must be chosen. If N = 2 ~ 1 for some k, then
we can apply the previous schemes directly. Otherwise,
assume N = 2 bl -I-2 b2 q-- - - 2 b~, where b l , . . . , bk are non-
negative integers satisfying bi > b~+l, i.e. the bi values
are the posit ions of ls in the binary representa t ion of N.
For each bi, we will have a tree Fi consisting of a
root ri wi th no left child and a right subtree Ci which
is a complete t ree of size 2 bl 1. The elements will
be dis t r ibuted among F1, . • . , Fk such tha t all elements
stored in Fi are smaller t han the elements in Fi+l . If
F~ stores a t least one element, the minimum element in
Fi is s tored at ri and the remaining elements are s tored
in a t ree T~ which is embedded in Ci. The trees are laid
out in memory in the order r l , r2 , . • •, r~, C1, C 2 , . . . , Ck,
where each Ci is laid out using the van Emd e Boas
layout.

A search for an element e proceeds by examining
the elements at r l , . . . , r ~ in increasing order until e is
found or the subtree Ti is located tha t must contain e,
i.e. e is larger t han the element at r , and smaller t han
the element a t r i+ l . In the la t ter case, we per form a
top-down search on Ti. T h e to ta l t ime for a search is
O(i + b,) = O (l o g N) using O(i /B + logB(2 b' 1)) =
O (t o g , N) I /Os.

For the rebalancing, we view F 1 , . . . ,Fk as being
merged into one big t ree F , where all leafs have the
same dep th and all internal nodes are binary, except
for the nodes on the r ightmost pa th which m a y have
degree three. T h e t ree Ci+i is considered a child of the
r ightmost node ui in Ci with h(ui) = bi+l + 1, and with
the element of r i+ l being a second element of ui. Note
that the elements of F satisfy inorder. For a node v
in F , we define s(v) to be the subtree T , of F plus the
number of nodes of degree three, i.e. the number of slots
to s tore elements in T~, and tT~[the number of elements
stored in T~. As in Section 3.1 and 3.2, we define p(v) =
[T~,[/s(v). T h e rebalancing is done as in Sections 3.1
and 3.2, except t ha t if we have to redis t r ibute the
content of v, we will explicitly ensure tha t the inequali ty
Lp(v). s(w)J 1 _< [T~,[< [p(v) . s(w)l from Lem m a 3.1
is satisfied for all descendants w of v. T h a t this is
possible follows from the inequalities below, where u
is a descendant of v and w l , . . . , w~ are the children of
u for k = 2 or 3:

= (,,: , + so,-,,:>)l
t:

S k 1 -I- Ei--1 r l o (v) - 8 (w i) l ,

s(u)j 1 _>
k

Because L e m m a 3.1 still holds, Theorem 3.2 also

holds. The only change in the analysis of Theo rem 3.2
is tha t for a node v on the r ightmost pa th wi th a
child w, we now have s(v) < 4s(w), i.e. the bound on
the amortized t ime and number of memory transfers
increases by a factor two.

Example. Let E > 0 be an a rb i t r a ry small constant such
that when N is chosen, N : (1 + ~)n. Valid densi ty
thresholds can then be 7"1 ---- (5 + 1)/2, 3'1 = (3~ 1)/2,
and 7H = 2J 1, where ~ -- 1/(1 + 6) is the densi ty
immediately af ter having chosen N. After choosing
an N, at least g (1 6) /2 = O(N/e) updates must
be performed before a new N is chosen. Hence, the
amortized cost of the global rebuildings is O(1 /c) t ime
and O(1/(eB)) memory transfers per update. The
worst case space usage is hi"~1 = n(1 + ~)1(1 ~/2) =-

+

4 Experiments
in this section, we describe our empirical investigations
of methods for laying out a search tree in memory.

We implemented the four implicit memory layouts
discussed in Sect ion 2: DFS, inorder, BFS, and van
Emde Boas. We also implemented a cache aware
implicit layout based on a d-ary version of the BFS,
where d is chosen such t h a t the size of a node equals
a cache line. Our exper iments thus compare layouts
which in term of opt imiza t ion for the memory hierarchy
cover three categories: not optimized, cache oblivious,
and cache aware.

We also implemented poin ter based versions of the
layouts, where each node s tored in the ar ray contains
the indices of its children. Compared to implicit layouts,
pointer based layouts have lower instruct ion count for
navigation, higher total m e m o r y usage, and lower num-
ber of nodes per m em o ry block. We implemented one
further pointer based layout, namely the layout which
arises when building a b inary t ree by random insertions,
placing nodes in the a r ray in order of allocation. We call
this the random insertion layout .

Our experiments fall in two parts: one dealing wi th
searches in stat ic layouts, and one dealing with the dy-
namizat ion method from Sect ion 3.1. In Section 4.2, we
repor t on the results. We tes ted several combinat ions
and variations of the m em o ry layouts and algorithms,
bu t for lack of space, we only describe a subset repre-
sentative of our general observations.

4.1 M e t h o d o l o g y . T h e compute r used to perform
the experiments had two 1 G H z Pent ium III (Copper-
mine) processors, 256 K B of cache, and 1 G B of RAM.
The programs were wr i t ten in C, compiled by the GNU
gcc compiler version 2.95.2.1 with full opt imizat ion (op-

46

tion -03). The operating system was Linux with kernel
versio n 2.4.3-12smp.

The timing was based on wall clock time. For
the search based experiments, we used the ge t£ t imer
and s e t i t i m e r system calls to interrupt the program
every 10 seconds, giving us a relative timing precision
of roughly 0.001 for most experiments.

The elements were 32 bit in size, as was each of the
two pointers per node used in the pointer based layouts.
We only report on integer keys---our results with float-
ing point keys did differ (probably due in parts to the
different costs of comparisons), but not significantly. We
generated uniformly random integers by casting dou-
ble precision floats returned by drand48() . We only
searched for present keys.

Where possible, the programs shared source code,
in order to minimize coding inconsistencies. We also
tried to avoid artifacts from the compilation process by
e.g. iulining function calls ourselves.

We performed experiments for n = 2 k, 2 k 1, 2 k + 1,
and 0.7 • 2 k for a range of k. For n not a power of two,
the assumption from Section 2 of dealing with complete
trees is not fulfilled. We adapted to this situation by
cutting the tree at the boundary of the array: If the
address of both children of node v is outside the array,
i.e. larger than n, then v is a leaf, if only the right child
is outside, it is a degree one node. This works because
the addresses of children are higher than that of their
parent (which does not hold for the inorder layout, but
there, we simply used binary search).

Due to the small difference between the 1 GB RAM
size and 2 GB address space, experiments beyond main
memory required a different setup. This we achieved by
booting the machine such tha t only 32 MB of RAM was
available. However, the bulk of our experiments covered
trees contained in cache and RAM.

The source code of the programs, our scripts and
tools, and the data we present here are available online
under f t p : / / f t p , b r i c s , dk/RS/01~36~Experiments/ .

4.2 Resu l t s . For all graphs, the y-axis is logarith-
mic, and depicts the average time for one search for
(or insertion of) a randomly chosen key, measured in
seconds. All the x-axes depicts log 2 n, where n is the
number of keys stored in the search tree. Note that this
translates to different memory usage for implicit and
pointer based layouts.

Figure 3 compares the time for random searches in
pointer based layouts. Pointer based layouts all have
the same instruction count per level during a search.
This is reflected in the range n ---- 21° , . . . , 214 (for which
the tree fits entirely in cache), where the three layouts
of optimal height behave identically, while the random

insertion layout (which has larger average height) is
worse. As n gets bigger, the differences in memory
access pattern starts showing. For random searches, we
can expect the top levels of the trees to reside in cache.
For the remaining levels, a cache fault should happen at
every level for the BFS layout, approximately at every
second level for the DFS layout (most nodes reside in the
same cache line as their left clfild), and every O(log B n)
levels for the van Emde Boas layout. This analysis is
consistent with the graphs.

Figure 4 compares the time for random searches in
implicit layouts. For sizes up to cache size (n = 216), it
appears that the higher instruction count for navigating
in an implicit layout dominates the running times: most
graphs are slightly higher than corresponding graphs
in Figure 3, and the van Emde Boas layout (most
complicated address arithmetic) is the slowest while the
BFS layout (simplest address arithmetic) is fastest. For
larger n, the memory access pattern shows its effect.
The high arity layouts (d = 8 and 16) are the fastest,
as expected--they are cache-optimized and have simple
address arithmetic. The van Erode Boas layout is quite
competitive, eventually beating BFS and only being
50% slower than the cache aware layouts.

The inorder layout has bad performance, probably
because no nodes in the top part of the tree share cache
lines. It is worst when n is a power of two. We believe
this as an effect of the limited associativity of the cache:
For these n, the nodes of the top of the tree are large
powers of two apart in memory, and are mapped to the
same few lines in cache.

In Figure 5, we compare the search times for the
pointer based and the implicit versions of the BFS and
the van Emde Boas layout. The aim is to see how the
effect of a smaller size and a more expensive navigation
compete against each other. For the BFS, the implicit
version wins for all sizes, indicating tha t its address
arithmetic is not slower than following pointers. This is
not the case for the van Emde Boas layout--however,
outside of cache, the implicit version wins, most likely
due to the higher .value of B resulting from the absence
of pointers.

In Figure 6, we compare the performance of the
dynamic versions of some of the da ta structures. The
inorder and the van Emde Boas layout is made semi-
dynamic by the method from Section 3.1. For the
inorder layout, the redistribution during rebalancing
can be implemented particularly simple, just by scans
of contiguous segments of the array. We use this
implementation here. The random insertion layout is
semi-dynamic by definition.

Starting with a bulk of 10,000 randomly chosen el-
ements, we insert bulks of sizes increasing by a factor

4 7

6e-06

4e-06

2e-06

I e-06

4e-07

2e-07
12

.

la ' ~ jP veb:pointer ,
bfs:polnt~ ---~---
dfs:pointer ---~---
i dn:p~l'nter i ' - e ---i f

Figure 3: Searches for pointer based
layouts

6e-06

4e-06

2ev08

le-06

4e-07

.=..=, " . .
.~ .~' "... : . ,~ ~:~ ~

,.*,..:" '~. f i (. _ ~ "
~...~' "~" ~ ~ ' "

tin:pointer:do_ins:insert i
inolde r. do i,'~ :insert ---x---

veb:do_lns:insert
2e-07 ~. ,~ i i ~ ;-'-~-'~

12 14 16 18 20 22 24 26

Figure 6: Insert t ime per element

6e-06

4e-o6

2e-06

Ie-06

4e=07

2e-07
~2

. i i I

_ ~ , l l l (" ve .b: |mpl ic l t ~

Ilia"
high016:implicit - -e - - -

, , , i . o p ~ . , m p ~ i t ; - i
14 16 10 20 22 24 26

Figure 4: Searches for implicit lay-
outs

6e-06

4e-06

2e-06

re-08

4e-07

2e-07
12

i | | i i i i

"" af.l(

g m : l ~ d n t e r . l n ~ --oXo--
v e b : s e a . ~ l - ---i-*.

, , veb: l , r~e . ; - ~ a - ;
14 16 118 m 2 2 24 26

Figure 7: Insert and Search for
implicit veb and unbalanced search
trees

6e-06

4e-06

2e-06

le-06

4e-07

2e-07
12

, i i . ~ D

J
S

j l veb:imlplic|t --+..--
~ l l m " veb:pomjer ---x---

bls:lmplicil --,z-.-
i i i i b~:p°In~r -- '~'--

14 16 18 20 22 24 26

Figure 5: Search time for pointer
based and implicit BFS and van
Emde Boas layouts

0.1

0.01

0.001

0.0001

le-05

le-06

20

i ~ | i i , i |

m "$

",/el) ---x---
m , high10~4--- . ; . -

21 22 2 3 24 25 2S 27 28 29

Figure 8: Beyond main memory

of 1.5. We time the insertion of one block and calculate
the average time for inserting one element. The amor-
tization in the bounds of the method from Section 3.1
is apparent in the instability of the graphs. In contrast,
the unbalanced pointer based search tree has a rela-
tively smooth graph. We remark that the dynamization
method of Section 3.1 seems quite competitive, eventu-
ally winning over the unbalanced pointer based tree,
which for random insertions is known to compete well
against standard rebalancing schemes for binary search
trees, such as red-black trees (see e.g. [17, p. 127]). The
inorder layout is somewhat faster than the van Emde
Boas layout, which we think is due to the simpler redis-
tribution algorithm.

In Figure 7, we compare in more detail the perfor-
mance of the random insertion layout with the implicit,
semi-dynamic van Erode Boas layout, showing the time

for random insertions as well as for random searches.
If the data structure is to be used mainly for searches
and only occasionally for updates, the cache oblivious
version is preferable already at roughly 2 is elements.
But even if updates dominate, it becomes advantageous
around 2 ~-a elements.

In Figure 8, we look at the performance of the lay-
outs as our memory requirement exceeds main memory.
As said, for this experiment we booted the machine in
such a way that only 32 MB of RAM was available.
We compare the van Emde Boas layout, the usual BFS
layout, and a 1024-ary version version of it, optimized
for the page size of the virtual memory. The keys of a
1024-ary nodes are stored in sorted order, and a node is
searched by a fixed, inlined decision tree. We measure
the time for random searches on a static tree.

Inside main memory, the BFS is best, but looses by

48

a factor of five outside. The t ree opt imized for page size
is the best outside main memory, bu t looses by a factor
of two inside. Remarkably, the van E m d e Boas layout
is on par with the best th roughout the range.

4 .3 C o n c l u s i o n . From the exper iments repor ted in
this paper , it is apparen t t ha t the effects of the m e m o r y
hierarchy in todays computers play a dominant role for
the running t ime of t ree search algorithms, a l ready for
sizes of trees welt within main memory.

It also appears tha t in the area of search trees, the
nice theoret ical propert ies of cache obliviousness seems
to ca r ry over into practice: in our exper iments , the van
E m d e Boas layout was compet i t ive with cache aware
s t ructures , was be t te r t han s t ruc tures not opt imized for
m e m o r y access for all bu t the smallest n, and behaved
robus t ly over several levels of the memory hierarchy.

One fur ther observat ion is t ha t the effects f rom the
space saving and increase in fanout caused by implicit
layouts are notable.

Finally, the me thod for dynamic cache oblivious
search t ree suggested in this paper seems practical , not
only in terms of implementa t ion effort bu t also in t e rms
of running time.

References

[I] A. Aggarwal and J. S. Vitter. The input /output com~
plexity of sorting and related problems. Communica-
tions of the ACM, 31(9):1116-1127, Sept. 1988.

[2] A. Andersson and T. W. Lai. Fast updating of
well-balanced trees. In SWAT 90, £nd Scandinavian
Workshop on Algorithm Theory, volume 447 of Lecture
Notes in Computer Science, pages 111-121. Springer,
1990.

[3] L. Arge and J. S. Vitter. Optimal dynamic interval
management in external memory. In Proc. 37th Ann.
Syrup. on Foundations of Computer Science, pages
560--569. IEEE Computer Society Press, 1996.

[4] R. Bayer and E. McCreight. Organization and main-
tenance of large ordered indexes. Acts Informatica,
1:173-189, 1972.

[5] M. A. Bender, E. Demaine, and M. Farach-Colton.
Cache-oblivious B-trees. In Proc. 41st Ann. Syrup.
on Foundations of Computer Science, pages 399-409.
IEEE Computer Society Press, 2000.

[6] M. A. Bender, Z. Duan, J. lacono, and J. Wu. A
locality-preserving cache-oblivious dynamic dictionary.
In Proc. i3th Ann. ACM-SIAM Syrup. on Discrete
Algorithms, 2002.

[7] S. Carlsson, P. V. Poblete, and J. I. Munro. An
implicit binomial queue with constant insertion time.
In Proc. Ist Scandinavian Workshop on Algorithm
Theory, volume 318 of Lecture Notes in Computer
Science, pages 1-13. Springer Verlag, Berlin, 1988.

[8] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra,
and M. Thottethodi. Nonlinear array layouts for
hierarchical memory systems. In Proceedings of the
1999 Conference on Supereomputing, ACM SIGARCH,
pages 444-453. ACM Press, 1999.

[9] P. F. Dietz and J. Zhang. Lower bounds for monotonic
list labeling. In J. R. Gilbert and R. G. Karlsson,
editors, SWAT 90, 2nd Scandinavian Workshop on
Algorithm Theory, volume 447 of Lecture Notes in
Computer Science, pages 173-180. Springer, 1990.

[10] R. Fagerberg. The complexity of rebalancing a binary
search tree. FSTTCS: Foundations of Software Tech-
nology and Theoretical Computer Science, 19, 1999.

[11] A. Fiat, J. I. Munro, M. Naor, A. A. Sch~fer, J. P.
Schmidt, and A. Siegel. An implicit data structure
for searching a multikey table in logarithmic time.
Journal of Computer and System Sciences, 43(3}:406--
424, 1991.

[12] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ra-
machandran. Cache-oblivious algorithms. In $Oth An-
nual Symposium on Foundations of Computer Science,
pages 285-297. IEEE Computer Society Press, 1999.

[13] J. L. Hennessy and D. A. Patterson. Computer Archi-
tecture: A Quantitative Approach. Morgan Kaufmann,
second edition, 1996.

[14] A. Itai, A. G. Konheim, and M. Rodeh. A sparse
table implementation of priority queues. In Automata,
Languages and Programming, 8th Colloquium, volume
115 of Lecture Notes in Computer Science, pages 417-
431. Springer-Verlag, 1981.

[15] D. W. Jones. An Empirical Comparison of Priority-
Queue and Event-Set Implementations. Communica-
tions of the ACM, 29(4):300-311, 1986.

[16] A. LaMarca and R. E. Ladner. The influence of
caches on the performance of heaps. A CM Journal of
Experimental Algorithms, 1:4, 1996.

[17] K. Mehlhorn and S. N~her. LEDA: A Platform of
Combinatorial and Geometric Computing. Cambridge
University Press, 1999.

[18] J . I . Munro. An implicit data structure supporting in-
sertion, deletion, and search in O(log 2 n) time. Journal
of Computer and System Sciences, 33(1):66-74, 1986.

[19] H. Prokop. Cache-oblivious algorithms. Master's
thesis, Massachusetts Institute of Technology, June
1999.

[20] N. Rahman, R. Cole, and R. Raman. Optimized pre-
dece~or data structures for internal memory. In WAE
2001, 5th Int. Workshop on Algorithm Engineering,
volume 2141 of LNCS, pages 67-78. Springer, 2001.

[21] P. van Erode Boas. Preserving order in a forest in less
than logarithmic time and linear space. In/. Process.
Left., 6:80-82, 1977.

[22] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design
and implementation of an efficient priority queue.
Mathematical Systems Theory, 10:99-127, 1977.

[23] J . W . J . Williams. Algorithm 232: Heapsort. Commu-
nications of the ACM, 7(6):347-348, 1964.

