
39 

Cache Oblivious Search Trees via Binary Trees of Small Height 

G e r t h  St01t ing  Broda l*  R o l f  Fage rbe rg*  R i k o  J a c o b *  

A b s t r a c t  

We propose a version of cache oblivious search trees 
which is simpler than the previous proposal of Bender, 
Demaine and Farach-Colton and has the same complex- 
ity bounds, in particular, our data structure avoids the 
use of weight balanced B-trees, and can be implemented 
as just a single array of data  elements, without the use of 
pointers. The structure also improves space utilization. 

For storing n elements, our proposal uses (1 + e)n 
times the element size of memory, and performs searches 
in worst case O(log B n) memory transfers, updates 
in amortized O((log 2 n)/(eB)) memory transfers, and 
range queries in worst case O(log B n + k/B)  memory 
transfers, where k is the size of the output. 

The basic idea of our data  structure is to maintain a 
dynamic binary tree of height log n-l-O(1) using existing 
methods, embed this tree in a static binary tree, which 
in turn is embedded in an array in a cache oblivious 
fashion, using the van Emde Boas layout of Prokop. 

We also investigate the practicality of cache oblivi- 
ousness in the area of search trees, by providing an em- 
pirical comparison of different methods for laying out a 
search tree in memory. 

1 I n t r o d u c t i o n  

Modern computers contain a hierarchy of memory lev- 
els, with each level acting as a cache for the next. Typi- 
cal components of the memory hierarchy are: registers, 
level 1 cache, level 2 cache, main memory, and disk. 
The time for accessing a level in the memory hierarchy 
increases from one cycle for registers and level 1 cache 
to figures around 10, 100, and 100,000 cycles for level 
2 cache, main memory, and disk, respectively [13, p. 
471], making the cost of a memory access depend highly 
on what is the current lowest memory level containing 
the element accessed. The evolution in CPU speed and 
memory access time indicates that these differences are 
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likely to increase in the future [13, pp. 7 and 429]. 
As a consequence, the memory access pattern of an 

algorithm has become a key component in determining 
its running time in practice. Since classic asymptotical 
analysis of algorithms in the RAM model is unable to 
capture this, a number of more elaborate models for 
analysis have been proposed. The most widely used of 
these is the I /O model of Aggarwal and Vitter [1], which 
assumes a memory hierarchy containing two levels, the 
lower level having size M and the transfer between the 
two levels taking place in blocks of B elements. The 
cost of the computation in the I /O model is the number 
of blocks transferred. This model is adequate when 
the memory transfer between two levels of the memory 
hierarchy dominates the running time, which is often the 
case when the size of the data significantly exceeds the 
size of main memory, as the access time is very large for 
disks compared to the remaining levels of the memory 
hierarchy. 

Recently, the concept of cache oblivious algorithms 
has been introduced by Frigo et al. [12]. In essence, 
this designates algorithms optimized in the I /O  model, 
except that one optimizes to a block si~e B and a 
memory size M which are unknown. This seemingly 
simple change has significant consequences: since the 
analysis holds for any block and memory size, it holds 
for all levels of the memory hierarchy. In other words, 
by optimizing an algorithm to one unknown level of 
the memory hierarchy, it is optimized to each level 
automatically. Furthermore, the characteristics of the 
memory hierarchy do not need to be known, and do 
not need to be hardwired into the algorithm for the 
analysis to hold. This increases the portability of 
implementations of the algorithm, which is important 
in many situations, including production of software 
libraries and code delivered over the web. For further 
details on the concept of cache obliviousness, see [12]. 

Frigo et al. [12] present optimal cache oblivious al- 
gorithms for matrix transposition, FFT,  and sorting. 
Bender et al. [5], give a proposal for cache oblivious 
search trees with search cost matching that of standard 
(cache aware) B-trees [4]. While most of the results 
in [5, 12] are of theoretical nature, [12] contains some 
preliminary empirical investigations indicating the com- 
petitiveness of cache oblivious algorithms. The authors 
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declare the determination of the range of practicality 
of cache oblivious algorithms an important avenue for 
future research. 

In this paper, we study further the subject of cache 
oblivious search trees. In the first part, we propose a 
simplified version of the cache oblivious search trees 
from [5], achieving the same complexity bounds. In 
particular, our data  structure avoids the use of weight 
balanced B-trees of Arge and Vitter [3], and it can be 
implemented in a single array of data elements without 
the use of pointers. Our structure also improves space 
utilization, implying that  for given n, a larger fraction 
of the structure can reside in lower levels of the mem- 
ory hierarchy. The lack of pointers also makes more 
elements fit in a block, thereby increasing the parame- 
ter B. These effects tend to decrease running time in 
practice. For storing n elements, our data  structure uses 
(1 T ~)n times the element size of memory. Searches are 
performed in worst case O(log B n) memory transfers, 
updates in amortized O((log 2 n)/(eB)) memory trans- 
fers, and range queries in worst case O(log B n + k /B)  
memory transfers, where k is the size of the output.  
This matches the asymptotic complexities of [5]. We 
note that  as in [5], the amortized complexity of updates 
can be lowered by the technique of substituting leaves 
with pointers to buckets each containing O(logn) ele- 
ments and maintaining the size bound of the buckets by 
splitting (merging) overflowing (underflowing) buckets. 
The price to pay is that  ranges cannot be reported in 
the optimal number O(k/B)  of memory transfers, since 
the buckets can reside in arbitrary positions in memory. 

The basic idea of our data  structure is to maintain 
a dynamic binary tree of height logn + O(1) using 
existing methods [2, 14], embed this tree in a static 
binary tree, which in turn is embedded in an array 
in a cache oblivious fashion, using the van Emde Boas 
layout [5, 19, 22]. The static structures are maintained 
by global rebuilding, i.e. they are rebuilt each time the 
dynamic tree has doub]ed or halved in size. 

In the last part of this paper, we try to assess 
more systematically the impact of the memory layout 
of search trees by comparing experimentally the effi- 
ciency of the cache-oblivious van Emde Boas layout with 
a cache-aware layout based on multiway trees, and with 
classical layouts such as Breath First Search (BFS), 
Depth First Search (DFS), and inorder. Our results 
indicate that  the nice theoretical properties of cache 
oblivious search trees actually do carry over into prac- 
tice. We also implement our proposal, and confirm its 
practicality. 

1.1 R e l a t e d  work .  One technique used by our data  
structure is a cache oblivious layout of static binary 

search trees permitting searches in the asymptotically 
optimal number of memory transfers. This layout, the 
van Erode Boas layout, was proposed by Prokop [19, 
Section 10.2], and is related to a data  structure of 
van Emde Boas [21, 22]. 

Another technique used is the maintenance of bi- 
nary search trees of height logn  + O(1) using local re- 
buildings of subtrees. The small height of the tree allows 
it to be embedded in a perfect binary tree (a tree with 
2 k 1 internal nodes and optimal height) which has only 
a constant factor more nodes. Techniques for maintain- 
ing small height in binary trees were proposed by Ander- 
sson and Lai [2], who gave an algorithm for maintaining 
height [log(n + 1)] + 1 using amortized O(log 2 n) work 
per update. By viewing the tree as a linear list, this 
problem can be seen to be equivalent to the problem of 
maintaining n elements in sorted order in an array of 
length O(n), using even redistribution of the elements 
in a section of the array as the reorganization primitive 
during insertions and deletions of elements. In this for- 
mulation, a similar solution had previously been given 
by Itai et al. [14], also using amortized O(log 2 n) work 
per update. [11 [9], a matching fl(log 2 n) lower bound 
for algorithms using this primitive was given. 

Both the van Emde Boas layout and the technique 
of Itai et al. were used in the previous proposal for 
cache oblivious search trees [5]. The difficulty of  this 
proposal originates mainly from the need to change 
the van Emde Boas layout during updates,  which in 
turn necessitates the use of the weight balanced B-trees 
of Arge and Vitter [3]. By managing to use a static 
van Emde Boas layout (except for occasional global 
rebuildings of the entire structure), we avoid the use 
of weight balanced B-trees, and arrive at a significantly 
simpler structure. 

Another improvement in our da ta  structure is to 
avoid the use of pointers. The term implicit is often used 
for pointer-free implementations of trees and other data  
structures which are normally pointer based. One early 
example is the heap of Williams [23]. There is a large 
body of work dealing with implicit da ta  structures, see 
e.g. [7, 11, 18] and the references therein. In tha t  work, 
the term implicit is often defined as using only space for 
the n elements stored, plus O(1) additional space. In 
the present paper, we will abuse the terminology a little, 
taking implicit to mean a structure stored entirely in an 
array of elements of length O(n). 

We note that  independently, a data  structure very 
similar to ours has been proposed by Bender et al. [6]. 
Essentially, their proposal is leaf-oriented, where ours is 
node-oriented. The leaf-oriented version allows an easy 
implementation of optimal scanning from any given lo- 
cation (the node-oriented version needs successor point- 
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ers for this), whereas the node-oriented version allows 
an implicit implementation, with the associated increase 
in B and decrease in memory usage. 

The impact of different memory layouts for data 
structures has been studied before in different contexts. 
In connection with matrices, significant speedups can 
be achieved by using layouts optimized for the memory 
hieraxchy--see e.g. the paper by Chatterjee et al. [8] and 
the references it contains. LaMarca and Ladner consider 
the question in connection with heaps [16]. Among 
other things, they repeat an experiment performed by 
Jones [15] ten years earlier, and demonstrate that  due 
to the increased gaps in access time between levels in 
the memory hierarchy, the d-axy heap has increased 
competitiveness relative to  the pointer-based priority 
queues. For search trees, B-trees are the standard way 
to implement trees optimized for the memory hierarchy. 
In the I/O-model, they use the worst case optimal 
number of memory transfers for searches. For external 
memory, they axe the structure of choice, and are 
widely used for storing data  base indexes. Also at the 
cache level, their memory optimality makes them very 
competitive to other search trees [17, p. 127]. 

Recently, Rahman and Raman [20] made an em- 
pirical study of the performance of various search tree 
implementations, with focus on showing the significance 
of also minimizing translation look-aside buffer (TLB) 
misses. Based on exponential search trees, they im- 
plemented a dynamization of the van Emde Boas lay- 
out supporting searches and updates in O(logB(n ) + 
log l a t h )  memory transfers. They compared it ex- 
perimentally to standard B-trees and three-level cache 
aware trees, and reported that  the cache oblivious trees 
were better  than standard B-trees but worse than the 
cache aware structures. 

1.2 P r e l i m i n a r i e s .  As usual when discussing search 
trees, a tree is rooted and ordered. The depth d(v) of a 
node v in a tree T is the number of nodes on the simple 
path from the node to the root. The height h(T)  of T 
is the maximum depth of a node in T, and the size ITt 
of T is the number of nodes in T. For a node v in a 
tree, we let Tv denote the subtree rooted at v, i.e. the 
subtree consisting of v and all its descendants, and we 
let the height h(v) of v be the height of T~. A complete 
tree T is a tree with 2 h(T) 1 nodes. 

A search tree will denote a tree where all nodes store 
an element from some totally ordered universe, and 
where all elements stored in the left and right subtrees 
of a node v are respectively smaller than and larger than 
the element at v. We say that  a tree TI can be embedded 
in another tree T2, if T1 can be obtained from T2 by 
pruning subtrees. In Figure 1 is shown the embedding 

Figure 1: The embedding of a search tree with height 4 and 
size 10 in a complete tree with height 5 

of a search tree of size 10 in a complete tree of height 5. 

2 M e m o r y  L a y o u t s  o f  S t a t i c  T r e e s  

In this section we discuss four memory layouts for static 
trees: DFS, inorder, BFS, and van Erode Boas layouts. 
We assume that  each node is represented by a node 
record and that all node records for a tree are stored 
in one array. We distinguish between pointer based and 
implicit layouts. In pointer based layouts the navigation 
between a node and its children is done via pointers 
stored in the node records. In implicit layouts no 
pointers are stored; the navigation is based solely on 
address arithmetic. Whereas all layouts have pointer 
based versions, implicit versions are only possible for 
layouts where the address computation is feasible. In 
this paper we will only consider implicit layouts of 
complete trees. A complete tree of size n is stored in an 
array of n node records. 

D F S  l ayou t  The nodes of T axe stored in the order 
they are visited by a left-to-right depth first traver- 
sal of T (i.e. a preorder traversal). 

I n o r d e r  l ayou t  The nodes of T are stored in the 
order that  they are visited by a left-to-right inorder 
traversal of T. 

B F S  l a y o u t  The nodes of T axe stored in the order 
they are visited by a left-to-right breath first traver- 
sal of T. 

van  E r o d e  Boas  l a y o u t  The layout is defined recur- 
sively: A tree with only one node is a single node 
record. If a tree T has two or more nodes, let 
Ha -- [h(T)/2],  let To be the tree consisting of 
all nodes in T with depth at most H0, and let 
T1 , . . . ,Tk  be the subtrees of T rooted at nodes 
with depth H0 -t- 1, numbered from left to right. 
We will denote To the top tree and T 1 , . . . ,  Tk the 
bottom trees of the recursion. The van Emde Boas 
layout of T consists of the van Emde Boas layout 
of To followed by the van Erode Boas layouts of 
T1, . . . , Tk. 

Figure 2 gives the implicit DFS, inorder, BFS, and van 
Emde Boas layouts for a complete tree with height four. 

We now discuss how to calculate the position of the 
children of a node v at position i in the implicit layouts. 
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Figure 2: The DFS, inorder, BFS, and van Erode Boas 
layouts for a complete tree with height 4. Numbers designate 
positions in the array of node records 

For the BFS layout, the children are at position 2i and 
2i+ 1--a  fact exploited already in the 1960s in the design 
of the implicit binary heap [23]. For the DFS layout, the 
two children are at  positions i + 1 and i + 2 h(~) 1, and 
in the inorder layout the two children are at positions 
i 2h(~) 2 a n d i + 2  h0'} 2 

For the implicit van Emde Boas layout the compu- 
tations are more involved. Our solution is based on the 
fact tha t  if we for a node in the tree unfold the recursion 
in the van Emde Boas layout until this node is the root 
of a bottom tree, then the unfolding will be the same 
for all nodes of the same depth. In a precomputed table 
of size O(log n), we for each depth d store the size Bid] 
of this bot tom tree, the size T[d] of the corresponding 
top tree, and the depth D[d] of the root of the corre- 
sponding top tree. When laying out a static tree, we 
build this table in O(logn) time by a straightforward 
recursive algorithm. 

During a search from the root, we keep track of 
the position i in a BFS layout of the current node v 
of depth d. We also store the position Pos[j] in the 
van Erode Boas layout of the node passed at depth j 
for j < d during the current search. As the bits of the 
BFS number i represents the left and right turns made 
during ihe search, the log(T[d] + 1) least significant bits 
of i gives the index of the bottom tree with v as root 
among all the bottom trees of the corresponding top 
tree. Since T[d] is of the form 2 k 1, these bits can be 
found as i AND T[~.  It follows that  for d > 1, we can 
calculate the position Pos M of v by the expression 

Pos[~ = Pos[D[a~] + T[d] + (i AND T[d]). Bid] . 

At the root, we have i = 1, d ---- 1, and Pos[1] = 1. 
Navigating from a node to a child is done by first 
calculating the new BFS position from the old, and then 
finding the value of the expression above. 

The worst case number of memory transfers during 
a top down traversal of a path using the above layout 

schemes is as follows, assuming each block stores B 
nodes. With the BFS layout, the topmost llog(B + 1)j 
levels of the tree will be contained in at most two blocks, 
whereas each of the following blocks read only contains 
one node from the path. The total number of memory 
transfers is therefore O(log(n/B)). For the DFS and 
inorder layouts, we get the same worst case bound when 
following the path to the rightmost leaf, since the first 
[log(n + 1)] ~log B] nodes have distance at least B in 
memory, whereas the las t / log(B + 1)J nodes are stored 
in at most two blocks. As Prokop [19, Section 10.2] 
observed, in the van Emde Boas layout there are at 
most O(log B n) memory transfers. Note that  only the 
van Erode Boas layout has the asymptotically optimal 
bound achieved by B-trees [4]. 

We note that  DFS, inorder, BFS, and van Emde 
Boas layouts all support efficient range queries (i.e. the 
reporting of all elements with keys within a given query 
interval), by the usual recursive inorder traversal of the 
relevant part  of the tree, starting at the root. 

We argue below that  the number of memory trans- 
fers for a range query in each of the four layouts equals 
the number of memory transfers for two searches plus 
O(k/B),  where k is the number of elements reported. 
If a range reporting query visits a node that  is not con- 
talned in one of the search paths to the endpoints of the 
query interval, then all elements in the subtree rooted 
at the node will be reported. As a subtree of height 
[log(B + 1)] stores between B and 2B 1 elements, at 
most k / B  nodes with height larger than [log(B + 1)] 
are visited which are not on the search paths to the 
two endpoints. Since subtrees are stored contiguously 
for both the inorder and DFS layouts, a subtree of 
height [log(B + 1)] is stored in at most three blocks. 
The claimed bound follows for these layouts. For the 
van Emde Boas layout, consider a subtree T of height 
I'log(B + 1)]. There exists a level in the recursive lay- 
out where the topmost levels of T will be stored in a 
recursive top tree and the remaining levels of T will be 
stored in a contiguous sequence of bot tom trees. Since 
the top tree and each bottom tree has size less than 
2B 1 and the bottom trees are stored contiguously 
in memory, the bound for range reportings in the van 
Emde Boas layout follows. 

For the BFS layout, we prove the bound under 
the assumption that  the memory size is ~ ( B l o g B ) .  
Observe tha t  the inorder traversal of the relevant nodes 
consists of a left-to-right scan of each level of the 
tree. Since each level is stored contiguously in memory, 
the bound follows under the assumption above, as the 
memory can hold one block for each of the lowest 
[log(B + 1)] levels simultaneously. 
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3 S e a r c h  T r e e s  o f  S m a l l  H e i g h t  

In the  previous section, we considered how to lay out  
a s tat ic  complete  tree in memory.  In this section, we 
describe how the static layouts can be  used to store 
dynamic  balanced trees. We first describe an insertions 
only scheme and later show how this scheme can be 
extended to handle deletions and to  achieve space usage 
a rb i t ra ry  close to optimal. 

Our  approach is to embed a dynamic  t ree  in a 
stat ic complete  tree by maintaining a height bound 
of l ogn  + O(1) for the dynamic  tree,  where n is its 
current  size. It  follows tha t  the  dynamic  tree can be 
embedded  in a complete tree of height log n + O(1) and 
size O(n). Whenever  n has doubled,  we create  a new 
stat ic  tree. The  following subsections are devoted to  
t ree  rebalancing schemes achieving height log n + O(1). 

Our scheme is very similar to  the  t ree  balancing 
scheme of Andersson [2] and to  the  scheme of Itai 
et  al. [14] for support ing insertions into the  middle 
of a file. Bender et al. [5] used a similar scheme in 
their  cache oblivious search trees, bu t  used it to  solve 
the  "packed-memory problem",  ra the r  t han  direct ly to  
main ta in  balance in a tree. Note  tha t  the  embedding 
of a dynamic  tree in a complete t ree  implies tha t  we 
cannot  use rebalancing schemes which axe based on 
rotat ions,  or, more generally, schemes allowing subtrees 
to  be moved by just  changing the poin ter  to  the  root  of 
the subtree,  as e.g. is the case in the rebalancing scheme 
of Fagerberg  [10] achieving height [log n + o(1)]. 

3 .1  I n s e r t i o n s .  Let  T denote  the  dynamic  binary 
search tree,  and let H be the upper  bound  on h(T) we 
want  to  guarantee,  i.e. the  height we will use for the 
complete  tree in which T is embedded.  For  a node v in 
T ,  we let  s(v) = 2 H d(v)+l 1 deno te  the size of  the 
subtree  rooted at v in the complete  tree.  We define the 
density of v to  be the ratio p(v) = ITvl/s(v), and define 
a sequence of evenly dis t r ibuted density thresholds 0 < 
V l < r 2 < ' ' ' < T H = l b y r i = r l + ( i  1)A for 
1 < i < H and A = (1 ~-I)/(H 1). We mainta in  the 
invariant  a t  the root  r of T tha t  p(r) g r l .  This  implies 
the  cons t ra in t  n/(2 H 1) < r l ,  i.e. H >_ log(n/~-i + 1). 
If for some N the  current complete  t ree  should be valid 
for all n < N ,  we let H = [ l o g ( N / ~ - l + l ) ] .  In the 
following we assume ~1 > 1/2 and N = O(n), such tha t  
H = l o g n  + O(1). 

T h e  insertion of a new element into a t ree  T of 
n < N 1 elements proceeds as follows: 

1. We locate  the position in T of the  new node v via 
a top down search, and create  v. 

2. I fd (v )  = H + I ,  we rebalance T as follows. First,  we 
in a bo t tom-up  fashion find the nearest  ancestor  w 
of  v with p(w) < rd(~). This  happens  at  the root  

at  the  latest.  We need not s tore the sizes of nodes 
explicitly, as we can compute  ITwl by a t raversal  of 
Tw. Since the  ancestors of v are examined bo t tom-  
up one by one, we have already computed  the size 
of one child when examining a node, and it suffices 
to traverse the subtree rooted  at  the  other  child 
in order to  compute  the total  size. After having 
located w, we rebalance T~, by evenly dis t r ibut ing 
the elements in T,~ as follows. We first create  a 
sorted ar ray  of all elements in T,o by an inorder  
traversal  of T~. T h e  [tT, o l /2] th  element  becomes 
the element s tored at  w, the smallest [(1%ol 1)/2J 
elements are recursively dis t r ibuted in the  left sub- 
t ree  of w and the  largest [(ITwl 1) /2]  elements  
are recursively dis t r ibuted in the right subtree  of w. 

In the redis t r ibut ion step, the use of an addi t ional  
ar ray can be avoided by compact ing the elements into 
the r ightmost  end of the complete  subtree roo ted  at  v 
by a right-to-left  inorder traversal,  and then  insert ing 
the elements at the  positions described above in a left- 
to-right inorder traversal.  

LEMMA 3.1. A redistribution at v implies 
[p(v).s(w)J 1 < IT~I < [p(v).s(w)] for all 
descendants w of v. 

Proof. We prove the bounds by induct ion on the  dep th  
of w. T h e  bounds  hold for w = v, since by deft- 
nit ion IT~I = p(v) .  s(v). Let  u be a descendant  of 
v, let w and w'  be the children of u, and assume 
the bounds hold for u. Since p(v) _< 1, we have 
IT.I _< [p(v)-s(u)] -- [p(v). (I + s(w) + s(w'))] _< 
1 + rp(v), sCw)] + [o(v). s(w,)]. From sCw) = s(w') 
we get [(IT~I 1)/2]  < [ p ( v ) - s ( w ) ] .  T h e  d is t r ibut ion  
algori thm guarantees  t h a t  [T~[ < [(IT,,[ 1) /2] ,  imply-  
ing [Tw[ <_ [p(v)-  s(w)] .  

For the lower bound  we have tT~I _> /p(v) • s(u)J 
1 _> [p(v). + 1 _> 1) + 
(kp(v). s(w')J I) + I. Because s(w) = s(w'), w e  get 
[(IT~I 1)/2J > ip (v) ,  s(~o)J 1. Th e  dis t r ibut ion al- 
gor i thmguarA.ntees that  ITs[ > [([T~ I 1)/2J,  implying 
IT,,,I _> tp(v)- s(w)J 1. 13 

THEOREM 3.1. Insertions require amortized 
O((log 2 n ) / ( 1  T1)) time and amortized O(log B n + 
(log2 n)/(B(1 

Proof. Consider a redis t r ibut ion at  a node v, caused by  
an insertion I~elow v. By  the rebalancing algori thm, 
we for a child w of v have [T~I > z a ( ~ ) ' s ( w ) ,  as 
the  redistr ibut ion otherwise would have taken  place 
at  w. Immedia te ly  after  the last t ime there  was a 
redistr ibution a t  v or at  an ancestor  of v, we by  
Lem m a  3.1 had IT,~l < zd(~), s(w) + 1. I t  follows 
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that  the  number  of insertions below w since the  last 
redis t r ibut ion at  v or an ancestor  of v is at  least Td(w) • 
s(w) (Td(~).s(w)÷I) = A. s (w)  1. T h e  redis t r ibut ion 
at  v takes tinm O(s(v)), which can be covered by 
charging O ( s ( v ) / m a x ( l ,  A.s(w) 1}) = O ( 1 / A )  to each 
of the ment ioned insert ions below w. Since each crea ted  
node has at  most  H ancestors and hence is charged at 
most  H times, the amor t ized  redis t r ibut ion t ime for an 
insertion is O ( H / A )  ---- O(H2/(1 TI)). 

Since a top-down search requires O(log 8 N )  mem- 
ory transfers  and the redis t r ibut ion is done solely by in- 
order  traversals requir ing O(max(1 ,  s (v ) /B) )  m em o ry  
transfers,  the bound  on memory  t ransfers  follows. [] 

Example. Assume tha t  T1 = 0.9. This  implies tha t  
we increase H by  one whenever  an insert ion causes n > 
v1(2 H 1). Since increasing H by one doubles the  size 
of the comple te  tree,  this implies tha t  we always have 
density a t  least 0.45, i.e. the  a r ray  used for the  layout  
has size a t  mos t  1/0.45n ---- 2.2n. Note  t ha t  the  space 
usage in the  worst  case is a t  least  2n, independen t ly  
of the  choice of  vl.  Since the  size of the  comple te  t ree  
doubles each t ime H is increased, the  global rebuilding 
only increases the  amor t ized  upda te  cost  by  a cons tan t  
addit ive term. By  L e m m a  3.1, all nodes v wi th  dep th  
H 2 in the complete  tree,  i.e. wi th  s(v) = 7, are present  
in T,  since [0.45- 7J 1 > 0. T h e  number  of m em o ry  
transfers  for range  searches is therefore  guaran teed  to  
be asymptot ica l ly  optimal.  

3 .2  D e l e t i o n s .  One s t andard  approach  to  add dele- 
t ions is to  s imply mark  elements as deleted,  removing 
marked  nodes by  a global rebuilding when, say, half  of 
the elements  have been deleted. T h e  disadvantage of 
this scheme is t ha t  locally, elements can end up  being 
sparsely d is t r ibu ted  in memory,  such t h a t  no  bo u n d  on 
the  number  of  m e m o r y  transfers for a range search can 
be guaranteed.  

To suppor t  range queries with a worst-case guaran-  
tee on the  number  of memory  transfers,  the  t ree  T must  
be rebalanced af ter  deletions. The  idea is similar to  the  
scheme used for insertions, except  t ha t  we now also have 
lower bound  dens i ty  thresholds 0 _< ~,~ < . . .  < "Y2 < 
")'1 < rz, where "Yi : 71 (i 1)A ~ for 1 < i < H and 
A'  = ('yl "tH)/(H 1). For  the  root  r o f T  we require 
the invariant  "/1 _< p(r) <_ TI. 

Delet ion is done as described below. Insert ions are 
handled as descr ibed in Section 3.1, except  t ha t  S tep  2 
is replaced by  S tep  2 below. 

1. First ,  we locate  the  node v in T conta in ing  the 
element  e to  be deleted,  via a top  down search 
in T .  If v is not  a leaf and v has a r ight  subtree,  we 
then  locate the node  v ~ containing the  immedia te  

successor to  e ( the node reached by following 
left children in the right subt ree  of v), swap the  
elements at v and v' ,  and let v = v'.  We rep.eat 
this until v is a leaf. I f v  is not  a l e a f b u t  v has 
no right subtree,  we symmetr ica l ly  swap v with the  
node containing the predecessor of e. Finally, we 
delete the leaf v f rom T. 

2. We rebalance the t ree  by rebuilding the  subt ree  
rooted  at  the lowest ancestor  w of v satisfying 
"~d¢~) -- p(w) <_ rdC~). 

THEOREM 3.2. Insertions and deletions require amor- 
tized O((log2n)/a) time and amortized O ( l o g B n  + 
(log 2 memo  t  sfers, = min{ l 
"YH, 1 T1}. 

Proof. Consider  a redis t r ibut ion  at  a node  v. If  t he  
redistr ibut ion is caused by  an u p d a t e  below a child w 
o f v  leading to  ]Tw] > vd(~)- s(w), t hen  t h e  a rgumen t  is 
exact ly  as in T h e o r e m  3.1. Otherwise the  red is t r ibu t ion  
is caused by an u p d a t e  below a child w of v leading to  
[T~[ < 7d(w)-s(w). Immedia te ly  af ter  the  last t ime there  
was a redis t r ibut ion at  v or a t  an ances tor  of  v, we by  
Lem m a  3.1 had tT~[ > 7d(~) " s(w) 2. I t  follows t h a t  
the number  of delet ions since the  last rebui ld  a t  v or an  
ancestor  of v is at  least (Td(~)" s(w) 2) 7d(~)" S(w) = 
A ' .  s(w) 2. By  averaging the  redis t r ibut ion  t ime  over 
the  deletions, the  amor t ized  redis t r ibut ion  t ime of  a 
deletion is O ( H / A ' )  = 0(H2/(~/1 7H)) .  [:2 

Example. Assume ~-1 -- 0.9, 71 -- 0.35, and ~'H = 0.3. 
We increase H by one whenever  an inser t ion causes 
n > "rl(2 g 1) and decrease H by one whenever  a 
deletion causes n < -)'1(2 H 1). W i t h  the  pa rame te r s  
above, we have t h a t  when H is changed,  a t  least (7"1/2 
"yl)n = 0.1n upda tes  must  be  per fo rmed  before H is 
changed again, so the  global rebui lding only  increases 
the  amort ized u p d a t e  cost by  a cons tan t  addi t ive  te rm.  
T h e  ar ray  used for the  layout  has size a t  mos t  n/'yl = 
2.9n. By  L e m m a  3.1, all nodes with d e p t h  H 2 (and 
hence size 7) in the  comple te  t ree  are present  in T ,  as 
L'YH" 7J 1 > 0. T h e  number  of m e m o r y  t ransfers  for 
range searches is therefore  asymptot ica l ly  opt imal .  

3 .3  I m p r o v e d  d e n s i t i e s .  T h e  rebalancing schemes 
considered in the  previous section require  in the  worst  
case space at  least 2n, due to  the  occasional  doubl ing 
of the  array. In this section, we describe how to  achieve 
space (1 + e)n,  for any e > 0. As a consequence,  we 
achieve space usage close to  opt imal  and  reduce  the  
number  of m e m o r y  t ransfers  for range searches. 

Our  solut ion is the  following. Let  N be  the  space we 
are willing to use (not  necessarily a power of two), and  
T1 and V1 densi ty  thresholds  such tha t  ")'1 _< n / N  <_ rl. 
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Whenever  the densi ty  threshold becomes violated, a 
new N must  be chosen. If N = 2 ~ 1 for some k, then  
we can apply  the previous schemes directly. Otherwise,  
assume N = 2 bl -I-2 b2 q-- - - 2 b~, where b l , . . . ,  bk are non- 
negative integers satisfying bi > b~+l, i.e. the  bi values 
are the posit ions of ls  in the  binary representa t ion of N.  
For each bi, we will have a tree Fi consisting of a 
root  ri  wi th  no left child and a right subtree  Ci which 
is a complete  t ree  of size 2 bl 1. The  elements will 
be dis t r ibuted among F1, .  • . ,  Fk such tha t  all elements 
stored in Fi are smaller t han  the elements in Fi+l .  If 
F~ stores a t  least one element,  the minimum element in 
Fi is s tored at  ri  and the remaining elements are s tored 
in a t ree T~ which is embedded  in Ci. The  trees are laid 
out in memory  in the  order  r l ,  r2 , .  • •, r~, C1, C 2 , . . . ,  Ck, 
where each Ci is laid out  using the  van Emd e  Boas 
layout. 

A search for an  element  e proceeds by examining 
the elements at r l , . . . , r ~  in increasing order  until  e is 
found or the subtree  Ti is located tha t  must  contain e, 
i.e. e is larger t han  the  element  at  r ,  and smaller t han  
the element a t  r i+ l .  In the la t ter  case, we per form a 
top-down search on Ti. T h e  to ta l  t ime for a search is 
O(i + b,) = O ( l o g N )  using O(i /B  + logB(2 b' 1)) = 
O ( t o g ,  N )  I /Os.  

For the rebalancing, we view F 1 , . . .  ,Fk  as being 
merged into one big t ree  F ,  where all leafs have the  
same dep th  and all internal  nodes are binary,  except  
for the  nodes on the r ightmost  pa th  which m a y  have 
degree three. T h e  t ree  Ci+i is considered a child of the  
r ightmost  node ui in Ci with h(ui) = bi+l + 1, and with 
the element  of r i+ l  being a second element of ui. Note  
that  the  elements of F satisfy inorder. For a node v 
in F ,  we define s(v) to be the subtree T ,  of F plus the 
number  of nodes of degree three,  i.e. the  number  of slots 
to  s tore elements in T~, and tT~[ the number  of elements 
stored in T~. As in Section 3.1 and  3.2, we define p(v) = 
[T~,[/s(v). T h e  rebalancing is done as in Sections 3.1 
and 3.2, except  t ha t  if we have to  redis t r ibute  the  
content  of v, we will explicitly ensure tha t  the inequali ty 
Lp(v). s(w)J 1 _< [T~,[ < [p(v) .  s(w)l from Lem m a  3.1 
is satisfied for all descendants  w of v. T h a t  this is 
possible follows from the  inequalities below, where u 
is a descendant  of v and w l , . . . ,  w~ are the children of 
u for k = 2 or 3: 

= (,,: , +  so,-,,:>)l 
t: 

S k 1 -I- Ei--1 r l o ( v )  - 8 ( w i ) l  , 

s(u)j 1 _> 
k 

Because L e m m a  3.1 still holds, Theorem 3.2 also 

holds. The  only change in the  analysis of Theo rem 3.2 
is tha t  for a node v on the  r ightmost  pa th  wi th  a 
child w, we now have s(v) < 4s(w),  i.e. the  bound on 
the amortized t ime and number  of memory  transfers  
increases by a factor two. 

Example. Let E > 0 be an  a rb i t r a ry  small constant  such 
that  when N is chosen, N : (1 + ~)n. Valid densi ty 
thresholds can then  be 7"1 ---- (5 + 1)/2,  3'1 = (3~ 1)/2,  
and 7H = 2J 1, where ~ -- 1/(1 + 6) is the  densi ty 
immediately af ter  having chosen N.  After choosing 
an N,  at  least g ( 1  6 ) /2  = O(N/e)  updates  must  
be performed before a new N is chosen. Hence, the 
amortized cost of the global rebuildings is O(1 /c )  t ime 
and O(1/(eB)) memory  transfers  per update.  The  
worst case space usage is hi"~1 = n(1 + ~)1(1 ~/2) =- 

+ 

4 Experiments 
in this section, we describe our  empirical investigations 
of methods  for laying out  a search tree in memory.  

We implemented the  four implicit memory  layouts  
discussed in Sect ion 2: DFS,  inorder,  BFS, and van 
Emde  Boas. We also implemented  a cache aware 
implicit layout based on a d-ary version of the BFS,  
where d is chosen such t h a t  the  size of a node equals 
a cache line. Our  exper iments  thus compare  layouts  
which in term of opt imiza t ion  for the  memory  hierarchy 
cover three categories: not  optimized,  cache oblivious, 
and cache aware. 

We also implemented poin ter  based versions of the  
layouts, where each node  s tored in the ar ray  contains 
the indices of its children. Compared  to  implicit layouts,  
pointer  based layouts have lower instruct ion count  for 
navigation, higher total  m e m o r y  usage, and lower num-  
ber of nodes per m em o ry  block. We implemented one 
further  pointer  based layout,  namely  the layout  which 
arises when building a b inary  t ree  by random insertions, 
placing nodes in the a r ray  in order  of allocation. We call 
this the random insertion layout .  

Our experiments  fall in two parts:  one dealing wi th  
searches in stat ic layouts,  and  one dealing with the  dy-  
namizat ion method  from Sect ion 3.1. In Section 4.2, we 
repor t  on the results. We tes ted  several combinat ions 
and variations of the m em o ry  layouts and algorithms, 
bu t  for lack of space, we only describe a subset repre- 
sentative of our general observations.  

4.1 M e t h o d o l o g y .  T h e  compute r  used to  perform 
the experiments  had two 1 G H z  Pent ium III (Copper-  
mine) processors, 256 K B  of  cache, and 1 G B  of RAM. 
The  programs were wr i t ten  in C, compiled by the  GNU 
gcc  compiler version 2.95.2.1 with full opt imizat ion (op- 
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tion -03). The operating system was Linux with kernel 
versio n 2.4.3-12smp. 

The timing was based on wall clock time. For 
the search based experiments, we used the ge t£ t imer  
and s e t i t i m e r  system calls to interrupt the program 
every 10 seconds, giving us a relative timing precision 
of roughly 0.001 for most experiments. 

The elements were 32 bit in size, as was each of the 
two pointers per node used in the pointer based layouts. 
We only report on integer keys---our results with float- 
ing point keys did differ (probably due in parts to the 
different costs of comparisons), but not significantly. We 
generated uniformly random integers by casting dou- 
ble precision floats returned by drand48() .  We only 
searched for present keys. 

Where possible, the programs shared source code, 
in order to minimize coding inconsistencies. We also 
tried to avoid artifacts from the compilation process by 
e.g. iulining function calls ourselves. 

We performed experiments for n = 2 k, 2 k 1, 2 k + 1, 
and 0.7 • 2 k for a range of k. For n not a power of two, 
the assumption from Section 2 of dealing with complete 
trees is not fulfilled. We adapted to this situation by 
cutting the tree at the boundary of the array: If the 
address of both children of node v is outside the array, 
i.e. larger than n, then v is a leaf, if only the right child 
is outside, it is a degree one node. This works because 
the addresses of children are higher than that  of their 
parent (which does not hold for the inorder layout, but 
there, we simply used binary search). 

Due to the small difference between the 1 GB RAM 
size and 2 GB address space, experiments beyond main 
memory required a different setup. This we achieved by 
booting the machine such tha t  only 32 MB of RAM was 
available. However, the bulk of our experiments covered 
trees contained in cache and RAM. 

The source code of the programs, our scripts and 
tools, and the data  we present here are available online 
under f t p : / / f t p ,  b r i c s ,  dk/RS/01~36~Experiments/ .  

4.2 Resu l t s .  For all graphs, the y-axis is logarith- 
mic, and depicts the average time for one search for 
(or insertion of) a randomly chosen key, measured in 
seconds. All the x-axes depicts log 2 n, where n is the 
number of keys stored in the search tree. Note that  this 
translates to different memory usage for implicit and 
pointer based layouts. 

Figure 3 compares the time for random searches in 
pointer based layouts. Pointer based layouts all have 
the same instruction count per level during a search. 
This is reflected in the range n ---- 21° , . . . ,  214 (for which 
the tree fits entirely in cache), where the three layouts 
of optimal height behave identically, while the random 

insertion layout (which has larger average height) is 
worse. As n gets bigger, the differences in memory 
access pattern starts showing. For random searches, we 
can expect the top levels of the trees to reside in cache. 
For the remaining levels, a cache fault should happen at 
every level for the BFS layout, approximately at every 
second level for the DFS layout (most nodes reside in the 
same cache line as their left clfild), and every O(log B n) 
levels for the van Emde Boas layout. This analysis is 
consistent with the graphs. 

Figure 4 compares the time for random searches in 
implicit layouts. For sizes up to cache size (n = 216), it 
appears that  the higher instruction count for navigating 
in an implicit layout dominates the running times: most 
graphs are slightly higher than corresponding graphs 
in Figure 3, and the van Emde Boas layout (most 
complicated address arithmetic) is the slowest while the 
BFS layout (simplest address arithmetic) is fastest. For 
larger n, the memory access pattern shows its effect. 
The high arity layouts (d = 8 and 16) are the fastest, 
as expected--they are cache-optimized and have simple 
address arithmetic. The van Erode Boas layout is quite 
competitive, eventually beating BFS and only being 
50% slower than the cache aware layouts. 

The inorder layout has bad performance, probably 
because no nodes in the top part  of the tree share cache 
lines. It is worst when n is a power of two. We believe 
this as an effect of the limited associativity of the cache: 
For these n, the nodes of the top of the tree are large 
powers of two apart  in memory, and are mapped to the 
same few lines in cache. 

In Figure 5, we compare the search times for the 
pointer based and the implicit versions of the BFS and 
the van Emde Boas layout. The aim is to see how the 
effect of a smaller size and a more expensive navigation 
compete against each other. For the BFS, the implicit 
version wins for all sizes, indicating tha t  its address 
arithmetic is not slower than following pointers. This is 
not the case for the van Emde Boas layout--however, 
outside of cache, the implicit version wins, most likely 
due to the higher .value of B resulting from the absence 
of pointers. 

In Figure 6, we compare the performance of the 
dynamic versions of some of the da ta  structures. The 
inorder and the van Emde Boas layout is made semi- 
dynamic by the method from Section 3.1. For the 
inorder layout, the redistribution during rebalancing 
can be implemented particularly simple, just by scans 
of contiguous segments of the array. We use this 
implementation here. The random insertion layout is 
semi-dynamic by definition. 

Starting with a bulk of 10,000 randomly chosen el- 
ements, we insert bulks of sizes increasing by a factor 
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of 1.5. We time the insertion of one block and calculate 
the average time for inserting one element. The amor- 
tization in the bounds of the method from Section 3.1 
is apparent in the instability of the graphs. In contrast, 
the unbalanced pointer based search tree has a rela- 
tively smooth graph. We remark that  the dynamization 
method of Section 3.1 seems quite competitive, eventu- 
ally winning over the unbalanced pointer based tree, 
which for random insertions is known to compete well 
against standard rebalancing schemes for binary search 
trees, such as red-black trees (see e.g. [17, p. 127]). The 
inorder layout is somewhat faster than the van Emde 
Boas layout, which we think is due to the simpler redis- 
tribution algorithm. 

In Figure 7, we compare in more detail the perfor- 
mance of the random insertion layout with the implicit, 
semi-dynamic van Erode Boas layout, showing the time 

for random insertions as well as for random searches. 
If the data  structure is to be used mainly for searches 
and only occasionally for updates, the cache oblivious 
version is preferable already at roughly 2 is elements. 
But even if updates dominate, it becomes advantageous 
around 2 ~-a elements. 

In Figure 8, we look at the performance of the lay- 
outs as our memory requirement exceeds main memory. 
As said, for this experiment we booted the machine in 
such a way that  only 32 MB of RAM was available. 
We compare the van Emde Boas layout, the usual BFS 
layout, and a 1024-ary version version of it, optimized 
for the page size of the virtual memory. The keys of a 
1024-ary nodes are stored in sorted order, and a node is 
searched by a fixed, inlined decision tree. We measure 
the time for random searches on a static tree. 

Inside main memory, the BFS is best, but looses by 
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a factor  of five outside. The  t ree  opt imized for page size 
is the  best  outside main memory,  bu t  looses by a factor  
of two inside. Remarkably,  the van E m d e  Boas layout 
is on par  with the best  th roughout  the  range. 

4 .3  C o n c l u s i o n .  From the exper iments  repor ted  in 
this paper ,  it is apparen t  t ha t  the effects of the  m e m o r y  
hierarchy in todays  computers  play a dominant  role for 
the  running  t ime of t ree  search algorithms, a l ready for 
sizes of  trees welt within main memory.  

It  also appears  tha t  in the area of search trees, the  
nice theoret ical  propert ies  of cache obliviousness seems 
to ca r ry  over into practice: in our  exper iments ,  the  van 
E m d e  Boas layout was compet i t ive  with cache aware 
s t ructures ,  was be t te r  t han  s t ruc tures  not  opt imized for 
m e m o r y  access for all bu t  the smallest n, and behaved 
robus t ly  over several levels of the memory  hierarchy. 

One fur ther  observat ion is t ha t  the effects f rom the  
space saving and increase in fanout  caused by implicit 
layouts  are notable.  

Finally, the  me thod  for dynamic  cache oblivious 
search t ree  suggested in this paper  seems practical ,  not  
only in terms of implementa t ion  effort  bu t  also in t e rms  
of running  time. 
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