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Abstract

This paper demonstrates performance improvements for matrixmultiplication and mesh generation for Finite

Element Method (FEM) by optimizing the memory hierarchy of traditional processors. The theory developed

earlier is used to perform such optimizations. Our work provides a uniform methodology across multiple

HPC platforms for optimizing the performance of the kernel codes (such as matrix transposition and matrix

multiplication) commonly used in DoD applications.

For \standard" matrix multiplication, we develop a novel data layout that reduces cache pollution, data

cache misses and Translation Look-Aside Bu�er (TLB) misses. Prior to computation, we reorganize the

matrix data layout by transposing and partitioning it into blocks. The proposed method avoids cache

pollution, conict cache misses, and TLB misses.

We also employ our techniques to improve memory system performance in order to perform mesh gener-

ation for a suite of FEMs. We apply an algorithmic technique of separating rows of a data matrix based on

their access patterns. Applied in conjunction with blocking, our approach minimizes memory requirements

and optimizes cache performance.

We have implemented our proposed approach on UltraSPARC II, Alpha 21264, and Pentium III based

machines. Experimental results show our approach to be e�ective in improving the overall performance.

1 Introduction

HPC platforms are being employed for a wide variety of applications including scienti�c computations.

In such applications, the data is stored in di�erent levels of the memory hierarchy with di�erent data access

costs. Although HPC platforms are already able to provide large computational power, the memory access

costs have not improved commensurately. Thus memory access can become the bottleneck in achieving the

full potential of HPC platforms for such applications.

In this paper, we focus on algorithmic techniques for e�cient memory access. By applying the theory

developed in a related project[1], we show the e�ectiveness of our approach by demonstrating improved
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performance for a kernel operation, matrix multiplication, and the mesh generation operation for generic

�nite element methods on state-of-the-art machines. The e�ciency of such operations depends heavily on

the data access cost. Traditionally, matrices are stored in either column or row major order (data layout) in

the memory. Mismatch between the data layout and the data access pattern can lead to severe performance

degradation due to cache misses, cache pollution, and TLB misses. In this paper, an algorithmic technique

for cache conscious data layout is proposed for tuning the performance of matrix operations. Our proposed

approach provides a uniform methodology across multiple HPC platforms for performance optimization of a

suite of kernel codes (e.g., matrix transposition[8] and matrixmultiplication) used by manyDoD applications.

A novel data layout is proposed to reduce cache pollution and data cache and TLB misses in performing

the \standard" matrix multiplication. To perform matrix multiplicationC = A�B, the elements in Matrix

B are accessed in column major order. If Matrix B is stored in a row-major order, in performing the

inner product, each access to B will result in a cache miss since they belong to di�erent cache blocks. In

a large-scale matrix multiplication, only small portions of such cache blocks are accessed before they get

replaced due to conicts. Blocking (tiling) is widely used to reorder the computation sequence to reduce

cache pollution. This technique exploits temporal locality to reduce cache misses. However, cache conict

misses still occur in tiled matrix multiplication. Also, for large matrices, elements in a column in the same

block will be located in several di�erent pages. Thus, column accesses cause TLB thrashing since the size of

TLB is usually small. Therefore, blocking alone is not su�cient to alleviate all the memory access penalties.

We reorganize the layout of matrix data stored in the main memory such that it is cache friendly. This

reorganization is performed prior to the computation. In the proposed approach, we transpose matrix B so

that the data layout matches the data access pattern. This reduces cache pollution. Then we partition each

matrix into square sub-matrices, which are denoted as blocks. In the proposed data layout, matrix elements

belonging to the same block are stored in consecutive memory locations in row major order. This avoids

conict misses among the elements in the same block. The block size is chosen to be equal to the virtual

page size. This ensures that computations within a block do not result in a TLB miss. Therefore, the total

number of TLB misses is reduced signi�cantly with our layout compared to the standard row major layout.

The above data layout transformation (i.e., matrix transpose and block data layout) is performed only

once. Thus, no additional overhead is incurred during the computation. Our proposed layout reduces cache

pollution, cache misses, and TLB misses without excessive overheads in reorganizing the data in memory

as well as in index computations. Experimental results on UltraSPARC II, Alpha 21264, and Pentium III

based machines show improved performance.

Our algorithmic technique for cache conscious block data layout has other applications. With this ap-

proach, we develop a data layout for the mesh generation for an FEM using serendipity elements. FEM is

widely used for analysis and simulation of a large variety of scienti�c problems. The �rst step of a typical

�nite element method is to generate an appropriate mesh for the problem domain. In grand challenge appli-

cations, a typical FEM has 10,000 to 1,000,000 elements. Such applications require large number of memory

access. In our technique, rows of a data matrix are clustered based on their access patterns. This technique

can avoid the cache pollution problem. Then, blocking and block layout are used to further reduce cache

misses and TLB misses. This data layout results in e�cient data access and minimization of the memory

space allocated for the corresponding mesh.

The remainder of this paper is organized as follows. In Section 2, we present our techniques for matrix

multiplication. In Section 3, we discuss our research on the use of e�cient data layouts for FEM applications.

In Section 4, we give our concluding remarks on this paper.

2 Matrix Multiplication

In this section, we describe cache conscious data layouts for e�cient matrix multiplication. For standard

matrix multiplication, we show how to reduce cache pollution, data cache misses, and TLB misses. We start

with a description of data access costs of the memory hierarchy and issues relating to data layout design.
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Figure 1: Using TLB for fast page number translation

Then we present an e�cient data layout for the standard matrix multiplication operation. As seen from the

experimental results obtained from three di�erent architectures, our approach compares favorably with the

three others that we have considered.

2.1 Data Access in the Memory Hierarchy

In state-of-the-art computer systems, a processor communicates with its cache memory (fast memory),

which in turn communicates with the main memory. If the data requested by the processor is not available in

the cache, a cache miss occurs. This cache miss causes processor to stall until data is fetched from the main

memory into the cache. Typically, a main memory access is about 10 times slower than a cache memory

access. For example, on a DEC Alpha 21154 platform, the on-chip cache access latency is around 10 nsec,

while the mainmemory access latency is 253 nsec. Therefore, cache misses cause the performance to degrade.

To improve performance, it is critical to reduce the number of cache misses during a computation.

To fetch data frommemory to cache, the virtual address of data needs to be translated to physical address.

Physical memory is organized into equal sized pages (say, 4k bytes). All addresses within a physical memory

page lie in consecutive memory locations. The virtual memory is also organized into pages of the same size.

Each virtual page is assigned a page number. When the main memory runs out of space, one page is brought

at a time from the disk. Before the processor can execute a memory access instruction, the virtual address

has to be translated. Translation determines the physical page number corresponding to a given virtual page

number. This mapping information is provided by the page tables which are the data structures stored in

the main memory.

It is very expensive to look up the page table for each address. In order to reduce the cost of translation,

a special high-speed cache is provided to bu�er the page table entries. This cache is called the TLB. In

Figure 1, the CPU looks up the TLB for each address translation. Usually, the TLB size is limited to only a

few entries. For each TLB miss, the missing translation entry is loaded into it from the page table. A TLB

miss signi�cantly increases the translation time.

2.2 Issues in Design of Data Layout

A data layout is the scheme in which data elements are assigned addresses in the memory. In a row major

layout (see Figure 2), elements in one row are assigned consecutive memory locations. In a column major

layout, elements in one column are assigned consecutive memory locations.

Mismatch between data access patterns and data layout patterns can increase the number of cache misses.

Consider the example shown in Figure 3, where a cache with one 4 word sized block has data laid out in row

major order. A row major access pattern causes only 4 cache misses since each cache miss loads the entire

row into a block. In the case of column major access, the number of cache misses is as high as 16. This

happens because each cache miss loads one useful element and three unused elements.
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Figure 2: Example data layouts

2.3 Data Layout for Standard Matrix Multiplication

Large scale matrix multiplication deals with matrices which do not �t into the cache. Assume that both A

and B are stored in row major order. Conventional methods of matrix multiplication are not cache-friendly.

In the matrix multiplication C = A � B, elements in Matrix B are accessed in column major order. Each

access to B results in a cache miss since the consecutively accessed elements are located far apart in memory.

Elements of B are repeatedly accessed when computing di�erent elements of C, but they do not remain in

the cache for reuse as the cache capacity is small. Besides, only small portions of the fetched cache blocks

are accessed before they get replaced due to conicts. The net result is a large number of cache misses.

Blocking (tiling) is widely used to reduce the size of the working set in order to �t it into the cache.

Blocking exploits temporal locality to reduce cache misses. However, cache conict misses still occur in tiled

matrix multiplication. TLB thrashing is another problem which occurs in computations with large matrices.

For large matrices, elements in a column in the same block will be located in several di�erent pages. Thus,

column accesses may cause a spate of TLB misses because TLB can keep only small number of entries.

Therefore, blocking does not o�er a complete solution for cache-optimized matrix multiplication.

To improve the performance of blocking, the copying technique [3] is combined with blocking in order to

remove the conict misses in blocking computation. Before blocking computation, the tiled data are copied

into temporary storage like a bu�er. Therefore, during the computation, the self-interference in block data

can be removed. However, the copying incurs large overhead and causes performance degradation. Also, it

cannot solve the TLB miss problem discussed above.

One of the key ideas of our approach is to reorganize the layout of matrix data stored in the main memory

such that it is cache friendly. We perform this reorganization prior to computation. In the proposed data

layout, we transpose matrix B such that the data layout matches the data access pattern. This reduces cache

pollution to a considerable extent. We partition each matrix into square sub-matrices, which are denoted
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Figure 3: Access of page numbers using translation look-aside bu�er

as blocks. Elements belonging to the same block are stored in consecutive memory locations in row major

order. The resulting data layout is as shown in Figure 4 (b). There are no conict misses among the elements

in the same block. The block size is chosen to be equal to the virtual page size so that computations within

a block do not result in a TLB miss. Therefore, the total number of TLB misses is reduced signi�cantly with

our layout compared to the standard row major layout. The above data layout transformation (i.e., matrix

transpose and block data layout) is performed only once. Thus, no additional overhead is incurred during the

computation. Our proposed layout reduces cache pollution, cache misses, and TLB misses without excessive

overheads like reorganizing the data in memory or computing indices.

2.4 Experimental Results

We have implemented our scheme on UltraSPARC II, Alpha 21264, and Pentium III based machines for

matrix sizes ranging from 1024x1024 to 1536x1536. Tables 1, 2, and 3 compare the performance of our

scheme with the naive CBLAS (without blocking), CBLAS (with blocking), and CBLAS (with blocking and

copying) algorithms. All the experiments were conducted on the above machines. The reported execution

times are wall clock times. On UltraSPARC II, Alpha 21264, and Pentium III machines, we used the gcc

compiler with \-O3" optimization option. As the experimental results show, our scheme is up to 15 times

faster than naive CBLAS, 2 times faster than blocking based CBLAS, and is superior to blocking and copying

based CBLAS implementations on UltraSPARC II. On Alpha 21264, our scheme performs up to 5 times

faster than the naive CBLAS, up to 3 times faster than blocking based CBLAS, and is faster than blocking

and copying based CBLAS implementation. On Pentium III, our scheme again outperforms the other three

algorithms.

3 Finite Element Method

In this section, we present an e�cient data layout for mesh generation for generic two-dimensional FEMs.

FEMs are widely used for numerical analysis and simulation of a large variety of scienti�c problems. The

�rst step of a typical FEM is to generate an appropriate mesh of the problem domain. FEMs for grand

challenge applications can have 10,000 to 1,000,000 elements. Often, very large number of memory access

is required. We describe a data layout of the mesh generated for an FEM using serendipity elements. This
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Figure 4: Illustration of our proposed block data layout for matrix multiplication



Table 1: Execution time on UltraSPARC II (400 MHz, 2MByte L2 cache)

Matrix size CBLAS (Native) CBLAS (Blocking) CBLAS (Blocking +copying) Our Algorithm

1024 � 1024 243.418 34.147 22.271 17.240

1200 � 1200 370.387 40.663 34.478 29.920

1280 � 1280 455.795 65.952 42.262 33.842

1400 � 1400 592.934 66.675 53.522 45.192

1536 � 1536 810.280 124.489 74.740 60.865

Table 2: Execution time on DEC Alpha 21264 (500MHz, 4MByte L2 cache)

Matrix size CBLAS (Native) CBLAS (Blocking) CBLAS (Blocking +copying) Our Algorithm

1024 � 1024 125.237 23.214 16.427 13.283

1200 � 1200 194.556 28.330 28.465 22.383

1280 � 1280 238.613 31.115 29.984 26.503

1400 � 1400 310.947 44.730 45.311 35.248

1536 � 1536 415.870 79.907 54.045 45.816

layout results in e�cient data access and minimization of the memory space allocated for the corresponding

mesh.

3.1 Mesh Generation for two-Dimensional FEMs

In �nite element methods, the problem domain is �rst discretized into a collection of pre-selected �nite

elements. Based on discretization, a �nite-element mesh of pre-selected elements is generated. The mesh

generation method has a strong inuence on the quality of the numerical results. In two-dimensional FEMs,

the problem domain is usually discretized into triangular or rectangular elements. Some examples are shown

in Figure 5.

Di�erent types of elements have di�erent number of pre-selected nodes. After discretization, the geometric

properties (e.g., coordinates, cross-section areas, etc.) of each node are generated. Based on these properties,

element equations are derived either directly or iteratively. For applications using the iterative approach,

the mesh may need to be regenerated for each iteration based on changes in geometric properties.

3.2 E�cient Data Layout for FEMs using Serendipity Elements

In mesh generation for two-dimensional FEMs, internal nodes of the higher-order triangular or rectangular

elements can be condensed at the element level. Condensation is justi�ed as these nodes do not contribute to

the inter-element connectivity. Figure 5 (a) shows a mesh with triangular elements, each having 12 boundary

nodes and 3 internal nodes. Another mesh with rectangular elements is shown in Figure 5 (b). Here each

element has 8 boundary nodes and 1 internal node. We can use the serendipity elements to avoid internal

nodes. Serendipity elements are those triangular or rectangular elements which have no interior nodes [6].

Techniques to condense internal nodes can reduce the size of the element matrices, which in turn are derived

from nodal properties. A mesh with serendipity elements can be realized by storing the geometric properties

of all nodes in row-major order. However, this straight-forward approach has its problems. First, it wastes

memory space. For instance, the FEM shown in Figure 5 (b) uses 8-node rectangular elements, and about a

quarter of the nodes are not accessed. Second, this approach causes cache pollution when the even rows of

the node matrix are accessed, as only half of the nodes are required.
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Figure 5: Illustration of two FEM meshes using serendipity elements and their node numbering schemes
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Table 3: Execution time on Pentium III (450MHz, 512KByte L2 cache)

Matrix size CBLAS (Native) CBLAS (Blocking) CBLAS (Blocking +copying) Our Algorithm

1024 � 1024 92.566 27.136 22.030 17.335

1200 � 1200 152.311 30.107 33.390 28.050

1280 � 1280 184.973 52.325 43.117 34.184

1400 � 1400 244.652 48.215 55.644 45.756

1536 � 1536 325.241 90.306 74.345 59.137

In our work, we have focussed on developing a data layout that addresses the above problems e�ectively.

The goals are to minimize the memory requirements, avoid cache conict misses, and prevent cache pollution.

We suggest an approach in which rows are stored with the same access pattern as a sub-matrix. Various

sub-matrices require di�erent indexing schemes based on their corresponding access patterns. Using the

technique of separating rows with di�erent access patterns, only the required nodes of each row are stored.

In Figure 5 (b), the FEM requires all nodes in the odd rows, and only every other node in the even rows.

Alternate rows from the original matrix are stored in matrices A and B as shown in Figure 6. As depicted in

Figure 7 , we condense matrix B so that only the nodes that have to be accessed are stored. Thus, memory

requirements are minimized.

(N-1) / 2

M

Matrix B

(M+1)/2

(N-1) / 2

Condensed Matrix B

Figure 7: Matrix B is condensed to reduce the overall memory requirement

Table 4: Sub-matrices used for the 12-node triangular FEM

Sub-matrix Name Sub-matrix Content matrix size access pattern

A Rows 4� k + 1 (n
4
)m all nodes

B Rows 4� k + 2 (n
4
)(m

2
) 1,2,5,6...

C Rows 4� k + 3 (n
4
)(m

2
) 1,3,5,7...

D Rows 4� k + 4 (n
4
)(m

2
) 1,4,5,8...

Using our data layout, both the sub-matrices are needed to access the nodes of a single element. For

instance, in Figure 5 (b), Matrix A is used to access nodes 1, 3, 4, 5, 7, and 8, while Matrix B is used to

access nodes 2 and 6.

Similarly, in the other example shown in Figure 5 (a), the FEM requires all of the nodes in rows 1, 5, 9,

..., 4 � k + 1 (k is a non-negative integer). However, it only requires nodes 1,2,5,6,... in rows 2, 6, 10,...,

4� k + 2. Using our approach, we alternately store the rows in four sub-matrices. Table 4 summarizes the

sizes and the access patterns of these sub-matrices. Note that we assume an n �m node matrix, where n,

m are both an integer multiple of 4. Also, we assume that k is a non-negative integer number.



In addition to the proposed technique to separate the node matrix into sub-matrices, we further apply

the block data layout as described in the previous section. The use of block data layout can further reduce

the cache conict misses as explained in Section 2.

3.3 Experimental Results

We have implemented an FEM benchmark using the 8-node rectangular model to examine the e�ciency

of memory access on an UltraSPARC II machine. The matrix in our experiment contains 512 nodes. Table 5

compares the performance of three approaches: a straightforward (without blocking) approach, an approach

with blocking, and a scheme that combines separate sub-matrices, blocking, and block data layout. The

reported execution times are wall clock times. On UltraSPARC II, we used the gcc compiler with the \-O3"

optimization option. For implementing our proposed scheme, we used block layouts and in-line functions to

access each array element. The block size was chosen to be 32 in order to avoid TLB misses.

Table 5: Memory Access time on UltraSPARC II (400 MHz, 2MByte L2 cache)

FEM Memory Access Benchmark Memory Access Time (milli-seconds) Techniques applied

Straightforward Approach 95.313 None

Blocking-Based Approach 74.190 Blocking

Our Proposed Approach 43.718 Separate Sub-matrices

Blocking + Block Layout

In spite of the greater complexity in index computation, our scheme is about 2.2 times faster than the

straightforward approach and approximately 1.7 times faster than the blocking based approach, as evident

from the experimental results shown in Table 5.

4 Conclusions

In this paper, we have proposed techniques for data placement to support e�cient memory access for

large scale scienti�c applications.

For large-scale matrix transposition (out-of-core matrix transpose), our algorithm reduced both the num-

ber of I/O operations and the index computation time. Our results show that our algorithm reduces the

execution time by up to 50%.

For large-scale standard matrix multiplication, our approach using the block data layout has shown

signi�cant performance improvement. Our approach reduces cache pollution, conict cache misses, and TLB

misses. Our scheme is up to 15 times faster than naive CBLAS, 2 times faster than blocking based CBLAS,

and 22% faster than blocking and copying based CBLAS, which were implemented on UltraSPARC II.

For mesh generation of Finite element methods (FEMs), our approach avoids cache pollution. Using

blocking and block layout, we achieved further reductions in cache misses and TLB misses. Experimental

results indicate speedup by a factor of 2.2 over normal layout and by 1.7 over blocking with normal layout.

Our results encourage the use of data placement/data layout techniques to improve the memory access

for scienti�c applications. We believe that the data layout designs can be further employed in other ERDC

applications with complex data access patterns. The work reported here is adapted from the theory developed

in the ADVISOR project(http://advisor.usc.edu)[1]. It is applied to two kernel problems in large scale

scienti�c computing which are of interest to HPCMO. In the ADVISOR project, algorithmic technique

for advanced architectures (such as smart memory and PIM) with a particular emphasis on irregular and

streaming applications is being developed.
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