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Abstract 
Tiling has long been used to improve cache performance.  
Recursion has recently been used as a cache-oblivious 
method of improving cache performance.  Both of these 
techniques are normally applied to dense linear algebra 
problems. We develop new implementations by means of 
these two techniques for the fundamental graph problem 
of Transitive Closure, namely the Floyd-Warshall 
Algorithm, and prove their optimality with respect to 
processor-memory traffic.  Using these implementations 
we show up to 10x improvement in execution time.  We 
also address Dijkstra's algorithm for the single-source 
shortest-path problem and Prim's algorithm for Minimum 
Spanning Tree, for which neither tiling nor recursion can 
be directly applied.  For these algorithms, we 
demonstrate up to a 2x improvement by using a cache 
friendly graph representation.  Experimental results are 
shown for the Pentium III, UltraSPARC III, Alpha 21264, 
and MIPS R12000 machines using problem sizes between 
1024 and 4096 vertices.  We demonstrate improved cache 
performance using the Simplescalar simulator. 
 
 
1. Introduction 

 
The topic of cache performance has been well studied 

in recent years.  It has been clearly shown that the amount 
of processor-memory traffic is the bottleneck for 
achieving high performance in many applications [4][21].  
While cache performance has been well studied, much of 
the focus has been on dense linear algebra problems, such 
as matrix multiplication and FFT [4][9][15][24].  All of 
these problems possess very regular access patterns that 
are known at compile time.  In this  paper, we take a 
different approach to this topic by focusing on some 
fundamental graph problems. 

Optimizing cache performance to achieve better 
overall performance is a difficult problem.  Modern 
microprocessors are including deeper and deeper memory 
hierarchies to hide the cost of cache misses.  The 
performance of these deep memory hierarchies has been 

shown to differ significantly from predictions based on a 
single level of cache [21].  Different miss penalties for 
each level of the memory hierarchy as well as the TLB 
also play an important role in the effectiveness of cache-
friendly optimizations.  These penalties vary among 
processors and cause large variations in execution time. 

The area of graph problems are fundamental in a 
wide variety of fields, most notably network routing, 
distributed computing, and computer aided circuit design.  
Graph problems pose unique challenges to improving 
cache performance due to their irregular data access 
patterns.  These challenges often cannot be handled using 
standard cache-friendly optimizations [7].  The focus of 
this research is to develop methods of meeting these 
challenges. 

In this paper we present a number of optimizations to 
the Floyd-Warshall algorithm, Dijkstra’s algorithm, and 
Prim’s algorithm.  For the Floyd-Warshall algorithm we 
present a recursive implementation that achieves a 6x 
improvement over the baseline implementation.  We also 
show that by tuning the base case for the recursion, we 
can further improve performance by up to 2x.  We also 
show a novel approach to tiling for the Floyd-Warshall 
algorithm that achieves performance very close to that of 
the recursive implementation.  Note that today’s state of 
the art research compilers cannot generate this 
implementation [7]. 

There are some natural combinations of 
implementation and data layout that decrease overhead 
costs, such as index computation, and yield performance 
advantage. In this paper, we show that our 
implementations of the Floyd-Warshall algorithm perform 
roughly equal with either the Morton layout or the Block 
Data Layout. 

For Dijkstra's algorithm and Prim's algorithm, to 
which tiling and recursion are not directly applicable, we 
present a cache-friendly graph representation.  By 
matching the data layout of the representation to the 
access pattern we show up to a 2x improvement in 
execution time. 

The remainder of this paper is organized as follows:  
In Section 2 we give the background needed and briefly 
summarize some related work in the areas of cache 
optimization and compiler optimizations.  In Section 3 we 
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discuss optimizing the Floyd-Warshall algorithm.  In 
Section 4 we discuss optimizing Dijkstra’s algorithm and 
the graph representation.  In Section 5 we apply the 
optimizations discussed in Section 4 to Prim’s algorithm.  
In Section 6 we draw conclusions. 

 
2. Background and Related Work 

 
In this section we give the background information 

required in our discussion of various optimizations in 
Section 3 - 5.  In Section 2.1 we give a brief outline of the 
graph algorithms.  For more details of these algorithms 
see [6].  In Section 2.2 we discuss some of the challenges 
that are faced in making the transitive closure problem 
cache-friendly.  We also discuss the model that we use to 
analyze cache performance and the four architectures that 
we use for experimentation throughout the paper.  Finally, 
in Section 2.3 we give some information regarding other 
work in the fields of cache analysis, cache-friendly 
optimizations, and compiler optimizations and how they 
relate to our work. 

 
2.1. Overview of Key Graph Algorithms  

 
For the sake of discussion, suppose we have a 

directed graph G with N vertices labeled 1 to N  and E  
edges.  The Floyd-Warshall algorithm (FW) is a dynamic 
programming algorithm, which computes a series of N, 
NxN matrices where Dk is the k th matrix and is defined as 
follows: Dk

(i,j) = shortest path from vertex i to vertex j 
composed of the subset of vertices labeled 1 to k. 

Dijkstra’s algorithm is designed to solve the single-
source shortest path problem.  It does this by repeatedly 
extracting from a priority queue Q the nearest vertex u to 
the source, given the distances known thus far in the 
computation (Extract-Min operation).  Once this nearest 
vertex is selected, all vertices v that neighbor u are 
updated with a new distance from the source (Update 
operation). 

Prim’s algorithm for Minimum Spanning Tree is very 
similar to Dijkstra’s algorithm for the single-source 
shortest path problem.  In both cases a root node or source 
node is chosen and all other nodes reside in the priority 
queue.  Nodes are extracted using an Extract-min 
operation and all neighbors of the extracted vertex are 
updated.  The difference in Prim’s algorithm is that nodes 
are updated with the weight of the edge from the extracted 
node instead of the weight from the source or root node. 

 
2.2. Challenges 

 
Transitive closure presents a very different set of 

challenges from those present in dense linear algebra 
problems such as matrix multiply and FFT.  These 
challenges are highlighted here and discussed in more 

detail in [17].  In the Floyd-Warshall algorithm, the 
operations involved are comparison and add operations.  
Also, we are faced with unique data dependencies 
between iterations of the outer loop.  This data 
dependency from one k th loop to the next eliminates the 
ability of any commercial or research compiler to improve 
data reuse.  We have explored using the SUIF research 
compiler and found that it cannot perform the 
optimizations discussed in Section 3 without user 
provided knowledge of the algorithm [7].  These 
challenges mean that often transitive closure displays 
much longer running times than other problems 
equivalent in complexity. 

In Dijkstra’s algorithm and Prim’s algorithm, the 
largest data structure is the graph representation.  An 
optimal representation, with respect to space, would be 
the adjacency-list representation.  However, this involves 
pointer chasing when traversing the list.  The priority 
queue has been highly optimized by various groups over 
the years.  Unfortunately, the update operation is often 
excluded, as it is not necessary in such algorithms as 
sorting.  The asymptotically optimal implementation that 
considers the update operation is the Fibonacci heap.  
Unfortunately this implementation includes large constant 
factors and did not perform well in our experiments. 

The model that we use in this paper is that of a uni-
processor, cache-based system.  We refer to the cache 
closest to the processor as L1 with size C1, and subsequent 
levels as Li with size Ci.  Throughout this paper we refer 
to the amount of processor-memory traffic.  This is  
defined as the amount of traffic between the last level of 
the memory hierarchy that is smaller than the problem 
size and the first level of the memory hierarchy that is 
larger than or equal to the problem size.  In most cases we 
refer to these as cache and memory respectively.  Finally, 
we assume an internal TLB with a fixed number of 
entries. 

We use four different architectures for our 
experiments.  The Pentium III Xeon running Windows 
2000 is a 700 MHz, 4 processor shared memory machine 
with 4 GB of main memory.  Each processor has 32 KB 
of level-1 data cache and 1 MB of level-2 cache on-chip.  
The level-1 cache is 4-way set associative with 32 B lines 
and the level-2 cache is 8-way set associative with 32 B 
lines.  The UltraSPARC III machine is a 750 MHz SUN 
Blade 1000 shared memory machine running Solaris 8.  It 
has 2 processors and 1 GB of main memory.  Each 
processor has 64 KB of level-1 data cache and 8 MB of 
level-2 cache.  The level-1 cache is 4-way set associative 
with 32 B lines and the level-2 cache is direct mapped 
with 64 B lines.  The MIPS machine is a 300 MHz 
R12000, 64 processor, shared memory machine with 16 
GB of main memory.  Each processor has 32 KB of level-
1 data cache and 8 MB of level-2 cache.  The level-1 
cache is 2-way set associative with 32 B lines and the 



level-2 cache is direct mapped with 64 B lines.  The 
Alpha 21264 is a 500 MHz uniprocessor machine with 
512 MB of main memory.  It has 64 KB of level-1 data 
cache and 4 MB of level-2 cache.  The level-1 cache is 2-
way set associative with 64 B lines and the level-2 cache 
is direct mapped with 64 B lines.  It also has an 8 element 
fully-associative victim cache.  All experiments are run 
on a uniprocessor or on a single node of a multiprocessor 
system.  Unless otherwise specified the Simplescalar 
simulations are done using 16 KB of level-1 data cache 
and 256 KB of level-2 cache parameters. 

 
2.3. Related Work  

 
A number of groups have done research in the area of 

cache performance analysis in recent years.  Detailed 
cache models have been developed by Weikle, McKee, 
and Wulf in [23] and Sen and Chatterjee in[21].  XOR-
based data layouts to eliminate cache misses have been 
explored by Valero and others in [10]. 

A number of papers have discussed the optimization 
of specific dense linear algebra problems with respect to 
cache performance.  Whaley and others discuss 
optimizing the widely used Basic Linear Algebra 
Subroutines (BLAS) in [24].  Chatterjee and Sen discuss a 
cache efficient matrix transpose in [4].  Frigo and others 
discuss the cache performance of cache oblivious 
algorithms for matrix transpose, FFT, and sorting in [9].  
Park and Prasanna discuss dynamic data remapping to 
improve cache performance for the DFT in [15].  One 
characteristic that all these problems share is a very 
regular memory accesses that are known at compile time. 

Another area that has been studied is the area of 
compiler optimizations (see for example [19]).  
Optimizing blocked algorithms has been extensively 
studied (see for example [12]).  The SUIF compiler 
framework includes a large set of libraries including 
libraries for performing data dependency analysis and 
loop transformations.  In this context, it is important to 
note that SUIF does not handle the data dependencies 
present in the Floyd-Warshall algorithm in a manner that 
improves the processor-memory traffic.  It will not 
perform the transformations discussed in Section 3 
without user intervention [7]. 

Although much of the focus of cache optimization 
has been on dense linear algebra problems, there has been 
some work that focuses on irregular data structures.  
Chilimbi et. al. discusses making pointer-based data 
structures cache-conscious in [5].  He focuses on 
providing structure layouts to make tree structures cache-
conscious.  LaMarca and Ladner developed analytical 
models and showed simulation results predicting the 
number of cache misses for the heap in [13].  However, 
the predictions they made were for an isolated heap, and 
the model they used was the hold model, in which the 

heap is static for the majority of operations.  In our work, 
we consider Dijkstra’s algorithm and Prim’s algorithm in 
which the heap is very dynamic.  In both Dijkstra’s 
algorithm and Prim’s algorithm O(N) Extract-Mins are 
performed and O(E) Updates are performed.  Finally in 
[20], Sanders discusses a highly optimized heap with 
respect to cache performance.  He shows significant 
performance improvement using his sequential heap .  The 
sequential heap does support Insert and Delete-min very 
efficiently, however the Update operation is not 
supported. 

In the presence of the Update operation, the 
asymptotically optimal implementation of the priority 
queue, with respect to time complexity, is the Fibonacci 
heap.  This implementation performs O(N*lg(N ) + E) 
operations in both Dijkstra’s algorithm and Prim’s 
algorithm.  In our experiments the large constant factors 
present in the Fibonacci heap caused it to perform very 
poorly.  For this reason, we focus our work on the graph 
representation and the interaction between the graph 
representation and the priority queue. 

We have recently published work on the Floyd-
Warshall algorithm in [17] that showed a 2x improvement 
using the Unidirectional Space Time Representation.  
Compared with [17], this paper represents a new approach 
to optimizing the Floyd-Warshall algorithm, namely 
recursion and a novel tiled implementation, which gives 
up to an additional 3x improvement in execution time.  
Further, we expand our scope of algorithms to include 
Dijkstra’s algorithm for the single source shortest path 
problem and Prim’s algorithm for the minimum spanning 
tree problem. 

 
3. Optimizing FW 

 
In this section we address the challenges of the 

Floyd-Warshall algorithm.  In Section 3.1 we introduce 
and prove the correctness of a recursive implementation 
for the Floyd-Warshall algorithm.  We also analyze the 
cache performance and show experimental results for this 
implementation compared with the baseline.  We also 
show that by tuning the recursive algorithm to the cache 
size, we can improve its performance by up to 2x.  In 
Section 3.2, we present a novel tiled implementation of 
the Floyd-Warshall algorithm.  Finally, in Section 3.3, we 
address the issue of data layout for both the blocked 
implementation and the recursive implementation. 

Throughout this section we make the following 
assumptions.  We assume a directed graph with N  vertices 
and E edges.  We assume the cache model described in 
Section 2.2, where Ci < N2 for some i  and the TLB size is 
much less than N.  To experimentally validate our 
approaches and their analysis, the actual problem sizes 
that we are working with are between 1024 and 4096 
nodes (1024 ≤ N ≤ 4096).  Each data element is 8 bytes.  



Many processors currently on the market have in the 
range of 16 to 64 KB of level-1 cache and between 256 
KB and 4 MB of level-2 cache.  Many processors have a 
TLB with approximately 64 entries and a page size of 4 to 
8 KB. 

In [11], it was shown that the lower bound on 
processor-memory traffic was Ω(N3/ C ) for the usual 
implementation of matrix multiply.  By examining the 
data dependency graphs for both matrix multiplication 
and the Floyd-Warshall algorithm, it can be shown that 
matrix multiplication reduces to the Floyd-Warshall 
algorithm with respect to processor-memory traffic.  
Therefore, we have the following: 

Lemma 3.1:  The lower bound on processor-
memory traffic for the Floyd-Warshall 
algorithm, given a fixed cache size C , is 
Ω(N3/ C ), where N is the number of vertices in 
the input graph. 

 
3.1. A Recursive Implementation of FW 

 
As stated earlier, recursive implementations have 

recently been used to increase cache performance.  It was 
stated in [8] that recursive implementations perform 
automatic blocking at every level of the memory 
hierarchy.  To the authors’ knowledge, there does not 
exist a recursive implementation of the Floyd-Warshall 
algorithm.  The reason for this, is that the Floyd-Warshall 
algorithm not only contains all the dependencies present 
in ordinary matrix multiplication, but also additional 
dependencies that can not be satisfied by the simple 
recursive implementation of matrix multiply.  What is 
shown here is a novel recursive implementation of the 
Floyd-Warshall algorithm.  We also prove the correctness 
of the implementation and show analytically that it 
reaches the asymptotically optimal amount of processor 
memory traffic. 

In order to design a recursive implementation of the 
Floyd-Warshall algorithm, first examine the standard 
implementation when applied to a 2x2 matrix.  The 
standard implementation loops over the variables k , i, and 
j from 1 to N .  When the 2x2 case is unrolled we have the 
code shown in Figure 1a.  Notice that 8 calls are made to 
the min() operation and each call requires 3 data values 
from the matrix.  This is converted into a recursive 
program by replacing the call to the min() function with a 
recursive call.  Instead of passing 3 data values, we pass 3 
sub-matrices corresponding to quadrants of the input 
matrix.  This code is shown in Figure 1b.  The initial call 
to the recursive algorithm passes the entire input matrix as 
each argument.  Subsequent calls pass quadrants of their 
input arguments as shown in Figure 1b.  The code similar 
to Figure 1a calling the min() operation is used as the base 
case for when the input matrices are of size 2x2. 

Theorem 3.1:  The recursive implementation of 
the Floyd-Warshall algorithm detailed above 
satisfies all dependencies in the Floyd-Warshall 
algorithm and computes the correct result. 
For a proof of Theorem 3.1, namely the correctness 

of the recursive implementation of the Floyd-Warshall 
algorithm see [14]. 

Theorem 3.2:  The recursive implementation 
reduces the processor-memory traffic by a factor 
of B, where ( )CB Ο= . 
Proof: 
Note that the running time of this algorithm is given 

by 

( ) )(
2

*8 3N
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TNT Θ=





=  

Define the amount of processor memory traffic by 
the function D(x).  Without considering cache, the 
function behaves exactly as the running time. 

( ) )(
2

*8 3N
N

DND Θ=





=  

Consider the problem after k  recursive calls.  At this 
point the problem size is N/2k.  There exists some k  such 
that N/2k = ( )CΟ , where C = cache size.  For simplicity 
we set B = N/2k. At this point, all data will fit in the cache 
and no further traffic will occur for recursive calls below 
this point.  Therefore: 

( ) ( )2BOBD =  
By combining Equation 2 and Equation 3 it can be 

shown that: 

( ) ( ) )(*
3

3

3

B
N

OBD
B
N

ND ==  

Therefore, the processor-memory traffic is reduced 
by a factor of B. < 

Theorem 3.3:  The recursive implementation 
reduces the traffic between the ith and the (i-1)th 

Floyd-Warshall (A) { 
 A11 = min(A11, A11+A11); 
 A12 = min(A12, A11+A12); 
 A21 = min(A21, A21+A11); 
 A22 = min(A22, A21+A12); 
 A22 = min(A22, A22+A22); 
 A21 = min(A21, A22+A21); 
 A12 = min(A12, A12+A22); 
 A11 = min(A11, A12+A21); 
} 

FWR (A, B, C) { 
 if (not base case) { 
  FWR(A11, B11, C11); 
  FWR(A12, B11, C12); 
  FWR(A21, B21, C11); 
  FWR(A22, B21, C12); 
  FWR(A22, B22, C22); 
  FWR(A21, B22, C21); 
  FWR(A12, B12, C22); 
  FWR(A11, B12, C21); 
 } 
 else { 
  /* run base case */ 
 } 
} 

Figure 1, a&b: Recursive implementation of FW. 

1 

4 

2 

3 



level of cache by a factor of Bi at each level of 
the memory hierarchy, where ( )ii CB Ο= . 

Proof: 
Note first of all, that no tuning was assumed when 

calculating the amount of processor-memory traffic in the 
proof of Theorem 3.2.  Namely, Equation 3 holds for any 
N and any B where ( )CB Ο= . 

In order to prove Theorem 3.3, first consider the 
entire problem and the traffic between main memory and 
the mth level of cache (size Cm).  By Theorem 3.2, the 
traffic will be reduced by Bm where ( )mm CB Ο= .  Next 

consider each problem of size Bm and the traffic between 
the mth level of cache and the (m-1)th level of cache (size 
Cm-1).  By replacing N in Theorem 3.2 by Bm, it can be 
shown that this traffic is reduced by a factor of Bm-1 where 

( )11 −− Ο= mm CB . 

This simple extension of Theorem 3.2 can be done 
for each level of the memory hierarchy, and therefore the 
processor-memory traffic between the ith and the (i-1)th 
level of cache will be reduced by a factor of Bi, where 

( )ii CB Ο= . < 

Finally, recall from Lemma 3.1 that the lower bound 
on processor-memory traffic for the Floyd-Warshall 
algorithm is given by Ω(N3/ C ), where C is the cache 
size.  Also recall from Theorem 3.2 the upper bound on 
processor-memory traffic that was shown for the 
recursive implementation was O(N3/B), where B2 = O(C ).  
Given this information we have the following Theorem. 

Theorem 3.4: Our recursive implementation is 
asymptotically optimal among all 
implementations of the Floyd-Warshall 
algorithm with respect to processor-memory 
traffic. 
As a final note in the recursive implementation, we 

show up to 2x improvement when we set the base case 
such that the base case would utilize more of the cache 
closest to the processor.  Once we reached a problem size 
B, where B2 is on the order of the cache size, we execute a 
standard iterative implementation of the Floyd-Warshall 
algorithm.  This improvement varied from one machine to 
the other and is due to the decrease in the overhead of 
recursion.  It can be shown that the number of recursive 
calls in the recursive algorithm is reduced by a factor of 
B3 when we stop the recursion at a problem of size B.  A 
comparison of full recursion and recursion stopped at a 
larger block size showed a 30% improvement on the 
Pentium III and a 2x improvement on the UltraSPARC 
III. 

In order to further improve performance, B 2 must be 
chosen to be on the order of the L1 cache size.  The 
simplest and possibly the most accurate method of 
choosing B is to experiment with various tile sizes.  This 

is the method that the Automatically Tuned Linear 
Algebra Subroutines (ATLAS) project employs [24].  
However, it is beneficial to find an estimate of the optimal 
block size.  In order to get an estimate we used the block 
size selection heuristic for finding this estimate discussed 
in [14]. 

The baseline we use for our experiments is a 
straightforward implementation of the Floyd-Warshall 
algorithm.  It was shown in [17] that standard 
optimizations yield limited performance increases on 
most machines.  The Simplescalar results in Table 1 for 
the recursive implementation show a 30% decrease in 
level-1 cache misses and a 2x decrease in level-2 cache 
misses for problem sizes of 1024 and 2048.  In order to 
verify the improvements on real machines, we compare 
the recursive implementation of the Floyd-Warshall 
algorithm with the baseline.  For these experiments the 
best block size was found experimentally.  The results 
show a 10x improvement in overall execution time on the 
Alpha, better than 7x improvement on the Pentium III and 
the MIPS, and almost a 3x improvement on the 
UltraSPARC III.  These results are shown in Figures 3 - 
6.  Differences in performance gains between machines 
are expected, due to the wide variance in cache 
parameters and miss penalties. 

 
3.2. A Tiled Implementation for FW 

 
Compiler groups have used tiling to achieve higher 

data reuse in looped code.  Unfortunately, the data 
dependencies from one k-loop to the next in the Floyd-
Warshall algorithm make it impossible for current 
compilers including research compilers to perform 3 
levels of tiling.  In order to tile the outermost loop we 
must cleverly reorder the tiles in such a way that satisfies 
data dependencies from one k-loop to the next as well as 
within each k-loop. 

Consider the following tiled implementation of the 
Floyd-Warshall algorithm.  Tile the problem into BxB  
tiles.  During the k th block iteration, first update the (k ,k)th 

Data level-1 cache misses 
N Baseline Recursive  

1024 0.806 0.546 
2048 6.442 4.362 

(billions) 
 

Data level-2 cache misses 
N Baseline Recursive  

1024 0.537 0.280 
2048 4.294 2.232 

(millions) 
 

Table 1: Simplescalar result  



tile, then the 
remainder of the  kth 
row and kth column, 
then the rest of the 
matrix.  Figure 2 
shows an example 
matrix tiled into a 
4x4 matrix of 
blocks.  Each block 
is of size BxB .  
During each 
outermost loop, we 
would update first 
the black tile 
representing the 

(k ,k)th tile, then the grey tiles, then the white tiles.  In this 
way we satisfy all dependencies from each k th loop to the 
next as well as all dependencies within each k th loop. 

Theorem 3.5:  The proposed tiled 
implementation of the Floyd-Warshall algorithm 
reduces the processor-memory traffic by a factor 
of B where B2 is on the order of the cache size. 
Proof sketch:  At each block we perform B3 

operations.  There are N/B  x N/B blocks in the array and 
we pass through each block N/B times.  This gives us a 
total of N3 operations.  In order to process each block we 
require only 3*B2 elements.  This gives us a total of N3/B 
total processor-memory traffic. < 

Given this upper bound on traffic for the tiled 
implementation and the lower bound shown in Lemma 
3.1, we have. 

Theorem 3.6: The proposed tiled 
implementation is asymptotically optimal among 
all implementations of the Floyd-Warshall 
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Figure 4: UltraSPARC III results.  
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Data level-1 cache misses 
N Baseline Tiled  

1024 0.806 0.542  
2048 6.442 4.326 109 

 
Data level-2 cache misses 
N Baseline Tiled  

1024 0.537 0.276  
2048 4.294 2.195 106 

 
Table 2: Simplescalar result 

 

Figure 2: Tiled 
implementation of FW. 

Figure 6: Alpha results.  
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algorithm with respect to processor-memory 
traffic. 
When implementing the tiled implementation of the 

Floyd-Warshall algorithm, it is important to use the best 
possible block size.  As mentioned in Section 3.1, the best 
block size should be found experimentally, and the block 
size selection heuristic discussed in Section 3.1 can be 
used to give a rough bound on the best block size.  
However, when implementing the tiled implementation, it 
is also important to note that the search space must take 
into account each level of cache as well as the size of the 
TLB.  Given these various solutions for B the search 
space should be expanded accordingly. 

Simplescalar results for the tiled implementation are 
shown in Table 2.  These results show a 2x improvement 
in level-2 cache misses and a 30% improvement in level-1 
cache misses.  Experimental results show a 10x 
improvement in execution time for the Alpha, better than 
7x improvement for the Pentium III and the MIPS and 
roughly a 3x improvement for the UltraSPARC III (See 
Figures 3 - 6). 

 
3.3. Data Layout Issues 

 
It is also important to consider the data layout when 

implementing any algorithm.  It has been shown by a 
number of groups that data layouts tuned to the data 
access pattern of the algorithm can reduce both TLB and 
cache misses (see for example  [15],  [18]).  In the case of 
the recursive algorithm, the access pattern is matched by a 
Z-Morton data layout.  See [4] for a definition of the 
Morton ordering. 

In the case of the tiled implementation, the Block 
Data Layout (BDL) matches the access pattern.  The BDL 
is a two level mapping that maps a tile of data, instead of 
a row, into contiguous memory.  See [14] for a definition 
of the BDL.  By setting the block size equal to the tile size 
in the tiled computation, the data layout will exactly 
match the data access pattern. 

We experimented with both of these data layouts for 
each of the algorithms.  The results are shown in Tables 3 
and 4.  All of the execution times were within 15% of 
each other with the Z-Morton data layout winning slightly 
for the recursive implementation and the BDL winning 
slightly for the tiled implementation.  The fact that the Z-
Morton was slightly better for the recursive 
implementation and likewise the BDL for the tiled 
implementation was exactly as expected, since they match 
the data access pattern most closely.  The closeness of the 
results is mostly likely due to the fact that the majority of 
the data reuse is within the final block.  Since both of 
these data layouts have the final block laid out in 
contiguous memory locations, they perform equally well. 

 
4. Optimizing the Single-Source Shortest 

Path Problem 
 
Due to the structure of Dijkstra’s algorithm neither 

tiling nor recursion can be directly applied.  Much work 
has been done to generate cache friendly implementations 
of the heap, however, the update operation has not been 
considered in great detail (see section 2.3).  In the 
presence of the update operation, the Fibonacci heap 
represents the asymptotically optimal implementation 
with respect to time complexity.  Unfortunately the 
performance of the Fibonacci heap was very poor 
compared with even a straightforward implementation of 
the heap [14]. 

As mentioned in Section 2, the largest data structure 
is the graph representation.  This structure will be of size 
O(N+E), where E can be as large as N2 for dense graphs.  
In contrast, the priority queue, the other data structure 
involved, will be of size O(N).  For these reasons, we 
focus primarily on optimizing the graph representation 
and on eliminating the cache conflicts between the graph 
representation and the priority queue. 

One difficulty we face when optimizing the graph 
representation is the access pattern.  In Dijkstra’s 
algorithm each element in the representation is accessed 

Recursive Implementation 
N Morton 

Layout 
Block Data 

Layout 
 

2048 103.48 111.42  
4096 820.45 878.89 (sec) 

 
Tiled Implementation 

N Morton 
Layout 

Block Data 
Layout 

 

2048 99.25 99.39  
4096 779.53 780.41 (sec) 

 

Recursive Implementation 
N Morton 

Layout 
Block Data 

Layout 
 

2048 307.33 311.26  
4096 2460.53 2488.88 (sec) 

 
Tiled Implementation 

N Morton 
Layout 

Block Data 
Layout 

 

2048 278.48 271.35  
4096 2248.20 2184.09 (sec) 

 

Table 3: Pentium III results.  Table 4: Ultrasparc III results.  



exactly once.  For each node that is extracted from the 
heap, the corresponding list of adjacent nodes is read from 
the graph representation.  Once each node is extracted 
from the heap, the computation is complete.  In this 
context, we can take advantage of two things.  The first is 
prefetching.  Modern processors perform aggressive 
prefetching in order to hide memory latencies.  The 
second is to optimize at the cache line level.  In this case, 
a single miss would bring in multiple elements that would 
subsequently be accessed and result in cache hits.  This is 
known as minimizing cache pollution. 

There are two commonly used graph representations.  
This representation is of size O(N2).  It has the nice 
property that elements are accessed in a contiguous 
fashion and therefore, cache pollution will be minimized 
and prefetching will be maximized.  However, for sparse 
graphs, the size of this representation is inefficient.  Each 
node in the list includes the cost of the edge from the 
given node to the adjacent node.  This representation has 
the property of being of optimal size for all graphs, 
namely O(N+E).  However, the fact that it is pointer 
based, leads to cache pollution and difficulties in 
prefetching.  See [6] for more details. 

Consider a simple combination of these two 
representations.  For each node in the graph, we have a 
corresponding array of adjacent nodes.  The size of this 
array is exactly the out-degree of the given node.  There 
are simple methods to construct this representation when 
the out-degree is not known until run time.  For this 

representation, the elements at each point in the array look 
similar to the elements stored in the adjacency list.  Each 
element must store both the cost of the path and the index 
of the adjacent node.  Since the size of each array is 
exactly the out-degree of the corresponding node, the size 
of this representation is exactly O(N+E).  This makes it 
optimal with respect to size.  Also, since the elements are 
stored in arrays and therefore in contiguous memory 
locations, the cache pollution will be minimized and 
prefetching will be maximized.  Subsequently this 
representation will be referred to as the adjacency array 
representation. 

In order to demonstrate the performance 
improvements using our graph representation, we 
performed Simplescalar simulations as well as 
experiments on two different machines, the Pentium III 
and UltraSPARC III, for Dijkstra’s algorithm.  The 
Simplescalar simulations show a significant improvement 
in level-2 cache miss rate for the adjacency array 
representation compared with the adjacency list 
representation (see Table 5).  This is due to the reduction 
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Figure 7: Dijkstra’s alg. on 
Pentium III, N = 2048 
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Table 5: Simplescalar results.  



in cache pollution and increase in prefetching that was 
predicted.  The experimental results also demonstrate 
improved performance.  Figures 7 - 10 show a 2x 
improvement for Dijkstra’s algorithm on the Pentium III 
and a 20% improvement on the UltraSPARC III.  This 
significant difference in performance is due primarily to 
the difference in the memory hierarchy of these two 
architectures. 

A second comparison to observe is between the 
Floyd-Warshall algorithm and Dijkstra’s algorithm for 
sparse graphs, i.e. edge densities less than 20%.  For these 
graphs, Dijkstra’s algorithm is more efficient for the all 
pairs shortest path problem.  By using the adjacency array 
representation of the graph in Dijkstra’s algorithm, the 
range of graphs over which Dijkstra’s algorithm 
outperforms the Floyd-Warshall algorithm can be 
increased.  Figures 11 & 12 show a comparison of the 
best Floyd-Warshall algorithm with Dijkstra’s algorithm 
for sparse graphs.  On the Pentium III, we were able to 
increase the range for Dijkstra’s algorithm from densities 
up to 5% to densities up to 20%.  On the 
UltraSPARC III we increased the range 
from densities up to 20% to densities up to 
30%. 

This first set of experiments was done 
using the problem sizes used in Section 3 in 
order to compare the Floyd-Warshall 
algorithm with Dijkstra’s algorithm for the 
all pairs shortest path problem.  Also, with 
these problem sizes, the cache is much 
larger than the data set size and cache 
conflicts are not a significant problem.  If 
the problem set is much larger, the conflict 
between the graph representation and the 
priority queue should be considered.  In our 
data layout the priority queue is placed in 
memory such that it maps only to the top 
half of the cache.  The graph representation 
is placed in memory such that it maps only 
to the bottom half of the cache.  In this way 
the conflicts between the graph 
representation and the priority queue will be 
eliminated.  It should be noted that this 
scheme may increase the cache conflicts 

within the priority queue, since it is a frequently accessed 
data structure. 

Experimental results for problem sizes larger than the 
cache size are shown in Table 6.  For these problem sizes 
the performance gains were somewhat smaller than the 
gains for smaller problems.  This is most likely due to the 
fact that the priority queue is much larger and causes 
more traffic.  Also, due to memory limitations, the 
experiments were run for very sparse graphs, E = O(N).  
The adjacency array graph representation should give 
more performance improvements for denser graphs, 
simply because the number of adjacent nodes will be 
greater.  In the case of 512 K nodes, the experiment had a 
higher percentage of edges and showed better 
performance improvements. 

 
5. Optimizing the Minimum Spanning Tree 

Problem 
 
As mentioned in Section 2, Prim’s algorithm for 

minimum spanning tree is very similar to Dijkstra’s 
algorithm for the single source shortest path problem.  For 
this reason the optimizations applicable to Dijkstra’s 
algorithm are applicable to Prim’s algorithm.  Figures 13 - 
16 show the result of applying the optimization to the 
graph representation discussed in Section 4 to Prim’s 
algorithm.  Recall that this was an optimization to the 
graph representation replacing the adjacency list 
representation with the adjacency array representation.  
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Figure 13: Prim’s alg. on 
Pentium III, N = 2048 

Figure 15: Prim’s alg. on 
UltraSPARC III, N = 2048 

Figure 16: Prim’s alg. on 
UltraSPARC III, N = 2048 

0

50

100

150

200

250

300

350

400

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n 
tim

e 
(m

s)

Linked-List

Array

0

200

400

600

800

1000

1200

1400

1600

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n 
tim

e 
(m

s)

Linked-List

Array

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n 
tim

e 
(m

s)

Linked-List

Array

Figure 14: Prim’s alg. on 
Pentium III, N = 4096 

N Linked-
List 

Adj. 
Array 

Adj. Array 
w/ coloring 

512 K 13.57 10.24 10.41 
1 M 14.369 13.879 14.864 
2 M 32.324 32.108 31.419 
4 M 71.908 69.796 66.531 

(sec) 

Table 6: Dijkstra’s algorithm on UltraSPARC III. 



Our results show a 2x improvement on the Pentium III 
and 20% for the UltraSPARC III.  These results are for 
problem sizes 2048 and 4096.  This result is very similar 
to the results we saw for the same comparison in 
Dijkstra’s algorithm.  Recall that our Simplescalar results 
for Dijkstra’s algorithm showed an improvement in the 
level-2 cache misses.  Based on the similarity between 
Dijkstra’s algorithm and Prim’s algorithm, we could 
expect similar cache performance for Prim’s algorithm. 

 
6. Conclusion 

 
Using various optimizations for graph algorithms, we 

have showed a 3x to 10x improvement for the Floyd-
Warshall algorithm and a 20% to 2x improvement for 
Dijkstra’s algorithm and Prim’s algorithm.  Our 
optimizations to the Floyd-Warshall algorithm represent a 
novel recursive implementation as well as a novel tiled 
implementation of the algorithm.  For Dijkstra’s 
algorithm and Prim’s algorithm, we presented a cache-
friendly graph representation that gave significant 
performance improvements. 

One area for future work is the optimization of the 
priority queue in Dijkstra’s algorithm and Prim’s 
algorithm.  As mentioned, the Fibonacci heap is the 
asymptotically optimal implementation for priority queue 
in the presence of the update operation, however, due to 
large constant factors, it performed poorly in experiments. 

This work is part of the Algorithms for Data 
IntensiVe Applications on Intelligent and Smart 
MemORies (ADVISOR) Project at USC [1].  In this 
project we focus on developing algorithmic techniques for 
mapping applications to architectures.  Through this we 
understand and create a framework for application 
developers to exploit features of advanced architectures to 
achieve high performance. 
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