Bitcoin and Secure Computation With Money

How to Use Bitcoin to Play Decentralized Poker

Iddo Bentov
Technion

Ranjit Kumaresan
MIT

Tal Moran
IDC
The bad news

Impossibility of fair MPC

- Secure MPC is possible [Yao86, GMW87, ...]
 - Security: correctness, privacy, independence of inputs.
 - Even with dishonest majority, in the computational setting.

- Fair MPC is impossible [Cle86]
 - Fairness: if any party receives the output, then all honest parties must receive the output.
 - r-round 2-party coin toss protocol is susceptible to $\Omega(1/r)$ bias.
 - \implies no fair protocol for XOR, barring gradual release [...]

Secure Cash Distribution
Goals

MPC enhancements

- Impose fairness in MPC without an honest majority.
- Secure (reactive) MPC with money inputs and outputs
 - For example: poker.
- Efficiency improvements to the MPC itself:
 - Transform semi-honest secure MPC to MPC secure in the malicious setting, while penalizing caught deviations.
Formal model that incorporates coins

Functionality \mathcal{F}_{\square} versus functionality $\mathcal{F}_{\star}^{\square}$ with coins

- If party P_i has (say) secret key sk_i and sends it to party P_j, then both P_i and P_j will have the string sk_i.

- If party P_i has coins(x) and sends $y < x$ coins to party P_j, then P_i will have coins($x - y$) and P_j will have extra coins(y).
Formal model that incorporates coins

Functionality F versus functionality F^* with coins

- If party P_i has (say) secret key sk_i and sends it to party P_j, then both P_i and P_j will have the string sk_i.
- If party P_i has coins (x) and sends $y < x$ coins to party P_j, then P_i will have coins $(x - y)$ and P_j will have extra coins (y).

- Ideally, all the parties deem coins to be valuable assets.
- It is possible to define the secure computation with coins model directly, or with (UC) ideal functionalities.
- Sending coins (x) may require a broadcast that reveals at least the amount x (not in zk-SNARK cryptocurrency like ZeroCash).
- We give proofs using the simulation paradigm (but not in this talk).
Claim-or-Refund for two parties P_s, P_r (implicit in [Max11],[BBSU])

The $\mathcal{F}_{\text{CR}}^*$ Claim-or-Refund ideal functionality

1. The sender P_s deposits (locks) her coins q while specifying a time bound τ and a circuit $\phi(\cdot)$.
2. The receiver P_r can claim (gain possession) of the coins q by publicly revealing a witness w that satisfies $\phi(w) = 1$.
3. If P_r didn’t claim within time τ, coins q are refunded to P_s.

How to realize $\mathcal{F}_{\text{CR}}^*$ via Bitcoin

- The feature that is needed is “timelock” transactions.
- Technically: Bitcoin nodes agree to include a transaction with timelock field τ only if current block index/timestamp is $> \tau$
- More expressive scripting (CHECKLOCKTIMEVERIFY) can enable $\mathcal{F}_{\text{CR}}^*$ directly (avoids transaction malleability attacks).
High-level description the \mathcal{F}^*_{CR} implementation in Bitcoin

- P_s controls TX_{old} that resides on the blockchain.
- P_s creates a transaction TX_{new} that spends TX_{old} to a Bitcoin script that can be redeemed by P_s and P_r, or only by P_r by supplying a witness w that satisfies $\phi(w) = 1$.
- P_s asks P_r to sign a timelock transaction that refunds TX_{new} to P_s at time τ (conditioned upon both P_s and P_r signing).
- After P_r signs the refund, P_s can safely broadcast TX_{new}.

1. P_s is safe because P_r only sees $\text{Hash}(TX_{new})$, and therefore cannot broadcast TX_{new} to cause P_s to lose the coins.
2. P_r can safely sign the random-looking data $\text{Hash}(TX_{new})$ because the protocol uses a freshly generated (sk_R, pk_R) pair.
The structure of Bitcoin transactions

<table>
<thead>
<tr>
<th>How standard Bitcoin transactions are chained</th>
</tr>
</thead>
<tbody>
<tr>
<td>$TX_{old} = \text{earlier } TX \text{ output of coins}(q) \text{ is redeemable by } pk_A$</td>
</tr>
<tr>
<td>$id_{old} = \text{Hash}(TX_{old})$</td>
</tr>
<tr>
<td>$PREPARE_{new} = (id_{old}, q, pk_B, 0)$</td>
</tr>
<tr>
<td>$TX_{new} = (PREPARE_{new}, Sign_{sk_A}(PREPARE_{new}))$</td>
</tr>
<tr>
<td>$id_{new} = \text{Hash}(TX_{new})$</td>
</tr>
<tr>
<td>Initial minting transaction specifies some pk_M that belongs to a miner, and is created via proof of work.</td>
</tr>
</tbody>
</table>
Realization of $\mathcal{F}_{\text{CR}}^*$ via Bitcoin

The $\mathcal{F}_{\text{CR}}^*$ transaction

- $\text{PREPARE}_{\text{new}} = (id_{\text{old}}, q, (pk_S \land pk_R) \lor (\phi(\cdot) \land pk_R), 0)$
- $\phi(\cdot)$ can be $\text{SHA256}(\cdot) == Y$ where Y is hardcoded.
- $TX_{\text{new}} = (\text{PREPARE}_{\text{new}}, \text{Sign}_{sk_S}(\text{PREPARE}_{\text{new}}))$
- $id_{\text{new}} = \text{Hash}(TX_{\text{new}})$
- P_s sends $\text{PREPARE}_{\text{refund}} = (id_{\text{new}}, q, pk_S, \tau)$ to P_r
- P_r sends $\sigma_R = \text{Sign}_{sk_R}(\text{PREPARE}_{\text{refund}})$ to P_s
- P_s broadcasts TX_{new} to the Bitcoin network
- If P_r doesn’t reveal w until time τ then P_s creates $TX_{\text{refund}} = (\text{PREPARE}_{\text{refund}}, (\text{Sign}_{sk_S}(\text{PREPARE}_{\text{refund}}), \sigma_R))$ and broadcasts it to reclaim her q coins
Fairness with Penalties

Secure Cash Distribution

\[F^*_\text{CR} \]

via Bitcoin with CLTV (coming soon...)

Pseudocode: \(pk_S, pk_R, h_0, \tau \) are hardcoded

if (block\# > \(\tau \)) then

\(P_s \) can spend the coins(q) by signing with \(sk_S \)

else

\(P_r \) can spend the coins(q) by

signing with \(sk_R \)

AND

supplying \(w \) such that \(\text{Hash}(w) = h_0 \)

Bitcoin script (multisig example)

IF

\(<\text{timeout}>\) CHECKLOCKTIMEVERIFY OP DROP

ELSE

\(<P_r>\) CHECKSIGVERIFY

ENDIF

\(<P_s>\) CHECKSIGVERIFY
Fairness with penalties

Definition of fair secure multiparty computation with penalties

- An honest party never has to pay any penalty
- If a party aborts after learning the output and doesn’t deliver output to honest parties \Rightarrow every honest party is compensated
Fairness with Penalties

Definition of fair secure multiparty computation with penalties

- An honest party never has to pay any penalty.
- If a party aborts after learning the output and doesn’t deliver output to honest parties → every honest party is compensated.

Outline of F^*_f – fairness with penalties for any function f

- P_1, \ldots, P_n run secure unfair MPC for $f(x_1, \ldots, x_n)$ that
 1. Computes shares (y_1, \ldots, y_n) of the output $y = f(x_1, \ldots, x_n)$
 2. Computes $\text{Tags} = (\text{com}(y_1), \ldots, \text{com}(y_n)) = (\text{hash}(y_1), \ldots, \text{hash}(y_n))$
 3.Delivers (y_i, Tags) to every P_i

- P_1, \ldots, P_n deposit coins and run fair reconstruction (fair exchange) with penalties to swap the y_i’s among themselves.
Fair exchange in the $\mathcal{F}^*_{\mathcal{CR}}$-hybrid model - the ladder construction

“Abort” attack:

P_2 claims without depositing

\[
\begin{align*}
P_1 & \xrightarrow{w_2, q, \tau} P_2 \\
\quad & \\
\quad & \quad \text{"Abort" attack:} \\
\quad & \\
P_2 & \xrightarrow{w_1, q, \tau} P_1 \\
\quad & \quad \text{"Abort" attack:} \\
\quad & \\
\quad & \quad \text{"Abort" attack:} \\
\quad & \\
\text{Coalition } P_1, P_2 \text{ obtain } w_3 \text{ from } P_3 \\
P_2 & \quad \text{doesn't claim the top transaction} \\
P_3 & \quad \text{isn't compensated}
\end{align*}
\]
Fair exchange in the \mathcal{F}_{CR}^*-hybrid model - the ladder construction

"Abort" attack:
P_2 claims without depositing

Fair exchange:
P_1 claims by revealing w_1
\Rightarrow P_2 can claim by revealing w_2
“Abort” attack:

P_2 claims without depositing

Fair exchange:

P_1 claims by revealing w_1

$\Rightarrow P_2$ can claim by revealing w_2

Malicious coalition:

Coalition P_1, P_2 obtain w_3 from P_3

P_2 doesn’t claim the top transaction

P_3 isn’t compensated
Fair exchange in the $\mathcal{F}^*_{\text{CR}}$-hybrid model - the ladder construction (contd.)

Fair exchange:

Bottom two levels:
P_1, P_2 get compensated by P_3

Top two levels:
P_3 gets her refunds by revealing w_3

Full ladder:
In principle, jointly locking coins for fair exchange can work well:

1. $M = \text{“if } P_1, P_2, P_3, P_4 \text{ sign this message with inputs of coins}(3x) \text{ each then their } 3x \text{ coins are locked into 4 outputs of coins}(3x) \text{ each, where each } P_i \text{ can redeem output } T_i \text{ with a witness } w_i \text{ that satisfies } \phi_i, \text{ and after time } \tau \text{ anyone can divide an unredeemed output } T_i \text{ equally to } \{P_1, P_2, P_3, P_4\} \setminus \{P_i\}”$

2. $P_1, P_2, P_3, P_4 \text{ sign } M \text{ and broadcast it, and after } M \text{ is confirmed, each } P_i \text{ redeems coins}(x) \text{ by revealing } w_i$
Practicality of multiparty fair exchange with penalties in Bitcoin

- Can F^*_{ML} be implemented if the “transaction malleability” vulnerability would be fixed (BIP 62)?
 - Suppose that the parties invoke an *unfair* secure MPC where the input of P_i is $inp_i = \text{Sign}_{sk_i}(\text{PREPARE}_{lock})$, and the output to all parties is $\text{SHA256d}(\text{PREPARE}_{lock}, inp_1, \ldots, inp_n)$.
 - However, parties could then re-sign and invalidate the refunds, because ECDSA is a randomized signature algorithm.

- Instead, we propose a protocol enhancement that eliminates transaction malleability while fully retaining expressibility.
Can $\mathcal{F}_{\text{ML}}^*$ be implement if the “transaction malleability”
vulnerability would be fixed (BIP 62)?

- Suppose that the parties invoke an unfair secure MPC where
 the input of P_i is $\text{inp}_i = \text{Sign}_{sk_i}(\text{PREPARE}_{\text{lock}})$, and the
 output to all parties is $\text{SHA256d}(\text{PREPARE}_{\text{lock}}, \text{inp}_1, \ldots, \text{inp}_n)$.
- However, parties could then re-sign and invalidate the refunds,
 because ECDSA is a randomized signature algorithm.

- Instead, we propose a protocol enhancement that eliminates
 transaction malleability while fully retaining expressibility.

Recap:

- $\mathcal{F}_{\text{ML}}^*$ requires $O(1)$ Bitcoin rounds and $O(n^2)$ transaction
 data (and $O(n^2)$ signature operations), while the ladder
 requires $O(n)$ Bitcoin rounds and $O(n)$ transactions.

- Multiparty fair computation can be implemented in Bitcoin
 via the ladder construction.

- Multiparty fair computation can be implemented via $\mathcal{F}_{\text{ML}}^*$
 with an enhanced Bitcoin protocol.
Comparison with other ways to achieve fairness

Gradual release

- Even with only 2 parties, the number of rounds depends on a security parameter.
Comparison with other ways to achieve fairness

Gradual release

- Even with only 2 parties, the number of rounds depends on a security parameter.
- With Bitcoin, the PoW miners do all the heavy lifting.
Comparison with other ways to achieve fairness

Gradual release

- Even with only 2 parties, the number of rounds depends on a security parameter.
- With Bitcoin, the PoW miners do all the heavy lifting.

Trusted bank

- Legally Enforceable Fairness in Secure Two-Party Computation [Lindell 2008]
- Requires a trusted party to provide an ideal bank functionality.
- Bank balance of a party can go negative? Bounced cheques?
- 2-party only: the bank can provide \mathcal{F}^{\star}_{CR} or \mathcal{F}^{\star}_{ML} to use our constructions directly, or implement similar protocols.
- Disadvantage of Bitcoin: monopoly money?
Secure cash distribution and poker

How to Use Bitcoin to Play Decentralized Poker

Iddo Bentov
Technion

Ranjit Kumaresan
MIT

Tal Moran
IDC

CCS 2015
“Paradoxical” Abilities 1983–

• Exchanging Secret Messages without Ever Meeting

• Simultaneous Contract Signing Over the Phone

• Generating exponentially long pseudo random strings indistinguishable from random

• Proving a theorem without revealing the proof

• Playing any digital game without referees

• Private Information Retrieval
Secure cash distribution with penalties

Ideal 2-party secure (non-reactive) cash distribution functionality:

1. Wait to receive \((x_1, \text{coins}(d_1))\) from \(P_1\) and \((x_2, \text{coins}(d_2))\) from \(P_2\).
2. Compute \((y, v) \leftarrow f(x_1, x_2, d_1, d_2)\).
3. Send \((y, \text{coins}(v))\) to \(P_1\) and \((y, \text{coins}(d_1 + d_2 - v))\) to \(P_2\).
Secure cash distribution with penalties

Ideal 2-party secure (non-reactive) cash distribution functionality:

1. Wait to receive \((x_1, \text{coins}(d_1))\) from \(P_1\) and \((x_2, \text{coins}(d_2))\) from \(P_2\).
2. Compute \((y, v) \leftarrow f(x_1, x_2, d_1, d_2)\).
3. Send \((y, \text{coins}(v))\) to \(P_1\) and \((y, \text{coins}(d_1 + d_2 - v))\) to \(P_2\).

- In the general case, each party \(P_i\) has input \((x_i, \text{coins}(d_i))\) and receives output \((y, \text{coins}(v_i))\).
- Use-cases: generalized lottery, incentivized computation, ...
Blackbox secure cash distribution

- Blackbox realization of secure cash distribution in the \mathcal{F}^*_{CR}-hybrid model.
- Assume that input coins amount of P_i is m_i-bit number.

Step 1: commit to random secrets (preprocessing)

Invoke secure MPC where all $i \in [n], j \in [n] \setminus \{i\}, k \in [m_i]$:
- P_i picks a random witness $w_{i,j,k} \leftarrow \{0, 1\}^\lambda$
- P_i computes $c_{i,j,k} \leftarrow \text{commit}(1^\lambda, w_{i,j,k})$.
- P_i n-out-of-n secret shares each witness $w_{i,j,k}$.
- P_i outputs $c_{i,j,k}$ and the i-th share of each $w_{i,j,k}$ to each P_j.

Then, each P_i makes \mathcal{F}^*_{CR} transaction $P_i \xrightarrow{w_{i,j,k}} P_j \xrightarrow{2^k, \tau} P_j$
Blackbox secure cash distribution (contd.)

Assume that the input coin amounts is \(d = (d_1, \ldots, d_n) \) and the string inputs are \((x_1, x_2, \ldots, x_n) \).

Step 2: compute the cash distribution

Invoke secure MPC (unfair for now) for the cash distribution:

- Compute the output coin amounts \(v = (v_1, v_2, \ldots, v_n) \).
- Derive numbers \(b_{i,j} \) that specify how many coins \(P_i \) needs to send \(P_j \) according to the input coins \(d \) and output coins \(v \).
- Let \((b_{i,j,1}, b_{i,j,2}, \ldots, b_{i,j,m_i}) \) be the binary expansion of \(b_{i,j} \).
- For all \(i, j, k \), if \(b_{i,j,k} = 1 \) then reconstruct \(w_{i,j,k} \) and concatenate it to the output.
- Compute \(y = f(x_1, x_2, \ldots, x_n) \) and output \(y \) too.

Then, use fair exchange with penalties (with time limit < \(\tau \)) to deliver the output to all parties, so that \(F^*_\text{CR} \) claims will ensue.
Is one-shot protocol enough?

Are we there yet?
Are we there yet? In the case of poker, not really.

- The most natural formulation of poker is as a *reactive* secure MPC.
- This means that at certain rounds of the computation some information is leaked to the parties (e.g., the top card of the deck is revealed).
Is one-shot protocol enough?

Are we there yet? In the case of poker, not really.

- The most natural formulation of poker is as a *reactive* secure MPC.
- This means that at certain rounds of the computation some information is leaked to the parties (e.g., the top card of the deck is revealed).
- \[\Rightarrow\] the functionality needs to be dropout-tolerant, i.e., after information is revealed in intermediate rounds, corrupt parties must not be allowed to abort without punishment.
Are we there yet? In the case of poker, not really.

- The most natural formulation of poker is as a *reactive* secure MPC.
- This means that at certain rounds of the computation some information is leaked to the parties (e.g., the top card of the deck is revealed).
- ⇒ the functionality needs to be dropout-tolerant, i.e., after information is revealed in intermediate rounds, corrupt parties must not be allowed to abort without punishment.
- One-shot protocol to compute a circuit that takes into account all the possible variables is highly inefficient, and those variable may depend on external events (say, you receive a phone call regarding an unrelated financial loss).
Reactive secure cash distribution

Ingredients needed:

- See-saw instead of the ladder construction, to force parties to make the next move.
Reactive secure cash distribution

Ingredients needed:

- See-saw instead of the ladder construction, to force parties to make the next move.
- The given secure MPC (whitebox) where for every round r a single message is broadcast by a designated party P_{i_r}.
Reactive secure cash distribution

Ingredients needed:

- See-saw instead of the ladder construction, to force parties to make the next move.

- The given secure MPC (whitebox) where for every round r a single message is broadcast by a designated party P_{i_r}.

- F_{CR}^* transactions $P_i \xrightarrow{\phi_{i,j}} P_j$ where $\phi_{i,j}$ is a circuit (script) that is satisfied if P_i created multiple signed extensions of protocol’s execution (with a unique starting nonce).
Reactive secure cash distribution

Ingredients needed:

- See-saw instead of the ladder construction, to force parties to make the next move.

- The given secure MPC (whitebox) where for every round \(r \) a single message is broadcast by a designated party \(P_{i_r} \).

- **\(\mathcal{F}_{\text{CR}}^{\star} \)** transactions \(P_i \xrightarrow{\phi_{i,j}} P_j \) where \(\phi_{i,j} \) is a circuit (script) that is satisfied if \(P_i \) created multiple signed extensions of protocol’s execution (with a unique starting nonce).

- Blackbox secure cash distribution as described, with refunds at time \(\tau \) that exceeds the see-saw time limits, and hence with circuits specified at start that are utilized in the final rounds.
The see-saw construction: 2 parties

Roof deposit.

\[
P_1 \xrightarrow{TT_{m,2}} q,\tau_{m,2} \rightarrow P_2 \quad (Tx_{m,2})
\]

See-saw deposits. For \(r = m - 1 \) to 1:

\[
P_2 \xrightarrow{TT_{r+1,1}} 2q,\tau_{r+1,1} \rightarrow P_1 \quad (Tx_{r+1,1})
\]

\[
P_1 \xrightarrow{TT_{r,2}} 2q,\tau_{r,2} \rightarrow P_2 \quad (Tx_{r,2})
\]

Floor deposit.

\[
P_2 \xrightarrow{TT_{1,1}} q,\tau_{1,1} \rightarrow P_1 \quad (Tx_{1,1})
\]
The see-saw construction: multiparty

Roof deposits. For each $j \in [n - 1]$:

$$P_j \xrightarrow{\text{TT}_n, q, \tau_{2n-2}} P_n$$

Ladder deposits. For $i = n - 1$ down to 2:

- **Rung unlock:** For $j = n$ down to $i + 1$:

 $$P_j \xrightarrow{\text{TT}_i \land U_i, j, q, \tau_{2i-1}} P_i$$

- **Rung climb:**

 $$P_{i+1} \xrightarrow{\text{TT}_i, i \cdot q, \tau_{2i-2}} P_i$$

- **Rung lock:** For each $j = n$ down to $i + 1$:

 $$P_i \xrightarrow{\text{TT}_i-1 \land U_i, j, q, \tau_{2i-2}} P_j$$

Foot deposit.

$$P_2 \xrightarrow{\text{TT}_1, q, \tau_1} P_1$$
The see-saw construction: multiparty (contd.)

Properties of the multiparty see-saw

- $O(n^2m)$ round complexity (ladder is linear).
- $O(nm)$ security deposit by each party.
The see-saw construction: multiparty (contd.)

Properties of the multiparty see-saw

- $O(n^2 m)$ round complexity (ladder is linear).
- $O(nm)$ security deposit by each party.
- Party P_i who aborts pays compensation to all other parties.
The see-saw construction: multiparty (contd.)

Properties of the multiparty see-saw

- $O(n^2 m)$ round complexity (ladder is linear).
- $O(nm)$ security deposit by each party.
- Party P_i who aborts pays compensation to all other parties.
- In the ladder P_i can abort and then nobody learns the secret.
The see-saw construction: multiparty (contd.)

Properties of the multiparty see-saw

- $O(n^2 m)$ round complexity (ladder is linear).
- $O(nm)$ security deposit by each party.
- Party P_i who aborts pays compensation to all other parties.
- In the ladder P_i can abort and then nobody learns the secret.
- This is crucial for reactive functionalities:
 - Consider poker: suppose that in round j all parties exchange shares to reveal the top card of the deck.
 - If P_i didn’t like this top card, we must not allow P_i to abort in round $j + 1$ without punishment.
The see-saw construction: multiparty (contd.)

Properties of the multiparty see-saw

- $O(n^2 m)$ round complexity (ladder is linear).
- $O(nm)$ security deposit by each party.
- Party P_i who aborts pays compensation to all other parties.
- In the ladder P_i can abort and then nobody learns the secret.
- This is crucial for reactive functionalities:
 - Consider poker: suppose that in round j all parties exchange shares to reveal the top card of the deck.
 - If P_i didn’t like this top card, we must not allow P_i to abort in round $j + 1$ without punishment.
- The circuits verify a signed extension of the entire execution transcript, and that this extension conforms with the protocol.
Properties of the multiparty see-saw

- $O(n^2m)$ round complexity (ladder is linear).
- $O(nm)$ security deposit by each party.
- Party P_i who aborts pays compensation to all other parties.
- In the ladder P_i can abort and then nobody learns the secret.
- This is crucial for reactive functionalities:
 - Consider poker: suppose that in round j all parties exchange shares to reveal the top card of the deck.
 - If P_i didn’t like this top card, we must not allow P_i to abort in round $j + 1$ without punishment.
- The circuits verify a signed extension of the entire execution transcript, and that this extension conforms with the protocol.
- \Rightarrow needs more expressive scripting language than vanilla Bitcoin, but not Turing complete scripts because the round bounds are known in advance.
The see-saw construction: poker

- No need to run reactive secure MPC that corresponds to rounds of the see-saw.
The see-saw construction: poker

- No need to run reactive secure MPC that corresponds to rounds of the see-saw.
- Invoke (preprocess) at start an unfair SFE that:
 - Shuffles the deck according to the parties’ random inputs.
 - Computes commitments to shares of all the cards.
 - Deals shares of the hands and shares of the rest of the cards to all parties, and also delivers all the commitments to all parties.
The see-saw construction: poker

- No need to run reactive secure MPC that corresponds to rounds of the see-saw.
- Invoke (preprocess) at start an unfair SFE that:
 - Shuffles the deck according to the parties’ random inputs.
 - Computes commitments to shares of all the cards.
 - Deals shares of the hands and shares of the rest of the cards to all parties, and also delivers all the commitments to all parties.
- Make the cash distribution transactions whose circuits verify the signatures of a transcript, then scan it while performing arithmetic calculations.
The see-saw construction: poker

- No need to run reactive secure MPC that corresponds to rounds of the see-saw.
- Invoke (preprocess) at start an unfair SFE that:
 - Shuffles the deck according to the parties’ random inputs.
 - Computes commitments to shares of all the cards.
 - Deals shares of the hands and shares of the rest of the cards to all parties, and also delivers all the commitments to all parties.
- Make the cash distribution transactions whose circuits verify the signatures of a transcript, then scan it while performing arithmetic calculations.
- The \mathcal{F}_{CR}^* circuit in each round of the see-saw will verify signatures of a transcript, then enforce betting rules or expect a party to reveal a share of a card.
- For example: if all partied called and the top card on the deck should be revealed, then the next see-saw circuits will require each party to reveal her share of the top card.
Some open questions

- Lower bound of linear number of rounds for fairness with penalties in the \mathcal{F}^*_{CR}-hybrid model?
- Constructing secure cash distribution with penalties from \textit{blackbox} secure MPC and \mathcal{F}^*_{CR}?
Some open questions

- Lower bound of linear number of rounds for fairness with penalties in the $F^*_\mathcal{CR}$-hybrid model?
- Constructing secure cash distribution with penalties from blackbox secure MPC and $F^*_\mathcal{CR}$?

Thank you.